xref: /openbmc/linux/fs/btrfs/ctree.c (revision 9ffc93f2)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26 
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 		      *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_key *ins_key,
31 		      struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 			  struct btrfs_root *root, struct extent_buffer *dst,
34 			  struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      struct extent_buffer *dst_buf,
38 			      struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 		   struct btrfs_path *path, int level, int slot);
41 
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 	struct btrfs_path *path;
45 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46 	return path;
47 }
48 
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55 	int i;
56 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57 		if (!p->nodes[i] || !p->locks[i])
58 			continue;
59 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60 		if (p->locks[i] == BTRFS_READ_LOCK)
61 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
63 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64 	}
65 }
66 
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76 					struct extent_buffer *held, int held_rw)
77 {
78 	int i;
79 
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 	/* lockdep really cares that we take all of these spinlocks
82 	 * in the right order.  If any of the locks in the path are not
83 	 * currently blocking, it is going to complain.  So, make really
84 	 * really sure by forcing the path to blocking before we clear
85 	 * the path blocking.
86 	 */
87 	if (held) {
88 		btrfs_set_lock_blocking_rw(held, held_rw);
89 		if (held_rw == BTRFS_WRITE_LOCK)
90 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91 		else if (held_rw == BTRFS_READ_LOCK)
92 			held_rw = BTRFS_READ_LOCK_BLOCKING;
93 	}
94 	btrfs_set_path_blocking(p);
95 #endif
96 
97 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98 		if (p->nodes[i] && p->locks[i]) {
99 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101 				p->locks[i] = BTRFS_WRITE_LOCK;
102 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103 				p->locks[i] = BTRFS_READ_LOCK;
104 		}
105 	}
106 
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	if (held)
109 		btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112 
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116 	if (!p)
117 		return;
118 	btrfs_release_path(p);
119 	kmem_cache_free(btrfs_path_cachep, p);
120 }
121 
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130 	int i;
131 
132 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133 		p->slots[i] = 0;
134 		if (!p->nodes[i])
135 			continue;
136 		if (p->locks[i]) {
137 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138 			p->locks[i] = 0;
139 		}
140 		free_extent_buffer(p->nodes[i]);
141 		p->nodes[i] = NULL;
142 	}
143 }
144 
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157 	struct extent_buffer *eb;
158 
159 	rcu_read_lock();
160 	eb = rcu_dereference(root->node);
161 	extent_buffer_get(eb);
162 	rcu_read_unlock();
163 	return eb;
164 }
165 
166 /* loop around taking references on and locking the root node of the
167  * tree until you end up with a lock on the root.  A locked buffer
168  * is returned, with a reference held.
169  */
170 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
171 {
172 	struct extent_buffer *eb;
173 
174 	while (1) {
175 		eb = btrfs_root_node(root);
176 		btrfs_tree_lock(eb);
177 		if (eb == root->node)
178 			break;
179 		btrfs_tree_unlock(eb);
180 		free_extent_buffer(eb);
181 	}
182 	return eb;
183 }
184 
185 /* loop around taking references on and locking the root node of the
186  * tree until you end up with a lock on the root.  A locked buffer
187  * is returned, with a reference held.
188  */
189 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
190 {
191 	struct extent_buffer *eb;
192 
193 	while (1) {
194 		eb = btrfs_root_node(root);
195 		btrfs_tree_read_lock(eb);
196 		if (eb == root->node)
197 			break;
198 		btrfs_tree_read_unlock(eb);
199 		free_extent_buffer(eb);
200 	}
201 	return eb;
202 }
203 
204 /* cowonly root (everything not a reference counted cow subvolume), just get
205  * put onto a simple dirty list.  transaction.c walks this to make sure they
206  * get properly updated on disk.
207  */
208 static void add_root_to_dirty_list(struct btrfs_root *root)
209 {
210 	if (root->track_dirty && list_empty(&root->dirty_list)) {
211 		list_add(&root->dirty_list,
212 			 &root->fs_info->dirty_cowonly_roots);
213 	}
214 }
215 
216 /*
217  * used by snapshot creation to make a copy of a root for a tree with
218  * a given objectid.  The buffer with the new root node is returned in
219  * cow_ret, and this func returns zero on success or a negative error code.
220  */
221 int btrfs_copy_root(struct btrfs_trans_handle *trans,
222 		      struct btrfs_root *root,
223 		      struct extent_buffer *buf,
224 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
225 {
226 	struct extent_buffer *cow;
227 	int ret = 0;
228 	int level;
229 	struct btrfs_disk_key disk_key;
230 
231 	WARN_ON(root->ref_cows && trans->transid !=
232 		root->fs_info->running_transaction->transid);
233 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
234 
235 	level = btrfs_header_level(buf);
236 	if (level == 0)
237 		btrfs_item_key(buf, &disk_key, 0);
238 	else
239 		btrfs_node_key(buf, &disk_key, 0);
240 
241 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
242 				     new_root_objectid, &disk_key, level,
243 				     buf->start, 0, 1);
244 	if (IS_ERR(cow))
245 		return PTR_ERR(cow);
246 
247 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
248 	btrfs_set_header_bytenr(cow, cow->start);
249 	btrfs_set_header_generation(cow, trans->transid);
250 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
251 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
252 				     BTRFS_HEADER_FLAG_RELOC);
253 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
254 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
255 	else
256 		btrfs_set_header_owner(cow, new_root_objectid);
257 
258 	write_extent_buffer(cow, root->fs_info->fsid,
259 			    (unsigned long)btrfs_header_fsid(cow),
260 			    BTRFS_FSID_SIZE);
261 
262 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
263 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
264 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
265 	else
266 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
267 
268 	if (ret)
269 		return ret;
270 
271 	btrfs_mark_buffer_dirty(cow);
272 	*cow_ret = cow;
273 	return 0;
274 }
275 
276 /*
277  * check if the tree block can be shared by multiple trees
278  */
279 int btrfs_block_can_be_shared(struct btrfs_root *root,
280 			      struct extent_buffer *buf)
281 {
282 	/*
283 	 * Tree blocks not in refernece counted trees and tree roots
284 	 * are never shared. If a block was allocated after the last
285 	 * snapshot and the block was not allocated by tree relocation,
286 	 * we know the block is not shared.
287 	 */
288 	if (root->ref_cows &&
289 	    buf != root->node && buf != root->commit_root &&
290 	    (btrfs_header_generation(buf) <=
291 	     btrfs_root_last_snapshot(&root->root_item) ||
292 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
293 		return 1;
294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
295 	if (root->ref_cows &&
296 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
297 		return 1;
298 #endif
299 	return 0;
300 }
301 
302 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
303 				       struct btrfs_root *root,
304 				       struct extent_buffer *buf,
305 				       struct extent_buffer *cow,
306 				       int *last_ref)
307 {
308 	u64 refs;
309 	u64 owner;
310 	u64 flags;
311 	u64 new_flags = 0;
312 	int ret;
313 
314 	/*
315 	 * Backrefs update rules:
316 	 *
317 	 * Always use full backrefs for extent pointers in tree block
318 	 * allocated by tree relocation.
319 	 *
320 	 * If a shared tree block is no longer referenced by its owner
321 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
322 	 * use full backrefs for extent pointers in tree block.
323 	 *
324 	 * If a tree block is been relocating
325 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
326 	 * use full backrefs for extent pointers in tree block.
327 	 * The reason for this is some operations (such as drop tree)
328 	 * are only allowed for blocks use full backrefs.
329 	 */
330 
331 	if (btrfs_block_can_be_shared(root, buf)) {
332 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
333 					       buf->len, &refs, &flags);
334 		BUG_ON(ret);
335 		BUG_ON(refs == 0);
336 	} else {
337 		refs = 1;
338 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
339 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
340 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
341 		else
342 			flags = 0;
343 	}
344 
345 	owner = btrfs_header_owner(buf);
346 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
347 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
348 
349 	if (refs > 1) {
350 		if ((owner == root->root_key.objectid ||
351 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
352 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
353 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
354 			BUG_ON(ret);
355 
356 			if (root->root_key.objectid ==
357 			    BTRFS_TREE_RELOC_OBJECTID) {
358 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
359 				BUG_ON(ret);
360 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
361 				BUG_ON(ret);
362 			}
363 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
364 		} else {
365 
366 			if (root->root_key.objectid ==
367 			    BTRFS_TREE_RELOC_OBJECTID)
368 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
369 			else
370 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
371 			BUG_ON(ret);
372 		}
373 		if (new_flags != 0) {
374 			ret = btrfs_set_disk_extent_flags(trans, root,
375 							  buf->start,
376 							  buf->len,
377 							  new_flags, 0);
378 			BUG_ON(ret);
379 		}
380 	} else {
381 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
382 			if (root->root_key.objectid ==
383 			    BTRFS_TREE_RELOC_OBJECTID)
384 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
385 			else
386 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
387 			BUG_ON(ret);
388 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
389 			BUG_ON(ret);
390 		}
391 		clean_tree_block(trans, root, buf);
392 		*last_ref = 1;
393 	}
394 	return 0;
395 }
396 
397 /*
398  * does the dirty work in cow of a single block.  The parent block (if
399  * supplied) is updated to point to the new cow copy.  The new buffer is marked
400  * dirty and returned locked.  If you modify the block it needs to be marked
401  * dirty again.
402  *
403  * search_start -- an allocation hint for the new block
404  *
405  * empty_size -- a hint that you plan on doing more cow.  This is the size in
406  * bytes the allocator should try to find free next to the block it returns.
407  * This is just a hint and may be ignored by the allocator.
408  */
409 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
410 			     struct btrfs_root *root,
411 			     struct extent_buffer *buf,
412 			     struct extent_buffer *parent, int parent_slot,
413 			     struct extent_buffer **cow_ret,
414 			     u64 search_start, u64 empty_size)
415 {
416 	struct btrfs_disk_key disk_key;
417 	struct extent_buffer *cow;
418 	int level;
419 	int last_ref = 0;
420 	int unlock_orig = 0;
421 	u64 parent_start;
422 
423 	if (*cow_ret == buf)
424 		unlock_orig = 1;
425 
426 	btrfs_assert_tree_locked(buf);
427 
428 	WARN_ON(root->ref_cows && trans->transid !=
429 		root->fs_info->running_transaction->transid);
430 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
431 
432 	level = btrfs_header_level(buf);
433 
434 	if (level == 0)
435 		btrfs_item_key(buf, &disk_key, 0);
436 	else
437 		btrfs_node_key(buf, &disk_key, 0);
438 
439 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
440 		if (parent)
441 			parent_start = parent->start;
442 		else
443 			parent_start = 0;
444 	} else
445 		parent_start = 0;
446 
447 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
448 				     root->root_key.objectid, &disk_key,
449 				     level, search_start, empty_size, 1);
450 	if (IS_ERR(cow))
451 		return PTR_ERR(cow);
452 
453 	/* cow is set to blocking by btrfs_init_new_buffer */
454 
455 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
456 	btrfs_set_header_bytenr(cow, cow->start);
457 	btrfs_set_header_generation(cow, trans->transid);
458 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
459 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
460 				     BTRFS_HEADER_FLAG_RELOC);
461 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
462 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
463 	else
464 		btrfs_set_header_owner(cow, root->root_key.objectid);
465 
466 	write_extent_buffer(cow, root->fs_info->fsid,
467 			    (unsigned long)btrfs_header_fsid(cow),
468 			    BTRFS_FSID_SIZE);
469 
470 	update_ref_for_cow(trans, root, buf, cow, &last_ref);
471 
472 	if (root->ref_cows)
473 		btrfs_reloc_cow_block(trans, root, buf, cow);
474 
475 	if (buf == root->node) {
476 		WARN_ON(parent && parent != buf);
477 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
478 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
479 			parent_start = buf->start;
480 		else
481 			parent_start = 0;
482 
483 		extent_buffer_get(cow);
484 		rcu_assign_pointer(root->node, cow);
485 
486 		btrfs_free_tree_block(trans, root, buf, parent_start,
487 				      last_ref, 1);
488 		free_extent_buffer(buf);
489 		add_root_to_dirty_list(root);
490 	} else {
491 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
492 			parent_start = parent->start;
493 		else
494 			parent_start = 0;
495 
496 		WARN_ON(trans->transid != btrfs_header_generation(parent));
497 		btrfs_set_node_blockptr(parent, parent_slot,
498 					cow->start);
499 		btrfs_set_node_ptr_generation(parent, parent_slot,
500 					      trans->transid);
501 		btrfs_mark_buffer_dirty(parent);
502 		btrfs_free_tree_block(trans, root, buf, parent_start,
503 				      last_ref, 1);
504 	}
505 	if (unlock_orig)
506 		btrfs_tree_unlock(buf);
507 	free_extent_buffer(buf);
508 	btrfs_mark_buffer_dirty(cow);
509 	*cow_ret = cow;
510 	return 0;
511 }
512 
513 static inline int should_cow_block(struct btrfs_trans_handle *trans,
514 				   struct btrfs_root *root,
515 				   struct extent_buffer *buf)
516 {
517 	/* ensure we can see the force_cow */
518 	smp_rmb();
519 
520 	/*
521 	 * We do not need to cow a block if
522 	 * 1) this block is not created or changed in this transaction;
523 	 * 2) this block does not belong to TREE_RELOC tree;
524 	 * 3) the root is not forced COW.
525 	 *
526 	 * What is forced COW:
527 	 *    when we create snapshot during commiting the transaction,
528 	 *    after we've finished coping src root, we must COW the shared
529 	 *    block to ensure the metadata consistency.
530 	 */
531 	if (btrfs_header_generation(buf) == trans->transid &&
532 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
533 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
534 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
535 	    !root->force_cow)
536 		return 0;
537 	return 1;
538 }
539 
540 /*
541  * cows a single block, see __btrfs_cow_block for the real work.
542  * This version of it has extra checks so that a block isn't cow'd more than
543  * once per transaction, as long as it hasn't been written yet
544  */
545 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
546 		    struct btrfs_root *root, struct extent_buffer *buf,
547 		    struct extent_buffer *parent, int parent_slot,
548 		    struct extent_buffer **cow_ret)
549 {
550 	u64 search_start;
551 	int ret;
552 
553 	if (trans->transaction != root->fs_info->running_transaction) {
554 		printk(KERN_CRIT "trans %llu running %llu\n",
555 		       (unsigned long long)trans->transid,
556 		       (unsigned long long)
557 		       root->fs_info->running_transaction->transid);
558 		WARN_ON(1);
559 	}
560 	if (trans->transid != root->fs_info->generation) {
561 		printk(KERN_CRIT "trans %llu running %llu\n",
562 		       (unsigned long long)trans->transid,
563 		       (unsigned long long)root->fs_info->generation);
564 		WARN_ON(1);
565 	}
566 
567 	if (!should_cow_block(trans, root, buf)) {
568 		*cow_ret = buf;
569 		return 0;
570 	}
571 
572 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
573 
574 	if (parent)
575 		btrfs_set_lock_blocking(parent);
576 	btrfs_set_lock_blocking(buf);
577 
578 	ret = __btrfs_cow_block(trans, root, buf, parent,
579 				 parent_slot, cow_ret, search_start, 0);
580 
581 	trace_btrfs_cow_block(root, buf, *cow_ret);
582 
583 	return ret;
584 }
585 
586 /*
587  * helper function for defrag to decide if two blocks pointed to by a
588  * node are actually close by
589  */
590 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
591 {
592 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
593 		return 1;
594 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
595 		return 1;
596 	return 0;
597 }
598 
599 /*
600  * compare two keys in a memcmp fashion
601  */
602 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
603 {
604 	struct btrfs_key k1;
605 
606 	btrfs_disk_key_to_cpu(&k1, disk);
607 
608 	return btrfs_comp_cpu_keys(&k1, k2);
609 }
610 
611 /*
612  * same as comp_keys only with two btrfs_key's
613  */
614 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
615 {
616 	if (k1->objectid > k2->objectid)
617 		return 1;
618 	if (k1->objectid < k2->objectid)
619 		return -1;
620 	if (k1->type > k2->type)
621 		return 1;
622 	if (k1->type < k2->type)
623 		return -1;
624 	if (k1->offset > k2->offset)
625 		return 1;
626 	if (k1->offset < k2->offset)
627 		return -1;
628 	return 0;
629 }
630 
631 /*
632  * this is used by the defrag code to go through all the
633  * leaves pointed to by a node and reallocate them so that
634  * disk order is close to key order
635  */
636 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
637 		       struct btrfs_root *root, struct extent_buffer *parent,
638 		       int start_slot, int cache_only, u64 *last_ret,
639 		       struct btrfs_key *progress)
640 {
641 	struct extent_buffer *cur;
642 	u64 blocknr;
643 	u64 gen;
644 	u64 search_start = *last_ret;
645 	u64 last_block = 0;
646 	u64 other;
647 	u32 parent_nritems;
648 	int end_slot;
649 	int i;
650 	int err = 0;
651 	int parent_level;
652 	int uptodate;
653 	u32 blocksize;
654 	int progress_passed = 0;
655 	struct btrfs_disk_key disk_key;
656 
657 	parent_level = btrfs_header_level(parent);
658 	if (cache_only && parent_level != 1)
659 		return 0;
660 
661 	if (trans->transaction != root->fs_info->running_transaction)
662 		WARN_ON(1);
663 	if (trans->transid != root->fs_info->generation)
664 		WARN_ON(1);
665 
666 	parent_nritems = btrfs_header_nritems(parent);
667 	blocksize = btrfs_level_size(root, parent_level - 1);
668 	end_slot = parent_nritems;
669 
670 	if (parent_nritems == 1)
671 		return 0;
672 
673 	btrfs_set_lock_blocking(parent);
674 
675 	for (i = start_slot; i < end_slot; i++) {
676 		int close = 1;
677 
678 		btrfs_node_key(parent, &disk_key, i);
679 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
680 			continue;
681 
682 		progress_passed = 1;
683 		blocknr = btrfs_node_blockptr(parent, i);
684 		gen = btrfs_node_ptr_generation(parent, i);
685 		if (last_block == 0)
686 			last_block = blocknr;
687 
688 		if (i > 0) {
689 			other = btrfs_node_blockptr(parent, i - 1);
690 			close = close_blocks(blocknr, other, blocksize);
691 		}
692 		if (!close && i < end_slot - 2) {
693 			other = btrfs_node_blockptr(parent, i + 1);
694 			close = close_blocks(blocknr, other, blocksize);
695 		}
696 		if (close) {
697 			last_block = blocknr;
698 			continue;
699 		}
700 
701 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
702 		if (cur)
703 			uptodate = btrfs_buffer_uptodate(cur, gen);
704 		else
705 			uptodate = 0;
706 		if (!cur || !uptodate) {
707 			if (cache_only) {
708 				free_extent_buffer(cur);
709 				continue;
710 			}
711 			if (!cur) {
712 				cur = read_tree_block(root, blocknr,
713 							 blocksize, gen);
714 				if (!cur)
715 					return -EIO;
716 			} else if (!uptodate) {
717 				btrfs_read_buffer(cur, gen);
718 			}
719 		}
720 		if (search_start == 0)
721 			search_start = last_block;
722 
723 		btrfs_tree_lock(cur);
724 		btrfs_set_lock_blocking(cur);
725 		err = __btrfs_cow_block(trans, root, cur, parent, i,
726 					&cur, search_start,
727 					min(16 * blocksize,
728 					    (end_slot - i) * blocksize));
729 		if (err) {
730 			btrfs_tree_unlock(cur);
731 			free_extent_buffer(cur);
732 			break;
733 		}
734 		search_start = cur->start;
735 		last_block = cur->start;
736 		*last_ret = search_start;
737 		btrfs_tree_unlock(cur);
738 		free_extent_buffer(cur);
739 	}
740 	return err;
741 }
742 
743 /*
744  * The leaf data grows from end-to-front in the node.
