xref: /openbmc/linux/fs/btrfs/ctree.c (revision 97da55fc)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 		    struct btrfs_path *path, int level, int slot);
42 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
45 					  u32 blocksize, u64 parent_transid,
46 					  u64 time_seq);
47 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
48 						u64 bytenr, u32 blocksize,
49 						u64 time_seq);
50 
51 struct btrfs_path *btrfs_alloc_path(void)
52 {
53 	struct btrfs_path *path;
54 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
55 	return path;
56 }
57 
58 /*
59  * set all locked nodes in the path to blocking locks.  This should
60  * be done before scheduling
61  */
62 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
63 {
64 	int i;
65 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
66 		if (!p->nodes[i] || !p->locks[i])
67 			continue;
68 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
69 		if (p->locks[i] == BTRFS_READ_LOCK)
70 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
71 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
72 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
73 	}
74 }
75 
76 /*
77  * reset all the locked nodes in the patch to spinning locks.
78  *
79  * held is used to keep lockdep happy, when lockdep is enabled
80  * we set held to a blocking lock before we go around and
81  * retake all the spinlocks in the path.  You can safely use NULL
82  * for held
83  */
84 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
85 					struct extent_buffer *held, int held_rw)
86 {
87 	int i;
88 
89 #ifdef CONFIG_DEBUG_LOCK_ALLOC
90 	/* lockdep really cares that we take all of these spinlocks
91 	 * in the right order.  If any of the locks in the path are not
92 	 * currently blocking, it is going to complain.  So, make really
93 	 * really sure by forcing the path to blocking before we clear
94 	 * the path blocking.
95 	 */
96 	if (held) {
97 		btrfs_set_lock_blocking_rw(held, held_rw);
98 		if (held_rw == BTRFS_WRITE_LOCK)
99 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
100 		else if (held_rw == BTRFS_READ_LOCK)
101 			held_rw = BTRFS_READ_LOCK_BLOCKING;
102 	}
103 	btrfs_set_path_blocking(p);
104 #endif
105 
106 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
107 		if (p->nodes[i] && p->locks[i]) {
108 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
109 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
110 				p->locks[i] = BTRFS_WRITE_LOCK;
111 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
112 				p->locks[i] = BTRFS_READ_LOCK;
113 		}
114 	}
115 
116 #ifdef CONFIG_DEBUG_LOCK_ALLOC
117 	if (held)
118 		btrfs_clear_lock_blocking_rw(held, held_rw);
119 #endif
120 }
121 
122 /* this also releases the path */
123 void btrfs_free_path(struct btrfs_path *p)
124 {
125 	if (!p)
126 		return;
127 	btrfs_release_path(p);
128 	kmem_cache_free(btrfs_path_cachep, p);
129 }
130 
131 /*
132  * path release drops references on the extent buffers in the path
133  * and it drops any locks held by this path
134  *
135  * It is safe to call this on paths that no locks or extent buffers held.
136  */
137 noinline void btrfs_release_path(struct btrfs_path *p)
138 {
139 	int i;
140 
141 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
142 		p->slots[i] = 0;
143 		if (!p->nodes[i])
144 			continue;
145 		if (p->locks[i]) {
146 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
147 			p->locks[i] = 0;
148 		}
149 		free_extent_buffer(p->nodes[i]);
150 		p->nodes[i] = NULL;
151 	}
152 }
153 
154 /*
155  * safely gets a reference on the root node of a tree.  A lock
156  * is not taken, so a concurrent writer may put a different node
157  * at the root of the tree.  See btrfs_lock_root_node for the
158  * looping required.
159  *
160  * The extent buffer returned by this has a reference taken, so
161  * it won't disappear.  It may stop being the root of the tree
162  * at any time because there are no locks held.
163  */
164 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
165 {
166 	struct extent_buffer *eb;
167 
168 	while (1) {
169 		rcu_read_lock();
170 		eb = rcu_dereference(root->node);
171 
172 		/*
173 		 * RCU really hurts here, we could free up the root node because
174 		 * it was cow'ed but we may not get the new root node yet so do
175 		 * the inc_not_zero dance and if it doesn't work then
176 		 * synchronize_rcu and try again.
177 		 */
178 		if (atomic_inc_not_zero(&eb->refs)) {
179 			rcu_read_unlock();
180 			break;
181 		}
182 		rcu_read_unlock();
183 		synchronize_rcu();
184 	}
185 	return eb;
186 }
187 
188 /* loop around taking references on and locking the root node of the
189  * tree until you end up with a lock on the root.  A locked buffer
190  * is returned, with a reference held.
191  */
192 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
193 {
194 	struct extent_buffer *eb;
195 
196 	while (1) {
197 		eb = btrfs_root_node(root);
198 		btrfs_tree_lock(eb);
199 		if (eb == root->node)
200 			break;
201 		btrfs_tree_unlock(eb);
202 		free_extent_buffer(eb);
203 	}
204 	return eb;
205 }
206 
207 /* loop around taking references on and locking the root node of the
208  * tree until you end up with a lock on the root.  A locked buffer
209  * is returned, with a reference held.
210  */
211 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
212 {
213 	struct extent_buffer *eb;
214 
215 	while (1) {
216 		eb = btrfs_root_node(root);
217 		btrfs_tree_read_lock(eb);
218 		if (eb == root->node)
219 			break;
220 		btrfs_tree_read_unlock(eb);
221 		free_extent_buffer(eb);
222 	}
223 	return eb;
224 }
225 
226 /* cowonly root (everything not a reference counted cow subvolume), just get
227  * put onto a simple dirty list.  transaction.c walks this to make sure they
228  * get properly updated on disk.
