1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "print-tree.h" 25 #include "locking.h" 26 27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 28 *root, struct btrfs_path *path, int level); 29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_key *ins_key, 31 struct btrfs_path *path, int data_size, int extend); 32 static int push_node_left(struct btrfs_trans_handle *trans, 33 struct btrfs_root *root, struct extent_buffer *dst, 34 struct extent_buffer *src, int empty); 35 static int balance_node_right(struct btrfs_trans_handle *trans, 36 struct btrfs_root *root, 37 struct extent_buffer *dst_buf, 38 struct extent_buffer *src_buf); 39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 40 struct btrfs_path *path, int level, int slot); 41 42 struct btrfs_path *btrfs_alloc_path(void) 43 { 44 struct btrfs_path *path; 45 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 46 return path; 47 } 48 49 /* 50 * set all locked nodes in the path to blocking locks. This should 51 * be done before scheduling 52 */ 53 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 54 { 55 int i; 56 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 57 if (!p->nodes[i] || !p->locks[i]) 58 continue; 59 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 60 if (p->locks[i] == BTRFS_READ_LOCK) 61 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 62 else if (p->locks[i] == BTRFS_WRITE_LOCK) 63 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 64 } 65 } 66 67 /* 68 * reset all the locked nodes in the patch to spinning locks. 69 * 70 * held is used to keep lockdep happy, when lockdep is enabled 71 * we set held to a blocking lock before we go around and 72 * retake all the spinlocks in the path. You can safely use NULL 73 * for held 74 */ 75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 76 struct extent_buffer *held, int held_rw) 77 { 78 int i; 79 80 #ifdef CONFIG_DEBUG_LOCK_ALLOC 81 /* lockdep really cares that we take all of these spinlocks 82 * in the right order. If any of the locks in the path are not 83 * currently blocking, it is going to complain. So, make really 84 * really sure by forcing the path to blocking before we clear 85 * the path blocking. 86 */ 87 if (held) { 88 btrfs_set_lock_blocking_rw(held, held_rw); 89 if (held_rw == BTRFS_WRITE_LOCK) 90 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 91 else if (held_rw == BTRFS_READ_LOCK) 92 held_rw = BTRFS_READ_LOCK_BLOCKING; 93 } 94 btrfs_set_path_blocking(p); 95 #endif 96 97 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 98 if (p->nodes[i] && p->locks[i]) { 99 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 100 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 101 p->locks[i] = BTRFS_WRITE_LOCK; 102 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 103 p->locks[i] = BTRFS_READ_LOCK; 104 } 105 } 106 107 #ifdef CONFIG_DEBUG_LOCK_ALLOC 108 if (held) 109 btrfs_clear_lock_blocking_rw(held, held_rw); 110 #endif 111 } 112 113 /* this also releases the path */ 114 void btrfs_free_path(struct btrfs_path *p) 115 { 116 if (!p) 117 return; 118 btrfs_release_path(p); 119 kmem_cache_free(btrfs_path_cachep, p); 120 } 121 122 /* 123 * path release drops references on the extent buffers in the path 124 * and it drops any locks held by this path 125 * 126 * It is safe to call this on paths that no locks or extent buffers held. 127 */ 128 noinline void btrfs_release_path(struct btrfs_path *p) 129 { 130 int i; 131 132 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 133 p->slots[i] = 0; 134 if (!p->nodes[i]) 135 continue; 136 if (p->locks[i]) { 137 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 138 p->locks[i] = 0; 139 } 140 free_extent_buffer(p->nodes[i]); 141 p->nodes[i] = NULL; 142 } 143 } 144 145 /* 146 * safely gets a reference on the root node of a tree. A lock 147 * is not taken, so a concurrent writer may put a different node 148 * at the root of the tree. See btrfs_lock_root_node for the 149 * looping required. 150 * 151 * The extent buffer returned by this has a reference taken, so 152 * it won't disappear. It may stop being the root of the tree 153 * at any time because there are no locks held. 154 */ 155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 156 { 157 struct extent_buffer *eb; 158 159 rcu_read_lock(); 160 eb = rcu_dereference(root->node); 161 extent_buffer_get(eb); 162 rcu_read_unlock(); 163 return eb; 164 } 165 166 /* loop around taking references on and locking the root node of the 167 * tree until you end up with a lock on the root. A locked buffer 168 * is returned, with a reference held. 169 */ 170 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 171 { 172 struct extent_buffer *eb; 173 174 while (1) { 175 eb = btrfs_root_node(root); 176 btrfs_tree_lock(eb); 177 if (eb == root->node) 178 break; 179 btrfs_tree_unlock(eb); 180 free_extent_buffer(eb); 181 } 182 return eb; 183 } 184 185 /* loop around taking references on and locking the root node of the 186 * tree until you end up with a lock on the root. A locked buffer 187 * is returned, with a reference held. 188 */ 189 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 190 { 191 struct extent_buffer *eb; 192 193 while (1) { 194 eb = btrfs_root_node(root); 195 btrfs_tree_read_lock(eb); 196 if (eb == root->node) 197 break; 198 btrfs_tree_read_unlock(eb); 199 free_extent_buffer(eb); 200 } 201 return eb; 202 } 203 204 /* cowonly root (everything not a reference counted cow subvolume), just get 205 * put onto a simple dirty list. transaction.c walks this to make sure they 206 * get properly updated on disk. 207 */ 208 static void add_root_to_dirty_list(struct btrfs_root *root) 209 { 210 if (root->track_dirty && list_empty(&root->dirty_list)) { 211 list_add(&root->dirty_list, 212 &root->fs_info->dirty_cowonly_roots); 213 } 214 } 215 216 /* 217 * used by snapshot creation to make a copy of a root for a tree with 218 * a given objectid. The buffer with the new root node is returned in 219 * cow_ret, and this func returns zero on success or a negative error code. 220 */ 221 int btrfs_copy_root(struct btrfs_trans_handle *trans, 222 struct btrfs_root *root, 223 struct extent_buffer *buf, 224 struct extent_buffer **cow_ret, u64 new_root_objectid) 225 { 226 struct extent_buffer *cow; 227 int ret = 0; 228 int level; 229 struct btrfs_disk_key disk_key; 230 231 WARN_ON(root->ref_cows && trans->transid != 232 root->fs_info->running_transaction->transid); 233 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 234 235 level = btrfs_header_level(buf); 236 if (level == 0) 237 btrfs_item_key(buf, &disk_key, 0); 238 else 239 btrfs_node_key(buf, &disk_key, 0); 240 241 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 242 new_root_objectid, &disk_key, level, 243 buf->start, 0, 1); 244 if (IS_ERR(cow)) 245 return PTR_ERR(cow); 246 247 copy_extent_buffer(cow, buf, 0, 0, cow->len); 248 btrfs_set_header_bytenr(cow, cow->start); 249 btrfs_set_header_generation(cow, trans->transid); 250 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 251 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 252 BTRFS_HEADER_FLAG_RELOC); 253 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 254 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 255 else 256 btrfs_set_header_owner(cow, new_root_objectid); 257 258 write_extent_buffer(cow, root->fs_info->fsid, 259 (unsigned long)btrfs_header_fsid(cow), 260 BTRFS_FSID_SIZE); 261 262 WARN_ON(btrfs_header_generation(buf) > trans->transid); 263 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 264 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 265 else 266 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 267 268 if (ret) 269 return ret; 270 271 btrfs_mark_buffer_dirty(cow); 272 *cow_ret = cow; 273 return 0; 274 } 275 276 /* 277 * check if the tree block can be shared by multiple trees 278 */ 279 int btrfs_block_can_be_shared(struct btrfs_root *root, 280 struct extent_buffer *buf) 281 { 282 /* 283 * Tree blocks not in refernece counted trees and tree roots 284 * are never shared. If a block was allocated after the last 285 * snapshot and the block was not allocated by tree relocation, 286 * we know the block is not shared. 287 */ 288 if (root->ref_cows && 289 buf != root->node && buf != root->commit_root && 290 (btrfs_header_generation(buf) <= 291 btrfs_root_last_snapshot(&root->root_item) || 292 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 293 return 1; 294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 295 if (root->ref_cows && 296 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 297 return 1; 298 #endif 299 return 0; 300 } 301 302 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 303 struct btrfs_root *root, 304 struct extent_buffer *buf, 305 struct extent_buffer *cow, 306 int *last_ref) 307 { 308 u64 refs; 309 u64 owner; 310 u64 flags; 311 u64 new_flags = 0; 312 int ret; 313 314 /* 315 * Backrefs update rules: 316 * 317 * Always use full backrefs for extent pointers in tree block 318 * allocated by tree relocation. 319 * 320 * If a shared tree block is no longer referenced by its owner 321 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 322 * use full backrefs for extent pointers in tree block. 323 * 324 * If a tree block is been relocating 325 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 326 * use full backrefs for extent pointers in tree block. 327 * The reason for this is some operations (such as drop tree) 328 * are only allowed for blocks use full backrefs. 329 */ 330 331 if (btrfs_block_can_be_shared(root, buf)) { 332 ret = btrfs_lookup_extent_info(trans, root, buf->start, 333 buf->len, &refs, &flags); 334 BUG_ON(ret); 335 BUG_ON(refs == 0); 336 } else { 337 refs = 1; 338 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 339 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 340 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 341 else 342 flags = 0; 343 } 344 345 owner = btrfs_header_owner(buf); 346 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 347 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 348 349 if (refs > 1) { 350 if ((owner == root->root_key.objectid || 351 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 352 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 353 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 354 BUG_ON(ret); 355 356 if (root->root_key.objectid == 357 BTRFS_TREE_RELOC_OBJECTID) { 358 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 359 BUG_ON(ret); 360 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 361 BUG_ON(ret); 362 } 363 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 364 } else { 365 366 if (root->root_key.objectid == 367 BTRFS_TREE_RELOC_OBJECTID) 368 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 369 else 370 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 371 BUG_ON(ret); 372 } 373 if (new_flags != 0) { 374 ret = btrfs_set_disk_extent_flags(trans, root, 375 buf->start, 376 buf->len, 377 new_flags, 0); 378 BUG_ON(ret); 379 } 380 } else { 381 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 382 if (root->root_key.objectid == 383 BTRFS_TREE_RELOC_OBJECTID) 384 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 385 else 386 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 387 BUG_ON(ret); 388 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 389 BUG_ON(ret); 390 } 391 clean_tree_block(trans, root, buf); 392 *last_ref = 1; 393 } 394 return 0; 395 } 396 397 /* 398 * does the dirty work in cow of a single block. The parent block (if 399 * supplied) is updated to point to the new cow copy. The new buffer is marked 400 * dirty and returned locked. If you modify the block it needs to be marked 401 * dirty again. 402 * 403 * search_start -- an allocation hint for the new block 404 * 405 * empty_size -- a hint that you plan on doing more cow. This is the size in 406 * bytes the allocator should try to find free next to the block it returns. 407 * This is just a hint and may be ignored by the allocator. 408 */ 409 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 410 struct btrfs_root *root, 411 struct extent_buffer *buf, 412 struct extent_buffer *parent, int parent_slot, 413 struct extent_buffer **cow_ret, 414 u64 search_start, u64 empty_size) 415 { 416 struct btrfs_disk_key disk_key; 417 struct extent_buffer *cow; 418 int level; 419 int last_ref = 0; 420 int unlock_orig = 0; 421 u64 parent_start; 422 423 if (*cow_ret == buf) 424 unlock_orig = 1; 425 426 btrfs_assert_tree_locked(buf); 427 428 WARN_ON(root->ref_cows && trans->transid != 429 root->fs_info->running_transaction->transid); 430 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 431 432 level = btrfs_header_level(buf); 433 434 if (level == 0) 435 btrfs_item_key(buf, &disk_key, 0); 436 else 437 btrfs_node_key(buf, &disk_key, 0); 438 439 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 440 if (parent) 441 parent_start = parent->start; 442 else 443 parent_start = 0; 444 } else 445 parent_start = 0; 446 447 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 448 root->root_key.objectid, &disk_key, 449 level, search_start, empty_size, 1); 450 if (IS_ERR(cow)) 451 return PTR_ERR(cow); 452 453 /* cow is set to blocking by btrfs_init_new_buffer */ 454 455 copy_extent_buffer(cow, buf, 0, 0, cow->len); 456 btrfs_set_header_bytenr(cow, cow->start); 457 btrfs_set_header_generation(cow, trans->transid); 458 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 459 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 460 BTRFS_HEADER_FLAG_RELOC); 461 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 462 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 463 else 464 btrfs_set_header_owner(cow, root->root_key.objectid); 465 466 write_extent_buffer(cow, root->fs_info->fsid, 467 (unsigned long)btrfs_header_fsid(cow), 468 BTRFS_FSID_SIZE); 469 470 update_ref_for_cow(trans, root, buf, cow, &last_ref); 471 472 if (root->ref_cows) 473 btrfs_reloc_cow_block(trans, root, buf, cow); 474 475 if (buf == root->node) { 476 WARN_ON(parent && parent != buf); 477 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 478 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 479 parent_start = buf->start; 480 else 481 parent_start = 0; 482 483 extent_buffer_get(cow); 484 rcu_assign_pointer(root->node, cow); 485 486 btrfs_free_tree_block(trans, root, buf, parent_start, 487 last_ref, 1); 488 free_extent_buffer(buf); 489 add_root_to_dirty_list(root); 490 } else { 491 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 492 parent_start = parent->start; 493 else 494 parent_start = 0; 495 496 WARN_ON(trans->transid != btrfs_header_generation(parent)); 497 btrfs_set_node_blockptr(parent, parent_slot, 498 cow->start); 499 btrfs_set_node_ptr_generation(parent, parent_slot, 500 trans->transid); 501 btrfs_mark_buffer_dirty(parent); 502 btrfs_free_tree_block(trans, root, buf, parent_start, 503 last_ref, 1); 504 } 505 if (unlock_orig) 506 btrfs_tree_unlock(buf); 507 free_extent_buffer(buf); 508 btrfs_mark_buffer_dirty(cow); 509 *cow_ret = cow; 510 return 0; 511 } 512 513 static inline int should_cow_block(struct btrfs_trans_handle *trans, 514 struct btrfs_root *root, 515 struct extent_buffer *buf) 516 { 517 /* ensure we can see the force_cow */ 518 smp_rmb(); 519 520 /* 521 * We do not need to cow a block if 522 * 1) this block is not created or changed in this transaction; 523 * 2) this block does not belong to TREE_RELOC tree; 524 * 3) the root is not forced COW. 525 * 526 * What is forced COW: 527 * when we create snapshot during commiting the transaction, 528 * after we've finished coping src root, we must COW the shared 529 * block to ensure the metadata consistency. 