1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char name[10]; 35 const char driver[12]; 36 } btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42 }; 43 44 int btrfs_super_csum_size(const struct btrfs_super_block *s) 45 { 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51 } 52 53 const char *btrfs_super_csum_name(u16 csum_type) 54 { 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57 } 58 59 /* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63 const char *btrfs_super_csum_driver(u16 csum_type) 64 { 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver[0] ? 67 btrfs_csums[csum_type].driver : 68 btrfs_csums[csum_type].name; 69 } 70 71 size_t __attribute_const__ btrfs_get_num_csums(void) 72 { 73 return ARRAY_SIZE(btrfs_csums); 74 } 75 76 struct btrfs_path *btrfs_alloc_path(void) 77 { 78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 79 } 80 81 /* this also releases the path */ 82 void btrfs_free_path(struct btrfs_path *p) 83 { 84 if (!p) 85 return; 86 btrfs_release_path(p); 87 kmem_cache_free(btrfs_path_cachep, p); 88 } 89 90 /* 91 * path release drops references on the extent buffers in the path 92 * and it drops any locks held by this path 93 * 94 * It is safe to call this on paths that no locks or extent buffers held. 95 */ 96 noinline void btrfs_release_path(struct btrfs_path *p) 97 { 98 int i; 99 100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 101 p->slots[i] = 0; 102 if (!p->nodes[i]) 103 continue; 104 if (p->locks[i]) { 105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 106 p->locks[i] = 0; 107 } 108 free_extent_buffer(p->nodes[i]); 109 p->nodes[i] = NULL; 110 } 111 } 112 113 /* 114 * safely gets a reference on the root node of a tree. A lock 115 * is not taken, so a concurrent writer may put a different node 116 * at the root of the tree. See btrfs_lock_root_node for the 117 * looping required. 118 * 119 * The extent buffer returned by this has a reference taken, so 120 * it won't disappear. It may stop being the root of the tree 121 * at any time because there are no locks held. 122 */ 123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 124 { 125 struct extent_buffer *eb; 126 127 while (1) { 128 rcu_read_lock(); 129 eb = rcu_dereference(root->node); 130 131 /* 132 * RCU really hurts here, we could free up the root node because 133 * it was COWed but we may not get the new root node yet so do 134 * the inc_not_zero dance and if it doesn't work then 135 * synchronize_rcu and try again. 136 */ 137 if (atomic_inc_not_zero(&eb->refs)) { 138 rcu_read_unlock(); 139 break; 140 } 141 rcu_read_unlock(); 142 synchronize_rcu(); 143 } 144 return eb; 145 } 146 147 /* 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 149 * just get put onto a simple dirty list. Transaction walks this list to make 150 * sure they get properly updated on disk. 151 */ 152 static void add_root_to_dirty_list(struct btrfs_root *root) 153 { 154 struct btrfs_fs_info *fs_info = root->fs_info; 155 156 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 157 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 158 return; 159 160 spin_lock(&fs_info->trans_lock); 161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 162 /* Want the extent tree to be the last on the list */ 163 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 164 list_move_tail(&root->dirty_list, 165 &fs_info->dirty_cowonly_roots); 166 else 167 list_move(&root->dirty_list, 168 &fs_info->dirty_cowonly_roots); 169 } 170 spin_unlock(&fs_info->trans_lock); 171 } 172 173 /* 174 * used by snapshot creation to make a copy of a root for a tree with 175 * a given objectid. The buffer with the new root node is returned in 176 * cow_ret, and this func returns zero on success or a negative error code. 177 */ 178 int btrfs_copy_root(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct extent_buffer *buf, 181 struct extent_buffer **cow_ret, u64 new_root_objectid) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 struct extent_buffer *cow; 185 int ret = 0; 186 int level; 187 struct btrfs_disk_key disk_key; 188 189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 190 trans->transid != fs_info->running_transaction->transid); 191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 192 trans->transid != root->last_trans); 193 194 level = btrfs_header_level(buf); 195 if (level == 0) 196 btrfs_item_key(buf, &disk_key, 0); 197 else 198 btrfs_node_key(buf, &disk_key, 0); 199 200 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 201 &disk_key, level, buf->start, 0); 202 if (IS_ERR(cow)) 203 return PTR_ERR(cow); 204 205 copy_extent_buffer_full(cow, buf); 206 btrfs_set_header_bytenr(cow, cow->start); 207 btrfs_set_header_generation(cow, trans->transid); 208 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 209 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 210 BTRFS_HEADER_FLAG_RELOC); 211 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 212 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 213 else 214 btrfs_set_header_owner(cow, new_root_objectid); 215 216 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 217 218 WARN_ON(btrfs_header_generation(buf) > trans->transid); 219 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 220 ret = btrfs_inc_ref(trans, root, cow, 1); 221 else 222 ret = btrfs_inc_ref(trans, root, cow, 0); 223 224 if (ret) 225 return ret; 226 227 btrfs_mark_buffer_dirty(cow); 228 *cow_ret = cow; 229 return 0; 230 } 231 232 enum mod_log_op { 233 MOD_LOG_KEY_REPLACE, 234 MOD_LOG_KEY_ADD, 235 MOD_LOG_KEY_REMOVE, 236 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 237 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 238 MOD_LOG_MOVE_KEYS, 239 MOD_LOG_ROOT_REPLACE, 240 }; 241 242 struct tree_mod_root { 243 u64 logical; 244 u8 level; 245 }; 246 247 struct tree_mod_elem { 248 struct rb_node node; 249 u64 logical; 250 u64 seq; 251 enum mod_log_op op; 252 253 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 254 int slot; 255 256 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 257 u64 generation; 258 259 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 260 struct btrfs_disk_key key; 261 u64 blockptr; 262 263 /* this is used for op == MOD_LOG_MOVE_KEYS */ 264 struct { 265 int dst_slot; 266 int nr_items; 267 } move; 268 269 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 270 struct tree_mod_root old_root; 271 }; 272 273 /* 274 * Pull a new tree mod seq number for our operation. 275 */ 276 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 277 { 278 return atomic64_inc_return(&fs_info->tree_mod_seq); 279 } 280 281 /* 282 * This adds a new blocker to the tree mod log's blocker list if the @elem 283 * passed does not already have a sequence number set. So when a caller expects 284 * to record tree modifications, it should ensure to set elem->seq to zero 285 * before calling btrfs_get_tree_mod_seq. 286 * Returns a fresh, unused tree log modification sequence number, even if no new 287 * blocker was added. 288 */ 289 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 290 struct seq_list *elem) 291 { 292 write_lock(&fs_info->tree_mod_log_lock); 293 if (!elem->seq) { 294 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 295 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 296 } 297 write_unlock(&fs_info->tree_mod_log_lock); 298 299 return elem->seq; 300 } 301 302 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 303 struct seq_list *elem) 304 { 305 struct rb_root *tm_root; 306 struct rb_node *node; 307 struct rb_node *next; 308 struct tree_mod_elem *tm; 309 u64 min_seq = (u64)-1; 310 u64 seq_putting = elem->seq; 311 312 if (!seq_putting) 313 return; 314 315 write_lock(&fs_info->tree_mod_log_lock); 316 list_del(&elem->list); 317 elem->seq = 0; 318 319 if (!list_empty(&fs_info->tree_mod_seq_list)) { 320 struct seq_list *first; 321 322 first = list_first_entry(&fs_info->tree_mod_seq_list, 323 struct seq_list, list); 324 if (seq_putting > first->seq) { 325 /* 326 * Blocker with lower sequence number exists, we 327 * cannot remove anything from the log. 328 */ 329 write_unlock(&fs_info->tree_mod_log_lock); 330 return; 331 } 332 min_seq = first->seq; 333 } 334 335 /* 336 * anything that's lower than the lowest existing (read: blocked) 337 * sequence number can be removed from the tree. 338 */ 339 tm_root = &fs_info->tree_mod_log; 340 for (node = rb_first(tm_root); node; node = next) { 341 next = rb_next(node); 342 tm = rb_entry(node, struct tree_mod_elem, node); 343 if (tm->seq >= min_seq) 344 continue; 345 rb_erase(node, tm_root); 346 kfree(tm); 347 } 348 write_unlock(&fs_info->tree_mod_log_lock); 349 } 350 351 /* 352 * key order of the log: 353 * node/leaf start address -> sequence 354 * 355 * The 'start address' is the logical address of the *new* root node 356 * for root replace operations, or the logical address of the affected 357 * block for all other operations. 358 */ 359 static noinline int 360 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 361 { 362 struct rb_root *tm_root; 363 struct rb_node **new; 364 struct rb_node *parent = NULL; 365 struct tree_mod_elem *cur; 366 367 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 368 369 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 370 371 tm_root = &fs_info->tree_mod_log; 372 new = &tm_root->rb_node; 373 while (*new) { 374 cur = rb_entry(*new, struct tree_mod_elem, node); 375 parent = *new; 376 if (cur->logical < tm->logical) 377 new = &((*new)->rb_left); 378 else if (cur->logical > tm->logical) 379 new = &((*new)->rb_right); 380 else if (cur->seq < tm->seq) 381 new = &((*new)->rb_left); 382 else if (cur->seq > tm->seq) 383 new = &((*new)->rb_right); 384 else 385 return -EEXIST; 386 } 387 388 rb_link_node(&tm->node, parent, new); 389 rb_insert_color(&tm->node, tm_root); 390 return 0; 391 } 392 393 /* 394 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 395 * returns zero with the tree_mod_log_lock acquired. The caller must hold 396 * this until all tree mod log insertions are recorded in the rb tree and then 397 * write unlock fs_info::tree_mod_log_lock. 398 */ 399 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 400 struct extent_buffer *eb) { 401 smp_mb(); 402 if (list_empty(&(fs_info)->tree_mod_seq_list)) 403 return 1; 404 if (eb && btrfs_header_level(eb) == 0) 405 return 1; 406 407 write_lock(&fs_info->tree_mod_log_lock); 408 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 409 write_unlock(&fs_info->tree_mod_log_lock); 410 return 1; 411 } 412 413 return 0; 414 } 415 416 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 417 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 418 struct extent_buffer *eb) 419 { 420 smp_mb(); 421 if (list_empty(&(fs_info)->tree_mod_seq_list)) 422 return 0; 423 if (eb && btrfs_header_level(eb) == 0) 424 return 0; 425 426 return 1; 427 } 428 429 static struct tree_mod_elem * 430 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 431 enum mod_log_op op, gfp_t flags) 432 { 433 struct tree_mod_elem *tm; 434 435 tm = kzalloc(sizeof(*tm), flags); 436 if (!tm) 437 return NULL; 438 439 tm->logical = eb->start; 440 if (op != MOD_LOG_KEY_ADD) { 441 btrfs_node_key(eb, &tm->key, slot); 442 tm->blockptr = btrfs_node_blockptr(eb, slot); 443 } 444 tm->op = op; 445 tm->slot = slot; 446 tm->generation = btrfs_node_ptr_generation(eb, slot); 447 RB_CLEAR_NODE(&tm->node); 448 449 return tm; 450 } 451 452 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 453 enum mod_log_op op, gfp_t flags) 454 { 455 struct tree_mod_elem *tm; 456 int ret; 457 458 if (!tree_mod_need_log(eb->fs_info, eb)) 459 return 0; 460 461 tm = alloc_tree_mod_elem(eb, slot, op, flags); 462 if (!tm) 463 return -ENOMEM; 464 465 if (tree_mod_dont_log(eb->fs_info, eb)) { 466 kfree(tm); 467 return 0; 468 } 469 470 ret = __tree_mod_log_insert(eb->fs_info, tm); 471 write_unlock(&eb->fs_info->tree_mod_log_lock); 472 if (ret) 473 kfree(tm); 474 475 return ret; 476 } 477 478 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 479 int dst_slot, int src_slot, int nr_items) 480 { 481 struct tree_mod_elem *tm = NULL; 482 struct tree_mod_elem **tm_list = NULL; 483 int ret = 0; 484 int i; 485 int locked = 0; 486 487 if (!tree_mod_need_log(eb->fs_info, eb)) 488 return 0; 489 490 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 491 if (!tm_list) 492 return -ENOMEM; 493 494 tm = kzalloc(sizeof(*tm), GFP_NOFS); 495 if (!tm) { 496 ret = -ENOMEM; 497 goto free_tms; 498 } 499 500 tm->logical = eb->start; 501 tm->slot = src_slot; 502 tm->move.dst_slot = dst_slot; 503 tm->move.nr_items = nr_items; 504 tm->op = MOD_LOG_MOVE_KEYS; 505 506 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 507 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 508 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 509 if (!tm_list[i]) { 510 ret = -ENOMEM; 511 goto free_tms; 512 } 513 } 514 515 if (tree_mod_dont_log(eb->fs_info, eb)) 516 goto free_tms; 517 locked = 1; 518 519 /* 520 * When we override something during the move, we log these removals. 521 * This can only happen when we move towards the beginning of the 522 * buffer, i.e. dst_slot < src_slot. 523 */ 524 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 525 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 526 if (ret) 527 goto free_tms; 528 } 529 530 ret = __tree_mod_log_insert(eb->fs_info, tm); 531 if (ret) 532 goto free_tms; 533 write_unlock(&eb->fs_info->tree_mod_log_lock); 534 kfree(tm_list); 535 536 return 0; 537 free_tms: 538 for (i = 0; i < nr_items; i++) { 539 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 540 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 541 kfree(tm_list[i]); 542 } 543 if (locked) 544 write_unlock(&eb->fs_info->tree_mod_log_lock); 545 kfree(tm_list); 546 kfree(tm); 547 548 return ret; 549 } 550 551 static inline int 552 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 553 struct tree_mod_elem **tm_list, 554 int nritems) 555 { 556 int i, j; 557 int ret; 558 559 for (i = nritems - 1; i >= 0; i--) { 560 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 561 if (ret) { 562 for (j = nritems - 1; j > i; j--) 563 rb_erase(&tm_list[j]->node, 564 &fs_info->tree_mod_log); 565 return ret; 566 } 567 } 568 569 return 0; 570 } 571 572 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 573 struct extent_buffer *new_root, int log_removal) 574 { 575 struct btrfs_fs_info *fs_info = old_root->fs_info; 576 struct tree_mod_elem *tm = NULL; 577 struct tree_mod_elem **tm_list = NULL; 578 int nritems = 0; 579 int ret = 0; 580 int i; 581 582 if (!tree_mod_need_log(fs_info, NULL)) 583 return 0; 584 585 if (log_removal && btrfs_header_level(old_root) > 0) { 586 nritems = btrfs_header_nritems(old_root); 587 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 588 GFP_NOFS); 589 if (!tm_list) { 590 ret = -ENOMEM; 591 goto free_tms; 592 } 593 for (i = 0; i < nritems; i++) { 594 tm_list[i] = alloc_tree_mod_elem(old_root, i, 595 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 596 if (!tm_list[i]) { 597 ret = -ENOMEM; 598 goto free_tms; 599 } 600 } 601 } 602 603 tm = kzalloc(sizeof(*tm), GFP_NOFS); 604 if (!tm) { 605 ret = -ENOMEM; 606 goto free_tms; 607 } 608 609 tm->logical = new_root->start; 610 tm->old_root.logical = old_root->start; 611 tm->old_root.level = btrfs_header_level(old_root); 612 tm->generation = btrfs_header_generation(old_root); 613 tm->op = MOD_LOG_ROOT_REPLACE; 614 615 if (tree_mod_dont_log(fs_info, NULL)) 616 goto free_tms; 617 618 if (tm_list) 619 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 620 if (!ret) 621 ret = __tree_mod_log_insert(fs_info, tm); 622 623 write_unlock(&fs_info->tree_mod_log_lock); 624 if (ret) 625 goto free_tms; 626 kfree(tm_list); 627 628 return ret; 629 630 free_tms: 631 if (tm_list) { 632 for (i = 0; i < nritems; i++) 633 kfree(tm_list[i]); 634 kfree(tm_list); 635 } 636 kfree(tm); 637 638 return ret; 639 } 640 641 static struct tree_mod_elem * 642 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 643 int smallest) 644 { 645 struct rb_root *tm_root; 646 struct rb_node *node; 647 struct tree_mod_elem *cur = NULL; 648 struct tree_mod_elem *found = NULL; 649 650 read_lock(&fs_info->tree_mod_log_lock); 651 tm_root = &fs_info->tree_mod_log; 652 node = tm_root->rb_node; 653 while (node) { 654 cur = rb_entry(node, struct tree_mod_elem, node); 655 if (cur->logical < start) { 656 node = node->rb_left; 657 } else if (cur->logical > start) { 658 node = node->rb_right; 659 } else if (cur->seq < min_seq) { 660 node = node->rb_left; 661 } else if (!smallest) { 662 /* we want the node with the highest seq */ 663 if (found) 664 BUG_ON(found->seq > cur->seq); 665 found = cur; 666 node = node->rb_left; 667 } else if (cur->seq > min_seq) { 668 /* we want the node with the smallest seq */ 669 if (found) 670 BUG_ON(found->seq < cur->seq); 671 found = cur; 672 node = node->rb_right; 673 } else { 674 found = cur; 675 break; 676 } 677 } 678 read_unlock(&fs_info->tree_mod_log_lock); 679 680 return found; 681 } 682 683 /* 684 * this returns the element from the log with the smallest time sequence 685 * value that's in the log (the oldest log item). any element with a time 686 * sequence lower than min_seq will be ignored. 687 */ 688 static struct tree_mod_elem * 689 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 690 u64 min_seq) 691 { 692 return __tree_mod_log_search(fs_info, start, min_seq, 1); 693 } 694 695 /* 696 * this returns the element from the log with the largest time sequence 697 * value that's in the log (the most recent log item). any element with 698 * a time sequence lower than min_seq will be ignored. 699 */ 700 static struct tree_mod_elem * 701 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 702 { 703 return __tree_mod_log_search(fs_info, start, min_seq, 0); 704 } 705 706 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 707 struct extent_buffer *src, unsigned long dst_offset, 708 unsigned long src_offset, int nr_items) 709 { 710 struct btrfs_fs_info *fs_info = dst->fs_info; 711 int ret = 0; 712 struct tree_mod_elem **tm_list = NULL; 713 struct tree_mod_elem **tm_list_add, **tm_list_rem; 714 int i; 715 int locked = 0; 716 717 if (!tree_mod_need_log(fs_info, NULL)) 718 return 0; 719 720 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 721 return 0; 722 723 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 724 GFP_NOFS); 725 if (!tm_list) 726 return -ENOMEM; 727 728 tm_list_add = tm_list; 729 tm_list_rem = tm_list + nr_items; 730 for (i = 0; i < nr_items; i++) { 731 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 732 MOD_LOG_KEY_REMOVE, GFP_NOFS); 733 if (!tm_list_rem[i]) { 734 ret = -ENOMEM; 735 goto free_tms; 736 } 737 738 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 739 MOD_LOG_KEY_ADD, GFP_NOFS); 740 if (!tm_list_add[i]) { 741 ret = -ENOMEM; 742 goto free_tms; 743 } 744 } 745 746 if (tree_mod_dont_log(fs_info, NULL)) 747 goto free_tms; 748 locked = 1; 749 750 for (i = 0; i < nr_items; i++) { 751 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 752 if (ret) 753 goto free_tms; 754 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 755 if (ret) 756 goto free_tms; 757 } 758 759 write_unlock(&fs_info->tree_mod_log_lock); 760 kfree(tm_list); 761 762 return 0; 763 764 free_tms: 765 for (i = 0; i < nr_items * 2; i++) { 766 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 767 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 768 kfree(tm_list[i]); 769 } 770 if (locked) 771 write_unlock(&fs_info->tree_mod_log_lock); 772 kfree(tm_list); 773 774 return ret; 775 } 776 777 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 778 { 779 struct tree_mod_elem **tm_list = NULL; 780 int nritems = 0; 781 int i; 782 int ret = 0; 783 784 if (btrfs_header_level(eb) == 0) 785 return 0; 786 787 if (!tree_mod_need_log(eb->fs_info, NULL)) 788 return 0; 789 790 nritems = btrfs_header_nritems(eb); 791 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 792 if (!tm_list) 793 return -ENOMEM; 794 795 for (i = 0; i < nritems; i++) { 796 tm_list[i] = alloc_tree_mod_elem(eb, i, 797 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 798 if (!tm_list[i]) { 799 ret = -ENOMEM; 800 goto free_tms; 801 } 802 } 803 804 if (tree_mod_dont_log(eb->fs_info, eb)) 805 goto free_tms; 806 807 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 808 write_unlock(&eb->fs_info->tree_mod_log_lock); 809 if (ret) 810 goto free_tms; 811 kfree(tm_list); 812 813 return 0; 814 815 free_tms: 816 for (i = 0; i < nritems; i++) 817 kfree(tm_list[i]); 818 kfree(tm_list); 819 820 return ret; 821 } 822 823 /* 824 * check if the tree block can be shared by multiple trees 825 */ 826 int btrfs_block_can_be_shared(struct btrfs_root *root, 827 struct extent_buffer *buf) 828 { 829 /* 830 * Tree blocks not in shareable trees and tree roots are never shared. 