xref: /openbmc/linux/fs/btrfs/ctree.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 #include "tree-mod-log.h"
18 
19 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
20 		      *root, struct btrfs_path *path, int level);
21 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
22 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
23 		      int data_size, int extend);
24 static int push_node_left(struct btrfs_trans_handle *trans,
25 			  struct extent_buffer *dst,
26 			  struct extent_buffer *src, int empty);
27 static int balance_node_right(struct btrfs_trans_handle *trans,
28 			      struct extent_buffer *dst_buf,
29 			      struct extent_buffer *src_buf);
30 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
31 		    int level, int slot);
32 
33 static const struct btrfs_csums {
34 	u16		size;
35 	const char	name[10];
36 	const char	driver[12];
37 } btrfs_csums[] = {
38 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
39 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
40 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
41 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
42 				     .driver = "blake2b-256" },
43 };
44 
45 int btrfs_super_csum_size(const struct btrfs_super_block *s)
46 {
47 	u16 t = btrfs_super_csum_type(s);
48 	/*
49 	 * csum type is validated at mount time
50 	 */
51 	return btrfs_csums[t].size;
52 }
53 
54 const char *btrfs_super_csum_name(u16 csum_type)
55 {
56 	/* csum type is validated at mount time */
57 	return btrfs_csums[csum_type].name;
58 }
59 
60 /*
61  * Return driver name if defined, otherwise the name that's also a valid driver
62  * name
63  */
64 const char *btrfs_super_csum_driver(u16 csum_type)
65 {
66 	/* csum type is validated at mount time */
67 	return btrfs_csums[csum_type].driver[0] ?
68 		btrfs_csums[csum_type].driver :
69 		btrfs_csums[csum_type].name;
70 }
71 
72 size_t __attribute_const__ btrfs_get_num_csums(void)
73 {
74 	return ARRAY_SIZE(btrfs_csums);
75 }
76 
77 struct btrfs_path *btrfs_alloc_path(void)
78 {
79 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
80 }
81 
82 /* this also releases the path */
83 void btrfs_free_path(struct btrfs_path *p)
84 {
85 	if (!p)
86 		return;
87 	btrfs_release_path(p);
88 	kmem_cache_free(btrfs_path_cachep, p);
89 }
90 
91 /*
92  * path release drops references on the extent buffers in the path
93  * and it drops any locks held by this path
94  *
95  * It is safe to call this on paths that no locks or extent buffers held.
96  */
97 noinline void btrfs_release_path(struct btrfs_path *p)
98 {
99 	int i;
100 
101 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
102 		p->slots[i] = 0;
103 		if (!p->nodes[i])
104 			continue;
105 		if (p->locks[i]) {
106 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
107 			p->locks[i] = 0;
108 		}
109 		free_extent_buffer(p->nodes[i]);
110 		p->nodes[i] = NULL;
111 	}
112 }
113 
114 /*
115  * safely gets a reference on the root node of a tree.  A lock
116  * is not taken, so a concurrent writer may put a different node
117  * at the root of the tree.  See btrfs_lock_root_node for the
118  * looping required.
119  *
120  * The extent buffer returned by this has a reference taken, so
121  * it won't disappear.  It may stop being the root of the tree
122  * at any time because there are no locks held.
123  */
124 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
125 {
126 	struct extent_buffer *eb;
127 
128 	while (1) {
129 		rcu_read_lock();
130 		eb = rcu_dereference(root->node);
131 
132 		/*
133 		 * RCU really hurts here, we could free up the root node because
134 		 * it was COWed but we may not get the new root node yet so do
135 		 * the inc_not_zero dance and if it doesn't work then
136 		 * synchronize_rcu and try again.
137 		 */
138 		if (atomic_inc_not_zero(&eb->refs)) {
139 			rcu_read_unlock();
140 			break;
141 		}
142 		rcu_read_unlock();
143 		synchronize_rcu();
144 	}
145 	return eb;
146 }
147 
148 /*
149  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
150  * just get put onto a simple dirty list.  Transaction walks this list to make
151  * sure they get properly updated on disk.
152  */
153 static void add_root_to_dirty_list(struct btrfs_root *root)
154 {
155 	struct btrfs_fs_info *fs_info = root->fs_info;
156 
157 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
158 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
159 		return;
160 
161 	spin_lock(&fs_info->trans_lock);
162 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
163 		/* Want the extent tree to be the last on the list */
164 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
165 			list_move_tail(&root->dirty_list,
166 				       &fs_info->dirty_cowonly_roots);
167 		else
168 			list_move(&root->dirty_list,
169 				  &fs_info->dirty_cowonly_roots);
170 	}
171 	spin_unlock(&fs_info->trans_lock);
172 }
173 
174 /*
175  * used by snapshot creation to make a copy of a root for a tree with
176  * a given objectid.  The buffer with the new root node is returned in
177  * cow_ret, and this func returns zero on success or a negative error code.
178  */
179 int btrfs_copy_root(struct btrfs_trans_handle *trans,
180 		      struct btrfs_root *root,
181 		      struct extent_buffer *buf,
182 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
183 {
184 	struct btrfs_fs_info *fs_info = root->fs_info;
185 	struct extent_buffer *cow;
186 	int ret = 0;
187 	int level;
188 	struct btrfs_disk_key disk_key;
189 
190 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
191 		trans->transid != fs_info->running_transaction->transid);
192 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
193 		trans->transid != root->last_trans);
194 
195 	level = btrfs_header_level(buf);
196 	if (level == 0)
197 		btrfs_item_key(buf, &disk_key, 0);
198 	else
199 		btrfs_node_key(buf, &disk_key, 0);
200 
201 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
202 				     &disk_key, level, buf->start, 0,
203 				     BTRFS_NESTING_NEW_ROOT);
204 	if (IS_ERR(cow))
205 		return PTR_ERR(cow);
206 
207 	copy_extent_buffer_full(cow, buf);
208 	btrfs_set_header_bytenr(cow, cow->start);
209 	btrfs_set_header_generation(cow, trans->transid);
210 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
211 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
212 				     BTRFS_HEADER_FLAG_RELOC);
213 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
214 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
215 	else
216 		btrfs_set_header_owner(cow, new_root_objectid);
217 
218 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
219 
220 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
221 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
222 		ret = btrfs_inc_ref(trans, root, cow, 1);
223 	else
224 		ret = btrfs_inc_ref(trans, root, cow, 0);
225 	if (ret) {
226 		btrfs_tree_unlock(cow);
227 		free_extent_buffer(cow);
228 		btrfs_abort_transaction(trans, ret);
229 		return ret;
230 	}
231 
232 	btrfs_mark_buffer_dirty(cow);
233 	*cow_ret = cow;
234 	return 0;
235 }
236 
237 /*
238  * check if the tree block can be shared by multiple trees
239  */
240 int btrfs_block_can_be_shared(struct btrfs_root *root,
241 			      struct extent_buffer *buf)
242 {
243 	/*
244 	 * Tree blocks not in shareable trees and tree roots are never shared.
245 	 * If a block was allocated after the last snapshot and the block was
246 	 * not allocated by tree relocation, we know the block is not shared.
247 	 */
248 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
249 	    buf != root->node && buf != root->commit_root &&
250 	    (btrfs_header_generation(buf) <=
251 	     btrfs_root_last_snapshot(&root->root_item) ||
252 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
253 		return 1;
254 
255 	return 0;
256 }
257 
258 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
259 				       struct btrfs_root *root,
260 				       struct extent_buffer *buf,
261 				       struct extent_buffer *cow,
262 				       int *last_ref)
263 {
264 	struct btrfs_fs_info *fs_info = root->fs_info;
265 	u64 refs;
266 	u64 owner;
267 	u64 flags;
268 	u64 new_flags = 0;
269 	int ret;
270 
271 	/*
272 	 * Backrefs update rules:
273 	 *
274 	 * Always use full backrefs for extent pointers in tree block
275 	 * allocated by tree relocation.
276 	 *
277 	 * If a shared tree block is no longer referenced by its owner
278 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
279 	 * use full backrefs for extent pointers in tree block.
280 	 *
281 	 * If a tree block is been relocating
282 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
283 	 * use full backrefs for extent pointers in tree block.
284 	 * The reason for this is some operations (such as drop tree)
285 	 * are only allowed for blocks use full backrefs.
286 	 */
287 
288 	if (btrfs_block_can_be_shared(root, buf)) {
289 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
290 					       btrfs_header_level(buf), 1,
291 					       &refs, &flags);
292 		if (ret)
293 			return ret;
294 		if (refs == 0) {
295 			ret = -EROFS;
296 			btrfs_handle_fs_error(fs_info, ret, NULL);
297 			return ret;
298 		}
299 	} else {
300 		refs = 1;
301 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
302 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
303 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
304 		else
305 			flags = 0;
306 	}
307 
308 	owner = btrfs_header_owner(buf);
309 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
310 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
311 
312 	if (refs > 1) {
313 		if ((owner == root->root_key.objectid ||
314 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
315 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
316 			ret = btrfs_inc_ref(trans, root, buf, 1);
317 			if (ret)
318 				return ret;
319 
320 			if (root->root_key.objectid ==
321 			    BTRFS_TREE_RELOC_OBJECTID) {
322 				ret = btrfs_dec_ref(trans, root, buf, 0);
323 				if (ret)
324 					return ret;
325 				ret = btrfs_inc_ref(trans, root, cow, 1);
326 				if (ret)
327 					return ret;
328 			}
329 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
330 		} else {
331 
332 			if (root->root_key.objectid ==
333 			    BTRFS_TREE_RELOC_OBJECTID)
334 				ret = btrfs_inc_ref(trans, root, cow, 1);
335 			else
336 				ret = btrfs_inc_ref(trans, root, cow, 0);
337 			if (ret)
338 				return ret;
339 		}
340 		if (new_flags != 0) {
341 			int level = btrfs_header_level(buf);
342 
343 			ret = btrfs_set_disk_extent_flags(trans, buf,
344 							  new_flags, level, 0);
345 			if (ret)
346 				return ret;
347 		}
348 	} else {
349 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
350 			if (root->root_key.objectid ==
351 			    BTRFS_TREE_RELOC_OBJECTID)
352 				ret = btrfs_inc_ref(trans, root, cow, 1);
353 			else
354 				ret = btrfs_inc_ref(trans, root, cow, 0);
355 			if (ret)
356 				return ret;
357 			ret = btrfs_dec_ref(trans, root, buf, 1);
358 			if (ret)
359 				return ret;
360 		}
361 		btrfs_clean_tree_block(buf);
362 		*last_ref = 1;
363 	}
364 	return 0;
365 }
366 
367 /*
368  * does the dirty work in cow of a single block.  The parent block (if
369  * supplied) is updated to point to the new cow copy.  The new buffer is marked
370  * dirty and returned locked.  If you modify the block it needs to be marked
371  * dirty again.
372  *
373  * search_start -- an allocation hint for the new block
374  *
375  * empty_size -- a hint that you plan on doing more cow.  This is the size in
376  * bytes the allocator should try to find free next to the block it returns.
377  * This is just a hint and may be ignored by the allocator.
378  */
379 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
380 			     struct btrfs_root *root,
381 			     struct extent_buffer *buf,
382 			     struct extent_buffer *parent, int parent_slot,
383 			     struct extent_buffer **cow_ret,
384 			     u64 search_start, u64 empty_size,
385 			     enum btrfs_lock_nesting nest)
386 {
387 	struct btrfs_fs_info *fs_info = root->fs_info;
388 	struct btrfs_disk_key disk_key;
389 	struct extent_buffer *cow;
390 	int level, ret;
391 	int last_ref = 0;
392 	int unlock_orig = 0;
393 	u64 parent_start = 0;
394 
395 	if (*cow_ret == buf)
396 		unlock_orig = 1;
397 
398 	btrfs_assert_tree_locked(buf);
399 
400 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
401 		trans->transid != fs_info->running_transaction->transid);
402 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
403 		trans->transid != root->last_trans);
404 
405 	level = btrfs_header_level(buf);
406 
407 	if (level == 0)
408 		btrfs_item_key(buf, &disk_key, 0);
409 	else
410 		btrfs_node_key(buf, &disk_key, 0);
411 
412 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
413 		parent_start = parent->start;
414 
415 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
416 				     root->root_key.objectid, &disk_key, level,
417 				     search_start, empty_size, nest);
418 	if (IS_ERR(cow))
419 		return PTR_ERR(cow);
420 
421 	/* cow is set to blocking by btrfs_init_new_buffer */
422 
423 	copy_extent_buffer_full(cow, buf);
424 	btrfs_set_header_bytenr(cow, cow->start);
425 	btrfs_set_header_generation(cow, trans->transid);
426 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
427 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
428 				     BTRFS_HEADER_FLAG_RELOC);
429 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
430 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
431 	else
432 		btrfs_set_header_owner(cow, root->root_key.objectid);
433 
434 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
435 
436 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
437 	if (ret) {
438 		btrfs_tree_unlock(cow);
439 		free_extent_buffer(cow);
440 		btrfs_abort_transaction(trans, ret);
441 		return ret;
442 	}
443 
444 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
445 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
446 		if (ret) {
447 			btrfs_tree_unlock(cow);
448 			free_extent_buffer(cow);
449 			btrfs_abort_transaction(trans, ret);
450 			return ret;
451 		}
452 	}
453 
454 	if (buf == root->node) {
455 		WARN_ON(parent && parent != buf);
456 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
457 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
458 			parent_start = buf->start;
459 
460 		atomic_inc(&cow->refs);
461 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
462 		BUG_ON(ret < 0);
463 		rcu_assign_pointer(root->node, cow);
464 
465 		btrfs_free_tree_block(trans, root, buf, parent_start,
466 				      last_ref);
467 		free_extent_buffer(buf);
468 		add_root_to_dirty_list(root);
469 	} else {
470 		WARN_ON(trans->transid != btrfs_header_generation(parent));
471 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
472 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
473 		btrfs_set_node_blockptr(parent, parent_slot,
474 					cow->start);
475 		btrfs_set_node_ptr_generation(parent, parent_slot,
476 					      trans->transid);
477 		btrfs_mark_buffer_dirty(parent);
478 		if (last_ref) {
479 			ret = btrfs_tree_mod_log_free_eb(buf);
480 			if (ret) {
481 				btrfs_tree_unlock(cow);
482 				free_extent_buffer(cow);
483 				btrfs_abort_transaction(trans, ret);
484 				return ret;
485 			}
486 		}
487 		btrfs_free_tree_block(trans, root, buf, parent_start,
488 				      last_ref);
489 	}
490 	if (unlock_orig)
491 		btrfs_tree_unlock(buf);
492 	free_extent_buffer_stale(buf);
493 	btrfs_mark_buffer_dirty(cow);
494 	*cow_ret = cow;
495 	return 0;
496 }
497 
498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
499 				   struct btrfs_root *root,
500 				   struct extent_buffer *buf)
501 {
502 	if (btrfs_is_testing(root->fs_info))
503 		return 0;
504 
505 	/* Ensure we can see the FORCE_COW bit */
506 	smp_mb__before_atomic();
507 
508 	/*
509 	 * We do not need to cow a block if
510 	 * 1) this block is not created or changed in this transaction;
511 	 * 2) this block does not belong to TREE_RELOC tree;
512 	 * 3) the root is not forced COW.
513 	 *
514 	 * What is forced COW:
515 	 *    when we create snapshot during committing the transaction,
516 	 *    after we've finished copying src root, we must COW the shared
517 	 *    block to ensure the metadata consistency.
518 	 */
519 	if (btrfs_header_generation(buf) == trans->transid &&
520 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
521 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
522 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
523 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
524 		return 0;
525 	return 1;
526 }
527 
528 /*
529  * cows a single block, see __btrfs_cow_block for the real work.
530  * This version of it has extra checks so that a block isn't COWed more than
531  * once per transaction, as long as it hasn't been written yet
532  */
533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
534 		    struct btrfs_root *root, struct extent_buffer *buf,
535 		    struct extent_buffer *parent, int parent_slot,
536 		    struct extent_buffer **cow_ret,
537 		    enum btrfs_lock_nesting nest)
538 {
539 	struct btrfs_fs_info *fs_info = root->fs_info;
540 	u64 search_start;
541 	int ret;
542 
543 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
544 		btrfs_err(fs_info,
545 			"COW'ing blocks on a fs root that's being dropped");
546 
547 	if (trans->transaction != fs_info->running_transaction)
548 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
549 		       trans->transid,
550 		       fs_info->running_transaction->transid);
551 
552 	if (trans->transid != fs_info->generation)
553 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
554 		       trans->transid, fs_info->generation);
555 
556 	if (!should_cow_block(trans, root, buf)) {
557 		*cow_ret = buf;
558 		return 0;
559 	}
560 
561 	search_start = buf->start & ~((u64)SZ_1G - 1);
562 
563 	/*
564 	 * Before CoWing this block for later modification, check if it's
565 	 * the subtree root and do the delayed subtree trace if needed.
566 	 *
567 	 * Also We don't care about the error, as it's handled internally.
568 	 */
569 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
570 	ret = __btrfs_cow_block(trans, root, buf, parent,
571 				 parent_slot, cow_ret, search_start, 0, nest);
572 
573 	trace_btrfs_cow_block(root, buf, *cow_ret);
574 
575 	return ret;
576 }
577 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
578 
579 /*
580  * helper function for defrag to decide if two blocks pointed to by a
581  * node are actually close by
582  */
583 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
584 {
585 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
586 		return 1;
587 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
588 		return 1;
589 	return 0;
590 }
591 
592 #ifdef __LITTLE_ENDIAN
593 
594 /*
595  * Compare two keys, on little-endian the disk order is same as CPU order and
596  * we can avoid the conversion.