530 */ 531 if (btrfs_header_generation(buf) == trans->transid && 532 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 533 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 534 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 535 !root->force_cow) 536 return 0; 537 return 1; 538 } 539 540 /* 541 * cows a single block, see __btrfs_cow_block for the real work. 542 * This version of it has extra checks so that a block isn't cow'd more than 543 * once per transaction, as long as it hasn't been written yet 544 */ 545 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 546 struct btrfs_root *root, struct extent_buffer *buf, 547 struct extent_buffer *parent, int parent_slot, 548 struct extent_buffer **cow_ret) 549 { 550 u64 search_start; 551 int ret; 552 553 if (trans->transaction != root->fs_info->running_transaction) { 554 printk(KERN_CRIT "trans %llu running %llu\n", 555 (unsigned long long)trans->transid, 556 (unsigned long long) 557 root->fs_info->running_transaction->transid); 558 WARN_ON(1); 559 } 560 if (trans->transid != root->fs_info->generation) { 561 printk(KERN_CRIT "trans %llu running %llu\n", 562 (unsigned long long)trans->transid, 563 (unsigned long long)root->fs_info->generation); 564 WARN_ON(1); 565 } 566 567 if (!should_cow_block(trans, root, buf)) { 568 *cow_ret = buf; 569 return 0; 570 } 571 572 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 573 574 if (parent) 575 btrfs_set_lock_blocking(parent); 576 btrfs_set_lock_blocking(buf); 577 578 ret = __btrfs_cow_block(trans, root, buf, parent, 579 parent_slot, cow_ret, search_start, 0); 580 581 trace_btrfs_cow_block(root, buf, *cow_ret); 582 583 return ret; 584 } 585 586 /* 587 * helper function for defrag to decide if two blocks pointed to by a 588 * node are actually close by 589 */ 590 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 591 { 592 if (blocknr < other && other - (blocknr + blocksize) < 32768) 593 return 1; 594 if (blocknr > other && blocknr - (other + blocksize) < 32768) 595 return 1; 596 return 0; 597 } 598 599 /* 600 * compare two keys in a memcmp fashion 601 */ 602 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 603 { 604 struct btrfs_key k1; 605 606 btrfs_disk_key_to_cpu(&k1, disk); 607 608 return btrfs_comp_cpu_keys(&k1, k2); 609 } 610 611 /* 612 * same as comp_keys only with two btrfs_key's 613 */ 614 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 615 { 616 if (k1->objectid > k2->objectid) 617 return 1; 618 if (k1->objectid < k2->objectid) 619 return -1; 620 if (k1->type > k2->type) 621 return 1; 622 if (k1->type < k2->type) 623 return -1; 624 if (k1->offset > k2->offset) 625 return 1; 626 if (k1->offset < k2->offset) 627 return -1; 628 return 0; 629 } 630 631 /* 632 * this is used by the defrag code to go through all the 633 * leaves pointed to by a node and reallocate them so that 634 * disk order is close to key order 635 */ 636 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 637 struct btrfs_root *root, struct extent_buffer *parent, 638 int start_slot, int cache_only, u64 *last_ret, 639 struct btrfs_key *progress) 640 { 641 struct extent_buffer *cur; 642 u64 blocknr; 643 u64 gen; 644 u64 search_start = *last_ret; 645 u64 last_block = 0; 646 u64 other; 647 u32 parent_nritems; 648 int end_slot; 649 int i; 650 int err = 0; 651 int parent_level; 652 int uptodate; 653 u32 blocksize; 654 int progress_passed = 0; 655 struct btrfs_disk_key disk_key; 656 657 parent_level = btrfs_header_level(parent); 658 if (cache_only && parent_level != 1) 659 return 0; 660 661 if (trans->transaction != root->fs_info->running_transaction) 662 WARN_ON(1); 663 if (trans->transid != root->fs_info->generation) 664 WARN_ON(1); 665 666 parent_nritems = btrfs_header_nritems(parent); 667 blocksize = btrfs_level_size(root, parent_level - 1); 668 end_slot = parent_nritems; 669 670 if (parent_nritems == 1) 671 return 0; 672 673 btrfs_set_lock_blocking(parent); 674 675 for (i = start_slot; i < end_slot; i++) { 676 int close = 1; 677 678 btrfs_node_key(parent, &disk_key, i); 679 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 680 continue; 681 682 progress_passed = 1; 683 blocknr = btrfs_node_blockptr(parent, i); 684 gen = btrfs_node_ptr_generation(parent, i); 685 if (last_block == 0) 686 last_block = blocknr; 687 688 if (i > 0) { 689 other = btrfs_node_blockptr(parent, i - 1); 690 close = close_blocks(blocknr, other, blocksize); 691 } 692 if (!close && i < end_slot - 2) { 693 other = btrfs_node_blockptr(parent, i + 1); 694 close = close_blocks(blocknr, other, blocksize); 695 } 696 if (close) { 697 last_block = blocknr; 698 continue; 699 } 700 701 cur = btrfs_find_tree_block(root, blocknr, blocksize); 702 if (cur) 703 uptodate = btrfs_buffer_uptodate(cur, gen); 704 else 705 uptodate = 0; 706 if (!cur || !uptodate) { 707 if (cache_only) { 708 free_extent_buffer(cur); 709 continue; 710 } 711 if (!cur) { 712 cur = read_tree_block(root, blocknr, 713 blocksize, gen); 714 if (!cur) 715 return -EIO; 716 } else if (!uptodate) { 717 btrfs_read_buffer(cur, gen); 718 } 719 } 720 if (search_start == 0) 721 search_start = last_block; 722 723 btrfs_tree_lock(cur); 724 btrfs_set_lock_blocking(cur); 725 err = __btrfs_cow_block(trans, root, cur, parent, i, 726 &cur, search_start, 727 min(16 * blocksize, 728 (end_slot - i) * blocksize)); 729 if (err) { 730 btrfs_tree_unlock(cur); 731 free_extent_buffer(cur); 732 break; 733 } 734 search_start = cur->start; 735 last_block = cur->start; 736 *last_ret = search_start; 737 btrfs_tree_unlock(cur); 738 free_extent_buffer(cur); 739 } 740 return err; 741 } 742 743 /* 744 * The leaf data grows from end-to-front in the node. 745 * this returns the address of the start of the last item, 746 * which is the stop of the leaf data stack 747 */ 748 static inline unsigned int leaf_data_end(struct btrfs_root *root, 749 struct extent_buffer *leaf) 750 { 751 u32 nr = btrfs_header_nritems(leaf); 752 if (nr == 0) 753 return BTRFS_LEAF_DATA_SIZE(root); 754 return btrfs_item_offset_nr(leaf, nr - 1); 755 } 756 757 758 /* 759 * search for key in the extent_buffer. The items start at offset p, 760 * and they are item_size apart. There are 'max' items in p. 761 * 762 * the slot in the array is returned via slot, and it points to 763 * the place where you would insert key if it is not found in 764 * the array. 765 * 766 * slot may point to max if the key is bigger than all of the keys 767 */ 768 static noinline int generic_bin_search(struct extent_buffer *eb, 769 unsigned long p, 770 int item_size, struct btrfs_key *key, 771 int max, int *slot) 772 { 773 int low = 0; 774 int high = max; 775 int mid; 776 int ret; 777 struct btrfs_disk_key *tmp = NULL; 778 struct btrfs_disk_key unaligned; 779 unsigned long offset; 780 char *kaddr = NULL; 781 unsigned long map_start = 0; 782 unsigned long map_len = 0; 783 int err; 784 785 while (low < high) { 786 mid = (low + high) / 2; 787 offset = p + mid * item_size; 788 789 if (!kaddr || offset < map_start || 790 (offset + sizeof(struct btrfs_disk_key)) > 791 map_start + map_len) { 792 793 err = map_private_extent_buffer(eb, offset, 794 sizeof(struct btrfs_disk_key), 795 &kaddr, &map_start, &map_len); 796 797 if (!err) { 798 tmp = (struct btrfs_disk_key *)(kaddr + offset - 799 map_start); 800 } else { 801 read_extent_buffer(eb, &unaligned, 802 offset, sizeof(unaligned)); 803 tmp = &unaligned; 804 } 805 806 } else { 807 tmp = (struct btrfs_disk_key *)(kaddr + offset - 808 map_start); 809 } 810 ret = comp_keys(tmp, key); 811 812 if (ret < 0) 813 low = mid + 1; 814 else if (ret > 0) 815 high = mid; 816 else { 817 *slot = mid; 818 return 0; 819 } 820 } 821 *slot = low; 822 return 1; 823 } 824 825 /* 826 * simple bin_search frontend that does the right thing for 827 * leaves vs nodes 828 */ 829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 830 int level, int *slot) 831 { 832 if (level == 0) { 833 return generic_bin_search(eb, 834 offsetof(struct btrfs_leaf, items), 835 sizeof(struct btrfs_item), 836 key, btrfs_header_nritems(eb), 837 slot); 838 } else { 839 return generic_bin_search(eb, 840 offsetof(struct btrfs_node, ptrs), 841 sizeof(struct btrfs_key_ptr), 842 key, btrfs_header_nritems(eb), 843 slot); 844 } 845 return -1; 846 } 847 848 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 849 int level, int *slot) 850 { 851 return bin_search(eb, key, level, slot); 852 } 853 854 static void root_add_used(struct btrfs_root *root, u32 size) 855 { 856 spin_lock(&root->accounting_lock); 857 btrfs_set_root_used(&root->root_item, 858 btrfs_root_used(&root->root_item) + size); 859 spin_unlock(&root->accounting_lock); 860 } 861 862 static void root_sub_used(struct btrfs_root *root, u32 size) 863 { 864 spin_lock(&root->accounting_lock); 865 btrfs_set_root_used(&root->root_item, 866 btrfs_root_used(&root->root_item) - size); 867 spin_unlock(&root->accounting_lock); 868 } 869 870 /* given a node and slot number, this reads the blocks it points to. The 871 * extent buffer is returned with a reference taken (but unlocked). 872 * NULL is returned on error. 873 */ 874 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 875 struct extent_buffer *parent, int slot) 876 { 877 int level = btrfs_header_level(parent); 878 if (slot < 0) 879 return NULL; 880 if (slot >= btrfs_header_nritems(parent)) 881 return NULL; 882 883 BUG_ON(level == 0); 884 885 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 886 btrfs_level_size(root, level - 1), 887 btrfs_node_ptr_generation(parent, slot)); 888 } 889 890 /* 891 * node level balancing, used to make sure nodes are in proper order for 892 * item deletion. We balance from the top down, so we have to make sure 893 * that a deletion won't leave an node completely empty later on. 894 */ 895 static noinline int balance_level(struct btrfs_trans_handle *trans, 896 struct btrfs_root *root, 897 struct btrfs_path *path, int level) 898 { 899 struct extent_buffer *right = NULL; 900 struct extent_buffer *mid; 901 struct extent_buffer *left = NULL; 902 struct extent_buffer *parent = NULL; 903 int ret = 0; 904 int wret; 905 int pslot; 906 int orig_slot = path->slots[level]; 907 u64 orig_ptr; 908 909 if (level == 0) 910 return 0; 911 912 mid = path->nodes[level]; 913 914 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 915 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 916 WARN_ON(btrfs_header_generation(mid) != trans->transid); 917 918 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 919 920 if (level < BTRFS_MAX_LEVEL - 1) { 921 parent = path->nodes[level + 1]; 922 pslot = path->slots[level + 1]; 923 } 924 925 /* 926 * deal with the case where there is only one pointer in the root 927 * by promoting the node below to a root 928 */ 929 if (!parent) { 930 struct extent_buffer *child; 931 932 if (btrfs_header_nritems(mid) != 1) 933 return 0; 934 935 /* promote the child to a root */ 936 child = read_node_slot(root, mid, 0); 937 BUG_ON(!child); 938 btrfs_tree_lock(child); 939 btrfs_set_lock_blocking(child); 940 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 941 if (ret) { 942 btrfs_tree_unlock(child); 943 free_extent_buffer(child); 944 goto enospc; 945 } 946 947 rcu_assign_pointer(root->node, child); 948 949 add_root_to_dirty_list(root); 950 btrfs_tree_unlock(child); 951 952 path->locks[level] = 0; 953 path->nodes[level] = NULL; 954 clean_tree_block(trans, root, mid); 955 btrfs_tree_unlock(mid); 956 /* once for the path */ 957 free_extent_buffer(mid); 958 959 root_sub_used(root, mid->len); 960 btrfs_free_tree_block(trans, root, mid, 0, 1, 0); 961 /* once for the root ptr */ 962 free_extent_buffer(mid); 963 return 0; 964 } 965 if (btrfs_header_nritems(mid) > 966 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 967 return 0; 968 969 btrfs_header_nritems(mid); 970 971 left = read_node_slot(root, parent, pslot - 1); 972 if (left) { 973 btrfs_tree_lock(left); 974 btrfs_set_lock_blocking(left); 975 wret = btrfs_cow_block(trans, root, left, 976 parent, pslot - 1, &left); 977 if (wret) { 978 ret = wret; 979 goto enospc; 980 } 981 } 982 right = read_node_slot(root, parent, pslot + 1); 983 if (right) { 984 btrfs_tree_lock(right); 985 btrfs_set_lock_blocking(right); 986 wret = btrfs_cow_block(trans, root, right, 987 parent, pslot + 1, &right); 988 if (wret) { 989 ret = wret; 990 goto enospc; 991 } 992 } 993 994 /* first, try to make some room in the middle buffer */ 995 if (left) { 996 orig_slot += btrfs_header_nritems(left); 997 wret = push_node_left(trans, root, left, mid, 1); 998 if (wret < 0) 999 ret = wret; 1000 btrfs_header_nritems(mid); 1001 } 1002 1003 /* 1004 * then try to empty the right most buffer into the middle 1005 */ 1006 if (right) { 1007 wret = push_node_left(trans, root, mid, right, 1); 1008 if (wret < 0 && wret != -ENOSPC) 1009 ret = wret; 1010 if (btrfs_header_nritems(right) == 0) { 1011 clean_tree_block(trans, root, right); 1012 btrfs_tree_unlock(right); 1013 wret = del_ptr(trans, root, path, level + 1, pslot + 1014 1); 1015 if (wret) 1016 ret = wret; 1017 root_sub_used(root, right->len); 1018 btrfs_free_tree_block(trans, root, right, 0, 1, 0); 1019 free_extent_buffer(right); 1020 right = NULL; 1021 } else { 1022 struct btrfs_disk_key right_key; 1023 btrfs_node_key(right, &right_key, 0); 1024 btrfs_set_node_key(parent, &right_key, pslot + 1); 1025 btrfs_mark_buffer_dirty(parent); 1026 } 1027 } 1028 if (btrfs_header_nritems(mid) == 1) { 1029 /* 1030 * we're not allowed to leave a node with one item in the 1031 * tree during a delete. A deletion from lower in the tree 1032 * could try to delete the only pointer in this node. 1033 * So, pull some keys from the left. 1034 * There has to be a left pointer at this point because 1035 * otherwise we would have pulled some pointers from the 1036 * right 1037 */ 1038 BUG_ON(!left); 1039 wret = balance_node_right(trans, root, mid, left); 1040 if (wret < 0) { 1041 ret = wret; 1042 goto enospc; 1043 } 1044 if (wret == 1) { 1045 wret = push_node_left(trans, root, left, mid, 1); 1046 if (wret < 0) 1047 ret = wret; 1048 } 1049 BUG_ON(wret == 1); 1050 } 1051 if (btrfs_header_nritems(mid) == 0) { 1052 clean_tree_block(trans, root, mid); 1053 btrfs_tree_unlock(mid); 1054 wret = del_ptr(trans, root, path, level + 1, pslot); 1055 if (wret) 1056 ret = wret; 1057 root_sub_used(root, mid->len); 1058 btrfs_free_tree_block(trans, root, mid, 0, 1, 0); 1059 free_extent_buffer(mid); 1060 mid = NULL; 1061 } else { 1062 /* update the parent key to reflect our changes */ 1063 struct btrfs_disk_key mid_key; 1064 btrfs_node_key(mid, &mid_key, 0); 1065 btrfs_set_node_key(parent, &mid_key, pslot); 1066 btrfs_mark_buffer_dirty(parent); 1067 } 1068 1069 /* update the path */ 1070 if (left) { 1071 if (btrfs_header_nritems(left) > orig_slot) { 1072 extent_buffer_get(left); 1073 /* left was locked after cow */ 1074 path->nodes[level] = left; 1075 path->slots[level + 1] -= 1; 1076 path->slots[level] = orig_slot; 1077 if (mid) { 1078 btrfs_tree_unlock(mid); 1079 free_extent_buffer(mid); 1080 } 1081 } else { 1082 orig_slot -= btrfs_header_nritems(left); 1083 path->slots[level] = orig_slot; 1084 } 1085 } 1086 /* double check we haven't messed things up */ 1087 if (orig_ptr != 1088 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1089 BUG(); 1090 enospc: 1091 if (right) { 1092 btrfs_tree_unlock(right); 1093 free_extent_buffer(right); 1094 } 1095 if (left) { 1096 if (path->nodes[level] != left) 1097 btrfs_tree_unlock(left); 1098 free_extent_buffer(left); 1099 } 1100 return ret; 1101 } 1102 1103 /* Node balancing for insertion. Here we only split or push nodes around 1104 * when they are completely full. This is also done top down, so we 1105 * have to be pessimistic. 