831 * If a block was allocated after the last snapshot and the block was 832 * not allocated by tree relocation, we know the block is not shared. 833 */ 834 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 835 buf != root->node && buf != root->commit_root && 836 (btrfs_header_generation(buf) <= 837 btrfs_root_last_snapshot(&root->root_item) || 838 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 839 return 1; 840 841 return 0; 842 } 843 844 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 845 struct btrfs_root *root, 846 struct extent_buffer *buf, 847 struct extent_buffer *cow, 848 int *last_ref) 849 { 850 struct btrfs_fs_info *fs_info = root->fs_info; 851 u64 refs; 852 u64 owner; 853 u64 flags; 854 u64 new_flags = 0; 855 int ret; 856 857 /* 858 * Backrefs update rules: 859 * 860 * Always use full backrefs for extent pointers in tree block 861 * allocated by tree relocation. 862 * 863 * If a shared tree block is no longer referenced by its owner 864 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 865 * use full backrefs for extent pointers in tree block. 866 * 867 * If a tree block is been relocating 868 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 869 * use full backrefs for extent pointers in tree block. 870 * The reason for this is some operations (such as drop tree) 871 * are only allowed for blocks use full backrefs. 872 */ 873 874 if (btrfs_block_can_be_shared(root, buf)) { 875 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 876 btrfs_header_level(buf), 1, 877 &refs, &flags); 878 if (ret) 879 return ret; 880 if (refs == 0) { 881 ret = -EROFS; 882 btrfs_handle_fs_error(fs_info, ret, NULL); 883 return ret; 884 } 885 } else { 886 refs = 1; 887 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 888 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 889 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 890 else 891 flags = 0; 892 } 893 894 owner = btrfs_header_owner(buf); 895 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 896 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 897 898 if (refs > 1) { 899 if ((owner == root->root_key.objectid || 900 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 901 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 902 ret = btrfs_inc_ref(trans, root, buf, 1); 903 if (ret) 904 return ret; 905 906 if (root->root_key.objectid == 907 BTRFS_TREE_RELOC_OBJECTID) { 908 ret = btrfs_dec_ref(trans, root, buf, 0); 909 if (ret) 910 return ret; 911 ret = btrfs_inc_ref(trans, root, cow, 1); 912 if (ret) 913 return ret; 914 } 915 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 916 } else { 917 918 if (root->root_key.objectid == 919 BTRFS_TREE_RELOC_OBJECTID) 920 ret = btrfs_inc_ref(trans, root, cow, 1); 921 else 922 ret = btrfs_inc_ref(trans, root, cow, 0); 923 if (ret) 924 return ret; 925 } 926 if (new_flags != 0) { 927 int level = btrfs_header_level(buf); 928 929 ret = btrfs_set_disk_extent_flags(trans, buf, 930 new_flags, level, 0); 931 if (ret) 932 return ret; 933 } 934 } else { 935 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 936 if (root->root_key.objectid == 937 BTRFS_TREE_RELOC_OBJECTID) 938 ret = btrfs_inc_ref(trans, root, cow, 1); 939 else 940 ret = btrfs_inc_ref(trans, root, cow, 0); 941 if (ret) 942 return ret; 943 ret = btrfs_dec_ref(trans, root, buf, 1); 944 if (ret) 945 return ret; 946 } 947 btrfs_clean_tree_block(buf); 948 *last_ref = 1; 949 } 950 return 0; 951 } 952 953 static struct extent_buffer *alloc_tree_block_no_bg_flush( 954 struct btrfs_trans_handle *trans, 955 struct btrfs_root *root, 956 u64 parent_start, 957 const struct btrfs_disk_key *disk_key, 958 int level, 959 u64 hint, 960 u64 empty_size) 961 { 962 struct btrfs_fs_info *fs_info = root->fs_info; 963 struct extent_buffer *ret; 964 965 /* 966 * If we are COWing a node/leaf from the extent, chunk, device or free 967 * space trees, make sure that we do not finish block group creation of 968 * pending block groups. We do this to avoid a deadlock. 969 * COWing can result in allocation of a new chunk, and flushing pending 970 * block groups (btrfs_create_pending_block_groups()) can be triggered 971 * when finishing allocation of a new chunk. Creation of a pending block 972 * group modifies the extent, chunk, device and free space trees, 973 * therefore we could deadlock with ourselves since we are holding a 974 * lock on an extent buffer that btrfs_create_pending_block_groups() may 975 * try to COW later. 976 * For similar reasons, we also need to delay flushing pending block 977 * groups when splitting a leaf or node, from one of those trees, since 978 * we are holding a write lock on it and its parent or when inserting a 979 * new root node for one of those trees. 980 */ 981 if (root == fs_info->extent_root || 982 root == fs_info->chunk_root || 983 root == fs_info->dev_root || 984 root == fs_info->free_space_root) 985 trans->can_flush_pending_bgs = false; 986 987 ret = btrfs_alloc_tree_block(trans, root, parent_start, 988 root->root_key.objectid, disk_key, level, 989 hint, empty_size); 990 trans->can_flush_pending_bgs = true; 991 992 return ret; 993 } 994 995 /* 996 * does the dirty work in cow of a single block. The parent block (if 997 * supplied) is updated to point to the new cow copy. The new buffer is marked 998 * dirty and returned locked. If you modify the block it needs to be marked 999 * dirty again. 1000 * 1001 * search_start -- an allocation hint for the new block 1002 * 1003 * empty_size -- a hint that you plan on doing more cow. This is the size in 1004 * bytes the allocator should try to find free next to the block it returns. 1005 * This is just a hint and may be ignored by the allocator. 1006 */ 1007 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1008 struct btrfs_root *root, 1009 struct extent_buffer *buf, 1010 struct extent_buffer *parent, int parent_slot, 1011 struct extent_buffer **cow_ret, 1012 u64 search_start, u64 empty_size) 1013 { 1014 struct btrfs_fs_info *fs_info = root->fs_info; 1015 struct btrfs_disk_key disk_key; 1016 struct extent_buffer *cow; 1017 int level, ret; 1018 int last_ref = 0; 1019 int unlock_orig = 0; 1020 u64 parent_start = 0; 1021 1022 if (*cow_ret == buf) 1023 unlock_orig = 1; 1024 1025 btrfs_assert_tree_locked(buf); 1026 1027 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1028 trans->transid != fs_info->running_transaction->transid); 1029 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1030 trans->transid != root->last_trans); 1031 1032 level = btrfs_header_level(buf); 1033 1034 if (level == 0) 1035 btrfs_item_key(buf, &disk_key, 0); 1036 else 1037 btrfs_node_key(buf, &disk_key, 0); 1038 1039 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1040 parent_start = parent->start; 1041 1042 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1043 level, search_start, empty_size); 1044 if (IS_ERR(cow)) 1045 return PTR_ERR(cow); 1046 1047 /* cow is set to blocking by btrfs_init_new_buffer */ 1048 1049 copy_extent_buffer_full(cow, buf); 1050 btrfs_set_header_bytenr(cow, cow->start); 1051 btrfs_set_header_generation(cow, trans->transid); 1052 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1053 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1054 BTRFS_HEADER_FLAG_RELOC); 1055 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1056 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1057 else 1058 btrfs_set_header_owner(cow, root->root_key.objectid); 1059 1060 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1061 1062 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1063 if (ret) { 1064 btrfs_abort_transaction(trans, ret); 1065 return ret; 1066 } 1067 1068 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 1069 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1070 if (ret) { 1071 btrfs_abort_transaction(trans, ret); 1072 return ret; 1073 } 1074 } 1075 1076 if (buf == root->node) { 1077 WARN_ON(parent && parent != buf); 1078 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1079 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1080 parent_start = buf->start; 1081 1082 atomic_inc(&cow->refs); 1083 ret = tree_mod_log_insert_root(root->node, cow, 1); 1084 BUG_ON(ret < 0); 1085 rcu_assign_pointer(root->node, cow); 1086 1087 btrfs_free_tree_block(trans, root, buf, parent_start, 1088 last_ref); 1089 free_extent_buffer(buf); 1090 add_root_to_dirty_list(root); 1091 } else { 1092 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1093 tree_mod_log_insert_key(parent, parent_slot, 1094 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1095 btrfs_set_node_blockptr(parent, parent_slot, 1096 cow->start); 1097 btrfs_set_node_ptr_generation(parent, parent_slot, 1098 trans->transid); 1099 btrfs_mark_buffer_dirty(parent); 1100 if (last_ref) { 1101 ret = tree_mod_log_free_eb(buf); 1102 if (ret) { 1103 btrfs_abort_transaction(trans, ret); 1104 return ret; 1105 } 1106 } 1107 btrfs_free_tree_block(trans, root, buf, parent_start, 1108 last_ref); 1109 } 1110 if (unlock_orig) 1111 btrfs_tree_unlock(buf); 1112 free_extent_buffer_stale(buf); 1113 btrfs_mark_buffer_dirty(cow); 1114 *cow_ret = cow; 1115 return 0; 1116 } 1117 1118 /* 1119 * returns the logical address of the oldest predecessor of the given root. 1120 * entries older than time_seq are ignored. 1121 */ 1122 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1123 struct extent_buffer *eb_root, u64 time_seq) 1124 { 1125 struct tree_mod_elem *tm; 1126 struct tree_mod_elem *found = NULL; 1127 u64 root_logical = eb_root->start; 1128 int looped = 0; 1129 1130 if (!time_seq) 1131 return NULL; 1132 1133 /* 1134 * the very last operation that's logged for a root is the 1135 * replacement operation (if it is replaced at all). this has 1136 * the logical address of the *new* root, making it the very 1137 * first operation that's logged for this root. 1138 */ 1139 while (1) { 1140 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1141 time_seq); 1142 if (!looped && !tm) 1143 return NULL; 1144 /* 1145 * if there are no tree operation for the oldest root, we simply 1146 * return it. this should only happen if that (old) root is at 1147 * level 0. 1148 */ 1149 if (!tm) 1150 break; 1151 1152 /* 1153 * if there's an operation that's not a root replacement, we 1154 * found the oldest version of our root. normally, we'll find a 1155 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1156 */ 1157 if (tm->op != MOD_LOG_ROOT_REPLACE) 1158 break; 1159 1160 found = tm; 1161 root_logical = tm->old_root.logical; 1162 looped = 1; 1163 } 1164 1165 /* if there's no old root to return, return what we found instead */ 1166 if (!found) 1167 found = tm; 1168 1169 return found; 1170 } 1171 1172 /* 1173 * tm is a pointer to the first operation to rewind within eb. then, all 1174 * previous operations will be rewound (until we reach something older than 1175 * time_seq). 1176 */ 1177 static void 1178 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1179 u64 time_seq, struct tree_mod_elem *first_tm) 1180 { 1181 u32 n; 1182 struct rb_node *next; 1183 struct tree_mod_elem *tm = first_tm; 1184 unsigned long o_dst; 1185 unsigned long o_src; 1186 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1187 1188 n = btrfs_header_nritems(eb); 1189 read_lock(&fs_info->tree_mod_log_lock); 1190 while (tm && tm->seq >= time_seq) { 1191 /* 1192 * all the operations are recorded with the operator used for 1193 * the modification. as we're going backwards, we do the 1194 * opposite of each operation here. 1195 */ 1196 switch (tm->op) { 1197 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1198 BUG_ON(tm->slot < n); 1199 fallthrough; 1200 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1201 case MOD_LOG_KEY_REMOVE: 1202 btrfs_set_node_key(eb, &tm->key, tm->slot); 1203 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1204 btrfs_set_node_ptr_generation(eb, tm->slot, 1205 tm->generation); 1206 n++; 1207 break; 1208 case MOD_LOG_KEY_REPLACE: 1209 BUG_ON(tm->slot >= n); 1210 btrfs_set_node_key(eb, &tm->key, tm->slot); 1211 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1212 btrfs_set_node_ptr_generation(eb, tm->slot, 1213 tm->generation); 1214 break; 1215 case MOD_LOG_KEY_ADD: 1216 /* if a move operation is needed it's in the log */ 1217 n--; 1218 break; 1219 case MOD_LOG_MOVE_KEYS: 1220 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1221 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1222 memmove_extent_buffer(eb, o_dst, o_src, 1223 tm->move.nr_items * p_size); 1224 break; 1225 case MOD_LOG_ROOT_REPLACE: 1226 /* 1227 * this operation is special. for roots, this must be 1228 * handled explicitly before rewinding. 1229 * for non-roots, this operation may exist if the node 1230 * was a root: root A -> child B; then A gets empty and 1231 * B is promoted to the new root. in the mod log, we'll 1232 * have a root-replace operation for B, a tree block 1233 * that is no root. we simply ignore that operation. 1234 */ 1235 break; 1236 } 1237 next = rb_next(&tm->node); 1238 if (!next) 1239 break; 1240 tm = rb_entry(next, struct tree_mod_elem, node); 1241 if (tm->logical != first_tm->logical) 1242 break; 1243 } 1244 read_unlock(&fs_info->tree_mod_log_lock); 1245 btrfs_set_header_nritems(eb, n); 1246 } 1247 1248 /* 1249 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1250 * is returned. If rewind operations happen, a fresh buffer is returned. The 1251 * returned buffer is always read-locked. If the returned buffer is not the 1252 * input buffer, the lock on the input buffer is released and the input buffer 1253 * is freed (its refcount is decremented). 1254 */ 1255 static struct extent_buffer * 1256 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1257 struct extent_buffer *eb, u64 time_seq) 1258 { 1259 struct extent_buffer *eb_rewin; 1260 struct tree_mod_elem *tm; 1261 1262 if (!time_seq) 1263 return eb; 1264 1265 if (btrfs_header_level(eb) == 0) 1266 return eb; 1267 1268 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1269 if (!tm) 1270 return eb; 1271 1272 btrfs_set_path_blocking(path); 1273 btrfs_set_lock_blocking_read(eb); 1274 1275 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1276 BUG_ON(tm->slot != 0); 1277 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1278 if (!eb_rewin) { 1279 btrfs_tree_read_unlock_blocking(eb); 1280 free_extent_buffer(eb); 1281 return NULL; 1282 } 1283 btrfs_set_header_bytenr(eb_rewin, eb->start); 1284 btrfs_set_header_backref_rev(eb_rewin, 1285 btrfs_header_backref_rev(eb)); 1286 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1287 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1288 } else { 1289 eb_rewin = btrfs_clone_extent_buffer(eb); 1290 if (!eb_rewin) { 1291 btrfs_tree_read_unlock_blocking(eb); 1292 free_extent_buffer(eb); 1293 return NULL; 1294 } 1295 } 1296 1297 btrfs_tree_read_unlock_blocking(eb); 1298 free_extent_buffer(eb); 1299 1300 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), 1301 eb_rewin, btrfs_header_level(eb_rewin)); 1302 btrfs_tree_read_lock(eb_rewin); 1303 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1304 WARN_ON(btrfs_header_nritems(eb_rewin) > 1305 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1306 1307 return eb_rewin; 1308 } 1309 1310 /* 1311 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1312 * value. If there are no changes, the current root->root_node is returned. If 1313 * anything changed in between, there's a fresh buffer allocated on which the 1314 * rewind operations are done. In any case, the returned buffer is read locked. 1315 * Returns NULL on error (with no locks held). 1316 */ 1317 static inline struct extent_buffer * 1318 get_old_root(struct btrfs_root *root, u64 time_seq) 1319 { 1320 struct btrfs_fs_info *fs_info = root->fs_info; 1321 struct tree_mod_elem *tm; 1322 struct extent_buffer *eb = NULL; 1323 struct extent_buffer *eb_root; 1324 u64 eb_root_owner = 0; 1325 struct extent_buffer *old; 1326 struct tree_mod_root *old_root = NULL; 1327 u64 old_generation = 0; 1328 u64 logical; 1329 int level; 1330 1331 eb_root = btrfs_read_lock_root_node(root); 1332 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1333 if (!tm) 1334 return eb_root; 1335 1336 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1337 old_root = &tm->old_root; 1338 old_generation = tm->generation; 1339 logical = old_root->logical; 1340 level = old_root->level; 1341 } else { 1342 logical = eb_root->start; 1343 level = btrfs_header_level(eb_root); 1344 } 1345 1346 tm = tree_mod_log_search(fs_info, logical, time_seq); 1347 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1348 btrfs_tree_read_unlock(eb_root); 1349 free_extent_buffer(eb_root); 1350 old = read_tree_block(fs_info, logical, 0, level, NULL); 1351 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1352 if (!IS_ERR(old)) 1353 free_extent_buffer(old); 1354 btrfs_warn(fs_info, 1355 "failed to read tree block %llu from get_old_root", 1356 logical); 1357 } else { 1358 eb = btrfs_clone_extent_buffer(old); 1359 free_extent_buffer(old); 1360 } 1361 } else if (old_root) { 1362 eb_root_owner = btrfs_header_owner(eb_root); 1363 btrfs_tree_read_unlock(eb_root); 1364 free_extent_buffer(eb_root); 1365 eb = alloc_dummy_extent_buffer(fs_info, logical); 1366 } else { 1367 btrfs_set_lock_blocking_read(eb_root); 1368 eb = btrfs_clone_extent_buffer(eb_root); 1369 btrfs_tree_read_unlock_blocking(eb_root); 1370 free_extent_buffer(eb_root); 1371 } 1372 1373 if (!eb) 1374 return NULL; 1375 if (old_root) { 1376 btrfs_set_header_bytenr(eb, eb->start); 1377 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1378 btrfs_set_header_owner(eb, eb_root_owner); 1379 btrfs_set_header_level(eb, old_root->level); 1380 btrfs_set_header_generation(eb, old_generation); 1381 } 1382 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, 1383 btrfs_header_level(eb)); 1384 btrfs_tree_read_lock(eb); 1385 if (tm) 1386 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1387 else 1388 WARN_ON(btrfs_header_level(eb) != 0); 1389 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1390 1391 return eb; 1392 } 1393 1394 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1395 { 1396 struct tree_mod_elem *tm; 1397 int level; 1398 struct extent_buffer *eb_root = btrfs_root_node(root); 1399 1400 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1401 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1402 level = tm->old_root.level; 1403 } else { 1404 level = btrfs_header_level(eb_root); 1405 } 1406 free_extent_buffer(eb_root); 1407 1408 return level; 1409 } 1410 1411 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1412 struct btrfs_root *root, 1413 struct extent_buffer *buf) 1414 { 1415 if (btrfs_is_testing(root->fs_info)) 1416 return 0; 1417 1418 /* Ensure we can see the FORCE_COW bit */ 1419 smp_mb__before_atomic(); 1420 1421 /* 1422 * We do not need to cow a block if 1423 * 1) this block is not created or changed in this transaction; 1424 * 2) this block does not belong to TREE_RELOC tree; 1425 * 3) the root is not forced COW. 1426 * 1427 * What is forced COW: 1428 * when we create snapshot during committing the transaction, 1429 * after we've finished copying src root, we must COW the shared 1430 * block to ensure the metadata consistency. 