597  */
598 static int comp_keys(const struct btrfs_disk_key *disk_key,
599 		     const struct btrfs_key *k2)
600 {
601 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
602 
603 	return btrfs_comp_cpu_keys(k1, k2);
604 }
605 
606 #else
607 
608 /*
609  * compare two keys in a memcmp fashion
610  */
611 static int comp_keys(const struct btrfs_disk_key *disk,
612 		     const struct btrfs_key *k2)
613 {
614 	struct btrfs_key k1;
615 
616 	btrfs_disk_key_to_cpu(&k1, disk);
617 
618 	return btrfs_comp_cpu_keys(&k1, k2);
619 }
620 #endif
621 
622 /*
623  * same as comp_keys only with two btrfs_key's
624  */
625 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
626 {
627 	if (k1->objectid > k2->objectid)
628 		return 1;
629 	if (k1->objectid < k2->objectid)
630 		return -1;
631 	if (k1->type > k2->type)
632 		return 1;
633 	if (k1->type < k2->type)
634 		return -1;
635 	if (k1->offset > k2->offset)
636 		return 1;
637 	if (k1->offset < k2->offset)
638 		return -1;
639 	return 0;
640 }
641 
642 /*
643  * this is used by the defrag code to go through all the
644  * leaves pointed to by a node and reallocate them so that
645  * disk order is close to key order
646  */
647 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
648 		       struct btrfs_root *root, struct extent_buffer *parent,
649 		       int start_slot, u64 *last_ret,
650 		       struct btrfs_key *progress)
651 {
652 	struct btrfs_fs_info *fs_info = root->fs_info;
653 	struct extent_buffer *cur;
654 	u64 blocknr;
655 	u64 search_start = *last_ret;
656 	u64 last_block = 0;
657 	u64 other;
658 	u32 parent_nritems;
659 	int end_slot;
660 	int i;
661 	int err = 0;
662 	u32 blocksize;
663 	int progress_passed = 0;
664 	struct btrfs_disk_key disk_key;
665 
666 	WARN_ON(trans->transaction != fs_info->running_transaction);
667 	WARN_ON(trans->transid != fs_info->generation);
668 
669 	parent_nritems = btrfs_header_nritems(parent);
670 	blocksize = fs_info->nodesize;
671 	end_slot = parent_nritems - 1;
672 
673 	if (parent_nritems <= 1)
674 		return 0;
675 
676 	for (i = start_slot; i <= end_slot; i++) {
677 		int close = 1;
678 
679 		btrfs_node_key(parent, &disk_key, i);
680 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
681 			continue;
682 
683 		progress_passed = 1;
684 		blocknr = btrfs_node_blockptr(parent, i);
685 		if (last_block == 0)
686 			last_block = blocknr;
687 
688 		if (i > 0) {
689 			other = btrfs_node_blockptr(parent, i - 1);
690 			close = close_blocks(blocknr, other, blocksize);
691 		}
692 		if (!close && i < end_slot) {
693 			other = btrfs_node_blockptr(parent, i + 1);
694 			close = close_blocks(blocknr, other, blocksize);
695 		}
696 		if (close) {
697 			last_block = blocknr;
698 			continue;
699 		}
700 
701 		cur = btrfs_read_node_slot(parent, i);
702 		if (IS_ERR(cur))
703 			return PTR_ERR(cur);
704 		if (search_start == 0)
705 			search_start = last_block;
706 
707 		btrfs_tree_lock(cur);
708 		err = __btrfs_cow_block(trans, root, cur, parent, i,
709 					&cur, search_start,
710 					min(16 * blocksize,
711 					    (end_slot - i) * blocksize),
712 					BTRFS_NESTING_COW);
713 		if (err) {
714 			btrfs_tree_unlock(cur);
715 			free_extent_buffer(cur);
716 			break;
717 		}
718 		search_start = cur->start;
719 		last_block = cur->start;
720 		*last_ret = search_start;
721 		btrfs_tree_unlock(cur);
722 		free_extent_buffer(cur);
723 	}
724 	return err;
725 }
726 
727 /*
728  * search for key in the extent_buffer.  The items start at offset p,
729  * and they are item_size apart.  There are 'max' items in p.
730  *
731  * the slot in the array is returned via slot, and it points to
732  * the place where you would insert key if it is not found in
733  * the array.
734  *
735  * slot may point to max if the key is bigger than all of the keys
736  */
737 static noinline int generic_bin_search(struct extent_buffer *eb,
738 				       unsigned long p, int item_size,
739 				       const struct btrfs_key *key,
740 				       int max, int *slot)
741 {
742 	int low = 0;
743 	int high = max;
744 	int ret;
745 	const int key_size = sizeof(struct btrfs_disk_key);
746 
747 	if (low > high) {
748 		btrfs_err(eb->fs_info,
749 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
750 			  __func__, low, high, eb->start,
751 			  btrfs_header_owner(eb), btrfs_header_level(eb));
752 		return -EINVAL;
753 	}
754 
755 	while (low < high) {
756 		unsigned long oip;
757 		unsigned long offset;
758 		struct btrfs_disk_key *tmp;
759 		struct btrfs_disk_key unaligned;
760 		int mid;
761 
762 		mid = (low + high) / 2;
763 		offset = p + mid * item_size;
764 		oip = offset_in_page(offset);
765 
766 		if (oip + key_size <= PAGE_SIZE) {
767 			const unsigned long idx = get_eb_page_index(offset);
768 			char *kaddr = page_address(eb->pages[idx]);
769 
770 			oip = get_eb_offset_in_page(eb, offset);
771 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
772 		} else {
773 			read_extent_buffer(eb, &unaligned, offset, key_size);
774 			tmp = &unaligned;
775 		}
776 
777 		ret = comp_keys(tmp, key);
778 
779 		if (ret < 0)
780 			low = mid + 1;
781 		else if (ret > 0)
782 			high = mid;
783 		else {
784 			*slot = mid;
785 			return 0;
786 		}
787 	}
788 	*slot = low;
789 	return 1;
790 }
791 
792 /*
793  * simple bin_search frontend that does the right thing for
794  * leaves vs nodes
795  */
796 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
797 		     int *slot)
798 {
799 	if (btrfs_header_level(eb) == 0)
800 		return generic_bin_search(eb,
801 					  offsetof(struct btrfs_leaf, items),
802 					  sizeof(struct btrfs_item),
803 					  key, btrfs_header_nritems(eb),
804 					  slot);
805 	else
806 		return generic_bin_search(eb,
807 					  offsetof(struct btrfs_node, ptrs),
808 					  sizeof(struct btrfs_key_ptr),
809 					  key, btrfs_header_nritems(eb),
810 					  slot);
811 }
812 
813 static void root_add_used(struct btrfs_root *root, u32 size)
814 {
815 	spin_lock(&root->accounting_lock);
816 	btrfs_set_root_used(&root->root_item,
817 			    btrfs_root_used(&root->root_item) + size);
818 	spin_unlock(&root->accounting_lock);
819 }
820 
821 static void root_sub_used(struct btrfs_root *root, u32 size)
822 {
823 	spin_lock(&root->accounting_lock);
824 	btrfs_set_root_used(&root->root_item,
825 			    btrfs_root_used(&root->root_item) - size);
826 	spin_unlock(&root->accounting_lock);
827 }
828 
829 /* given a node and slot number, this reads the blocks it points to.  The
830  * extent buffer is returned with a reference taken (but unlocked).
831  */
832 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
833 					   int slot)
834 {
835 	int level = btrfs_header_level(parent);
836 	struct extent_buffer *eb;
837 	struct btrfs_key first_key;
838 
839 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
840 		return ERR_PTR(-ENOENT);
841 
842 	BUG_ON(level == 0);
843 
844 	btrfs_node_key_to_cpu(parent, &first_key, slot);
845 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
846 			     btrfs_header_owner(parent),
847 			     btrfs_node_ptr_generation(parent, slot),
848 			     level - 1, &first_key);
849 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
850 		free_extent_buffer(eb);
851 		eb = ERR_PTR(-EIO);
852 	}
853 
854 	return eb;
855 }
856 
857 /*
858  * node level balancing, used to make sure nodes are in proper order for
859  * item deletion.  We balance from the top down, so we have to make sure
860  * that a deletion won't leave an node completely empty later on.
861  */
862 static noinline int balance_level(struct btrfs_trans_handle *trans,
863 			 struct btrfs_root *root,
864 			 struct btrfs_path *path, int level)
865 {
866 	struct btrfs_fs_info *fs_info = root->fs_info;
867 	struct extent_buffer *right = NULL;
868 	struct extent_buffer *mid;
869 	struct extent_buffer *left = NULL;
870 	struct extent_buffer *parent = NULL;
871 	int ret = 0;
872 	int wret;
873 	int pslot;
874 	int orig_slot = path->slots[level];
875 	u64 orig_ptr;
876 
877 	ASSERT(level > 0);
878 
879 	mid = path->nodes[level];
880 
881 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
882 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
883 
884 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
885 
886 	if (level < BTRFS_MAX_LEVEL - 1) {
887 		parent = path->nodes[level + 1];
888 		pslot = path->slots[level + 1];
889 	}
890 
891 	/*
892 	 * deal with the case where there is only one pointer in the root
893 	 * by promoting the node below to a root
894 	 */
895 	if (!parent) {
896 		struct extent_buffer *child;
897 
898 		if (btrfs_header_nritems(mid) != 1)
899 			return 0;
900 
901 		/* promote the child to a root */
902 		child = btrfs_read_node_slot(mid, 0);
903 		if (IS_ERR(child)) {
904 			ret = PTR_ERR(child);
905 			btrfs_handle_fs_error(fs_info, ret, NULL);
906 			goto enospc;
907 		}
908 
909 		btrfs_tree_lock(child);
910 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
911 				      BTRFS_NESTING_COW);
912 		if (ret) {
913 			btrfs_tree_unlock(child);
914 			free_extent_buffer(child);
915 			goto enospc;
916 		}
917 
918 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
919 		BUG_ON(ret < 0);
920 		rcu_assign_pointer(root->node, child);
921 
922 		add_root_to_dirty_list(root);
923 		btrfs_tree_unlock(child);
924 
925 		path->locks[level] = 0;
926 		path->nodes[level] = NULL;
927 		btrfs_clean_tree_block(mid);
928 		btrfs_tree_unlock(mid);
929 		/* once for the path */
930 		free_extent_buffer(mid);
931 
932 		root_sub_used(root, mid->len);
933 		btrfs_free_tree_block(trans, root, mid, 0, 1);
934 		/* once for the root ptr */
935 		free_extent_buffer_stale(mid);
936 		return 0;
937 	}
938 	if (btrfs_header_nritems(mid) >
939 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
940 		return 0;
941 
942 	left = btrfs_read_node_slot(parent, pslot - 1);
943 	if (IS_ERR(left))
944 		left = NULL;
945 
946 	if (left) {
947 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
948 		wret = btrfs_cow_block(trans, root, left,
949 				       parent, pslot - 1, &left,
950 				       BTRFS_NESTING_LEFT_COW);
951 		if (wret) {
952 			ret = wret;
953 			goto enospc;
954 		}
955 	}
956 
957 	right = btrfs_read_node_slot(parent, pslot + 1);
958 	if (IS_ERR(right))
959 		right = NULL;
960 
961 	if (right) {
962 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
963 		wret = btrfs_cow_block(trans, root, right,
964 				       parent, pslot + 1, &right,
965 				       BTRFS_NESTING_RIGHT_COW);
966 		if (wret) {
967 			ret = wret;
968 			goto enospc;
969 		}
970 	}
971 
972 	/* first, try to make some room in the middle buffer */
973 	if (left) {
974 		orig_slot += btrfs_header_nritems(left);
975 		wret = push_node_left(trans, left, mid, 1);
976 		if (wret < 0)
977 			ret = wret;
978 	}
979 
980 	/*
981 	 * then try to empty the right most buffer into the middle
982 	 */
983 	if (right) {
984 		wret = push_node_left(trans, mid, right, 1);
985 		if (wret < 0 && wret != -ENOSPC)
986 			ret = wret;
987 		if (btrfs_header_nritems(right) == 0) {
988 			btrfs_clean_tree_block(right);
989 			btrfs_tree_unlock(right);
990 			del_ptr(root, path, level + 1, pslot + 1);
991 			root_sub_used(root, right->len);
992 			btrfs_free_tree_block(trans, root, right, 0, 1);
993 			free_extent_buffer_stale(right);
994 			right = NULL;
995 		} else {
996 			struct btrfs_disk_key right_key;
997 			btrfs_node_key(right, &right_key, 0);
998 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
999 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1000 			BUG_ON(ret < 0);
1001 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1002 			btrfs_mark_buffer_dirty(parent);
1003 		}
1004 	}
1005 	if (btrfs_header_nritems(mid) == 1) {
1006 		/*
1007 		 * we're not allowed to leave a node with one item in the
1008 		 * tree during a delete.  A deletion from lower in the tree
1009 		 * could try to delete the only pointer in this node.
1010 		 * So, pull some keys from the left.
1011 		 * There has to be a left pointer at this point because
1012 		 * otherwise we would have pulled some pointers from the
1013 		 * right
1014 		 */
1015 		if (!left) {
1016 			ret = -EROFS;
1017 			btrfs_handle_fs_error(fs_info, ret, NULL);
1018 			goto enospc;
1019 		}
1020 		wret = balance_node_right(trans, mid, left);
1021 		if (wret < 0) {
1022 			ret = wret;
1023 			goto enospc;
1024 		}
1025 		if (wret == 1) {
1026 			wret = push_node_left(trans, left, mid, 1);
1027 			if (wret < 0)
1028 				ret = wret;
1029 		}
1030 		BUG_ON(wret == 1);
1031 	}
1032 	if (btrfs_header_nritems(mid) == 0) {
1033 		btrfs_clean_tree_block(mid);
1034 		btrfs_tree_unlock(mid);
1035 		del_ptr(root, path, level + 1, pslot);
1036 		root_sub_used(root, mid->len);
1037 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1038 		free_extent_buffer_stale(mid);
1039 		mid = NULL;
1040 	} else {
1041 		/* update the parent key to reflect our changes */
1042 		struct btrfs_disk_key mid_key;
1043 		btrfs_node_key(mid, &mid_key, 0);
1044 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1045 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1046 		BUG_ON(ret < 0);
1047 		btrfs_set_node_key(parent, &mid_key, pslot);
1048 		btrfs_mark_buffer_dirty(parent);
1049 	}
1050 
1051 	/* update the path */
1052 	if (left) {
1053 		if (btrfs_header_nritems(left) > orig_slot) {
1054 			atomic_inc(&left->refs);
1055 			/* left was locked after cow */
1056 			path->nodes[level] = left;
1057 			path->slots[level + 1] -= 1;
1058 			path->slots[level] = orig_slot;
1059 			if (mid) {
1060 				btrfs_tree_unlock(mid);
1061 				free_extent_buffer(mid);
1062 			}
1063 		} else {
1064 			orig_slot -= btrfs_header_nritems(left);
1065 			path->slots[level] = orig_slot;
1066 		}
1067 	}
1068 	/* double check we haven't messed things up */
1069 	if (orig_ptr !=
1070 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1071 		BUG();
1072 enospc:
1073 	if (right) {
1074 		btrfs_tree_unlock(right);
1075 		free_extent_buffer(right);
1076 	}
1077 	if (left) {
1078 		if (path->nodes[level] != left)
1079 			btrfs_tree_unlock(left);
1080 		free_extent_buffer(left);
1081 	}
1082 	return ret;
1083 }
1084 
1085 /* Node balancing for insertion.  Here we only split or push nodes around
1086  * when they are completely full.  This is also done top down, so we
1087  * have to be pessimistic.
1088  */
1089 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1090 					  struct btrfs_root *root,
1091 					  struct btrfs_path *path, int level)
1092 {
1093 	struct btrfs_fs_info *fs_info = root->fs_info;
1094 	struct extent_buffer *right = NULL;
1095 	struct extent_buffer *mid;
1096 	struct extent_buffer *left = NULL;
1097 	struct extent_buffer *parent = NULL;
1098 	int ret = 0;
1099 	int wret;
1100 	int pslot;
1101 	int orig_slot = path->slots[level];
1102 
1103 	if (level == 0)
1104 		return 1;
1105 
1106 	mid = path->nodes[level];
1107 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1108 
1109 	if (level < BTRFS_MAX_LEVEL - 1) {
1110 		parent = path->nodes[level + 1];
1111 		pslot = path->slots[level + 1];
1112 	}
1113 
1114 	if (!parent)
1115 		return 1;
1116 
1117 	left = btrfs_read_node_slot(parent, pslot - 1);
1118 	if (IS_ERR(left))
1119 		left = NULL;
1120 
1121 	/* first, try to make some room in the middle buffer */
1122 	if (left) {
1123 		u32 left_nr;
1124 
1125 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1126 
1127 		left_nr = btrfs_header_nritems(left);
1128 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1129 			wret = 1;
1130 		} else {
1131 			ret = btrfs_cow_block(trans, root, left, parent,
1132 					      pslot - 1, &left,
1133 					      BTRFS_NESTING_LEFT_COW);
1134 			if (ret)
1135 				wret = 1;
1136 			else {
1137 				wret = push_node_left(trans, left, mid, 0);
1138 			}
1139 		}
1140 		if (wret < 0)
1141 			ret = wret;
1142 		if (wret == 0) {
1143 			struct btrfs_disk_key disk_key;
1144 			orig_slot += left_nr;
1145 			btrfs_node_key(mid, &disk_key, 0);
1146 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1147 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1148 			BUG_ON(ret < 0);
1149 			btrfs_set_node_key(parent, &disk_key, pslot);
1150 			btrfs_mark_buffer_dirty(parent);
1151 			if (btrfs_header_nritems(left) > orig_slot) {
1152 				path->nodes[level] = left;
1153 				path->slots[level + 1] -= 1;
1154 				path->slots[level] = orig_slot;
1155 				btrfs_tree_unlock(mid);
1156 				free_extent_buffer(mid);
1157 			} else {
1158 				orig_slot -=
1159 					btrfs_header_nritems(left);
1160 				path->slots[level] = orig_slot;
1161 				btrfs_tree_unlock(left);
1162 				free_extent_buffer(left);
1163 			}
1164 			return 0;
1165 		}
1166 		btrfs_tree_unlock(left);
1167 		free_extent_buffer(left);
1168 	}
1169 	right = btrfs_read_node_slot(parent, pslot + 1);
1170 	if (IS_ERR(right))
1171 		right = NULL;
1172 
1173 	/*
1174 	 * then try to empty the right most buffer into the middle
1175 	 */
1176 	if (right) {
1177 		u32 right_nr;
1178 
1179 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1180 
1181 		right_nr = btrfs_header_nritems(right);
1182 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1183 			wret = 1;
1184 		} else {
1185 			ret = btrfs_cow_block(trans, root, right,
1186 					      parent, pslot + 1,
1187 					      &right, BTRFS_NESTING_RIGHT_COW);
1188 			if (ret)
1189 				wret = 1;
1190 			else {
1191 				wret = balance_node_right(trans, right, mid);
1192 			}
1193 		}
1194 		if (wret < 0)
1195 			ret = wret;
1196 		if (wret == 0) {
1197 			struct btrfs_disk_key disk_key;
1198 
1199 			btrfs_node_key(right, &disk_key, 0);
1200 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1201 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1202 			BUG_ON(ret < 0);
1203 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1204 			btrfs_mark_buffer_dirty(parent);
1205 
1206 			if (btrfs_header_nritems(mid) <= orig_slot) {
1207 				path->nodes[level] = right;
1208 				path->slots[level + 1] += 1;
1209 				path->slots[level] = orig_slot -
1210 					btrfs_header_nritems(mid);
1211 				btrfs_tree_unlock(mid);
1212 				free_extent_buffer(mid);
1213 			} else {
1214 				btrfs_tree_unlock(right);
1215 				free_extent_buffer(right);
1216 			}
1217 			return 0;
1218 		}
1219 		btrfs_tree_unlock(right);
1220 		free_extent_buffer(right);
1221 	}
1222 	return 1;
1223 }
1224 
1225 /*
1226  * readahead one full node of leaves, finding things that are close
1227  * to the block in 'slot', and triggering ra on them.