1106 */ 1107 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1108 struct btrfs_root *root, 1109 struct btrfs_path *path, int level) 1110 { 1111 struct extent_buffer *right = NULL; 1112 struct extent_buffer *mid; 1113 struct extent_buffer *left = NULL; 1114 struct extent_buffer *parent = NULL; 1115 int ret = 0; 1116 int wret; 1117 int pslot; 1118 int orig_slot = path->slots[level]; 1119 1120 if (level == 0) 1121 return 1; 1122 1123 mid = path->nodes[level]; 1124 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1125 1126 if (level < BTRFS_MAX_LEVEL - 1) { 1127 parent = path->nodes[level + 1]; 1128 pslot = path->slots[level + 1]; 1129 } 1130 1131 if (!parent) 1132 return 1; 1133 1134 left = read_node_slot(root, parent, pslot - 1); 1135 1136 /* first, try to make some room in the middle buffer */ 1137 if (left) { 1138 u32 left_nr; 1139 1140 btrfs_tree_lock(left); 1141 btrfs_set_lock_blocking(left); 1142 1143 left_nr = btrfs_header_nritems(left); 1144 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1145 wret = 1; 1146 } else { 1147 ret = btrfs_cow_block(trans, root, left, parent, 1148 pslot - 1, &left); 1149 if (ret) 1150 wret = 1; 1151 else { 1152 wret = push_node_left(trans, root, 1153 left, mid, 0); 1154 } 1155 } 1156 if (wret < 0) 1157 ret = wret; 1158 if (wret == 0) { 1159 struct btrfs_disk_key disk_key; 1160 orig_slot += left_nr; 1161 btrfs_node_key(mid, &disk_key, 0); 1162 btrfs_set_node_key(parent, &disk_key, pslot); 1163 btrfs_mark_buffer_dirty(parent); 1164 if (btrfs_header_nritems(left) > orig_slot) { 1165 path->nodes[level] = left; 1166 path->slots[level + 1] -= 1; 1167 path->slots[level] = orig_slot; 1168 btrfs_tree_unlock(mid); 1169 free_extent_buffer(mid); 1170 } else { 1171 orig_slot -= 1172 btrfs_header_nritems(left); 1173 path->slots[level] = orig_slot; 1174 btrfs_tree_unlock(left); 1175 free_extent_buffer(left); 1176 } 1177 return 0; 1178 } 1179 btrfs_tree_unlock(left); 1180 free_extent_buffer(left); 1181 } 1182 right = read_node_slot(root, parent, pslot + 1); 1183 1184 /* 1185 * then try to empty the right most buffer into the middle 1186 */ 1187 if (right) { 1188 u32 right_nr; 1189 1190 btrfs_tree_lock(right); 1191 btrfs_set_lock_blocking(right); 1192 1193 right_nr = btrfs_header_nritems(right); 1194 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1195 wret = 1; 1196 } else { 1197 ret = btrfs_cow_block(trans, root, right, 1198 parent, pslot + 1, 1199 &right); 1200 if (ret) 1201 wret = 1; 1202 else { 1203 wret = balance_node_right(trans, root, 1204 right, mid); 1205 } 1206 } 1207 if (wret < 0) 1208 ret = wret; 1209 if (wret == 0) { 1210 struct btrfs_disk_key disk_key; 1211 1212 btrfs_node_key(right, &disk_key, 0); 1213 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1214 btrfs_mark_buffer_dirty(parent); 1215 1216 if (btrfs_header_nritems(mid) <= orig_slot) { 1217 path->nodes[level] = right; 1218 path->slots[level + 1] += 1; 1219 path->slots[level] = orig_slot - 1220 btrfs_header_nritems(mid); 1221 btrfs_tree_unlock(mid); 1222 free_extent_buffer(mid); 1223 } else { 1224 btrfs_tree_unlock(right); 1225 free_extent_buffer(right); 1226 } 1227 return 0; 1228 } 1229 btrfs_tree_unlock(right); 1230 free_extent_buffer(right); 1231 } 1232 return 1; 1233 } 1234 1235 /* 1236 * readahead one full node of leaves, finding things that are close 1237 * to the block in 'slot', and triggering ra on them. 1238 */ 1239 static void reada_for_search(struct btrfs_root *root, 1240 struct btrfs_path *path, 1241 int level, int slot, u64 objectid) 1242 { 1243 struct extent_buffer *node; 1244 struct btrfs_disk_key disk_key; 1245 u32 nritems; 1246 u64 search; 1247 u64 target; 1248 u64 nread = 0; 1249 u64 gen; 1250 int direction = path->reada; 1251 struct extent_buffer *eb; 1252 u32 nr; 1253 u32 blocksize; 1254 u32 nscan = 0; 1255 1256 if (level != 1) 1257 return; 1258 1259 if (!path->nodes[level]) 1260 return; 1261 1262 node = path->nodes[level]; 1263 1264 search = btrfs_node_blockptr(node, slot); 1265 blocksize = btrfs_level_size(root, level - 1); 1266 eb = btrfs_find_tree_block(root, search, blocksize); 1267 if (eb) { 1268 free_extent_buffer(eb); 1269 return; 1270 } 1271 1272 target = search; 1273 1274 nritems = btrfs_header_nritems(node); 1275 nr = slot; 1276 1277 while (1) { 1278 if (direction < 0) { 1279 if (nr == 0) 1280 break; 1281 nr--; 1282 } else if (direction > 0) { 1283 nr++; 1284 if (nr >= nritems) 1285 break; 1286 } 1287 if (path->reada < 0 && objectid) { 1288 btrfs_node_key(node, &disk_key, nr); 1289 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1290 break; 1291 } 1292 search = btrfs_node_blockptr(node, nr); 1293 if ((search <= target && target - search <= 65536) || 1294 (search > target && search - target <= 65536)) { 1295 gen = btrfs_node_ptr_generation(node, nr); 1296 readahead_tree_block(root, search, blocksize, gen); 1297 nread += blocksize; 1298 } 1299 nscan++; 1300 if ((nread > 65536 || nscan > 32)) 1301 break; 1302 } 1303 } 1304 1305 /* 1306 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1307 * cache 1308 */ 1309 static noinline int reada_for_balance(struct btrfs_root *root, 1310 struct btrfs_path *path, int level) 1311 { 1312 int slot; 1313 int nritems; 1314 struct extent_buffer *parent; 1315 struct extent_buffer *eb; 1316 u64 gen; 1317 u64 block1 = 0; 1318 u64 block2 = 0; 1319 int ret = 0; 1320 int blocksize; 1321 1322 parent = path->nodes[level + 1]; 1323 if (!parent) 1324 return 0; 1325 1326 nritems = btrfs_header_nritems(parent); 1327 slot = path->slots[level + 1]; 1328 blocksize = btrfs_level_size(root, level); 1329 1330 if (slot > 0) { 1331 block1 = btrfs_node_blockptr(parent, slot - 1); 1332 gen = btrfs_node_ptr_generation(parent, slot - 1); 1333 eb = btrfs_find_tree_block(root, block1, blocksize); 1334 if (eb && btrfs_buffer_uptodate(eb, gen)) 1335 block1 = 0; 1336 free_extent_buffer(eb); 1337 } 1338 if (slot + 1 < nritems) { 1339 block2 = btrfs_node_blockptr(parent, slot + 1); 1340 gen = btrfs_node_ptr_generation(parent, slot + 1); 1341 eb = btrfs_find_tree_block(root, block2, blocksize); 1342 if (eb && btrfs_buffer_uptodate(eb, gen)) 1343 block2 = 0; 1344 free_extent_buffer(eb); 1345 } 1346 if (block1 || block2) { 1347 ret = -EAGAIN; 1348 1349 /* release the whole path */ 1350 btrfs_release_path(path); 1351 1352 /* read the blocks */ 1353 if (block1) 1354 readahead_tree_block(root, block1, blocksize, 0); 1355 if (block2) 1356 readahead_tree_block(root, block2, blocksize, 0); 1357 1358 if (block1) { 1359 eb = read_tree_block(root, block1, blocksize, 0); 1360 free_extent_buffer(eb); 1361 } 1362 if (block2) { 1363 eb = read_tree_block(root, block2, blocksize, 0); 1364 free_extent_buffer(eb); 1365 } 1366 } 1367 return ret; 1368 } 1369 1370 1371 /* 1372 * when we walk down the tree, it is usually safe to unlock the higher layers 1373 * in the tree. The exceptions are when our path goes through slot 0, because 1374 * operations on the tree might require changing key pointers higher up in the 1375 * tree. 1376 * 1377 * callers might also have set path->keep_locks, which tells this code to keep 1378 * the lock if the path points to the last slot in the block. This is part of 1379 * walking through the tree, and selecting the next slot in the higher block. 1380 * 1381 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1382 * if lowest_unlock is 1, level 0 won't be unlocked 1383 */ 1384 static noinline void unlock_up(struct btrfs_path *path, int level, 1385 int lowest_unlock) 1386 { 1387 int i; 1388 int skip_level = level; 1389 int no_skips = 0; 1390 struct extent_buffer *t; 1391 1392 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1393 if (!path->nodes[i]) 1394 break; 1395 if (!path->locks[i]) 1396 break; 1397 if (!no_skips && path->slots[i] == 0) { 1398 skip_level = i + 1; 1399 continue; 1400 } 1401 if (!no_skips && path->keep_locks) { 1402 u32 nritems; 1403 t = path->nodes[i]; 1404 nritems = btrfs_header_nritems(t); 1405 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1406 skip_level = i + 1; 1407 continue; 1408 } 1409 } 1410 if (skip_level < i && i >= lowest_unlock) 1411 no_skips = 1; 1412 1413 t = path->nodes[i]; 1414 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1415 btrfs_tree_unlock_rw(t, path->locks[i]); 1416 path->locks[i] = 0; 1417 } 1418 } 1419 } 1420 1421 /* 1422 * This releases any locks held in the path starting at level and 1423 * going all the way up to the root. 1424 * 1425 * btrfs_search_slot will keep the lock held on higher nodes in a few 1426 * corner cases, such as COW of the block at slot zero in the node. This 1427 * ignores those rules, and it should only be called when there are no 1428 * more updates to be done higher up in the tree. 1429 */ 1430 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1431 { 1432 int i; 1433 1434 if (path->keep_locks) 1435 return; 1436 1437 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1438 if (!path->nodes[i]) 1439 continue; 1440 if (!path->locks[i]) 1441 continue; 1442 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1443 path->locks[i] = 0; 1444 } 1445 } 1446 1447 /* 1448 * helper function for btrfs_search_slot. The goal is to find a block 1449 * in cache without setting the path to blocking. If we find the block 1450 * we return zero and the path is unchanged. 1451 * 1452 * If we can't find the block, we set the path blocking and do some 1453 * reada. -EAGAIN is returned and the search must be repeated. 1454 */ 1455 static int 1456 read_block_for_search(struct btrfs_trans_handle *trans, 1457 struct btrfs_root *root, struct btrfs_path *p, 1458 struct extent_buffer **eb_ret, int level, int slot, 1459 struct btrfs_key *key) 1460 { 1461 u64 blocknr; 1462 u64 gen; 1463 u32 blocksize; 1464 struct extent_buffer *b = *eb_ret; 1465 struct extent_buffer *tmp; 1466 int ret; 1467 1468 blocknr = btrfs_node_blockptr(b, slot); 1469 gen = btrfs_node_ptr_generation(b, slot); 1470 blocksize = btrfs_level_size(root, level - 1); 1471 1472 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1473 if (tmp) { 1474 if (btrfs_buffer_uptodate(tmp, 0)) { 1475 if (btrfs_buffer_uptodate(tmp, gen)) { 1476 /* 1477 * we found an up to date block without 1478 * sleeping, return 1479 * right away 1480 */ 1481 *eb_ret = tmp; 1482 return 0; 1483 } 1484 /* the pages were up to date, but we failed 1485 * the generation number check. Do a full 1486 * read for the generation number that is correct. 1487 * We must do this without dropping locks so 1488 * we can trust our generation number 1489 */ 1490 free_extent_buffer(tmp); 1491 btrfs_set_path_blocking(p); 1492 1493 tmp = read_tree_block(root, blocknr, blocksize, gen); 1494 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1495 *eb_ret = tmp; 1496 return 0; 1497 } 1498 free_extent_buffer(tmp); 1499 btrfs_release_path(p); 1500 return -EIO; 1501 } 1502 } 1503 1504 /* 1505 * reduce lock contention at high levels 1506 * of the btree by dropping locks before 1507 * we read. Don't release the lock on the current 1508 * level because we need to walk this node to figure 1509 * out which blocks to read. 1510 */ 1511 btrfs_unlock_up_safe(p, level + 1); 1512 btrfs_set_path_blocking(p); 1513 1514 free_extent_buffer(tmp); 1515 if (p->reada) 1516 reada_for_search(root, p, level, slot, key->objectid); 1517 1518 btrfs_release_path(p); 1519 1520 ret = -EAGAIN; 1521 tmp = read_tree_block(root, blocknr, blocksize, 0); 1522 if (tmp) { 1523 /* 1524 * If the read above didn't mark this buffer up to date, 1525 * it will never end up being up to date. Set ret to EIO now 1526 * and give up so that our caller doesn't loop forever 1527 * on our EAGAINs. 1528 */ 1529 if (!btrfs_buffer_uptodate(tmp, 0)) 1530 ret = -EIO; 1531 free_extent_buffer(tmp); 1532 } 1533 return ret; 1534 } 1535 1536 /* 1537 * helper function for btrfs_search_slot. This does all of the checks 1538 * for node-level blocks and does any balancing required based on 1539 * the ins_len. 1540 * 1541 * If no extra work was required, zero is returned. If we had to 1542 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1543 * start over 1544 */ 1545 static int 1546 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1547 struct btrfs_root *root, struct btrfs_path *p, 1548 struct extent_buffer *b, int level, int ins_len, 1549 int *write_lock_level) 1550 { 1551 int ret; 1552 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1553 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1554 int sret; 1555 1556 if (*write_lock_level < level + 1) { 1557 *write_lock_level = level + 1; 1558 btrfs_release_path(p); 1559 goto again; 1560 } 1561 1562 sret = reada_for_balance(root, p, level); 1563 if (sret) 1564 goto again; 1565 1566 btrfs_set_path_blocking(p); 1567 sret = split_node(trans, root, p, level); 1568 btrfs_clear_path_blocking(p, NULL, 0); 1569 1570 BUG_ON(sret > 0); 1571 if (sret) { 1572 ret = sret; 1573 goto done; 1574 } 1575 b = p->nodes[level]; 1576 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1577 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 1578 int sret; 1579 1580 if (*write_lock_level < level + 1) { 1581 *write_lock_level = level + 1; 1582 btrfs_release_path(p); 1583 goto again; 1584 } 1585 1586 sret = reada_for_balance(root, p, level); 1587 if (sret) 1588 goto again; 1589 1590 btrfs_set_path_blocking(p); 1591 sret = balance_level(trans, root, p, level); 1592 btrfs_clear_path_blocking(p, NULL, 0); 1593 1594 if (sret) { 1595 ret = sret; 1596 goto done; 1597 } 1598 b = p->nodes[level]; 1599 if (!b) { 1600 btrfs_release_path(p); 1601 goto again; 1602 } 1603 BUG_ON(btrfs_header_nritems(b) == 1); 1604 } 1605 return 0; 1606 1607 again: 1608 ret = -EAGAIN; 1609 done: 1610 return ret; 1611 } 1612 1613 /* 1614 * look for key in the tree. path is filled in with nodes along the way 1615 * if key is found, we return zero and you can find the item in the leaf 1616 * level of the path (level 0) 1617 * 1618 * If the key isn't found, the path points to the slot where it should 1619 * be inserted, and 1 is returned. If there are other errors during the 1620 * search a negative error number is returned. 