1431 */ 1432 if (btrfs_header_generation(buf) == trans->transid && 1433 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1434 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1435 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1436 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1437 return 0; 1438 return 1; 1439 } 1440 1441 /* 1442 * cows a single block, see __btrfs_cow_block for the real work. 1443 * This version of it has extra checks so that a block isn't COWed more than 1444 * once per transaction, as long as it hasn't been written yet 1445 */ 1446 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1447 struct btrfs_root *root, struct extent_buffer *buf, 1448 struct extent_buffer *parent, int parent_slot, 1449 struct extent_buffer **cow_ret) 1450 { 1451 struct btrfs_fs_info *fs_info = root->fs_info; 1452 u64 search_start; 1453 int ret; 1454 1455 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1456 btrfs_err(fs_info, 1457 "COW'ing blocks on a fs root that's being dropped"); 1458 1459 if (trans->transaction != fs_info->running_transaction) 1460 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1461 trans->transid, 1462 fs_info->running_transaction->transid); 1463 1464 if (trans->transid != fs_info->generation) 1465 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1466 trans->transid, fs_info->generation); 1467 1468 if (!should_cow_block(trans, root, buf)) { 1469 trans->dirty = true; 1470 *cow_ret = buf; 1471 return 0; 1472 } 1473 1474 search_start = buf->start & ~((u64)SZ_1G - 1); 1475 1476 if (parent) 1477 btrfs_set_lock_blocking_write(parent); 1478 btrfs_set_lock_blocking_write(buf); 1479 1480 /* 1481 * Before CoWing this block for later modification, check if it's 1482 * the subtree root and do the delayed subtree trace if needed. 1483 * 1484 * Also We don't care about the error, as it's handled internally. 1485 */ 1486 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1487 ret = __btrfs_cow_block(trans, root, buf, parent, 1488 parent_slot, cow_ret, search_start, 0); 1489 1490 trace_btrfs_cow_block(root, buf, *cow_ret); 1491 1492 return ret; 1493 } 1494 1495 /* 1496 * helper function for defrag to decide if two blocks pointed to by a 1497 * node are actually close by 1498 */ 1499 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1500 { 1501 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1502 return 1; 1503 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1504 return 1; 1505 return 0; 1506 } 1507 1508 #ifdef __LITTLE_ENDIAN 1509 1510 /* 1511 * Compare two keys, on little-endian the disk order is same as CPU order and 1512 * we can avoid the conversion. 1513 */ 1514 static int comp_keys(const struct btrfs_disk_key *disk_key, 1515 const struct btrfs_key *k2) 1516 { 1517 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 1518 1519 return btrfs_comp_cpu_keys(k1, k2); 1520 } 1521 1522 #else 1523 1524 /* 1525 * compare two keys in a memcmp fashion 1526 */ 1527 static int comp_keys(const struct btrfs_disk_key *disk, 1528 const struct btrfs_key *k2) 1529 { 1530 struct btrfs_key k1; 1531 1532 btrfs_disk_key_to_cpu(&k1, disk); 1533 1534 return btrfs_comp_cpu_keys(&k1, k2); 1535 } 1536 #endif 1537 1538 /* 1539 * same as comp_keys only with two btrfs_key's 1540 */ 1541 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1542 { 1543 if (k1->objectid > k2->objectid) 1544 return 1; 1545 if (k1->objectid < k2->objectid) 1546 return -1; 1547 if (k1->type > k2->type) 1548 return 1; 1549 if (k1->type < k2->type) 1550 return -1; 1551 if (k1->offset > k2->offset) 1552 return 1; 1553 if (k1->offset < k2->offset) 1554 return -1; 1555 return 0; 1556 } 1557 1558 /* 1559 * this is used by the defrag code to go through all the 1560 * leaves pointed to by a node and reallocate them so that 1561 * disk order is close to key order 1562 */ 1563 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1564 struct btrfs_root *root, struct extent_buffer *parent, 1565 int start_slot, u64 *last_ret, 1566 struct btrfs_key *progress) 1567 { 1568 struct btrfs_fs_info *fs_info = root->fs_info; 1569 struct extent_buffer *cur; 1570 u64 blocknr; 1571 u64 gen; 1572 u64 search_start = *last_ret; 1573 u64 last_block = 0; 1574 u64 other; 1575 u32 parent_nritems; 1576 int end_slot; 1577 int i; 1578 int err = 0; 1579 int parent_level; 1580 int uptodate; 1581 u32 blocksize; 1582 int progress_passed = 0; 1583 struct btrfs_disk_key disk_key; 1584 1585 parent_level = btrfs_header_level(parent); 1586 1587 WARN_ON(trans->transaction != fs_info->running_transaction); 1588 WARN_ON(trans->transid != fs_info->generation); 1589 1590 parent_nritems = btrfs_header_nritems(parent); 1591 blocksize = fs_info->nodesize; 1592 end_slot = parent_nritems - 1; 1593 1594 if (parent_nritems <= 1) 1595 return 0; 1596 1597 btrfs_set_lock_blocking_write(parent); 1598 1599 for (i = start_slot; i <= end_slot; i++) { 1600 struct btrfs_key first_key; 1601 int close = 1; 1602 1603 btrfs_node_key(parent, &disk_key, i); 1604 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1605 continue; 1606 1607 progress_passed = 1; 1608 blocknr = btrfs_node_blockptr(parent, i); 1609 gen = btrfs_node_ptr_generation(parent, i); 1610 btrfs_node_key_to_cpu(parent, &first_key, i); 1611 if (last_block == 0) 1612 last_block = blocknr; 1613 1614 if (i > 0) { 1615 other = btrfs_node_blockptr(parent, i - 1); 1616 close = close_blocks(blocknr, other, blocksize); 1617 } 1618 if (!close && i < end_slot) { 1619 other = btrfs_node_blockptr(parent, i + 1); 1620 close = close_blocks(blocknr, other, blocksize); 1621 } 1622 if (close) { 1623 last_block = blocknr; 1624 continue; 1625 } 1626 1627 cur = find_extent_buffer(fs_info, blocknr); 1628 if (cur) 1629 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1630 else 1631 uptodate = 0; 1632 if (!cur || !uptodate) { 1633 if (!cur) { 1634 cur = read_tree_block(fs_info, blocknr, gen, 1635 parent_level - 1, 1636 &first_key); 1637 if (IS_ERR(cur)) { 1638 return PTR_ERR(cur); 1639 } else if (!extent_buffer_uptodate(cur)) { 1640 free_extent_buffer(cur); 1641 return -EIO; 1642 } 1643 } else if (!uptodate) { 1644 err = btrfs_read_buffer(cur, gen, 1645 parent_level - 1,&first_key); 1646 if (err) { 1647 free_extent_buffer(cur); 1648 return err; 1649 } 1650 } 1651 } 1652 if (search_start == 0) 1653 search_start = last_block; 1654 1655 btrfs_tree_lock(cur); 1656 btrfs_set_lock_blocking_write(cur); 1657 err = __btrfs_cow_block(trans, root, cur, parent, i, 1658 &cur, search_start, 1659 min(16 * blocksize, 1660 (end_slot - i) * blocksize)); 1661 if (err) { 1662 btrfs_tree_unlock(cur); 1663 free_extent_buffer(cur); 1664 break; 1665 } 1666 search_start = cur->start; 1667 last_block = cur->start; 1668 *last_ret = search_start; 1669 btrfs_tree_unlock(cur); 1670 free_extent_buffer(cur); 1671 } 1672 return err; 1673 } 1674 1675 /* 1676 * search for key in the extent_buffer. The items start at offset p, 1677 * and they are item_size apart. There are 'max' items in p. 1678 * 1679 * the slot in the array is returned via slot, and it points to 1680 * the place where you would insert key if it is not found in 1681 * the array. 1682 * 1683 * slot may point to max if the key is bigger than all of the keys 1684 */ 1685 static noinline int generic_bin_search(struct extent_buffer *eb, 1686 unsigned long p, int item_size, 1687 const struct btrfs_key *key, 1688 int max, int *slot) 1689 { 1690 int low = 0; 1691 int high = max; 1692 int ret; 1693 const int key_size = sizeof(struct btrfs_disk_key); 1694 1695 if (low > high) { 1696 btrfs_err(eb->fs_info, 1697 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1698 __func__, low, high, eb->start, 1699 btrfs_header_owner(eb), btrfs_header_level(eb)); 1700 return -EINVAL; 1701 } 1702 1703 while (low < high) { 1704 unsigned long oip; 1705 unsigned long offset; 1706 struct btrfs_disk_key *tmp; 1707 struct btrfs_disk_key unaligned; 1708 int mid; 1709 1710 mid = (low + high) / 2; 1711 offset = p + mid * item_size; 1712 oip = offset_in_page(offset); 1713 1714 if (oip + key_size <= PAGE_SIZE) { 1715 const unsigned long idx = offset >> PAGE_SHIFT; 1716 char *kaddr = page_address(eb->pages[idx]); 1717 1718 tmp = (struct btrfs_disk_key *)(kaddr + oip); 1719 } else { 1720 read_extent_buffer(eb, &unaligned, offset, key_size); 1721 tmp = &unaligned; 1722 } 1723 1724 ret = comp_keys(tmp, key); 1725 1726 if (ret < 0) 1727 low = mid + 1; 1728 else if (ret > 0) 1729 high = mid; 1730 else { 1731 *slot = mid; 1732 return 0; 1733 } 1734 } 1735 *slot = low; 1736 return 1; 1737 } 1738 1739 /* 1740 * simple bin_search frontend that does the right thing for 1741 * leaves vs nodes 1742 */ 1743 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1744 int *slot) 1745 { 1746 if (btrfs_header_level(eb) == 0) 1747 return generic_bin_search(eb, 1748 offsetof(struct btrfs_leaf, items), 1749 sizeof(struct btrfs_item), 1750 key, btrfs_header_nritems(eb), 1751 slot); 1752 else 1753 return generic_bin_search(eb, 1754 offsetof(struct btrfs_node, ptrs), 1755 sizeof(struct btrfs_key_ptr), 1756 key, btrfs_header_nritems(eb), 1757 slot); 1758 } 1759 1760 static void root_add_used(struct btrfs_root *root, u32 size) 1761 { 1762 spin_lock(&root->accounting_lock); 1763 btrfs_set_root_used(&root->root_item, 1764 btrfs_root_used(&root->root_item) + size); 1765 spin_unlock(&root->accounting_lock); 1766 } 1767 1768 static void root_sub_used(struct btrfs_root *root, u32 size) 1769 { 1770 spin_lock(&root->accounting_lock); 1771 btrfs_set_root_used(&root->root_item, 1772 btrfs_root_used(&root->root_item) - size); 1773 spin_unlock(&root->accounting_lock); 1774 } 1775 1776 /* given a node and slot number, this reads the blocks it points to. The 1777 * extent buffer is returned with a reference taken (but unlocked). 1778 */ 1779 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1780 int slot) 1781 { 1782 int level = btrfs_header_level(parent); 1783 struct extent_buffer *eb; 1784 struct btrfs_key first_key; 1785 1786 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1787 return ERR_PTR(-ENOENT); 1788 1789 BUG_ON(level == 0); 1790 1791 btrfs_node_key_to_cpu(parent, &first_key, slot); 1792 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1793 btrfs_node_ptr_generation(parent, slot), 1794 level - 1, &first_key); 1795 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1796 free_extent_buffer(eb); 1797 eb = ERR_PTR(-EIO); 1798 } 1799 1800 return eb; 1801 } 1802 1803 /* 1804 * node level balancing, used to make sure nodes are in proper order for 1805 * item deletion. We balance from the top down, so we have to make sure 1806 * that a deletion won't leave an node completely empty later on. 1807 */ 1808 static noinline int balance_level(struct btrfs_trans_handle *trans, 1809 struct btrfs_root *root, 1810 struct btrfs_path *path, int level) 1811 { 1812 struct btrfs_fs_info *fs_info = root->fs_info; 1813 struct extent_buffer *right = NULL; 1814 struct extent_buffer *mid; 1815 struct extent_buffer *left = NULL; 1816 struct extent_buffer *parent = NULL; 1817 int ret = 0; 1818 int wret; 1819 int pslot; 1820 int orig_slot = path->slots[level]; 1821 u64 orig_ptr; 1822 1823 ASSERT(level > 0); 1824 1825 mid = path->nodes[level]; 1826 1827 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1828 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1829 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1830 1831 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1832 1833 if (level < BTRFS_MAX_LEVEL - 1) { 1834 parent = path->nodes[level + 1]; 1835 pslot = path->slots[level + 1]; 1836 } 1837 1838 /* 1839 * deal with the case where there is only one pointer in the root 1840 * by promoting the node below to a root 1841 */ 1842 if (!parent) { 1843 struct extent_buffer *child; 1844 1845 if (btrfs_header_nritems(mid) != 1) 1846 return 0; 1847 1848 /* promote the child to a root */ 1849 child = btrfs_read_node_slot(mid, 0); 1850 if (IS_ERR(child)) { 1851 ret = PTR_ERR(child); 1852 btrfs_handle_fs_error(fs_info, ret, NULL); 1853 goto enospc; 1854 } 1855 1856 btrfs_tree_lock(child); 1857 btrfs_set_lock_blocking_write(child); 1858 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1859 if (ret) { 1860 btrfs_tree_unlock(child); 1861 free_extent_buffer(child); 1862 goto enospc; 1863 } 1864 1865 ret = tree_mod_log_insert_root(root->node, child, 1); 1866 BUG_ON(ret < 0); 1867 rcu_assign_pointer(root->node, child); 1868 1869 add_root_to_dirty_list(root); 1870 btrfs_tree_unlock(child); 1871 1872 path->locks[level] = 0; 1873 path->nodes[level] = NULL; 1874 btrfs_clean_tree_block(mid); 1875 btrfs_tree_unlock(mid); 1876 /* once for the path */ 1877 free_extent_buffer(mid); 1878 1879 root_sub_used(root, mid->len); 1880 btrfs_free_tree_block(trans, root, mid, 0, 1); 1881 /* once for the root ptr */ 1882 free_extent_buffer_stale(mid); 1883 return 0; 1884 } 1885 if (btrfs_header_nritems(mid) > 1886 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1887 return 0; 1888 1889 left = btrfs_read_node_slot(parent, pslot - 1); 1890 if (IS_ERR(left)) 1891 left = NULL; 1892 1893 if (left) { 1894 btrfs_tree_lock(left); 1895 btrfs_set_lock_blocking_write(left); 1896 wret = btrfs_cow_block(trans, root, left, 1897 parent, pslot - 1, &left); 1898 if (wret) { 1899 ret = wret; 1900 goto enospc; 1901 } 1902 } 1903 1904 right = btrfs_read_node_slot(parent, pslot + 1); 1905 if (IS_ERR(right)) 1906 right = NULL; 1907 1908 if (right) { 1909 btrfs_tree_lock(right); 1910 btrfs_set_lock_blocking_write(right); 1911 wret = btrfs_cow_block(trans, root, right, 1912 parent, pslot + 1, &right); 1913 if (wret) { 1914 ret = wret; 1915 goto enospc; 1916 } 1917 } 1918 1919 /* first, try to make some room in the middle buffer */ 1920 if (left) { 1921 orig_slot += btrfs_header_nritems(left); 1922 wret = push_node_left(trans, left, mid, 1); 1923 if (wret < 0) 1924 ret = wret; 1925 } 1926 1927 /* 1928 * then try to empty the right most buffer into the middle 1929 */ 1930 if (right) { 1931 wret = push_node_left(trans, mid, right, 1); 1932 if (wret < 0 && wret != -ENOSPC) 1933 ret = wret; 1934 if (btrfs_header_nritems(right) == 0) { 1935 btrfs_clean_tree_block(right); 1936 btrfs_tree_unlock(right); 1937 del_ptr(root, path, level + 1, pslot + 1); 1938 root_sub_used(root, right->len); 1939 btrfs_free_tree_block(trans, root, right, 0, 1); 1940 free_extent_buffer_stale(right); 1941 right = NULL; 1942 } else { 1943 struct btrfs_disk_key right_key; 1944 btrfs_node_key(right, &right_key, 0); 1945 ret = tree_mod_log_insert_key(parent, pslot + 1, 1946 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1947 BUG_ON(ret < 0); 1948 btrfs_set_node_key(parent, &right_key, pslot + 1); 1949 btrfs_mark_buffer_dirty(parent); 1950 } 1951 } 1952 if (btrfs_header_nritems(mid) == 1) { 1953 /* 1954 * we're not allowed to leave a node with one item in the 1955 * tree during a delete. A deletion from lower in the tree 1956 * could try to delete the only pointer in this node. 1957 * So, pull some keys from the left. 1958 * There has to be a left pointer at this point because 1959 * otherwise we would have pulled some pointers from the 1960 * right 1961 */ 1962 if (!left) { 1963 ret = -EROFS; 1964 btrfs_handle_fs_error(fs_info, ret, NULL); 1965 goto enospc; 1966 } 1967 wret = balance_node_right(trans, mid, left); 1968 if (wret < 0) { 1969 ret = wret; 1970 goto enospc; 1971 } 1972 if (wret == 1) { 1973 wret = push_node_left(trans, left, mid, 1); 1974 if (wret < 0) 1975 ret = wret; 1976 } 1977 BUG_ON(wret == 1); 1978 } 1979 if (btrfs_header_nritems(mid) == 0) { 1980 btrfs_clean_tree_block(mid); 1981 btrfs_tree_unlock(mid); 1982 del_ptr(root, path, level + 1, pslot); 1983 root_sub_used(root, mid->len); 1984 btrfs_free_tree_block(trans, root, mid, 0, 1); 1985 free_extent_buffer_stale(mid); 1986 mid = NULL; 1987 } else { 1988 /* update the parent key to reflect our changes */ 1989 struct btrfs_disk_key mid_key; 1990 btrfs_node_key(mid, &mid_key, 0); 1991 ret = tree_mod_log_insert_key(parent, pslot, 1992 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1993 BUG_ON(ret < 0); 1994 btrfs_set_node_key(parent, &mid_key, pslot); 1995 btrfs_mark_buffer_dirty(parent); 1996 } 1997 1998 /* update the path */ 1999 if (left) { 2000 if (btrfs_header_nritems(left) > orig_slot) { 2001 atomic_inc(&left->refs); 2002 /* left was locked after cow */ 2003 path->nodes[level] = left; 2004 path->slots[level + 1] -= 1; 2005 path->slots[level] = orig_slot; 2006 if (mid) { 2007 btrfs_tree_unlock(mid); 2008 free_extent_buffer(mid); 2009 } 2010 } else { 2011 orig_slot -= btrfs_header_nritems(left); 2012 path->slots[level] = orig_slot; 2013 } 2014 } 2015 /* double check we haven't messed things up */ 2016 if (orig_ptr != 2017 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2018 BUG(); 2019 enospc: 2020 if (right) { 2021 btrfs_tree_unlock(right); 2022 free_extent_buffer(right); 2023 } 2024 if (left) { 2025 if (path->nodes[level] != left) 2026 btrfs_tree_unlock(left); 2027 free_extent_buffer(left); 2028 } 2029 return ret; 2030 } 2031 2032 /* Node balancing for insertion. Here we only split or push nodes around 2033 * when they are completely full. This is also done top down, so we 2034 * have to be pessimistic. 