229  */
230 static void add_root_to_dirty_list(struct btrfs_root *root)
231 {
232 	spin_lock(&root->fs_info->trans_lock);
233 	if (root->track_dirty && list_empty(&root->dirty_list)) {
234 		list_add(&root->dirty_list,
235 			 &root->fs_info->dirty_cowonly_roots);
236 	}
237 	spin_unlock(&root->fs_info->trans_lock);
238 }
239 
240 /*
241  * used by snapshot creation to make a copy of a root for a tree with
242  * a given objectid.  The buffer with the new root node is returned in
243  * cow_ret, and this func returns zero on success or a negative error code.
244  */
245 int btrfs_copy_root(struct btrfs_trans_handle *trans,
246 		      struct btrfs_root *root,
247 		      struct extent_buffer *buf,
248 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
249 {
250 	struct extent_buffer *cow;
251 	int ret = 0;
252 	int level;
253 	struct btrfs_disk_key disk_key;
254 
255 	WARN_ON(root->ref_cows && trans->transid !=
256 		root->fs_info->running_transaction->transid);
257 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
258 
259 	level = btrfs_header_level(buf);
260 	if (level == 0)
261 		btrfs_item_key(buf, &disk_key, 0);
262 	else
263 		btrfs_node_key(buf, &disk_key, 0);
264 
265 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
266 				     new_root_objectid, &disk_key, level,
267 				     buf->start, 0);
268 	if (IS_ERR(cow))
269 		return PTR_ERR(cow);
270 
271 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
272 	btrfs_set_header_bytenr(cow, cow->start);
273 	btrfs_set_header_generation(cow, trans->transid);
274 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
275 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
276 				     BTRFS_HEADER_FLAG_RELOC);
277 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
278 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
279 	else
280 		btrfs_set_header_owner(cow, new_root_objectid);
281 
282 	write_extent_buffer(cow, root->fs_info->fsid,
283 			    (unsigned long)btrfs_header_fsid(cow),
284 			    BTRFS_FSID_SIZE);
285 
286 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
287 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
288 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
289 	else
290 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
291 
292 	if (ret)
293 		return ret;
294 
295 	btrfs_mark_buffer_dirty(cow);
296 	*cow_ret = cow;
297 	return 0;
298 }
299 
300 enum mod_log_op {
301 	MOD_LOG_KEY_REPLACE,
302 	MOD_LOG_KEY_ADD,
303 	MOD_LOG_KEY_REMOVE,
304 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
305 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
306 	MOD_LOG_MOVE_KEYS,
307 	MOD_LOG_ROOT_REPLACE,
308 };
309 
310 struct tree_mod_move {
311 	int dst_slot;
312 	int nr_items;
313 };
314 
315 struct tree_mod_root {
316 	u64 logical;
317 	u8 level;
318 };
319 
320 struct tree_mod_elem {
321 	struct rb_node node;
322 	u64 index;		/* shifted logical */
323 	u64 seq;
324 	enum mod_log_op op;
325 
326 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
327 	int slot;
328 
329 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
330 	u64 generation;
331 
332 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
333 	struct btrfs_disk_key key;
334 	u64 blockptr;
335 
336 	/* this is used for op == MOD_LOG_MOVE_KEYS */
337 	struct tree_mod_move move;
338 
339 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
340 	struct tree_mod_root old_root;
341 };
342 
343 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
344 {
345 	read_lock(&fs_info->tree_mod_log_lock);
346 }
347 
348 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
349 {
350 	read_unlock(&fs_info->tree_mod_log_lock);
351 }
352 
353 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
354 {
355 	write_lock(&fs_info->tree_mod_log_lock);
356 }
357 
358 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
359 {
360 	write_unlock(&fs_info->tree_mod_log_lock);
361 }
362 
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 			   struct seq_list *elem)
373 {
374 	u64 seq;
375 
376 	tree_mod_log_write_lock(fs_info);
377 	spin_lock(&fs_info->tree_mod_seq_lock);
378 	if (!elem->seq) {
379 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 	}
382 	seq = btrfs_inc_tree_mod_seq(fs_info);
383 	spin_unlock(&fs_info->tree_mod_seq_lock);
384 	tree_mod_log_write_unlock(fs_info);
385 
386 	return seq;
387 }
388 
389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
390 			    struct seq_list *elem)
391 {
392 	struct rb_root *tm_root;
393 	struct rb_node *node;
394 	struct rb_node *next;
395 	struct seq_list *cur_elem;
396 	struct tree_mod_elem *tm;
397 	u64 min_seq = (u64)-1;
398 	u64 seq_putting = elem->seq;
399 
400 	if (!seq_putting)
401 		return;
402 
403 	spin_lock(&fs_info->tree_mod_seq_lock);
404 	list_del(&elem->list);
405 	elem->seq = 0;
406 
407 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
408 		if (cur_elem->seq < min_seq) {
409 			if (seq_putting > cur_elem->seq) {
410 				/*
411 				 * blocker with lower sequence number exists, we
412 				 * cannot remove anything from the log
413 				 */
414 				spin_unlock(&fs_info->tree_mod_seq_lock);
415 				return;
416 			}
417 			min_seq = cur_elem->seq;
418 		}
419 	}
420 	spin_unlock(&fs_info->tree_mod_seq_lock);
421 
422 	/*
423 	 * anything that's lower than the lowest existing (read: blocked)
424 	 * sequence number can be removed from the tree.
425 	 */
426 	tree_mod_log_write_lock(fs_info);
427 	tm_root = &fs_info->tree_mod_log;
428 	for (node = rb_first(tm_root); node; node = next) {
429 		next = rb_next(node);
430 		tm = container_of(node, struct tree_mod_elem, node);
431 		if (tm->seq > min_seq)
432 			continue;
433 		rb_erase(node, tm_root);
434 		kfree(tm);
435 	}
436 	tree_mod_log_write_unlock(fs_info);
437 }
438 
439 /*
440  * key order of the log:
441  *       index -> sequence
442  *
443  * the index is the shifted logical of the *new* root node for root replace
444  * operations, or the shifted logical of the affected block for all other
445  * operations.