745  * this returns the address of the start of the last item,
746  * which is the stop of the leaf data stack
747  */
748 static inline unsigned int leaf_data_end(struct btrfs_root *root,
749 					 struct extent_buffer *leaf)
750 {
751 	u32 nr = btrfs_header_nritems(leaf);
752 	if (nr == 0)
753 		return BTRFS_LEAF_DATA_SIZE(root);
754 	return btrfs_item_offset_nr(leaf, nr - 1);
755 }
756 
757 
758 /*
759  * search for key in the extent_buffer.  The items start at offset p,
760  * and they are item_size apart.  There are 'max' items in p.
761  *
762  * the slot in the array is returned via slot, and it points to
763  * the place where you would insert key if it is not found in
764  * the array.
765  *
766  * slot may point to max if the key is bigger than all of the keys
767  */
768 static noinline int generic_bin_search(struct extent_buffer *eb,
769 				       unsigned long p,
770 				       int item_size, struct btrfs_key *key,
771 				       int max, int *slot)
772 {
773 	int low = 0;
774 	int high = max;
775 	int mid;
776 	int ret;
777 	struct btrfs_disk_key *tmp = NULL;
778 	struct btrfs_disk_key unaligned;
779 	unsigned long offset;
780 	char *kaddr = NULL;
781 	unsigned long map_start = 0;
782 	unsigned long map_len = 0;
783 	int err;
784 
785 	while (low < high) {
786 		mid = (low + high) / 2;
787 		offset = p + mid * item_size;
788 
789 		if (!kaddr || offset < map_start ||
790 		    (offset + sizeof(struct btrfs_disk_key)) >
791 		    map_start + map_len) {
792 
793 			err = map_private_extent_buffer(eb, offset,
794 						sizeof(struct btrfs_disk_key),
795 						&kaddr, &map_start, &map_len);
796 
797 			if (!err) {
798 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
799 							map_start);
800 			} else {
801 				read_extent_buffer(eb, &unaligned,
802 						   offset, sizeof(unaligned));
803 				tmp = &unaligned;
804 			}
805 
806 		} else {
807 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
808 							map_start);
809 		}
810 		ret = comp_keys(tmp, key);
811 
812 		if (ret < 0)
813 			low = mid + 1;
814 		else if (ret > 0)
815 			high = mid;
816 		else {
817 			*slot = mid;
818 			return 0;
819 		}
820 	}
821 	*slot = low;
822 	return 1;
823 }
824 
825 /*
826  * simple bin_search frontend that does the right thing for
827  * leaves vs nodes
828  */
829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
830 		      int level, int *slot)
831 {
832 	if (level == 0) {
833 		return generic_bin_search(eb,
834 					  offsetof(struct btrfs_leaf, items),
835 					  sizeof(struct btrfs_item),
836 					  key, btrfs_header_nritems(eb),
837 					  slot);
838 	} else {
839 		return generic_bin_search(eb,
840 					  offsetof(struct btrfs_node, ptrs),
841 					  sizeof(struct btrfs_key_ptr),
842 					  key, btrfs_header_nritems(eb),
843 					  slot);
844 	}
845 	return -1;
846 }
847 
848 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
849 		     int level, int *slot)
850 {
851 	return bin_search(eb, key, level, slot);
852 }
853 
854 static void root_add_used(struct btrfs_root *root, u32 size)
855 {
856 	spin_lock(&root->accounting_lock);
857 	btrfs_set_root_used(&root->root_item,
858 			    btrfs_root_used(&root->root_item) + size);
859 	spin_unlock(&root->accounting_lock);
860 }
861 
862 static void root_sub_used(struct btrfs_root *root, u32 size)
863 {
864 	spin_lock(&root->accounting_lock);
865 	btrfs_set_root_used(&root->root_item,
866 			    btrfs_root_used(&root->root_item) - size);
867 	spin_unlock(&root->accounting_lock);
868 }
869 
870 /* given a node and slot number, this reads the blocks it points to.  The
871  * extent buffer is returned with a reference taken (but unlocked).
872  * NULL is returned on error.
873  */
874 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
875 				   struct extent_buffer *parent, int slot)
876 {
877 	int level = btrfs_header_level(parent);
878 	if (slot < 0)
879 		return NULL;
880 	if (slot >= btrfs_header_nritems(parent))
881 		return NULL;
882 
883 	BUG_ON(level == 0);
884 
885 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
886 		       btrfs_level_size(root, level - 1),
887 		       btrfs_node_ptr_generation(parent, slot));
888 }
889 
890 /*
891  * node level balancing, used to make sure nodes are in proper order for
892  * item deletion.  We balance from the top down, so we have to make sure
893  * that a deletion won't leave an node completely empty later on.
894  */
895 static noinline int balance_level(struct btrfs_trans_handle *trans,
896 			 struct btrfs_root *root,
897 			 struct btrfs_path *path, int level)
898 {
899 	struct extent_buffer *right = NULL;
900 	struct extent_buffer *mid;
901 	struct extent_buffer *left = NULL;
902 	struct extent_buffer *parent = NULL;
903 	int ret = 0;
904 	int wret;
905 	int pslot;
906 	int orig_slot = path->slots[level];
907 	u64 orig_ptr;
908 
909 	if (level == 0)
910 		return 0;
911 
912 	mid = path->nodes[level];
913 
914 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
915 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
916 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
917 
918 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
919 
920 	if (level < BTRFS_MAX_LEVEL - 1) {
921 		parent = path->nodes[level + 1];
922 		pslot = path->slots[level + 1];
923 	}
924 
925 	/*
926 	 * deal with the case where there is only one pointer in the root
927 	 * by promoting the node below to a root
928 	 */
929 	if (!parent) {
930 		struct extent_buffer *child;
931 
932 		if (btrfs_header_nritems(mid) != 1)
933 			return 0;
934 
935 		/* promote the child to a root */
936 		child = read_node_slot(root, mid, 0);
937 		BUG_ON(!child);
938 		btrfs_tree_lock(child);
939 		btrfs_set_lock_blocking(child);
940 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
941 		if (ret) {
942 			btrfs_tree_unlock(child);
943 			free_extent_buffer(child);
944 			goto enospc;
945 		}
946 
947 		rcu_assign_pointer(root->node, child);
948 
949 		add_root_to_dirty_list(root);
950 		btrfs_tree_unlock(child);
951 
952 		path->locks[level] = 0;
953 		path->nodes[level] = NULL;
954 		clean_tree_block(trans, root, mid);
955 		btrfs_tree_unlock(mid);
956 		/* once for the path */
957 		free_extent_buffer(mid);
958 
959 		root_sub_used(root, mid->len);
960 		btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
961 		/* once for the root ptr */
962 		free_extent_buffer(mid);
963 		return 0;
964 	}
965 	if (btrfs_header_nritems(mid) >
966 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
967 		return 0;
968 
969 	btrfs_header_nritems(mid);
970 
971 	left = read_node_slot(root, parent, pslot - 1);
972 	if (left) {
973 		btrfs_tree_lock(left);
974 		btrfs_set_lock_blocking(left);
975 		wret = btrfs_cow_block(trans, root, left,
976 				       parent, pslot - 1, &left);
977 		if (wret) {
978 			ret = wret;
979 			goto enospc;
980 		}
981 	}
982 	right = read_node_slot(root, parent, pslot + 1);
983 	if (right) {
984 		btrfs_tree_lock(right);
985 		btrfs_set_lock_blocking(right);
986 		wret = btrfs_cow_block(trans, root, right,
987 				       parent, pslot + 1, &right);
988 		if (wret) {
989 			ret = wret;
990 			goto enospc;
991 		}
992 	}
993 
994 	/* first, try to make some room in the middle buffer */
995 	if (left) {
996 		orig_slot += btrfs_header_nritems(left);
997 		wret = push_node_left(trans, root, left, mid, 1);
998 		if (wret < 0)
999 			ret = wret;
1000 		btrfs_header_nritems(mid);
1001 	}
1002 
1003 	/*
1004 	 * then try to empty the right most buffer into the middle
1005 	 */
1006 	if (right) {
1007 		wret = push_node_left(trans, root, mid, right, 1);
1008 		if (wret < 0 && wret != -ENOSPC)
1009 			ret = wret;
1010 		if (btrfs_header_nritems(right) == 0) {
1011 			clean_tree_block(trans, root, right);
1012 			btrfs_tree_unlock(right);
1013 			wret = del_ptr(trans, root, path, level + 1, pslot +
1014 				       1);
1015 			if (wret)
1016 				ret = wret;
1017 			root_sub_used(root, right->len);
1018 			btrfs_free_tree_block(trans, root, right, 0, 1, 0);
1019 			free_extent_buffer(right);
1020 			right = NULL;
1021 		} else {
1022 			struct btrfs_disk_key right_key;
1023 			btrfs_node_key(right, &right_key, 0);
1024 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1025 			btrfs_mark_buffer_dirty(parent);
1026 		}
1027 	}
1028 	if (btrfs_header_nritems(mid) == 1) {
1029 		/*
1030 		 * we're not allowed to leave a node with one item in the
1031 		 * tree during a delete.  A deletion from lower in the tree
1032 		 * could try to delete the only pointer in this node.
1033 		 * So, pull some keys from the left.
1034 		 * There has to be a left pointer at this point because
1035 		 * otherwise we would have pulled some pointers from the
1036 		 * right
1037 		 */
1038 		BUG_ON(!left);
1039 		wret = balance_node_right(trans, root, mid, left);
1040 		if (wret < 0) {
1041 			ret = wret;
1042 			goto enospc;
1043 		}
1044 		if (wret == 1) {
1045 			wret = push_node_left(trans, root, left, mid, 1);
1046 			if (wret < 0)
1047 				ret = wret;
1048 		}
1049 		BUG_ON(wret == 1);
1050 	}
1051 	if (btrfs_header_nritems(mid) == 0) {
1052 		clean_tree_block(trans, root, mid);
1053 		btrfs_tree_unlock(mid);
1054 		wret = del_ptr(trans, root, path, level + 1, pslot);
1055 		if (wret)
1056 			ret = wret;
1057 		root_sub_used(root, mid->len);
1058 		btrfs_free_tree_block(trans, root, mid, 0, 1, 0);
1059 		free_extent_buffer(mid);
1060 		mid = NULL;
1061 	} else {
1062 		/* update the parent key to reflect our changes */
1063 		struct btrfs_disk_key mid_key;
1064 		btrfs_node_key(mid, &mid_key, 0);
1065 		btrfs_set_node_key(parent, &mid_key, pslot);
1066 		btrfs_mark_buffer_dirty(parent);
1067 	}
1068 
1069 	/* update the path */
1070 	if (left) {
1071 		if (btrfs_header_nritems(left) > orig_slot) {
1072 			extent_buffer_get(left);
1073 			/* left was locked after cow */
1074 			path->nodes[level] = left;
1075 			path->slots[level + 1] -= 1;
1076 			path->slots[level] = orig_slot;
1077 			if (mid) {
1078 				btrfs_tree_unlock(mid);
1079 				free_extent_buffer(mid);
1080 			}
1081 		} else {
1082 			orig_slot -= btrfs_header_nritems(left);
1083 			path->slots[level] = orig_slot;
1084 		}
1085 	}
1086 	/* double check we haven't messed things up */
1087 	if (orig_ptr !=
1088 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1089 		BUG();
1090 enospc:
1091 	if (right) {
1092 		btrfs_tree_unlock(right);
1093 		free_extent_buffer(right);
1094 	}
1095 	if (left) {
1096 		if (path->nodes[level] != left)
1097 			btrfs_tree_unlock(left);
1098 		free_extent_buffer(left);
1099 	}
1100 	return ret;
1101 }
1102 
1103 /* Node balancing for insertion.  Here we only split or push nodes around
1104  * when they are completely full.  This is also done top down, so we
1105  * have to be pessimistic.
1106  */
1107 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1108 					  struct btrfs_root *root,
1109 					  struct btrfs_path *path, int level)
1110 {
1111 	struct extent_buffer *right = NULL;
1112 	struct extent_buffer *mid;
1113 	struct extent_buffer *left = NULL;
1114 	struct extent_buffer *parent = NULL;
1115 	int ret = 0;
1116 	int wret;
1117 	int pslot;
1118 	int orig_slot = path->slots[level];
1119 
1120 	if (level == 0)
1121 		return 1;
1122 
1123 	mid = path->nodes[level];
1124 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1125 
1126 	if (level < BTRFS_MAX_LEVEL - 1) {
1127 		parent = path->nodes[level + 1];
1128 		pslot = path->slots[level + 1];
1129 	}
1130 
1131 	if (!parent)
1132 		return 1;
1133 
1134 	left = read_node_slot(root, parent, pslot - 1);
1135 
1136 	/* first, try to make some room in the middle buffer */
1137 	if (left) {
1138 		u32 left_nr;
1139 
1140 		btrfs_tree_lock(left);
1141 		btrfs_set_lock_blocking(left);
1142 
1143 		left_nr = btrfs_header_nritems(left);
1144 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1145 			wret = 1;
1146 		} else {
1147 			ret = btrfs_cow_block(trans, root, left, parent,
1148 					      pslot - 1, &left);
1149 			if (ret)
1150 				wret = 1;
1151 			else {
1152 				wret = push_node_left(trans, root,
1153 						      left, mid, 0);
1154 			}
1155 		}
1156 		if (wret < 0)
1157 			ret = wret;
1158 		if (wret == 0) {
1159 			struct btrfs_disk_key disk_key;
1160 			orig_slot += left_nr;
1161 			btrfs_node_key(mid, &disk_key, 0);
1162 			btrfs_set_node_key(parent, &disk_key, pslot);
1163 			btrfs_mark_buffer_dirty(parent);
1164 			if (btrfs_header_nritems(left) > orig_slot) {
1165 				path->nodes[level] = left;
1166 				path->slots[level + 1] -= 1;
1167 				path->slots[level] = orig_slot;
1168 				btrfs_tree_unlock(mid);
1169 				free_extent_buffer(mid);
1170 			} else {
1171 				orig_slot -=
1172 					btrfs_header_nritems(left);
1173 				path->slots[level] = orig_slot;
1174 				btrfs_tree_unlock(left);
1175 				free_extent_buffer(left);
1176 			}
1177 			return 0;
1178 		}
1179 		btrfs_tree_unlock(left);
1180 		free_extent_buffer(left);
1181 	}
1182 	right = read_node_slot(root, parent, pslot + 1);
1183 
1184 	/*
1185 	 * then try to empty the right most buffer into the middle
1186 	 */
1187 	if (right) {
1188 		u32 right_nr;
1189 
1190 		btrfs_tree_lock(right);
1191 		btrfs_set_lock_blocking(right);
1192 
1193 		right_nr = btrfs_header_nritems(right);
1194 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1195 			wret = 1;
1196 		} else {
1197 			ret = btrfs_cow_block(trans, root, right,
1198 					      parent, pslot + 1,
1199 					      &right);
1200 			if (ret)
1201 				wret = 1;
1202 			else {
1203 				wret = balance_node_right(trans, root,
1204 							  right, mid);
1205 			}
1206 		}
1207 		if (wret < 0)
1208 			ret = wret;
1209 		if (wret == 0) {
1210 			struct btrfs_disk_key disk_key;
1211 
1212 			btrfs_node_key(right, &disk_key, 0);
1213 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1214 			btrfs_mark_buffer_dirty(parent);
1215 
1216 			if (btrfs_header_nritems(mid) <= orig_slot) {
1217 				path->nodes[level] = right;
1218 				path->slots[level + 1] += 1;
1219 				path->slots[level] = orig_slot -
1220 					btrfs_header_nritems(mid);
1221 				btrfs_tree_unlock(mid);
1222 				free_extent_buffer(mid);
1223 			} else {
1224 				btrfs_tree_unlock(right);
1225 				free_extent_buffer(right);
1226 			}
1227 			return 0;
1228 		}
1229 		btrfs_tree_unlock(right);
1230 		free_extent_buffer(right);
1231 	}
1232 	return 1;
1233 }
1234 
1235 /*
1236  * readahead one full node of leaves, finding things that are close
1237  * to the block in 'slot', and triggering ra on them.