2035 */ 2036 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2037 struct btrfs_root *root, 2038 struct btrfs_path *path, int level) 2039 { 2040 struct btrfs_fs_info *fs_info = root->fs_info; 2041 struct extent_buffer *right = NULL; 2042 struct extent_buffer *mid; 2043 struct extent_buffer *left = NULL; 2044 struct extent_buffer *parent = NULL; 2045 int ret = 0; 2046 int wret; 2047 int pslot; 2048 int orig_slot = path->slots[level]; 2049 2050 if (level == 0) 2051 return 1; 2052 2053 mid = path->nodes[level]; 2054 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2055 2056 if (level < BTRFS_MAX_LEVEL - 1) { 2057 parent = path->nodes[level + 1]; 2058 pslot = path->slots[level + 1]; 2059 } 2060 2061 if (!parent) 2062 return 1; 2063 2064 left = btrfs_read_node_slot(parent, pslot - 1); 2065 if (IS_ERR(left)) 2066 left = NULL; 2067 2068 /* first, try to make some room in the middle buffer */ 2069 if (left) { 2070 u32 left_nr; 2071 2072 btrfs_tree_lock(left); 2073 btrfs_set_lock_blocking_write(left); 2074 2075 left_nr = btrfs_header_nritems(left); 2076 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2077 wret = 1; 2078 } else { 2079 ret = btrfs_cow_block(trans, root, left, parent, 2080 pslot - 1, &left); 2081 if (ret) 2082 wret = 1; 2083 else { 2084 wret = push_node_left(trans, left, mid, 0); 2085 } 2086 } 2087 if (wret < 0) 2088 ret = wret; 2089 if (wret == 0) { 2090 struct btrfs_disk_key disk_key; 2091 orig_slot += left_nr; 2092 btrfs_node_key(mid, &disk_key, 0); 2093 ret = tree_mod_log_insert_key(parent, pslot, 2094 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2095 BUG_ON(ret < 0); 2096 btrfs_set_node_key(parent, &disk_key, pslot); 2097 btrfs_mark_buffer_dirty(parent); 2098 if (btrfs_header_nritems(left) > orig_slot) { 2099 path->nodes[level] = left; 2100 path->slots[level + 1] -= 1; 2101 path->slots[level] = orig_slot; 2102 btrfs_tree_unlock(mid); 2103 free_extent_buffer(mid); 2104 } else { 2105 orig_slot -= 2106 btrfs_header_nritems(left); 2107 path->slots[level] = orig_slot; 2108 btrfs_tree_unlock(left); 2109 free_extent_buffer(left); 2110 } 2111 return 0; 2112 } 2113 btrfs_tree_unlock(left); 2114 free_extent_buffer(left); 2115 } 2116 right = btrfs_read_node_slot(parent, pslot + 1); 2117 if (IS_ERR(right)) 2118 right = NULL; 2119 2120 /* 2121 * then try to empty the right most buffer into the middle 2122 */ 2123 if (right) { 2124 u32 right_nr; 2125 2126 btrfs_tree_lock(right); 2127 btrfs_set_lock_blocking_write(right); 2128 2129 right_nr = btrfs_header_nritems(right); 2130 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2131 wret = 1; 2132 } else { 2133 ret = btrfs_cow_block(trans, root, right, 2134 parent, pslot + 1, 2135 &right); 2136 if (ret) 2137 wret = 1; 2138 else { 2139 wret = balance_node_right(trans, right, mid); 2140 } 2141 } 2142 if (wret < 0) 2143 ret = wret; 2144 if (wret == 0) { 2145 struct btrfs_disk_key disk_key; 2146 2147 btrfs_node_key(right, &disk_key, 0); 2148 ret = tree_mod_log_insert_key(parent, pslot + 1, 2149 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2150 BUG_ON(ret < 0); 2151 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2152 btrfs_mark_buffer_dirty(parent); 2153 2154 if (btrfs_header_nritems(mid) <= orig_slot) { 2155 path->nodes[level] = right; 2156 path->slots[level + 1] += 1; 2157 path->slots[level] = orig_slot - 2158 btrfs_header_nritems(mid); 2159 btrfs_tree_unlock(mid); 2160 free_extent_buffer(mid); 2161 } else { 2162 btrfs_tree_unlock(right); 2163 free_extent_buffer(right); 2164 } 2165 return 0; 2166 } 2167 btrfs_tree_unlock(right); 2168 free_extent_buffer(right); 2169 } 2170 return 1; 2171 } 2172 2173 /* 2174 * readahead one full node of leaves, finding things that are close 2175 * to the block in 'slot', and triggering ra on them. 2176 */ 2177 static void reada_for_search(struct btrfs_fs_info *fs_info, 2178 struct btrfs_path *path, 2179 int level, int slot, u64 objectid) 2180 { 2181 struct extent_buffer *node; 2182 struct btrfs_disk_key disk_key; 2183 u32 nritems; 2184 u64 search; 2185 u64 target; 2186 u64 nread = 0; 2187 struct extent_buffer *eb; 2188 u32 nr; 2189 u32 blocksize; 2190 u32 nscan = 0; 2191 2192 if (level != 1) 2193 return; 2194 2195 if (!path->nodes[level]) 2196 return; 2197 2198 node = path->nodes[level]; 2199 2200 search = btrfs_node_blockptr(node, slot); 2201 blocksize = fs_info->nodesize; 2202 eb = find_extent_buffer(fs_info, search); 2203 if (eb) { 2204 free_extent_buffer(eb); 2205 return; 2206 } 2207 2208 target = search; 2209 2210 nritems = btrfs_header_nritems(node); 2211 nr = slot; 2212 2213 while (1) { 2214 if (path->reada == READA_BACK) { 2215 if (nr == 0) 2216 break; 2217 nr--; 2218 } else if (path->reada == READA_FORWARD) { 2219 nr++; 2220 if (nr >= nritems) 2221 break; 2222 } 2223 if (path->reada == READA_BACK && objectid) { 2224 btrfs_node_key(node, &disk_key, nr); 2225 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2226 break; 2227 } 2228 search = btrfs_node_blockptr(node, nr); 2229 if ((search <= target && target - search <= 65536) || 2230 (search > target && search - target <= 65536)) { 2231 readahead_tree_block(fs_info, search); 2232 nread += blocksize; 2233 } 2234 nscan++; 2235 if ((nread > 65536 || nscan > 32)) 2236 break; 2237 } 2238 } 2239 2240 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2241 struct btrfs_path *path, int level) 2242 { 2243 int slot; 2244 int nritems; 2245 struct extent_buffer *parent; 2246 struct extent_buffer *eb; 2247 u64 gen; 2248 u64 block1 = 0; 2249 u64 block2 = 0; 2250 2251 parent = path->nodes[level + 1]; 2252 if (!parent) 2253 return; 2254 2255 nritems = btrfs_header_nritems(parent); 2256 slot = path->slots[level + 1]; 2257 2258 if (slot > 0) { 2259 block1 = btrfs_node_blockptr(parent, slot - 1); 2260 gen = btrfs_node_ptr_generation(parent, slot - 1); 2261 eb = find_extent_buffer(fs_info, block1); 2262 /* 2263 * if we get -eagain from btrfs_buffer_uptodate, we 2264 * don't want to return eagain here. That will loop 2265 * forever 2266 */ 2267 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2268 block1 = 0; 2269 free_extent_buffer(eb); 2270 } 2271 if (slot + 1 < nritems) { 2272 block2 = btrfs_node_blockptr(parent, slot + 1); 2273 gen = btrfs_node_ptr_generation(parent, slot + 1); 2274 eb = find_extent_buffer(fs_info, block2); 2275 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2276 block2 = 0; 2277 free_extent_buffer(eb); 2278 } 2279 2280 if (block1) 2281 readahead_tree_block(fs_info, block1); 2282 if (block2) 2283 readahead_tree_block(fs_info, block2); 2284 } 2285 2286 2287 /* 2288 * when we walk down the tree, it is usually safe to unlock the higher layers 2289 * in the tree. The exceptions are when our path goes through slot 0, because 2290 * operations on the tree might require changing key pointers higher up in the 2291 * tree. 2292 * 2293 * callers might also have set path->keep_locks, which tells this code to keep 2294 * the lock if the path points to the last slot in the block. This is part of 2295 * walking through the tree, and selecting the next slot in the higher block. 2296 * 2297 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2298 * if lowest_unlock is 1, level 0 won't be unlocked 2299 */ 2300 static noinline void unlock_up(struct btrfs_path *path, int level, 2301 int lowest_unlock, int min_write_lock_level, 2302 int *write_lock_level) 2303 { 2304 int i; 2305 int skip_level = level; 2306 int no_skips = 0; 2307 struct extent_buffer *t; 2308 2309 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2310 if (!path->nodes[i]) 2311 break; 2312 if (!path->locks[i]) 2313 break; 2314 if (!no_skips && path->slots[i] == 0) { 2315 skip_level = i + 1; 2316 continue; 2317 } 2318 if (!no_skips && path->keep_locks) { 2319 u32 nritems; 2320 t = path->nodes[i]; 2321 nritems = btrfs_header_nritems(t); 2322 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2323 skip_level = i + 1; 2324 continue; 2325 } 2326 } 2327 if (skip_level < i && i >= lowest_unlock) 2328 no_skips = 1; 2329 2330 t = path->nodes[i]; 2331 if (i >= lowest_unlock && i > skip_level) { 2332 btrfs_tree_unlock_rw(t, path->locks[i]); 2333 path->locks[i] = 0; 2334 if (write_lock_level && 2335 i > min_write_lock_level && 2336 i <= *write_lock_level) { 2337 *write_lock_level = i - 1; 2338 } 2339 } 2340 } 2341 } 2342 2343 /* 2344 * helper function for btrfs_search_slot. The goal is to find a block 2345 * in cache without setting the path to blocking. If we find the block 2346 * we return zero and the path is unchanged. 2347 * 2348 * If we can't find the block, we set the path blocking and do some 2349 * reada. -EAGAIN is returned and the search must be repeated. 2350 */ 2351 static int 2352 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2353 struct extent_buffer **eb_ret, int level, int slot, 2354 const struct btrfs_key *key) 2355 { 2356 struct btrfs_fs_info *fs_info = root->fs_info; 2357 u64 blocknr; 2358 u64 gen; 2359 struct extent_buffer *tmp; 2360 struct btrfs_key first_key; 2361 int ret; 2362 int parent_level; 2363 2364 blocknr = btrfs_node_blockptr(*eb_ret, slot); 2365 gen = btrfs_node_ptr_generation(*eb_ret, slot); 2366 parent_level = btrfs_header_level(*eb_ret); 2367 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 2368 2369 tmp = find_extent_buffer(fs_info, blocknr); 2370 if (tmp) { 2371 /* first we do an atomic uptodate check */ 2372 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2373 /* 2374 * Do extra check for first_key, eb can be stale due to 2375 * being cached, read from scrub, or have multiple 2376 * parents (shared tree blocks). 2377 */ 2378 if (btrfs_verify_level_key(tmp, 2379 parent_level - 1, &first_key, gen)) { 2380 free_extent_buffer(tmp); 2381 return -EUCLEAN; 2382 } 2383 *eb_ret = tmp; 2384 return 0; 2385 } 2386 2387 /* the pages were up to date, but we failed 2388 * the generation number check. Do a full 2389 * read for the generation number that is correct. 2390 * We must do this without dropping locks so 2391 * we can trust our generation number 2392 */ 2393 btrfs_set_path_blocking(p); 2394 2395 /* now we're allowed to do a blocking uptodate check */ 2396 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2397 if (!ret) { 2398 *eb_ret = tmp; 2399 return 0; 2400 } 2401 free_extent_buffer(tmp); 2402 btrfs_release_path(p); 2403 return -EIO; 2404 } 2405 2406 /* 2407 * reduce lock contention at high levels 2408 * of the btree by dropping locks before 2409 * we read. Don't release the lock on the current 2410 * level because we need to walk this node to figure 2411 * out which blocks to read. 2412 */ 2413 btrfs_unlock_up_safe(p, level + 1); 2414 btrfs_set_path_blocking(p); 2415 2416 if (p->reada != READA_NONE) 2417 reada_for_search(fs_info, p, level, slot, key->objectid); 2418 2419 ret = -EAGAIN; 2420 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2421 &first_key); 2422 if (!IS_ERR(tmp)) { 2423 /* 2424 * If the read above didn't mark this buffer up to date, 2425 * it will never end up being up to date. Set ret to EIO now 2426 * and give up so that our caller doesn't loop forever 2427 * on our EAGAINs. 2428 */ 2429 if (!extent_buffer_uptodate(tmp)) 2430 ret = -EIO; 2431 free_extent_buffer(tmp); 2432 } else { 2433 ret = PTR_ERR(tmp); 2434 } 2435 2436 btrfs_release_path(p); 2437 return ret; 2438 } 2439 2440 /* 2441 * helper function for btrfs_search_slot. This does all of the checks 2442 * for node-level blocks and does any balancing required based on 2443 * the ins_len. 2444 * 2445 * If no extra work was required, zero is returned. If we had to 2446 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2447 * start over 2448 */ 2449 static int 2450 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2451 struct btrfs_root *root, struct btrfs_path *p, 2452 struct extent_buffer *b, int level, int ins_len, 2453 int *write_lock_level) 2454 { 2455 struct btrfs_fs_info *fs_info = root->fs_info; 2456 int ret; 2457 2458 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2459 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2460 int sret; 2461 2462 if (*write_lock_level < level + 1) { 2463 *write_lock_level = level + 1; 2464 btrfs_release_path(p); 2465 goto again; 2466 } 2467 2468 btrfs_set_path_blocking(p); 2469 reada_for_balance(fs_info, p, level); 2470 sret = split_node(trans, root, p, level); 2471 2472 BUG_ON(sret > 0); 2473 if (sret) { 2474 ret = sret; 2475 goto done; 2476 } 2477 b = p->nodes[level]; 2478 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2479 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2480 int sret; 2481 2482 if (*write_lock_level < level + 1) { 2483 *write_lock_level = level + 1; 2484 btrfs_release_path(p); 2485 goto again; 2486 } 2487 2488 btrfs_set_path_blocking(p); 2489 reada_for_balance(fs_info, p, level); 2490 sret = balance_level(trans, root, p, level); 2491 2492 if (sret) { 2493 ret = sret; 2494 goto done; 2495 } 2496 b = p->nodes[level]; 2497 if (!b) { 2498 btrfs_release_path(p); 2499 goto again; 2500 } 2501 BUG_ON(btrfs_header_nritems(b) == 1); 2502 } 2503 return 0; 2504 2505 again: 2506 ret = -EAGAIN; 2507 done: 2508 return ret; 2509 } 2510 2511 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2512 u64 iobjectid, u64 ioff, u8 key_type, 2513 struct btrfs_key *found_key) 2514 { 2515 int ret; 2516 struct btrfs_key key; 2517 struct extent_buffer *eb; 2518 2519 ASSERT(path); 2520 ASSERT(found_key); 2521 2522 key.type = key_type; 2523 key.objectid = iobjectid; 2524 key.offset = ioff; 2525 2526 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2527 if (ret < 0) 2528 return ret; 2529 2530 eb = path->nodes[0]; 2531 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2532 ret = btrfs_next_leaf(fs_root, path); 2533 if (ret) 2534 return ret; 2535 eb = path->nodes[0]; 2536 } 2537 2538 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2539 if (found_key->type != key.type || 2540 found_key->objectid != key.objectid) 2541 return 1; 2542 2543 return 0; 2544 } 2545 2546 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2547 struct btrfs_path *p, 2548 int write_lock_level) 2549 { 2550 struct btrfs_fs_info *fs_info = root->fs_info; 2551 struct extent_buffer *b; 2552 int root_lock; 2553 int level = 0; 2554 2555 /* We try very hard to do read locks on the root */ 2556 root_lock = BTRFS_READ_LOCK; 2557 2558 if (p->search_commit_root) { 2559 /* 2560 * The commit roots are read only so we always do read locks, 2561 * and we always must hold the commit_root_sem when doing 2562 * searches on them, the only exception is send where we don't 2563 * want to block transaction commits for a long time, so 2564 * we need to clone the commit root in order to avoid races 2565 * with transaction commits that create a snapshot of one of 2566 * the roots used by a send operation. 2567 */ 2568 if (p->need_commit_sem) { 2569 down_read(&fs_info->commit_root_sem); 2570 b = btrfs_clone_extent_buffer(root->commit_root); 2571 up_read(&fs_info->commit_root_sem); 2572 if (!b) 2573 return ERR_PTR(-ENOMEM); 2574 2575 } else { 2576 b = root->commit_root; 2577 atomic_inc(&b->refs); 2578 } 2579 level = btrfs_header_level(b); 2580 /* 2581 * Ensure that all callers have set skip_locking when 2582 * p->search_commit_root = 1. 2583 */ 2584 ASSERT(p->skip_locking == 1); 2585 2586 goto out; 2587 } 2588 2589 if (p->skip_locking) { 2590 b = btrfs_root_node(root); 2591 level = btrfs_header_level(b); 2592 goto out; 2593 } 2594 2595 /* 2596 * If the level is set to maximum, we can skip trying to get the read 2597 * lock. 2598 */ 2599 if (write_lock_level < BTRFS_MAX_LEVEL) { 2600 /* 2601 * We don't know the level of the root node until we actually 2602 * have it read locked 2603 */ 2604 b = btrfs_read_lock_root_node(root); 2605 level = btrfs_header_level(b); 2606 if (level > write_lock_level) 2607 goto out; 2608 2609 /* Whoops, must trade for write lock */ 2610 btrfs_tree_read_unlock(b); 2611 free_extent_buffer(b); 2612 } 2613 2614 b = btrfs_lock_root_node(root); 2615 root_lock = BTRFS_WRITE_LOCK; 2616 2617 /* The level might have changed, check again */ 2618 level = btrfs_header_level(b); 2619 2620 out: 2621 p->nodes[level] = b; 2622 if (!p->skip_locking) 2623 p->locks[level] = root_lock; 2624 /* 2625 * Callers are responsible for dropping b's references. 2626 */ 2627 return b; 2628 } 2629 2630 2631 /* 2632 * btrfs_search_slot - look for a key in a tree and perform necessary 2633 * modifications to preserve tree invariants. 2634 * 2635 * @trans: Handle of transaction, used when modifying the tree 2636 * @p: Holds all btree nodes along the search path 2637 * @root: The root node of the tree 2638 * @key: The key we are looking for 2639 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2640 * deletions it's -1. 0 for plain searches 2641 * @cow: boolean should CoW operations be performed. Must always be 1 2642 * when modifying the tree. 2643 * 2644 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2645 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2646 * 2647 * If @key is found, 0 is returned and you can find the item in the leaf level 2648 * of the path (level 0) 2649 * 2650 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2651 * points to the slot where it should be inserted 2652 * 2653 * If an error is encountered while searching the tree a negative error number 2654 * is returned 2655 */ 2656 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2657 const struct btrfs_key *key, struct btrfs_path *p, 2658 int ins_len, int cow) 2659 { 2660 struct extent_buffer *b; 2661 int slot; 2662 int ret; 2663 int err; 2664 int level; 2665 int lowest_unlock = 1; 2666 /* everything at write_lock_level or lower must be write locked */ 2667 int write_lock_level = 0; 2668 u8 lowest_level = 0; 2669 int min_write_lock_level; 2670 int prev_cmp; 2671 2672 lowest_level = p->lowest_level; 2673 WARN_ON(lowest_level && ins_len > 0); 2674 WARN_ON(p->nodes[0] != NULL); 2675 BUG_ON(!cow && ins_len); 2676 2677 if (ins_len < 0) { 2678 lowest_unlock = 2; 2679 2680 /* when we are removing items, we might have to go up to level 2681 * two as we update tree pointers Make sure we keep write 2682 * for those levels as well 2683 */ 2684 write_lock_level = 2; 2685 } else if (ins_len > 0) { 2686 /* 2687 * for inserting items, make sure we have a write lock on 2688 * level 1 so we can update keys 2689 */ 2690 write_lock_level = 1; 2691 } 2692 2693 if (!cow) 2694 write_lock_level = -1; 2695 2696 if (cow && (p->keep_locks || p->lowest_level)) 2697 write_lock_level = BTRFS_MAX_LEVEL; 2698 2699 min_write_lock_level = write_lock_level; 2700 2701 again: 2702 prev_cmp = -1; 2703 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2704 if (IS_ERR(b)) { 2705 ret = PTR_ERR(b); 2706 goto done; 2707 } 2708 2709 while (b) { 2710 int dec = 0; 2711 2712 level = btrfs_header_level(b); 2713 2714 if (cow) { 2715 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2716 2717 /* 2718 * if we don't really need to cow this block 2719 * then we don't want to set the path blocking, 2720 * so we test it here 2721 */ 2722 if (!should_cow_block(trans, root, b)) { 2723 trans->dirty = true; 2724 goto cow_done; 2725 } 2726 2727 /* 2728 * must have write locks on this node and the 2729 * parent 2730 */ 2731 if (level > write_lock_level || 2732 (level + 1 > write_lock_level && 2733 level + 1 < BTRFS_MAX_LEVEL && 2734 p->nodes[level + 1])) { 2735 write_lock_level = level + 1; 2736 btrfs_release_path(p); 2737 goto again; 2738 } 2739 2740 btrfs_set_path_blocking(p); 2741 if (last_level) 2742 err = btrfs_cow_block(trans, root, b, NULL, 0, 2743 &b); 2744 else 2745 err = btrfs_cow_block(trans, root, b, 2746 p->nodes[level + 1], 2747 p->slots[level + 1], &b); 2748 if (err) { 2749 ret = err; 2750 goto done; 2751 } 2752 } 2753 cow_done: 2754 p->nodes[level] = b; 2755 /* 2756 * Leave path with blocking locks to avoid massive 2757 * lock context switch, this is made on purpose. 2758 */ 2759 2760 /* 2761 * we have a lock on b and as long as we aren't changing 2762 * the tree, there is no way to for the items in b to change. 2763 * It is safe to drop the lock on our parent before we 2764 * go through the expensive btree search on b. 2765 * 2766 * If we're inserting or deleting (ins_len != 0), then we might 2767 * be changing slot zero, which may require changing the parent. 