1228  */
1229 static void reada_for_search(struct btrfs_fs_info *fs_info,
1230 			     struct btrfs_path *path,
1231 			     int level, int slot, u64 objectid)
1232 {
1233 	struct extent_buffer *node;
1234 	struct btrfs_disk_key disk_key;
1235 	u32 nritems;
1236 	u64 search;
1237 	u64 target;
1238 	u64 nread = 0;
1239 	u64 nread_max;
1240 	struct extent_buffer *eb;
1241 	u32 nr;
1242 	u32 blocksize;
1243 	u32 nscan = 0;
1244 
1245 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1246 		return;
1247 
1248 	if (!path->nodes[level])
1249 		return;
1250 
1251 	node = path->nodes[level];
1252 
1253 	/*
1254 	 * Since the time between visiting leaves is much shorter than the time
1255 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1256 	 * much IO at once (possibly random).
1257 	 */
1258 	if (path->reada == READA_FORWARD_ALWAYS) {
1259 		if (level > 1)
1260 			nread_max = node->fs_info->nodesize;
1261 		else
1262 			nread_max = SZ_128K;
1263 	} else {
1264 		nread_max = SZ_64K;
1265 	}
1266 
1267 	search = btrfs_node_blockptr(node, slot);
1268 	blocksize = fs_info->nodesize;
1269 	eb = find_extent_buffer(fs_info, search);
1270 	if (eb) {
1271 		free_extent_buffer(eb);
1272 		return;
1273 	}
1274 
1275 	target = search;
1276 
1277 	nritems = btrfs_header_nritems(node);
1278 	nr = slot;
1279 
1280 	while (1) {
1281 		if (path->reada == READA_BACK) {
1282 			if (nr == 0)
1283 				break;
1284 			nr--;
1285 		} else if (path->reada == READA_FORWARD ||
1286 			   path->reada == READA_FORWARD_ALWAYS) {
1287 			nr++;
1288 			if (nr >= nritems)
1289 				break;
1290 		}
1291 		if (path->reada == READA_BACK && objectid) {
1292 			btrfs_node_key(node, &disk_key, nr);
1293 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1294 				break;
1295 		}
1296 		search = btrfs_node_blockptr(node, nr);
1297 		if (path->reada == READA_FORWARD_ALWAYS ||
1298 		    (search <= target && target - search <= 65536) ||
1299 		    (search > target && search - target <= 65536)) {
1300 			btrfs_readahead_node_child(node, nr);
1301 			nread += blocksize;
1302 		}
1303 		nscan++;
1304 		if (nread > nread_max || nscan > 32)
1305 			break;
1306 	}
1307 }
1308 
1309 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1310 {
1311 	struct extent_buffer *parent;
1312 	int slot;
1313 	int nritems;
1314 
1315 	parent = path->nodes[level + 1];
1316 	if (!parent)
1317 		return;
1318 
1319 	nritems = btrfs_header_nritems(parent);
1320 	slot = path->slots[level + 1];
1321 
1322 	if (slot > 0)
1323 		btrfs_readahead_node_child(parent, slot - 1);
1324 	if (slot + 1 < nritems)
1325 		btrfs_readahead_node_child(parent, slot + 1);
1326 }
1327 
1328 
1329 /*
1330  * when we walk down the tree, it is usually safe to unlock the higher layers
1331  * in the tree.  The exceptions are when our path goes through slot 0, because
1332  * operations on the tree might require changing key pointers higher up in the
1333  * tree.
1334  *
1335  * callers might also have set path->keep_locks, which tells this code to keep
1336  * the lock if the path points to the last slot in the block.  This is part of
1337  * walking through the tree, and selecting the next slot in the higher block.
1338  *
1339  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1340  * if lowest_unlock is 1, level 0 won't be unlocked
1341  */
1342 static noinline void unlock_up(struct btrfs_path *path, int level,
1343 			       int lowest_unlock, int min_write_lock_level,
1344 			       int *write_lock_level)
1345 {
1346 	int i;
1347 	int skip_level = level;
1348 	int no_skips = 0;
1349 	struct extent_buffer *t;
1350 
1351 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1352 		if (!path->nodes[i])
1353 			break;
1354 		if (!path->locks[i])
1355 			break;
1356 		if (!no_skips && path->slots[i] == 0) {
1357 			skip_level = i + 1;
1358 			continue;
1359 		}
1360 		if (!no_skips && path->keep_locks) {
1361 			u32 nritems;
1362 			t = path->nodes[i];
1363 			nritems = btrfs_header_nritems(t);
1364 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1365 				skip_level = i + 1;
1366 				continue;
1367 			}
1368 		}
1369 		if (skip_level < i && i >= lowest_unlock)
1370 			no_skips = 1;
1371 
1372 		t = path->nodes[i];
1373 		if (i >= lowest_unlock && i > skip_level) {
1374 			btrfs_tree_unlock_rw(t, path->locks[i]);
1375 			path->locks[i] = 0;
1376 			if (write_lock_level &&
1377 			    i > min_write_lock_level &&
1378 			    i <= *write_lock_level) {
1379 				*write_lock_level = i - 1;
1380 			}
1381 		}
1382 	}
1383 }
1384 
1385 /*
1386  * helper function for btrfs_search_slot.  The goal is to find a block
1387  * in cache without setting the path to blocking.  If we find the block
1388  * we return zero and the path is unchanged.
1389  *
1390  * If we can't find the block, we set the path blocking and do some
1391  * reada.  -EAGAIN is returned and the search must be repeated.
1392  */
1393 static int
1394 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1395 		      struct extent_buffer **eb_ret, int level, int slot,
1396 		      const struct btrfs_key *key)
1397 {
1398 	struct btrfs_fs_info *fs_info = root->fs_info;
1399 	u64 blocknr;
1400 	u64 gen;
1401 	struct extent_buffer *tmp;
1402 	struct btrfs_key first_key;
1403 	int ret;
1404 	int parent_level;
1405 
1406 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1407 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1408 	parent_level = btrfs_header_level(*eb_ret);
1409 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1410 
1411 	tmp = find_extent_buffer(fs_info, blocknr);
1412 	if (tmp) {
1413 		if (p->reada == READA_FORWARD_ALWAYS)
1414 			reada_for_search(fs_info, p, level, slot, key->objectid);
1415 
1416 		/* first we do an atomic uptodate check */
1417 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1418 			/*
1419 			 * Do extra check for first_key, eb can be stale due to
1420 			 * being cached, read from scrub, or have multiple
1421 			 * parents (shared tree blocks).
1422 			 */
1423 			if (btrfs_verify_level_key(tmp,
1424 					parent_level - 1, &first_key, gen)) {
1425 				free_extent_buffer(tmp);
1426 				return -EUCLEAN;
1427 			}
1428 			*eb_ret = tmp;
1429 			return 0;
1430 		}
1431 
1432 		/* now we're allowed to do a blocking uptodate check */
1433 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1434 		if (!ret) {
1435 			*eb_ret = tmp;
1436 			return 0;
1437 		}
1438 		free_extent_buffer(tmp);
1439 		btrfs_release_path(p);
1440 		return -EIO;
1441 	}
1442 
1443 	/*
1444 	 * reduce lock contention at high levels
1445 	 * of the btree by dropping locks before
1446 	 * we read.  Don't release the lock on the current
1447 	 * level because we need to walk this node to figure
1448 	 * out which blocks to read.
1449 	 */
1450 	btrfs_unlock_up_safe(p, level + 1);
1451 
1452 	if (p->reada != READA_NONE)
1453 		reada_for_search(fs_info, p, level, slot, key->objectid);
1454 
1455 	ret = -EAGAIN;
1456 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1457 			      gen, parent_level - 1, &first_key);
1458 	if (!IS_ERR(tmp)) {
1459 		/*
1460 		 * If the read above didn't mark this buffer up to date,
1461 		 * it will never end up being up to date.  Set ret to EIO now
1462 		 * and give up so that our caller doesn't loop forever
1463 		 * on our EAGAINs.
1464 		 */
1465 		if (!extent_buffer_uptodate(tmp))
1466 			ret = -EIO;
1467 		free_extent_buffer(tmp);
1468 	} else {
1469 		ret = PTR_ERR(tmp);
1470 	}
1471 
1472 	btrfs_release_path(p);
1473 	return ret;
1474 }
1475 
1476 /*
1477  * helper function for btrfs_search_slot.  This does all of the checks
1478  * for node-level blocks and does any balancing required based on
1479  * the ins_len.
1480  *
1481  * If no extra work was required, zero is returned.  If we had to
1482  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1483  * start over
1484  */
1485 static int
1486 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1487 		       struct btrfs_root *root, struct btrfs_path *p,
1488 		       struct extent_buffer *b, int level, int ins_len,
1489 		       int *write_lock_level)
1490 {
1491 	struct btrfs_fs_info *fs_info = root->fs_info;
1492 	int ret = 0;
1493 
1494 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1495 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1496 
1497 		if (*write_lock_level < level + 1) {
1498 			*write_lock_level = level + 1;
1499 			btrfs_release_path(p);
1500 			return -EAGAIN;
1501 		}
1502 
1503 		reada_for_balance(p, level);
1504 		ret = split_node(trans, root, p, level);
1505 
1506 		b = p->nodes[level];
1507 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1508 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1509 
1510 		if (*write_lock_level < level + 1) {
1511 			*write_lock_level = level + 1;
1512 			btrfs_release_path(p);
1513 			return -EAGAIN;
1514 		}
1515 
1516 		reada_for_balance(p, level);
1517 		ret = balance_level(trans, root, p, level);
1518 		if (ret)
1519 			return ret;
1520 
1521 		b = p->nodes[level];
1522 		if (!b) {
1523 			btrfs_release_path(p);
1524 			return -EAGAIN;
1525 		}
1526 		BUG_ON(btrfs_header_nritems(b) == 1);
1527 	}
1528 	return ret;
1529 }
1530 
1531 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1532 		u64 iobjectid, u64 ioff, u8 key_type,
1533 		struct btrfs_key *found_key)
1534 {
1535 	int ret;
1536 	struct btrfs_key key;
1537 	struct extent_buffer *eb;
1538 
1539 	ASSERT(path);
1540 	ASSERT(found_key);
1541 
1542 	key.type = key_type;
1543 	key.objectid = iobjectid;
1544 	key.offset = ioff;
1545 
1546 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1547 	if (ret < 0)
1548 		return ret;
1549 
1550 	eb = path->nodes[0];
1551 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1552 		ret = btrfs_next_leaf(fs_root, path);
1553 		if (ret)
1554 			return ret;
1555 		eb = path->nodes[0];
1556 	}
1557 
1558 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1559 	if (found_key->type != key.type ||
1560 			found_key->objectid != key.objectid)
1561 		return 1;
1562 
1563 	return 0;
1564 }
1565 
1566 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1567 							struct btrfs_path *p,
1568 							int write_lock_level)
1569 {
1570 	struct btrfs_fs_info *fs_info = root->fs_info;
1571 	struct extent_buffer *b;
1572 	int root_lock;
1573 	int level = 0;
1574 
1575 	/* We try very hard to do read locks on the root */
1576 	root_lock = BTRFS_READ_LOCK;
1577 
1578 	if (p->search_commit_root) {
1579 		/*
1580 		 * The commit roots are read only so we always do read locks,
1581 		 * and we always must hold the commit_root_sem when doing
1582 		 * searches on them, the only exception is send where we don't
1583 		 * want to block transaction commits for a long time, so
1584 		 * we need to clone the commit root in order to avoid races
1585 		 * with transaction commits that create a snapshot of one of
1586 		 * the roots used by a send operation.
1587 		 */
1588 		if (p->need_commit_sem) {
1589 			down_read(&fs_info->commit_root_sem);
1590 			b = btrfs_clone_extent_buffer(root->commit_root);
1591 			up_read(&fs_info->commit_root_sem);
1592 			if (!b)
1593 				return ERR_PTR(-ENOMEM);
1594 
1595 		} else {
1596 			b = root->commit_root;
1597 			atomic_inc(&b->refs);
1598 		}
1599 		level = btrfs_header_level(b);
1600 		/*
1601 		 * Ensure that all callers have set skip_locking when
1602 		 * p->search_commit_root = 1.
1603 		 */
1604 		ASSERT(p->skip_locking == 1);
1605 
1606 		goto out;
1607 	}
1608 
1609 	if (p->skip_locking) {
1610 		b = btrfs_root_node(root);
1611 		level = btrfs_header_level(b);
1612 		goto out;
1613 	}
1614 
1615 	/*
1616 	 * If the level is set to maximum, we can skip trying to get the read
1617 	 * lock.
1618 	 */
1619 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1620 		/*
1621 		 * We don't know the level of the root node until we actually
1622 		 * have it read locked
1623 		 */
1624 		b = btrfs_read_lock_root_node(root);
1625 		level = btrfs_header_level(b);
1626 		if (level > write_lock_level)
1627 			goto out;
1628 
1629 		/* Whoops, must trade for write lock */
1630 		btrfs_tree_read_unlock(b);
1631 		free_extent_buffer(b);
1632 	}
1633 
1634 	b = btrfs_lock_root_node(root);
1635 	root_lock = BTRFS_WRITE_LOCK;
1636 
1637 	/* The level might have changed, check again */
1638 	level = btrfs_header_level(b);
1639 
1640 out:
1641 	p->nodes[level] = b;
1642 	if (!p->skip_locking)
1643 		p->locks[level] = root_lock;
1644 	/*
1645 	 * Callers are responsible for dropping b's references.
1646 	 */
1647 	return b;
1648 }
1649 
1650 
1651 /*
1652  * btrfs_search_slot - look for a key in a tree and perform necessary
1653  * modifications to preserve tree invariants.
1654  *
1655  * @trans:	Handle of transaction, used when modifying the tree
1656  * @p:		Holds all btree nodes along the search path
1657  * @root:	The root node of the tree
1658  * @key:	The key we are looking for
1659  * @ins_len:	Indicates purpose of search:
1660  *              >0  for inserts it's size of item inserted (*)
1661  *              <0  for deletions
1662  *               0  for plain searches, not modifying the tree
1663  *
1664  *              (*) If size of item inserted doesn't include
1665  *              sizeof(struct btrfs_item), then p->search_for_extension must
1666  *              be set.
1667  * @cow:	boolean should CoW operations be performed. Must always be 1
1668  *		when modifying the tree.
1669  *
1670  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1671  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1672  *
1673  * If @key is found, 0 is returned and you can find the item in the leaf level
1674  * of the path (level 0)
1675  *
1676  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1677  * points to the slot where it should be inserted
1678  *
1679  * If an error is encountered while searching the tree a negative error number
1680  * is returned
1681  */
1682 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1683 		      const struct btrfs_key *key, struct btrfs_path *p,
1684 		      int ins_len, int cow)
1685 {
1686 	struct extent_buffer *b;
1687 	int slot;
1688 	int ret;
1689 	int err;
1690 	int level;
1691 	int lowest_unlock = 1;
1692 	/* everything at write_lock_level or lower must be write locked */
1693 	int write_lock_level = 0;
1694 	u8 lowest_level = 0;
1695 	int min_write_lock_level;
1696 	int prev_cmp;
1697 
1698 	lowest_level = p->lowest_level;
1699 	WARN_ON(lowest_level && ins_len > 0);
1700 	WARN_ON(p->nodes[0] != NULL);
1701 	BUG_ON(!cow && ins_len);
1702 
1703 	if (ins_len < 0) {
1704 		lowest_unlock = 2;
1705 
1706 		/* when we are removing items, we might have to go up to level
1707 		 * two as we update tree pointers  Make sure we keep write
1708 		 * for those levels as well
1709 		 */
1710 		write_lock_level = 2;
1711 	} else if (ins_len > 0) {
1712 		/*
1713 		 * for inserting items, make sure we have a write lock on
1714 		 * level 1 so we can update keys
1715 		 */
1716 		write_lock_level = 1;
1717 	}
1718 
1719 	if (!cow)
1720 		write_lock_level = -1;
1721 
1722 	if (cow && (p->keep_locks || p->lowest_level))
1723 		write_lock_level = BTRFS_MAX_LEVEL;
1724 
1725 	min_write_lock_level = write_lock_level;
1726 
1727 again:
1728 	prev_cmp = -1;
1729 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1730 	if (IS_ERR(b)) {
1731 		ret = PTR_ERR(b);
1732 		goto done;
1733 	}
1734 
1735 	while (b) {
1736 		int dec = 0;
1737 
1738 		level = btrfs_header_level(b);
1739 
1740 		if (cow) {
1741 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1742 
1743 			/*
1744 			 * if we don't really need to cow this block
1745 			 * then we don't want to set the path blocking,
1746 			 * so we test it here
1747 			 */
1748 			if (!should_cow_block(trans, root, b))
1749 				goto cow_done;
1750 
1751 			/*
1752 			 * must have write locks on this node and the
1753 			 * parent
1754 			 */
1755 			if (level > write_lock_level ||
1756 			    (level + 1 > write_lock_level &&
1757 			    level + 1 < BTRFS_MAX_LEVEL &&
1758 			    p->nodes[level + 1])) {
1759 				write_lock_level = level + 1;
1760 				btrfs_release_path(p);
1761 				goto again;
1762 			}
1763 
1764 			if (last_level)
1765 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1766 						      &b,
1767 						      BTRFS_NESTING_COW);
1768 			else
1769 				err = btrfs_cow_block(trans, root, b,
1770 						      p->nodes[level + 1],
1771 						      p->slots[level + 1], &b,
1772 						      BTRFS_NESTING_COW);
1773 			if (err) {
1774 				ret = err;
1775 				goto done;
1776 			}
1777 		}
1778 cow_done:
1779 		p->nodes[level] = b;
1780 		/*
1781 		 * Leave path with blocking locks to avoid massive
1782 		 * lock context switch, this is made on purpose.