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 	struct rb_root *tm_root;
451 	struct rb_node **new;
452 	struct rb_node *parent = NULL;
453 	struct tree_mod_elem *cur;
454 
455 	BUG_ON(!tm || !tm->seq);
456 
457 	tm_root = &fs_info->tree_mod_log;
458 	new = &tm_root->rb_node;
459 	while (*new) {
460 		cur = container_of(*new, struct tree_mod_elem, node);
461 		parent = *new;
462 		if (cur->index < tm->index)
463 			new = &((*new)->rb_left);
464 		else if (cur->index > tm->index)
465 			new = &((*new)->rb_right);
466 		else if (cur->seq < tm->seq)
467 			new = &((*new)->rb_left);
468 		else if (cur->seq > tm->seq)
469 			new = &((*new)->rb_right);
470 		else {
471 			kfree(tm);
472 			return -EEXIST;
473 		}
474 	}
475 
476 	rb_link_node(&tm->node, parent, new);
477 	rb_insert_color(&tm->node, tm_root);
478 	return 0;
479 }
480 
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 				    struct extent_buffer *eb) {
489 	smp_mb();
490 	if (list_empty(&(fs_info)->tree_mod_seq_list))
491 		return 1;
492 	if (eb && btrfs_header_level(eb) == 0)
493 		return 1;
494 
495 	tree_mod_log_write_lock(fs_info);
496 	if (list_empty(&fs_info->tree_mod_seq_list)) {
497 		/*
498 		 * someone emptied the list while we were waiting for the lock.
499 		 * we must not add to the list when no blocker exists.
500 		 */
501 		tree_mod_log_write_unlock(fs_info);
502 		return 1;
503 	}
504 
505 	return 0;
506 }
507 
508 /*
509  * This allocates memory and gets a tree modification sequence number.
510  *
511  * Returns <0 on error.
512  * Returns >0 (the added sequence number) on success.
513  */
514 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
515 				 struct tree_mod_elem **tm_ret)
516 {
517 	struct tree_mod_elem *tm;
518 
519 	/*
520 	 * once we switch from spin locks to something different, we should
521 	 * honor the flags parameter here.
522 	 */
523 	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
524 	if (!tm)
525 		return -ENOMEM;
526 
527 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
528 	return tm->seq;
529 }
530 
531 static inline int
532 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
533 			  struct extent_buffer *eb, int slot,
534 			  enum mod_log_op op, gfp_t flags)
535 {
536 	int ret;
537 	struct tree_mod_elem *tm;
538 
539 	ret = tree_mod_alloc(fs_info, flags, &tm);
540 	if (ret < 0)
541 		return ret;
542 
543 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
544 	if (op != MOD_LOG_KEY_ADD) {
545 		btrfs_node_key(eb, &tm->key, slot);
546 		tm->blockptr = btrfs_node_blockptr(eb, slot);
547 	}
548 	tm->op = op;
549 	tm->slot = slot;
550 	tm->generation = btrfs_node_ptr_generation(eb, slot);
551 
552 	return __tree_mod_log_insert(fs_info, tm);
553 }
554 
555 static noinline int
556 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
557 			     struct extent_buffer *eb, int slot,
558 			     enum mod_log_op op, gfp_t flags)
559 {
560 	int ret;
561 
562 	if (tree_mod_dont_log(fs_info, eb))
563 		return 0;
564 
565 	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
566 
567 	tree_mod_log_write_unlock(fs_info);
568 	return ret;
569 }
570 
571 static noinline int
572 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
573 			int slot, enum mod_log_op op)
574 {
575 	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
576 }
577 
578 static noinline int
579 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
580 			     struct extent_buffer *eb, int slot,
581 			     enum mod_log_op op)
582 {
583 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
584 }
585 
586 static noinline int
587 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
588 			 struct extent_buffer *eb, int dst_slot, int src_slot,
589 			 int nr_items, gfp_t flags)
590 {
591 	struct tree_mod_elem *tm;
592 	int ret;
593 	int i;
594 
595 	if (tree_mod_dont_log(fs_info, eb))
596 		return 0;
597 
598 	/*
599 	 * When we override something during the move, we log these removals.
600 	 * This can only happen when we move towards the beginning of the
601 	 * buffer, i.e. dst_slot < src_slot.