2768 * So, we can't drop the lock until after we know which slot 2769 * we're operating on. 2770 */ 2771 if (!ins_len && !p->keep_locks) { 2772 int u = level + 1; 2773 2774 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2775 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2776 p->locks[u] = 0; 2777 } 2778 } 2779 2780 /* 2781 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 2782 * we can safely assume the target key will always be in slot 0 2783 * on lower levels due to the invariants BTRFS' btree provides, 2784 * namely that a btrfs_key_ptr entry always points to the 2785 * lowest key in the child node, thus we can skip searching 2786 * lower levels 2787 */ 2788 if (prev_cmp == 0) { 2789 slot = 0; 2790 ret = 0; 2791 } else { 2792 ret = btrfs_bin_search(b, key, &slot); 2793 prev_cmp = ret; 2794 if (ret < 0) 2795 goto done; 2796 } 2797 2798 if (level == 0) { 2799 p->slots[level] = slot; 2800 if (ins_len > 0 && 2801 btrfs_leaf_free_space(b) < ins_len) { 2802 if (write_lock_level < 1) { 2803 write_lock_level = 1; 2804 btrfs_release_path(p); 2805 goto again; 2806 } 2807 2808 btrfs_set_path_blocking(p); 2809 err = split_leaf(trans, root, key, 2810 p, ins_len, ret == 0); 2811 2812 BUG_ON(err > 0); 2813 if (err) { 2814 ret = err; 2815 goto done; 2816 } 2817 } 2818 if (!p->search_for_split) 2819 unlock_up(p, level, lowest_unlock, 2820 min_write_lock_level, NULL); 2821 goto done; 2822 } 2823 if (ret && slot > 0) { 2824 dec = 1; 2825 slot--; 2826 } 2827 p->slots[level] = slot; 2828 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2829 &write_lock_level); 2830 if (err == -EAGAIN) 2831 goto again; 2832 if (err) { 2833 ret = err; 2834 goto done; 2835 } 2836 b = p->nodes[level]; 2837 slot = p->slots[level]; 2838 2839 /* 2840 * Slot 0 is special, if we change the key we have to update 2841 * the parent pointer which means we must have a write lock on 2842 * the parent 2843 */ 2844 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2845 write_lock_level = level + 1; 2846 btrfs_release_path(p); 2847 goto again; 2848 } 2849 2850 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2851 &write_lock_level); 2852 2853 if (level == lowest_level) { 2854 if (dec) 2855 p->slots[level]++; 2856 goto done; 2857 } 2858 2859 err = read_block_for_search(root, p, &b, level, slot, key); 2860 if (err == -EAGAIN) 2861 goto again; 2862 if (err) { 2863 ret = err; 2864 goto done; 2865 } 2866 2867 if (!p->skip_locking) { 2868 level = btrfs_header_level(b); 2869 if (level <= write_lock_level) { 2870 if (!btrfs_try_tree_write_lock(b)) { 2871 btrfs_set_path_blocking(p); 2872 btrfs_tree_lock(b); 2873 } 2874 p->locks[level] = BTRFS_WRITE_LOCK; 2875 } else { 2876 if (!btrfs_tree_read_lock_atomic(b)) { 2877 btrfs_set_path_blocking(p); 2878 btrfs_tree_read_lock(b); 2879 } 2880 p->locks[level] = BTRFS_READ_LOCK; 2881 } 2882 p->nodes[level] = b; 2883 } 2884 } 2885 ret = 1; 2886 done: 2887 /* 2888 * we don't really know what they plan on doing with the path 2889 * from here on, so for now just mark it as blocking 2890 */ 2891 if (!p->leave_spinning) 2892 btrfs_set_path_blocking(p); 2893 if (ret < 0 && !p->skip_release_on_error) 2894 btrfs_release_path(p); 2895 return ret; 2896 } 2897 2898 /* 2899 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2900 * current state of the tree together with the operations recorded in the tree 2901 * modification log to search for the key in a previous version of this tree, as 2902 * denoted by the time_seq parameter. 2903 * 2904 * Naturally, there is no support for insert, delete or cow operations. 2905 * 2906 * The resulting path and return value will be set up as if we called 2907 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2908 */ 2909 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2910 struct btrfs_path *p, u64 time_seq) 2911 { 2912 struct btrfs_fs_info *fs_info = root->fs_info; 2913 struct extent_buffer *b; 2914 int slot; 2915 int ret; 2916 int err; 2917 int level; 2918 int lowest_unlock = 1; 2919 u8 lowest_level = 0; 2920 2921 lowest_level = p->lowest_level; 2922 WARN_ON(p->nodes[0] != NULL); 2923 2924 if (p->search_commit_root) { 2925 BUG_ON(time_seq); 2926 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2927 } 2928 2929 again: 2930 b = get_old_root(root, time_seq); 2931 if (!b) { 2932 ret = -EIO; 2933 goto done; 2934 } 2935 level = btrfs_header_level(b); 2936 p->locks[level] = BTRFS_READ_LOCK; 2937 2938 while (b) { 2939 int dec = 0; 2940 2941 level = btrfs_header_level(b); 2942 p->nodes[level] = b; 2943 2944 /* 2945 * we have a lock on b and as long as we aren't changing 2946 * the tree, there is no way to for the items in b to change. 2947 * It is safe to drop the lock on our parent before we 2948 * go through the expensive btree search on b. 2949 */ 2950 btrfs_unlock_up_safe(p, level + 1); 2951 2952 ret = btrfs_bin_search(b, key, &slot); 2953 if (ret < 0) 2954 goto done; 2955 2956 if (level == 0) { 2957 p->slots[level] = slot; 2958 unlock_up(p, level, lowest_unlock, 0, NULL); 2959 goto done; 2960 } 2961 2962 if (ret && slot > 0) { 2963 dec = 1; 2964 slot--; 2965 } 2966 p->slots[level] = slot; 2967 unlock_up(p, level, lowest_unlock, 0, NULL); 2968 2969 if (level == lowest_level) { 2970 if (dec) 2971 p->slots[level]++; 2972 goto done; 2973 } 2974 2975 err = read_block_for_search(root, p, &b, level, slot, key); 2976 if (err == -EAGAIN) 2977 goto again; 2978 if (err) { 2979 ret = err; 2980 goto done; 2981 } 2982 2983 level = btrfs_header_level(b); 2984 if (!btrfs_tree_read_lock_atomic(b)) { 2985 btrfs_set_path_blocking(p); 2986 btrfs_tree_read_lock(b); 2987 } 2988 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 2989 if (!b) { 2990 ret = -ENOMEM; 2991 goto done; 2992 } 2993 p->locks[level] = BTRFS_READ_LOCK; 2994 p->nodes[level] = b; 2995 } 2996 ret = 1; 2997 done: 2998 if (!p->leave_spinning) 2999 btrfs_set_path_blocking(p); 3000 if (ret < 0) 3001 btrfs_release_path(p); 3002 3003 return ret; 3004 } 3005 3006 /* 3007 * helper to use instead of search slot if no exact match is needed but 3008 * instead the next or previous item should be returned. 3009 * When find_higher is true, the next higher item is returned, the next lower 3010 * otherwise. 3011 * When return_any and find_higher are both true, and no higher item is found, 3012 * return the next lower instead. 3013 * When return_any is true and find_higher is false, and no lower item is found, 3014 * return the next higher instead. 3015 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3016 * < 0 on error 3017 */ 3018 int btrfs_search_slot_for_read(struct btrfs_root *root, 3019 const struct btrfs_key *key, 3020 struct btrfs_path *p, int find_higher, 3021 int return_any) 3022 { 3023 int ret; 3024 struct extent_buffer *leaf; 3025 3026 again: 3027 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3028 if (ret <= 0) 3029 return ret; 3030 /* 3031 * a return value of 1 means the path is at the position where the 3032 * item should be inserted. Normally this is the next bigger item, 3033 * but in case the previous item is the last in a leaf, path points 3034 * to the first free slot in the previous leaf, i.e. at an invalid 3035 * item. 3036 */ 3037 leaf = p->nodes[0]; 3038 3039 if (find_higher) { 3040 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3041 ret = btrfs_next_leaf(root, p); 3042 if (ret <= 0) 3043 return ret; 3044 if (!return_any) 3045 return 1; 3046 /* 3047 * no higher item found, return the next 3048 * lower instead 3049 */ 3050 return_any = 0; 3051 find_higher = 0; 3052 btrfs_release_path(p); 3053 goto again; 3054 } 3055 } else { 3056 if (p->slots[0] == 0) { 3057 ret = btrfs_prev_leaf(root, p); 3058 if (ret < 0) 3059 return ret; 3060 if (!ret) { 3061 leaf = p->nodes[0]; 3062 if (p->slots[0] == btrfs_header_nritems(leaf)) 3063 p->slots[0]--; 3064 return 0; 3065 } 3066 if (!return_any) 3067 return 1; 3068 /* 3069 * no lower item found, return the next 3070 * higher instead 3071 */ 3072 return_any = 0; 3073 find_higher = 1; 3074 btrfs_release_path(p); 3075 goto again; 3076 } else { 3077 --p->slots[0]; 3078 } 3079 } 3080 return 0; 3081 } 3082 3083 /* 3084 * adjust the pointers going up the tree, starting at level 3085 * making sure the right key of each node is points to 'key'. 3086 * This is used after shifting pointers to the left, so it stops 3087 * fixing up pointers when a given leaf/node is not in slot 0 of the 3088 * higher levels 3089 * 3090 */ 3091 static void fixup_low_keys(struct btrfs_path *path, 3092 struct btrfs_disk_key *key, int level) 3093 { 3094 int i; 3095 struct extent_buffer *t; 3096 int ret; 3097 3098 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3099 int tslot = path->slots[i]; 3100 3101 if (!path->nodes[i]) 3102 break; 3103 t = path->nodes[i]; 3104 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3105 GFP_ATOMIC); 3106 BUG_ON(ret < 0); 3107 btrfs_set_node_key(t, key, tslot); 3108 btrfs_mark_buffer_dirty(path->nodes[i]); 3109 if (tslot != 0) 3110 break; 3111 } 3112 } 3113 3114 /* 3115 * update item key. 3116 * 3117 * This function isn't completely safe. It's the caller's responsibility 3118 * that the new key won't break the order 3119 */ 3120 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3121 struct btrfs_path *path, 3122 const struct btrfs_key *new_key) 3123 { 3124 struct btrfs_disk_key disk_key; 3125 struct extent_buffer *eb; 3126 int slot; 3127 3128 eb = path->nodes[0]; 3129 slot = path->slots[0]; 3130 if (slot > 0) { 3131 btrfs_item_key(eb, &disk_key, slot - 1); 3132 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3133 btrfs_crit(fs_info, 3134 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3135 slot, btrfs_disk_key_objectid(&disk_key), 3136 btrfs_disk_key_type(&disk_key), 3137 btrfs_disk_key_offset(&disk_key), 3138 new_key->objectid, new_key->type, 3139 new_key->offset); 3140 btrfs_print_leaf(eb); 3141 BUG(); 3142 } 3143 } 3144 if (slot < btrfs_header_nritems(eb) - 1) { 3145 btrfs_item_key(eb, &disk_key, slot + 1); 3146 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3147 btrfs_crit(fs_info, 3148 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3149 slot, btrfs_disk_key_objectid(&disk_key), 3150 btrfs_disk_key_type(&disk_key), 3151 btrfs_disk_key_offset(&disk_key), 3152 new_key->objectid, new_key->type, 3153 new_key->offset); 3154 btrfs_print_leaf(eb); 3155 BUG(); 3156 } 3157 } 3158 3159 btrfs_cpu_key_to_disk(&disk_key, new_key); 3160 btrfs_set_item_key(eb, &disk_key, slot); 3161 btrfs_mark_buffer_dirty(eb); 3162 if (slot == 0) 3163 fixup_low_keys(path, &disk_key, 1); 3164 } 3165 3166 /* 3167 * try to push data from one node into the next node left in the 3168 * tree. 3169 * 3170 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3171 * error, and > 0 if there was no room in the left hand block. 3172 */ 3173 static int push_node_left(struct btrfs_trans_handle *trans, 3174 struct extent_buffer *dst, 3175 struct extent_buffer *src, int empty) 3176 { 3177 struct btrfs_fs_info *fs_info = trans->fs_info; 3178 int push_items = 0; 3179 int src_nritems; 3180 int dst_nritems; 3181 int ret = 0; 3182 3183 src_nritems = btrfs_header_nritems(src); 3184 dst_nritems = btrfs_header_nritems(dst); 3185 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3186 WARN_ON(btrfs_header_generation(src) != trans->transid); 3187 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3188 3189 if (!empty && src_nritems <= 8) 3190 return 1; 3191 3192 if (push_items <= 0) 3193 return 1; 3194 3195 if (empty) { 3196 push_items = min(src_nritems, push_items); 3197 if (push_items < src_nritems) { 3198 /* leave at least 8 pointers in the node if 3199 * we aren't going to empty it 3200 */ 3201 if (src_nritems - push_items < 8) { 3202 if (push_items <= 8) 3203 return 1; 3204 push_items -= 8; 3205 } 3206 } 3207 } else 3208 push_items = min(src_nritems - 8, push_items); 3209 3210 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3211 if (ret) { 3212 btrfs_abort_transaction(trans, ret); 3213 return ret; 3214 } 3215 copy_extent_buffer(dst, src, 3216 btrfs_node_key_ptr_offset(dst_nritems), 3217 btrfs_node_key_ptr_offset(0), 3218 push_items * sizeof(struct btrfs_key_ptr)); 3219 3220 if (push_items < src_nritems) { 3221 /* 3222 * Don't call tree_mod_log_insert_move here, key removal was 3223 * already fully logged by tree_mod_log_eb_copy above. 3224 */ 3225 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3226 btrfs_node_key_ptr_offset(push_items), 3227 (src_nritems - push_items) * 3228 sizeof(struct btrfs_key_ptr)); 3229 } 3230 btrfs_set_header_nritems(src, src_nritems - push_items); 3231 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3232 btrfs_mark_buffer_dirty(src); 3233 btrfs_mark_buffer_dirty(dst); 3234 3235 return ret; 3236 } 3237 3238 /* 3239 * try to push data from one node into the next node right in the 3240 * tree. 3241 * 3242 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3243 * error, and > 0 if there was no room in the right hand block. 3244 * 3245 * this will only push up to 1/2 the contents of the left node over 3246 */ 3247 static int balance_node_right(struct btrfs_trans_handle *trans, 3248 struct extent_buffer *dst, 3249 struct extent_buffer *src) 3250 { 3251 struct btrfs_fs_info *fs_info = trans->fs_info; 3252 int push_items = 0; 3253 int max_push; 3254 int src_nritems; 3255 int dst_nritems; 3256 int ret = 0; 3257 3258 WARN_ON(btrfs_header_generation(src) != trans->transid); 3259 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3260 3261 src_nritems = btrfs_header_nritems(src); 3262 dst_nritems = btrfs_header_nritems(dst); 3263 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3264 if (push_items <= 0) 3265 return 1; 3266 3267 if (src_nritems < 4) 3268 return 1; 3269 3270 max_push = src_nritems / 2 + 1; 3271 /* don't try to empty the node */ 3272 if (max_push >= src_nritems) 3273 return 1; 3274 3275 if (max_push < push_items) 3276 push_items = max_push; 3277 3278 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3279 BUG_ON(ret < 0); 3280 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3281 btrfs_node_key_ptr_offset(0), 3282 (dst_nritems) * 3283 sizeof(struct btrfs_key_ptr)); 3284 3285 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3286 push_items); 3287 if (ret) { 3288 btrfs_abort_transaction(trans, ret); 3289 return ret; 3290 } 3291 copy_extent_buffer(dst, src, 3292 btrfs_node_key_ptr_offset(0), 3293 btrfs_node_key_ptr_offset(src_nritems - push_items), 3294 push_items * sizeof(struct btrfs_key_ptr)); 3295 3296 btrfs_set_header_nritems(src, src_nritems - push_items); 3297 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3298 3299 btrfs_mark_buffer_dirty(src); 3300 btrfs_mark_buffer_dirty(dst); 3301 3302 return ret; 3303 } 3304 3305 /* 3306 * helper function to insert a new root level in the tree. 3307 * A new node is allocated, and a single item is inserted to 3308 * point to the existing root 3309 * 3310 * returns zero on success or < 0 on failure. 3311 */ 3312 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3313 struct btrfs_root *root, 3314 struct btrfs_path *path, int level) 3315 { 3316 struct btrfs_fs_info *fs_info = root->fs_info; 3317 u64 lower_gen; 3318 struct extent_buffer *lower; 3319 struct extent_buffer *c; 3320 struct extent_buffer *old; 3321 struct btrfs_disk_key lower_key; 3322 int ret; 3323 3324 BUG_ON(path->nodes[level]); 3325 BUG_ON(path->nodes[level-1] != root->node); 3326 3327 lower = path->nodes[level-1]; 3328 if (level == 1) 3329 btrfs_item_key(lower, &lower_key, 0); 3330 else 3331 btrfs_node_key(lower, &lower_key, 0); 3332 3333 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3334 root->node->start, 0); 3335 if (IS_ERR(c)) 3336 return PTR_ERR(c); 3337 3338 root_add_used(root, fs_info->nodesize); 3339 3340 btrfs_set_header_nritems(c, 1); 3341 btrfs_set_node_key(c, &lower_key, 0); 3342 btrfs_set_node_blockptr(c, 0, lower->start); 3343 lower_gen = btrfs_header_generation(lower); 3344 WARN_ON(lower_gen != trans->transid); 3345 3346 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3347 3348 btrfs_mark_buffer_dirty(c); 3349 3350 old = root->node; 3351 ret = tree_mod_log_insert_root(root->node, c, 0); 3352 BUG_ON(ret < 0); 3353 rcu_assign_pointer(root->node, c); 3354 3355 /* the super has an extra ref to root->node */ 3356 free_extent_buffer(old); 3357 3358 add_root_to_dirty_list(root); 3359 atomic_inc(&c->refs); 3360 path->nodes[level] = c; 3361 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3362 path->slots[level] = 0; 3363 return 0; 3364 } 3365 3366 /* 3367 * worker function to insert a single pointer in a node. 3368 * the node should have enough room for the pointer already 3369 * 3370 * slot and level indicate where you want the key to go, and 3371 * blocknr is the block the key points to. 3372 */ 3373 static void insert_ptr(struct btrfs_trans_handle *trans, 3374 struct btrfs_path *path, 3375 struct btrfs_disk_key *key, u64 bytenr, 3376 int slot, int level) 3377 { 3378 struct extent_buffer *lower; 3379 int nritems; 3380 int ret; 3381 3382 BUG_ON(!path->nodes[level]); 3383 btrfs_assert_tree_locked(path->nodes[level]); 3384 lower = path->nodes[level]; 3385 nritems = btrfs_header_nritems(lower); 3386 BUG_ON(slot > nritems); 3387 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3388 if (slot != nritems) { 3389 if (level) { 3390 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3391 nritems - slot); 3392 BUG_ON(ret < 0); 3393 } 3394 memmove_extent_buffer(lower, 3395 btrfs_node_key_ptr_offset(slot + 1), 3396 btrfs_node_key_ptr_offset(slot), 3397 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3398 } 3399 if (level) { 3400 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3401 GFP_NOFS); 3402 BUG_ON(ret < 0); 3403 } 3404 btrfs_set_node_key(lower, key, slot); 3405 btrfs_set_node_blockptr(lower, slot, bytenr); 3406 WARN_ON(trans->transid == 0); 3407 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3408 btrfs_set_header_nritems(lower, nritems + 1); 3409 btrfs_mark_buffer_dirty(lower); 3410 } 3411 3412 /* 3413 * split the node at the specified level in path in two. 3414 * The path is corrected to point to the appropriate node after the split 3415 * 3416 * Before splitting this tries to make some room in the node by pushing 3417 * left and right, if either one works, it returns right away. 3418 * 3419 * returns 0 on success and < 0 on failure 3420 */ 3421 static noinline int split_node(struct btrfs_trans_handle *trans, 3422 struct btrfs_root *root, 3423 struct btrfs_path *path, int level) 3424 { 3425 struct btrfs_fs_info *fs_info = root->fs_info; 3426 struct extent_buffer *c; 3427 struct extent_buffer *split; 3428 struct btrfs_disk_key disk_key; 3429 int mid; 3430 int ret; 3431 u32 c_nritems; 3432 3433 c = path->nodes[level]; 3434 WARN_ON(btrfs_header_generation(c) != trans->transid); 3435 if (c == root->node) { 3436 /* 3437 * trying to split the root, lets make a new one 3438 * 3439 * tree mod log: We don't log_removal old root in 3440 * insert_new_root, because that root buffer will be kept as a 3441 * normal node. We are going to log removal of half of the 3442 * elements below with tree_mod_log_eb_copy. We're holding a 3443 * tree lock on the buffer, which is why we cannot race with 3444 * other tree_mod_log users. 