1783 		 */
1784 
1785 		/*
1786 		 * we have a lock on b and as long as we aren't changing
1787 		 * the tree, there is no way to for the items in b to change.
1788 		 * It is safe to drop the lock on our parent before we
1789 		 * go through the expensive btree search on b.
1790 		 *
1791 		 * If we're inserting or deleting (ins_len != 0), then we might
1792 		 * be changing slot zero, which may require changing the parent.
1793 		 * So, we can't drop the lock until after we know which slot
1794 		 * we're operating on.
1795 		 */
1796 		if (!ins_len && !p->keep_locks) {
1797 			int u = level + 1;
1798 
1799 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1800 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1801 				p->locks[u] = 0;
1802 			}
1803 		}
1804 
1805 		/*
1806 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1807 		 * we can safely assume the target key will always be in slot 0
1808 		 * on lower levels due to the invariants BTRFS' btree provides,
1809 		 * namely that a btrfs_key_ptr entry always points to the
1810 		 * lowest key in the child node, thus we can skip searching
1811 		 * lower levels
1812 		 */
1813 		if (prev_cmp == 0) {
1814 			slot = 0;
1815 			ret = 0;
1816 		} else {
1817 			ret = btrfs_bin_search(b, key, &slot);
1818 			prev_cmp = ret;
1819 			if (ret < 0)
1820 				goto done;
1821 		}
1822 
1823 		if (level == 0) {
1824 			p->slots[level] = slot;
1825 			/*
1826 			 * Item key already exists. In this case, if we are
1827 			 * allowed to insert the item (for example, in dir_item
1828 			 * case, item key collision is allowed), it will be
1829 			 * merged with the original item. Only the item size
1830 			 * grows, no new btrfs item will be added. If
1831 			 * search_for_extension is not set, ins_len already
1832 			 * accounts the size btrfs_item, deduct it here so leaf
1833 			 * space check will be correct.
1834 			 */
1835 			if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1836 				ASSERT(ins_len >= sizeof(struct btrfs_item));
1837 				ins_len -= sizeof(struct btrfs_item);
1838 			}
1839 			if (ins_len > 0 &&
1840 			    btrfs_leaf_free_space(b) < ins_len) {
1841 				if (write_lock_level < 1) {
1842 					write_lock_level = 1;
1843 					btrfs_release_path(p);
1844 					goto again;
1845 				}
1846 
1847 				err = split_leaf(trans, root, key,
1848 						 p, ins_len, ret == 0);
1849 
1850 				BUG_ON(err > 0);
1851 				if (err) {
1852 					ret = err;
1853 					goto done;
1854 				}
1855 			}
1856 			if (!p->search_for_split)
1857 				unlock_up(p, level, lowest_unlock,
1858 					  min_write_lock_level, NULL);
1859 			goto done;
1860 		}
1861 		if (ret && slot > 0) {
1862 			dec = 1;
1863 			slot--;
1864 		}
1865 		p->slots[level] = slot;
1866 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1867 					     &write_lock_level);
1868 		if (err == -EAGAIN)
1869 			goto again;
1870 		if (err) {
1871 			ret = err;
1872 			goto done;
1873 		}
1874 		b = p->nodes[level];
1875 		slot = p->slots[level];
1876 
1877 		/*
1878 		 * Slot 0 is special, if we change the key we have to update
1879 		 * the parent pointer which means we must have a write lock on
1880 		 * the parent
1881 		 */
1882 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
1883 			write_lock_level = level + 1;
1884 			btrfs_release_path(p);
1885 			goto again;
1886 		}
1887 
1888 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
1889 			  &write_lock_level);
1890 
1891 		if (level == lowest_level) {
1892 			if (dec)
1893 				p->slots[level]++;
1894 			goto done;
1895 		}
1896 
1897 		err = read_block_for_search(root, p, &b, level, slot, key);
1898 		if (err == -EAGAIN)
1899 			goto again;
1900 		if (err) {
1901 			ret = err;
1902 			goto done;
1903 		}
1904 
1905 		if (!p->skip_locking) {
1906 			level = btrfs_header_level(b);
1907 			if (level <= write_lock_level) {
1908 				btrfs_tree_lock(b);
1909 				p->locks[level] = BTRFS_WRITE_LOCK;
1910 			} else {
1911 				btrfs_tree_read_lock(b);
1912 				p->locks[level] = BTRFS_READ_LOCK;
1913 			}
1914 			p->nodes[level] = b;
1915 		}
1916 	}
1917 	ret = 1;
1918 done:
1919 	if (ret < 0 && !p->skip_release_on_error)
1920 		btrfs_release_path(p);
1921 	return ret;
1922 }
1923 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1924 
1925 /*
1926  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1927  * current state of the tree together with the operations recorded in the tree
1928  * modification log to search for the key in a previous version of this tree, as
1929  * denoted by the time_seq parameter.
1930  *
1931  * Naturally, there is no support for insert, delete or cow operations.
1932  *
1933  * The resulting path and return value will be set up as if we called
1934  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1935  */
1936 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1937 			  struct btrfs_path *p, u64 time_seq)
1938 {
1939 	struct btrfs_fs_info *fs_info = root->fs_info;
1940 	struct extent_buffer *b;
1941 	int slot;
1942 	int ret;
1943 	int err;
1944 	int level;
1945 	int lowest_unlock = 1;
1946 	u8 lowest_level = 0;
1947 
1948 	lowest_level = p->lowest_level;
1949 	WARN_ON(p->nodes[0] != NULL);
1950 
1951 	if (p->search_commit_root) {
1952 		BUG_ON(time_seq);
1953 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
1954 	}
1955 
1956 again:
1957 	b = btrfs_get_old_root(root, time_seq);
1958 	if (!b) {
1959 		ret = -EIO;
1960 		goto done;
1961 	}
1962 	level = btrfs_header_level(b);
1963 	p->locks[level] = BTRFS_READ_LOCK;
1964 
1965 	while (b) {
1966 		int dec = 0;
1967 
1968 		level = btrfs_header_level(b);
1969 		p->nodes[level] = b;
1970 
1971 		/*
1972 		 * we have a lock on b and as long as we aren't changing
1973 		 * the tree, there is no way to for the items in b to change.
1974 		 * It is safe to drop the lock on our parent before we
1975 		 * go through the expensive btree search on b.
1976 		 */
1977 		btrfs_unlock_up_safe(p, level + 1);
1978 
1979 		ret = btrfs_bin_search(b, key, &slot);
1980 		if (ret < 0)
1981 			goto done;
1982 
1983 		if (level == 0) {
1984 			p->slots[level] = slot;
1985 			unlock_up(p, level, lowest_unlock, 0, NULL);
1986 			goto done;
1987 		}
1988 
1989 		if (ret && slot > 0) {
1990 			dec = 1;
1991 			slot--;
1992 		}
1993 		p->slots[level] = slot;
1994 		unlock_up(p, level, lowest_unlock, 0, NULL);
1995 
1996 		if (level == lowest_level) {
1997 			if (dec)
1998 				p->slots[level]++;
1999 			goto done;
2000 		}
2001 
2002 		err = read_block_for_search(root, p, &b, level, slot, key);
2003 		if (err == -EAGAIN)
2004 			goto again;
2005 		if (err) {
2006 			ret = err;
2007 			goto done;
2008 		}
2009 
2010 		level = btrfs_header_level(b);
2011 		btrfs_tree_read_lock(b);
2012 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2013 		if (!b) {
2014 			ret = -ENOMEM;
2015 			goto done;
2016 		}
2017 		p->locks[level] = BTRFS_READ_LOCK;
2018 		p->nodes[level] = b;
2019 	}
2020 	ret = 1;
2021 done:
2022 	if (ret < 0)
2023 		btrfs_release_path(p);
2024 
2025 	return ret;
2026 }
2027 
2028 /*
2029  * helper to use instead of search slot if no exact match is needed but
2030  * instead the next or previous item should be returned.
2031  * When find_higher is true, the next higher item is returned, the next lower
2032  * otherwise.
2033  * When return_any and find_higher are both true, and no higher item is found,
2034  * return the next lower instead.
2035  * When return_any is true and find_higher is false, and no lower item is found,
2036  * return the next higher instead.
2037  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2038  * < 0 on error
2039  */
2040 int btrfs_search_slot_for_read(struct btrfs_root *root,
2041 			       const struct btrfs_key *key,
2042 			       struct btrfs_path *p, int find_higher,
2043 			       int return_any)
2044 {
2045 	int ret;
2046 	struct extent_buffer *leaf;
2047 
2048 again:
2049 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2050 	if (ret <= 0)
2051 		return ret;
2052 	/*
2053 	 * a return value of 1 means the path is at the position where the
2054 	 * item should be inserted. Normally this is the next bigger item,
2055 	 * but in case the previous item is the last in a leaf, path points
2056 	 * to the first free slot in the previous leaf, i.e. at an invalid
2057 	 * item.
2058 	 */
2059 	leaf = p->nodes[0];
2060 
2061 	if (find_higher) {
2062 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2063 			ret = btrfs_next_leaf(root, p);
2064 			if (ret <= 0)
2065 				return ret;
2066 			if (!return_any)
2067 				return 1;
2068 			/*
2069 			 * no higher item found, return the next
2070 			 * lower instead
2071 			 */
2072 			return_any = 0;
2073 			find_higher = 0;
2074 			btrfs_release_path(p);
2075 			goto again;
2076 		}
2077 	} else {
2078 		if (p->slots[0] == 0) {
2079 			ret = btrfs_prev_leaf(root, p);
2080 			if (ret < 0)
2081 				return ret;
2082 			if (!ret) {
2083 				leaf = p->nodes[0];
2084 				if (p->slots[0] == btrfs_header_nritems(leaf))
2085 					p->slots[0]--;
2086 				return 0;
2087 			}
2088 			if (!return_any)
2089 				return 1;
2090 			/*
2091 			 * no lower item found, return the next
2092 			 * higher instead
2093 			 */
2094 			return_any = 0;
2095 			find_higher = 1;
2096 			btrfs_release_path(p);
2097 			goto again;
2098 		} else {
2099 			--p->slots[0];
2100 		}
2101 	}
2102 	return 0;
2103 }
2104 
2105 /*
2106  * adjust the pointers going up the tree, starting at level
2107  * making sure the right key of each node is points to 'key'.
2108  * This is used after shifting pointers to the left, so it stops
2109  * fixing up pointers when a given leaf/node is not in slot 0 of the
2110  * higher levels
2111  *
2112  */
2113 static void fixup_low_keys(struct btrfs_path *path,
2114 			   struct btrfs_disk_key *key, int level)
2115 {
2116 	int i;
2117 	struct extent_buffer *t;
2118 	int ret;
2119 
2120 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2121 		int tslot = path->slots[i];
2122 
2123 		if (!path->nodes[i])
2124 			break;
2125 		t = path->nodes[i];
2126 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2127 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2128 		BUG_ON(ret < 0);
2129 		btrfs_set_node_key(t, key, tslot);
2130 		btrfs_mark_buffer_dirty(path->nodes[i]);
2131 		if (tslot != 0)
2132 			break;
2133 	}
2134 }
2135 
2136 /*
2137  * update item key.
2138  *
2139  * This function isn't completely safe. It's the caller's responsibility
2140  * that the new key won't break the order
2141  */
2142 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2143 			     struct btrfs_path *path,
2144 			     const struct btrfs_key *new_key)
2145 {
2146 	struct btrfs_disk_key disk_key;
2147 	struct extent_buffer *eb;
2148 	int slot;
2149 
2150 	eb = path->nodes[0];
2151 	slot = path->slots[0];
2152 	if (slot > 0) {
2153 		btrfs_item_key(eb, &disk_key, slot - 1);
2154 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2155 			btrfs_crit(fs_info,
2156 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2157 				   slot, btrfs_disk_key_objectid(&disk_key),
2158 				   btrfs_disk_key_type(&disk_key),
2159 				   btrfs_disk_key_offset(&disk_key),
2160 				   new_key->objectid, new_key->type,
2161 				   new_key->offset);
2162 			btrfs_print_leaf(eb);
2163 			BUG();
2164 		}
2165 	}
2166 	if (slot < btrfs_header_nritems(eb) - 1) {
2167 		btrfs_item_key(eb, &disk_key, slot + 1);
2168 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2169 			btrfs_crit(fs_info,
2170 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2171 				   slot, btrfs_disk_key_objectid(&disk_key),
2172 				   btrfs_disk_key_type(&disk_key),
2173 				   btrfs_disk_key_offset(&disk_key),
2174 				   new_key->objectid, new_key->type,
2175 				   new_key->offset);
2176 			btrfs_print_leaf(eb);
2177 			BUG();
2178 		}
2179 	}
2180 
2181 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2182 	btrfs_set_item_key(eb, &disk_key, slot);
2183 	btrfs_mark_buffer_dirty(eb);
2184 	if (slot == 0)
2185 		fixup_low_keys(path, &disk_key, 1);
2186 }
2187 
2188 /*
2189  * Check key order of two sibling extent buffers.
2190  *
2191  * Return true if something is wrong.
2192  * Return false if everything is fine.
2193  *
2194  * Tree-checker only works inside one tree block, thus the following
2195  * corruption can not be detected by tree-checker:
2196  *
2197  * Leaf @left			| Leaf @right
2198  * --------------------------------------------------------------
2199  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2200  *
2201  * Key f6 in leaf @left itself is valid, but not valid when the next
2202  * key in leaf @right is 7.
2203  * This can only be checked at tree block merge time.
2204  * And since tree checker has ensured all key order in each tree block
2205  * is correct, we only need to bother the last key of @left and the first
2206  * key of @right.
2207  */
2208 static bool check_sibling_keys(struct extent_buffer *left,
2209 			       struct extent_buffer *right)
2210 {
2211 	struct btrfs_key left_last;
2212 	struct btrfs_key right_first;
2213 	int level = btrfs_header_level(left);
2214 	int nr_left = btrfs_header_nritems(left);
2215 	int nr_right = btrfs_header_nritems(right);
2216 
2217 	/* No key to check in one of the tree blocks */
2218 	if (!nr_left || !nr_right)
2219 		return false;
2220 
2221 	if (level) {
2222 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2223 		btrfs_node_key_to_cpu(right, &right_first, 0);
2224 	} else {
2225 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2226 		btrfs_item_key_to_cpu(right, &right_first, 0);
2227 	}
2228 
2229 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2230 		btrfs_crit(left->fs_info,
2231 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2232 			   left_last.objectid, left_last.type,
2233 			   left_last.offset, right_first.objectid,
2234 			   right_first.type, right_first.offset);
2235 		return true;
2236 	}
2237 	return false;
2238 }
2239 
2240 /*
2241  * try to push data from one node into the next node left in the
2242  * tree.
2243  *
2244  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2245  * error, and > 0 if there was no room in the left hand block.
2246  */
2247 static int push_node_left(struct btrfs_trans_handle *trans,
2248 			  struct extent_buffer *dst,
2249 			  struct extent_buffer *src, int empty)
2250 {
2251 	struct btrfs_fs_info *fs_info = trans->fs_info;
2252 	int push_items = 0;
2253 	int src_nritems;
2254 	int dst_nritems;
2255 	int ret = 0;
2256 
2257 	src_nritems = btrfs_header_nritems(src);
2258 	dst_nritems = btrfs_header_nritems(dst);
2259 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2260 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2261 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2262 
2263 	if (!empty && src_nritems <= 8)
2264 		return 1;
2265 
2266 	if (push_items <= 0)
2267 		return 1;
2268 
2269 	if (empty) {
2270 		push_items = min(src_nritems, push_items);
2271 		if (push_items < src_nritems) {
2272 			/* leave at least 8 pointers in the node if
2273 			 * we aren't going to empty it
2274 			 */
2275 			if (src_nritems - push_items < 8) {
2276 				if (push_items <= 8)
2277 					return 1;
2278 				push_items -= 8;
2279 			}
2280 		}
2281 	} else
2282 		push_items = min(src_nritems - 8, push_items);
2283 
2284 	/* dst is the left eb, src is the middle eb */
2285 	if (check_sibling_keys(dst, src)) {
2286 		ret = -EUCLEAN;
2287 		btrfs_abort_transaction(trans, ret);
2288 		return ret;
2289 	}
2290 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2291 	if (ret) {
2292 		btrfs_abort_transaction(trans, ret);
2293 		return ret;
2294 	}
2295 	copy_extent_buffer(dst, src,
2296 			   btrfs_node_key_ptr_offset(dst_nritems),
2297 			   btrfs_node_key_ptr_offset(0),
2298 			   push_items * sizeof(struct btrfs_key_ptr));
2299 
2300 	if (push_items < src_nritems) {
2301 		/*
2302 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2303 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2304 		 */
2305 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2306 				      btrfs_node_key_ptr_offset(push_items),
2307 				      (src_nritems - push_items) *
2308 				      sizeof(struct btrfs_key_ptr));
2309 	}
2310 	btrfs_set_header_nritems(src, src_nritems - push_items);
2311 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2312 	btrfs_mark_buffer_dirty(src);
2313 	btrfs_mark_buffer_dirty(dst);
2314 
2315 	return ret;
2316 }
2317 
2318 /*
2319  * try to push data from one node into the next node right in the
2320  * tree.
2321  *
2322  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2323  * error, and > 0 if there was no room in the right hand block.