1621 * 1622 * if ins_len > 0, nodes and leaves will be split as we walk down the 1623 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1624 * possible) 1625 */ 1626 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1627 *root, struct btrfs_key *key, struct btrfs_path *p, int 1628 ins_len, int cow) 1629 { 1630 struct extent_buffer *b; 1631 int slot; 1632 int ret; 1633 int err; 1634 int level; 1635 int lowest_unlock = 1; 1636 int root_lock; 1637 /* everything at write_lock_level or lower must be write locked */ 1638 int write_lock_level = 0; 1639 u8 lowest_level = 0; 1640 1641 lowest_level = p->lowest_level; 1642 WARN_ON(lowest_level && ins_len > 0); 1643 WARN_ON(p->nodes[0] != NULL); 1644 1645 if (ins_len < 0) { 1646 lowest_unlock = 2; 1647 1648 /* when we are removing items, we might have to go up to level 1649 * two as we update tree pointers Make sure we keep write 1650 * for those levels as well 1651 */ 1652 write_lock_level = 2; 1653 } else if (ins_len > 0) { 1654 /* 1655 * for inserting items, make sure we have a write lock on 1656 * level 1 so we can update keys 1657 */ 1658 write_lock_level = 1; 1659 } 1660 1661 if (!cow) 1662 write_lock_level = -1; 1663 1664 if (cow && (p->keep_locks || p->lowest_level)) 1665 write_lock_level = BTRFS_MAX_LEVEL; 1666 1667 again: 1668 /* 1669 * we try very hard to do read locks on the root 1670 */ 1671 root_lock = BTRFS_READ_LOCK; 1672 level = 0; 1673 if (p->search_commit_root) { 1674 /* 1675 * the commit roots are read only 1676 * so we always do read locks 1677 */ 1678 b = root->commit_root; 1679 extent_buffer_get(b); 1680 level = btrfs_header_level(b); 1681 if (!p->skip_locking) 1682 btrfs_tree_read_lock(b); 1683 } else { 1684 if (p->skip_locking) { 1685 b = btrfs_root_node(root); 1686 level = btrfs_header_level(b); 1687 } else { 1688 /* we don't know the level of the root node 1689 * until we actually have it read locked 1690 */ 1691 b = btrfs_read_lock_root_node(root); 1692 level = btrfs_header_level(b); 1693 if (level <= write_lock_level) { 1694 /* whoops, must trade for write lock */ 1695 btrfs_tree_read_unlock(b); 1696 free_extent_buffer(b); 1697 b = btrfs_lock_root_node(root); 1698 root_lock = BTRFS_WRITE_LOCK; 1699 1700 /* the level might have changed, check again */ 1701 level = btrfs_header_level(b); 1702 } 1703 } 1704 } 1705 p->nodes[level] = b; 1706 if (!p->skip_locking) 1707 p->locks[level] = root_lock; 1708 1709 while (b) { 1710 level = btrfs_header_level(b); 1711 1712 /* 1713 * setup the path here so we can release it under lock 1714 * contention with the cow code 1715 */ 1716 if (cow) { 1717 /* 1718 * if we don't really need to cow this block 1719 * then we don't want to set the path blocking, 1720 * so we test it here 1721 */ 1722 if (!should_cow_block(trans, root, b)) 1723 goto cow_done; 1724 1725 btrfs_set_path_blocking(p); 1726 1727 /* 1728 * must have write locks on this node and the 1729 * parent 1730 */ 1731 if (level + 1 > write_lock_level) { 1732 write_lock_level = level + 1; 1733 btrfs_release_path(p); 1734 goto again; 1735 } 1736 1737 err = btrfs_cow_block(trans, root, b, 1738 p->nodes[level + 1], 1739 p->slots[level + 1], &b); 1740 if (err) { 1741 ret = err; 1742 goto done; 1743 } 1744 } 1745 cow_done: 1746 BUG_ON(!cow && ins_len); 1747 1748 p->nodes[level] = b; 1749 btrfs_clear_path_blocking(p, NULL, 0); 1750 1751 /* 1752 * we have a lock on b and as long as we aren't changing 1753 * the tree, there is no way to for the items in b to change. 1754 * It is safe to drop the lock on our parent before we 1755 * go through the expensive btree search on b. 1756 * 1757 * If cow is true, then we might be changing slot zero, 1758 * which may require changing the parent. So, we can't 1759 * drop the lock until after we know which slot we're 1760 * operating on. 1761 */ 1762 if (!cow) 1763 btrfs_unlock_up_safe(p, level + 1); 1764 1765 ret = bin_search(b, key, level, &slot); 1766 1767 if (level != 0) { 1768 int dec = 0; 1769 if (ret && slot > 0) { 1770 dec = 1; 1771 slot -= 1; 1772 } 1773 p->slots[level] = slot; 1774 err = setup_nodes_for_search(trans, root, p, b, level, 1775 ins_len, &write_lock_level); 1776 if (err == -EAGAIN) 1777 goto again; 1778 if (err) { 1779 ret = err; 1780 goto done; 1781 } 1782 b = p->nodes[level]; 1783 slot = p->slots[level]; 1784 1785 /* 1786 * slot 0 is special, if we change the key 1787 * we have to update the parent pointer 1788 * which means we must have a write lock 1789 * on the parent 1790 */ 1791 if (slot == 0 && cow && 1792 write_lock_level < level + 1) { 1793 write_lock_level = level + 1; 1794 btrfs_release_path(p); 1795 goto again; 1796 } 1797 1798 unlock_up(p, level, lowest_unlock); 1799 1800 if (level == lowest_level) { 1801 if (dec) 1802 p->slots[level]++; 1803 goto done; 1804 } 1805 1806 err = read_block_for_search(trans, root, p, 1807 &b, level, slot, key); 1808 if (err == -EAGAIN) 1809 goto again; 1810 if (err) { 1811 ret = err; 1812 goto done; 1813 } 1814 1815 if (!p->skip_locking) { 1816 level = btrfs_header_level(b); 1817 if (level <= write_lock_level) { 1818 err = btrfs_try_tree_write_lock(b); 1819 if (!err) { 1820 btrfs_set_path_blocking(p); 1821 btrfs_tree_lock(b); 1822 btrfs_clear_path_blocking(p, b, 1823 BTRFS_WRITE_LOCK); 1824 } 1825 p->locks[level] = BTRFS_WRITE_LOCK; 1826 } else { 1827 err = btrfs_try_tree_read_lock(b); 1828 if (!err) { 1829 btrfs_set_path_blocking(p); 1830 btrfs_tree_read_lock(b); 1831 btrfs_clear_path_blocking(p, b, 1832 BTRFS_READ_LOCK); 1833 } 1834 p->locks[level] = BTRFS_READ_LOCK; 1835 } 1836 p->nodes[level] = b; 1837 } 1838 } else { 1839 p->slots[level] = slot; 1840 if (ins_len > 0 && 1841 btrfs_leaf_free_space(root, b) < ins_len) { 1842 if (write_lock_level < 1) { 1843 write_lock_level = 1; 1844 btrfs_release_path(p); 1845 goto again; 1846 } 1847 1848 btrfs_set_path_blocking(p); 1849 err = split_leaf(trans, root, key, 1850 p, ins_len, ret == 0); 1851 btrfs_clear_path_blocking(p, NULL, 0); 1852 1853 BUG_ON(err > 0); 1854 if (err) { 1855 ret = err; 1856 goto done; 1857 } 1858 } 1859 if (!p->search_for_split) 1860 unlock_up(p, level, lowest_unlock); 1861 goto done; 1862 } 1863 } 1864 ret = 1; 1865 done: 1866 /* 1867 * we don't really know what they plan on doing with the path 1868 * from here on, so for now just mark it as blocking 1869 */ 1870 if (!p->leave_spinning) 1871 btrfs_set_path_blocking(p); 1872 if (ret < 0) 1873 btrfs_release_path(p); 1874 return ret; 1875 } 1876 1877 /* 1878 * adjust the pointers going up the tree, starting at level 1879 * making sure the right key of each node is points to 'key'. 1880 * This is used after shifting pointers to the left, so it stops 1881 * fixing up pointers when a given leaf/node is not in slot 0 of the 1882 * higher levels 1883 * 1884 * If this fails to write a tree block, it returns -1, but continues 1885 * fixing up the blocks in ram so the tree is consistent. 1886 */ 1887 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1888 struct btrfs_root *root, struct btrfs_path *path, 1889 struct btrfs_disk_key *key, int level) 1890 { 1891 int i; 1892 int ret = 0; 1893 struct extent_buffer *t; 1894 1895 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1896 int tslot = path->slots[i]; 1897 if (!path->nodes[i]) 1898 break; 1899 t = path->nodes[i]; 1900 btrfs_set_node_key(t, key, tslot); 1901 btrfs_mark_buffer_dirty(path->nodes[i]); 1902 if (tslot != 0) 1903 break; 1904 } 1905 return ret; 1906 } 1907 1908 /* 1909 * update item key. 1910 * 1911 * This function isn't completely safe. It's the caller's responsibility 1912 * that the new key won't break the order 1913 */ 1914 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1915 struct btrfs_root *root, struct btrfs_path *path, 1916 struct btrfs_key *new_key) 1917 { 1918 struct btrfs_disk_key disk_key; 1919 struct extent_buffer *eb; 1920 int slot; 1921 1922 eb = path->nodes[0]; 1923 slot = path->slots[0]; 1924 if (slot > 0) { 1925 btrfs_item_key(eb, &disk_key, slot - 1); 1926 if (comp_keys(&disk_key, new_key) >= 0) 1927 return -1; 1928 } 1929 if (slot < btrfs_header_nritems(eb) - 1) { 1930 btrfs_item_key(eb, &disk_key, slot + 1); 1931 if (comp_keys(&disk_key, new_key) <= 0) 1932 return -1; 1933 } 1934 1935 btrfs_cpu_key_to_disk(&disk_key, new_key); 1936 btrfs_set_item_key(eb, &disk_key, slot); 1937 btrfs_mark_buffer_dirty(eb); 1938 if (slot == 0) 1939 fixup_low_keys(trans, root, path, &disk_key, 1); 1940 return 0; 1941 } 1942 1943 /* 1944 * try to push data from one node into the next node left in the 1945 * tree. 1946 * 1947 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1948 * error, and > 0 if there was no room in the left hand block. 1949 */ 1950 static int push_node_left(struct btrfs_trans_handle *trans, 1951 struct btrfs_root *root, struct extent_buffer *dst, 1952 struct extent_buffer *src, int empty) 1953 { 1954 int push_items = 0; 1955 int src_nritems; 1956 int dst_nritems; 1957 int ret = 0; 1958 1959 src_nritems = btrfs_header_nritems(src); 1960 dst_nritems = btrfs_header_nritems(dst); 1961 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1962 WARN_ON(btrfs_header_generation(src) != trans->transid); 1963 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1964 1965 if (!empty && src_nritems <= 8) 1966 return 1; 1967 1968 if (push_items <= 0) 1969 return 1; 1970 1971 if (empty) { 1972 push_items = min(src_nritems, push_items); 1973 if (push_items < src_nritems) { 1974 /* leave at least 8 pointers in the node if 1975 * we aren't going to empty it 1976 */ 1977 if (src_nritems - push_items < 8) { 1978 if (push_items <= 8) 1979 return 1; 1980 push_items -= 8; 1981 } 1982 } 1983 } else 1984 push_items = min(src_nritems - 8, push_items); 1985 1986 copy_extent_buffer(dst, src, 1987 btrfs_node_key_ptr_offset(dst_nritems), 1988 btrfs_node_key_ptr_offset(0), 1989 push_items * sizeof(struct btrfs_key_ptr)); 1990 1991 if (push_items < src_nritems) { 1992 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 1993 btrfs_node_key_ptr_offset(push_items), 1994 (src_nritems - push_items) * 1995 sizeof(struct btrfs_key_ptr)); 1996 } 1997 btrfs_set_header_nritems(src, src_nritems - push_items); 1998 btrfs_set_header_nritems(dst, dst_nritems + push_items); 1999 btrfs_mark_buffer_dirty(src); 2000 btrfs_mark_buffer_dirty(dst); 2001 2002 return ret; 2003 } 2004 2005 /* 2006 * try to push data from one node into the next node right in the 2007 * tree. 2008 * 2009 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2010 * error, and > 0 if there was no room in the right hand block. 2011 * 2012 * this will only push up to 1/2 the contents of the left node over 2013 */ 2014 static int balance_node_right(struct btrfs_trans_handle *trans, 2015 struct btrfs_root *root, 2016 struct extent_buffer *dst, 2017 struct extent_buffer *src) 2018 { 2019 int push_items = 0; 2020 int max_push; 2021 int src_nritems; 2022 int dst_nritems; 2023 int ret = 0; 2024 2025 WARN_ON(btrfs_header_generation(src) != trans->transid); 2026 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2027 2028 src_nritems = btrfs_header_nritems(src); 2029 dst_nritems = btrfs_header_nritems(dst); 2030 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2031 if (push_items <= 0) 2032 return 1; 2033 2034 if (src_nritems < 4) 2035 return 1; 2036 2037 max_push = src_nritems / 2 + 1; 2038 /* don't try to empty the node */ 2039 if (max_push >= src_nritems) 2040 return 1; 2041 2042 if (max_push < push_items) 2043 push_items = max_push; 2044 2045 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2046 btrfs_node_key_ptr_offset(0), 2047 (dst_nritems) * 2048 sizeof(struct btrfs_key_ptr)); 2049 2050 copy_extent_buffer(dst, src, 2051 btrfs_node_key_ptr_offset(0), 2052 btrfs_node_key_ptr_offset(src_nritems - push_items), 2053 push_items * sizeof(struct btrfs_key_ptr)); 2054 2055 btrfs_set_header_nritems(src, src_nritems - push_items); 2056 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2057 2058 btrfs_mark_buffer_dirty(src); 2059 btrfs_mark_buffer_dirty(dst); 2060 2061 return ret; 2062 } 2063 2064 /* 2065 * helper function to insert a new root level in the tree. 2066 * A new node is allocated, and a single item is inserted to 2067 * point to the existing root 2068 * 2069 * returns zero on success or < 0 on failure. 2070 */ 2071 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2072 struct btrfs_root *root, 2073 struct btrfs_path *path, int level) 2074 { 2075 u64 lower_gen; 2076 struct extent_buffer *lower; 2077 struct extent_buffer *c; 2078 struct extent_buffer *old; 2079 struct btrfs_disk_key lower_key; 2080 2081 BUG_ON(path->nodes[level]); 2082 BUG_ON(path->nodes[level-1] != root->node); 2083 2084 lower = path->nodes[level-1]; 2085 if (level == 1) 2086 btrfs_item_key(lower, &lower_key, 0); 2087 else 2088 btrfs_node_key(lower, &lower_key, 0); 2089 2090 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2091 root->root_key.objectid, &lower_key, 2092 level, root->node->start, 0, 0); 2093 if (IS_ERR(c)) 2094 return PTR_ERR(c); 2095 2096 root_add_used(root, root->nodesize); 2097 2098 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2099 btrfs_set_header_nritems(c, 1); 2100 btrfs_set_header_level(c, level); 2101 btrfs_set_header_bytenr(c, c->start); 2102 btrfs_set_header_generation(c, trans->transid); 2103 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2104 btrfs_set_header_owner(c, root->root_key.objectid); 2105 2106 write_extent_buffer(c, root->fs_info->fsid, 2107 (unsigned long)btrfs_header_fsid(c), 2108 BTRFS_FSID_SIZE); 2109 2110 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2111 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2112 BTRFS_UUID_SIZE); 2113 2114 btrfs_set_node_key(c, &lower_key, 0); 2115 btrfs_set_node_blockptr(c, 0, lower->start); 2116 lower_gen = btrfs_header_generation(lower); 2117 WARN_ON(lower_gen != trans->transid); 2118 2119 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2120 2121 btrfs_mark_buffer_dirty(c); 2122 2123 old = root->node; 2124 rcu_assign_pointer(root->node, c); 2125 2126 /* the super has an extra ref to root->node */ 2127 free_extent_buffer(old); 2128 2129 add_root_to_dirty_list(root); 2130 extent_buffer_get(c); 2131 path->nodes[level] = c; 2132 path->locks[level] = BTRFS_WRITE_LOCK; 2133 path->slots[level] = 0; 2134 return 0; 2135 } 2136 2137 /* 2138 * worker function to insert a single pointer in a node. 2139 * the node should have enough room for the pointer already 2140 * 2141 * slot and level indicate where you want the key to go, and 2142 * blocknr is the block the key points to. 2143 * 2144 * returns zero on success and < 0 on any error 2145 */ 2146 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2147 *root, struct btrfs_path *path, struct btrfs_disk_key 2148 *key, u64 bytenr, int slot, int level) 2149 { 2150 struct extent_buffer *lower; 2151 int nritems; 2152 2153 BUG_ON(!path->nodes[level]); 2154 btrfs_assert_tree_locked(path->nodes[level]); 2155 lower = path->nodes[level]; 2156 nritems = btrfs_header_nritems(lower); 2157 BUG_ON(slot > nritems); 2158 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2159 BUG(); 2160 if (slot != nritems) { 2161 memmove_extent_buffer(lower, 2162 btrfs_node_key_ptr_offset(slot + 1), 2163 btrfs_node_key_ptr_offset(slot), 2164 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2165 } 2166 btrfs_set_node_key(lower, key, slot); 2167 btrfs_set_node_blockptr(lower, slot, bytenr); 2168 WARN_ON(trans->transid == 0); 2169 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2170 btrfs_set_header_nritems(lower, nritems + 1); 2171 btrfs_mark_buffer_dirty(lower); 2172 return 0; 2173 } 2174 2175 /* 2176 * split the node at the specified level in path in two. 2177 * The path is corrected to point to the appropriate node after the split 2178 * 2179 * Before splitting this tries to make some room in the node by pushing 2180 * left and right, if either one works, it returns right away. 2181 * 2182 * returns 0 on success and < 0 on failure 2183 */ 2184 static noinline int split_node(struct btrfs_trans_handle *trans, 2185 struct btrfs_root *root, 2186 struct btrfs_path *path, int level) 2187 { 2188 struct extent_buffer *c; 2189 struct extent_buffer *split; 2190 struct btrfs_disk_key disk_key; 2191 int mid; 2192 int ret; 2193 int wret; 2194 u32 c_nritems; 2195 2196 c = path->nodes[level]; 2197 WARN_ON(btrfs_header_generation(c) != trans->transid); 2198 if (c == root->node) { 2199 /* trying to split the root, lets make a new one */ 2200 ret = insert_new_root(trans, root, path, level + 1); 2201 if (ret) 2202 return ret; 2203 } else { 2204 ret = push_nodes_for_insert(trans, root, path, level); 2205 c = path->nodes[level]; 2206 if (!ret && btrfs_header_nritems(c) < 2207 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2208 return 0; 2209 if (ret < 0) 2210 return ret; 2211 } 2212 2213 c_nritems = btrfs_header_nritems(c); 2214 mid = (c_nritems + 1) / 2; 2215 btrfs_node_key(c, &disk_key, mid); 2216 2217 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2218 root->root_key.objectid, 2219 &disk_key, level, c->start, 0, 0); 2220 if (IS_ERR(split)) 2221 return PTR_ERR(split); 2222 2223 root_add_used(root, root->nodesize); 2224 2225 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2226 btrfs_set_header_level(split, btrfs_header_level(c)); 2227 btrfs_set_header_bytenr(split, split->start); 2228 btrfs_set_header_generation(split, trans->transid); 2229 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2230 btrfs_set_header_owner(split, root->root_key.objectid); 2231 write_extent_buffer(split, root->fs_info->fsid, 2232 (unsigned long)btrfs_header_fsid(split), 2233 BTRFS_FSID_SIZE); 2234 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2235 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2236 BTRFS_UUID_SIZE); 2237 2238 2239 copy_extent_buffer(split, c, 2240 btrfs_node_key_ptr_offset(0), 2241 btrfs_node_key_ptr_offset(mid), 2242 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2243 btrfs_set_header_nritems(split, c_nritems - mid); 2244 btrfs_set_header_nritems(c, mid); 2245 ret = 0; 2246 2247 btrfs_mark_buffer_dirty(c); 2248 btrfs_mark_buffer_dirty(split); 2249 2250 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2251 path->slots[level + 1] + 1, 2252 level + 1); 2253 if (wret) 2254 ret = wret; 2255 2256 if (path->slots[level] >= mid) { 2257 path->slots[level] -= mid; 2258 btrfs_tree_unlock(c); 2259 free_extent_buffer(c); 2260 path->nodes[level] = split; 2261 path->slots[level + 1] += 1; 2262 } else { 2263 btrfs_tree_unlock(split); 2264 free_extent_buffer(split); 2265 } 2266 return ret; 2267 } 2268 2269 /* 2270 * how many bytes are required to store the items in a leaf. start 2271 * and nr indicate which items in the leaf to check. This totals up the 2272 * space used both by the item structs and the item data 2273 */ 2274 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2275 { 2276 int data_len; 2277 int nritems = btrfs_header_nritems(l); 2278 int end = min(nritems, start + nr) - 1; 2279 2280 if (!nr) 2281 return 0; 2282 data_len = btrfs_item_end_nr(l, start); 2283 data_len = data_len - btrfs_item_offset_nr(l, end); 2284 data_len += sizeof(struct btrfs_item) * nr; 2285 WARN_ON(data_len < 0); 2286 return data_len; 2287 } 2288 2289 /* 2290 * The space between the end of the leaf items and 2291 * the start of the leaf data. IOW, how much room 2292 * the leaf has left for both items and data 2293 */ 2294 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2295 struct extent_buffer *leaf) 2296 { 2297 int nritems = btrfs_header_nritems(leaf); 2298 int ret; 2299 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2300 if (ret < 0) { 2301 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2302 "used %d nritems %d\n", 2303 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2304 leaf_space_used(leaf, 0, nritems), nritems); 2305 } 2306 return ret; 2307 } 2308 2309 /* 2310 * min slot controls the lowest index we're willing to push to the 2311 * right. We'll push up to and including min_slot, but no lower 2312 */ 2313 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2314 struct btrfs_root *root, 2315 struct btrfs_path *path, 2316 int data_size, int empty, 2317 struct extent_buffer *right, 2318 int free_space, u32 left_nritems, 2319 u32 min_slot) 2320 { 2321 struct extent_buffer *left = path->nodes[0]; 2322 struct extent_buffer *upper = path->nodes[1]; 2323 struct btrfs_disk_key disk_key; 2324 int slot; 2325 u32 i; 2326 int push_space = 0; 2327 int push_items = 0; 2328 struct btrfs_item *item; 2329 u32 nr; 2330 u32 right_nritems; 2331 u32 data_end; 2332 u32 this_item_size; 2333 2334 if (empty) 2335 nr = 0; 2336 else 2337 nr = max_t(u32, 1, min_slot); 2338 2339 if (path->slots[0] >= left_nritems) 2340 push_space += data_size; 2341 2342 slot = path->slots[1]; 2343 i = left_nritems - 1; 2344 while (i >= nr) { 2345 item = btrfs_item_nr(left, i); 2346 2347 if (!empty && push_items > 0) { 2348 if (path->slots[0] > i) 2349 break; 2350 if (path->slots[0] == i) { 2351 int space = btrfs_leaf_free_space(root, left); 2352 if (space + push_space * 2 > free_space) 2353 break; 2354 } 2355 } 2356 2357 if (path->slots[0] == i) 2358 push_space += data_size; 2359 2360 this_item_size = btrfs_item_size(left, item); 2361 if (this_item_size + sizeof(*item) + push_space > free_space) 2362 break; 2363 2364 push_items++; 2365 push_space += this_item_size + sizeof(*item); 2366 if (i == 0) 2367 break; 2368 i--; 2369 } 2370 2371 if (push_items == 0) 2372 goto out_unlock; 2373 2374 if (!empty && push_items == left_nritems) 2375 WARN_ON(1); 2376 2377 /* push left to right */ 2378 right_nritems = btrfs_header_nritems(right); 2379 2380 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2381 push_space -= leaf_data_end(root, left); 2382 2383 /* make room in the right data area */ 2384 data_end = leaf_data_end(root, right); 2385 memmove_extent_buffer(right, 2386 btrfs_leaf_data(right) + data_end - push_space, 2387 btrfs_leaf_data(right) + data_end, 2388 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2389 2390 /* copy from the left data area */ 2391 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2392 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2393 btrfs_leaf_data(left) + leaf_data_end(root, left), 2394 push_space); 2395 2396 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2397 btrfs_item_nr_offset(0), 2398 right_nritems * sizeof(struct btrfs_item)); 2399 2400 /* copy the items from left to right */ 2401 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2402 btrfs_item_nr_offset(left_nritems - push_items), 2403 push_items * sizeof(struct btrfs_item)); 2404 2405 /* update the item pointers */ 2406 right_nritems += push_items; 2407 btrfs_set_header_nritems(right, right_nritems); 2408 push_space = BTRFS_LEAF_DATA_SIZE(root); 2409 for (i = 0; i < right_nritems; i++) { 2410 item = btrfs_item_nr(right, i); 2411 push_space -= btrfs_item_size(right, item); 2412 btrfs_set_item_offset(right, item, push_space); 2413 } 2414 2415 left_nritems -= push_items; 2416 btrfs_set_header_nritems(left, left_nritems); 2417 2418 if (left_nritems) 2419 btrfs_mark_buffer_dirty(left); 2420 else 2421 clean_tree_block(trans, root, left); 2422 2423 btrfs_mark_buffer_dirty(right); 2424 2425 btrfs_item_key(right, &disk_key, 0); 2426 btrfs_set_node_key(upper, &disk_key, slot + 1); 2427 btrfs_mark_buffer_dirty(upper); 2428 2429 /* then fixup the leaf pointer in the path */ 2430 if (path->slots[0] >= left_nritems) { 2431 path->slots[0] -= left_nritems; 2432 if (btrfs_header_nritems(path->nodes[0]) == 0) 2433 clean_tree_block(trans, root, path->nodes[0]); 2434 btrfs_tree_unlock(path->nodes[0]); 2435 free_extent_buffer(path->nodes[0]); 2436 path->nodes[0] = right; 2437 path->slots[1] += 1; 2438 } else { 2439 btrfs_tree_unlock(right); 2440 free_extent_buffer(right); 2441 } 2442 return 0; 2443 2444 out_unlock: 2445 btrfs_tree_unlock(right); 2446 free_extent_buffer(right); 2447 return 1; 2448 } 2449 2450 /* 2451 * push some data in the path leaf to the right, trying to free up at 2452 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2453 * 2454 * returns 1 if the push failed because the other node didn't have enough 2455 * room, 0 if everything worked out and < 0 if there were major errors. 2456 * 2457 * this will push starting from min_slot to the end of the leaf. It won't 2458 * push any slot lower than min_slot 2459 */ 2460 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2461 *root, struct btrfs_path *path, 2462 int min_data_size, int data_size, 2463 int empty, u32 min_slot) 2464 { 2465 struct extent_buffer *left = path->nodes[0]; 2466 struct extent_buffer *right; 2467 struct extent_buffer *upper; 2468 int slot; 2469 int free_space; 2470 u32 left_nritems; 2471 int ret; 2472 2473 if (!path->nodes[1]) 2474 return 1; 2475 2476 slot = path->slots[1]; 2477 upper = path->nodes[1]; 2478 if (slot >= btrfs_header_nritems(upper) - 1) 2479 return 1; 2480 2481 btrfs_assert_tree_locked(path->nodes[1]); 2482 2483 right = read_node_slot(root, upper, slot + 1); 2484 if (right == NULL) 2485 return 1; 2486 2487 btrfs_tree_lock(right); 2488 btrfs_set_lock_blocking(right); 2489 2490 free_space = btrfs_leaf_free_space(root, right); 2491 if (free_space < data_size) 2492 goto out_unlock; 2493 2494 /* cow and double check */ 2495 ret = btrfs_cow_block(trans, root, right, upper, 2496 slot + 1, &right); 2497 if (ret) 2498 goto out_unlock; 2499 2500 free_space = btrfs_leaf_free_space(root, right); 2501 if (free_space < data_size) 2502 goto out_unlock; 2503 2504 left_nritems = btrfs_header_nritems(left); 2505 if (left_nritems == 0) 2506 goto out_unlock; 2507 2508 return __push_leaf_right(trans, root, path, min_data_size, empty, 2509 right, free_space, left_nritems, min_slot); 2510 out_unlock: 2511 btrfs_tree_unlock(right); 2512 free_extent_buffer(right); 2513 return 1; 2514 } 2515 2516 /* 2517 * push some data in the path leaf to the left, trying to free up at 2518 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2519 * 2520 * max_slot can put a limit on how far into the leaf we'll push items. The 2521 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2522 * items 2523 */ 2524 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2525 struct btrfs_root *root, 2526 struct btrfs_path *path, int data_size, 2527 int empty, struct extent_buffer *left, 2528 int free_space, u32 right_nritems, 2529 u32 max_slot) 2530 { 2531 struct btrfs_disk_key disk_key; 2532 struct extent_buffer *right = path->nodes[0]; 2533 int i; 2534 int push_space = 0; 2535 int push_items = 0; 2536 struct btrfs_item *item; 2537 u32 old_left_nritems; 2538 u32 nr; 2539 int ret = 0; 2540 int wret; 2541 u32 this_item_size; 2542 u32 old_left_item_size; 2543 2544 if (empty) 2545 nr = min(right_nritems, max_slot); 2546 else 2547 nr = min(right_nritems - 1, max_slot); 2548 2549 for (i = 0; i < nr; i++) { 2550 item = btrfs_item_nr(right, i); 2551 2552 if (!empty && push_items > 0) { 2553 if (path->slots[0] < i) 2554 break; 2555 if (path->slots[0] == i) { 2556 int space = btrfs_leaf_free_space(root, right); 2557 if (space + push_space * 2 > free_space) 2558 break; 2559 } 2560 } 2561 2562 if (path->slots[0] == i) 2563 push_space += data_size; 2564 2565 this_item_size = btrfs_item_size(right, item); 2566 if (this_item_size + sizeof(*item) + push_space > free_space) 2567 break; 2568 2569 push_items++; 2570 push_space += this_item_size + sizeof(*item); 2571 } 2572 2573 if (push_items == 0) { 2574 ret = 1; 2575 goto out; 2576 } 2577 if (!empty && push_items == btrfs_header_nritems(right)) 2578 WARN_ON(1); 2579 2580 /* push data from right to left */ 2581 copy_extent_buffer(left, right, 2582 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2583 btrfs_item_nr_offset(0), 2584 push_items * sizeof(struct btrfs_item)); 2585 2586 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2587 btrfs_item_offset_nr(right, push_items - 1); 2588 2589 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2590 leaf_data_end(root, left) - push_space, 2591 btrfs_leaf_data(right) + 2592 btrfs_item_offset_nr(right, push_items - 1), 2593 push_space); 2594 old_left_nritems = btrfs_header_nritems(left); 2595 BUG_ON(old_left_nritems <= 0); 2596 2597 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2598 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2599 u32 ioff; 2600 2601 item = btrfs_item_nr(left, i); 2602 2603 ioff = btrfs_item_offset(left, item); 2604 btrfs_set_item_offset(left, item, 2605 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2606 } 2607 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2608 2609 /* fixup right node */ 2610 if (push_items > right_nritems) { 2611 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2612 right_nritems); 2613 WARN_ON(1); 2614 } 2615 2616 if (push_items < right_nritems) { 2617 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2618 leaf_data_end(root, right); 2619 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2620 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2621 btrfs_leaf_data(right) + 2622 leaf_data_end(root, right), push_space); 2623 2624 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2625 btrfs_item_nr_offset(push_items), 2626 (btrfs_header_nritems(right) - push_items) * 2627 sizeof(struct btrfs_item)); 2628 } 2629 right_nritems -= push_items; 2630 btrfs_set_header_nritems(right, right_nritems); 2631 push_space = BTRFS_LEAF_DATA_SIZE(root); 2632 for (i = 0; i < right_nritems; i++) { 2633 item = btrfs_item_nr(right, i); 2634 2635 push_space = push_space - btrfs_item_size(right, item); 2636 btrfs_set_item_offset(right, item, push_space); 2637 } 2638 2639 btrfs_mark_buffer_dirty(left); 2640 if (right_nritems) 2641 btrfs_mark_buffer_dirty(right); 2642 else 2643 clean_tree_block(trans, root, right); 2644 2645 btrfs_item_key(right, &disk_key, 0); 2646 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2647 if (wret) 2648 ret = wret; 2649 2650 /* then fixup the leaf pointer in the path */ 2651 if (path->slots[0] < push_items) { 2652 path->slots[0] += old_left_nritems; 2653 btrfs_tree_unlock(path->nodes[0]); 2654 free_extent_buffer(path->nodes[0]); 2655 path->nodes[0] = left; 2656 path->slots[1] -= 1; 2657 } else { 2658 btrfs_tree_unlock(left); 2659 free_extent_buffer(left); 2660 path->slots[0] -= push_items; 2661 } 2662 BUG_ON(path->slots[0] < 0); 2663 return ret; 2664 out: 2665 btrfs_tree_unlock(left); 2666 free_extent_buffer(left); 2667 return ret; 2668 } 2669 2670 /* 2671 * push some data in the path leaf to the left, trying to free up at 2672 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2673 * 2674 * max_slot can put a limit on how far into the leaf we'll push items. The 2675 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 2676 * items 2677 */ 2678 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2679 *root, struct btrfs_path *path, int min_data_size, 2680 int data_size, int empty, u32 max_slot) 2681 { 2682 struct extent_buffer *right = path->nodes[0]; 2683 struct extent_buffer *left; 2684 int slot; 2685 int free_space; 2686 u32 right_nritems; 2687 int ret = 0; 2688 2689 slot = path->slots[1]; 2690 if (slot == 0) 2691 return 1; 2692 if (!path->nodes[1]) 2693 return 1; 2694 2695 right_nritems = btrfs_header_nritems(right); 2696 if (right_nritems == 0) 2697 return 1; 2698 2699 btrfs_assert_tree_locked(path->nodes[1]); 2700 2701 left = read_node_slot(root, path->nodes[1], slot - 1); 2702 if (left == NULL) 2703 return 1; 2704 2705 btrfs_tree_lock(left); 2706 btrfs_set_lock_blocking(left); 2707 2708 free_space = btrfs_leaf_free_space(root, left); 2709 if (free_space < data_size) { 2710 ret = 1; 2711 goto out; 2712 } 2713 2714 /* cow and double check */ 2715 ret = btrfs_cow_block(trans, root, left, 2716 path->nodes[1], slot - 1, &left); 2717 if (ret) { 2718 /* we hit -ENOSPC, but it isn't fatal here */ 2719 ret = 1; 2720 goto out; 2721 } 2722 2723 free_space = btrfs_leaf_free_space(root, left); 2724 if (free_space < data_size) { 2725 ret = 1; 2726 goto out; 2727 } 2728 2729 return __push_leaf_left(trans, root, path, min_data_size, 2730 empty, left, free_space, right_nritems, 2731 max_slot); 2732 out: 2733 btrfs_tree_unlock(left); 2734 free_extent_buffer(left); 2735 return ret; 2736 } 2737 2738 /* 2739 * split the path's leaf in two, making sure there is at least data_size 2740 * available for the resulting leaf level of the path. 2741 * 2742 * returns 0 if all went well and < 0 on failure. 