3445 */ 3446 ret = insert_new_root(trans, root, path, level + 1); 3447 if (ret) 3448 return ret; 3449 } else { 3450 ret = push_nodes_for_insert(trans, root, path, level); 3451 c = path->nodes[level]; 3452 if (!ret && btrfs_header_nritems(c) < 3453 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3454 return 0; 3455 if (ret < 0) 3456 return ret; 3457 } 3458 3459 c_nritems = btrfs_header_nritems(c); 3460 mid = (c_nritems + 1) / 2; 3461 btrfs_node_key(c, &disk_key, mid); 3462 3463 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3464 c->start, 0); 3465 if (IS_ERR(split)) 3466 return PTR_ERR(split); 3467 3468 root_add_used(root, fs_info->nodesize); 3469 ASSERT(btrfs_header_level(c) == level); 3470 3471 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3472 if (ret) { 3473 btrfs_abort_transaction(trans, ret); 3474 return ret; 3475 } 3476 copy_extent_buffer(split, c, 3477 btrfs_node_key_ptr_offset(0), 3478 btrfs_node_key_ptr_offset(mid), 3479 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3480 btrfs_set_header_nritems(split, c_nritems - mid); 3481 btrfs_set_header_nritems(c, mid); 3482 ret = 0; 3483 3484 btrfs_mark_buffer_dirty(c); 3485 btrfs_mark_buffer_dirty(split); 3486 3487 insert_ptr(trans, path, &disk_key, split->start, 3488 path->slots[level + 1] + 1, level + 1); 3489 3490 if (path->slots[level] >= mid) { 3491 path->slots[level] -= mid; 3492 btrfs_tree_unlock(c); 3493 free_extent_buffer(c); 3494 path->nodes[level] = split; 3495 path->slots[level + 1] += 1; 3496 } else { 3497 btrfs_tree_unlock(split); 3498 free_extent_buffer(split); 3499 } 3500 return ret; 3501 } 3502 3503 /* 3504 * how many bytes are required to store the items in a leaf. start 3505 * and nr indicate which items in the leaf to check. This totals up the 3506 * space used both by the item structs and the item data 3507 */ 3508 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3509 { 3510 struct btrfs_item *start_item; 3511 struct btrfs_item *end_item; 3512 int data_len; 3513 int nritems = btrfs_header_nritems(l); 3514 int end = min(nritems, start + nr) - 1; 3515 3516 if (!nr) 3517 return 0; 3518 start_item = btrfs_item_nr(start); 3519 end_item = btrfs_item_nr(end); 3520 data_len = btrfs_item_offset(l, start_item) + 3521 btrfs_item_size(l, start_item); 3522 data_len = data_len - btrfs_item_offset(l, end_item); 3523 data_len += sizeof(struct btrfs_item) * nr; 3524 WARN_ON(data_len < 0); 3525 return data_len; 3526 } 3527 3528 /* 3529 * The space between the end of the leaf items and 3530 * the start of the leaf data. IOW, how much room 3531 * the leaf has left for both items and data 3532 */ 3533 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3534 { 3535 struct btrfs_fs_info *fs_info = leaf->fs_info; 3536 int nritems = btrfs_header_nritems(leaf); 3537 int ret; 3538 3539 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3540 if (ret < 0) { 3541 btrfs_crit(fs_info, 3542 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3543 ret, 3544 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3545 leaf_space_used(leaf, 0, nritems), nritems); 3546 } 3547 return ret; 3548 } 3549 3550 /* 3551 * min slot controls the lowest index we're willing to push to the 3552 * right. We'll push up to and including min_slot, but no lower 3553 */ 3554 static noinline int __push_leaf_right(struct btrfs_path *path, 3555 int data_size, int empty, 3556 struct extent_buffer *right, 3557 int free_space, u32 left_nritems, 3558 u32 min_slot) 3559 { 3560 struct btrfs_fs_info *fs_info = right->fs_info; 3561 struct extent_buffer *left = path->nodes[0]; 3562 struct extent_buffer *upper = path->nodes[1]; 3563 struct btrfs_map_token token; 3564 struct btrfs_disk_key disk_key; 3565 int slot; 3566 u32 i; 3567 int push_space = 0; 3568 int push_items = 0; 3569 struct btrfs_item *item; 3570 u32 nr; 3571 u32 right_nritems; 3572 u32 data_end; 3573 u32 this_item_size; 3574 3575 if (empty) 3576 nr = 0; 3577 else 3578 nr = max_t(u32, 1, min_slot); 3579 3580 if (path->slots[0] >= left_nritems) 3581 push_space += data_size; 3582 3583 slot = path->slots[1]; 3584 i = left_nritems - 1; 3585 while (i >= nr) { 3586 item = btrfs_item_nr(i); 3587 3588 if (!empty && push_items > 0) { 3589 if (path->slots[0] > i) 3590 break; 3591 if (path->slots[0] == i) { 3592 int space = btrfs_leaf_free_space(left); 3593 3594 if (space + push_space * 2 > free_space) 3595 break; 3596 } 3597 } 3598 3599 if (path->slots[0] == i) 3600 push_space += data_size; 3601 3602 this_item_size = btrfs_item_size(left, item); 3603 if (this_item_size + sizeof(*item) + push_space > free_space) 3604 break; 3605 3606 push_items++; 3607 push_space += this_item_size + sizeof(*item); 3608 if (i == 0) 3609 break; 3610 i--; 3611 } 3612 3613 if (push_items == 0) 3614 goto out_unlock; 3615 3616 WARN_ON(!empty && push_items == left_nritems); 3617 3618 /* push left to right */ 3619 right_nritems = btrfs_header_nritems(right); 3620 3621 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3622 push_space -= leaf_data_end(left); 3623 3624 /* make room in the right data area */ 3625 data_end = leaf_data_end(right); 3626 memmove_extent_buffer(right, 3627 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3628 BTRFS_LEAF_DATA_OFFSET + data_end, 3629 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3630 3631 /* copy from the left data area */ 3632 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3633 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3634 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3635 push_space); 3636 3637 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3638 btrfs_item_nr_offset(0), 3639 right_nritems * sizeof(struct btrfs_item)); 3640 3641 /* copy the items from left to right */ 3642 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3643 btrfs_item_nr_offset(left_nritems - push_items), 3644 push_items * sizeof(struct btrfs_item)); 3645 3646 /* update the item pointers */ 3647 btrfs_init_map_token(&token, right); 3648 right_nritems += push_items; 3649 btrfs_set_header_nritems(right, right_nritems); 3650 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3651 for (i = 0; i < right_nritems; i++) { 3652 item = btrfs_item_nr(i); 3653 push_space -= btrfs_token_item_size(&token, item); 3654 btrfs_set_token_item_offset(&token, item, push_space); 3655 } 3656 3657 left_nritems -= push_items; 3658 btrfs_set_header_nritems(left, left_nritems); 3659 3660 if (left_nritems) 3661 btrfs_mark_buffer_dirty(left); 3662 else 3663 btrfs_clean_tree_block(left); 3664 3665 btrfs_mark_buffer_dirty(right); 3666 3667 btrfs_item_key(right, &disk_key, 0); 3668 btrfs_set_node_key(upper, &disk_key, slot + 1); 3669 btrfs_mark_buffer_dirty(upper); 3670 3671 /* then fixup the leaf pointer in the path */ 3672 if (path->slots[0] >= left_nritems) { 3673 path->slots[0] -= left_nritems; 3674 if (btrfs_header_nritems(path->nodes[0]) == 0) 3675 btrfs_clean_tree_block(path->nodes[0]); 3676 btrfs_tree_unlock(path->nodes[0]); 3677 free_extent_buffer(path->nodes[0]); 3678 path->nodes[0] = right; 3679 path->slots[1] += 1; 3680 } else { 3681 btrfs_tree_unlock(right); 3682 free_extent_buffer(right); 3683 } 3684 return 0; 3685 3686 out_unlock: 3687 btrfs_tree_unlock(right); 3688 free_extent_buffer(right); 3689 return 1; 3690 } 3691 3692 /* 3693 * push some data in the path leaf to the right, trying to free up at 3694 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3695 * 3696 * returns 1 if the push failed because the other node didn't have enough 3697 * room, 0 if everything worked out and < 0 if there were major errors. 3698 * 3699 * this will push starting from min_slot to the end of the leaf. It won't 3700 * push any slot lower than min_slot 3701 */ 3702 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3703 *root, struct btrfs_path *path, 3704 int min_data_size, int data_size, 3705 int empty, u32 min_slot) 3706 { 3707 struct extent_buffer *left = path->nodes[0]; 3708 struct extent_buffer *right; 3709 struct extent_buffer *upper; 3710 int slot; 3711 int free_space; 3712 u32 left_nritems; 3713 int ret; 3714 3715 if (!path->nodes[1]) 3716 return 1; 3717 3718 slot = path->slots[1]; 3719 upper = path->nodes[1]; 3720 if (slot >= btrfs_header_nritems(upper) - 1) 3721 return 1; 3722 3723 btrfs_assert_tree_locked(path->nodes[1]); 3724 3725 right = btrfs_read_node_slot(upper, slot + 1); 3726 /* 3727 * slot + 1 is not valid or we fail to read the right node, 3728 * no big deal, just return. 3729 */ 3730 if (IS_ERR(right)) 3731 return 1; 3732 3733 btrfs_tree_lock(right); 3734 btrfs_set_lock_blocking_write(right); 3735 3736 free_space = btrfs_leaf_free_space(right); 3737 if (free_space < data_size) 3738 goto out_unlock; 3739 3740 /* cow and double check */ 3741 ret = btrfs_cow_block(trans, root, right, upper, 3742 slot + 1, &right); 3743 if (ret) 3744 goto out_unlock; 3745 3746 free_space = btrfs_leaf_free_space(right); 3747 if (free_space < data_size) 3748 goto out_unlock; 3749 3750 left_nritems = btrfs_header_nritems(left); 3751 if (left_nritems == 0) 3752 goto out_unlock; 3753 3754 if (path->slots[0] == left_nritems && !empty) { 3755 /* Key greater than all keys in the leaf, right neighbor has 3756 * enough room for it and we're not emptying our leaf to delete 3757 * it, therefore use right neighbor to insert the new item and 3758 * no need to touch/dirty our left leaf. */ 3759 btrfs_tree_unlock(left); 3760 free_extent_buffer(left); 3761 path->nodes[0] = right; 3762 path->slots[0] = 0; 3763 path->slots[1]++; 3764 return 0; 3765 } 3766 3767 return __push_leaf_right(path, min_data_size, empty, 3768 right, free_space, left_nritems, min_slot); 3769 out_unlock: 3770 btrfs_tree_unlock(right); 3771 free_extent_buffer(right); 3772 return 1; 3773 } 3774 3775 /* 3776 * push some data in the path leaf to the left, trying to free up at 3777 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3778 * 3779 * max_slot can put a limit on how far into the leaf we'll push items. The 3780 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3781 * items 3782 */ 3783 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3784 int empty, struct extent_buffer *left, 3785 int free_space, u32 right_nritems, 3786 u32 max_slot) 3787 { 3788 struct btrfs_fs_info *fs_info = left->fs_info; 3789 struct btrfs_disk_key disk_key; 3790 struct extent_buffer *right = path->nodes[0]; 3791 int i; 3792 int push_space = 0; 3793 int push_items = 0; 3794 struct btrfs_item *item; 3795 u32 old_left_nritems; 3796 u32 nr; 3797 int ret = 0; 3798 u32 this_item_size; 3799 u32 old_left_item_size; 3800 struct btrfs_map_token token; 3801 3802 if (empty) 3803 nr = min(right_nritems, max_slot); 3804 else 3805 nr = min(right_nritems - 1, max_slot); 3806 3807 for (i = 0; i < nr; i++) { 3808 item = btrfs_item_nr(i); 3809 3810 if (!empty && push_items > 0) { 3811 if (path->slots[0] < i) 3812 break; 3813 if (path->slots[0] == i) { 3814 int space = btrfs_leaf_free_space(right); 3815 3816 if (space + push_space * 2 > free_space) 3817 break; 3818 } 3819 } 3820 3821 if (path->slots[0] == i) 3822 push_space += data_size; 3823 3824 this_item_size = btrfs_item_size(right, item); 3825 if (this_item_size + sizeof(*item) + push_space > free_space) 3826 break; 3827 3828 push_items++; 3829 push_space += this_item_size + sizeof(*item); 3830 } 3831 3832 if (push_items == 0) { 3833 ret = 1; 3834 goto out; 3835 } 3836 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3837 3838 /* push data from right to left */ 3839 copy_extent_buffer(left, right, 3840 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3841 btrfs_item_nr_offset(0), 3842 push_items * sizeof(struct btrfs_item)); 3843 3844 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3845 btrfs_item_offset_nr(right, push_items - 1); 3846 3847 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3848 leaf_data_end(left) - push_space, 3849 BTRFS_LEAF_DATA_OFFSET + 3850 btrfs_item_offset_nr(right, push_items - 1), 3851 push_space); 3852 old_left_nritems = btrfs_header_nritems(left); 3853 BUG_ON(old_left_nritems <= 0); 3854 3855 btrfs_init_map_token(&token, left); 3856 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3857 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3858 u32 ioff; 3859 3860 item = btrfs_item_nr(i); 3861 3862 ioff = btrfs_token_item_offset(&token, item); 3863 btrfs_set_token_item_offset(&token, item, 3864 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3865 } 3866 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3867 3868 /* fixup right node */ 3869 if (push_items > right_nritems) 3870 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3871 right_nritems); 3872 3873 if (push_items < right_nritems) { 3874 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3875 leaf_data_end(right); 3876 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3877 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3878 BTRFS_LEAF_DATA_OFFSET + 3879 leaf_data_end(right), push_space); 3880 3881 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3882 btrfs_item_nr_offset(push_items), 3883 (btrfs_header_nritems(right) - push_items) * 3884 sizeof(struct btrfs_item)); 3885 } 3886 3887 btrfs_init_map_token(&token, right); 3888 right_nritems -= push_items; 3889 btrfs_set_header_nritems(right, right_nritems); 3890 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3891 for (i = 0; i < right_nritems; i++) { 3892 item = btrfs_item_nr(i); 3893 3894 push_space = push_space - btrfs_token_item_size(&token, item); 3895 btrfs_set_token_item_offset(&token, item, push_space); 3896 } 3897 3898 btrfs_mark_buffer_dirty(left); 3899 if (right_nritems) 3900 btrfs_mark_buffer_dirty(right); 3901 else 3902 btrfs_clean_tree_block(right); 3903 3904 btrfs_item_key(right, &disk_key, 0); 3905 fixup_low_keys(path, &disk_key, 1); 3906 3907 /* then fixup the leaf pointer in the path */ 3908 if (path->slots[0] < push_items) { 3909 path->slots[0] += old_left_nritems; 3910 btrfs_tree_unlock(path->nodes[0]); 3911 free_extent_buffer(path->nodes[0]); 3912 path->nodes[0] = left; 3913 path->slots[1] -= 1; 3914 } else { 3915 btrfs_tree_unlock(left); 3916 free_extent_buffer(left); 3917 path->slots[0] -= push_items; 3918 } 3919 BUG_ON(path->slots[0] < 0); 3920 return ret; 3921 out: 3922 btrfs_tree_unlock(left); 3923 free_extent_buffer(left); 3924 return ret; 3925 } 3926 3927 /* 3928 * push some data in the path leaf to the left, trying to free up at 3929 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3930 * 3931 * max_slot can put a limit on how far into the leaf we'll push items. The 3932 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3933 * items 3934 */ 3935 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3936 *root, struct btrfs_path *path, int min_data_size, 3937 int data_size, int empty, u32 max_slot) 3938 { 3939 struct extent_buffer *right = path->nodes[0]; 3940 struct extent_buffer *left; 3941 int slot; 3942 int free_space; 3943 u32 right_nritems; 3944 int ret = 0; 3945 3946 slot = path->slots[1]; 3947 if (slot == 0) 3948 return 1; 3949 if (!path->nodes[1]) 3950 return 1; 3951 3952 right_nritems = btrfs_header_nritems(right); 3953 if (right_nritems == 0) 3954 return 1; 3955 3956 btrfs_assert_tree_locked(path->nodes[1]); 3957 3958 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3959 /* 3960 * slot - 1 is not valid or we fail to read the left node, 3961 * no big deal, just return. 3962 */ 3963 if (IS_ERR(left)) 3964 return 1; 3965 3966 btrfs_tree_lock(left); 3967 btrfs_set_lock_blocking_write(left); 3968 3969 free_space = btrfs_leaf_free_space(left); 3970 if (free_space < data_size) { 3971 ret = 1; 3972 goto out; 3973 } 3974 3975 /* cow and double check */ 3976 ret = btrfs_cow_block(trans, root, left, 3977 path->nodes[1], slot - 1, &left); 3978 if (ret) { 3979 /* we hit -ENOSPC, but it isn't fatal here */ 3980 if (ret == -ENOSPC) 3981 ret = 1; 3982 goto out; 3983 } 3984 3985 free_space = btrfs_leaf_free_space(left); 3986 if (free_space < data_size) { 3987 ret = 1; 3988 goto out; 3989 } 3990 3991 return __push_leaf_left(path, min_data_size, 3992 empty, left, free_space, right_nritems, 3993 max_slot); 3994 out: 3995 btrfs_tree_unlock(left); 3996 free_extent_buffer(left); 3997 return ret; 3998 } 3999 4000 /* 4001 * split the path's leaf in two, making sure there is at least data_size 4002 * available for the resulting leaf level of the path. 4003 */ 4004 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4005 struct btrfs_path *path, 4006 struct extent_buffer *l, 4007 struct extent_buffer *right, 4008 int slot, int mid, int nritems) 4009 { 4010 struct btrfs_fs_info *fs_info = trans->fs_info; 4011 int data_copy_size; 4012 int rt_data_off; 4013 int i; 4014 struct btrfs_disk_key disk_key; 4015 struct btrfs_map_token token; 4016 4017 nritems = nritems - mid; 4018 btrfs_set_header_nritems(right, nritems); 4019 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4020 4021 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4022 btrfs_item_nr_offset(mid), 4023 nritems * sizeof(struct btrfs_item)); 4024 4025 copy_extent_buffer(right, l, 4026 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4027 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4028 leaf_data_end(l), data_copy_size); 4029 4030 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4031 4032 btrfs_init_map_token(&token, right); 4033 for (i = 0; i < nritems; i++) { 4034 struct btrfs_item *item = btrfs_item_nr(i); 4035 u32 ioff; 4036 4037 ioff = btrfs_token_item_offset(&token, item); 4038 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 4039 } 4040 4041 btrfs_set_header_nritems(l, mid); 4042 btrfs_item_key(right, &disk_key, 0); 4043 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4044 4045 btrfs_mark_buffer_dirty(right); 4046 btrfs_mark_buffer_dirty(l); 4047 BUG_ON(path->slots[0] != slot); 4048 4049 if (mid <= slot) { 4050 btrfs_tree_unlock(path->nodes[0]); 4051 free_extent_buffer(path->nodes[0]); 4052 path->nodes[0] = right; 4053 path->slots[0] -= mid; 4054 path->slots[1] += 1; 4055 } else { 4056 btrfs_tree_unlock(right); 4057 free_extent_buffer(right); 4058 } 4059 4060 BUG_ON(path->slots[0] < 0); 4061 } 4062 4063 /* 4064 * double splits happen when we need to insert a big item in the middle 4065 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4066 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4067 * A B C 4068 * 4069 * We avoid this by trying to push the items on either side of our target 4070 * into the adjacent leaves. If all goes well we can avoid the double split 4071 * completely. 4072 */ 4073 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4074 struct btrfs_root *root, 4075 struct btrfs_path *path, 4076 int data_size) 4077 { 4078 int ret; 4079 int progress = 0; 4080 int slot; 4081 u32 nritems; 4082 int space_needed = data_size; 4083 4084 slot = path->slots[0]; 4085 if (slot < btrfs_header_nritems(path->nodes[0])) 4086 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4087 4088 /* 4089 * try to push all the items after our slot into the 4090 * right leaf 4091 */ 4092 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4093 if (ret < 0) 4094 return ret; 4095 4096 if (ret == 0) 4097 progress++; 4098 4099 nritems = btrfs_header_nritems(path->nodes[0]); 4100 /* 4101 * our goal is to get our slot at the start or end of a leaf. If 4102 * we've done so we're done 4103 */ 4104 if (path->slots[0] == 0 || path->slots[0] == nritems) 4105 return 0; 4106 4107 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4108 return 0; 4109 4110 /* try to push all the items before our slot into the next leaf */ 4111 slot = path->slots[0]; 4112 space_needed = data_size; 4113 if (slot > 0) 4114 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4115 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4116 if (ret < 0) 4117 return ret; 4118 4119 if (ret == 0) 4120 progress++; 4121 4122 if (progress) 4123 return 0; 4124 return 1; 4125 } 4126 4127 /* 4128 * split the path's leaf in two, making sure there is at least data_size 4129 * available for the resulting leaf level of the path. 4130 * 4131 * returns 0 if all went well and < 0 on failure. 