2324  *
2325  * this will  only push up to 1/2 the contents of the left node over
2326  */
2327 static int balance_node_right(struct btrfs_trans_handle *trans,
2328 			      struct extent_buffer *dst,
2329 			      struct extent_buffer *src)
2330 {
2331 	struct btrfs_fs_info *fs_info = trans->fs_info;
2332 	int push_items = 0;
2333 	int max_push;
2334 	int src_nritems;
2335 	int dst_nritems;
2336 	int ret = 0;
2337 
2338 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2339 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2340 
2341 	src_nritems = btrfs_header_nritems(src);
2342 	dst_nritems = btrfs_header_nritems(dst);
2343 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2344 	if (push_items <= 0)
2345 		return 1;
2346 
2347 	if (src_nritems < 4)
2348 		return 1;
2349 
2350 	max_push = src_nritems / 2 + 1;
2351 	/* don't try to empty the node */
2352 	if (max_push >= src_nritems)
2353 		return 1;
2354 
2355 	if (max_push < push_items)
2356 		push_items = max_push;
2357 
2358 	/* dst is the right eb, src is the middle eb */
2359 	if (check_sibling_keys(src, dst)) {
2360 		ret = -EUCLEAN;
2361 		btrfs_abort_transaction(trans, ret);
2362 		return ret;
2363 	}
2364 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2365 	BUG_ON(ret < 0);
2366 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2367 				      btrfs_node_key_ptr_offset(0),
2368 				      (dst_nritems) *
2369 				      sizeof(struct btrfs_key_ptr));
2370 
2371 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2372 					 push_items);
2373 	if (ret) {
2374 		btrfs_abort_transaction(trans, ret);
2375 		return ret;
2376 	}
2377 	copy_extent_buffer(dst, src,
2378 			   btrfs_node_key_ptr_offset(0),
2379 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2380 			   push_items * sizeof(struct btrfs_key_ptr));
2381 
2382 	btrfs_set_header_nritems(src, src_nritems - push_items);
2383 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2384 
2385 	btrfs_mark_buffer_dirty(src);
2386 	btrfs_mark_buffer_dirty(dst);
2387 
2388 	return ret;
2389 }
2390 
2391 /*
2392  * helper function to insert a new root level in the tree.
2393  * A new node is allocated, and a single item is inserted to
2394  * point to the existing root
2395  *
2396  * returns zero on success or < 0 on failure.
2397  */
2398 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2399 			   struct btrfs_root *root,
2400 			   struct btrfs_path *path, int level)
2401 {
2402 	struct btrfs_fs_info *fs_info = root->fs_info;
2403 	u64 lower_gen;
2404 	struct extent_buffer *lower;
2405 	struct extent_buffer *c;
2406 	struct extent_buffer *old;
2407 	struct btrfs_disk_key lower_key;
2408 	int ret;
2409 
2410 	BUG_ON(path->nodes[level]);
2411 	BUG_ON(path->nodes[level-1] != root->node);
2412 
2413 	lower = path->nodes[level-1];
2414 	if (level == 1)
2415 		btrfs_item_key(lower, &lower_key, 0);
2416 	else
2417 		btrfs_node_key(lower, &lower_key, 0);
2418 
2419 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2420 				   &lower_key, level, root->node->start, 0,
2421 				   BTRFS_NESTING_NEW_ROOT);
2422 	if (IS_ERR(c))
2423 		return PTR_ERR(c);
2424 
2425 	root_add_used(root, fs_info->nodesize);
2426 
2427 	btrfs_set_header_nritems(c, 1);
2428 	btrfs_set_node_key(c, &lower_key, 0);
2429 	btrfs_set_node_blockptr(c, 0, lower->start);
2430 	lower_gen = btrfs_header_generation(lower);
2431 	WARN_ON(lower_gen != trans->transid);
2432 
2433 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2434 
2435 	btrfs_mark_buffer_dirty(c);
2436 
2437 	old = root->node;
2438 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2439 	BUG_ON(ret < 0);
2440 	rcu_assign_pointer(root->node, c);
2441 
2442 	/* the super has an extra ref to root->node */
2443 	free_extent_buffer(old);
2444 
2445 	add_root_to_dirty_list(root);
2446 	atomic_inc(&c->refs);
2447 	path->nodes[level] = c;
2448 	path->locks[level] = BTRFS_WRITE_LOCK;
2449 	path->slots[level] = 0;
2450 	return 0;
2451 }
2452 
2453 /*
2454  * worker function to insert a single pointer in a node.
2455  * the node should have enough room for the pointer already
2456  *
2457  * slot and level indicate where you want the key to go, and
2458  * blocknr is the block the key points to.
2459  */
2460 static void insert_ptr(struct btrfs_trans_handle *trans,
2461 		       struct btrfs_path *path,
2462 		       struct btrfs_disk_key *key, u64 bytenr,
2463 		       int slot, int level)
2464 {
2465 	struct extent_buffer *lower;
2466 	int nritems;
2467 	int ret;
2468 
2469 	BUG_ON(!path->nodes[level]);
2470 	btrfs_assert_tree_locked(path->nodes[level]);
2471 	lower = path->nodes[level];
2472 	nritems = btrfs_header_nritems(lower);
2473 	BUG_ON(slot > nritems);
2474 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2475 	if (slot != nritems) {
2476 		if (level) {
2477 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2478 					slot, nritems - slot);
2479 			BUG_ON(ret < 0);
2480 		}
2481 		memmove_extent_buffer(lower,
2482 			      btrfs_node_key_ptr_offset(slot + 1),
2483 			      btrfs_node_key_ptr_offset(slot),
2484 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2485 	}
2486 	if (level) {
2487 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2488 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2489 		BUG_ON(ret < 0);
2490 	}
2491 	btrfs_set_node_key(lower, key, slot);
2492 	btrfs_set_node_blockptr(lower, slot, bytenr);
2493 	WARN_ON(trans->transid == 0);
2494 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2495 	btrfs_set_header_nritems(lower, nritems + 1);
2496 	btrfs_mark_buffer_dirty(lower);
2497 }
2498 
2499 /*
2500  * split the node at the specified level in path in two.
2501  * The path is corrected to point to the appropriate node after the split
2502  *
2503  * Before splitting this tries to make some room in the node by pushing
2504  * left and right, if either one works, it returns right away.
2505  *
2506  * returns 0 on success and < 0 on failure
2507  */
2508 static noinline int split_node(struct btrfs_trans_handle *trans,
2509 			       struct btrfs_root *root,
2510 			       struct btrfs_path *path, int level)
2511 {
2512 	struct btrfs_fs_info *fs_info = root->fs_info;
2513 	struct extent_buffer *c;
2514 	struct extent_buffer *split;
2515 	struct btrfs_disk_key disk_key;
2516 	int mid;
2517 	int ret;
2518 	u32 c_nritems;
2519 
2520 	c = path->nodes[level];
2521 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2522 	if (c == root->node) {
2523 		/*
2524 		 * trying to split the root, lets make a new one
2525 		 *
2526 		 * tree mod log: We don't log_removal old root in
2527 		 * insert_new_root, because that root buffer will be kept as a
2528 		 * normal node. We are going to log removal of half of the
2529 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2530 		 * holding a tree lock on the buffer, which is why we cannot
2531 		 * race with other tree_mod_log users.
2532 		 */
2533 		ret = insert_new_root(trans, root, path, level + 1);
2534 		if (ret)
2535 			return ret;
2536 	} else {
2537 		ret = push_nodes_for_insert(trans, root, path, level);
2538 		c = path->nodes[level];
2539 		if (!ret && btrfs_header_nritems(c) <
2540 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2541 			return 0;
2542 		if (ret < 0)
2543 			return ret;
2544 	}
2545 
2546 	c_nritems = btrfs_header_nritems(c);
2547 	mid = (c_nritems + 1) / 2;
2548 	btrfs_node_key(c, &disk_key, mid);
2549 
2550 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2551 				       &disk_key, level, c->start, 0,
2552 				       BTRFS_NESTING_SPLIT);
2553 	if (IS_ERR(split))
2554 		return PTR_ERR(split);
2555 
2556 	root_add_used(root, fs_info->nodesize);
2557 	ASSERT(btrfs_header_level(c) == level);
2558 
2559 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2560 	if (ret) {
2561 		btrfs_abort_transaction(trans, ret);
2562 		return ret;
2563 	}
2564 	copy_extent_buffer(split, c,
2565 			   btrfs_node_key_ptr_offset(0),
2566 			   btrfs_node_key_ptr_offset(mid),
2567 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2568 	btrfs_set_header_nritems(split, c_nritems - mid);
2569 	btrfs_set_header_nritems(c, mid);
2570 
2571 	btrfs_mark_buffer_dirty(c);
2572 	btrfs_mark_buffer_dirty(split);
2573 
2574 	insert_ptr(trans, path, &disk_key, split->start,
2575 		   path->slots[level + 1] + 1, level + 1);
2576 
2577 	if (path->slots[level] >= mid) {
2578 		path->slots[level] -= mid;
2579 		btrfs_tree_unlock(c);
2580 		free_extent_buffer(c);
2581 		path->nodes[level] = split;
2582 		path->slots[level + 1] += 1;
2583 	} else {
2584 		btrfs_tree_unlock(split);
2585 		free_extent_buffer(split);
2586 	}
2587 	return 0;
2588 }
2589 
2590 /*
2591  * how many bytes are required to store the items in a leaf.  start
2592  * and nr indicate which items in the leaf to check.  This totals up the
2593  * space used both by the item structs and the item data
2594  */
2595 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2596 {
2597 	struct btrfs_item *start_item;
2598 	struct btrfs_item *end_item;
2599 	int data_len;
2600 	int nritems = btrfs_header_nritems(l);
2601 	int end = min(nritems, start + nr) - 1;
2602 
2603 	if (!nr)
2604 		return 0;
2605 	start_item = btrfs_item_nr(start);
2606 	end_item = btrfs_item_nr(end);
2607 	data_len = btrfs_item_offset(l, start_item) +
2608 		   btrfs_item_size(l, start_item);
2609 	data_len = data_len - btrfs_item_offset(l, end_item);
2610 	data_len += sizeof(struct btrfs_item) * nr;
2611 	WARN_ON(data_len < 0);
2612 	return data_len;
2613 }
2614 
2615 /*
2616  * The space between the end of the leaf items and
2617  * the start of the leaf data.  IOW, how much room
2618  * the leaf has left for both items and data
2619  */
2620 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2621 {
2622 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2623 	int nritems = btrfs_header_nritems(leaf);
2624 	int ret;
2625 
2626 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2627 	if (ret < 0) {
2628 		btrfs_crit(fs_info,
2629 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2630 			   ret,
2631 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2632 			   leaf_space_used(leaf, 0, nritems), nritems);
2633 	}
2634 	return ret;
2635 }
2636 
2637 /*
2638  * min slot controls the lowest index we're willing to push to the
2639  * right.  We'll push up to and including min_slot, but no lower
2640  */
2641 static noinline int __push_leaf_right(struct btrfs_path *path,
2642 				      int data_size, int empty,
2643 				      struct extent_buffer *right,
2644 				      int free_space, u32 left_nritems,
2645 				      u32 min_slot)
2646 {
2647 	struct btrfs_fs_info *fs_info = right->fs_info;
2648 	struct extent_buffer *left = path->nodes[0];
2649 	struct extent_buffer *upper = path->nodes[1];
2650 	struct btrfs_map_token token;
2651 	struct btrfs_disk_key disk_key;
2652 	int slot;
2653 	u32 i;
2654 	int push_space = 0;
2655 	int push_items = 0;
2656 	struct btrfs_item *item;
2657 	u32 nr;
2658 	u32 right_nritems;
2659 	u32 data_end;
2660 	u32 this_item_size;
2661 
2662 	if (empty)
2663 		nr = 0;
2664 	else
2665 		nr = max_t(u32, 1, min_slot);
2666 
2667 	if (path->slots[0] >= left_nritems)
2668 		push_space += data_size;
2669 
2670 	slot = path->slots[1];
2671 	i = left_nritems - 1;
2672 	while (i >= nr) {
2673 		item = btrfs_item_nr(i);
2674 
2675 		if (!empty && push_items > 0) {
2676 			if (path->slots[0] > i)
2677 				break;
2678 			if (path->slots[0] == i) {
2679 				int space = btrfs_leaf_free_space(left);
2680 
2681 				if (space + push_space * 2 > free_space)
2682 					break;
2683 			}
2684 		}
2685 
2686 		if (path->slots[0] == i)
2687 			push_space += data_size;
2688 
2689 		this_item_size = btrfs_item_size(left, item);
2690 		if (this_item_size + sizeof(*item) + push_space > free_space)
2691 			break;
2692 
2693 		push_items++;
2694 		push_space += this_item_size + sizeof(*item);
2695 		if (i == 0)
2696 			break;
2697 		i--;
2698 	}
2699 
2700 	if (push_items == 0)
2701 		goto out_unlock;
2702 
2703 	WARN_ON(!empty && push_items == left_nritems);
2704 
2705 	/* push left to right */
2706 	right_nritems = btrfs_header_nritems(right);
2707 
2708 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2709 	push_space -= leaf_data_end(left);
2710 
2711 	/* make room in the right data area */
2712 	data_end = leaf_data_end(right);
2713 	memmove_extent_buffer(right,
2714 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2715 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2716 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2717 
2718 	/* copy from the left data area */
2719 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2720 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2721 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2722 		     push_space);
2723 
2724 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2725 			      btrfs_item_nr_offset(0),
2726 			      right_nritems * sizeof(struct btrfs_item));
2727 
2728 	/* copy the items from left to right */
2729 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2730 		   btrfs_item_nr_offset(left_nritems - push_items),
2731 		   push_items * sizeof(struct btrfs_item));
2732 
2733 	/* update the item pointers */
2734 	btrfs_init_map_token(&token, right);
2735 	right_nritems += push_items;
2736 	btrfs_set_header_nritems(right, right_nritems);
2737 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2738 	for (i = 0; i < right_nritems; i++) {
2739 		item = btrfs_item_nr(i);
2740 		push_space -= btrfs_token_item_size(&token, item);
2741 		btrfs_set_token_item_offset(&token, item, push_space);
2742 	}
2743 
2744 	left_nritems -= push_items;
2745 	btrfs_set_header_nritems(left, left_nritems);
2746 
2747 	if (left_nritems)
2748 		btrfs_mark_buffer_dirty(left);
2749 	else
2750 		btrfs_clean_tree_block(left);
2751 
2752 	btrfs_mark_buffer_dirty(right);
2753 
2754 	btrfs_item_key(right, &disk_key, 0);
2755 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2756 	btrfs_mark_buffer_dirty(upper);
2757 
2758 	/* then fixup the leaf pointer in the path */
2759 	if (path->slots[0] >= left_nritems) {
2760 		path->slots[0] -= left_nritems;
2761 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2762 			btrfs_clean_tree_block(path->nodes[0]);
2763 		btrfs_tree_unlock(path->nodes[0]);
2764 		free_extent_buffer(path->nodes[0]);
2765 		path->nodes[0] = right;
2766 		path->slots[1] += 1;
2767 	} else {
2768 		btrfs_tree_unlock(right);
2769 		free_extent_buffer(right);
2770 	}
2771 	return 0;
2772 
2773 out_unlock:
2774 	btrfs_tree_unlock(right);
2775 	free_extent_buffer(right);
2776 	return 1;
2777 }
2778 
2779 /*
2780  * push some data in the path leaf to the right, trying to free up at
2781  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2782  *
2783  * returns 1 if the push failed because the other node didn't have enough
2784  * room, 0 if everything worked out and < 0 if there were major errors.
2785  *
2786  * this will push starting from min_slot to the end of the leaf.  It won't
2787  * push any slot lower than min_slot
2788  */
2789 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2790 			   *root, struct btrfs_path *path,
2791 			   int min_data_size, int data_size,
2792 			   int empty, u32 min_slot)
2793 {
2794 	struct extent_buffer *left = path->nodes[0];
2795 	struct extent_buffer *right;
2796 	struct extent_buffer *upper;
2797 	int slot;
2798 	int free_space;
2799 	u32 left_nritems;
2800 	int ret;
2801 
2802 	if (!path->nodes[1])
2803 		return 1;
2804 
2805 	slot = path->slots[1];
2806 	upper = path->nodes[1];
2807 	if (slot >= btrfs_header_nritems(upper) - 1)
2808 		return 1;
2809 
2810 	btrfs_assert_tree_locked(path->nodes[1]);
2811 
2812 	right = btrfs_read_node_slot(upper, slot + 1);
2813 	/*
2814 	 * slot + 1 is not valid or we fail to read the right node,
2815 	 * no big deal, just return.