2743 */ 2744 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2745 struct btrfs_root *root, 2746 struct btrfs_path *path, 2747 struct extent_buffer *l, 2748 struct extent_buffer *right, 2749 int slot, int mid, int nritems) 2750 { 2751 int data_copy_size; 2752 int rt_data_off; 2753 int i; 2754 int ret = 0; 2755 int wret; 2756 struct btrfs_disk_key disk_key; 2757 2758 nritems = nritems - mid; 2759 btrfs_set_header_nritems(right, nritems); 2760 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2761 2762 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2763 btrfs_item_nr_offset(mid), 2764 nritems * sizeof(struct btrfs_item)); 2765 2766 copy_extent_buffer(right, l, 2767 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2768 data_copy_size, btrfs_leaf_data(l) + 2769 leaf_data_end(root, l), data_copy_size); 2770 2771 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2772 btrfs_item_end_nr(l, mid); 2773 2774 for (i = 0; i < nritems; i++) { 2775 struct btrfs_item *item = btrfs_item_nr(right, i); 2776 u32 ioff; 2777 2778 ioff = btrfs_item_offset(right, item); 2779 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2780 } 2781 2782 btrfs_set_header_nritems(l, mid); 2783 ret = 0; 2784 btrfs_item_key(right, &disk_key, 0); 2785 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2786 path->slots[1] + 1, 1); 2787 if (wret) 2788 ret = wret; 2789 2790 btrfs_mark_buffer_dirty(right); 2791 btrfs_mark_buffer_dirty(l); 2792 BUG_ON(path->slots[0] != slot); 2793 2794 if (mid <= slot) { 2795 btrfs_tree_unlock(path->nodes[0]); 2796 free_extent_buffer(path->nodes[0]); 2797 path->nodes[0] = right; 2798 path->slots[0] -= mid; 2799 path->slots[1] += 1; 2800 } else { 2801 btrfs_tree_unlock(right); 2802 free_extent_buffer(right); 2803 } 2804 2805 BUG_ON(path->slots[0] < 0); 2806 2807 return ret; 2808 } 2809 2810 /* 2811 * double splits happen when we need to insert a big item in the middle 2812 * of a leaf. A double split can leave us with 3 mostly empty leaves: 2813 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 2814 * A B C 2815 * 2816 * We avoid this by trying to push the items on either side of our target 2817 * into the adjacent leaves. If all goes well we can avoid the double split 2818 * completely. 2819 */ 2820 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 2821 struct btrfs_root *root, 2822 struct btrfs_path *path, 2823 int data_size) 2824 { 2825 int ret; 2826 int progress = 0; 2827 int slot; 2828 u32 nritems; 2829 2830 slot = path->slots[0]; 2831 2832 /* 2833 * try to push all the items after our slot into the 2834 * right leaf 2835 */ 2836 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 2837 if (ret < 0) 2838 return ret; 2839 2840 if (ret == 0) 2841 progress++; 2842 2843 nritems = btrfs_header_nritems(path->nodes[0]); 2844 /* 2845 * our goal is to get our slot at the start or end of a leaf. If 2846 * we've done so we're done 2847 */ 2848 if (path->slots[0] == 0 || path->slots[0] == nritems) 2849 return 0; 2850 2851 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 2852 return 0; 2853 2854 /* try to push all the items before our slot into the next leaf */ 2855 slot = path->slots[0]; 2856 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 2857 if (ret < 0) 2858 return ret; 2859 2860 if (ret == 0) 2861 progress++; 2862 2863 if (progress) 2864 return 0; 2865 return 1; 2866 } 2867 2868 /* 2869 * split the path's leaf in two, making sure there is at least data_size 2870 * available for the resulting leaf level of the path. 2871 * 2872 * returns 0 if all went well and < 0 on failure. 2873 */ 2874 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2875 struct btrfs_root *root, 2876 struct btrfs_key *ins_key, 2877 struct btrfs_path *path, int data_size, 2878 int extend) 2879 { 2880 struct btrfs_disk_key disk_key; 2881 struct extent_buffer *l; 2882 u32 nritems; 2883 int mid; 2884 int slot; 2885 struct extent_buffer *right; 2886 int ret = 0; 2887 int wret; 2888 int split; 2889 int num_doubles = 0; 2890 int tried_avoid_double = 0; 2891 2892 l = path->nodes[0]; 2893 slot = path->slots[0]; 2894 if (extend && data_size + btrfs_item_size_nr(l, slot) + 2895 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 2896 return -EOVERFLOW; 2897 2898 /* first try to make some room by pushing left and right */ 2899 if (data_size) { 2900 wret = push_leaf_right(trans, root, path, data_size, 2901 data_size, 0, 0); 2902 if (wret < 0) 2903 return wret; 2904 if (wret) { 2905 wret = push_leaf_left(trans, root, path, data_size, 2906 data_size, 0, (u32)-1); 2907 if (wret < 0) 2908 return wret; 2909 } 2910 l = path->nodes[0]; 2911 2912 /* did the pushes work? */ 2913 if (btrfs_leaf_free_space(root, l) >= data_size) 2914 return 0; 2915 } 2916 2917 if (!path->nodes[1]) { 2918 ret = insert_new_root(trans, root, path, 1); 2919 if (ret) 2920 return ret; 2921 } 2922 again: 2923 split = 1; 2924 l = path->nodes[0]; 2925 slot = path->slots[0]; 2926 nritems = btrfs_header_nritems(l); 2927 mid = (nritems + 1) / 2; 2928 2929 if (mid <= slot) { 2930 if (nritems == 1 || 2931 leaf_space_used(l, mid, nritems - mid) + data_size > 2932 BTRFS_LEAF_DATA_SIZE(root)) { 2933 if (slot >= nritems) { 2934 split = 0; 2935 } else { 2936 mid = slot; 2937 if (mid != nritems && 2938 leaf_space_used(l, mid, nritems - mid) + 2939 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2940 if (data_size && !tried_avoid_double) 2941 goto push_for_double; 2942 split = 2; 2943 } 2944 } 2945 } 2946 } else { 2947 if (leaf_space_used(l, 0, mid) + data_size > 2948 BTRFS_LEAF_DATA_SIZE(root)) { 2949 if (!extend && data_size && slot == 0) { 2950 split = 0; 2951 } else if ((extend || !data_size) && slot == 0) { 2952 mid = 1; 2953 } else { 2954 mid = slot; 2955 if (mid != nritems && 2956 leaf_space_used(l, mid, nritems - mid) + 2957 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2958 if (data_size && !tried_avoid_double) 2959 goto push_for_double; 2960 split = 2 ; 2961 } 2962 } 2963 } 2964 } 2965 2966 if (split == 0) 2967 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2968 else 2969 btrfs_item_key(l, &disk_key, mid); 2970 2971 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 2972 root->root_key.objectid, 2973 &disk_key, 0, l->start, 0, 0); 2974 if (IS_ERR(right)) 2975 return PTR_ERR(right); 2976 2977 root_add_used(root, root->leafsize); 2978 2979 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2980 btrfs_set_header_bytenr(right, right->start); 2981 btrfs_set_header_generation(right, trans->transid); 2982 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 2983 btrfs_set_header_owner(right, root->root_key.objectid); 2984 btrfs_set_header_level(right, 0); 2985 write_extent_buffer(right, root->fs_info->fsid, 2986 (unsigned long)btrfs_header_fsid(right), 2987 BTRFS_FSID_SIZE); 2988 2989 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2990 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2991 BTRFS_UUID_SIZE); 2992 2993 if (split == 0) { 2994 if (mid <= slot) { 2995 btrfs_set_header_nritems(right, 0); 2996 wret = insert_ptr(trans, root, path, 2997 &disk_key, right->start, 2998 path->slots[1] + 1, 1); 2999 if (wret) 3000 ret = wret; 3001 3002 btrfs_tree_unlock(path->nodes[0]); 3003 free_extent_buffer(path->nodes[0]); 3004 path->nodes[0] = right; 3005 path->slots[0] = 0; 3006 path->slots[1] += 1; 3007 } else { 3008 btrfs_set_header_nritems(right, 0); 3009 wret = insert_ptr(trans, root, path, 3010 &disk_key, 3011 right->start, 3012 path->slots[1], 1); 3013 if (wret) 3014 ret = wret; 3015 btrfs_tree_unlock(path->nodes[0]); 3016 free_extent_buffer(path->nodes[0]); 3017 path->nodes[0] = right; 3018 path->slots[0] = 0; 3019 if (path->slots[1] == 0) { 3020 wret = fixup_low_keys(trans, root, 3021 path, &disk_key, 1); 3022 if (wret) 3023 ret = wret; 3024 } 3025 } 3026 btrfs_mark_buffer_dirty(right); 3027 return ret; 3028 } 3029 3030 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3031 BUG_ON(ret); 3032 3033 if (split == 2) { 3034 BUG_ON(num_doubles != 0); 3035 num_doubles++; 3036 goto again; 3037 } 3038 3039 return ret; 3040 3041 push_for_double: 3042 push_for_double_split(trans, root, path, data_size); 3043 tried_avoid_double = 1; 3044 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3045 return 0; 3046 goto again; 3047 } 3048 3049 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3050 struct btrfs_root *root, 3051 struct btrfs_path *path, int ins_len) 3052 { 3053 struct btrfs_key key; 3054 struct extent_buffer *leaf; 3055 struct btrfs_file_extent_item *fi; 3056 u64 extent_len = 0; 3057 u32 item_size; 3058 int ret; 3059 3060 leaf = path->nodes[0]; 3061 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3062 3063 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3064 key.type != BTRFS_EXTENT_CSUM_KEY); 3065 3066 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3067 return 0; 3068 3069 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3070 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3071 fi = btrfs_item_ptr(leaf, path->slots[0], 3072 struct btrfs_file_extent_item); 3073 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3074 } 3075 btrfs_release_path(path); 3076 3077 path->keep_locks = 1; 3078 path->search_for_split = 1; 3079 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3080 path->search_for_split = 0; 3081 if (ret < 0) 3082 goto err; 3083 3084 ret = -EAGAIN; 3085 leaf = path->nodes[0]; 3086 /* if our item isn't there or got smaller, return now */ 3087 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3088 goto err; 3089 3090 /* the leaf has changed, it now has room. return now */ 3091 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3092 goto err; 3093 3094 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3095 fi = btrfs_item_ptr(leaf, path->slots[0], 3096 struct btrfs_file_extent_item); 3097 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3098 goto err; 3099 } 3100 3101 btrfs_set_path_blocking(path); 3102 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3103 if (ret) 3104 goto err; 3105 3106 path->keep_locks = 0; 3107 btrfs_unlock_up_safe(path, 1); 3108 return 0; 3109 err: 3110 path->keep_locks = 0; 3111 return ret; 3112 } 3113 3114 static noinline int split_item(struct btrfs_trans_handle *trans, 3115 struct btrfs_root *root, 3116 struct btrfs_path *path, 3117 struct btrfs_key *new_key, 3118 unsigned long split_offset) 3119 { 3120 struct extent_buffer *leaf; 3121 struct btrfs_item *item; 3122 struct btrfs_item *new_item; 3123 int slot; 3124 char *buf; 3125 u32 nritems; 3126 u32 item_size; 3127 u32 orig_offset; 3128 struct btrfs_disk_key disk_key; 3129 3130 leaf = path->nodes[0]; 3131 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3132 3133 btrfs_set_path_blocking(path); 3134 3135 item = btrfs_item_nr(leaf, path->slots[0]); 3136 orig_offset = btrfs_item_offset(leaf, item); 3137 item_size = btrfs_item_size(leaf, item); 3138 3139 buf = kmalloc(item_size, GFP_NOFS); 3140 if (!buf) 3141 return -ENOMEM; 3142 3143 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3144 path->slots[0]), item_size); 3145 3146 slot = path->slots[0] + 1; 3147 nritems = btrfs_header_nritems(leaf); 3148 if (slot != nritems) { 3149 /* shift the items */ 3150 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3151 btrfs_item_nr_offset(slot), 3152 (nritems - slot) * sizeof(struct btrfs_item)); 3153 } 3154 3155 btrfs_cpu_key_to_disk(&disk_key, new_key); 3156 btrfs_set_item_key(leaf, &disk_key, slot); 3157 3158 new_item = btrfs_item_nr(leaf, slot); 3159 3160 btrfs_set_item_offset(leaf, new_item, orig_offset); 3161 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3162 3163 btrfs_set_item_offset(leaf, item, 3164 orig_offset + item_size - split_offset); 3165 btrfs_set_item_size(leaf, item, split_offset); 3166 3167 btrfs_set_header_nritems(leaf, nritems + 1); 3168 3169 /* write the data for the start of the original item */ 3170 write_extent_buffer(leaf, buf, 3171 btrfs_item_ptr_offset(leaf, path->slots[0]), 3172 split_offset); 3173 3174 /* write the data for the new item */ 3175 write_extent_buffer(leaf, buf + split_offset, 3176 btrfs_item_ptr_offset(leaf, slot), 3177 item_size - split_offset); 3178 btrfs_mark_buffer_dirty(leaf); 3179 3180 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3181 kfree(buf); 3182 return 0; 3183 } 3184 3185 /* 3186 * This function splits a single item into two items, 3187 * giving 'new_key' to the new item and splitting the 3188 * old one at split_offset (from the start of the item). 3189 * 3190 * The path may be released by this operation. After 3191 * the split, the path is pointing to the old item. The 3192 * new item is going to be in the same node as the old one. 3193 * 3194 * Note, the item being split must be smaller enough to live alone on 3195 * a tree block with room for one extra struct btrfs_item 3196 * 3197 * This allows us to split the item in place, keeping a lock on the 3198 * leaf the entire time. 3199 */ 3200 int btrfs_split_item(struct btrfs_trans_handle *trans, 3201 struct btrfs_root *root, 3202 struct btrfs_path *path, 3203 struct btrfs_key *new_key, 3204 unsigned long split_offset) 3205 { 3206 int ret; 3207 ret = setup_leaf_for_split(trans, root, path, 3208 sizeof(struct btrfs_item)); 3209 if (ret) 3210 return ret; 3211 3212 ret = split_item(trans, root, path, new_key, split_offset); 3213 return ret; 3214 } 3215 3216 /* 3217 * This function duplicate a item, giving 'new_key' to the new item. 3218 * It guarantees both items live in the same tree leaf and the new item 3219 * is contiguous with the original item. 3220 * 3221 * This allows us to split file extent in place, keeping a lock on the 3222 * leaf the entire time. 3223 */ 3224 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3225 struct btrfs_root *root, 3226 struct btrfs_path *path, 3227 struct btrfs_key *new_key) 3228 { 3229 struct extent_buffer *leaf; 3230 int ret; 3231 u32 item_size; 3232 3233 leaf = path->nodes[0]; 3234 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3235 ret = setup_leaf_for_split(trans, root, path, 3236 item_size + sizeof(struct btrfs_item)); 3237 if (ret) 3238 return ret; 3239 3240 path->slots[0]++; 3241 ret = setup_items_for_insert(trans, root, path, new_key, &item_size, 3242 item_size, item_size + 3243 sizeof(struct btrfs_item), 1); 3244 BUG_ON(ret); 3245 3246 leaf = path->nodes[0]; 3247 memcpy_extent_buffer(leaf, 3248 btrfs_item_ptr_offset(leaf, path->slots[0]), 3249 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3250 item_size); 3251 return 0; 3252 } 3253 3254 /* 3255 * make the item pointed to by the path smaller. new_size indicates 3256 * how small to make it, and from_end tells us if we just chop bytes 3257 * off the end of the item or if we shift the item to chop bytes off 3258 * the front. 