4132 */ 4133 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4134 struct btrfs_root *root, 4135 const struct btrfs_key *ins_key, 4136 struct btrfs_path *path, int data_size, 4137 int extend) 4138 { 4139 struct btrfs_disk_key disk_key; 4140 struct extent_buffer *l; 4141 u32 nritems; 4142 int mid; 4143 int slot; 4144 struct extent_buffer *right; 4145 struct btrfs_fs_info *fs_info = root->fs_info; 4146 int ret = 0; 4147 int wret; 4148 int split; 4149 int num_doubles = 0; 4150 int tried_avoid_double = 0; 4151 4152 l = path->nodes[0]; 4153 slot = path->slots[0]; 4154 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4155 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4156 return -EOVERFLOW; 4157 4158 /* first try to make some room by pushing left and right */ 4159 if (data_size && path->nodes[1]) { 4160 int space_needed = data_size; 4161 4162 if (slot < btrfs_header_nritems(l)) 4163 space_needed -= btrfs_leaf_free_space(l); 4164 4165 wret = push_leaf_right(trans, root, path, space_needed, 4166 space_needed, 0, 0); 4167 if (wret < 0) 4168 return wret; 4169 if (wret) { 4170 space_needed = data_size; 4171 if (slot > 0) 4172 space_needed -= btrfs_leaf_free_space(l); 4173 wret = push_leaf_left(trans, root, path, space_needed, 4174 space_needed, 0, (u32)-1); 4175 if (wret < 0) 4176 return wret; 4177 } 4178 l = path->nodes[0]; 4179 4180 /* did the pushes work? */ 4181 if (btrfs_leaf_free_space(l) >= data_size) 4182 return 0; 4183 } 4184 4185 if (!path->nodes[1]) { 4186 ret = insert_new_root(trans, root, path, 1); 4187 if (ret) 4188 return ret; 4189 } 4190 again: 4191 split = 1; 4192 l = path->nodes[0]; 4193 slot = path->slots[0]; 4194 nritems = btrfs_header_nritems(l); 4195 mid = (nritems + 1) / 2; 4196 4197 if (mid <= slot) { 4198 if (nritems == 1 || 4199 leaf_space_used(l, mid, nritems - mid) + data_size > 4200 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4201 if (slot >= nritems) { 4202 split = 0; 4203 } else { 4204 mid = slot; 4205 if (mid != nritems && 4206 leaf_space_used(l, mid, nritems - mid) + 4207 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4208 if (data_size && !tried_avoid_double) 4209 goto push_for_double; 4210 split = 2; 4211 } 4212 } 4213 } 4214 } else { 4215 if (leaf_space_used(l, 0, mid) + data_size > 4216 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4217 if (!extend && data_size && slot == 0) { 4218 split = 0; 4219 } else if ((extend || !data_size) && slot == 0) { 4220 mid = 1; 4221 } else { 4222 mid = slot; 4223 if (mid != nritems && 4224 leaf_space_used(l, mid, nritems - mid) + 4225 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4226 if (data_size && !tried_avoid_double) 4227 goto push_for_double; 4228 split = 2; 4229 } 4230 } 4231 } 4232 } 4233 4234 if (split == 0) 4235 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4236 else 4237 btrfs_item_key(l, &disk_key, mid); 4238 4239 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4240 l->start, 0); 4241 if (IS_ERR(right)) 4242 return PTR_ERR(right); 4243 4244 root_add_used(root, fs_info->nodesize); 4245 4246 if (split == 0) { 4247 if (mid <= slot) { 4248 btrfs_set_header_nritems(right, 0); 4249 insert_ptr(trans, path, &disk_key, 4250 right->start, path->slots[1] + 1, 1); 4251 btrfs_tree_unlock(path->nodes[0]); 4252 free_extent_buffer(path->nodes[0]); 4253 path->nodes[0] = right; 4254 path->slots[0] = 0; 4255 path->slots[1] += 1; 4256 } else { 4257 btrfs_set_header_nritems(right, 0); 4258 insert_ptr(trans, path, &disk_key, 4259 right->start, path->slots[1], 1); 4260 btrfs_tree_unlock(path->nodes[0]); 4261 free_extent_buffer(path->nodes[0]); 4262 path->nodes[0] = right; 4263 path->slots[0] = 0; 4264 if (path->slots[1] == 0) 4265 fixup_low_keys(path, &disk_key, 1); 4266 } 4267 /* 4268 * We create a new leaf 'right' for the required ins_len and 4269 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4270 * the content of ins_len to 'right'. 4271 */ 4272 return ret; 4273 } 4274 4275 copy_for_split(trans, path, l, right, slot, mid, nritems); 4276 4277 if (split == 2) { 4278 BUG_ON(num_doubles != 0); 4279 num_doubles++; 4280 goto again; 4281 } 4282 4283 return 0; 4284 4285 push_for_double: 4286 push_for_double_split(trans, root, path, data_size); 4287 tried_avoid_double = 1; 4288 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4289 return 0; 4290 goto again; 4291 } 4292 4293 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4294 struct btrfs_root *root, 4295 struct btrfs_path *path, int ins_len) 4296 { 4297 struct btrfs_key key; 4298 struct extent_buffer *leaf; 4299 struct btrfs_file_extent_item *fi; 4300 u64 extent_len = 0; 4301 u32 item_size; 4302 int ret; 4303 4304 leaf = path->nodes[0]; 4305 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4306 4307 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4308 key.type != BTRFS_EXTENT_CSUM_KEY); 4309 4310 if (btrfs_leaf_free_space(leaf) >= ins_len) 4311 return 0; 4312 4313 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4314 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4315 fi = btrfs_item_ptr(leaf, path->slots[0], 4316 struct btrfs_file_extent_item); 4317 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4318 } 4319 btrfs_release_path(path); 4320 4321 path->keep_locks = 1; 4322 path->search_for_split = 1; 4323 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4324 path->search_for_split = 0; 4325 if (ret > 0) 4326 ret = -EAGAIN; 4327 if (ret < 0) 4328 goto err; 4329 4330 ret = -EAGAIN; 4331 leaf = path->nodes[0]; 4332 /* if our item isn't there, return now */ 4333 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4334 goto err; 4335 4336 /* the leaf has changed, it now has room. return now */ 4337 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4338 goto err; 4339 4340 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4341 fi = btrfs_item_ptr(leaf, path->slots[0], 4342 struct btrfs_file_extent_item); 4343 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4344 goto err; 4345 } 4346 4347 btrfs_set_path_blocking(path); 4348 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4349 if (ret) 4350 goto err; 4351 4352 path->keep_locks = 0; 4353 btrfs_unlock_up_safe(path, 1); 4354 return 0; 4355 err: 4356 path->keep_locks = 0; 4357 return ret; 4358 } 4359 4360 static noinline int split_item(struct btrfs_path *path, 4361 const struct btrfs_key *new_key, 4362 unsigned long split_offset) 4363 { 4364 struct extent_buffer *leaf; 4365 struct btrfs_item *item; 4366 struct btrfs_item *new_item; 4367 int slot; 4368 char *buf; 4369 u32 nritems; 4370 u32 item_size; 4371 u32 orig_offset; 4372 struct btrfs_disk_key disk_key; 4373 4374 leaf = path->nodes[0]; 4375 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4376 4377 btrfs_set_path_blocking(path); 4378 4379 item = btrfs_item_nr(path->slots[0]); 4380 orig_offset = btrfs_item_offset(leaf, item); 4381 item_size = btrfs_item_size(leaf, item); 4382 4383 buf = kmalloc(item_size, GFP_NOFS); 4384 if (!buf) 4385 return -ENOMEM; 4386 4387 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4388 path->slots[0]), item_size); 4389 4390 slot = path->slots[0] + 1; 4391 nritems = btrfs_header_nritems(leaf); 4392 if (slot != nritems) { 4393 /* shift the items */ 4394 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4395 btrfs_item_nr_offset(slot), 4396 (nritems - slot) * sizeof(struct btrfs_item)); 4397 } 4398 4399 btrfs_cpu_key_to_disk(&disk_key, new_key); 4400 btrfs_set_item_key(leaf, &disk_key, slot); 4401 4402 new_item = btrfs_item_nr(slot); 4403 4404 btrfs_set_item_offset(leaf, new_item, orig_offset); 4405 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4406 4407 btrfs_set_item_offset(leaf, item, 4408 orig_offset + item_size - split_offset); 4409 btrfs_set_item_size(leaf, item, split_offset); 4410 4411 btrfs_set_header_nritems(leaf, nritems + 1); 4412 4413 /* write the data for the start of the original item */ 4414 write_extent_buffer(leaf, buf, 4415 btrfs_item_ptr_offset(leaf, path->slots[0]), 4416 split_offset); 4417 4418 /* write the data for the new item */ 4419 write_extent_buffer(leaf, buf + split_offset, 4420 btrfs_item_ptr_offset(leaf, slot), 4421 item_size - split_offset); 4422 btrfs_mark_buffer_dirty(leaf); 4423 4424 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4425 kfree(buf); 4426 return 0; 4427 } 4428 4429 /* 4430 * This function splits a single item into two items, 4431 * giving 'new_key' to the new item and splitting the 4432 * old one at split_offset (from the start of the item). 4433 * 4434 * The path may be released by this operation. After 4435 * the split, the path is pointing to the old item. The 4436 * new item is going to be in the same node as the old one. 4437 * 4438 * Note, the item being split must be smaller enough to live alone on 4439 * a tree block with room for one extra struct btrfs_item 4440 * 4441 * This allows us to split the item in place, keeping a lock on the 4442 * leaf the entire time. 4443 */ 4444 int btrfs_split_item(struct btrfs_trans_handle *trans, 4445 struct btrfs_root *root, 4446 struct btrfs_path *path, 4447 const struct btrfs_key *new_key, 4448 unsigned long split_offset) 4449 { 4450 int ret; 4451 ret = setup_leaf_for_split(trans, root, path, 4452 sizeof(struct btrfs_item)); 4453 if (ret) 4454 return ret; 4455 4456 ret = split_item(path, new_key, split_offset); 4457 return ret; 4458 } 4459 4460 /* 4461 * This function duplicate a item, giving 'new_key' to the new item. 4462 * It guarantees both items live in the same tree leaf and the new item 4463 * is contiguous with the original item. 4464 * 4465 * This allows us to split file extent in place, keeping a lock on the 4466 * leaf the entire time. 4467 */ 4468 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4469 struct btrfs_root *root, 4470 struct btrfs_path *path, 4471 const struct btrfs_key *new_key) 4472 { 4473 struct extent_buffer *leaf; 4474 int ret; 4475 u32 item_size; 4476 4477 leaf = path->nodes[0]; 4478 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4479 ret = setup_leaf_for_split(trans, root, path, 4480 item_size + sizeof(struct btrfs_item)); 4481 if (ret) 4482 return ret; 4483 4484 path->slots[0]++; 4485 setup_items_for_insert(root, path, new_key, &item_size, 4486 item_size, item_size + 4487 sizeof(struct btrfs_item), 1); 4488 leaf = path->nodes[0]; 4489 memcpy_extent_buffer(leaf, 4490 btrfs_item_ptr_offset(leaf, path->slots[0]), 4491 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4492 item_size); 4493 return 0; 4494 } 4495 4496 /* 4497 * make the item pointed to by the path smaller. new_size indicates 4498 * how small to make it, and from_end tells us if we just chop bytes 4499 * off the end of the item or if we shift the item to chop bytes off 4500 * the front. 4501 */ 4502 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4503 { 4504 int slot; 4505 struct extent_buffer *leaf; 4506 struct btrfs_item *item; 4507 u32 nritems; 4508 unsigned int data_end; 4509 unsigned int old_data_start; 4510 unsigned int old_size; 4511 unsigned int size_diff; 4512 int i; 4513 struct btrfs_map_token token; 4514 4515 leaf = path->nodes[0]; 4516 slot = path->slots[0]; 4517 4518 old_size = btrfs_item_size_nr(leaf, slot); 4519 if (old_size == new_size) 4520 return; 4521 4522 nritems = btrfs_header_nritems(leaf); 4523 data_end = leaf_data_end(leaf); 4524 4525 old_data_start = btrfs_item_offset_nr(leaf, slot); 4526 4527 size_diff = old_size - new_size; 4528 4529 BUG_ON(slot < 0); 4530 BUG_ON(slot >= nritems); 4531 4532 /* 4533 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4534 */ 4535 /* first correct the data pointers */ 4536 btrfs_init_map_token(&token, leaf); 4537 for (i = slot; i < nritems; i++) { 4538 u32 ioff; 4539 item = btrfs_item_nr(i); 4540 4541 ioff = btrfs_token_item_offset(&token, item); 4542 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 4543 } 4544 4545 /* shift the data */ 4546 if (from_end) { 4547 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4548 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4549 data_end, old_data_start + new_size - data_end); 4550 } else { 4551 struct btrfs_disk_key disk_key; 4552 u64 offset; 4553 4554 btrfs_item_key(leaf, &disk_key, slot); 4555 4556 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4557 unsigned long ptr; 4558 struct btrfs_file_extent_item *fi; 4559 4560 fi = btrfs_item_ptr(leaf, slot, 4561 struct btrfs_file_extent_item); 4562 fi = (struct btrfs_file_extent_item *)( 4563 (unsigned long)fi - size_diff); 4564 4565 if (btrfs_file_extent_type(leaf, fi) == 4566 BTRFS_FILE_EXTENT_INLINE) { 4567 ptr = btrfs_item_ptr_offset(leaf, slot); 4568 memmove_extent_buffer(leaf, ptr, 4569 (unsigned long)fi, 4570 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4571 } 4572 } 4573 4574 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4575 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4576 data_end, old_data_start - data_end); 4577 4578 offset = btrfs_disk_key_offset(&disk_key); 4579 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4580 btrfs_set_item_key(leaf, &disk_key, slot); 4581 if (slot == 0) 4582 fixup_low_keys(path, &disk_key, 1); 4583 } 4584 4585 item = btrfs_item_nr(slot); 4586 btrfs_set_item_size(leaf, item, new_size); 4587 btrfs_mark_buffer_dirty(leaf); 4588 4589 if (btrfs_leaf_free_space(leaf) < 0) { 4590 btrfs_print_leaf(leaf); 4591 BUG(); 4592 } 4593 } 4594 4595 /* 4596 * make the item pointed to by the path bigger, data_size is the added size. 4597 */ 4598 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4599 { 4600 int slot; 4601 struct extent_buffer *leaf; 4602 struct btrfs_item *item; 4603 u32 nritems; 4604 unsigned int data_end; 4605 unsigned int old_data; 4606 unsigned int old_size; 4607 int i; 4608 struct btrfs_map_token token; 4609 4610 leaf = path->nodes[0]; 4611 4612 nritems = btrfs_header_nritems(leaf); 4613 data_end = leaf_data_end(leaf); 4614 4615 if (btrfs_leaf_free_space(leaf) < data_size) { 4616 btrfs_print_leaf(leaf); 4617 BUG(); 4618 } 4619 slot = path->slots[0]; 4620 old_data = btrfs_item_end_nr(leaf, slot); 4621 4622 BUG_ON(slot < 0); 4623 if (slot >= nritems) { 4624 btrfs_print_leaf(leaf); 4625 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4626 slot, nritems); 4627 BUG(); 4628 } 4629 4630 /* 4631 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4632 */ 4633 /* first correct the data pointers */ 4634 btrfs_init_map_token(&token, leaf); 4635 for (i = slot; i < nritems; i++) { 4636 u32 ioff; 4637 item = btrfs_item_nr(i); 4638 4639 ioff = btrfs_token_item_offset(&token, item); 4640 btrfs_set_token_item_offset(&token, item, ioff - data_size); 4641 } 4642 4643 /* shift the data */ 4644 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4645 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4646 data_end, old_data - data_end); 4647 4648 data_end = old_data; 4649 old_size = btrfs_item_size_nr(leaf, slot); 4650 item = btrfs_item_nr(slot); 4651 btrfs_set_item_size(leaf, item, old_size + data_size); 4652 btrfs_mark_buffer_dirty(leaf); 4653 4654 if (btrfs_leaf_free_space(leaf) < 0) { 4655 btrfs_print_leaf(leaf); 4656 BUG(); 4657 } 4658 } 4659 4660 /* 4661 * this is a helper for btrfs_insert_empty_items, the main goal here is 4662 * to save stack depth by doing the bulk of the work in a function 4663 * that doesn't call btrfs_search_slot 4664 */ 4665 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4666 const struct btrfs_key *cpu_key, u32 *data_size, 4667 u32 total_data, u32 total_size, int nr) 4668 { 4669 struct btrfs_fs_info *fs_info = root->fs_info; 4670 struct btrfs_item *item; 4671 int i; 4672 u32 nritems; 4673 unsigned int data_end; 4674 struct btrfs_disk_key disk_key; 4675 struct extent_buffer *leaf; 4676 int slot; 4677 struct btrfs_map_token token; 4678 4679 if (path->slots[0] == 0) { 4680 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4681 fixup_low_keys(path, &disk_key, 1); 4682 } 4683 btrfs_unlock_up_safe(path, 1); 4684 4685 leaf = path->nodes[0]; 4686 slot = path->slots[0]; 4687 4688 nritems = btrfs_header_nritems(leaf); 4689 data_end = leaf_data_end(leaf); 4690 4691 if (btrfs_leaf_free_space(leaf) < total_size) { 4692 btrfs_print_leaf(leaf); 4693 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4694 total_size, btrfs_leaf_free_space(leaf)); 4695 BUG(); 4696 } 4697 4698 btrfs_init_map_token(&token, leaf); 4699 if (slot != nritems) { 4700 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4701 4702 if (old_data < data_end) { 4703 btrfs_print_leaf(leaf); 4704 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4705 slot, old_data, data_end); 4706 BUG(); 4707 } 4708 /* 4709 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4710 */ 4711 /* first correct the data pointers */ 4712 for (i = slot; i < nritems; i++) { 4713 u32 ioff; 4714 4715 item = btrfs_item_nr(i); 4716 ioff = btrfs_token_item_offset(&token, item); 4717 btrfs_set_token_item_offset(&token, item, 4718 ioff - total_data); 4719 } 4720 /* shift the items */ 4721 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4722 btrfs_item_nr_offset(slot), 4723 (nritems - slot) * sizeof(struct btrfs_item)); 4724 4725 /* shift the data */ 4726 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4727 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4728 data_end, old_data - data_end); 4729 data_end = old_data; 4730 } 4731 4732 /* setup the item for the new data */ 4733 for (i = 0; i < nr; i++) { 4734 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4735 btrfs_set_item_key(leaf, &disk_key, slot + i); 4736 item = btrfs_item_nr(slot + i); 4737 btrfs_set_token_item_offset(&token, item, data_end - data_size[i]); 4738 data_end -= data_size[i]; 4739 btrfs_set_token_item_size(&token, item, data_size[i]); 4740 } 4741 4742 btrfs_set_header_nritems(leaf, nritems + nr); 4743 btrfs_mark_buffer_dirty(leaf); 4744 4745 if (btrfs_leaf_free_space(leaf) < 0) { 4746 btrfs_print_leaf(leaf); 4747 BUG(); 4748 } 4749 } 4750 4751 /* 4752 * Given a key and some data, insert items into the tree. 4753 * This does all the path init required, making room in the tree if needed. 4754 */ 4755 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4756 struct btrfs_root *root, 4757 struct btrfs_path *path, 4758 const struct btrfs_key *cpu_key, u32 *data_size, 4759 int nr) 4760 { 4761 int ret = 0; 4762 int slot; 4763 int i; 4764 u32 total_size = 0; 4765 u32 total_data = 0; 4766 4767 for (i = 0; i < nr; i++) 4768 total_data += data_size[i]; 4769 4770 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4771 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4772 if (ret == 0) 4773 return -EEXIST; 4774 if (ret < 0) 4775 return ret; 4776 4777 slot = path->slots[0]; 4778 BUG_ON(slot < 0); 4779 4780 setup_items_for_insert(root, path, cpu_key, data_size, 4781 total_data, total_size, nr); 4782 return 0; 4783 } 4784 4785 /* 4786 * Given a key and some data, insert an item into the tree. 4787 * This does all the path init required, making room in the tree if needed. 