2816 	 */
2817 	if (IS_ERR(right))
2818 		return 1;
2819 
2820 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2821 
2822 	free_space = btrfs_leaf_free_space(right);
2823 	if (free_space < data_size)
2824 		goto out_unlock;
2825 
2826 	/* cow and double check */
2827 	ret = btrfs_cow_block(trans, root, right, upper,
2828 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2829 	if (ret)
2830 		goto out_unlock;
2831 
2832 	free_space = btrfs_leaf_free_space(right);
2833 	if (free_space < data_size)
2834 		goto out_unlock;
2835 
2836 	left_nritems = btrfs_header_nritems(left);
2837 	if (left_nritems == 0)
2838 		goto out_unlock;
2839 
2840 	if (check_sibling_keys(left, right)) {
2841 		ret = -EUCLEAN;
2842 		btrfs_tree_unlock(right);
2843 		free_extent_buffer(right);
2844 		return ret;
2845 	}
2846 	if (path->slots[0] == left_nritems && !empty) {
2847 		/* Key greater than all keys in the leaf, right neighbor has
2848 		 * enough room for it and we're not emptying our leaf to delete
2849 		 * it, therefore use right neighbor to insert the new item and
2850 		 * no need to touch/dirty our left leaf. */
2851 		btrfs_tree_unlock(left);
2852 		free_extent_buffer(left);
2853 		path->nodes[0] = right;
2854 		path->slots[0] = 0;
2855 		path->slots[1]++;
2856 		return 0;
2857 	}
2858 
2859 	return __push_leaf_right(path, min_data_size, empty,
2860 				right, free_space, left_nritems, min_slot);
2861 out_unlock:
2862 	btrfs_tree_unlock(right);
2863 	free_extent_buffer(right);
2864 	return 1;
2865 }
2866 
2867 /*
2868  * push some data in the path leaf to the left, trying to free up at
2869  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2870  *
2871  * max_slot can put a limit on how far into the leaf we'll push items.  The
2872  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2873  * items
2874  */
2875 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2876 				     int empty, struct extent_buffer *left,
2877 				     int free_space, u32 right_nritems,
2878 				     u32 max_slot)
2879 {
2880 	struct btrfs_fs_info *fs_info = left->fs_info;
2881 	struct btrfs_disk_key disk_key;
2882 	struct extent_buffer *right = path->nodes[0];
2883 	int i;
2884 	int push_space = 0;
2885 	int push_items = 0;
2886 	struct btrfs_item *item;
2887 	u32 old_left_nritems;
2888 	u32 nr;
2889 	int ret = 0;
2890 	u32 this_item_size;
2891 	u32 old_left_item_size;
2892 	struct btrfs_map_token token;
2893 
2894 	if (empty)
2895 		nr = min(right_nritems, max_slot);
2896 	else
2897 		nr = min(right_nritems - 1, max_slot);
2898 
2899 	for (i = 0; i < nr; i++) {
2900 		item = btrfs_item_nr(i);
2901 
2902 		if (!empty && push_items > 0) {
2903 			if (path->slots[0] < i)
2904 				break;
2905 			if (path->slots[0] == i) {
2906 				int space = btrfs_leaf_free_space(right);
2907 
2908 				if (space + push_space * 2 > free_space)
2909 					break;
2910 			}
2911 		}
2912 
2913 		if (path->slots[0] == i)
2914 			push_space += data_size;
2915 
2916 		this_item_size = btrfs_item_size(right, item);
2917 		if (this_item_size + sizeof(*item) + push_space > free_space)
2918 			break;
2919 
2920 		push_items++;
2921 		push_space += this_item_size + sizeof(*item);
2922 	}
2923 
2924 	if (push_items == 0) {
2925 		ret = 1;
2926 		goto out;
2927 	}
2928 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2929 
2930 	/* push data from right to left */
2931 	copy_extent_buffer(left, right,
2932 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2933 			   btrfs_item_nr_offset(0),
2934 			   push_items * sizeof(struct btrfs_item));
2935 
2936 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2937 		     btrfs_item_offset_nr(right, push_items - 1);
2938 
2939 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2940 		     leaf_data_end(left) - push_space,
2941 		     BTRFS_LEAF_DATA_OFFSET +
2942 		     btrfs_item_offset_nr(right, push_items - 1),
2943 		     push_space);
2944 	old_left_nritems = btrfs_header_nritems(left);
2945 	BUG_ON(old_left_nritems <= 0);
2946 
2947 	btrfs_init_map_token(&token, left);
2948 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2949 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2950 		u32 ioff;
2951 
2952 		item = btrfs_item_nr(i);
2953 
2954 		ioff = btrfs_token_item_offset(&token, item);
2955 		btrfs_set_token_item_offset(&token, item,
2956 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
2957 	}
2958 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2959 
2960 	/* fixup right node */
2961 	if (push_items > right_nritems)
2962 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
2963 		       right_nritems);
2964 
2965 	if (push_items < right_nritems) {
2966 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2967 						  leaf_data_end(right);
2968 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
2969 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2970 				      BTRFS_LEAF_DATA_OFFSET +
2971 				      leaf_data_end(right), push_space);
2972 
2973 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2974 			      btrfs_item_nr_offset(push_items),
2975 			     (btrfs_header_nritems(right) - push_items) *
2976 			     sizeof(struct btrfs_item));
2977 	}
2978 
2979 	btrfs_init_map_token(&token, right);
2980 	right_nritems -= push_items;
2981 	btrfs_set_header_nritems(right, right_nritems);
2982 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2983 	for (i = 0; i < right_nritems; i++) {
2984 		item = btrfs_item_nr(i);
2985 
2986 		push_space = push_space - btrfs_token_item_size(&token, item);
2987 		btrfs_set_token_item_offset(&token, item, push_space);
2988 	}
2989 
2990 	btrfs_mark_buffer_dirty(left);
2991 	if (right_nritems)
2992 		btrfs_mark_buffer_dirty(right);
2993 	else
2994 		btrfs_clean_tree_block(right);
2995 
2996 	btrfs_item_key(right, &disk_key, 0);
2997 	fixup_low_keys(path, &disk_key, 1);
2998 
2999 	/* then fixup the leaf pointer in the path */
3000 	if (path->slots[0] < push_items) {
3001 		path->slots[0] += old_left_nritems;
3002 		btrfs_tree_unlock(path->nodes[0]);
3003 		free_extent_buffer(path->nodes[0]);
3004 		path->nodes[0] = left;
3005 		path->slots[1] -= 1;
3006 	} else {
3007 		btrfs_tree_unlock(left);
3008 		free_extent_buffer(left);
3009 		path->slots[0] -= push_items;
3010 	}
3011 	BUG_ON(path->slots[0] < 0);
3012 	return ret;
3013 out:
3014 	btrfs_tree_unlock(left);
3015 	free_extent_buffer(left);
3016 	return ret;
3017 }
3018 
3019 /*
3020  * push some data in the path leaf to the left, trying to free up at
3021  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3022  *
3023  * max_slot can put a limit on how far into the leaf we'll push items.  The
3024  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3025  * items
3026  */
3027 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3028 			  *root, struct btrfs_path *path, int min_data_size,
3029 			  int data_size, int empty, u32 max_slot)
3030 {
3031 	struct extent_buffer *right = path->nodes[0];
3032 	struct extent_buffer *left;
3033 	int slot;
3034 	int free_space;
3035 	u32 right_nritems;
3036 	int ret = 0;
3037 
3038 	slot = path->slots[1];
3039 	if (slot == 0)
3040 		return 1;
3041 	if (!path->nodes[1])
3042 		return 1;
3043 
3044 	right_nritems = btrfs_header_nritems(right);
3045 	if (right_nritems == 0)
3046 		return 1;
3047 
3048 	btrfs_assert_tree_locked(path->nodes[1]);
3049 
3050 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3051 	/*
3052 	 * slot - 1 is not valid or we fail to read the left node,
3053 	 * no big deal, just return.
3054 	 */
3055 	if (IS_ERR(left))
3056 		return 1;
3057 
3058 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3059 
3060 	free_space = btrfs_leaf_free_space(left);
3061 	if (free_space < data_size) {
3062 		ret = 1;
3063 		goto out;
3064 	}
3065 
3066 	/* cow and double check */
3067 	ret = btrfs_cow_block(trans, root, left,
3068 			      path->nodes[1], slot - 1, &left,
3069 			      BTRFS_NESTING_LEFT_COW);
3070 	if (ret) {
3071 		/* we hit -ENOSPC, but it isn't fatal here */
3072 		if (ret == -ENOSPC)
3073 			ret = 1;
3074 		goto out;
3075 	}
3076 
3077 	free_space = btrfs_leaf_free_space(left);
3078 	if (free_space < data_size) {
3079 		ret = 1;
3080 		goto out;
3081 	}
3082 
3083 	if (check_sibling_keys(left, right)) {
3084 		ret = -EUCLEAN;
3085 		goto out;
3086 	}
3087 	return __push_leaf_left(path, min_data_size,
3088 			       empty, left, free_space, right_nritems,
3089 			       max_slot);
3090 out:
3091 	btrfs_tree_unlock(left);
3092 	free_extent_buffer(left);
3093 	return ret;
3094 }
3095 
3096 /*
3097  * split the path's leaf in two, making sure there is at least data_size
3098  * available for the resulting leaf level of the path.
3099  */
3100 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3101 				    struct btrfs_path *path,
3102 				    struct extent_buffer *l,
3103 				    struct extent_buffer *right,
3104 				    int slot, int mid, int nritems)
3105 {
3106 	struct btrfs_fs_info *fs_info = trans->fs_info;
3107 	int data_copy_size;
3108 	int rt_data_off;
3109 	int i;
3110 	struct btrfs_disk_key disk_key;
3111 	struct btrfs_map_token token;
3112 
3113 	nritems = nritems - mid;
3114 	btrfs_set_header_nritems(right, nritems);
3115 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3116 
3117 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3118 			   btrfs_item_nr_offset(mid),
3119 			   nritems * sizeof(struct btrfs_item));
3120 
3121 	copy_extent_buffer(right, l,
3122 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3123 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3124 		     leaf_data_end(l), data_copy_size);
3125 
3126 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3127 
3128 	btrfs_init_map_token(&token, right);
3129 	for (i = 0; i < nritems; i++) {
3130 		struct btrfs_item *item = btrfs_item_nr(i);
3131 		u32 ioff;
3132 
3133 		ioff = btrfs_token_item_offset(&token, item);
3134 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3135 	}
3136 
3137 	btrfs_set_header_nritems(l, mid);
3138 	btrfs_item_key(right, &disk_key, 0);
3139 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3140 
3141 	btrfs_mark_buffer_dirty(right);
3142 	btrfs_mark_buffer_dirty(l);
3143 	BUG_ON(path->slots[0] != slot);
3144 
3145 	if (mid <= slot) {
3146 		btrfs_tree_unlock(path->nodes[0]);
3147 		free_extent_buffer(path->nodes[0]);
3148 		path->nodes[0] = right;
3149 		path->slots[0] -= mid;
3150 		path->slots[1] += 1;
3151 	} else {
3152 		btrfs_tree_unlock(right);
3153 		free_extent_buffer(right);
3154 	}
3155 
3156 	BUG_ON(path->slots[0] < 0);
3157 }
3158 
3159 /*
3160  * double splits happen when we need to insert a big item in the middle
3161  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3162  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3163  *          A                 B                 C
3164  *
3165  * We avoid this by trying to push the items on either side of our target
3166  * into the adjacent leaves.  If all goes well we can avoid the double split
3167  * completely.
3168  */
3169 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3170 					  struct btrfs_root *root,
3171 					  struct btrfs_path *path,
3172 					  int data_size)
3173 {
3174 	int ret;
3175 	int progress = 0;
3176 	int slot;
3177 	u32 nritems;
3178 	int space_needed = data_size;
3179 
3180 	slot = path->slots[0];
3181 	if (slot < btrfs_header_nritems(path->nodes[0]))
3182 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3183 
3184 	/*
3185 	 * try to push all the items after our slot into the
3186 	 * right leaf
3187 	 */
3188 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3189 	if (ret < 0)
3190 		return ret;
3191 
3192 	if (ret == 0)
3193 		progress++;
3194 
3195 	nritems = btrfs_header_nritems(path->nodes[0]);
3196 	/*
3197 	 * our goal is to get our slot at the start or end of a leaf.  If
3198 	 * we've done so we're done
3199 	 */
3200 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3201 		return 0;
3202 
3203 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3204 		return 0;
3205 
3206 	/* try to push all the items before our slot into the next leaf */
3207 	slot = path->slots[0];
3208 	space_needed = data_size;
3209 	if (slot > 0)
3210 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3211 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3212 	if (ret < 0)
3213 		return ret;
3214 
3215 	if (ret == 0)
3216 		progress++;
3217 
3218 	if (progress)
3219 		return 0;
3220 	return 1;
3221 }
3222 
3223 /*
3224  * split the path's leaf in two, making sure there is at least data_size
3225  * available for the resulting leaf level of the path.
3226  *
3227  * returns 0 if all went well and < 0 on failure.
3228  */
3229 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3230 			       struct btrfs_root *root,
3231 			       const struct btrfs_key *ins_key,
3232 			       struct btrfs_path *path, int data_size,
3233 			       int extend)
3234 {
3235 	struct btrfs_disk_key disk_key;
3236 	struct extent_buffer *l;
3237 	u32 nritems;
3238 	int mid;
3239 	int slot;
3240 	struct extent_buffer *right;
3241 	struct btrfs_fs_info *fs_info = root->fs_info;
3242 	int ret = 0;
3243 	int wret;
3244 	int split;
3245 	int num_doubles = 0;
3246 	int tried_avoid_double = 0;
3247 
3248 	l = path->nodes[0];
3249 	slot = path->slots[0];
3250 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3251 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3252 		return -EOVERFLOW;
3253 
3254 	/* first try to make some room by pushing left and right */
3255 	if (data_size && path->nodes[1]) {
3256 		int space_needed = data_size;
3257 
3258 		if (slot < btrfs_header_nritems(l))
3259 			space_needed -= btrfs_leaf_free_space(l);
3260 
3261 		wret = push_leaf_right(trans, root, path, space_needed,
3262 				       space_needed, 0, 0);
3263 		if (wret < 0)
3264 			return wret;
3265 		if (wret) {
3266 			space_needed = data_size;
3267 			if (slot > 0)
3268 				space_needed -= btrfs_leaf_free_space(l);
3269 			wret = push_leaf_left(trans, root, path, space_needed,
3270 					      space_needed, 0, (u32)-1);
3271 			if (wret < 0)
3272 				return wret;
3273 		}
3274 		l = path->nodes[0];
3275 
3276 		/* did the pushes work? */
3277 		if (btrfs_leaf_free_space(l) >= data_size)
3278 			return 0;
3279 	}
3280 
3281 	if (!path->nodes[1]) {
3282 		ret = insert_new_root(trans, root, path, 1);
3283 		if (ret)
3284 			return ret;
3285 	}
3286 again:
3287 	split = 1;
3288 	l = path->nodes[0];
3289 	slot = path->slots[0];
3290 	nritems = btrfs_header_nritems(l);
3291 	mid = (nritems + 1) / 2;
3292 
3293 	if (mid <= slot) {
3294 		if (nritems == 1 ||
3295 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3296 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3297 			if (slot >= nritems) {
3298 				split = 0;
3299 			} else {
3300 				mid = slot;
3301 				if (mid != nritems &&
3302 				    leaf_space_used(l, mid, nritems - mid) +
3303 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3304 					if (data_size && !tried_avoid_double)
3305 						goto push_for_double;
3306 					split = 2;
3307 				}
3308 			}
3309 		}
3310 	} else {
3311 		if (leaf_space_used(l, 0, mid) + data_size >
3312 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3313 			if (!extend && data_size && slot == 0) {
3314 				split = 0;
3315 			} else if ((extend || !data_size) && slot == 0) {
3316 				mid = 1;
3317 			} else {
3318 				mid = slot;
3319 				if (mid != nritems &&
3320 				    leaf_space_used(l, mid, nritems - mid) +
3321 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3322 					if (data_size && !tried_avoid_double)
3323 						goto push_for_double;
3324 					split = 2;
3325 				}
3326 			}
3327 		}
3328 	}
3329 
3330 	if (split == 0)
3331 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3332 	else
3333 		btrfs_item_key(l, &disk_key, mid);
3334 
3335 	/*
3336 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3337 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3338 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3339 	 * out.  In the future we could add a
3340 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3341 	 * use BTRFS_NESTING_NEW_ROOT.
3342 	 */
3343 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3344 				       &disk_key, 0, l->start, 0,
3345 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3346 				       BTRFS_NESTING_SPLIT);
3347 	if (IS_ERR(right))
3348 		return PTR_ERR(right);
3349 
3350 	root_add_used(root, fs_info->nodesize);
3351 
3352 	if (split == 0) {
3353 		if (mid <= slot) {
3354 			btrfs_set_header_nritems(right, 0);
3355 			insert_ptr(trans, path, &disk_key,
3356 				   right->start, path->slots[1] + 1, 1);
3357 			btrfs_tree_unlock(path->nodes[0]);
3358 			free_extent_buffer(path->nodes[0]);
3359 			path->nodes[0] = right;
3360 			path->slots[0] = 0;
3361 			path->slots[1] += 1;
3362 		} else {
3363 			btrfs_set_header_nritems(right, 0);
3364 			insert_ptr(trans, path, &disk_key,
3365 				   right->start, path->slots[1], 1);
3366 			btrfs_tree_unlock(path->nodes[0]);
3367 			free_extent_buffer(path->nodes[0]);
3368 			path->nodes[0] = right;
3369 			path->slots[0] = 0;
3370 			if (path->slots[1] == 0)
3371 				fixup_low_keys(path, &disk_key, 1);
3372 		}
3373 		/*
3374 		 * We create a new leaf 'right' for the required ins_len and
3375 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3376 		 * the content of ins_len to 'right'.
3377 		 */
3378 		return ret;
3379 	}
3380 
3381 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3382 
3383 	if (split == 2) {
3384 		BUG_ON(num_doubles != 0);
3385 		num_doubles++;
3386 		goto again;
3387 	}
3388 
3389 	return 0;
3390 
3391 push_for_double:
3392 	push_for_double_split(trans, root, path, data_size);
3393 	tried_avoid_double = 1;
3394 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3395 		return 0;
3396 	goto again;
3397 }
3398 
3399 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3400 					 struct btrfs_root *root,
3401 					 struct btrfs_path *path, int ins_len)
3402 {
3403 	struct btrfs_key key;
3404 	struct extent_buffer *leaf;
3405 	struct btrfs_file_extent_item *fi;
3406 	u64 extent_len = 0;
3407 	u32 item_size;
3408 	int ret;
3409 
3410 	leaf = path->nodes[0];
3411 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3412 
3413 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3414 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3415 
3416 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3417 		return 0;
3418 
3419 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3420 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3421 		fi = btrfs_item_ptr(leaf, path->slots[0],
3422 				    struct btrfs_file_extent_item);
3423 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3424 	}
3425 	btrfs_release_path(path);
3426 
3427 	path->keep_locks = 1;
3428 	path->search_for_split = 1;
3429 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3430 	path->search_for_split = 0;
3431 	if (ret > 0)
3432 		ret = -EAGAIN;
3433 	if (ret < 0)
3434 		goto err;
3435 
3436 	ret = -EAGAIN;
3437 	leaf = path->nodes[0];
3438 	/* if our item isn't there, return now */
3439 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3440 		goto err;
3441 
3442 	/* the leaf has  changed, it now has room.  return now */
3443 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3444 		goto err;
3445 
3446 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3447 		fi = btrfs_item_ptr(leaf, path->slots[0],
3448 				    struct btrfs_file_extent_item);
3449 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3450 			goto err;
3451 	}
3452 
3453 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3454 	if (ret)
3455 		goto err;
3456 
3457 	path->keep_locks = 0;
3458 	btrfs_unlock_up_safe(path, 1);
3459 	return 0;
3460 err:
3461 	path->keep_locks = 0;
3462 	return ret;
3463 }
3464 
3465 static noinline int split_item(struct btrfs_path *path,
3466 			       const struct btrfs_key *new_key,
3467 			       unsigned long split_offset)
3468 {
3469 	struct extent_buffer *leaf;
3470 	struct btrfs_item *item;
3471 	struct btrfs_item *new_item;
3472 	int slot;
3473 	char *buf;
3474 	u32 nritems;
3475 	u32 item_size;
3476 	u32 orig_offset;
3477 	struct btrfs_disk_key disk_key;
3478 
3479 	leaf = path->nodes[0];
3480 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3481 
3482 	item = btrfs_item_nr(path->slots[0]);
3483 	orig_offset = btrfs_item_offset(leaf, item);
3484 	item_size = btrfs_item_size(leaf, item);
3485 
3486 	buf = kmalloc(item_size, GFP_NOFS);
3487 	if (!buf)
3488 		return -ENOMEM;
3489 
3490 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3491 			    path->slots[0]), item_size);
3492 
3493 	slot = path->slots[0] + 1;
3494 	nritems = btrfs_header_nritems(leaf);
3495 	if (slot != nritems) {
3496 		/* shift the items */
3497 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3498 				btrfs_item_nr_offset(slot),
3499 				(nritems - slot) * sizeof(struct btrfs_item));
3500 	}
3501 
3502 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3503 	btrfs_set_item_key(leaf, &disk_key, slot);
3504 
3505 	new_item = btrfs_item_nr(slot);
3506 
3507 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3508 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3509 
3510 	btrfs_set_item_offset(leaf, item,
3511 			      orig_offset + item_size - split_offset);
3512 	btrfs_set_item_size(leaf, item, split_offset);
3513 
3514 	btrfs_set_header_nritems(leaf, nritems + 1);
3515 
3516 	/* write the data for the start of the original item */
3517 	write_extent_buffer(leaf, buf,
3518 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3519 			    split_offset);
3520 
3521 	/* write the data for the new item */
3522 	write_extent_buffer(leaf, buf + split_offset,
3523 			    btrfs_item_ptr_offset(leaf, slot),
3524 			    item_size - split_offset);
3525 	btrfs_mark_buffer_dirty(leaf);
3526 
3527 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3528 	kfree(buf);
3529 	return 0;
3530 }
3531 
3532 /*
3533  * This function splits a single item into two items,
3534  * giving 'new_key' to the new item and splitting the
3535  * old one at split_offset (from the start of the item).