3259 */ 3260 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3261 struct btrfs_root *root, 3262 struct btrfs_path *path, 3263 u32 new_size, int from_end) 3264 { 3265 int slot; 3266 struct extent_buffer *leaf; 3267 struct btrfs_item *item; 3268 u32 nritems; 3269 unsigned int data_end; 3270 unsigned int old_data_start; 3271 unsigned int old_size; 3272 unsigned int size_diff; 3273 int i; 3274 3275 leaf = path->nodes[0]; 3276 slot = path->slots[0]; 3277 3278 old_size = btrfs_item_size_nr(leaf, slot); 3279 if (old_size == new_size) 3280 return 0; 3281 3282 nritems = btrfs_header_nritems(leaf); 3283 data_end = leaf_data_end(root, leaf); 3284 3285 old_data_start = btrfs_item_offset_nr(leaf, slot); 3286 3287 size_diff = old_size - new_size; 3288 3289 BUG_ON(slot < 0); 3290 BUG_ON(slot >= nritems); 3291 3292 /* 3293 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3294 */ 3295 /* first correct the data pointers */ 3296 for (i = slot; i < nritems; i++) { 3297 u32 ioff; 3298 item = btrfs_item_nr(leaf, i); 3299 3300 ioff = btrfs_item_offset(leaf, item); 3301 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3302 } 3303 3304 /* shift the data */ 3305 if (from_end) { 3306 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3307 data_end + size_diff, btrfs_leaf_data(leaf) + 3308 data_end, old_data_start + new_size - data_end); 3309 } else { 3310 struct btrfs_disk_key disk_key; 3311 u64 offset; 3312 3313 btrfs_item_key(leaf, &disk_key, slot); 3314 3315 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3316 unsigned long ptr; 3317 struct btrfs_file_extent_item *fi; 3318 3319 fi = btrfs_item_ptr(leaf, slot, 3320 struct btrfs_file_extent_item); 3321 fi = (struct btrfs_file_extent_item *)( 3322 (unsigned long)fi - size_diff); 3323 3324 if (btrfs_file_extent_type(leaf, fi) == 3325 BTRFS_FILE_EXTENT_INLINE) { 3326 ptr = btrfs_item_ptr_offset(leaf, slot); 3327 memmove_extent_buffer(leaf, ptr, 3328 (unsigned long)fi, 3329 offsetof(struct btrfs_file_extent_item, 3330 disk_bytenr)); 3331 } 3332 } 3333 3334 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3335 data_end + size_diff, btrfs_leaf_data(leaf) + 3336 data_end, old_data_start - data_end); 3337 3338 offset = btrfs_disk_key_offset(&disk_key); 3339 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3340 btrfs_set_item_key(leaf, &disk_key, slot); 3341 if (slot == 0) 3342 fixup_low_keys(trans, root, path, &disk_key, 1); 3343 } 3344 3345 item = btrfs_item_nr(leaf, slot); 3346 btrfs_set_item_size(leaf, item, new_size); 3347 btrfs_mark_buffer_dirty(leaf); 3348 3349 if (btrfs_leaf_free_space(root, leaf) < 0) { 3350 btrfs_print_leaf(root, leaf); 3351 BUG(); 3352 } 3353 return 0; 3354 } 3355 3356 /* 3357 * make the item pointed to by the path bigger, data_size is the new size. 3358 */ 3359 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3360 struct btrfs_root *root, struct btrfs_path *path, 3361 u32 data_size) 3362 { 3363 int slot; 3364 struct extent_buffer *leaf; 3365 struct btrfs_item *item; 3366 u32 nritems; 3367 unsigned int data_end; 3368 unsigned int old_data; 3369 unsigned int old_size; 3370 int i; 3371 3372 leaf = path->nodes[0]; 3373 3374 nritems = btrfs_header_nritems(leaf); 3375 data_end = leaf_data_end(root, leaf); 3376 3377 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3378 btrfs_print_leaf(root, leaf); 3379 BUG(); 3380 } 3381 slot = path->slots[0]; 3382 old_data = btrfs_item_end_nr(leaf, slot); 3383 3384 BUG_ON(slot < 0); 3385 if (slot >= nritems) { 3386 btrfs_print_leaf(root, leaf); 3387 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3388 slot, nritems); 3389 BUG_ON(1); 3390 } 3391 3392 /* 3393 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3394 */ 3395 /* first correct the data pointers */ 3396 for (i = slot; i < nritems; i++) { 3397 u32 ioff; 3398 item = btrfs_item_nr(leaf, i); 3399 3400 ioff = btrfs_item_offset(leaf, item); 3401 btrfs_set_item_offset(leaf, item, ioff - data_size); 3402 } 3403 3404 /* shift the data */ 3405 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3406 data_end - data_size, btrfs_leaf_data(leaf) + 3407 data_end, old_data - data_end); 3408 3409 data_end = old_data; 3410 old_size = btrfs_item_size_nr(leaf, slot); 3411 item = btrfs_item_nr(leaf, slot); 3412 btrfs_set_item_size(leaf, item, old_size + data_size); 3413 btrfs_mark_buffer_dirty(leaf); 3414 3415 if (btrfs_leaf_free_space(root, leaf) < 0) { 3416 btrfs_print_leaf(root, leaf); 3417 BUG(); 3418 } 3419 return 0; 3420 } 3421 3422 /* 3423 * Given a key and some data, insert items into the tree. 3424 * This does all the path init required, making room in the tree if needed. 3425 * Returns the number of keys that were inserted. 3426 */ 3427 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3428 struct btrfs_root *root, 3429 struct btrfs_path *path, 3430 struct btrfs_key *cpu_key, u32 *data_size, 3431 int nr) 3432 { 3433 struct extent_buffer *leaf; 3434 struct btrfs_item *item; 3435 int ret = 0; 3436 int slot; 3437 int i; 3438 u32 nritems; 3439 u32 total_data = 0; 3440 u32 total_size = 0; 3441 unsigned int data_end; 3442 struct btrfs_disk_key disk_key; 3443 struct btrfs_key found_key; 3444 3445 for (i = 0; i < nr; i++) { 3446 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3447 BTRFS_LEAF_DATA_SIZE(root)) { 3448 break; 3449 nr = i; 3450 } 3451 total_data += data_size[i]; 3452 total_size += data_size[i] + sizeof(struct btrfs_item); 3453 } 3454 BUG_ON(nr == 0); 3455 3456 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3457 if (ret == 0) 3458 return -EEXIST; 3459 if (ret < 0) 3460 goto out; 3461 3462 leaf = path->nodes[0]; 3463 3464 nritems = btrfs_header_nritems(leaf); 3465 data_end = leaf_data_end(root, leaf); 3466 3467 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3468 for (i = nr; i >= 0; i--) { 3469 total_data -= data_size[i]; 3470 total_size -= data_size[i] + sizeof(struct btrfs_item); 3471 if (total_size < btrfs_leaf_free_space(root, leaf)) 3472 break; 3473 } 3474 nr = i; 3475 } 3476 3477 slot = path->slots[0]; 3478 BUG_ON(slot < 0); 3479 3480 if (slot != nritems) { 3481 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3482 3483 item = btrfs_item_nr(leaf, slot); 3484 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3485 3486 /* figure out how many keys we can insert in here */ 3487 total_data = data_size[0]; 3488 for (i = 1; i < nr; i++) { 3489 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3490 break; 3491 total_data += data_size[i]; 3492 } 3493 nr = i; 3494 3495 if (old_data < data_end) { 3496 btrfs_print_leaf(root, leaf); 3497 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3498 slot, old_data, data_end); 3499 BUG_ON(1); 3500 } 3501 /* 3502 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3503 */ 3504 /* first correct the data pointers */ 3505 for (i = slot; i < nritems; i++) { 3506 u32 ioff; 3507 3508 item = btrfs_item_nr(leaf, i); 3509 ioff = btrfs_item_offset(leaf, item); 3510 btrfs_set_item_offset(leaf, item, ioff - total_data); 3511 } 3512 /* shift the items */ 3513 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3514 btrfs_item_nr_offset(slot), 3515 (nritems - slot) * sizeof(struct btrfs_item)); 3516 3517 /* shift the data */ 3518 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3519 data_end - total_data, btrfs_leaf_data(leaf) + 3520 data_end, old_data - data_end); 3521 data_end = old_data; 3522 } else { 3523 /* 3524 * this sucks but it has to be done, if we are inserting at 3525 * the end of the leaf only insert 1 of the items, since we 3526 * have no way of knowing whats on the next leaf and we'd have 3527 * to drop our current locks to figure it out 3528 */ 3529 nr = 1; 3530 } 3531 3532 /* setup the item for the new data */ 3533 for (i = 0; i < nr; i++) { 3534 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3535 btrfs_set_item_key(leaf, &disk_key, slot + i); 3536 item = btrfs_item_nr(leaf, slot + i); 3537 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3538 data_end -= data_size[i]; 3539 btrfs_set_item_size(leaf, item, data_size[i]); 3540 } 3541 btrfs_set_header_nritems(leaf, nritems + nr); 3542 btrfs_mark_buffer_dirty(leaf); 3543 3544 ret = 0; 3545 if (slot == 0) { 3546 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3547 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3548 } 3549 3550 if (btrfs_leaf_free_space(root, leaf) < 0) { 3551 btrfs_print_leaf(root, leaf); 3552 BUG(); 3553 } 3554 out: 3555 if (!ret) 3556 ret = nr; 3557 return ret; 3558 } 3559 3560 /* 3561 * this is a helper for btrfs_insert_empty_items, the main goal here is 3562 * to save stack depth by doing the bulk of the work in a function 3563 * that doesn't call btrfs_search_slot 3564 */ 3565 int setup_items_for_insert(struct btrfs_trans_handle *trans, 3566 struct btrfs_root *root, struct btrfs_path *path, 3567 struct btrfs_key *cpu_key, u32 *data_size, 3568 u32 total_data, u32 total_size, int nr) 3569 { 3570 struct btrfs_item *item; 3571 int i; 3572 u32 nritems; 3573 unsigned int data_end; 3574 struct btrfs_disk_key disk_key; 3575 int ret; 3576 struct extent_buffer *leaf; 3577 int slot; 3578 3579 leaf = path->nodes[0]; 3580 slot = path->slots[0]; 3581 3582 nritems = btrfs_header_nritems(leaf); 3583 data_end = leaf_data_end(root, leaf); 3584 3585 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3586 btrfs_print_leaf(root, leaf); 3587 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3588 total_size, btrfs_leaf_free_space(root, leaf)); 3589 BUG(); 3590 } 3591 3592 if (slot != nritems) { 3593 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3594 3595 if (old_data < data_end) { 3596 btrfs_print_leaf(root, leaf); 3597 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3598 slot, old_data, data_end); 3599 BUG_ON(1); 3600 } 3601 /* 3602 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3603 */ 3604 /* first correct the data pointers */ 3605 for (i = slot; i < nritems; i++) { 3606 u32 ioff; 3607 3608 item = btrfs_item_nr(leaf, i); 3609 ioff = btrfs_item_offset(leaf, item); 3610 btrfs_set_item_offset(leaf, item, ioff - total_data); 3611 } 3612 /* shift the items */ 3613 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3614 btrfs_item_nr_offset(slot), 3615 (nritems - slot) * sizeof(struct btrfs_item)); 3616 3617 /* shift the data */ 3618 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3619 data_end - total_data, btrfs_leaf_data(leaf) + 3620 data_end, old_data - data_end); 3621 data_end = old_data; 3622 } 3623 3624 /* setup the item for the new data */ 3625 for (i = 0; i < nr; i++) { 3626 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3627 btrfs_set_item_key(leaf, &disk_key, slot + i); 3628 item = btrfs_item_nr(leaf, slot + i); 3629 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3630 data_end -= data_size[i]; 3631 btrfs_set_item_size(leaf, item, data_size[i]); 3632 } 3633 3634 btrfs_set_header_nritems(leaf, nritems + nr); 3635 3636 ret = 0; 3637 if (slot == 0) { 3638 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3639 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3640 } 3641 btrfs_unlock_up_safe(path, 1); 3642 btrfs_mark_buffer_dirty(leaf); 3643 3644 if (btrfs_leaf_free_space(root, leaf) < 0) { 3645 btrfs_print_leaf(root, leaf); 3646 BUG(); 3647 } 3648 return ret; 3649 } 3650 3651 /* 3652 * Given a key and some data, insert items into the tree. 3653 * This does all the path init required, making room in the tree if needed. 3654 */ 3655 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3656 struct btrfs_root *root, 3657 struct btrfs_path *path, 3658 struct btrfs_key *cpu_key, u32 *data_size, 3659 int nr) 3660 { 3661 int ret = 0; 3662 int slot; 3663 int i; 3664 u32 total_size = 0; 3665 u32 total_data = 0; 3666 3667 for (i = 0; i < nr; i++) 3668 total_data += data_size[i]; 3669 3670 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3671 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3672 if (ret == 0) 3673 return -EEXIST; 3674 if (ret < 0) 3675 goto out; 3676 3677 slot = path->slots[0]; 3678 BUG_ON(slot < 0); 3679 3680 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3681 total_data, total_size, nr); 3682 3683 out: 3684 return ret; 3685 } 3686 3687 /* 3688 * Given a key and some data, insert an item into the tree. 3689 * This does all the path init required, making room in the tree if needed. 3690 */ 3691 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3692 *root, struct btrfs_key *cpu_key, void *data, u32 3693 data_size) 3694 { 3695 int ret = 0; 3696 struct btrfs_path *path; 3697 struct extent_buffer *leaf; 3698 unsigned long ptr; 3699 3700 path = btrfs_alloc_path(); 3701 if (!path) 3702 return -ENOMEM; 3703 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3704 if (!ret) { 3705 leaf = path->nodes[0]; 3706 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3707 write_extent_buffer(leaf, data, ptr, data_size); 3708 btrfs_mark_buffer_dirty(leaf); 3709 } 3710 btrfs_free_path(path); 3711 return ret; 3712 } 3713 3714 /* 3715 * delete the pointer from a given node. 3716 * 3717 * the tree should have been previously balanced so the deletion does not 3718 * empty a node. 3719 */ 3720 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3721 struct btrfs_path *path, int level, int slot) 3722 { 3723 struct extent_buffer *parent = path->nodes[level]; 3724 u32 nritems; 3725 int ret = 0; 3726 int wret; 3727 3728 nritems = btrfs_header_nritems(parent); 3729 if (slot != nritems - 1) { 3730 memmove_extent_buffer(parent, 3731 btrfs_node_key_ptr_offset(slot), 3732 btrfs_node_key_ptr_offset(slot + 1), 3733 sizeof(struct btrfs_key_ptr) * 3734 (nritems - slot - 1)); 3735 } 3736 nritems--; 3737 btrfs_set_header_nritems(parent, nritems); 3738 if (nritems == 0 && parent == root->node) { 3739 BUG_ON(btrfs_header_level(root->node) != 1); 3740 /* just turn the root into a leaf and break */ 3741 btrfs_set_header_level(root->node, 0); 3742 } else if (slot == 0) { 3743 struct btrfs_disk_key disk_key; 3744 3745 btrfs_node_key(parent, &disk_key, 0); 3746 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3747 if (wret) 3748 ret = wret; 3749 } 3750 btrfs_mark_buffer_dirty(parent); 3751 return ret; 3752 } 3753 3754 /* 3755 * a helper function to delete the leaf pointed to by path->slots[1] and 3756 * path->nodes[1]. 3757 * 3758 * This deletes the pointer in path->nodes[1] and frees the leaf 3759 * block extent. zero is returned if it all worked out, < 0 otherwise. 3760 * 3761 * The path must have already been setup for deleting the leaf, including 3762 * all the proper balancing. path->nodes[1] must be locked. 