1238  */
1239 static void reada_for_search(struct btrfs_root *root,
1240 			     struct btrfs_path *path,
1241 			     int level, int slot, u64 objectid)
1242 {
1243 	struct extent_buffer *node;
1244 	struct btrfs_disk_key disk_key;
1245 	u32 nritems;
1246 	u64 search;
1247 	u64 target;
1248 	u64 nread = 0;
1249 	u64 gen;
1250 	int direction = path->reada;
1251 	struct extent_buffer *eb;
1252 	u32 nr;
1253 	u32 blocksize;
1254 	u32 nscan = 0;
1255 
1256 	if (level != 1)
1257 		return;
1258 
1259 	if (!path->nodes[level])
1260 		return;
1261 
1262 	node = path->nodes[level];
1263 
1264 	search = btrfs_node_blockptr(node, slot);
1265 	blocksize = btrfs_level_size(root, level - 1);
1266 	eb = btrfs_find_tree_block(root, search, blocksize);
1267 	if (eb) {
1268 		free_extent_buffer(eb);
1269 		return;
1270 	}
1271 
1272 	target = search;
1273 
1274 	nritems = btrfs_header_nritems(node);
1275 	nr = slot;
1276 
1277 	while (1) {
1278 		if (direction < 0) {
1279 			if (nr == 0)
1280 				break;
1281 			nr--;
1282 		} else if (direction > 0) {
1283 			nr++;
1284 			if (nr >= nritems)
1285 				break;
1286 		}
1287 		if (path->reada < 0 && objectid) {
1288 			btrfs_node_key(node, &disk_key, nr);
1289 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1290 				break;
1291 		}
1292 		search = btrfs_node_blockptr(node, nr);
1293 		if ((search <= target && target - search <= 65536) ||
1294 		    (search > target && search - target <= 65536)) {
1295 			gen = btrfs_node_ptr_generation(node, nr);
1296 			readahead_tree_block(root, search, blocksize, gen);
1297 			nread += blocksize;
1298 		}
1299 		nscan++;
1300 		if ((nread > 65536 || nscan > 32))
1301 			break;
1302 	}
1303 }
1304 
1305 /*
1306  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1307  * cache
1308  */
1309 static noinline int reada_for_balance(struct btrfs_root *root,
1310 				      struct btrfs_path *path, int level)
1311 {
1312 	int slot;
1313 	int nritems;
1314 	struct extent_buffer *parent;
1315 	struct extent_buffer *eb;
1316 	u64 gen;
1317 	u64 block1 = 0;
1318 	u64 block2 = 0;
1319 	int ret = 0;
1320 	int blocksize;
1321 
1322 	parent = path->nodes[level + 1];
1323 	if (!parent)
1324 		return 0;
1325 
1326 	nritems = btrfs_header_nritems(parent);
1327 	slot = path->slots[level + 1];
1328 	blocksize = btrfs_level_size(root, level);
1329 
1330 	if (slot > 0) {
1331 		block1 = btrfs_node_blockptr(parent, slot - 1);
1332 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1333 		eb = btrfs_find_tree_block(root, block1, blocksize);
1334 		if (eb && btrfs_buffer_uptodate(eb, gen))
1335 			block1 = 0;
1336 		free_extent_buffer(eb);
1337 	}
1338 	if (slot + 1 < nritems) {
1339 		block2 = btrfs_node_blockptr(parent, slot + 1);
1340 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1341 		eb = btrfs_find_tree_block(root, block2, blocksize);
1342 		if (eb && btrfs_buffer_uptodate(eb, gen))
1343 			block2 = 0;
1344 		free_extent_buffer(eb);
1345 	}
1346 	if (block1 || block2) {
1347 		ret = -EAGAIN;
1348 
1349 		/* release the whole path */
1350 		btrfs_release_path(path);
1351 
1352 		/* read the blocks */
1353 		if (block1)
1354 			readahead_tree_block(root, block1, blocksize, 0);
1355 		if (block2)
1356 			readahead_tree_block(root, block2, blocksize, 0);
1357 
1358 		if (block1) {
1359 			eb = read_tree_block(root, block1, blocksize, 0);
1360 			free_extent_buffer(eb);
1361 		}
1362 		if (block2) {
1363 			eb = read_tree_block(root, block2, blocksize, 0);
1364 			free_extent_buffer(eb);
1365 		}
1366 	}
1367 	return ret;
1368 }
1369 
1370 
1371 /*
1372  * when we walk down the tree, it is usually safe to unlock the higher layers
1373  * in the tree.  The exceptions are when our path goes through slot 0, because
1374  * operations on the tree might require changing key pointers higher up in the
1375  * tree.
1376  *
1377  * callers might also have set path->keep_locks, which tells this code to keep
1378  * the lock if the path points to the last slot in the block.  This is part of
1379  * walking through the tree, and selecting the next slot in the higher block.
1380  *
1381  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1382  * if lowest_unlock is 1, level 0 won't be unlocked
1383  */
1384 static noinline void unlock_up(struct btrfs_path *path, int level,
1385 			       int lowest_unlock)
1386 {
1387 	int i;
1388 	int skip_level = level;
1389 	int no_skips = 0;
1390 	struct extent_buffer *t;
1391 
1392 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1393 		if (!path->nodes[i])
1394 			break;
1395 		if (!path->locks[i])
1396 			break;
1397 		if (!no_skips && path->slots[i] == 0) {
1398 			skip_level = i + 1;
1399 			continue;
1400 		}
1401 		if (!no_skips && path->keep_locks) {
1402 			u32 nritems;
1403 			t = path->nodes[i];
1404 			nritems = btrfs_header_nritems(t);
1405 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1406 				skip_level = i + 1;
1407 				continue;
1408 			}
1409 		}
1410 		if (skip_level < i && i >= lowest_unlock)
1411 			no_skips = 1;
1412 
1413 		t = path->nodes[i];
1414 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1415 			btrfs_tree_unlock_rw(t, path->locks[i]);
1416 			path->locks[i] = 0;
1417 		}
1418 	}
1419 }
1420 
1421 /*
1422  * This releases any locks held in the path starting at level and
1423  * going all the way up to the root.
1424  *
1425  * btrfs_search_slot will keep the lock held on higher nodes in a few
1426  * corner cases, such as COW of the block at slot zero in the node.  This
1427  * ignores those rules, and it should only be called when there are no
1428  * more updates to be done higher up in the tree.
1429  */
1430 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1431 {
1432 	int i;
1433 
1434 	if (path->keep_locks)
1435 		return;
1436 
1437 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1438 		if (!path->nodes[i])
1439 			continue;
1440 		if (!path->locks[i])
1441 			continue;
1442 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1443 		path->locks[i] = 0;
1444 	}
1445 }
1446 
1447 /*
1448  * helper function for btrfs_search_slot.  The goal is to find a block
1449  * in cache without setting the path to blocking.  If we find the block
1450  * we return zero and the path is unchanged.
1451  *
1452  * If we can't find the block, we set the path blocking and do some
1453  * reada.  -EAGAIN is returned and the search must be repeated.
1454  */
1455 static int
1456 read_block_for_search(struct btrfs_trans_handle *trans,
1457 		       struct btrfs_root *root, struct btrfs_path *p,
1458 		       struct extent_buffer **eb_ret, int level, int slot,
1459 		       struct btrfs_key *key)
1460 {
1461 	u64 blocknr;
1462 	u64 gen;
1463 	u32 blocksize;
1464 	struct extent_buffer *b = *eb_ret;
1465 	struct extent_buffer *tmp;
1466 	int ret;
1467 
1468 	blocknr = btrfs_node_blockptr(b, slot);
1469 	gen = btrfs_node_ptr_generation(b, slot);
1470 	blocksize = btrfs_level_size(root, level - 1);
1471 
1472 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1473 	if (tmp) {
1474 		if (btrfs_buffer_uptodate(tmp, 0)) {
1475 			if (btrfs_buffer_uptodate(tmp, gen)) {
1476 				/*
1477 				 * we found an up to date block without
1478 				 * sleeping, return
1479 				 * right away
1480 				 */
1481 				*eb_ret = tmp;
1482 				return 0;
1483 			}
1484 			/* the pages were up to date, but we failed
1485 			 * the generation number check.  Do a full
1486 			 * read for the generation number that is correct.
1487 			 * We must do this without dropping locks so
1488 			 * we can trust our generation number
1489 			 */
1490 			free_extent_buffer(tmp);
1491 			btrfs_set_path_blocking(p);
1492 
1493 			tmp = read_tree_block(root, blocknr, blocksize, gen);
1494 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1495 				*eb_ret = tmp;
1496 				return 0;
1497 			}
1498 			free_extent_buffer(tmp);
1499 			btrfs_release_path(p);
1500 			return -EIO;
1501 		}
1502 	}
1503 
1504 	/*
1505 	 * reduce lock contention at high levels
1506 	 * of the btree by dropping locks before
1507 	 * we read.  Don't release the lock on the current
1508 	 * level because we need to walk this node to figure
1509 	 * out which blocks to read.
1510 	 */
1511 	btrfs_unlock_up_safe(p, level + 1);
1512 	btrfs_set_path_blocking(p);
1513 
1514 	free_extent_buffer(tmp);
1515 	if (p->reada)
1516 		reada_for_search(root, p, level, slot, key->objectid);
1517 
1518 	btrfs_release_path(p);
1519 
1520 	ret = -EAGAIN;
1521 	tmp = read_tree_block(root, blocknr, blocksize, 0);
1522 	if (tmp) {
1523 		/*
1524 		 * If the read above didn't mark this buffer up to date,
1525 		 * it will never end up being up to date.  Set ret to EIO now
1526 		 * and give up so that our caller doesn't loop forever
1527 		 * on our EAGAINs.
1528 		 */
1529 		if (!btrfs_buffer_uptodate(tmp, 0))
1530 			ret = -EIO;
1531 		free_extent_buffer(tmp);
1532 	}
1533 	return ret;
1534 }
1535 
1536 /*
1537  * helper function for btrfs_search_slot.  This does all of the checks
1538  * for node-level blocks and does any balancing required based on
1539  * the ins_len.
1540  *
1541  * If no extra work was required, zero is returned.  If we had to
1542  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1543  * start over
1544  */
1545 static int
1546 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1547 		       struct btrfs_root *root, struct btrfs_path *p,
1548 		       struct extent_buffer *b, int level, int ins_len,
1549 		       int *write_lock_level)
1550 {
1551 	int ret;
1552 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1553 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1554 		int sret;
1555 
1556 		if (*write_lock_level < level + 1) {
1557 			*write_lock_level = level + 1;
1558 			btrfs_release_path(p);
1559 			goto again;
1560 		}
1561 
1562 		sret = reada_for_balance(root, p, level);
1563 		if (sret)
1564 			goto again;
1565 
1566 		btrfs_set_path_blocking(p);
1567 		sret = split_node(trans, root, p, level);
1568 		btrfs_clear_path_blocking(p, NULL, 0);
1569 
1570 		BUG_ON(sret > 0);
1571 		if (sret) {
1572 			ret = sret;
1573 			goto done;
1574 		}
1575 		b = p->nodes[level];
1576 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1577 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1578 		int sret;
1579 
1580 		if (*write_lock_level < level + 1) {
1581 			*write_lock_level = level + 1;
1582 			btrfs_release_path(p);
1583 			goto again;
1584 		}
1585 
1586 		sret = reada_for_balance(root, p, level);
1587 		if (sret)
1588 			goto again;
1589 
1590 		btrfs_set_path_blocking(p);
1591 		sret = balance_level(trans, root, p, level);
1592 		btrfs_clear_path_blocking(p, NULL, 0);
1593 
1594 		if (sret) {
1595 			ret = sret;
1596 			goto done;
1597 		}
1598 		b = p->nodes[level];
1599 		if (!b) {
1600 			btrfs_release_path(p);
1601 			goto again;
1602 		}
1603 		BUG_ON(btrfs_header_nritems(b) == 1);
1604 	}
1605 	return 0;
1606 
1607 again:
1608 	ret = -EAGAIN;
1609 done:
1610 	return ret;
1611 }
1612 
1613 /*
1614  * look for key in the tree.  path is filled in with nodes along the way
1615  * if key is found, we return zero and you can find the item in the leaf
1616  * level of the path (level 0)
1617  *
1618  * If the key isn't found, the path points to the slot where it should
1619  * be inserted, and 1 is returned.  If there are other errors during the
1620  * search a negative error number is returned.
1621  *
1622  * if ins_len > 0, nodes and leaves will be split as we walk down the
1623  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1624  * possible)
1625  */
1626 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1627 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1628 		      ins_len, int cow)
1629 {
1630 	struct extent_buffer *b;
1631 	int slot;
1632 	int ret;
1633 	int err;
1634 	int level;
1635 	int lowest_unlock = 1;
1636 	int root_lock;
1637 	/* everything at write_lock_level or lower must be write locked */
1638 	int write_lock_level = 0;
1639 	u8 lowest_level = 0;
1640 
1641 	lowest_level = p->lowest_level;
1642 	WARN_ON(lowest_level && ins_len > 0);
1643 	WARN_ON(p->nodes[0] != NULL);
1644 
1645 	if (ins_len < 0) {
1646 		lowest_unlock = 2;
1647 
1648 		/* when we are removing items, we might have to go up to level
1649 		 * two as we update tree pointers  Make sure we keep write
1650 		 * for those levels as well
1651 		 */
1652 		write_lock_level = 2;
1653 	} else if (ins_len > 0) {
1654 		/*
1655 		 * for inserting items, make sure we have a write lock on
1656 		 * level 1 so we can update keys
1657 		 */
1658 		write_lock_level = 1;
1659 	}
1660 
1661 	if (!cow)
1662 		write_lock_level = -1;
1663 
1664 	if (cow && (p->keep_locks || p->lowest_level))
1665 		write_lock_level = BTRFS_MAX_LEVEL;
1666 
1667 again:
1668 	/*
1669 	 * we try very hard to do read locks on the root
1670 	 */
1671 	root_lock = BTRFS_READ_LOCK;
1672 	level = 0;
1673 	if (p->search_commit_root) {
1674 		/*
1675 		 * the commit roots are read only
1676 		 * so we always do read locks
1677 		 */
1678 		b = root->commit_root;
1679 		extent_buffer_get(b);
1680 		level = btrfs_header_level(b);
1681 		if (!p->skip_locking)
1682 			btrfs_tree_read_lock(b);
1683 	} else {
1684 		if (p->skip_locking) {
1685 			b = btrfs_root_node(root);
1686 			level = btrfs_header_level(b);
1687 		} else {
1688 			/* we don't know the level of the root node
1689 			 * until we actually have it read locked
1690 			 */
1691 			b = btrfs_read_lock_root_node(root);
1692 			level = btrfs_header_level(b);
1693 			if (level <= write_lock_level) {
1694 				/* whoops, must trade for write lock */
1695 				btrfs_tree_read_unlock(b);
1696 				free_extent_buffer(b);
1697 				b = btrfs_lock_root_node(root);
1698 				root_lock = BTRFS_WRITE_LOCK;
1699 
1700 				/* the level might have changed, check again */
1701 				level = btrfs_header_level(b);
1702 			}
1703 		}
1704 	}
1705 	p->nodes[level] = b;
1706 	if (!p->skip_locking)
1707 		p->locks[level] = root_lock;
1708 
1709 	while (b) {
1710 		level = btrfs_header_level(b);
1711 
1712 		/*
1713 		 * setup the path here so we can release it under lock
1714 		 * contention with the cow code
1715 		 */
1716 		if (cow) {
1717 			/*
1718 			 * if we don't really need to cow this block
1719 			 * then we don't want to set the path blocking,
1720 			 * so we test it here
1721 			 */
1722 			if (!should_cow_block(trans, root, b))
1723 				goto cow_done;
1724 
1725 			btrfs_set_path_blocking(p);
1726 
1727 			/*
1728 			 * must have write locks on this node and the
1729 			 * parent
1730 			 */
1731 			if (level + 1 > write_lock_level) {
1732 				write_lock_level = level + 1;
1733 				btrfs_release_path(p);
1734 				goto again;
1735 			}
1736 
1737 			err = btrfs_cow_block(trans, root, b,
1738 					      p->nodes[level + 1],
1739 					      p->slots[level + 1], &b);
1740 			if (err) {
1741 				ret = err;
1742 				goto done;
1743 			}
1744 		}
1745 cow_done:
1746 		BUG_ON(!cow && ins_len);
1747 
1748 		p->nodes[level] = b;
1749 		btrfs_clear_path_blocking(p, NULL, 0);
1750 
1751 		/*
1752 		 * we have a lock on b and as long as we aren't changing
1753 		 * the tree, there is no way to for the items in b to change.