4788 */ 4789 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4790 const struct btrfs_key *cpu_key, void *data, 4791 u32 data_size) 4792 { 4793 int ret = 0; 4794 struct btrfs_path *path; 4795 struct extent_buffer *leaf; 4796 unsigned long ptr; 4797 4798 path = btrfs_alloc_path(); 4799 if (!path) 4800 return -ENOMEM; 4801 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4802 if (!ret) { 4803 leaf = path->nodes[0]; 4804 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4805 write_extent_buffer(leaf, data, ptr, data_size); 4806 btrfs_mark_buffer_dirty(leaf); 4807 } 4808 btrfs_free_path(path); 4809 return ret; 4810 } 4811 4812 /* 4813 * delete the pointer from a given node. 4814 * 4815 * the tree should have been previously balanced so the deletion does not 4816 * empty a node. 4817 */ 4818 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4819 int level, int slot) 4820 { 4821 struct extent_buffer *parent = path->nodes[level]; 4822 u32 nritems; 4823 int ret; 4824 4825 nritems = btrfs_header_nritems(parent); 4826 if (slot != nritems - 1) { 4827 if (level) { 4828 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4829 nritems - slot - 1); 4830 BUG_ON(ret < 0); 4831 } 4832 memmove_extent_buffer(parent, 4833 btrfs_node_key_ptr_offset(slot), 4834 btrfs_node_key_ptr_offset(slot + 1), 4835 sizeof(struct btrfs_key_ptr) * 4836 (nritems - slot - 1)); 4837 } else if (level) { 4838 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4839 GFP_NOFS); 4840 BUG_ON(ret < 0); 4841 } 4842 4843 nritems--; 4844 btrfs_set_header_nritems(parent, nritems); 4845 if (nritems == 0 && parent == root->node) { 4846 BUG_ON(btrfs_header_level(root->node) != 1); 4847 /* just turn the root into a leaf and break */ 4848 btrfs_set_header_level(root->node, 0); 4849 } else if (slot == 0) { 4850 struct btrfs_disk_key disk_key; 4851 4852 btrfs_node_key(parent, &disk_key, 0); 4853 fixup_low_keys(path, &disk_key, level + 1); 4854 } 4855 btrfs_mark_buffer_dirty(parent); 4856 } 4857 4858 /* 4859 * a helper function to delete the leaf pointed to by path->slots[1] and 4860 * path->nodes[1]. 4861 * 4862 * This deletes the pointer in path->nodes[1] and frees the leaf 4863 * block extent. zero is returned if it all worked out, < 0 otherwise. 4864 * 4865 * The path must have already been setup for deleting the leaf, including 4866 * all the proper balancing. path->nodes[1] must be locked. 4867 */ 4868 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4869 struct btrfs_root *root, 4870 struct btrfs_path *path, 4871 struct extent_buffer *leaf) 4872 { 4873 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4874 del_ptr(root, path, 1, path->slots[1]); 4875 4876 /* 4877 * btrfs_free_extent is expensive, we want to make sure we 4878 * aren't holding any locks when we call it 4879 */ 4880 btrfs_unlock_up_safe(path, 0); 4881 4882 root_sub_used(root, leaf->len); 4883 4884 atomic_inc(&leaf->refs); 4885 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4886 free_extent_buffer_stale(leaf); 4887 } 4888 /* 4889 * delete the item at the leaf level in path. If that empties 4890 * the leaf, remove it from the tree 4891 */ 4892 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4893 struct btrfs_path *path, int slot, int nr) 4894 { 4895 struct btrfs_fs_info *fs_info = root->fs_info; 4896 struct extent_buffer *leaf; 4897 struct btrfs_item *item; 4898 u32 last_off; 4899 u32 dsize = 0; 4900 int ret = 0; 4901 int wret; 4902 int i; 4903 u32 nritems; 4904 4905 leaf = path->nodes[0]; 4906 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4907 4908 for (i = 0; i < nr; i++) 4909 dsize += btrfs_item_size_nr(leaf, slot + i); 4910 4911 nritems = btrfs_header_nritems(leaf); 4912 4913 if (slot + nr != nritems) { 4914 int data_end = leaf_data_end(leaf); 4915 struct btrfs_map_token token; 4916 4917 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4918 data_end + dsize, 4919 BTRFS_LEAF_DATA_OFFSET + data_end, 4920 last_off - data_end); 4921 4922 btrfs_init_map_token(&token, leaf); 4923 for (i = slot + nr; i < nritems; i++) { 4924 u32 ioff; 4925 4926 item = btrfs_item_nr(i); 4927 ioff = btrfs_token_item_offset(&token, item); 4928 btrfs_set_token_item_offset(&token, item, ioff + dsize); 4929 } 4930 4931 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4932 btrfs_item_nr_offset(slot + nr), 4933 sizeof(struct btrfs_item) * 4934 (nritems - slot - nr)); 4935 } 4936 btrfs_set_header_nritems(leaf, nritems - nr); 4937 nritems -= nr; 4938 4939 /* delete the leaf if we've emptied it */ 4940 if (nritems == 0) { 4941 if (leaf == root->node) { 4942 btrfs_set_header_level(leaf, 0); 4943 } else { 4944 btrfs_set_path_blocking(path); 4945 btrfs_clean_tree_block(leaf); 4946 btrfs_del_leaf(trans, root, path, leaf); 4947 } 4948 } else { 4949 int used = leaf_space_used(leaf, 0, nritems); 4950 if (slot == 0) { 4951 struct btrfs_disk_key disk_key; 4952 4953 btrfs_item_key(leaf, &disk_key, 0); 4954 fixup_low_keys(path, &disk_key, 1); 4955 } 4956 4957 /* delete the leaf if it is mostly empty */ 4958 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4959 /* push_leaf_left fixes the path. 4960 * make sure the path still points to our leaf 4961 * for possible call to del_ptr below 4962 */ 4963 slot = path->slots[1]; 4964 atomic_inc(&leaf->refs); 4965 4966 btrfs_set_path_blocking(path); 4967 wret = push_leaf_left(trans, root, path, 1, 1, 4968 1, (u32)-1); 4969 if (wret < 0 && wret != -ENOSPC) 4970 ret = wret; 4971 4972 if (path->nodes[0] == leaf && 4973 btrfs_header_nritems(leaf)) { 4974 wret = push_leaf_right(trans, root, path, 1, 4975 1, 1, 0); 4976 if (wret < 0 && wret != -ENOSPC) 4977 ret = wret; 4978 } 4979 4980 if (btrfs_header_nritems(leaf) == 0) { 4981 path->slots[1] = slot; 4982 btrfs_del_leaf(trans, root, path, leaf); 4983 free_extent_buffer(leaf); 4984 ret = 0; 4985 } else { 4986 /* if we're still in the path, make sure 4987 * we're dirty. Otherwise, one of the 4988 * push_leaf functions must have already 4989 * dirtied this buffer 4990 */ 4991 if (path->nodes[0] == leaf) 4992 btrfs_mark_buffer_dirty(leaf); 4993 free_extent_buffer(leaf); 4994 } 4995 } else { 4996 btrfs_mark_buffer_dirty(leaf); 4997 } 4998 } 4999 return ret; 5000 } 5001 5002 /* 5003 * search the tree again to find a leaf with lesser keys 5004 * returns 0 if it found something or 1 if there are no lesser leaves. 5005 * returns < 0 on io errors. 5006 * 5007 * This may release the path, and so you may lose any locks held at the 5008 * time you call it. 5009 */ 5010 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5011 { 5012 struct btrfs_key key; 5013 struct btrfs_disk_key found_key; 5014 int ret; 5015 5016 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5017 5018 if (key.offset > 0) { 5019 key.offset--; 5020 } else if (key.type > 0) { 5021 key.type--; 5022 key.offset = (u64)-1; 5023 } else if (key.objectid > 0) { 5024 key.objectid--; 5025 key.type = (u8)-1; 5026 key.offset = (u64)-1; 5027 } else { 5028 return 1; 5029 } 5030 5031 btrfs_release_path(path); 5032 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5033 if (ret < 0) 5034 return ret; 5035 btrfs_item_key(path->nodes[0], &found_key, 0); 5036 ret = comp_keys(&found_key, &key); 5037 /* 5038 * We might have had an item with the previous key in the tree right 5039 * before we released our path. And after we released our path, that 5040 * item might have been pushed to the first slot (0) of the leaf we 5041 * were holding due to a tree balance. Alternatively, an item with the 5042 * previous key can exist as the only element of a leaf (big fat item). 5043 * Therefore account for these 2 cases, so that our callers (like 5044 * btrfs_previous_item) don't miss an existing item with a key matching 5045 * the previous key we computed above. 5046 */ 5047 if (ret <= 0) 5048 return 0; 5049 return 1; 5050 } 5051 5052 /* 5053 * A helper function to walk down the tree starting at min_key, and looking 5054 * for nodes or leaves that are have a minimum transaction id. 5055 * This is used by the btree defrag code, and tree logging 5056 * 5057 * This does not cow, but it does stuff the starting key it finds back 5058 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5059 * key and get a writable path. 5060 * 5061 * This honors path->lowest_level to prevent descent past a given level 5062 * of the tree. 5063 * 5064 * min_trans indicates the oldest transaction that you are interested 5065 * in walking through. Any nodes or leaves older than min_trans are 5066 * skipped over (without reading them). 5067 * 5068 * returns zero if something useful was found, < 0 on error and 1 if there 5069 * was nothing in the tree that matched the search criteria. 5070 */ 5071 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5072 struct btrfs_path *path, 5073 u64 min_trans) 5074 { 5075 struct extent_buffer *cur; 5076 struct btrfs_key found_key; 5077 int slot; 5078 int sret; 5079 u32 nritems; 5080 int level; 5081 int ret = 1; 5082 int keep_locks = path->keep_locks; 5083 5084 path->keep_locks = 1; 5085 again: 5086 cur = btrfs_read_lock_root_node(root); 5087 level = btrfs_header_level(cur); 5088 WARN_ON(path->nodes[level]); 5089 path->nodes[level] = cur; 5090 path->locks[level] = BTRFS_READ_LOCK; 5091 5092 if (btrfs_header_generation(cur) < min_trans) { 5093 ret = 1; 5094 goto out; 5095 } 5096 while (1) { 5097 nritems = btrfs_header_nritems(cur); 5098 level = btrfs_header_level(cur); 5099 sret = btrfs_bin_search(cur, min_key, &slot); 5100 if (sret < 0) { 5101 ret = sret; 5102 goto out; 5103 } 5104 5105 /* at the lowest level, we're done, setup the path and exit */ 5106 if (level == path->lowest_level) { 5107 if (slot >= nritems) 5108 goto find_next_key; 5109 ret = 0; 5110 path->slots[level] = slot; 5111 btrfs_item_key_to_cpu(cur, &found_key, slot); 5112 goto out; 5113 } 5114 if (sret && slot > 0) 5115 slot--; 5116 /* 5117 * check this node pointer against the min_trans parameters. 5118 * If it is too old, old, skip to the next one. 5119 */ 5120 while (slot < nritems) { 5121 u64 gen; 5122 5123 gen = btrfs_node_ptr_generation(cur, slot); 5124 if (gen < min_trans) { 5125 slot++; 5126 continue; 5127 } 5128 break; 5129 } 5130 find_next_key: 5131 /* 5132 * we didn't find a candidate key in this node, walk forward 5133 * and find another one 5134 */ 5135 if (slot >= nritems) { 5136 path->slots[level] = slot; 5137 btrfs_set_path_blocking(path); 5138 sret = btrfs_find_next_key(root, path, min_key, level, 5139 min_trans); 5140 if (sret == 0) { 5141 btrfs_release_path(path); 5142 goto again; 5143 } else { 5144 goto out; 5145 } 5146 } 5147 /* save our key for returning back */ 5148 btrfs_node_key_to_cpu(cur, &found_key, slot); 5149 path->slots[level] = slot; 5150 if (level == path->lowest_level) { 5151 ret = 0; 5152 goto out; 5153 } 5154 btrfs_set_path_blocking(path); 5155 cur = btrfs_read_node_slot(cur, slot); 5156 if (IS_ERR(cur)) { 5157 ret = PTR_ERR(cur); 5158 goto out; 5159 } 5160 5161 btrfs_tree_read_lock(cur); 5162 5163 path->locks[level - 1] = BTRFS_READ_LOCK; 5164 path->nodes[level - 1] = cur; 5165 unlock_up(path, level, 1, 0, NULL); 5166 } 5167 out: 5168 path->keep_locks = keep_locks; 5169 if (ret == 0) { 5170 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5171 btrfs_set_path_blocking(path); 5172 memcpy(min_key, &found_key, sizeof(found_key)); 5173 } 5174 return ret; 5175 } 5176 5177 /* 5178 * this is similar to btrfs_next_leaf, but does not try to preserve 5179 * and fixup the path. It looks for and returns the next key in the 5180 * tree based on the current path and the min_trans parameters. 5181 * 5182 * 0 is returned if another key is found, < 0 if there are any errors 5183 * and 1 is returned if there are no higher keys in the tree 5184 * 5185 * path->keep_locks should be set to 1 on the search made before 5186 * calling this function. 5187 */ 5188 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5189 struct btrfs_key *key, int level, u64 min_trans) 5190 { 5191 int slot; 5192 struct extent_buffer *c; 5193 5194 WARN_ON(!path->keep_locks && !path->skip_locking); 5195 while (level < BTRFS_MAX_LEVEL) { 5196 if (!path->nodes[level]) 5197 return 1; 5198 5199 slot = path->slots[level] + 1; 5200 c = path->nodes[level]; 5201 next: 5202 if (slot >= btrfs_header_nritems(c)) { 5203 int ret; 5204 int orig_lowest; 5205 struct btrfs_key cur_key; 5206 if (level + 1 >= BTRFS_MAX_LEVEL || 5207 !path->nodes[level + 1]) 5208 return 1; 5209 5210 if (path->locks[level + 1] || path->skip_locking) { 5211 level++; 5212 continue; 5213 } 5214 5215 slot = btrfs_header_nritems(c) - 1; 5216 if (level == 0) 5217 btrfs_item_key_to_cpu(c, &cur_key, slot); 5218 else 5219 btrfs_node_key_to_cpu(c, &cur_key, slot); 5220 5221 orig_lowest = path->lowest_level; 5222 btrfs_release_path(path); 5223 path->lowest_level = level; 5224 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5225 0, 0); 5226 path->lowest_level = orig_lowest; 5227 if (ret < 0) 5228 return ret; 5229 5230 c = path->nodes[level]; 5231 slot = path->slots[level]; 5232 if (ret == 0) 5233 slot++; 5234 goto next; 5235 } 5236 5237 if (level == 0) 5238 btrfs_item_key_to_cpu(c, key, slot); 5239 else { 5240 u64 gen = btrfs_node_ptr_generation(c, slot); 5241 5242 if (gen < min_trans) { 5243 slot++; 5244 goto next; 5245 } 5246 btrfs_node_key_to_cpu(c, key, slot); 5247 } 5248 return 0; 5249 } 5250 return 1; 5251 } 5252 5253 /* 5254 * search the tree again to find a leaf with greater keys 5255 * returns 0 if it found something or 1 if there are no greater leaves. 5256 * returns < 0 on io errors. 5257 */ 5258 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5259 { 5260 return btrfs_next_old_leaf(root, path, 0); 5261 } 5262 5263 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5264 u64 time_seq) 5265 { 5266 int slot; 5267 int level; 5268 struct extent_buffer *c; 5269 struct extent_buffer *next; 5270 struct btrfs_key key; 5271 u32 nritems; 5272 int ret; 5273 int old_spinning = path->leave_spinning; 5274 int next_rw_lock = 0; 5275 5276 nritems = btrfs_header_nritems(path->nodes[0]); 5277 if (nritems == 0) 5278 return 1; 5279 5280 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5281 again: 5282 level = 1; 5283 next = NULL; 5284 next_rw_lock = 0; 5285 btrfs_release_path(path); 5286 5287 path->keep_locks = 1; 5288 path->leave_spinning = 1; 5289 5290 if (time_seq) 5291 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5292 else 5293 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5294 path->keep_locks = 0; 5295 5296 if (ret < 0) 5297 return ret; 5298 5299 nritems = btrfs_header_nritems(path->nodes[0]); 5300 /* 5301 * by releasing the path above we dropped all our locks. A balance 5302 * could have added more items next to the key that used to be 5303 * at the very end of the block. So, check again here and 5304 * advance the path if there are now more items available. 5305 */ 5306 if (nritems > 0 && path->slots[0] < nritems - 1) { 5307 if (ret == 0) 5308 path->slots[0]++; 5309 ret = 0; 5310 goto done; 5311 } 5312 /* 5313 * So the above check misses one case: 5314 * - after releasing the path above, someone has removed the item that 5315 * used to be at the very end of the block, and balance between leafs 5316 * gets another one with bigger key.offset to replace it. 5317 * 5318 * This one should be returned as well, or we can get leaf corruption 5319 * later(esp. in __btrfs_drop_extents()). 5320 * 5321 * And a bit more explanation about this check, 5322 * with ret > 0, the key isn't found, the path points to the slot 5323 * where it should be inserted, so the path->slots[0] item must be the 5324 * bigger one. 5325 */ 5326 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5327 ret = 0; 5328 goto done; 5329 } 5330 5331 while (level < BTRFS_MAX_LEVEL) { 5332 if (!path->nodes[level]) { 5333 ret = 1; 5334 goto done; 5335 } 5336 5337 slot = path->slots[level] + 1; 5338 c = path->nodes[level]; 5339 if (slot >= btrfs_header_nritems(c)) { 5340 level++; 5341 if (level == BTRFS_MAX_LEVEL) { 5342 ret = 1; 5343 goto done; 5344 } 5345 continue; 5346 } 5347 5348 if (next) { 5349 btrfs_tree_unlock_rw(next, next_rw_lock); 5350 free_extent_buffer(next); 5351 } 5352 5353 next = c; 5354 next_rw_lock = path->locks[level]; 5355 ret = read_block_for_search(root, path, &next, level, 5356 slot, &key); 5357 if (ret == -EAGAIN) 5358 goto again; 5359 5360 if (ret < 0) { 5361 btrfs_release_path(path); 5362 goto done; 5363 } 5364 5365 if (!path->skip_locking) { 5366 ret = btrfs_try_tree_read_lock(next); 5367 if (!ret && time_seq) { 5368 /* 5369 * If we don't get the lock, we may be racing 5370 * with push_leaf_left, holding that lock while 5371 * itself waiting for the leaf we've currently 5372 * locked. To solve this situation, we give up 5373 * on our lock and cycle. 5374 */ 5375 free_extent_buffer(next); 5376 btrfs_release_path(path); 5377 cond_resched(); 5378 goto again; 5379 } 5380 if (!ret) { 5381 btrfs_set_path_blocking(path); 5382 btrfs_tree_read_lock(next); 5383 } 5384 next_rw_lock = BTRFS_READ_LOCK; 5385 } 5386 break; 5387 } 5388 path->slots[level] = slot; 5389 while (1) { 5390 level--; 5391 c = path->nodes[level]; 5392 if (path->locks[level]) 5393 btrfs_tree_unlock_rw(c, path->locks[level]); 5394 5395 free_extent_buffer(c); 5396 path->nodes[level] = next; 5397 path->slots[level] = 0; 5398 if (!path->skip_locking) 5399 path->locks[level] = next_rw_lock; 5400 if (!level) 5401 break; 5402 5403 ret = read_block_for_search(root, path, &next, level, 5404 0, &key); 5405 if (ret == -EAGAIN) 5406 goto again; 5407 5408 if (ret < 0) { 5409 btrfs_release_path(path); 5410 goto done; 5411 } 5412 5413 if (!path->skip_locking) { 5414 ret = btrfs_try_tree_read_lock(next); 5415 if (!ret) { 5416 btrfs_set_path_blocking(path); 5417 btrfs_tree_read_lock(next); 5418 } 5419 next_rw_lock = BTRFS_READ_LOCK; 5420 } 5421 } 5422 ret = 0; 5423 done: 5424 unlock_up(path, 0, 1, 0, NULL); 5425 path->leave_spinning = old_spinning; 5426 if (!old_spinning) 5427 btrfs_set_path_blocking(path); 5428 5429 return ret; 5430 } 5431 5432 /* 5433 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5434 * searching until it gets past min_objectid or finds an item of 'type' 5435 * 5436 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5437 */ 5438 int btrfs_previous_item(struct btrfs_root *root, 5439 struct btrfs_path *path, u64 min_objectid, 5440 int type) 5441 { 5442 struct btrfs_key found_key; 5443 struct extent_buffer *leaf; 5444 u32 nritems; 5445 int ret; 5446 5447 while (1) { 5448 if (path->slots[0] == 0) { 5449 btrfs_set_path_blocking(path); 5450 ret = btrfs_prev_leaf(root, path); 5451 if (ret != 0) 5452 return ret; 5453 } else { 5454 path->slots[0]--; 5455 } 5456 leaf = path->nodes[0]; 5457 nritems = btrfs_header_nritems(leaf); 5458 if (nritems == 0) 5459 return 1; 5460 if (path->slots[0] == nritems) 5461 path->slots[0]--; 5462 5463 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5464 if (found_key.objectid < min_objectid) 5465 break; 5466 if (found_key.type == type) 5467 return 0; 5468 if (found_key.objectid == min_objectid && 5469 found_key.type < type) 5470 break; 5471 } 5472 return 1; 5473 } 5474 5475 /* 5476 * search in extent tree to find a previous Metadata/Data extent item with 5477 * min objecitd. 5478 * 5479 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5480 */ 5481 int btrfs_previous_extent_item(struct btrfs_root *root, 5482 struct btrfs_path *path, u64 min_objectid) 5483 { 5484 struct btrfs_key found_key; 5485 struct extent_buffer *leaf; 5486 u32 nritems; 5487 int ret; 5488 5489 while (1) { 5490 if (path->slots[0] == 0) { 5491 btrfs_set_path_blocking(path); 5492 ret = btrfs_prev_leaf(root, path); 5493 if (ret != 0) 5494 return ret; 5495 } else { 5496 path->slots[0]--; 5497 } 5498 leaf = path->nodes[0]; 5499 nritems = btrfs_header_nritems(leaf); 5500 if (nritems == 0) 5501 return 1; 5502 if (path->slots[0] == nritems) 5503 path->slots[0]--; 5504 5505 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5506 if (found_key.objectid < min_objectid) 5507 break; 5508 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5509 found_key.type == BTRFS_METADATA_ITEM_KEY) 5510 return 0; 5511 if (found_key.objectid == min_objectid && 5512 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5513 break; 5514 } 5515 return 1; 5516 } 5517