3763 */ 3764 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3765 struct btrfs_root *root, 3766 struct btrfs_path *path, 3767 struct extent_buffer *leaf) 3768 { 3769 int ret; 3770 3771 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3772 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3773 if (ret) 3774 return ret; 3775 3776 /* 3777 * btrfs_free_extent is expensive, we want to make sure we 3778 * aren't holding any locks when we call it 3779 */ 3780 btrfs_unlock_up_safe(path, 0); 3781 3782 root_sub_used(root, leaf->len); 3783 3784 btrfs_free_tree_block(trans, root, leaf, 0, 1, 0); 3785 return 0; 3786 } 3787 /* 3788 * delete the item at the leaf level in path. If that empties 3789 * the leaf, remove it from the tree 3790 */ 3791 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3792 struct btrfs_path *path, int slot, int nr) 3793 { 3794 struct extent_buffer *leaf; 3795 struct btrfs_item *item; 3796 int last_off; 3797 int dsize = 0; 3798 int ret = 0; 3799 int wret; 3800 int i; 3801 u32 nritems; 3802 3803 leaf = path->nodes[0]; 3804 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3805 3806 for (i = 0; i < nr; i++) 3807 dsize += btrfs_item_size_nr(leaf, slot + i); 3808 3809 nritems = btrfs_header_nritems(leaf); 3810 3811 if (slot + nr != nritems) { 3812 int data_end = leaf_data_end(root, leaf); 3813 3814 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3815 data_end + dsize, 3816 btrfs_leaf_data(leaf) + data_end, 3817 last_off - data_end); 3818 3819 for (i = slot + nr; i < nritems; i++) { 3820 u32 ioff; 3821 3822 item = btrfs_item_nr(leaf, i); 3823 ioff = btrfs_item_offset(leaf, item); 3824 btrfs_set_item_offset(leaf, item, ioff + dsize); 3825 } 3826 3827 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3828 btrfs_item_nr_offset(slot + nr), 3829 sizeof(struct btrfs_item) * 3830 (nritems - slot - nr)); 3831 } 3832 btrfs_set_header_nritems(leaf, nritems - nr); 3833 nritems -= nr; 3834 3835 /* delete the leaf if we've emptied it */ 3836 if (nritems == 0) { 3837 if (leaf == root->node) { 3838 btrfs_set_header_level(leaf, 0); 3839 } else { 3840 btrfs_set_path_blocking(path); 3841 clean_tree_block(trans, root, leaf); 3842 ret = btrfs_del_leaf(trans, root, path, leaf); 3843 BUG_ON(ret); 3844 } 3845 } else { 3846 int used = leaf_space_used(leaf, 0, nritems); 3847 if (slot == 0) { 3848 struct btrfs_disk_key disk_key; 3849 3850 btrfs_item_key(leaf, &disk_key, 0); 3851 wret = fixup_low_keys(trans, root, path, 3852 &disk_key, 1); 3853 if (wret) 3854 ret = wret; 3855 } 3856 3857 /* delete the leaf if it is mostly empty */ 3858 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 3859 /* push_leaf_left fixes the path. 3860 * make sure the path still points to our leaf 3861 * for possible call to del_ptr below 3862 */ 3863 slot = path->slots[1]; 3864 extent_buffer_get(leaf); 3865 3866 btrfs_set_path_blocking(path); 3867 wret = push_leaf_left(trans, root, path, 1, 1, 3868 1, (u32)-1); 3869 if (wret < 0 && wret != -ENOSPC) 3870 ret = wret; 3871 3872 if (path->nodes[0] == leaf && 3873 btrfs_header_nritems(leaf)) { 3874 wret = push_leaf_right(trans, root, path, 1, 3875 1, 1, 0); 3876 if (wret < 0 && wret != -ENOSPC) 3877 ret = wret; 3878 } 3879 3880 if (btrfs_header_nritems(leaf) == 0) { 3881 path->slots[1] = slot; 3882 ret = btrfs_del_leaf(trans, root, path, leaf); 3883 BUG_ON(ret); 3884 free_extent_buffer(leaf); 3885 } else { 3886 /* if we're still in the path, make sure 3887 * we're dirty. Otherwise, one of the 3888 * push_leaf functions must have already 3889 * dirtied this buffer 3890 */ 3891 if (path->nodes[0] == leaf) 3892 btrfs_mark_buffer_dirty(leaf); 3893 free_extent_buffer(leaf); 3894 } 3895 } else { 3896 btrfs_mark_buffer_dirty(leaf); 3897 } 3898 } 3899 return ret; 3900 } 3901 3902 /* 3903 * search the tree again to find a leaf with lesser keys 3904 * returns 0 if it found something or 1 if there are no lesser leaves. 3905 * returns < 0 on io errors. 3906 * 3907 * This may release the path, and so you may lose any locks held at the 3908 * time you call it. 3909 */ 3910 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3911 { 3912 struct btrfs_key key; 3913 struct btrfs_disk_key found_key; 3914 int ret; 3915 3916 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3917 3918 if (key.offset > 0) 3919 key.offset--; 3920 else if (key.type > 0) 3921 key.type--; 3922 else if (key.objectid > 0) 3923 key.objectid--; 3924 else 3925 return 1; 3926 3927 btrfs_release_path(path); 3928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3929 if (ret < 0) 3930 return ret; 3931 btrfs_item_key(path->nodes[0], &found_key, 0); 3932 ret = comp_keys(&found_key, &key); 3933 if (ret < 0) 3934 return 0; 3935 return 1; 3936 } 3937 3938 /* 3939 * A helper function to walk down the tree starting at min_key, and looking 3940 * for nodes or leaves that are either in cache or have a minimum 3941 * transaction id. This is used by the btree defrag code, and tree logging 3942 * 3943 * This does not cow, but it does stuff the starting key it finds back 3944 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3945 * key and get a writable path. 3946 * 3947 * This does lock as it descends, and path->keep_locks should be set 3948 * to 1 by the caller. 3949 * 3950 * This honors path->lowest_level to prevent descent past a given level 3951 * of the tree. 3952 * 3953 * min_trans indicates the oldest transaction that you are interested 3954 * in walking through. Any nodes or leaves older than min_trans are 3955 * skipped over (without reading them). 3956 * 3957 * returns zero if something useful was found, < 0 on error and 1 if there 3958 * was nothing in the tree that matched the search criteria. 3959 */ 3960 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3961 struct btrfs_key *max_key, 3962 struct btrfs_path *path, int cache_only, 3963 u64 min_trans) 3964 { 3965 struct extent_buffer *cur; 3966 struct btrfs_key found_key; 3967 int slot; 3968 int sret; 3969 u32 nritems; 3970 int level; 3971 int ret = 1; 3972 3973 WARN_ON(!path->keep_locks); 3974 again: 3975 cur = btrfs_read_lock_root_node(root); 3976 level = btrfs_header_level(cur); 3977 WARN_ON(path->nodes[level]); 3978 path->nodes[level] = cur; 3979 path->locks[level] = BTRFS_READ_LOCK; 3980 3981 if (btrfs_header_generation(cur) < min_trans) { 3982 ret = 1; 3983 goto out; 3984 } 3985 while (1) { 3986 nritems = btrfs_header_nritems(cur); 3987 level = btrfs_header_level(cur); 3988 sret = bin_search(cur, min_key, level, &slot); 3989 3990 /* at the lowest level, we're done, setup the path and exit */ 3991 if (level == path->lowest_level) { 3992 if (slot >= nritems) 3993 goto find_next_key; 3994 ret = 0; 3995 path->slots[level] = slot; 3996 btrfs_item_key_to_cpu(cur, &found_key, slot); 3997 goto out; 3998 } 3999 if (sret && slot > 0) 4000 slot--; 4001 /* 4002 * check this node pointer against the cache_only and 4003 * min_trans parameters. If it isn't in cache or is too 4004 * old, skip to the next one. 4005 */ 4006 while (slot < nritems) { 4007 u64 blockptr; 4008 u64 gen; 4009 struct extent_buffer *tmp; 4010 struct btrfs_disk_key disk_key; 4011 4012 blockptr = btrfs_node_blockptr(cur, slot); 4013 gen = btrfs_node_ptr_generation(cur, slot); 4014 if (gen < min_trans) { 4015 slot++; 4016 continue; 4017 } 4018 if (!cache_only) 4019 break; 4020 4021 if (max_key) { 4022 btrfs_node_key(cur, &disk_key, slot); 4023 if (comp_keys(&disk_key, max_key) >= 0) { 4024 ret = 1; 4025 goto out; 4026 } 4027 } 4028 4029 tmp = btrfs_find_tree_block(root, blockptr, 4030 btrfs_level_size(root, level - 1)); 4031 4032 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4033 free_extent_buffer(tmp); 4034 break; 4035 } 4036 if (tmp) 4037 free_extent_buffer(tmp); 4038 slot++; 4039 } 4040 find_next_key: 4041 /* 4042 * we didn't find a candidate key in this node, walk forward 4043 * and find another one 4044 */ 4045 if (slot >= nritems) { 4046 path->slots[level] = slot; 4047 btrfs_set_path_blocking(path); 4048 sret = btrfs_find_next_key(root, path, min_key, level, 4049 cache_only, min_trans); 4050 if (sret == 0) { 4051 btrfs_release_path(path); 4052 goto again; 4053 } else { 4054 goto out; 4055 } 4056 } 4057 /* save our key for returning back */ 4058 btrfs_node_key_to_cpu(cur, &found_key, slot); 4059 path->slots[level] = slot; 4060 if (level == path->lowest_level) { 4061 ret = 0; 4062 unlock_up(path, level, 1); 4063 goto out; 4064 } 4065 btrfs_set_path_blocking(path); 4066 cur = read_node_slot(root, cur, slot); 4067 BUG_ON(!cur); 4068 4069 btrfs_tree_read_lock(cur); 4070 4071 path->locks[level - 1] = BTRFS_READ_LOCK; 4072 path->nodes[level - 1] = cur; 4073 unlock_up(path, level, 1); 4074 btrfs_clear_path_blocking(path, NULL, 0); 4075 } 4076 out: 4077 if (ret == 0) 4078 memcpy(min_key, &found_key, sizeof(found_key)); 4079 btrfs_set_path_blocking(path); 4080 return ret; 4081 } 4082 4083 /* 4084 * this is similar to btrfs_next_leaf, but does not try to preserve 4085 * and fixup the path. It looks for and returns the next key in the 4086 * tree based on the current path and the cache_only and min_trans 4087 * parameters. 4088 * 4089 * 0 is returned if another key is found, < 0 if there are any errors 4090 * and 1 is returned if there are no higher keys in the tree 4091 * 4092 * path->keep_locks should be set to 1 on the search made before 4093 * calling this function. 4094 */ 4095 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4096 struct btrfs_key *key, int level, 4097 int cache_only, u64 min_trans) 4098 { 4099 int slot; 4100 struct extent_buffer *c; 4101 4102 WARN_ON(!path->keep_locks); 4103 while (level < BTRFS_MAX_LEVEL) { 4104 if (!path->nodes[level]) 4105 return 1; 4106 4107 slot = path->slots[level] + 1; 4108 c = path->nodes[level]; 4109 next: 4110 if (slot >= btrfs_header_nritems(c)) { 4111 int ret; 4112 int orig_lowest; 4113 struct btrfs_key cur_key; 4114 if (level + 1 >= BTRFS_MAX_LEVEL || 4115 !path->nodes[level + 1]) 4116 return 1; 4117 4118 if (path->locks[level + 1]) { 4119 level++; 4120 continue; 4121 } 4122 4123 slot = btrfs_header_nritems(c) - 1; 4124 if (level == 0) 4125 btrfs_item_key_to_cpu(c, &cur_key, slot); 4126 else 4127 btrfs_node_key_to_cpu(c, &cur_key, slot); 4128 4129 orig_lowest = path->lowest_level; 4130 btrfs_release_path(path); 4131 path->lowest_level = level; 4132 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4133 0, 0); 4134 path->lowest_level = orig_lowest; 4135 if (ret < 0) 4136 return ret; 4137 4138 c = path->nodes[level]; 4139 slot = path->slots[level]; 4140 if (ret == 0) 4141 slot++; 4142 goto next; 4143 } 4144 4145 if (level == 0) 4146 btrfs_item_key_to_cpu(c, key, slot); 4147 else { 4148 u64 blockptr = btrfs_node_blockptr(c, slot); 4149 u64 gen = btrfs_node_ptr_generation(c, slot); 4150 4151 if (cache_only) { 4152 struct extent_buffer *cur; 4153 cur = btrfs_find_tree_block(root, blockptr, 4154 btrfs_level_size(root, level - 1)); 4155 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4156 slot++; 4157 if (cur) 4158 free_extent_buffer(cur); 4159 goto next; 4160 } 4161 free_extent_buffer(cur); 4162 } 4163 if (gen < min_trans) { 4164 slot++; 4165 goto next; 4166 } 4167 btrfs_node_key_to_cpu(c, key, slot); 4168 } 4169 return 0; 4170 } 4171 return 1; 4172 } 4173 4174 /* 4175 * search the tree again to find a leaf with greater keys 4176 * returns 0 if it found something or 1 if there are no greater leaves. 4177 * returns < 0 on io errors. 4178 */ 4179 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4180 { 4181 int slot; 4182 int level; 4183 struct extent_buffer *c; 4184 struct extent_buffer *next; 4185 struct btrfs_key key; 4186 u32 nritems; 4187 int ret; 4188 int old_spinning = path->leave_spinning; 4189 int next_rw_lock = 0; 4190 4191 nritems = btrfs_header_nritems(path->nodes[0]); 4192 if (nritems == 0) 4193 return 1; 4194 4195 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4196 again: 4197 level = 1; 4198 next = NULL; 4199 next_rw_lock = 0; 4200 btrfs_release_path(path); 4201 4202 path->keep_locks = 1; 4203 path->leave_spinning = 1; 4204 4205 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4206 path->keep_locks = 0; 4207 4208 if (ret < 0) 4209 return ret; 4210 4211 nritems = btrfs_header_nritems(path->nodes[0]); 4212 /* 4213 * by releasing the path above we dropped all our locks. A balance 4214 * could have added more items next to the key that used to be 4215 * at the very end of the block. So, check again here and 4216 * advance the path if there are now more items available. 4217 */ 4218 if (nritems > 0 && path->slots[0] < nritems - 1) { 4219 if (ret == 0) 4220 path->slots[0]++; 4221 ret = 0; 4222 goto done; 4223 } 4224 4225 while (level < BTRFS_MAX_LEVEL) { 4226 if (!path->nodes[level]) { 4227 ret = 1; 4228 goto done; 4229 } 4230 4231 slot = path->slots[level] + 1; 4232 c = path->nodes[level]; 4233 if (slot >= btrfs_header_nritems(c)) { 4234 level++; 4235 if (level == BTRFS_MAX_LEVEL) { 4236 ret = 1; 4237 goto done; 4238 } 4239 continue; 4240 } 4241 4242 if (next) { 4243 btrfs_tree_unlock_rw(next, next_rw_lock); 4244 free_extent_buffer(next); 4245 } 4246 4247 next = c; 4248 next_rw_lock = path->locks[level]; 4249 ret = read_block_for_search(NULL, root, path, &next, level, 4250 slot, &key); 4251 if (ret == -EAGAIN) 4252 goto again; 4253 4254 if (ret < 0) { 4255 btrfs_release_path(path); 4256 goto done; 4257 } 4258 4259 if (!path->skip_locking) { 4260 ret = btrfs_try_tree_read_lock(next); 4261 if (!ret) { 4262 btrfs_set_path_blocking(path); 4263 btrfs_tree_read_lock(next); 4264 btrfs_clear_path_blocking(path, next, 4265 BTRFS_READ_LOCK); 4266 } 4267 next_rw_lock = BTRFS_READ_LOCK; 4268 } 4269 break; 4270 } 4271 path->slots[level] = slot; 4272 while (1) { 4273 level--; 4274 c = path->nodes[level]; 4275 if (path->locks[level]) 4276 btrfs_tree_unlock_rw(c, path->locks[level]); 4277 4278 free_extent_buffer(c); 4279 path->nodes[level] = next; 4280 path->slots[level] = 0; 4281 if (!path->skip_locking) 4282 path->locks[level] = next_rw_lock; 4283 if (!level) 4284 break; 4285 4286 ret = read_block_for_search(NULL, root, path, &next, level, 4287 0, &key); 4288 if (ret == -EAGAIN) 4289 goto again; 4290 4291 if (ret < 0) { 4292 btrfs_release_path(path); 4293 goto done; 4294 } 4295 4296 if (!path->skip_locking) { 4297 ret = btrfs_try_tree_read_lock(next); 4298 if (!ret) { 4299 btrfs_set_path_blocking(path); 4300 btrfs_tree_read_lock(next); 4301 btrfs_clear_path_blocking(path, next, 4302 BTRFS_READ_LOCK); 4303 } 4304 next_rw_lock = BTRFS_READ_LOCK; 4305 } 4306 } 4307 ret = 0; 4308 done: 4309 unlock_up(path, 0, 1); 4310 path->leave_spinning = old_spinning; 4311 if (!old_spinning) 4312 btrfs_set_path_blocking(path); 4313 4314 return ret; 4315 } 4316 4317 /* 4318 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4319 * searching until it gets past min_objectid or finds an item of 'type' 4320 * 4321 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4322 */ 4323 int btrfs_previous_item(struct btrfs_root *root, 4324 struct btrfs_path *path, u64 min_objectid, 4325 int type) 4326 { 4327 struct btrfs_key found_key; 4328 struct extent_buffer *leaf; 4329 u32 nritems; 4330 int ret; 4331 4332 while (1) { 4333 if (path->slots[0] == 0) { 4334 btrfs_set_path_blocking(path); 4335 ret = btrfs_prev_leaf(root, path); 4336 if (ret != 0) 4337 return ret; 4338 } else { 4339 path->slots[0]--; 4340 } 4341 leaf = path->nodes[0]; 4342 nritems = btrfs_header_nritems(leaf); 4343 if (nritems == 0) 4344 return 1; 4345 if (path->slots[0] == nritems) 4346 path->slots[0]--; 4347 4348 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4349 if (found_key.objectid < min_objectid) 4350 break; 4351 if (found_key.type == type) 4352 return 0; 4353 if (found_key.objectid == min_objectid && 4354 found_key.type < type) 4355 break; 4356 } 4357 return 1; 4358 } 4359