1754 		 * It is safe to drop the lock on our parent before we
1755 		 * go through the expensive btree search on b.
1756 		 *
1757 		 * If cow is true, then we might be changing slot zero,
1758 		 * which may require changing the parent.  So, we can't
1759 		 * drop the lock until after we know which slot we're
1760 		 * operating on.
1761 		 */
1762 		if (!cow)
1763 			btrfs_unlock_up_safe(p, level + 1);
1764 
1765 		ret = bin_search(b, key, level, &slot);
1766 
1767 		if (level != 0) {
1768 			int dec = 0;
1769 			if (ret && slot > 0) {
1770 				dec = 1;
1771 				slot -= 1;
1772 			}
1773 			p->slots[level] = slot;
1774 			err = setup_nodes_for_search(trans, root, p, b, level,
1775 					     ins_len, &write_lock_level);
1776 			if (err == -EAGAIN)
1777 				goto again;
1778 			if (err) {
1779 				ret = err;
1780 				goto done;
1781 			}
1782 			b = p->nodes[level];
1783 			slot = p->slots[level];
1784 
1785 			/*
1786 			 * slot 0 is special, if we change the key
1787 			 * we have to update the parent pointer
1788 			 * which means we must have a write lock
1789 			 * on the parent
1790 			 */
1791 			if (slot == 0 && cow &&
1792 			    write_lock_level < level + 1) {
1793 				write_lock_level = level + 1;
1794 				btrfs_release_path(p);
1795 				goto again;
1796 			}
1797 
1798 			unlock_up(p, level, lowest_unlock);
1799 
1800 			if (level == lowest_level) {
1801 				if (dec)
1802 					p->slots[level]++;
1803 				goto done;
1804 			}
1805 
1806 			err = read_block_for_search(trans, root, p,
1807 						    &b, level, slot, key);
1808 			if (err == -EAGAIN)
1809 				goto again;
1810 			if (err) {
1811 				ret = err;
1812 				goto done;
1813 			}
1814 
1815 			if (!p->skip_locking) {
1816 				level = btrfs_header_level(b);
1817 				if (level <= write_lock_level) {
1818 					err = btrfs_try_tree_write_lock(b);
1819 					if (!err) {
1820 						btrfs_set_path_blocking(p);
1821 						btrfs_tree_lock(b);
1822 						btrfs_clear_path_blocking(p, b,
1823 								  BTRFS_WRITE_LOCK);
1824 					}
1825 					p->locks[level] = BTRFS_WRITE_LOCK;
1826 				} else {
1827 					err = btrfs_try_tree_read_lock(b);
1828 					if (!err) {
1829 						btrfs_set_path_blocking(p);
1830 						btrfs_tree_read_lock(b);
1831 						btrfs_clear_path_blocking(p, b,
1832 								  BTRFS_READ_LOCK);
1833 					}
1834 					p->locks[level] = BTRFS_READ_LOCK;
1835 				}
1836 				p->nodes[level] = b;
1837 			}
1838 		} else {
1839 			p->slots[level] = slot;
1840 			if (ins_len > 0 &&
1841 			    btrfs_leaf_free_space(root, b) < ins_len) {
1842 				if (write_lock_level < 1) {
1843 					write_lock_level = 1;
1844 					btrfs_release_path(p);
1845 					goto again;
1846 				}
1847 
1848 				btrfs_set_path_blocking(p);
1849 				err = split_leaf(trans, root, key,
1850 						 p, ins_len, ret == 0);
1851 				btrfs_clear_path_blocking(p, NULL, 0);
1852 
1853 				BUG_ON(err > 0);
1854 				if (err) {
1855 					ret = err;
1856 					goto done;
1857 				}
1858 			}
1859 			if (!p->search_for_split)
1860 				unlock_up(p, level, lowest_unlock);
1861 			goto done;
1862 		}
1863 	}
1864 	ret = 1;
1865 done:
1866 	/*
1867 	 * we don't really know what they plan on doing with the path
1868 	 * from here on, so for now just mark it as blocking
1869 	 */
1870 	if (!p->leave_spinning)
1871 		btrfs_set_path_blocking(p);
1872 	if (ret < 0)
1873 		btrfs_release_path(p);
1874 	return ret;
1875 }
1876 
1877 /*
1878  * adjust the pointers going up the tree, starting at level
1879  * making sure the right key of each node is points to 'key'.
1880  * This is used after shifting pointers to the left, so it stops
1881  * fixing up pointers when a given leaf/node is not in slot 0 of the
1882  * higher levels
1883  *
1884  * If this fails to write a tree block, it returns -1, but continues
1885  * fixing up the blocks in ram so the tree is consistent.
1886  */
1887 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1888 			  struct btrfs_root *root, struct btrfs_path *path,
1889 			  struct btrfs_disk_key *key, int level)
1890 {
1891 	int i;
1892 	int ret = 0;
1893 	struct extent_buffer *t;
1894 
1895 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1896 		int tslot = path->slots[i];
1897 		if (!path->nodes[i])
1898 			break;
1899 		t = path->nodes[i];
1900 		btrfs_set_node_key(t, key, tslot);
1901 		btrfs_mark_buffer_dirty(path->nodes[i]);
1902 		if (tslot != 0)
1903 			break;
1904 	}
1905 	return ret;
1906 }
1907 
1908 /*
1909  * update item key.
1910  *
1911  * This function isn't completely safe. It's the caller's responsibility
1912  * that the new key won't break the order
1913  */
1914 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1915 			    struct btrfs_root *root, struct btrfs_path *path,
1916 			    struct btrfs_key *new_key)
1917 {
1918 	struct btrfs_disk_key disk_key;
1919 	struct extent_buffer *eb;
1920 	int slot;
1921 
1922 	eb = path->nodes[0];
1923 	slot = path->slots[0];
1924 	if (slot > 0) {
1925 		btrfs_item_key(eb, &disk_key, slot - 1);
1926 		if (comp_keys(&disk_key, new_key) >= 0)
1927 			return -1;
1928 	}
1929 	if (slot < btrfs_header_nritems(eb) - 1) {
1930 		btrfs_item_key(eb, &disk_key, slot + 1);
1931 		if (comp_keys(&disk_key, new_key) <= 0)
1932 			return -1;
1933 	}
1934 
1935 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1936 	btrfs_set_item_key(eb, &disk_key, slot);
1937 	btrfs_mark_buffer_dirty(eb);
1938 	if (slot == 0)
1939 		fixup_low_keys(trans, root, path, &disk_key, 1);
1940 	return 0;
1941 }
1942 
1943 /*
1944  * try to push data from one node into the next node left in the
1945  * tree.
1946  *
1947  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1948  * error, and > 0 if there was no room in the left hand block.
1949  */
1950 static int push_node_left(struct btrfs_trans_handle *trans,
1951 			  struct btrfs_root *root, struct extent_buffer *dst,
1952 			  struct extent_buffer *src, int empty)
1953 {
1954 	int push_items = 0;
1955 	int src_nritems;
1956 	int dst_nritems;
1957 	int ret = 0;
1958 
1959 	src_nritems = btrfs_header_nritems(src);
1960 	dst_nritems = btrfs_header_nritems(dst);
1961 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1962 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1963 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1964 
1965 	if (!empty && src_nritems <= 8)
1966 		return 1;
1967 
1968 	if (push_items <= 0)
1969 		return 1;
1970 
1971 	if (empty) {
1972 		push_items = min(src_nritems, push_items);
1973 		if (push_items < src_nritems) {
1974 			/* leave at least 8 pointers in the node if
1975 			 * we aren't going to empty it
1976 			 */
1977 			if (src_nritems - push_items < 8) {
1978 				if (push_items <= 8)
1979 					return 1;
1980 				push_items -= 8;
1981 			}
1982 		}
1983 	} else
1984 		push_items = min(src_nritems - 8, push_items);
1985 
1986 	copy_extent_buffer(dst, src,
1987 			   btrfs_node_key_ptr_offset(dst_nritems),
1988 			   btrfs_node_key_ptr_offset(0),
1989 			   push_items * sizeof(struct btrfs_key_ptr));
1990 
1991 	if (push_items < src_nritems) {
1992 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1993 				      btrfs_node_key_ptr_offset(push_items),
1994 				      (src_nritems - push_items) *
1995 				      sizeof(struct btrfs_key_ptr));
1996 	}
1997 	btrfs_set_header_nritems(src, src_nritems - push_items);
1998 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1999 	btrfs_mark_buffer_dirty(src);
2000 	btrfs_mark_buffer_dirty(dst);
2001 
2002 	return ret;
2003 }
2004 
2005 /*
2006  * try to push data from one node into the next node right in the
2007  * tree.
2008  *
2009  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2010  * error, and > 0 if there was no room in the right hand block.
2011  *
2012  * this will  only push up to 1/2 the contents of the left node over
2013  */
2014 static int balance_node_right(struct btrfs_trans_handle *trans,
2015 			      struct btrfs_root *root,
2016 			      struct extent_buffer *dst,
2017 			      struct extent_buffer *src)
2018 {
2019 	int push_items = 0;
2020 	int max_push;
2021 	int src_nritems;
2022 	int dst_nritems;
2023 	int ret = 0;
2024 
2025 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2026 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2027 
2028 	src_nritems = btrfs_header_nritems(src);
2029 	dst_nritems = btrfs_header_nritems(dst);
2030 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2031 	if (push_items <= 0)
2032 		return 1;
2033 
2034 	if (src_nritems < 4)
2035 		return 1;
2036 
2037 	max_push = src_nritems / 2 + 1;
2038 	/* don't try to empty the node */
2039 	if (max_push >= src_nritems)
2040 		return 1;
2041 
2042 	if (max_push < push_items)
2043 		push_items = max_push;
2044 
2045 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2046 				      btrfs_node_key_ptr_offset(0),
2047 				      (dst_nritems) *
2048 				      sizeof(struct btrfs_key_ptr));
2049 
2050 	copy_extent_buffer(dst, src,
2051 			   btrfs_node_key_ptr_offset(0),
2052 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2053 			   push_items * sizeof(struct btrfs_key_ptr));
2054 
2055 	btrfs_set_header_nritems(src, src_nritems - push_items);
2056 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2057 
2058 	btrfs_mark_buffer_dirty(src);
2059 	btrfs_mark_buffer_dirty(dst);
2060 
2061 	return ret;
2062 }
2063 
2064 /*
2065  * helper function to insert a new root level in the tree.
2066  * A new node is allocated, and a single item is inserted to
2067  * point to the existing root
2068  *
2069  * returns zero on success or < 0 on failure.
2070  */
2071 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2072 			   struct btrfs_root *root,
2073 			   struct btrfs_path *path, int level)
2074 {
2075 	u64 lower_gen;
2076 	struct extent_buffer *lower;
2077 	struct extent_buffer *c;
2078 	struct extent_buffer *old;
2079 	struct btrfs_disk_key lower_key;
2080 
2081 	BUG_ON(path->nodes[level]);
2082 	BUG_ON(path->nodes[level-1] != root->node);
2083 
2084 	lower = path->nodes[level-1];
2085 	if (level == 1)
2086 		btrfs_item_key(lower, &lower_key, 0);
2087 	else
2088 		btrfs_node_key(lower, &lower_key, 0);
2089 
2090 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2091 				   root->root_key.objectid, &lower_key,
2092 				   level, root->node->start, 0, 0);
2093 	if (IS_ERR(c))
2094 		return PTR_ERR(c);
2095 
2096 	root_add_used(root, root->nodesize);
2097 
2098 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2099 	btrfs_set_header_nritems(c, 1);
2100 	btrfs_set_header_level(c, level);
2101 	btrfs_set_header_bytenr(c, c->start);
2102 	btrfs_set_header_generation(c, trans->transid);
2103 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2104 	btrfs_set_header_owner(c, root->root_key.objectid);
2105 
2106 	write_extent_buffer(c, root->fs_info->fsid,
2107 			    (unsigned long)btrfs_header_fsid(c),
2108 			    BTRFS_FSID_SIZE);
2109 
2110 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2111 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2112 			    BTRFS_UUID_SIZE);
2113 
2114 	btrfs_set_node_key(c, &lower_key, 0);
2115 	btrfs_set_node_blockptr(c, 0, lower->start);
2116 	lower_gen = btrfs_header_generation(lower);
2117 	WARN_ON(lower_gen != trans->transid);
2118 
2119 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2120 
2121 	btrfs_mark_buffer_dirty(c);
2122 
2123 	old = root->node;
2124 	rcu_assign_pointer(root->node, c);
2125 
2126 	/* the super has an extra ref to root->node */
2127 	free_extent_buffer(old);
2128 
2129 	add_root_to_dirty_list(root);
2130 	extent_buffer_get(c);
2131 	path->nodes[level] = c;
2132 	path->locks[level] = BTRFS_WRITE_LOCK;
2133 	path->slots[level] = 0;
2134 	return 0;
2135 }
2136 
2137 /*
2138  * worker function to insert a single pointer in a node.
2139  * the node should have enough room for the pointer already
2140  *
2141  * slot and level indicate where you want the key to go, and
2142  * blocknr is the block the key points to.
2143  *
2144  * returns zero on success and < 0 on any error
2145  */
2146 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2147 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2148 		      *key, u64 bytenr, int slot, int level)
2149 {
2150 	struct extent_buffer *lower;
2151 	int nritems;
2152 
2153 	BUG_ON(!path->nodes[level]);
2154 	btrfs_assert_tree_locked(path->nodes[level]);
2155 	lower = path->nodes[level];
2156 	nritems = btrfs_header_nritems(lower);
2157 	BUG_ON(slot > nritems);
2158 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2159 		BUG();
2160 	if (slot != nritems) {
2161 		memmove_extent_buffer(lower,
2162 			      btrfs_node_key_ptr_offset(slot + 1),
2163 			      btrfs_node_key_ptr_offset(slot),
2164 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2165 	}
2166 	btrfs_set_node_key(lower, key, slot);
2167 	btrfs_set_node_blockptr(lower, slot, bytenr);
2168 	WARN_ON(trans->transid == 0);
2169 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2170 	btrfs_set_header_nritems(lower, nritems + 1);
2171 	btrfs_mark_buffer_dirty(lower);
2172 	return 0;
2173 }
2174 
2175 /*
2176  * split the node at the specified level in path in two.
2177  * The path is corrected to point to the appropriate node after the split
2178  *
2179  * Before splitting this tries to make some room in the node by pushing
2180  * left and right, if either one works, it returns right away.