602 	 */
603 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
604 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
605 					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
606 		BUG_ON(ret < 0);
607 	}
608 
609 	ret = tree_mod_alloc(fs_info, flags, &tm);
610 	if (ret < 0)
611 		goto out;
612 
613 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
614 	tm->slot = src_slot;
615 	tm->move.dst_slot = dst_slot;
616 	tm->move.nr_items = nr_items;
617 	tm->op = MOD_LOG_MOVE_KEYS;
618 
619 	ret = __tree_mod_log_insert(fs_info, tm);
620 out:
621 	tree_mod_log_write_unlock(fs_info);
622 	return ret;
623 }
624 
625 static inline void
626 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
627 {
628 	int i;
629 	u32 nritems;
630 	int ret;
631 
632 	if (btrfs_header_level(eb) == 0)
633 		return;
634 
635 	nritems = btrfs_header_nritems(eb);
636 	for (i = nritems - 1; i >= 0; i--) {
637 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
638 					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
639 		BUG_ON(ret < 0);
640 	}
641 }
642 
643 static noinline int
644 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
645 			 struct extent_buffer *old_root,
646 			 struct extent_buffer *new_root, gfp_t flags)
647 {
648 	struct tree_mod_elem *tm;
649 	int ret;
650 
651 	if (tree_mod_dont_log(fs_info, NULL))
652 		return 0;
653 
654 	ret = tree_mod_alloc(fs_info, flags, &tm);
655 	if (ret < 0)
656 		goto out;
657 
658 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
659 	tm->old_root.logical = old_root->start;
660 	tm->old_root.level = btrfs_header_level(old_root);
661 	tm->generation = btrfs_header_generation(old_root);
662 	tm->op = MOD_LOG_ROOT_REPLACE;
663 
664 	ret = __tree_mod_log_insert(fs_info, tm);
665 out:
666 	tree_mod_log_write_unlock(fs_info);
667 	return ret;
668 }
669 
670 static struct tree_mod_elem *
671 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
672 		      int smallest)
673 {
674 	struct rb_root *tm_root;
675 	struct rb_node *node;
676 	struct tree_mod_elem *cur = NULL;
677 	struct tree_mod_elem *found = NULL;
678 	u64 index = start >> PAGE_CACHE_SHIFT;
679 
680 	tree_mod_log_read_lock(fs_info);
681 	tm_root = &fs_info->tree_mod_log;
682 	node = tm_root->rb_node;
683 	while (node) {
684 		cur = container_of(node, struct tree_mod_elem, node);
685 		if (cur->index < index) {
686 			node = node->rb_left;
687 		} else if (cur->index > index) {
688 			node = node->rb_right;
689 		} else if (cur->seq < min_seq) {
690 			node = node->rb_left;
691 		} else if (!smallest) {
692 			/* we want the node with the highest seq */
693 			if (found)
694 				BUG_ON(found->seq > cur->seq);
695 			found = cur;
696 			node = node->rb_left;
697 		} else if (cur->seq > min_seq) {
698 			/* we want the node with the smallest seq */
699 			if (found)
700 				BUG_ON(found->seq < cur->seq);
701 			found = cur;
702 			node = node->rb_right;
703 		} else {
704 			found = cur;
705 			break;
706 		}
707 	}
708 	tree_mod_log_read_unlock(fs_info);
709 
710 	return found;
711 }
712 
713 /*
714  * this returns the element from the log with the smallest time sequence
715  * value that's in the log (the oldest log item). any element with a time
716  * sequence lower than min_seq will be ignored.
717  */
718 static struct tree_mod_elem *
719 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
720 			   u64 min_seq)
721 {
722 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
723 }
724 
725 /*
726  * this returns the element from the log with the largest time sequence
727  * value that's in the log (the most recent log item). any element with
728  * a time sequence lower than min_seq will be ignored.
729  */
730 static struct tree_mod_elem *
731 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
732 {
733 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
734 }
735 
736 static noinline void
737 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
738 		     struct extent_buffer *src, unsigned long dst_offset,
739 		     unsigned long src_offset, int nr_items)
740 {
741 	int ret;
742 	int i;
743 
744 	if (tree_mod_dont_log(fs_info, NULL))
745 		return;
746 
747 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
748 		tree_mod_log_write_unlock(fs_info);
749 		return;
750 	}
751 
752 	for (i = 0; i < nr_items; i++) {
753 		ret = tree_mod_log_insert_key_locked(fs_info, src,
754 						     i + src_offset,
755 						     MOD_LOG_KEY_REMOVE);
756 		BUG_ON(ret < 0);
757 		ret = tree_mod_log_insert_key_locked(fs_info, dst,
758 						     i + dst_offset,
759 						     MOD_LOG_KEY_ADD);
760 		BUG_ON(ret < 0);
761 	}
762 
763 	tree_mod_log_write_unlock(fs_info);
764 }
765 
766 static inline void
767 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
768 		     int dst_offset, int src_offset, int nr_items)
769 {
770 	int ret;
771 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
772 				       nr_items, GFP_NOFS);
773 	BUG_ON(ret < 0);
774 }
775 
776 static noinline void
777 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
778 			  struct extent_buffer *eb, int slot, int atomic)
779 {
780 	int ret;
781 
782 	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
783 					   MOD_LOG_KEY_REPLACE,
784 					   atomic ? GFP_ATOMIC : GFP_NOFS);
785 	BUG_ON(ret < 0);
786 }
787 
788 static noinline void
789 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
790 {
791 	if (tree_mod_dont_log(fs_info, eb))
792 		return;
793 
794 	__tree_mod_log_free_eb(fs_info, eb);
795 
796 	tree_mod_log_write_unlock(fs_info);
797 }
798 
799 static noinline void
800 tree_mod_log_set_root_pointer(struct btrfs_root *root,
801 			      struct extent_buffer *new_root_node)
802 {
803 	int ret;
804 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
805 				       new_root_node, GFP_NOFS);
806 	BUG_ON(ret < 0);
807 }
808 
809 /*
810  * check if the tree block can be shared by multiple trees
811  */
812 int btrfs_block_can_be_shared(struct btrfs_root *root,
813 			      struct extent_buffer *buf)
814 {
815 	/*
816 	 * Tree blocks not in refernece counted trees and tree roots
817 	 * are never shared. If a block was allocated after the last
818 	 * snapshot and the block was not allocated by tree relocation,
819 	 * we know the block is not shared.