3536  *
3537  * The path may be released by this operation.  After
3538  * the split, the path is pointing to the old item.  The
3539  * new item is going to be in the same node as the old one.
3540  *
3541  * Note, the item being split must be smaller enough to live alone on
3542  * a tree block with room for one extra struct btrfs_item
3543  *
3544  * This allows us to split the item in place, keeping a lock on the
3545  * leaf the entire time.
3546  */
3547 int btrfs_split_item(struct btrfs_trans_handle *trans,
3548 		     struct btrfs_root *root,
3549 		     struct btrfs_path *path,
3550 		     const struct btrfs_key *new_key,
3551 		     unsigned long split_offset)
3552 {
3553 	int ret;
3554 	ret = setup_leaf_for_split(trans, root, path,
3555 				   sizeof(struct btrfs_item));
3556 	if (ret)
3557 		return ret;
3558 
3559 	ret = split_item(path, new_key, split_offset);
3560 	return ret;
3561 }
3562 
3563 /*
3564  * This function duplicate a item, giving 'new_key' to the new item.
3565  * It guarantees both items live in the same tree leaf and the new item
3566  * is contiguous with the original item.
3567  *
3568  * This allows us to split file extent in place, keeping a lock on the
3569  * leaf the entire time.
3570  */
3571 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3572 			 struct btrfs_root *root,
3573 			 struct btrfs_path *path,
3574 			 const struct btrfs_key *new_key)
3575 {
3576 	struct extent_buffer *leaf;
3577 	int ret;
3578 	u32 item_size;
3579 
3580 	leaf = path->nodes[0];
3581 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3582 	ret = setup_leaf_for_split(trans, root, path,
3583 				   item_size + sizeof(struct btrfs_item));
3584 	if (ret)
3585 		return ret;
3586 
3587 	path->slots[0]++;
3588 	setup_items_for_insert(root, path, new_key, &item_size, 1);
3589 	leaf = path->nodes[0];
3590 	memcpy_extent_buffer(leaf,
3591 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3592 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3593 			     item_size);
3594 	return 0;
3595 }
3596 
3597 /*
3598  * make the item pointed to by the path smaller.  new_size indicates
3599  * how small to make it, and from_end tells us if we just chop bytes
3600  * off the end of the item or if we shift the item to chop bytes off
3601  * the front.
3602  */
3603 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3604 {
3605 	int slot;
3606 	struct extent_buffer *leaf;
3607 	struct btrfs_item *item;
3608 	u32 nritems;
3609 	unsigned int data_end;
3610 	unsigned int old_data_start;
3611 	unsigned int old_size;
3612 	unsigned int size_diff;
3613 	int i;
3614 	struct btrfs_map_token token;
3615 
3616 	leaf = path->nodes[0];
3617 	slot = path->slots[0];
3618 
3619 	old_size = btrfs_item_size_nr(leaf, slot);
3620 	if (old_size == new_size)
3621 		return;
3622 
3623 	nritems = btrfs_header_nritems(leaf);
3624 	data_end = leaf_data_end(leaf);
3625 
3626 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3627 
3628 	size_diff = old_size - new_size;
3629 
3630 	BUG_ON(slot < 0);
3631 	BUG_ON(slot >= nritems);
3632 
3633 	/*
3634 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3635 	 */
3636 	/* first correct the data pointers */
3637 	btrfs_init_map_token(&token, leaf);
3638 	for (i = slot; i < nritems; i++) {
3639 		u32 ioff;
3640 		item = btrfs_item_nr(i);
3641 
3642 		ioff = btrfs_token_item_offset(&token, item);
3643 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3644 	}
3645 
3646 	/* shift the data */
3647 	if (from_end) {
3648 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3649 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3650 			      data_end, old_data_start + new_size - data_end);
3651 	} else {
3652 		struct btrfs_disk_key disk_key;
3653 		u64 offset;
3654 
3655 		btrfs_item_key(leaf, &disk_key, slot);
3656 
3657 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3658 			unsigned long ptr;
3659 			struct btrfs_file_extent_item *fi;
3660 
3661 			fi = btrfs_item_ptr(leaf, slot,
3662 					    struct btrfs_file_extent_item);
3663 			fi = (struct btrfs_file_extent_item *)(
3664 			     (unsigned long)fi - size_diff);
3665 
3666 			if (btrfs_file_extent_type(leaf, fi) ==
3667 			    BTRFS_FILE_EXTENT_INLINE) {
3668 				ptr = btrfs_item_ptr_offset(leaf, slot);
3669 				memmove_extent_buffer(leaf, ptr,
3670 				      (unsigned long)fi,
3671 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3672 			}
3673 		}
3674 
3675 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3676 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3677 			      data_end, old_data_start - data_end);
3678 
3679 		offset = btrfs_disk_key_offset(&disk_key);
3680 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3681 		btrfs_set_item_key(leaf, &disk_key, slot);
3682 		if (slot == 0)
3683 			fixup_low_keys(path, &disk_key, 1);
3684 	}
3685 
3686 	item = btrfs_item_nr(slot);
3687 	btrfs_set_item_size(leaf, item, new_size);
3688 	btrfs_mark_buffer_dirty(leaf);
3689 
3690 	if (btrfs_leaf_free_space(leaf) < 0) {
3691 		btrfs_print_leaf(leaf);
3692 		BUG();
3693 	}
3694 }
3695 
3696 /*
3697  * make the item pointed to by the path bigger, data_size is the added size.
3698  */
3699 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3700 {
3701 	int slot;
3702 	struct extent_buffer *leaf;
3703 	struct btrfs_item *item;
3704 	u32 nritems;
3705 	unsigned int data_end;
3706 	unsigned int old_data;
3707 	unsigned int old_size;
3708 	int i;
3709 	struct btrfs_map_token token;
3710 
3711 	leaf = path->nodes[0];
3712 
3713 	nritems = btrfs_header_nritems(leaf);
3714 	data_end = leaf_data_end(leaf);
3715 
3716 	if (btrfs_leaf_free_space(leaf) < data_size) {
3717 		btrfs_print_leaf(leaf);
3718 		BUG();
3719 	}
3720 	slot = path->slots[0];
3721 	old_data = btrfs_item_end_nr(leaf, slot);
3722 
3723 	BUG_ON(slot < 0);
3724 	if (slot >= nritems) {
3725 		btrfs_print_leaf(leaf);
3726 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3727 			   slot, nritems);
3728 		BUG();
3729 	}
3730 
3731 	/*
3732 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3733 	 */
3734 	/* first correct the data pointers */
3735 	btrfs_init_map_token(&token, leaf);
3736 	for (i = slot; i < nritems; i++) {
3737 		u32 ioff;
3738 		item = btrfs_item_nr(i);
3739 
3740 		ioff = btrfs_token_item_offset(&token, item);
3741 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
3742 	}
3743 
3744 	/* shift the data */
3745 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3746 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3747 		      data_end, old_data - data_end);
3748 
3749 	data_end = old_data;
3750 	old_size = btrfs_item_size_nr(leaf, slot);
3751 	item = btrfs_item_nr(slot);
3752 	btrfs_set_item_size(leaf, item, old_size + data_size);
3753 	btrfs_mark_buffer_dirty(leaf);
3754 
3755 	if (btrfs_leaf_free_space(leaf) < 0) {
3756 		btrfs_print_leaf(leaf);
3757 		BUG();
3758 	}
3759 }
3760 
3761 /**
3762  * setup_items_for_insert - Helper called before inserting one or more items
3763  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3764  * in a function that doesn't call btrfs_search_slot
3765  *
3766  * @root:	root we are inserting items to
3767  * @path:	points to the leaf/slot where we are going to insert new items
3768  * @cpu_key:	array of keys for items to be inserted
3769  * @data_size:	size of the body of each item we are going to insert
3770  * @nr:		size of @cpu_key/@data_size arrays
3771  */
3772 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3773 			    const struct btrfs_key *cpu_key, u32 *data_size,
3774 			    int nr)
3775 {
3776 	struct btrfs_fs_info *fs_info = root->fs_info;
3777 	struct btrfs_item *item;
3778 	int i;
3779 	u32 nritems;
3780 	unsigned int data_end;
3781 	struct btrfs_disk_key disk_key;
3782 	struct extent_buffer *leaf;
3783 	int slot;
3784 	struct btrfs_map_token token;
3785 	u32 total_size;
3786 	u32 total_data = 0;
3787 
3788 	for (i = 0; i < nr; i++)
3789 		total_data += data_size[i];
3790 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3791 
3792 	if (path->slots[0] == 0) {
3793 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3794 		fixup_low_keys(path, &disk_key, 1);
3795 	}
3796 	btrfs_unlock_up_safe(path, 1);
3797 
3798 	leaf = path->nodes[0];
3799 	slot = path->slots[0];
3800 
3801 	nritems = btrfs_header_nritems(leaf);
3802 	data_end = leaf_data_end(leaf);
3803 
3804 	if (btrfs_leaf_free_space(leaf) < total_size) {
3805 		btrfs_print_leaf(leaf);
3806 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3807 			   total_size, btrfs_leaf_free_space(leaf));
3808 		BUG();
3809 	}
3810 
3811 	btrfs_init_map_token(&token, leaf);
3812 	if (slot != nritems) {
3813 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3814 
3815 		if (old_data < data_end) {
3816 			btrfs_print_leaf(leaf);
3817 			btrfs_crit(fs_info,
3818 		"item at slot %d with data offset %u beyond data end of leaf %u",
3819 				   slot, old_data, data_end);
3820 			BUG();
3821 		}
3822 		/*
3823 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3824 		 */
3825 		/* first correct the data pointers */
3826 		for (i = slot; i < nritems; i++) {
3827 			u32 ioff;
3828 
3829 			item = btrfs_item_nr(i);
3830 			ioff = btrfs_token_item_offset(&token, item);
3831 			btrfs_set_token_item_offset(&token, item,
3832 						    ioff - total_data);
3833 		}
3834 		/* shift the items */
3835 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3836 			      btrfs_item_nr_offset(slot),
3837 			      (nritems - slot) * sizeof(struct btrfs_item));
3838 
3839 		/* shift the data */
3840 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3841 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
3842 			      data_end, old_data - data_end);
3843 		data_end = old_data;
3844 	}
3845 
3846 	/* setup the item for the new data */
3847 	for (i = 0; i < nr; i++) {
3848 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3849 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3850 		item = btrfs_item_nr(slot + i);
3851 		data_end -= data_size[i];
3852 		btrfs_set_token_item_offset(&token, item, data_end);
3853 		btrfs_set_token_item_size(&token, item, data_size[i]);
3854 	}
3855 
3856 	btrfs_set_header_nritems(leaf, nritems + nr);
3857 	btrfs_mark_buffer_dirty(leaf);
3858 
3859 	if (btrfs_leaf_free_space(leaf) < 0) {
3860 		btrfs_print_leaf(leaf);
3861 		BUG();
3862 	}
3863 }
3864 
3865 /*
3866  * Given a key and some data, insert items into the tree.
3867  * This does all the path init required, making room in the tree if needed.
3868  */
3869 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3870 			    struct btrfs_root *root,
3871 			    struct btrfs_path *path,
3872 			    const struct btrfs_key *cpu_key, u32 *data_size,
3873 			    int nr)
3874 {
3875 	int ret = 0;
3876 	int slot;
3877 	int i;
3878 	u32 total_size = 0;
3879 	u32 total_data = 0;
3880 
3881 	for (i = 0; i < nr; i++)
3882 		total_data += data_size[i];
3883 
3884 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3885 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3886 	if (ret == 0)
3887 		return -EEXIST;
3888 	if (ret < 0)
3889 		return ret;
3890 
3891 	slot = path->slots[0];
3892 	BUG_ON(slot < 0);
3893 
3894 	setup_items_for_insert(root, path, cpu_key, data_size, nr);
3895 	return 0;
3896 }
3897 
3898 /*
3899  * Given a key and some data, insert an item into the tree.
3900  * This does all the path init required, making room in the tree if needed.
3901  */
3902 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3903 		      const struct btrfs_key *cpu_key, void *data,
3904 		      u32 data_size)
3905 {
3906 	int ret = 0;
3907 	struct btrfs_path *path;
3908 	struct extent_buffer *leaf;
3909 	unsigned long ptr;
3910 
3911 	path = btrfs_alloc_path();
3912 	if (!path)
3913 		return -ENOMEM;
3914 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3915 	if (!ret) {
3916 		leaf = path->nodes[0];
3917 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3918 		write_extent_buffer(leaf, data, ptr, data_size);
3919 		btrfs_mark_buffer_dirty(leaf);
3920 	}
3921 	btrfs_free_path(path);
3922 	return ret;
3923 }
3924 
3925 /*
3926  * delete the pointer from a given node.
3927  *
3928  * the tree should have been previously balanced so the deletion does not
3929  * empty a node.
3930  */
3931 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3932 		    int level, int slot)
3933 {
3934 	struct extent_buffer *parent = path->nodes[level];
3935 	u32 nritems;
3936 	int ret;
3937 
3938 	nritems = btrfs_header_nritems(parent);
3939 	if (slot != nritems - 1) {
3940 		if (level) {
3941 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
3942 					slot + 1, nritems - slot - 1);
3943 			BUG_ON(ret < 0);
3944 		}
3945 		memmove_extent_buffer(parent,
3946 			      btrfs_node_key_ptr_offset(slot),
3947 			      btrfs_node_key_ptr_offset(slot + 1),
3948 			      sizeof(struct btrfs_key_ptr) *
3949 			      (nritems - slot - 1));
3950 	} else if (level) {
3951 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
3952 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3953 		BUG_ON(ret < 0);
3954 	}
3955 
3956 	nritems--;
3957 	btrfs_set_header_nritems(parent, nritems);
3958 	if (nritems == 0 && parent == root->node) {
3959 		BUG_ON(btrfs_header_level(root->node) != 1);
3960 		/* just turn the root into a leaf and break */
3961 		btrfs_set_header_level(root->node, 0);
3962 	} else if (slot == 0) {
3963 		struct btrfs_disk_key disk_key;
3964 
3965 		btrfs_node_key(parent, &disk_key, 0);
3966 		fixup_low_keys(path, &disk_key, level + 1);
3967 	}
3968 	btrfs_mark_buffer_dirty(parent);
3969 }
3970 
3971 /*
3972  * a helper function to delete the leaf pointed to by path->slots[1] and
3973  * path->nodes[1].
3974  *
3975  * This deletes the pointer in path->nodes[1] and frees the leaf
3976  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3977  *
3978  * The path must have already been setup for deleting the leaf, including
3979  * all the proper balancing.  path->nodes[1] must be locked.
3980  */
3981 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
3982 				    struct btrfs_root *root,
3983 				    struct btrfs_path *path,
3984 				    struct extent_buffer *leaf)
3985 {
3986 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3987 	del_ptr(root, path, 1, path->slots[1]);
3988 
3989 	/*
3990 	 * btrfs_free_extent is expensive, we want to make sure we
3991 	 * aren't holding any locks when we call it
3992 	 */
3993 	btrfs_unlock_up_safe(path, 0);
3994 
3995 	root_sub_used(root, leaf->len);
3996 
3997 	atomic_inc(&leaf->refs);
3998 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3999 	free_extent_buffer_stale(leaf);
4000 }
4001 /*
4002  * delete the item at the leaf level in path.  If that empties
4003  * the leaf, remove it from the tree
4004  */
4005 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4006 		    struct btrfs_path *path, int slot, int nr)
4007 {
4008 	struct btrfs_fs_info *fs_info = root->fs_info;
4009 	struct extent_buffer *leaf;
4010 	struct btrfs_item *item;
4011 	u32 last_off;
4012 	u32 dsize = 0;
4013 	int ret = 0;
4014 	int wret;
4015 	int i;
4016 	u32 nritems;
4017 
4018 	leaf = path->nodes[0];
4019 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4020 
4021 	for (i = 0; i < nr; i++)
4022 		dsize += btrfs_item_size_nr(leaf, slot + i);
4023 
4024 	nritems = btrfs_header_nritems(leaf);
4025 
4026 	if (slot + nr != nritems) {
4027 		int data_end = leaf_data_end(leaf);
4028 		struct btrfs_map_token token;
4029 
4030 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4031 			      data_end + dsize,
4032 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4033 			      last_off - data_end);
4034 
4035 		btrfs_init_map_token(&token, leaf);
4036 		for (i = slot + nr; i < nritems; i++) {
4037 			u32 ioff;
4038 
4039 			item = btrfs_item_nr(i);
4040 			ioff = btrfs_token_item_offset(&token, item);
4041 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4042 		}
4043 
4044 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4045 			      btrfs_item_nr_offset(slot + nr),
4046 			      sizeof(struct btrfs_item) *
4047 			      (nritems - slot - nr));
4048 	}
4049 	btrfs_set_header_nritems(leaf, nritems - nr);
4050 	nritems -= nr;
4051 
4052 	/* delete the leaf if we've emptied it */
4053 	if (nritems == 0) {
4054 		if (leaf == root->node) {
4055 			btrfs_set_header_level(leaf, 0);
4056 		} else {
4057 			btrfs_clean_tree_block(leaf);
4058 			btrfs_del_leaf(trans, root, path, leaf);
4059 		}
4060 	} else {
4061 		int used = leaf_space_used(leaf, 0, nritems);
4062 		if (slot == 0) {
4063 			struct btrfs_disk_key disk_key;
4064 
4065 			btrfs_item_key(leaf, &disk_key, 0);
4066 			fixup_low_keys(path, &disk_key, 1);
4067 		}
4068 
4069 		/* delete the leaf if it is mostly empty */
4070 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4071 			/* push_leaf_left fixes the path.