2181  *
2182  * returns 0 on success and < 0 on failure
2183  */
2184 static noinline int split_node(struct btrfs_trans_handle *trans,
2185 			       struct btrfs_root *root,
2186 			       struct btrfs_path *path, int level)
2187 {
2188 	struct extent_buffer *c;
2189 	struct extent_buffer *split;
2190 	struct btrfs_disk_key disk_key;
2191 	int mid;
2192 	int ret;
2193 	int wret;
2194 	u32 c_nritems;
2195 
2196 	c = path->nodes[level];
2197 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2198 	if (c == root->node) {
2199 		/* trying to split the root, lets make a new one */
2200 		ret = insert_new_root(trans, root, path, level + 1);
2201 		if (ret)
2202 			return ret;
2203 	} else {
2204 		ret = push_nodes_for_insert(trans, root, path, level);
2205 		c = path->nodes[level];
2206 		if (!ret && btrfs_header_nritems(c) <
2207 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2208 			return 0;
2209 		if (ret < 0)
2210 			return ret;
2211 	}
2212 
2213 	c_nritems = btrfs_header_nritems(c);
2214 	mid = (c_nritems + 1) / 2;
2215 	btrfs_node_key(c, &disk_key, mid);
2216 
2217 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2218 					root->root_key.objectid,
2219 					&disk_key, level, c->start, 0, 0);
2220 	if (IS_ERR(split))
2221 		return PTR_ERR(split);
2222 
2223 	root_add_used(root, root->nodesize);
2224 
2225 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2226 	btrfs_set_header_level(split, btrfs_header_level(c));
2227 	btrfs_set_header_bytenr(split, split->start);
2228 	btrfs_set_header_generation(split, trans->transid);
2229 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2230 	btrfs_set_header_owner(split, root->root_key.objectid);
2231 	write_extent_buffer(split, root->fs_info->fsid,
2232 			    (unsigned long)btrfs_header_fsid(split),
2233 			    BTRFS_FSID_SIZE);
2234 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2235 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2236 			    BTRFS_UUID_SIZE);
2237 
2238 
2239 	copy_extent_buffer(split, c,
2240 			   btrfs_node_key_ptr_offset(0),
2241 			   btrfs_node_key_ptr_offset(mid),
2242 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2243 	btrfs_set_header_nritems(split, c_nritems - mid);
2244 	btrfs_set_header_nritems(c, mid);
2245 	ret = 0;
2246 
2247 	btrfs_mark_buffer_dirty(c);
2248 	btrfs_mark_buffer_dirty(split);
2249 
2250 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2251 			  path->slots[level + 1] + 1,
2252 			  level + 1);
2253 	if (wret)
2254 		ret = wret;
2255 
2256 	if (path->slots[level] >= mid) {
2257 		path->slots[level] -= mid;
2258 		btrfs_tree_unlock(c);
2259 		free_extent_buffer(c);
2260 		path->nodes[level] = split;
2261 		path->slots[level + 1] += 1;
2262 	} else {
2263 		btrfs_tree_unlock(split);
2264 		free_extent_buffer(split);
2265 	}
2266 	return ret;
2267 }
2268 
2269 /*
2270  * how many bytes are required to store the items in a leaf.  start
2271  * and nr indicate which items in the leaf to check.  This totals up the
2272  * space used both by the item structs and the item data
2273  */
2274 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2275 {
2276 	int data_len;
2277 	int nritems = btrfs_header_nritems(l);
2278 	int end = min(nritems, start + nr) - 1;
2279 
2280 	if (!nr)
2281 		return 0;
2282 	data_len = btrfs_item_end_nr(l, start);
2283 	data_len = data_len - btrfs_item_offset_nr(l, end);
2284 	data_len += sizeof(struct btrfs_item) * nr;
2285 	WARN_ON(data_len < 0);
2286 	return data_len;
2287 }
2288 
2289 /*
2290  * The space between the end of the leaf items and
2291  * the start of the leaf data.  IOW, how much room
2292  * the leaf has left for both items and data
2293  */
2294 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2295 				   struct extent_buffer *leaf)
2296 {
2297 	int nritems = btrfs_header_nritems(leaf);
2298 	int ret;
2299 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2300 	if (ret < 0) {
2301 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2302 		       "used %d nritems %d\n",
2303 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2304 		       leaf_space_used(leaf, 0, nritems), nritems);
2305 	}
2306 	return ret;
2307 }
2308 
2309 /*
2310  * min slot controls the lowest index we're willing to push to the
2311  * right.  We'll push up to and including min_slot, but no lower
2312  */
2313 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2314 				      struct btrfs_root *root,
2315 				      struct btrfs_path *path,
2316 				      int data_size, int empty,
2317 				      struct extent_buffer *right,
2318 				      int free_space, u32 left_nritems,
2319 				      u32 min_slot)
2320 {
2321 	struct extent_buffer *left = path->nodes[0];
2322 	struct extent_buffer *upper = path->nodes[1];
2323 	struct btrfs_disk_key disk_key;
2324 	int slot;
2325 	u32 i;
2326 	int push_space = 0;
2327 	int push_items = 0;
2328 	struct btrfs_item *item;
2329 	u32 nr;
2330 	u32 right_nritems;
2331 	u32 data_end;
2332 	u32 this_item_size;
2333 
2334 	if (empty)
2335 		nr = 0;
2336 	else
2337 		nr = max_t(u32, 1, min_slot);
2338 
2339 	if (path->slots[0] >= left_nritems)
2340 		push_space += data_size;
2341 
2342 	slot = path->slots[1];
2343 	i = left_nritems - 1;
2344 	while (i >= nr) {
2345 		item = btrfs_item_nr(left, i);
2346 
2347 		if (!empty && push_items > 0) {
2348 			if (path->slots[0] > i)
2349 				break;
2350 			if (path->slots[0] == i) {
2351 				int space = btrfs_leaf_free_space(root, left);
2352 				if (space + push_space * 2 > free_space)
2353 					break;
2354 			}
2355 		}
2356 
2357 		if (path->slots[0] == i)
2358 			push_space += data_size;
2359 
2360 		this_item_size = btrfs_item_size(left, item);
2361 		if (this_item_size + sizeof(*item) + push_space > free_space)
2362 			break;
2363 
2364 		push_items++;
2365 		push_space += this_item_size + sizeof(*item);
2366 		if (i == 0)
2367 			break;
2368 		i--;
2369 	}
2370 
2371 	if (push_items == 0)
2372 		goto out_unlock;
2373 
2374 	if (!empty && push_items == left_nritems)
2375 		WARN_ON(1);
2376 
2377 	/* push left to right */
2378 	right_nritems = btrfs_header_nritems(right);
2379 
2380 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2381 	push_space -= leaf_data_end(root, left);
2382 
2383 	/* make room in the right data area */
2384 	data_end = leaf_data_end(root, right);
2385 	memmove_extent_buffer(right,
2386 			      btrfs_leaf_data(right) + data_end - push_space,
2387 			      btrfs_leaf_data(right) + data_end,
2388 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2389 
2390 	/* copy from the left data area */
2391 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2392 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2393 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2394 		     push_space);
2395 
2396 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2397 			      btrfs_item_nr_offset(0),
2398 			      right_nritems * sizeof(struct btrfs_item));
2399 
2400 	/* copy the items from left to right */
2401 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2402 		   btrfs_item_nr_offset(left_nritems - push_items),
2403 		   push_items * sizeof(struct btrfs_item));
2404 
2405 	/* update the item pointers */
2406 	right_nritems += push_items;
2407 	btrfs_set_header_nritems(right, right_nritems);
2408 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2409 	for (i = 0; i < right_nritems; i++) {
2410 		item = btrfs_item_nr(right, i);
2411 		push_space -= btrfs_item_size(right, item);
2412 		btrfs_set_item_offset(right, item, push_space);
2413 	}
2414 
2415 	left_nritems -= push_items;
2416 	btrfs_set_header_nritems(left, left_nritems);
2417 
2418 	if (left_nritems)
2419 		btrfs_mark_buffer_dirty(left);
2420 	else
2421 		clean_tree_block(trans, root, left);
2422 
2423 	btrfs_mark_buffer_dirty(right);
2424 
2425 	btrfs_item_key(right, &disk_key, 0);
2426 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2427 	btrfs_mark_buffer_dirty(upper);
2428 
2429 	/* then fixup the leaf pointer in the path */
2430 	if (path->slots[0] >= left_nritems) {
2431 		path->slots[0] -= left_nritems;
2432 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2433 			clean_tree_block(trans, root, path->nodes[0]);
2434 		btrfs_tree_unlock(path->nodes[0]);
2435 		free_extent_buffer(path->nodes[0]);
2436 		path->nodes[0] = right;
2437 		path->slots[1] += 1;
2438 	} else {
2439 		btrfs_tree_unlock(right);
2440 		free_extent_buffer(right);
2441 	}
2442 	return 0;
2443 
2444 out_unlock:
2445 	btrfs_tree_unlock(right);
2446 	free_extent_buffer(right);
2447 	return 1;
2448 }
2449 
2450 /*
2451  * push some data in the path leaf to the right, trying to free up at
2452  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2453  *
2454  * returns 1 if the push failed because the other node didn't have enough
2455  * room, 0 if everything worked out and < 0 if there were major errors.
2456  *
2457  * this will push starting from min_slot to the end of the leaf.  It won't
2458  * push any slot lower than min_slot
2459  */
2460 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2461 			   *root, struct btrfs_path *path,
2462 			   int min_data_size, int data_size,
2463 			   int empty, u32 min_slot)
2464 {
2465 	struct extent_buffer *left = path->nodes[0];
2466 	struct extent_buffer *right;
2467 	struct extent_buffer *upper;
2468 	int slot;
2469 	int free_space;
2470 	u32 left_nritems;
2471 	int ret;
2472 
2473 	if (!path->nodes[1])
2474 		return 1;
2475 
2476 	slot = path->slots[1];
2477 	upper = path->nodes[1];
2478 	if (slot >= btrfs_header_nritems(upper) - 1)
2479 		return 1;
2480 
2481 	btrfs_assert_tree_locked(path->nodes[1]);
2482 
2483 	right = read_node_slot(root, upper, slot + 1);
2484 	if (right == NULL)
2485 		return 1;
2486 
2487 	btrfs_tree_lock(right);
2488 	btrfs_set_lock_blocking(right);
2489 
2490 	free_space = btrfs_leaf_free_space(root, right);
2491 	if (free_space < data_size)
2492 		goto out_unlock;
2493 
2494 	/* cow and double check */
2495 	ret = btrfs_cow_block(trans, root, right, upper,
2496 			      slot + 1, &right);
2497 	if (ret)
2498 		goto out_unlock;
2499 
2500 	free_space = btrfs_leaf_free_space(root, right);
2501 	if (free_space < data_size)
2502 		goto out_unlock;
2503 
2504 	left_nritems = btrfs_header_nritems(left);
2505 	if (left_nritems == 0)
2506 		goto out_unlock;
2507 
2508 	return __push_leaf_right(trans, root, path, min_data_size, empty,
2509 				right, free_space, left_nritems, min_slot);
2510 out_unlock:
2511 	btrfs_tree_unlock(right);
2512 	free_extent_buffer(right);
2513 	return 1;
2514 }
2515 
2516 /*
2517  * push some data in the path leaf to the left, trying to free up at
2518  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2519  *
2520  * max_slot can put a limit on how far into the leaf we'll push items.  The
2521  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2522  * items
2523  */
2524 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2525 				     struct btrfs_root *root,
2526 				     struct btrfs_path *path, int data_size,
2527 				     int empty, struct extent_buffer *left,
2528 				     int free_space, u32 right_nritems,
2529 				     u32 max_slot)
2530 {
2531 	struct btrfs_disk_key disk_key;
2532 	struct extent_buffer *right = path->nodes[0];
2533 	int i;
2534 	int push_space = 0;
2535 	int push_items = 0;
2536 	struct btrfs_item *item;
2537 	u32 old_left_nritems;
2538 	u32 nr;
2539 	int ret = 0;
2540 	int wret;
2541 	u32 this_item_size;
2542 	u32 old_left_item_size;
2543 
2544 	if (empty)
2545 		nr = min(right_nritems, max_slot);
2546 	else
2547 		nr = min(right_nritems - 1, max_slot);
2548 
2549 	for (i = 0; i < nr; i++) {
2550 		item = btrfs_item_nr(right, i);
2551 
2552 		if (!empty && push_items > 0) {
2553 			if (path->slots[0] < i)
2554 				break;
2555 			if (path->slots[0] == i) {
2556 				int space = btrfs_leaf_free_space(root, right);
2557 				if (space + push_space * 2 > free_space)
2558 					break;
2559 			}
2560 		}
2561 
2562 		if (path->slots[0] == i)
2563 			push_space += data_size;
2564 
2565 		this_item_size = btrfs_item_size(right, item);
2566 		if (this_item_size + sizeof(*item) + push_space > free_space)
2567 			break;
2568 
2569 		push_items++;
2570 		push_space += this_item_size + sizeof(*item);
2571 	}
2572 
2573 	if (push_items == 0) {
2574 		ret = 1;
2575 		goto out;
2576 	}
2577 	if (!empty && push_items == btrfs_header_nritems(right))
2578 		WARN_ON(1);
2579 
2580 	/* push data from right to left */
2581 	copy_extent_buffer(left, right,
2582 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2583 			   btrfs_item_nr_offset(0),
2584 			   push_items * sizeof(struct btrfs_item));
2585 
2586 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2587 		     btrfs_item_offset_nr(right, push_items - 1);
2588 
2589 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2590 		     leaf_data_end(root, left) - push_space,
2591 		     btrfs_leaf_data(right) +
2592 		     btrfs_item_offset_nr(right, push_items - 1),
2593 		     push_space);
2594 	old_left_nritems = btrfs_header_nritems(left);
2595 	BUG_ON(old_left_nritems <= 0);
2596 
2597 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2598 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2599 		u32 ioff;
2600 
2601 		item = btrfs_item_nr(left, i);
2602 
2603 		ioff = btrfs_item_offset(left, item);
2604 		btrfs_set_item_offset(left, item,
2605 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2606 	}
2607 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2608 
2609 	/* fixup right node */
2610 	if (push_items > right_nritems) {
2611 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2612 		       right_nritems);
2613 		WARN_ON(1);
2614 	}
2615 
2616 	if (push_items < right_nritems) {
2617 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2618 						  leaf_data_end(root, right);
2619 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2620 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2621 				      btrfs_leaf_data(right) +
2622 				      leaf_data_end(root, right), push_space);
2623 
2624 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2625 			      btrfs_item_nr_offset(push_items),
2626 			     (btrfs_header_nritems(right) - push_items) *
2627 			     sizeof(struct btrfs_item));
2628 	}
2629 	right_nritems -= push_items;
2630 	btrfs_set_header_nritems(right, right_nritems);
2631 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2632 	for (i = 0; i < right_nritems; i++) {
2633 		item = btrfs_item_nr(right, i);
2634 
2635 		push_space = push_space - btrfs_item_size(right, item);
2636 		btrfs_set_item_offset(right, item, push_space);
2637 	}
2638 
2639 	btrfs_mark_buffer_dirty(left);
2640 	if (right_nritems)
2641 		btrfs_mark_buffer_dirty(right);
2642 	else
2643 		clean_tree_block(trans, root, right);
2644 
2645 	btrfs_item_key(right, &disk_key, 0);
2646 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2647 	if (wret)
2648 		ret = wret;
2649 
2650 	/* then fixup the leaf pointer in the path */
2651 	if (path->slots[0] < push_items) {
2652 		path->slots[0] += old_left_nritems;
2653 		btrfs_tree_unlock(path->nodes[0]);
2654 		free_extent_buffer(path->nodes[0]);
2655 		path->nodes[0] = left;
2656 		path->slots[1] -= 1;
2657 	} else {
2658 		btrfs_tree_unlock(left);
2659 		free_extent_buffer(left);
2660 		path->slots[0] -= push_items;
2661 	}
2662 	BUG_ON(path->slots[0] < 0);
2663 	return ret;
2664 out:
2665 	btrfs_tree_unlock(left);
2666 	free_extent_buffer(left);
2667 	return ret;
2668 }
2669 
2670 /*
2671  * push some data in the path leaf to the left, trying to free up at
2672  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2673  *
2674  * max_slot can put a limit on how far into the leaf we'll push items.  The
2675  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2676  * items
2677  */
2678 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2679 			  *root, struct btrfs_path *path, int min_data_size,
2680 			  int data_size, int empty, u32 max_slot)
2681 {
2682 	struct extent_buffer *right = path->nodes[0];
2683 	struct extent_buffer *left;
2684 	int slot;
2685 	int free_space;
2686 	u32 right_nritems;
2687 	int ret = 0;
2688 
2689 	slot = path->slots[1];
2690 	if (slot == 0)
2691 		return 1;
2692 	if (!path->nodes[1])
2693 		return 1;
2694 
2695 	right_nritems = btrfs_header_nritems(right);
2696 	if (right_nritems == 0)
2697 		return 1;
2698 
2699 	btrfs_assert_tree_locked(path->nodes[1]);
2700 
2701 	left = read_node_slot(root, path->nodes[1], slot - 1);
2702 	if (left == NULL)
2703 		return 1;
2704 
2705 	btrfs_tree_lock(left);
2706 	btrfs_set_lock_blocking(left);
2707 
2708 	free_space = btrfs_leaf_free_space(root, left);
2709 	if (free_space < data_size) {
2710 		ret = 1;
2711 		goto out;
2712 	}
2713 
2714 	/* cow and double check */
2715 	ret = btrfs_cow_block(trans, root, left,
2716 			      path->nodes[1], slot - 1, &left);
2717 	if (ret) {
2718 		/* we hit -ENOSPC, but it isn't fatal here */
2719 		ret = 1;
2720 		goto out;
2721 	}
2722 
2723 	free_space = btrfs_leaf_free_space(root, left);
2724 	if (free_space < data_size) {
2725 		ret = 1;
2726 		goto out;
2727 	}
2728 
2729 	return __push_leaf_left(trans, root, path, min_data_size,
2730 			       empty, left, free_space, right_nritems,
2731 			       max_slot);
2732 out:
2733 	btrfs_tree_unlock(left);
2734 	free_extent_buffer(left);
2735 	return ret;
2736 }
2737 
2738 /*
2739  * split the path's leaf in two, making sure there is at least data_size
2740  * available for the resulting leaf level of the path.