820 	 */
821 	if (root->ref_cows &&
822 	    buf != root->node && buf != root->commit_root &&
823 	    (btrfs_header_generation(buf) <=
824 	     btrfs_root_last_snapshot(&root->root_item) ||
825 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
826 		return 1;
827 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
828 	if (root->ref_cows &&
829 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
830 		return 1;
831 #endif
832 	return 0;
833 }
834 
835 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
836 				       struct btrfs_root *root,
837 				       struct extent_buffer *buf,
838 				       struct extent_buffer *cow,
839 				       int *last_ref)
840 {
841 	u64 refs;
842 	u64 owner;
843 	u64 flags;
844 	u64 new_flags = 0;
845 	int ret;
846 
847 	/*
848 	 * Backrefs update rules:
849 	 *
850 	 * Always use full backrefs for extent pointers in tree block
851 	 * allocated by tree relocation.
852 	 *
853 	 * If a shared tree block is no longer referenced by its owner
854 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
855 	 * use full backrefs for extent pointers in tree block.
856 	 *
857 	 * If a tree block is been relocating
858 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
859 	 * use full backrefs for extent pointers in tree block.
860 	 * The reason for this is some operations (such as drop tree)
861 	 * are only allowed for blocks use full backrefs.
862 	 */
863 
864 	if (btrfs_block_can_be_shared(root, buf)) {
865 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
866 					       buf->len, &refs, &flags);
867 		if (ret)
868 			return ret;
869 		if (refs == 0) {
870 			ret = -EROFS;
871 			btrfs_std_error(root->fs_info, ret);
872 			return ret;
873 		}
874 	} else {
875 		refs = 1;
876 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
877 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
878 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
879 		else
880 			flags = 0;
881 	}
882 
883 	owner = btrfs_header_owner(buf);
884 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
885 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
886 
887 	if (refs > 1) {
888 		if ((owner == root->root_key.objectid ||
889 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
890 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
891 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
892 			BUG_ON(ret); /* -ENOMEM */
893 
894 			if (root->root_key.objectid ==
895 			    BTRFS_TREE_RELOC_OBJECTID) {
896 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
897 				BUG_ON(ret); /* -ENOMEM */
898 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
899 				BUG_ON(ret); /* -ENOMEM */
900 			}
901 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
902 		} else {
903 
904 			if (root->root_key.objectid ==
905 			    BTRFS_TREE_RELOC_OBJECTID)
906 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
907 			else
908 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
909 			BUG_ON(ret); /* -ENOMEM */
910 		}
911 		if (new_flags != 0) {
912 			ret = btrfs_set_disk_extent_flags(trans, root,
913 							  buf->start,
914 							  buf->len,
915 							  new_flags, 0);
916 			if (ret)
917 				return ret;
918 		}
919 	} else {
920 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
921 			if (root->root_key.objectid ==
922 			    BTRFS_TREE_RELOC_OBJECTID)
923 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
924 			else
925 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
926 			BUG_ON(ret); /* -ENOMEM */
927 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
928 			BUG_ON(ret); /* -ENOMEM */
929 		}
930 		tree_mod_log_free_eb(root->fs_info, buf);
931 		clean_tree_block(trans, root, buf);
932 		*last_ref = 1;
933 	}
934 	return 0;
935 }
936 
937 /*
938  * does the dirty work in cow of a single block.  The parent block (if
939  * supplied) is updated to point to the new cow copy.  The new buffer is marked
940  * dirty and returned locked.  If you modify the block it needs to be marked
941  * dirty again.
942  *
943  * search_start -- an allocation hint for the new block
944  *
945  * empty_size -- a hint that you plan on doing more cow.  This is the size in
946  * bytes the allocator should try to find free next to the block it returns.
947  * This is just a hint and may be ignored by the allocator.
948  */
949 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
950 			     struct btrfs_root *root,
951 			     struct extent_buffer *buf,
952 			     struct extent_buffer *parent, int parent_slot,
953 			     struct extent_buffer **cow_ret,
954 			     u64 search_start, u64 empty_size)
955 {
956 	struct btrfs_disk_key disk_key;
957 	struct extent_buffer *cow;
958 	int level, ret;
959 	int last_ref = 0;
960 	int unlock_orig = 0;
961 	u64 parent_start;
962 
963 	if (*cow_ret == buf)
964 		unlock_orig = 1;
965 
966 	btrfs_assert_tree_locked(buf);
967 
968 	WARN_ON(root->ref_cows && trans->transid !=
969 		root->fs_info->running_transaction->transid);
970 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
971 
972 	level = btrfs_header_level(buf);
973 
974 	if (level == 0)
975 		btrfs_item_key(buf, &disk_key, 0);
976 	else
977 		btrfs_node_key(buf, &disk_key, 0);
978 
979 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
980 		if (parent)
981 			parent_start = parent->start;
982 		else
983 			parent_start = 0;
984 	} else
985 		parent_start = 0;
986 
987 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
988 				     root->root_key.objectid, &disk_key,
989 				     level, search_start, empty_size);
990 	if (IS_ERR(cow))
991 		return PTR_ERR(cow);
992 
993 	/* cow is set to blocking by btrfs_init_new_buffer */
994 
995 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
996 	btrfs_set_header_bytenr(cow, cow->start);
997 	btrfs_set_header_generation(cow, trans->transid);
998 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
999 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1000 				     BTRFS_HEADER_FLAG_RELOC);
1001 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1002 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1003 	else
1004 		btrfs_set_header_owner(cow, root->root_key.objectid);
1005 
1006 	write_extent_buffer(cow, root->fs_info->fsid,
1007 			    (unsigned long)btrfs_header_fsid(cow),
1008 			    BTRFS_FSID_SIZE);
1009 
1010 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1011 	if (ret) {
1012 		btrfs_abort_transaction(trans, root, ret);
1013 		return ret;
1014 	}
1015 
1016 	if (root->ref_cows)
1017 		btrfs_reloc_cow_block(trans, root, buf, cow);
1018 
1019 	if (buf == root->node) {
1020 		WARN_ON(parent && parent != buf);
1021 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023 			parent_start = buf->start;
1024 		else
1025 			parent_start = 0;
1026 
1027 		extent_buffer_get(cow);
1028 		tree_mod_log_set_root_pointer(root, cow);
1029 		rcu_assign_pointer(root->node, cow);
1030 
1031 		btrfs_free_tree_block(trans, root, buf, parent_start,
1032 				      last_ref);
1033 		free_extent_buffer(buf);
1034 		add_root_to_dirty_list(root);
1035 	} else {
1036 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1037 			parent_start = parent->start;
1038 		else
1039 			parent_start = 0;
1040 
1041 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1042 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1043 					MOD_LOG_KEY_REPLACE);
1044 		btrfs_set_node_blockptr(parent, parent_slot,
1045 					cow->start);
1046 		btrfs_set_node_ptr_generation(parent, parent_slot,
1047 					      trans->transid);
1048 		btrfs_mark_buffer_dirty(parent);
1049 		btrfs_free_tree_block(trans, root, buf, parent_start,
1050 				      last_ref);
1051 	}
1052 	if (unlock_orig)
1053 		btrfs_tree_unlock(buf);
1054 	free_extent_buffer_stale(buf);
1055 	btrfs_mark_buffer_dirty(cow);
1056 	*cow_ret = cow;
1057 	return 0;
1058 }
1059 
1060 /*
1061  * returns the logical address of the oldest predecessor of the given root.