4072 			 * make sure the path still points to our leaf
4073 			 * for possible call to del_ptr below
4074 			 */
4075 			slot = path->slots[1];
4076 			atomic_inc(&leaf->refs);
4077 
4078 			wret = push_leaf_left(trans, root, path, 1, 1,
4079 					      1, (u32)-1);
4080 			if (wret < 0 && wret != -ENOSPC)
4081 				ret = wret;
4082 
4083 			if (path->nodes[0] == leaf &&
4084 			    btrfs_header_nritems(leaf)) {
4085 				wret = push_leaf_right(trans, root, path, 1,
4086 						       1, 1, 0);
4087 				if (wret < 0 && wret != -ENOSPC)
4088 					ret = wret;
4089 			}
4090 
4091 			if (btrfs_header_nritems(leaf) == 0) {
4092 				path->slots[1] = slot;
4093 				btrfs_del_leaf(trans, root, path, leaf);
4094 				free_extent_buffer(leaf);
4095 				ret = 0;
4096 			} else {
4097 				/* if we're still in the path, make sure
4098 				 * we're dirty.  Otherwise, one of the
4099 				 * push_leaf functions must have already
4100 				 * dirtied this buffer
4101 				 */
4102 				if (path->nodes[0] == leaf)
4103 					btrfs_mark_buffer_dirty(leaf);
4104 				free_extent_buffer(leaf);
4105 			}
4106 		} else {
4107 			btrfs_mark_buffer_dirty(leaf);
4108 		}
4109 	}
4110 	return ret;
4111 }
4112 
4113 /*
4114  * search the tree again to find a leaf with lesser keys
4115  * returns 0 if it found something or 1 if there are no lesser leaves.
4116  * returns < 0 on io errors.
4117  *
4118  * This may release the path, and so you may lose any locks held at the
4119  * time you call it.
4120  */
4121 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4122 {
4123 	struct btrfs_key key;
4124 	struct btrfs_disk_key found_key;
4125 	int ret;
4126 
4127 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4128 
4129 	if (key.offset > 0) {
4130 		key.offset--;
4131 	} else if (key.type > 0) {
4132 		key.type--;
4133 		key.offset = (u64)-1;
4134 	} else if (key.objectid > 0) {
4135 		key.objectid--;
4136 		key.type = (u8)-1;
4137 		key.offset = (u64)-1;
4138 	} else {
4139 		return 1;
4140 	}
4141 
4142 	btrfs_release_path(path);
4143 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4144 	if (ret < 0)
4145 		return ret;
4146 	btrfs_item_key(path->nodes[0], &found_key, 0);
4147 	ret = comp_keys(&found_key, &key);
4148 	/*
4149 	 * We might have had an item with the previous key in the tree right
4150 	 * before we released our path. And after we released our path, that
4151 	 * item might have been pushed to the first slot (0) of the leaf we
4152 	 * were holding due to a tree balance. Alternatively, an item with the
4153 	 * previous key can exist as the only element of a leaf (big fat item).
4154 	 * Therefore account for these 2 cases, so that our callers (like
4155 	 * btrfs_previous_item) don't miss an existing item with a key matching
4156 	 * the previous key we computed above.
4157 	 */
4158 	if (ret <= 0)
4159 		return 0;
4160 	return 1;
4161 }
4162 
4163 /*
4164  * A helper function to walk down the tree starting at min_key, and looking
4165  * for nodes or leaves that are have a minimum transaction id.
4166  * This is used by the btree defrag code, and tree logging
4167  *
4168  * This does not cow, but it does stuff the starting key it finds back
4169  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4170  * key and get a writable path.
4171  *
4172  * This honors path->lowest_level to prevent descent past a given level
4173  * of the tree.
4174  *
4175  * min_trans indicates the oldest transaction that you are interested
4176  * in walking through.  Any nodes or leaves older than min_trans are
4177  * skipped over (without reading them).
4178  *
4179  * returns zero if something useful was found, < 0 on error and 1 if there
4180  * was nothing in the tree that matched the search criteria.
4181  */
4182 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4183 			 struct btrfs_path *path,
4184 			 u64 min_trans)
4185 {
4186 	struct extent_buffer *cur;
4187 	struct btrfs_key found_key;
4188 	int slot;
4189 	int sret;
4190 	u32 nritems;
4191 	int level;
4192 	int ret = 1;
4193 	int keep_locks = path->keep_locks;
4194 
4195 	path->keep_locks = 1;
4196 again:
4197 	cur = btrfs_read_lock_root_node(root);
4198 	level = btrfs_header_level(cur);
4199 	WARN_ON(path->nodes[level]);
4200 	path->nodes[level] = cur;
4201 	path->locks[level] = BTRFS_READ_LOCK;
4202 
4203 	if (btrfs_header_generation(cur) < min_trans) {
4204 		ret = 1;
4205 		goto out;
4206 	}
4207 	while (1) {
4208 		nritems = btrfs_header_nritems(cur);
4209 		level = btrfs_header_level(cur);
4210 		sret = btrfs_bin_search(cur, min_key, &slot);
4211 		if (sret < 0) {
4212 			ret = sret;
4213 			goto out;
4214 		}
4215 
4216 		/* at the lowest level, we're done, setup the path and exit */
4217 		if (level == path->lowest_level) {
4218 			if (slot >= nritems)
4219 				goto find_next_key;
4220 			ret = 0;
4221 			path->slots[level] = slot;
4222 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4223 			goto out;
4224 		}
4225 		if (sret && slot > 0)
4226 			slot--;
4227 		/*
4228 		 * check this node pointer against the min_trans parameters.
4229 		 * If it is too old, skip to the next one.
4230 		 */
4231 		while (slot < nritems) {
4232 			u64 gen;
4233 
4234 			gen = btrfs_node_ptr_generation(cur, slot);
4235 			if (gen < min_trans) {
4236 				slot++;
4237 				continue;
4238 			}
4239 			break;
4240 		}
4241 find_next_key:
4242 		/*
4243 		 * we didn't find a candidate key in this node, walk forward
4244 		 * and find another one
4245 		 */
4246 		if (slot >= nritems) {
4247 			path->slots[level] = slot;
4248 			sret = btrfs_find_next_key(root, path, min_key, level,
4249 						  min_trans);
4250 			if (sret == 0) {
4251 				btrfs_release_path(path);
4252 				goto again;
4253 			} else {
4254 				goto out;
4255 			}
4256 		}
4257 		/* save our key for returning back */
4258 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4259 		path->slots[level] = slot;
4260 		if (level == path->lowest_level) {
4261 			ret = 0;
4262 			goto out;
4263 		}
4264 		cur = btrfs_read_node_slot(cur, slot);
4265 		if (IS_ERR(cur)) {
4266 			ret = PTR_ERR(cur);
4267 			goto out;
4268 		}
4269 
4270 		btrfs_tree_read_lock(cur);
4271 
4272 		path->locks[level - 1] = BTRFS_READ_LOCK;
4273 		path->nodes[level - 1] = cur;
4274 		unlock_up(path, level, 1, 0, NULL);
4275 	}
4276 out:
4277 	path->keep_locks = keep_locks;
4278 	if (ret == 0) {
4279 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4280 		memcpy(min_key, &found_key, sizeof(found_key));
4281 	}
4282 	return ret;
4283 }
4284 
4285 /*
4286  * this is similar to btrfs_next_leaf, but does not try to preserve
4287  * and fixup the path.  It looks for and returns the next key in the
4288  * tree based on the current path and the min_trans parameters.
4289  *
4290  * 0 is returned if another key is found, < 0 if there are any errors
4291  * and 1 is returned if there are no higher keys in the tree
4292  *
4293  * path->keep_locks should be set to 1 on the search made before
4294  * calling this function.
4295  */
4296 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4297 			struct btrfs_key *key, int level, u64 min_trans)
4298 {
4299 	int slot;
4300 	struct extent_buffer *c;
4301 
4302 	WARN_ON(!path->keep_locks && !path->skip_locking);
4303 	while (level < BTRFS_MAX_LEVEL) {
4304 		if (!path->nodes[level])
4305 			return 1;
4306 
4307 		slot = path->slots[level] + 1;
4308 		c = path->nodes[level];
4309 next:
4310 		if (slot >= btrfs_header_nritems(c)) {
4311 			int ret;
4312 			int orig_lowest;
4313 			struct btrfs_key cur_key;
4314 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4315 			    !path->nodes[level + 1])
4316 				return 1;
4317 
4318 			if (path->locks[level + 1] || path->skip_locking) {
4319 				level++;
4320 				continue;
4321 			}
4322 
4323 			slot = btrfs_header_nritems(c) - 1;
4324 			if (level == 0)
4325 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4326 			else
4327 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4328 
4329 			orig_lowest = path->lowest_level;
4330 			btrfs_release_path(path);
4331 			path->lowest_level = level;
4332 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4333 						0, 0);
4334 			path->lowest_level = orig_lowest;
4335 			if (ret < 0)
4336 				return ret;
4337 
4338 			c = path->nodes[level];
4339 			slot = path->slots[level];
4340 			if (ret == 0)
4341 				slot++;
4342 			goto next;
4343 		}
4344 
4345 		if (level == 0)
4346 			btrfs_item_key_to_cpu(c, key, slot);
4347 		else {
4348 			u64 gen = btrfs_node_ptr_generation(c, slot);
4349 
4350 			if (gen < min_trans) {
4351 				slot++;
4352 				goto next;
4353 			}
4354 			btrfs_node_key_to_cpu(c, key, slot);
4355 		}
4356 		return 0;
4357 	}
4358 	return 1;
4359 }
4360 
4361 /*
4362  * search the tree again to find a leaf with greater keys
4363  * returns 0 if it found something or 1 if there are no greater leaves.
4364  * returns < 0 on io errors.
4365  */
4366 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4367 {
4368 	return btrfs_next_old_leaf(root, path, 0);
4369 }
4370 
4371 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4372 			u64 time_seq)
4373 {
4374 	int slot;
4375 	int level;
4376 	struct extent_buffer *c;
4377 	struct extent_buffer *next;
4378 	struct btrfs_key key;
4379 	u32 nritems;
4380 	int ret;
4381 	int i;
4382 
4383 	nritems = btrfs_header_nritems(path->nodes[0]);
4384 	if (nritems == 0)
4385 		return 1;
4386 
4387 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4388 again:
4389 	level = 1;
4390 	next = NULL;
4391 	btrfs_release_path(path);
4392 
4393 	path->keep_locks = 1;
4394 
4395 	if (time_seq)
4396 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4397 	else
4398 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4399 	path->keep_locks = 0;
4400 
4401 	if (ret < 0)
4402 		return ret;
4403 
4404 	nritems = btrfs_header_nritems(path->nodes[0]);
4405 	/*
4406 	 * by releasing the path above we dropped all our locks.  A balance
4407 	 * could have added more items next to the key that used to be
4408 	 * at the very end of the block.  So, check again here and
4409 	 * advance the path if there are now more items available.
4410 	 */
4411 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4412 		if (ret == 0)
4413 			path->slots[0]++;
4414 		ret = 0;
4415 		goto done;
4416 	}
4417 	/*
4418 	 * So the above check misses one case:
4419 	 * - after releasing the path above, someone has removed the item that
4420 	 *   used to be at the very end of the block, and balance between leafs
4421 	 *   gets another one with bigger key.offset to replace it.
4422 	 *
4423 	 * This one should be returned as well, or we can get leaf corruption
4424 	 * later(esp. in __btrfs_drop_extents()).
4425 	 *
4426 	 * And a bit more explanation about this check,
4427 	 * with ret > 0, the key isn't found, the path points to the slot
4428 	 * where it should be inserted, so the path->slots[0] item must be the
4429 	 * bigger one.
4430 	 */
4431 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4432 		ret = 0;
4433 		goto done;
4434 	}
4435 
4436 	while (level < BTRFS_MAX_LEVEL) {
4437 		if (!path->nodes[level]) {
4438 			ret = 1;
4439 			goto done;
4440 		}
4441 
4442 		slot = path->slots[level] + 1;
4443 		c = path->nodes[level];
4444 		if (slot >= btrfs_header_nritems(c)) {
4445 			level++;
4446 			if (level == BTRFS_MAX_LEVEL) {
4447 				ret = 1;
4448 				goto done;
4449 			}
4450 			continue;
4451 		}
4452 
4453 
4454 		/*
4455 		 * Our current level is where we're going to start from, and to
4456 		 * make sure lockdep doesn't complain we need to drop our locks
4457 		 * and nodes from 0 to our current level.
4458 		 */
4459 		for (i = 0; i < level; i++) {
4460 			if (path->locks[level]) {
4461 				btrfs_tree_read_unlock(path->nodes[i]);
4462 				path->locks[i] = 0;
4463 			}
4464 			free_extent_buffer(path->nodes[i]);
4465 			path->nodes[i] = NULL;
4466 		}
4467 
4468 		next = c;
4469 		ret = read_block_for_search(root, path, &next, level,
4470 					    slot, &key);
4471 		if (ret == -EAGAIN)
4472 			goto again;
4473 
4474 		if (ret < 0) {
4475 			btrfs_release_path(path);
4476 			goto done;
4477 		}
4478 
4479 		if (!path->skip_locking) {
4480 			ret = btrfs_try_tree_read_lock(next);
4481 			if (!ret && time_seq) {
4482 				/*
4483 				 * If we don't get the lock, we may be racing
4484 				 * with push_leaf_left, holding that lock while
4485 				 * itself waiting for the leaf we've currently
4486 				 * locked. To solve this situation, we give up
4487 				 * on our lock and cycle.
4488 				 */
4489 				free_extent_buffer(next);
4490 				btrfs_release_path(path);
4491 				cond_resched();
4492 				goto again;
4493 			}
4494 			if (!ret)
4495 				btrfs_tree_read_lock(next);
4496 		}
4497 		break;
4498 	}
4499 	path->slots[level] = slot;
4500 	while (1) {
4501 		level--;
4502 		path->nodes[level] = next;
4503 		path->slots[level] = 0;
4504 		if (!path->skip_locking)
4505 			path->locks[level] = BTRFS_READ_LOCK;
4506 		if (!level)
4507 			break;
4508 
4509 		ret = read_block_for_search(root, path, &next, level,
4510 					    0, &key);
4511 		if (ret == -EAGAIN)
4512 			goto again;
4513 
4514 		if (ret < 0) {
4515 			btrfs_release_path(path);
4516 			goto done;
4517 		}
4518 
4519 		if (!path->skip_locking)
4520 			btrfs_tree_read_lock(next);
4521 	}
4522 	ret = 0;
4523 done:
4524 	unlock_up(path, 0, 1, 0, NULL);
4525 
4526 	return ret;
4527 }
4528 
4529 /*
4530  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4531  * searching until it gets past min_objectid or finds an item of 'type'
4532  *
4533  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4534  */
4535 int btrfs_previous_item(struct btrfs_root *root,
4536 			struct btrfs_path *path, u64 min_objectid,
4537 			int type)
4538 {
4539 	struct btrfs_key found_key;
4540 	struct extent_buffer *leaf;
4541 	u32 nritems;
4542 	int ret;
4543 
4544 	while (1) {
4545 		if (path->slots[0] == 0) {
4546 			ret = btrfs_prev_leaf(root, path);
4547 			if (ret != 0)
4548 				return ret;
4549 		} else {
4550 			path->slots[0]--;
4551 		}
4552 		leaf = path->nodes[0];
4553 		nritems = btrfs_header_nritems(leaf);
4554 		if (nritems == 0)
4555 			return 1;
4556 		if (path->slots[0] == nritems)
4557 			path->slots[0]--;
4558 
4559 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4560 		if (found_key.objectid < min_objectid)
4561 			break;
4562 		if (found_key.type == type)
4563 			return 0;
4564 		if (found_key.objectid == min_objectid &&
4565 		    found_key.type < type)
4566 			break;
4567 	}
4568 	return 1;
4569 }
4570 
4571 /*
4572  * search in extent tree to find a previous Metadata/Data extent item with
4573  * min objecitd.
4574  *
4575  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4576  */
4577 int btrfs_previous_extent_item(struct btrfs_root *root,
4578 			struct btrfs_path *path, u64 min_objectid)
4579 {
4580 	struct btrfs_key found_key;
4581 	struct extent_buffer *leaf;
4582 	u32 nritems;
4583 	int ret;
4584 
4585 	while (1) {
4586 		if (path->slots[0] == 0) {
4587 			ret = btrfs_prev_leaf(root, path);
4588 			if (ret != 0)
4589 				return ret;
4590 		} else {
4591 			path->slots[0]--;
4592 		}
4593 		leaf = path->nodes[0];
4594 		nritems = btrfs_header_nritems(leaf);
4595 		if (nritems == 0)
4596 			return 1;
4597 		if (path->slots[0] == nritems)
4598 			path->slots[0]--;
4599 
4600 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4601 		if (found_key.objectid < min_objectid)
4602 			break;
4603 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4604 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4605 			return 0;
4606 		if (found_key.objectid == min_objectid &&
4607 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4608 			break;
4609 	}
4610 	return 1;
4611 }
4612