2741  *
2742  * returns 0 if all went well and < 0 on failure.
2743  */
2744 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2745 			       struct btrfs_root *root,
2746 			       struct btrfs_path *path,
2747 			       struct extent_buffer *l,
2748 			       struct extent_buffer *right,
2749 			       int slot, int mid, int nritems)
2750 {
2751 	int data_copy_size;
2752 	int rt_data_off;
2753 	int i;
2754 	int ret = 0;
2755 	int wret;
2756 	struct btrfs_disk_key disk_key;
2757 
2758 	nritems = nritems - mid;
2759 	btrfs_set_header_nritems(right, nritems);
2760 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2761 
2762 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2763 			   btrfs_item_nr_offset(mid),
2764 			   nritems * sizeof(struct btrfs_item));
2765 
2766 	copy_extent_buffer(right, l,
2767 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2768 		     data_copy_size, btrfs_leaf_data(l) +
2769 		     leaf_data_end(root, l), data_copy_size);
2770 
2771 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2772 		      btrfs_item_end_nr(l, mid);
2773 
2774 	for (i = 0; i < nritems; i++) {
2775 		struct btrfs_item *item = btrfs_item_nr(right, i);
2776 		u32 ioff;
2777 
2778 		ioff = btrfs_item_offset(right, item);
2779 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2780 	}
2781 
2782 	btrfs_set_header_nritems(l, mid);
2783 	ret = 0;
2784 	btrfs_item_key(right, &disk_key, 0);
2785 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2786 			  path->slots[1] + 1, 1);
2787 	if (wret)
2788 		ret = wret;
2789 
2790 	btrfs_mark_buffer_dirty(right);
2791 	btrfs_mark_buffer_dirty(l);
2792 	BUG_ON(path->slots[0] != slot);
2793 
2794 	if (mid <= slot) {
2795 		btrfs_tree_unlock(path->nodes[0]);
2796 		free_extent_buffer(path->nodes[0]);
2797 		path->nodes[0] = right;
2798 		path->slots[0] -= mid;
2799 		path->slots[1] += 1;
2800 	} else {
2801 		btrfs_tree_unlock(right);
2802 		free_extent_buffer(right);
2803 	}
2804 
2805 	BUG_ON(path->slots[0] < 0);
2806 
2807 	return ret;
2808 }
2809 
2810 /*
2811  * double splits happen when we need to insert a big item in the middle
2812  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2813  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2814  *          A                 B                 C
2815  *
2816  * We avoid this by trying to push the items on either side of our target
2817  * into the adjacent leaves.  If all goes well we can avoid the double split
2818  * completely.
2819  */
2820 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2821 					  struct btrfs_root *root,
2822 					  struct btrfs_path *path,
2823 					  int data_size)
2824 {
2825 	int ret;
2826 	int progress = 0;
2827 	int slot;
2828 	u32 nritems;
2829 
2830 	slot = path->slots[0];
2831 
2832 	/*
2833 	 * try to push all the items after our slot into the
2834 	 * right leaf
2835 	 */
2836 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2837 	if (ret < 0)
2838 		return ret;
2839 
2840 	if (ret == 0)
2841 		progress++;
2842 
2843 	nritems = btrfs_header_nritems(path->nodes[0]);
2844 	/*
2845 	 * our goal is to get our slot at the start or end of a leaf.  If
2846 	 * we've done so we're done
2847 	 */
2848 	if (path->slots[0] == 0 || path->slots[0] == nritems)
2849 		return 0;
2850 
2851 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2852 		return 0;
2853 
2854 	/* try to push all the items before our slot into the next leaf */
2855 	slot = path->slots[0];
2856 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2857 	if (ret < 0)
2858 		return ret;
2859 
2860 	if (ret == 0)
2861 		progress++;
2862 
2863 	if (progress)
2864 		return 0;
2865 	return 1;
2866 }
2867 
2868 /*
2869  * split the path's leaf in two, making sure there is at least data_size
2870  * available for the resulting leaf level of the path.
2871  *
2872  * returns 0 if all went well and < 0 on failure.
2873  */
2874 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2875 			       struct btrfs_root *root,
2876 			       struct btrfs_key *ins_key,
2877 			       struct btrfs_path *path, int data_size,
2878 			       int extend)
2879 {
2880 	struct btrfs_disk_key disk_key;
2881 	struct extent_buffer *l;
2882 	u32 nritems;
2883 	int mid;
2884 	int slot;
2885 	struct extent_buffer *right;
2886 	int ret = 0;
2887 	int wret;
2888 	int split;
2889 	int num_doubles = 0;
2890 	int tried_avoid_double = 0;
2891 
2892 	l = path->nodes[0];
2893 	slot = path->slots[0];
2894 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2895 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2896 		return -EOVERFLOW;
2897 
2898 	/* first try to make some room by pushing left and right */
2899 	if (data_size) {
2900 		wret = push_leaf_right(trans, root, path, data_size,
2901 				       data_size, 0, 0);
2902 		if (wret < 0)
2903 			return wret;
2904 		if (wret) {
2905 			wret = push_leaf_left(trans, root, path, data_size,
2906 					      data_size, 0, (u32)-1);
2907 			if (wret < 0)
2908 				return wret;
2909 		}
2910 		l = path->nodes[0];
2911 
2912 		/* did the pushes work? */
2913 		if (btrfs_leaf_free_space(root, l) >= data_size)
2914 			return 0;
2915 	}
2916 
2917 	if (!path->nodes[1]) {
2918 		ret = insert_new_root(trans, root, path, 1);
2919 		if (ret)
2920 			return ret;
2921 	}
2922 again:
2923 	split = 1;
2924 	l = path->nodes[0];
2925 	slot = path->slots[0];
2926 	nritems = btrfs_header_nritems(l);
2927 	mid = (nritems + 1) / 2;
2928 
2929 	if (mid <= slot) {
2930 		if (nritems == 1 ||
2931 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2932 			BTRFS_LEAF_DATA_SIZE(root)) {
2933 			if (slot >= nritems) {
2934 				split = 0;
2935 			} else {
2936 				mid = slot;
2937 				if (mid != nritems &&
2938 				    leaf_space_used(l, mid, nritems - mid) +
2939 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2940 					if (data_size && !tried_avoid_double)
2941 						goto push_for_double;
2942 					split = 2;
2943 				}
2944 			}
2945 		}
2946 	} else {
2947 		if (leaf_space_used(l, 0, mid) + data_size >
2948 			BTRFS_LEAF_DATA_SIZE(root)) {
2949 			if (!extend && data_size && slot == 0) {
2950 				split = 0;
2951 			} else if ((extend || !data_size) && slot == 0) {
2952 				mid = 1;
2953 			} else {
2954 				mid = slot;
2955 				if (mid != nritems &&
2956 				    leaf_space_used(l, mid, nritems - mid) +
2957 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2958 					if (data_size && !tried_avoid_double)
2959 						goto push_for_double;
2960 					split = 2 ;
2961 				}
2962 			}
2963 		}
2964 	}
2965 
2966 	if (split == 0)
2967 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2968 	else
2969 		btrfs_item_key(l, &disk_key, mid);
2970 
2971 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2972 					root->root_key.objectid,
2973 					&disk_key, 0, l->start, 0, 0);
2974 	if (IS_ERR(right))
2975 		return PTR_ERR(right);
2976 
2977 	root_add_used(root, root->leafsize);
2978 
2979 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2980 	btrfs_set_header_bytenr(right, right->start);
2981 	btrfs_set_header_generation(right, trans->transid);
2982 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2983 	btrfs_set_header_owner(right, root->root_key.objectid);
2984 	btrfs_set_header_level(right, 0);
2985 	write_extent_buffer(right, root->fs_info->fsid,
2986 			    (unsigned long)btrfs_header_fsid(right),
2987 			    BTRFS_FSID_SIZE);
2988 
2989 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2990 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2991 			    BTRFS_UUID_SIZE);
2992 
2993 	if (split == 0) {
2994 		if (mid <= slot) {
2995 			btrfs_set_header_nritems(right, 0);
2996 			wret = insert_ptr(trans, root, path,
2997 					  &disk_key, right->start,
2998 					  path->slots[1] + 1, 1);
2999 			if (wret)
3000 				ret = wret;
3001 
3002 			btrfs_tree_unlock(path->nodes[0]);
3003 			free_extent_buffer(path->nodes[0]);
3004 			path->nodes[0] = right;
3005 			path->slots[0] = 0;
3006 			path->slots[1] += 1;
3007 		} else {
3008 			btrfs_set_header_nritems(right, 0);
3009 			wret = insert_ptr(trans, root, path,
3010 					  &disk_key,
3011 					  right->start,
3012 					  path->slots[1], 1);
3013 			if (wret)
3014 				ret = wret;
3015 			btrfs_tree_unlock(path->nodes[0]);
3016 			free_extent_buffer(path->nodes[0]);
3017 			path->nodes[0] = right;
3018 			path->slots[0] = 0;
3019 			if (path->slots[1] == 0) {
3020 				wret = fixup_low_keys(trans, root,
3021 						path, &disk_key, 1);
3022 				if (wret)
3023 					ret = wret;
3024 			}
3025 		}
3026 		btrfs_mark_buffer_dirty(right);
3027 		return ret;
3028 	}
3029 
3030 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3031 	BUG_ON(ret);
3032 
3033 	if (split == 2) {
3034 		BUG_ON(num_doubles != 0);
3035 		num_doubles++;
3036 		goto again;
3037 	}
3038 
3039 	return ret;
3040 
3041 push_for_double:
3042 	push_for_double_split(trans, root, path, data_size);
3043 	tried_avoid_double = 1;
3044 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3045 		return 0;
3046 	goto again;
3047 }
3048 
3049 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3050 					 struct btrfs_root *root,
3051 					 struct btrfs_path *path, int ins_len)
3052 {
3053 	struct btrfs_key key;
3054 	struct extent_buffer *leaf;
3055 	struct btrfs_file_extent_item *fi;
3056 	u64 extent_len = 0;
3057 	u32 item_size;
3058 	int ret;
3059 
3060 	leaf = path->nodes[0];
3061 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3062 
3063 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3064 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3065 
3066 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3067 		return 0;
3068 
3069 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3070 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3071 		fi = btrfs_item_ptr(leaf, path->slots[0],
3072 				    struct btrfs_file_extent_item);
3073 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3074 	}
3075 	btrfs_release_path(path);
3076 
3077 	path->keep_locks = 1;
3078 	path->search_for_split = 1;
3079 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3080 	path->search_for_split = 0;
3081 	if (ret < 0)
3082 		goto err;
3083 
3084 	ret = -EAGAIN;
3085 	leaf = path->nodes[0];
3086 	/* if our item isn't there or got smaller, return now */
3087 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3088 		goto err;
3089 
3090 	/* the leaf has  changed, it now has room.  return now */
3091 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3092 		goto err;
3093 
3094 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3095 		fi = btrfs_item_ptr(leaf, path->slots[0],
3096 				    struct btrfs_file_extent_item);
3097 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3098 			goto err;
3099 	}
3100 
3101 	btrfs_set_path_blocking(path);
3102 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3103 	if (ret)
3104 		goto err;
3105 
3106 	path->keep_locks = 0;
3107 	btrfs_unlock_up_safe(path, 1);
3108 	return 0;
3109 err:
3110 	path->keep_locks = 0;
3111 	return ret;
3112 }
3113 
3114 static noinline int split_item(struct btrfs_trans_handle *trans,
3115 			       struct btrfs_root *root,
3116 			       struct btrfs_path *path,
3117 			       struct btrfs_key *new_key,
3118 			       unsigned long split_offset)
3119 {
3120 	struct extent_buffer *leaf;
3121 	struct btrfs_item *item;
3122 	struct btrfs_item *new_item;
3123 	int slot;
3124 	char *buf;
3125 	u32 nritems;
3126 	u32 item_size;
3127 	u32 orig_offset;
3128 	struct btrfs_disk_key disk_key;
3129 
3130 	leaf = path->nodes[0];
3131 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3132 
3133 	btrfs_set_path_blocking(path);
3134 
3135 	item = btrfs_item_nr(leaf, path->slots[0]);
3136 	orig_offset = btrfs_item_offset(leaf, item);
3137 	item_size = btrfs_item_size(leaf, item);
3138 
3139 	buf = kmalloc(item_size, GFP_NOFS);
3140 	if (!buf)
3141 		return -ENOMEM;
3142 
3143 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3144 			    path->slots[0]), item_size);
3145 
3146 	slot = path->slots[0] + 1;
3147 	nritems = btrfs_header_nritems(leaf);
3148 	if (slot != nritems) {
3149 		/* shift the items */
3150 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3151 				btrfs_item_nr_offset(slot),
3152 				(nritems - slot) * sizeof(struct btrfs_item));
3153 	}
3154 
3155 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3156 	btrfs_set_item_key(leaf, &disk_key, slot);
3157 
3158 	new_item = btrfs_item_nr(leaf, slot);
3159 
3160 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3161 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3162 
3163 	btrfs_set_item_offset(leaf, item,
3164 			      orig_offset + item_size - split_offset);
3165 	btrfs_set_item_size(leaf, item, split_offset);
3166 
3167 	btrfs_set_header_nritems(leaf, nritems + 1);
3168 
3169 	/* write the data for the start of the original item */
3170 	write_extent_buffer(leaf, buf,
3171 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3172 			    split_offset);
3173 
3174 	/* write the data for the new item */
3175 	write_extent_buffer(leaf, buf + split_offset,
3176 			    btrfs_item_ptr_offset(leaf, slot),
3177 			    item_size - split_offset);
3178 	btrfs_mark_buffer_dirty(leaf);
3179 
3180 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3181 	kfree(buf);
3182 	return 0;
3183 }
3184 
3185 /*
3186  * This function splits a single item into two items,
3187  * giving 'new_key' to the new item and splitting the
3188  * old one at split_offset (from the start of the item).
3189  *
3190  * The path may be released by this operation.  After
3191  * the split, the path is pointing to the old item.  The
3192  * new item is going to be in the same node as the old one.
3193  *
3194  * Note, the item being split must be smaller enough to live alone on
3195  * a tree block with room for one extra struct btrfs_item
3196  *
3197  * This allows us to split the item in place, keeping a lock on the
3198  * leaf the entire time.
3199  */
3200 int btrfs_split_item(struct btrfs_trans_handle *trans,
3201 		     struct btrfs_root *root,
3202 		     struct btrfs_path *path,
3203 		     struct btrfs_key *new_key,
3204 		     unsigned long split_offset)
3205 {
3206 	int ret;
3207 	ret = setup_leaf_for_split(trans, root, path,
3208 				   sizeof(struct btrfs_item));
3209 	if (ret)
3210 		return ret;
3211 
3212 	ret = split_item(trans, root, path, new_key, split_offset);
3213 	return ret;
3214 }
3215 
3216 /*
3217  * This function duplicate a item, giving 'new_key' to the new item.
3218  * It guarantees both items live in the same tree leaf and the new item
3219  * is contiguous with the original item.
3220  *
3221  * This allows us to split file extent in place, keeping a lock on the
3222  * leaf the entire time.
3223  */
3224 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3225 			 struct btrfs_root *root,
3226 			 struct btrfs_path *path,
3227 			 struct btrfs_key *new_key)
3228 {
3229 	struct extent_buffer *leaf;
3230 	int ret;
3231 	u32 item_size;
3232 
3233 	leaf = path->nodes[0];
3234 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3235 	ret = setup_leaf_for_split(trans, root, path,
3236 				   item_size + sizeof(struct btrfs_item));
3237 	if (ret)
3238 		return ret;
3239 
3240 	path->slots[0]++;
3241 	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3242 				     item_size, item_size +
3243 				     sizeof(struct btrfs_item), 1);
3244 	BUG_ON(ret);
3245 
3246 	leaf = path->nodes[0];
3247 	memcpy_extent_buffer(leaf,
3248 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3249 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3250 			     item_size);
3251 	return 0;
3252 }
3253 
3254 /*
3255  * make the item pointed to by the path smaller.  new_size indicates
3256  * how small to make it, and from_end tells us if we just chop bytes
3257  * off the end of the item or if we shift the item to chop bytes off
3258  * the front.