1062  * entries older than time_seq are ignored.
1063  */
1064 static struct tree_mod_elem *
1065 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1066 			   struct btrfs_root *root, u64 time_seq)
1067 {
1068 	struct tree_mod_elem *tm;
1069 	struct tree_mod_elem *found = NULL;
1070 	u64 root_logical = root->node->start;
1071 	int looped = 0;
1072 
1073 	if (!time_seq)
1074 		return 0;
1075 
1076 	/*
1077 	 * the very last operation that's logged for a root is the replacement
1078 	 * operation (if it is replaced at all). this has the index of the *new*
1079 	 * root, making it the very first operation that's logged for this root.
1080 	 */
1081 	while (1) {
1082 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1083 						time_seq);
1084 		if (!looped && !tm)
1085 			return 0;
1086 		/*
1087 		 * if there are no tree operation for the oldest root, we simply
1088 		 * return it. this should only happen if that (old) root is at
1089 		 * level 0.
1090 		 */
1091 		if (!tm)
1092 			break;
1093 
1094 		/*
1095 		 * if there's an operation that's not a root replacement, we
1096 		 * found the oldest version of our root. normally, we'll find a
1097 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1098 		 */
1099 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1100 			break;
1101 
1102 		found = tm;
1103 		root_logical = tm->old_root.logical;
1104 		BUG_ON(root_logical == root->node->start);
1105 		looped = 1;
1106 	}
1107 
1108 	/* if there's no old root to return, return what we found instead */
1109 	if (!found)
1110 		found = tm;
1111 
1112 	return found;
1113 }
1114 
1115 /*
1116  * tm is a pointer to the first operation to rewind within eb. then, all
1117  * previous operations will be rewinded (until we reach something older than
1118  * time_seq).
1119  */
1120 static void
1121 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1122 		      struct tree_mod_elem *first_tm)
1123 {
1124 	u32 n;
1125 	struct rb_node *next;
1126 	struct tree_mod_elem *tm = first_tm;
1127 	unsigned long o_dst;
1128 	unsigned long o_src;
1129 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1130 
1131 	n = btrfs_header_nritems(eb);
1132 	while (tm && tm->seq >= time_seq) {
1133 		/*
1134 		 * all the operations are recorded with the operator used for
1135 		 * the modification. as we're going backwards, we do the
1136 		 * opposite of each operation here.
1137 		 */
1138 		switch (tm->op) {
1139 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1140 			BUG_ON(tm->slot < n);
1141 			/* Fallthrough */
1142 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1143 		case MOD_LOG_KEY_REMOVE:
1144 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1145 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1146 			btrfs_set_node_ptr_generation(eb, tm->slot,
1147 						      tm->generation);
1148 			n++;
1149 			break;
1150 		case MOD_LOG_KEY_REPLACE:
1151 			BUG_ON(tm->slot >= n);
1152 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1153 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1154 			btrfs_set_node_ptr_generation(eb, tm->slot,
1155 						      tm->generation);
1156 			break;
1157 		case MOD_LOG_KEY_ADD:
1158 			/* if a move operation is needed it's in the log */
1159 			n--;
1160 			break;
1161 		case MOD_LOG_MOVE_KEYS:
1162 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1163 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1164 			memmove_extent_buffer(eb, o_dst, o_src,
1165 					      tm->move.nr_items * p_size);
1166 			break;
1167 		case MOD_LOG_ROOT_REPLACE:
1168 			/*
1169 			 * this operation is special. for roots, this must be
1170 			 * handled explicitly before rewinding.
1171 			 * for non-roots, this operation may exist if the node
1172 			 * was a root: root A -> child B; then A gets empty and
1173 			 * B is promoted to the new root. in the mod log, we'll
1174 			 * have a root-replace operation for B, a tree block
1175 			 * that is no root. we simply ignore that operation.
1176 			 */
1177 			break;
1178 		}
1179 		next = rb_next(&tm->node);
1180 		if (!next)
1181 			break;
1182 		tm = container_of(next, struct tree_mod_elem, node);
1183 		if (tm->index != first_tm->index)
1184 			break;
1185 	}
1186 	btrfs_set_header_nritems(eb, n);
1187 }
1188 
1189 static struct extent_buffer *
1190 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1191 		    u64 time_seq)
1192 {
1193 	struct extent_buffer *eb_rewin;
1194 	struct tree_mod_elem *tm;
1195 
1196 	if (!time_seq)
1197 		return eb;
1198 
1199 	if (btrfs_header_level(eb) == 0)
1200 		return eb;
1201 
1202 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1203 	if (!tm)
1204 		return eb;
1205 
1206 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1207 		BUG_ON(tm->slot != 0);
1208 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1209 						fs_info->tree_root->nodesize);
1210 		BUG_ON(!eb_rewin);
1211 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1212 		btrfs_set_header_backref_rev(eb_rewin,
1213 					     btrfs_header_backref_rev(eb));
1214 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1215 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1216 	} else {
1217 		eb_rewin = btrfs_clone_extent_buffer(eb);
1218 		BUG_ON(!eb_rewin);
1219 	}
1220 
1221 	extent_buffer_get(eb_rewin);
1222 	free_extent_buffer(eb);
1223 
1224 	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1225 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1226 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1227 
1228 	return eb_rewin;
1229 }
1230 
1231 /*
1232  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1233  * value. If there are no changes, the current root->root_node is returned. If
1234  * anything changed in between, there's a fresh buffer allocated on which the
1235  * rewind operations are done. In any case, the returned buffer is read locked.
1236  * Returns NULL on error (with no locks held).
1237  */
1238 static inline struct extent_buffer *
1239 get_old_root(struct btrfs_root *root, u64 time_seq)
1240 {
1241 	struct tree_mod_elem *tm;
1242 	struct extent_buffer *eb;
1243 	struct extent_buffer *old;
1244 	struct tree_mod_root *old_root = NULL;
1245 	u64 old_generation = 0;
1246 	u64 logical;
1247 	u32 blocksize;
1248 
1249 	eb = btrfs_read_lock_root_node(root);
1250 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1251 	if (!tm)
1252 		return root->node;
1253 
1254 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1255 		old_root = &tm->old_root;
1256 		old_generation = tm->generation;
1257 		logical = old_root->logical;
1258 	} else {
1259 		logical = root->node->start;
1260 	}
1261 
1262 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1263 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1264 		btrfs_tree_read_unlock(root->node);
1265 		free_extent_buffer(root->node);
1266 		blocksize = btrfs_level_size(root, old_root->level);
1267 		old = read_tree_block(root, logical, blocksize, 0);
1268 		if (!old) {
1269 			pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1270 				logical);
1271 			WARN_ON(1);
1272 		} else {
1273 			eb = btrfs_clone_extent_buffer(old);
1274 			free_extent_buffer(old);
1275 		}
1276 	} else if (old_root) {
1277 		btrfs_tree_read_unlock(root->node);
1278 		free_extent_buffer(root->node);
1279 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1280 	} else {
1281 		eb = btrfs_clone_extent_buffer(root->node);
1282 		btrfs_tree_read_unlock(root->node);
1283 		free_extent_buffer(root->node);
1284 	}
1285 
1286 	if (!eb)
1287 		return NULL;
1288 	extent_buffer_get(eb);
1289 	btrfs_tree_read_lock(eb);
1290 	if (old_root) {
1291 		btrfs_set_header_bytenr(eb, eb->start);
1292 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1293 		btrfs_set_header_owner(eb, root->root_key.objectid);
1294 		btrfs_set_header_level(eb, old_root->level);
1295 		btrfs_set_header_generation(eb, old_generation);
1296 	}
1297 	if (tm)
1298 		__tree_mod_log_rewind(eb, time_seq, tm);
1299 	else
1300 		WARN_ON(btrfs_header_level(eb) != 0);
1301 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1302 
1303 	return eb;
1304 }
1305 
1306 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1307 {
1308 	struct tree_mod_elem *tm;
1309 	int level;
1310 
1311 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1312 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1313 		level = tm->old_root.level;
1314 	} else {
1315 		rcu_read_lock();
1316 		level = btrfs_header_level(root->node);
1317 		rcu_read_unlock();
1318 	}
1319 
1320 	return level;
1321 }
1322 
1323 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1324 				   struct btrfs_root *root,
1325 				   struct extent_buffer *buf)
1326 {
1327 	/* ensure we can see the force_cow */
1328 	smp_rmb();
1329 
1330 	/*
1331 	 * We do not need to cow a block if
1332 	 * 1) this block is not created or changed in this transaction;
1333 	 * 2) this block does not belong to TREE_RELOC tree;
1334 	 * 3) the root is not forced COW.
1335 	 *
1336 	 * What is forced COW:
1337 	 *    when we create snapshot during commiting the transaction,
1338 	 *    after we've finished coping src root, we must COW the shared
1339 	 *    block to ensure the metadata consistency.
1340 	 */
1341 	if (btrfs_header_generation(buf) == trans->transid &&
1342 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1343 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1344 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1345 	    !root->force_cow)
1346 		return 0;
1347 	return 1;
1348 }
1349 
1350 /*
1351  * cows a single block, see __btrfs_cow_block for the real work.