3259  */
3260 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3261 			struct btrfs_root *root,
3262 			struct btrfs_path *path,
3263 			u32 new_size, int from_end)
3264 {
3265 	int slot;
3266 	struct extent_buffer *leaf;
3267 	struct btrfs_item *item;
3268 	u32 nritems;
3269 	unsigned int data_end;
3270 	unsigned int old_data_start;
3271 	unsigned int old_size;
3272 	unsigned int size_diff;
3273 	int i;
3274 
3275 	leaf = path->nodes[0];
3276 	slot = path->slots[0];
3277 
3278 	old_size = btrfs_item_size_nr(leaf, slot);
3279 	if (old_size == new_size)
3280 		return 0;
3281 
3282 	nritems = btrfs_header_nritems(leaf);
3283 	data_end = leaf_data_end(root, leaf);
3284 
3285 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3286 
3287 	size_diff = old_size - new_size;
3288 
3289 	BUG_ON(slot < 0);
3290 	BUG_ON(slot >= nritems);
3291 
3292 	/*
3293 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3294 	 */
3295 	/* first correct the data pointers */
3296 	for (i = slot; i < nritems; i++) {
3297 		u32 ioff;
3298 		item = btrfs_item_nr(leaf, i);
3299 
3300 		ioff = btrfs_item_offset(leaf, item);
3301 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3302 	}
3303 
3304 	/* shift the data */
3305 	if (from_end) {
3306 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3307 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3308 			      data_end, old_data_start + new_size - data_end);
3309 	} else {
3310 		struct btrfs_disk_key disk_key;
3311 		u64 offset;
3312 
3313 		btrfs_item_key(leaf, &disk_key, slot);
3314 
3315 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3316 			unsigned long ptr;
3317 			struct btrfs_file_extent_item *fi;
3318 
3319 			fi = btrfs_item_ptr(leaf, slot,
3320 					    struct btrfs_file_extent_item);
3321 			fi = (struct btrfs_file_extent_item *)(
3322 			     (unsigned long)fi - size_diff);
3323 
3324 			if (btrfs_file_extent_type(leaf, fi) ==
3325 			    BTRFS_FILE_EXTENT_INLINE) {
3326 				ptr = btrfs_item_ptr_offset(leaf, slot);
3327 				memmove_extent_buffer(leaf, ptr,
3328 				      (unsigned long)fi,
3329 				      offsetof(struct btrfs_file_extent_item,
3330 						 disk_bytenr));
3331 			}
3332 		}
3333 
3334 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3335 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3336 			      data_end, old_data_start - data_end);
3337 
3338 		offset = btrfs_disk_key_offset(&disk_key);
3339 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3340 		btrfs_set_item_key(leaf, &disk_key, slot);
3341 		if (slot == 0)
3342 			fixup_low_keys(trans, root, path, &disk_key, 1);
3343 	}
3344 
3345 	item = btrfs_item_nr(leaf, slot);
3346 	btrfs_set_item_size(leaf, item, new_size);
3347 	btrfs_mark_buffer_dirty(leaf);
3348 
3349 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3350 		btrfs_print_leaf(root, leaf);
3351 		BUG();
3352 	}
3353 	return 0;
3354 }
3355 
3356 /*
3357  * make the item pointed to by the path bigger, data_size is the new size.
3358  */
3359 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3360 		      struct btrfs_root *root, struct btrfs_path *path,
3361 		      u32 data_size)
3362 {
3363 	int slot;
3364 	struct extent_buffer *leaf;
3365 	struct btrfs_item *item;
3366 	u32 nritems;
3367 	unsigned int data_end;
3368 	unsigned int old_data;
3369 	unsigned int old_size;
3370 	int i;
3371 
3372 	leaf = path->nodes[0];
3373 
3374 	nritems = btrfs_header_nritems(leaf);
3375 	data_end = leaf_data_end(root, leaf);
3376 
3377 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3378 		btrfs_print_leaf(root, leaf);
3379 		BUG();
3380 	}
3381 	slot = path->slots[0];
3382 	old_data = btrfs_item_end_nr(leaf, slot);
3383 
3384 	BUG_ON(slot < 0);
3385 	if (slot >= nritems) {
3386 		btrfs_print_leaf(root, leaf);
3387 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3388 		       slot, nritems);
3389 		BUG_ON(1);
3390 	}
3391 
3392 	/*
3393 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3394 	 */
3395 	/* first correct the data pointers */
3396 	for (i = slot; i < nritems; i++) {
3397 		u32 ioff;
3398 		item = btrfs_item_nr(leaf, i);
3399 
3400 		ioff = btrfs_item_offset(leaf, item);
3401 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3402 	}
3403 
3404 	/* shift the data */
3405 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3406 		      data_end - data_size, btrfs_leaf_data(leaf) +
3407 		      data_end, old_data - data_end);
3408 
3409 	data_end = old_data;
3410 	old_size = btrfs_item_size_nr(leaf, slot);
3411 	item = btrfs_item_nr(leaf, slot);
3412 	btrfs_set_item_size(leaf, item, old_size + data_size);
3413 	btrfs_mark_buffer_dirty(leaf);
3414 
3415 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3416 		btrfs_print_leaf(root, leaf);
3417 		BUG();
3418 	}
3419 	return 0;
3420 }
3421 
3422 /*
3423  * Given a key and some data, insert items into the tree.
3424  * This does all the path init required, making room in the tree if needed.
3425  * Returns the number of keys that were inserted.
3426  */
3427 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3428 			    struct btrfs_root *root,
3429 			    struct btrfs_path *path,
3430 			    struct btrfs_key *cpu_key, u32 *data_size,
3431 			    int nr)
3432 {
3433 	struct extent_buffer *leaf;
3434 	struct btrfs_item *item;
3435 	int ret = 0;
3436 	int slot;
3437 	int i;
3438 	u32 nritems;
3439 	u32 total_data = 0;
3440 	u32 total_size = 0;
3441 	unsigned int data_end;
3442 	struct btrfs_disk_key disk_key;
3443 	struct btrfs_key found_key;
3444 
3445 	for (i = 0; i < nr; i++) {
3446 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3447 		    BTRFS_LEAF_DATA_SIZE(root)) {
3448 			break;
3449 			nr = i;
3450 		}
3451 		total_data += data_size[i];
3452 		total_size += data_size[i] + sizeof(struct btrfs_item);
3453 	}
3454 	BUG_ON(nr == 0);
3455 
3456 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3457 	if (ret == 0)
3458 		return -EEXIST;
3459 	if (ret < 0)
3460 		goto out;
3461 
3462 	leaf = path->nodes[0];
3463 
3464 	nritems = btrfs_header_nritems(leaf);
3465 	data_end = leaf_data_end(root, leaf);
3466 
3467 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3468 		for (i = nr; i >= 0; i--) {
3469 			total_data -= data_size[i];
3470 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3471 			if (total_size < btrfs_leaf_free_space(root, leaf))
3472 				break;
3473 		}
3474 		nr = i;
3475 	}
3476 
3477 	slot = path->slots[0];
3478 	BUG_ON(slot < 0);
3479 
3480 	if (slot != nritems) {
3481 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3482 
3483 		item = btrfs_item_nr(leaf, slot);
3484 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3485 
3486 		/* figure out how many keys we can insert in here */
3487 		total_data = data_size[0];
3488 		for (i = 1; i < nr; i++) {
3489 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3490 				break;
3491 			total_data += data_size[i];
3492 		}
3493 		nr = i;
3494 
3495 		if (old_data < data_end) {
3496 			btrfs_print_leaf(root, leaf);
3497 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3498 			       slot, old_data, data_end);
3499 			BUG_ON(1);
3500 		}
3501 		/*
3502 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3503 		 */
3504 		/* first correct the data pointers */
3505 		for (i = slot; i < nritems; i++) {
3506 			u32 ioff;
3507 
3508 			item = btrfs_item_nr(leaf, i);
3509 			ioff = btrfs_item_offset(leaf, item);
3510 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3511 		}
3512 		/* shift the items */
3513 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3514 			      btrfs_item_nr_offset(slot),
3515 			      (nritems - slot) * sizeof(struct btrfs_item));
3516 
3517 		/* shift the data */
3518 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3519 			      data_end - total_data, btrfs_leaf_data(leaf) +
3520 			      data_end, old_data - data_end);
3521 		data_end = old_data;
3522 	} else {
3523 		/*
3524 		 * this sucks but it has to be done, if we are inserting at
3525 		 * the end of the leaf only insert 1 of the items, since we
3526 		 * have no way of knowing whats on the next leaf and we'd have
3527 		 * to drop our current locks to figure it out
3528 		 */
3529 		nr = 1;
3530 	}
3531 
3532 	/* setup the item for the new data */
3533 	for (i = 0; i < nr; i++) {
3534 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3535 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3536 		item = btrfs_item_nr(leaf, slot + i);
3537 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3538 		data_end -= data_size[i];
3539 		btrfs_set_item_size(leaf, item, data_size[i]);
3540 	}
3541 	btrfs_set_header_nritems(leaf, nritems + nr);
3542 	btrfs_mark_buffer_dirty(leaf);
3543 
3544 	ret = 0;
3545 	if (slot == 0) {
3546 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3547 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3548 	}
3549 
3550 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3551 		btrfs_print_leaf(root, leaf);
3552 		BUG();
3553 	}
3554 out:
3555 	if (!ret)
3556 		ret = nr;
3557 	return ret;
3558 }
3559 
3560 /*
3561  * this is a helper for btrfs_insert_empty_items, the main goal here is
3562  * to save stack depth by doing the bulk of the work in a function
3563  * that doesn't call btrfs_search_slot
3564  */
3565 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3566 			   struct btrfs_root *root, struct btrfs_path *path,
3567 			   struct btrfs_key *cpu_key, u32 *data_size,
3568 			   u32 total_data, u32 total_size, int nr)
3569 {
3570 	struct btrfs_item *item;
3571 	int i;
3572 	u32 nritems;
3573 	unsigned int data_end;
3574 	struct btrfs_disk_key disk_key;
3575 	int ret;
3576 	struct extent_buffer *leaf;
3577 	int slot;
3578 
3579 	leaf = path->nodes[0];
3580 	slot = path->slots[0];
3581 
3582 	nritems = btrfs_header_nritems(leaf);
3583 	data_end = leaf_data_end(root, leaf);
3584 
3585 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3586 		btrfs_print_leaf(root, leaf);
3587 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3588 		       total_size, btrfs_leaf_free_space(root, leaf));
3589 		BUG();
3590 	}
3591 
3592 	if (slot != nritems) {
3593 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3594 
3595 		if (old_data < data_end) {
3596 			btrfs_print_leaf(root, leaf);
3597 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3598 			       slot, old_data, data_end);
3599 			BUG_ON(1);
3600 		}
3601 		/*
3602 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3603 		 */
3604 		/* first correct the data pointers */
3605 		for (i = slot; i < nritems; i++) {
3606 			u32 ioff;
3607 
3608 			item = btrfs_item_nr(leaf, i);
3609 			ioff = btrfs_item_offset(leaf, item);
3610 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3611 		}
3612 		/* shift the items */
3613 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3614 			      btrfs_item_nr_offset(slot),
3615 			      (nritems - slot) * sizeof(struct btrfs_item));
3616 
3617 		/* shift the data */
3618 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3619 			      data_end - total_data, btrfs_leaf_data(leaf) +
3620 			      data_end, old_data - data_end);
3621 		data_end = old_data;
3622 	}
3623 
3624 	/* setup the item for the new data */
3625 	for (i = 0; i < nr; i++) {
3626 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3627 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3628 		item = btrfs_item_nr(leaf, slot + i);
3629 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3630 		data_end -= data_size[i];
3631 		btrfs_set_item_size(leaf, item, data_size[i]);
3632 	}
3633 
3634 	btrfs_set_header_nritems(leaf, nritems + nr);
3635 
3636 	ret = 0;
3637 	if (slot == 0) {
3638 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3639 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3640 	}
3641 	btrfs_unlock_up_safe(path, 1);
3642 	btrfs_mark_buffer_dirty(leaf);
3643 
3644 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3645 		btrfs_print_leaf(root, leaf);
3646 		BUG();
3647 	}
3648 	return ret;
3649 }
3650 
3651 /*
3652  * Given a key and some data, insert items into the tree.
3653  * This does all the path init required, making room in the tree if needed.
3654  */
3655 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3656 			    struct btrfs_root *root,
3657 			    struct btrfs_path *path,
3658 			    struct btrfs_key *cpu_key, u32 *data_size,
3659 			    int nr)
3660 {
3661 	int ret = 0;
3662 	int slot;
3663 	int i;
3664 	u32 total_size = 0;
3665 	u32 total_data = 0;
3666 
3667 	for (i = 0; i < nr; i++)
3668 		total_data += data_size[i];
3669 
3670 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3671 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3672 	if (ret == 0)
3673 		return -EEXIST;
3674 	if (ret < 0)
3675 		goto out;
3676 
3677 	slot = path->slots[0];
3678 	BUG_ON(slot < 0);
3679 
3680 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3681 			       total_data, total_size, nr);
3682 
3683 out:
3684 	return ret;
3685 }
3686 
3687 /*
3688  * Given a key and some data, insert an item into the tree.
3689  * This does all the path init required, making room in the tree if needed.
3690  */
3691 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3692 		      *root, struct btrfs_key *cpu_key, void *data, u32
3693 		      data_size)
3694 {
3695 	int ret = 0;
3696 	struct btrfs_path *path;
3697 	struct extent_buffer *leaf;
3698 	unsigned long ptr;
3699 
3700 	path = btrfs_alloc_path();
3701 	if (!path)
3702 		return -ENOMEM;
3703 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3704 	if (!ret) {
3705 		leaf = path->nodes[0];
3706 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3707 		write_extent_buffer(leaf, data, ptr, data_size);
3708 		btrfs_mark_buffer_dirty(leaf);
3709 	}
3710 	btrfs_free_path(path);
3711 	return ret;
3712 }
3713 
3714 /*
3715  * delete the pointer from a given node.
3716  *
3717  * the tree should have been previously balanced so the deletion does not
3718  * empty a node.
3719  */
3720 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3721 		   struct btrfs_path *path, int level, int slot)
3722 {
3723 	struct extent_buffer *parent = path->nodes[level];
3724 	u32 nritems;
3725 	int ret = 0;
3726 	int wret;
3727 
3728 	nritems = btrfs_header_nritems(parent);
3729 	if (slot != nritems - 1) {
3730 		memmove_extent_buffer(parent,
3731 			      btrfs_node_key_ptr_offset(slot),
3732 			      btrfs_node_key_ptr_offset(slot + 1),
3733 			      sizeof(struct btrfs_key_ptr) *
3734 			      (nritems - slot - 1));
3735 	}
3736 	nritems--;
3737 	btrfs_set_header_nritems(parent, nritems);
3738 	if (nritems == 0 && parent == root->node) {
3739 		BUG_ON(btrfs_header_level(root->node) != 1);
3740 		/* just turn the root into a leaf and break */
3741 		btrfs_set_header_level(root->node, 0);
3742 	} else if (slot == 0) {
3743 		struct btrfs_disk_key disk_key;
3744 
3745 		btrfs_node_key(parent, &disk_key, 0);
3746 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3747 		if (wret)
3748 			ret = wret;
3749 	}
3750 	btrfs_mark_buffer_dirty(parent);
3751 	return ret;
3752 }
3753 
3754 /*
3755  * a helper function to delete the leaf pointed to by path->slots[1] and
3756  * path->nodes[1].
3757  *
3758  * This deletes the pointer in path->nodes[1] and frees the leaf
3759  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3760  *
3761  * The path must have already been setup for deleting the leaf, including
3762  * all the proper balancing.  path->nodes[1] must be locked.
3763  */
3764 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3765 				   struct btrfs_root *root,
3766 				   struct btrfs_path *path,
3767 				   struct extent_buffer *leaf)
3768 {
3769 	int ret;
3770 
3771 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3772 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3773 	if (ret)
3774 		return ret;
3775 
3776 	/*
3777 	 * btrfs_free_extent is expensive, we want to make sure we
3778 	 * aren't holding any locks when we call it
3779 	 */
3780 	btrfs_unlock_up_safe(path, 0);
3781 
3782 	root_sub_used(root, leaf->len);
3783 
3784 	btrfs_free_tree_block(trans, root, leaf, 0, 1, 0);
3785 	return 0;
3786 }
3787 /*
3788  * delete the item at the leaf level in path.  If that empties
3789  * the leaf, remove it from the tree
3790  */
3791 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3792 		    struct btrfs_path *path, int slot, int nr)
3793 {
3794 	struct extent_buffer *leaf;
3795 	struct btrfs_item *item;
3796 	int last_off;
3797 	int dsize = 0;
3798 	int ret = 0;
3799 	int wret;
3800 	int i;
3801 	u32 nritems;
3802 
3803 	leaf = path->nodes[0];
3804 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3805 
3806 	for (i = 0; i < nr; i++)
3807 		dsize += btrfs_item_size_nr(leaf, slot + i);
3808 
3809 	nritems = btrfs_header_nritems(leaf);
3810 
3811 	if (slot + nr != nritems) {
3812 		int data_end = leaf_data_end(root, leaf);
3813 
3814 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3815 			      data_end + dsize,
3816 			      btrfs_leaf_data(leaf) + data_end,
3817 			      last_off - data_end);
3818 
3819 		for (i = slot + nr; i < nritems; i++) {
3820 			u32 ioff;
3821 
3822 			item = btrfs_item_nr(leaf, i);
3823 			ioff = btrfs_item_offset(leaf, item);
3824 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3825 		}
3826 
3827 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3828 			      btrfs_item_nr_offset(slot + nr),
3829 			      sizeof(struct btrfs_item) *
3830 			      (nritems - slot - nr));
3831 	}
3832 	btrfs_set_header_nritems(leaf, nritems - nr);
3833 	nritems -= nr;
3834 
3835 	/* delete the leaf if we've emptied it */
3836 	if (nritems == 0) {
3837 		if (leaf == root->node) {
3838 			btrfs_set_header_level(leaf, 0);
3839 		} else {
3840 			btrfs_set_path_blocking(path);
3841 			clean_tree_block(trans, root, leaf);
3842 			ret = btrfs_del_leaf(trans, root, path, leaf);
3843 			BUG_ON(ret);
3844 		}
3845 	} else {
3846 		int used = leaf_space_used(leaf, 0, nritems);
3847 		if (slot == 0) {
3848 			struct btrfs_disk_key disk_key;
3849 
3850 			btrfs_item_key(leaf, &disk_key, 0);
3851 			wret = fixup_low_keys(trans, root, path,
3852 					      &disk_key, 1);
3853 			if (wret)
3854 				ret = wret;
3855 		}
3856 
3857 		/* delete the leaf if it is mostly empty */
3858 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3859 			/* push_leaf_left fixes the path.
3860 			 * make sure the path still points to our leaf
3861 			 * for possible call to del_ptr below
3862 			 */
3863 			slot = path->slots[1];
3864 			extent_buffer_get(leaf);
3865 
3866 			btrfs_set_path_blocking(path);
3867 			wret = push_leaf_left(trans, root, path, 1, 1,
3868 					      1, (u32)-1);
3869 			if (wret < 0 && wret != -ENOSPC)
3870 				ret = wret;
3871 
3872 			if (path->nodes[0] == leaf &&
3873 			    btrfs_header_nritems(leaf)) {
3874 				wret = push_leaf_right(trans, root, path, 1,
3875 						       1, 1, 0);
3876 				if (wret < 0 && wret != -ENOSPC)
3877 					ret = wret;
3878 			}
3879 
3880 			if (btrfs_header_nritems(leaf) == 0) {
3881 				path->slots[1] = slot;
3882 				ret = btrfs_del_leaf(trans, root, path, leaf);
3883 				BUG_ON(ret);
3884 				free_extent_buffer(leaf);
3885 			} else {
3886 				/* if we're still in the path, make sure
3887 				 * we're dirty.  Otherwise, one of the
3888 				 * push_leaf functions must have already
3889 				 * dirtied this buffer
3890 				 */
3891 				if (path->nodes[0] == leaf)
3892 					btrfs_mark_buffer_dirty(leaf);
3893 				free_extent_buffer(leaf);
3894 			}
3895 		} else {
3896 			btrfs_mark_buffer_dirty(leaf);
3897 		}
3898 	}
3899 	return ret;
3900 }
3901 
3902 /*
3903  * search the tree again to find a leaf with lesser keys
3904  * returns 0 if it found something or 1 if there are no lesser leaves.
3905  * returns < 0 on io errors.
3906  *
3907  * This may release the path, and so you may lose any locks held at the
3908  * time you call it.
3909  */
3910 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3911 {
3912 	struct btrfs_key key;
3913 	struct btrfs_disk_key found_key;
3914 	int ret;
3915 
3916 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3917 
3918 	if (key.offset > 0)
3919 		key.offset--;
3920 	else if (key.type > 0)
3921 		key.type--;
3922 	else if (key.objectid > 0)
3923 		key.objectid--;
3924 	else
3925 		return 1;
3926 
3927 	btrfs_release_path(path);
3928 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3929 	if (ret < 0)
3930 		return ret;
3931 	btrfs_item_key(path->nodes[0], &found_key, 0);
3932 	ret = comp_keys(&found_key, &key);
3933 	if (ret < 0)
3934 		return 0;
3935 	return 1;
3936 }
3937 
3938 /*
3939  * A helper function to walk down the tree starting at min_key, and looking
3940  * for nodes or leaves that are either in cache or have a minimum
3941  * transaction id.  This is used by the btree defrag code, and tree logging
3942  *
3943  * This does not cow, but it does stuff the starting key it finds back
3944  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3945  * key and get a writable path.
3946  *
3947  * This does lock as it descends, and path->keep_locks should be set
3948  * to 1 by the caller.
3949  *
3950  * This honors path->lowest_level to prevent descent past a given level
3951  * of the tree.
3952  *
3953  * min_trans indicates the oldest transaction that you are interested
3954  * in walking through.  Any nodes or leaves older than min_trans are
3955  * skipped over (without reading them).
3956  *
3957  * returns zero if something useful was found, < 0 on error and 1 if there
3958  * was nothing in the tree that matched the search criteria.
3959  */
3960 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3961 			 struct btrfs_key *max_key,
3962 			 struct btrfs_path *path, int cache_only,
3963 			 u64 min_trans)
3964 {
3965 	struct extent_buffer *cur;
3966 	struct btrfs_key found_key;
3967 	int slot;
3968 	int sret;
3969 	u32 nritems;
3970 	int level;
3971 	int ret = 1;
3972 
3973 	WARN_ON(!path->keep_locks);
3974 again:
3975 	cur = btrfs_read_lock_root_node(root);
3976 	level = btrfs_header_level(cur);
3977 	WARN_ON(path->nodes[level]);
3978 	path->nodes[level] = cur;
3979 	path->locks[level] = BTRFS_READ_LOCK;
3980 
3981 	if (btrfs_header_generation(cur) < min_trans) {
3982 		ret = 1;
3983 		goto out;
3984 	}
3985 	while (1) {
3986 		nritems = btrfs_header_nritems(cur);
3987 		level = btrfs_header_level(cur);
3988 		sret = bin_search(cur, min_key, level, &slot);
3989 
3990 		/* at the lowest level, we're done, setup the path and exit */
3991 		if (level == path->lowest_level) {
3992 			if (slot >= nritems)
3993 				goto find_next_key;
3994 			ret = 0;
3995 			path->slots[level] = slot;
3996 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3997 			goto out;
3998 		}
3999 		if (sret && slot > 0)
4000 			slot--;
4001 		/*
4002 		 * check this node pointer against the cache_only and
4003 		 * min_trans parameters.  If it isn't in cache or is too
4004 		 * old, skip to the next one.
4005 		 */
4006 		while (slot < nritems) {
4007 			u64 blockptr;
4008 			u64 gen;
4009 			struct extent_buffer *tmp;
4010 			struct btrfs_disk_key disk_key;
4011 
4012 			blockptr = btrfs_node_blockptr(cur, slot);
4013 			gen = btrfs_node_ptr_generation(cur, slot);
4014 			if (gen < min_trans) {
4015 				slot++;
4016 				continue;
4017 			}
4018 			if (!cache_only)
4019 				break;
4020 
4021 			if (max_key) {
4022 				btrfs_node_key(cur, &disk_key, slot);
4023 				if (comp_keys(&disk_key, max_key) >= 0) {
4024 					ret = 1;
4025 					goto out;
4026 				}
4027 			}
4028 
4029 			tmp = btrfs_find_tree_block(root, blockptr,
4030 					    btrfs_level_size(root, level - 1));
4031 
4032 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4033 				free_extent_buffer(tmp);
4034 				break;
4035 			}
4036 			if (tmp)
4037 				free_extent_buffer(tmp);
4038 			slot++;
4039 		}
4040 find_next_key:
4041 		/*
4042 		 * we didn't find a candidate key in this node, walk forward
4043 		 * and find another one
4044 		 */
4045 		if (slot >= nritems) {
4046 			path->slots[level] = slot;
4047 			btrfs_set_path_blocking(path);
4048 			sret = btrfs_find_next_key(root, path, min_key, level,
4049 						  cache_only, min_trans);
4050 			if (sret == 0) {
4051 				btrfs_release_path(path);
4052 				goto again;
4053 			} else {
4054 				goto out;
4055 			}
4056 		}
4057 		/* save our key for returning back */
4058 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4059 		path->slots[level] = slot;
4060 		if (level == path->lowest_level) {
4061 			ret = 0;
4062 			unlock_up(path, level, 1);
4063 			goto out;
4064 		}
4065 		btrfs_set_path_blocking(path);
4066 		cur = read_node_slot(root, cur, slot);
4067 		BUG_ON(!cur);
4068 
4069 		btrfs_tree_read_lock(cur);
4070 
4071 		path->locks[level - 1] = BTRFS_READ_LOCK;
4072 		path->nodes[level - 1] = cur;
4073 		unlock_up(path, level, 1);
4074 		btrfs_clear_path_blocking(path, NULL, 0);
4075 	}
4076 out:
4077 	if (ret == 0)
4078 		memcpy(min_key, &found_key, sizeof(found_key));
4079 	btrfs_set_path_blocking(path);
4080 	return ret;
4081 }
4082 
4083 /*
4084  * this is similar to btrfs_next_leaf, but does not try to preserve
4085  * and fixup the path.  It looks for and returns the next key in the
4086  * tree based on the current path and the cache_only and min_trans
4087  * parameters.
4088  *
4089  * 0 is returned if another key is found, < 0 if there are any errors
4090  * and 1 is returned if there are no higher keys in the tree
4091  *
4092  * path->keep_locks should be set to 1 on the search made before
4093  * calling this function.
4094  */
4095 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4096 			struct btrfs_key *key, int level,
4097 			int cache_only, u64 min_trans)
4098 {
4099 	int slot;
4100 	struct extent_buffer *c;
4101 
4102 	WARN_ON(!path->keep_locks);
4103 	while (level < BTRFS_MAX_LEVEL) {
4104 		if (!path->nodes[level])
4105 			return 1;
4106 
4107 		slot = path->slots[level] + 1;
4108 		c = path->nodes[level];
4109 next:
4110 		if (slot >= btrfs_header_nritems(c)) {
4111 			int ret;
4112 			int orig_lowest;
4113 			struct btrfs_key cur_key;
4114 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4115 			    !path->nodes[level + 1])
4116 				return 1;
4117 
4118 			if (path->locks[level + 1]) {
4119 				level++;
4120 				continue;
4121 			}
4122 
4123 			slot = btrfs_header_nritems(c) - 1;
4124 			if (level == 0)
4125 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4126 			else
4127 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4128 
4129 			orig_lowest = path->lowest_level;
4130 			btrfs_release_path(path);
4131 			path->lowest_level = level;
4132 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4133 						0, 0);
4134 			path->lowest_level = orig_lowest;
4135 			if (ret < 0)
4136 				return ret;
4137 
4138 			c = path->nodes[level];
4139 			slot = path->slots[level];
4140 			if (ret == 0)
4141 				slot++;
4142 			goto next;
4143 		}
4144 
4145 		if (level == 0)
4146 			btrfs_item_key_to_cpu(c, key, slot);
4147 		else {
4148 			u64 blockptr = btrfs_node_blockptr(c, slot);
4149 			u64 gen = btrfs_node_ptr_generation(c, slot);
4150 
4151 			if (cache_only) {
4152 				struct extent_buffer *cur;
4153 				cur = btrfs_find_tree_block(root, blockptr,
4154 					    btrfs_level_size(root, level - 1));
4155 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4156 					slot++;
4157 					if (cur)
4158 						free_extent_buffer(cur);
4159 					goto next;
4160 				}
4161 				free_extent_buffer(cur);
4162 			}
4163 			if (gen < min_trans) {
4164 				slot++;
4165 				goto next;
4166 			}
4167 			btrfs_node_key_to_cpu(c, key, slot);
4168 		}
4169 		return 0;
4170 	}
4171 	return 1;
4172 }
4173 
4174 /*
4175  * search the tree again to find a leaf with greater keys
4176  * returns 0 if it found something or 1 if there are no greater leaves.
4177  * returns < 0 on io errors.
4178  */
4179 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4180 {
4181 	int slot;
4182 	int level;
4183 	struct extent_buffer *c;
4184 	struct extent_buffer *next;
4185 	struct btrfs_key key;
4186 	u32 nritems;
4187 	int ret;
4188 	int old_spinning = path->leave_spinning;
4189 	int next_rw_lock = 0;
4190 
4191 	nritems = btrfs_header_nritems(path->nodes[0]);
4192 	if (nritems == 0)
4193 		return 1;
4194 
4195 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4196 again:
4197 	level = 1;
4198 	next = NULL;
4199 	next_rw_lock = 0;
4200 	btrfs_release_path(path);
4201 
4202 	path->keep_locks = 1;
4203 	path->leave_spinning = 1;
4204 
4205 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4206 	path->keep_locks = 0;
4207 
4208 	if (ret < 0)
4209 		return ret;
4210 
4211 	nritems = btrfs_header_nritems(path->nodes[0]);
4212 	/*
4213 	 * by releasing the path above we dropped all our locks.  A balance
4214 	 * could have added more items next to the key that used to be
4215 	 * at the very end of the block.  So, check again here and
4216 	 * advance the path if there are now more items available.
4217 	 */
4218 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4219 		if (ret == 0)
4220 			path->slots[0]++;
4221 		ret = 0;
4222 		goto done;
4223 	}
4224 
4225 	while (level < BTRFS_MAX_LEVEL) {
4226 		if (!path->nodes[level]) {
4227 			ret = 1;
4228 			goto done;
4229 		}
4230 
4231 		slot = path->slots[level] + 1;
4232 		c = path->nodes[level];
4233 		if (slot >= btrfs_header_nritems(c)) {
4234 			level++;
4235 			if (level == BTRFS_MAX_LEVEL) {
4236 				ret = 1;
4237 				goto done;
4238 			}
4239 			continue;
4240 		}
4241 
4242 		if (next) {
4243 			btrfs_tree_unlock_rw(next, next_rw_lock);
4244 			free_extent_buffer(next);
4245 		}
4246 
4247 		next = c;
4248 		next_rw_lock = path->locks[level];
4249 		ret = read_block_for_search(NULL, root, path, &next, level,
4250 					    slot, &key);
4251 		if (ret == -EAGAIN)
4252 			goto again;
4253 
4254 		if (ret < 0) {
4255 			btrfs_release_path(path);
4256 			goto done;
4257 		}
4258 
4259 		if (!path->skip_locking) {
4260 			ret = btrfs_try_tree_read_lock(next);
4261 			if (!ret) {
4262 				btrfs_set_path_blocking(path);
4263 				btrfs_tree_read_lock(next);
4264 				btrfs_clear_path_blocking(path, next,
4265 							  BTRFS_READ_LOCK);
4266 			}
4267 			next_rw_lock = BTRFS_READ_LOCK;
4268 		}
4269 		break;
4270 	}
4271 	path->slots[level] = slot;
4272 	while (1) {
4273 		level--;
4274 		c = path->nodes[level];
4275 		if (path->locks[level])
4276 			btrfs_tree_unlock_rw(c, path->locks[level]);
4277 
4278 		free_extent_buffer(c);
4279 		path->nodes[level] = next;
4280 		path->slots[level] = 0;
4281 		if (!path->skip_locking)
4282 			path->locks[level] = next_rw_lock;
4283 		if (!level)
4284 			break;
4285 
4286 		ret = read_block_for_search(NULL, root, path, &next, level,
4287 					    0, &key);
4288 		if (ret == -EAGAIN)
4289 			goto again;
4290 
4291 		if (ret < 0) {
4292 			btrfs_release_path(path);
4293 			goto done;
4294 		}
4295 
4296 		if (!path->skip_locking) {
4297 			ret = btrfs_try_tree_read_lock(next);
4298 			if (!ret) {
4299 				btrfs_set_path_blocking(path);
4300 				btrfs_tree_read_lock(next);
4301 				btrfs_clear_path_blocking(path, next,
4302 							  BTRFS_READ_LOCK);
4303 			}
4304 			next_rw_lock = BTRFS_READ_LOCK;
4305 		}
4306 	}
4307 	ret = 0;
4308 done:
4309 	unlock_up(path, 0, 1);
4310 	path->leave_spinning = old_spinning;
4311 	if (!old_spinning)
4312 		btrfs_set_path_blocking(path);
4313 
4314 	return ret;
4315 }
4316 
4317 /*
4318  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4319  * searching until it gets past min_objectid or finds an item of 'type'
4320  *
4321  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4322  */
4323 int btrfs_previous_item(struct btrfs_root *root,
4324 			struct btrfs_path *path, u64 min_objectid,
4325 			int type)
4326 {
4327 	struct btrfs_key found_key;
4328 	struct extent_buffer *leaf;
4329 	u32 nritems;
4330 	int ret;
4331 
4332 	while (1) {
4333 		if (path->slots[0] == 0) {
4334 			btrfs_set_path_blocking(path);
4335 			ret = btrfs_prev_leaf(root, path);
4336 			if (ret != 0)
4337 				return ret;
4338 		} else {
4339 			path->slots[0]--;
4340 		}
4341 		leaf = path->nodes[0];
4342 		nritems = btrfs_header_nritems(leaf);
4343 		if (nritems == 0)
4344 			return 1;
4345 		if (path->slots[0] == nritems)
4346 			path->slots[0]--;
4347 
4348 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4349 		if (found_key.objectid < min_objectid)
4350 			break;
4351 		if (found_key.type == type)
4352 			return 0;
4353 		if (found_key.objectid == min_objectid &&
4354 		    found_key.type < type)
4355 			break;
4356 	}
4357 	return 1;
4358 }
4359