1352  * This version of it has extra checks so that a block isn't cow'd more than
1353  * once per transaction, as long as it hasn't been written yet
1354  */
1355 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1356 		    struct btrfs_root *root, struct extent_buffer *buf,
1357 		    struct extent_buffer *parent, int parent_slot,
1358 		    struct extent_buffer **cow_ret)
1359 {
1360 	u64 search_start;
1361 	int ret;
1362 
1363 	if (trans->transaction != root->fs_info->running_transaction)
1364 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1365 		       (unsigned long long)trans->transid,
1366 		       (unsigned long long)
1367 		       root->fs_info->running_transaction->transid);
1368 
1369 	if (trans->transid != root->fs_info->generation)
1370 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1371 		       (unsigned long long)trans->transid,
1372 		       (unsigned long long)root->fs_info->generation);
1373 
1374 	if (!should_cow_block(trans, root, buf)) {
1375 		*cow_ret = buf;
1376 		return 0;
1377 	}
1378 
1379 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1380 
1381 	if (parent)
1382 		btrfs_set_lock_blocking(parent);
1383 	btrfs_set_lock_blocking(buf);
1384 
1385 	ret = __btrfs_cow_block(trans, root, buf, parent,
1386 				 parent_slot, cow_ret, search_start, 0);
1387 
1388 	trace_btrfs_cow_block(root, buf, *cow_ret);
1389 
1390 	return ret;
1391 }
1392 
1393 /*
1394  * helper function for defrag to decide if two blocks pointed to by a
1395  * node are actually close by
1396  */
1397 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1398 {
1399 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1400 		return 1;
1401 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1402 		return 1;
1403 	return 0;
1404 }
1405 
1406 /*
1407  * compare two keys in a memcmp fashion
1408  */
1409 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1410 {
1411 	struct btrfs_key k1;
1412 
1413 	btrfs_disk_key_to_cpu(&k1, disk);
1414 
1415 	return btrfs_comp_cpu_keys(&k1, k2);
1416 }
1417 
1418 /*
1419  * same as comp_keys only with two btrfs_key's
1420  */
1421 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1422 {
1423 	if (k1->objectid > k2->objectid)
1424 		return 1;
1425 	if (k1->objectid < k2->objectid)
1426 		return -1;
1427 	if (k1->type > k2->type)
1428 		return 1;
1429 	if (k1->type < k2->type)
1430 		return -1;
1431 	if (k1->offset > k2->offset)
1432 		return 1;
1433 	if (k1->offset < k2->offset)
1434 		return -1;
1435 	return 0;
1436 }
1437 
1438 /*
1439  * this is used by the defrag code to go through all the
1440  * leaves pointed to by a node and reallocate them so that
1441  * disk order is close to key order
1442  */
1443 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1444 		       struct btrfs_root *root, struct extent_buffer *parent,
1445 		       int start_slot, u64 *last_ret,
1446 		       struct btrfs_key *progress)
1447 {
1448 	struct extent_buffer *cur;
1449 	u64 blocknr;
1450 	u64 gen;
1451 	u64 search_start = *last_ret;
1452 	u64 last_block = 0;
1453 	u64 other;
1454 	u32 parent_nritems;
1455 	int end_slot;
1456 	int i;
1457 	int err = 0;
1458 	int parent_level;
1459 	int uptodate;
1460 	u32 blocksize;
1461 	int progress_passed = 0;
1462 	struct btrfs_disk_key disk_key;
1463 
1464 	parent_level = btrfs_header_level(parent);
1465 
1466 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1467 	WARN_ON(trans->transid != root->fs_info->generation);
1468 
1469 	parent_nritems = btrfs_header_nritems(parent);
1470 	blocksize = btrfs_level_size(root, parent_level - 1);
1471 	end_slot = parent_nritems;
1472 
1473 	if (parent_nritems == 1)
1474 		return 0;
1475 
1476 	btrfs_set_lock_blocking(parent);
1477 
1478 	for (i = start_slot; i < end_slot; i++) {
1479 		int close = 1;
1480 
1481 		btrfs_node_key(parent, &disk_key, i);
1482 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1483 			continue;
1484 
1485 		progress_passed = 1;
1486 		blocknr = btrfs_node_blockptr(parent, i);
1487 		gen = btrfs_node_ptr_generation(parent, i);
1488 		if (last_block == 0)
1489 			last_block = blocknr;
1490 
1491 		if (i > 0) {
1492 			other = btrfs_node_blockptr(parent, i - 1);
1493 			close = close_blocks(blocknr, other, blocksize);
1494 		}
1495 		if (!close && i < end_slot - 2) {
1496 			other = btrfs_node_blockptr(parent, i + 1);
1497 			close = close_blocks(blocknr, other, blocksize);
1498 		}
1499 		if (close) {
1500 			last_block = blocknr;
1501 			continue;
1502 		}
1503 
1504 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1505 		if (cur)
1506 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1507 		else
1508 			uptodate = 0;
1509 		if (!cur || !uptodate) {
1510 			if (!cur) {
1511 				cur = read_tree_block(root, blocknr,
1512 							 blocksize, gen);
1513 				if (!cur)
1514 					return -EIO;
1515 			} else if (!uptodate) {
1516 				err = btrfs_read_buffer(cur, gen);
1517 				if (err) {
1518 					free_extent_buffer(cur);
1519 					return err;
1520 				}
1521 			}
1522 		}
1523 		if (search_start == 0)
1524 			search_start = last_block;
1525 
1526 		btrfs_tree_lock(cur);
1527 		btrfs_set_lock_blocking(cur);
1528 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1529 					&cur, search_start,
1530 					min(16 * blocksize,
1531 					    (end_slot - i) * blocksize));
1532 		if (err) {
1533 			btrfs_tree_unlock(cur);
1534 			free_extent_buffer(cur);
1535 			break;
1536 		}
1537 		search_start = cur->start;
1538 		last_block = cur->start;
1539 		*last_ret = search_start;
1540 		btrfs_tree_unlock(cur);
1541 		free_extent_buffer(cur);
1542 	}
1543 	return err;
1544 }
1545 
1546 /*
1547  * The leaf data grows from end-to-front in the node.
1548  * this returns the address of the start of the last item,
1549  * which is the stop of the leaf data stack
1550  */
1551 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1552 					 struct extent_buffer *leaf)
1553 {
1554 	u32 nr = btrfs_header_nritems(leaf);
1555 	if (nr == 0)
1556 		return BTRFS_LEAF_DATA_SIZE(root);
1557 	return btrfs_item_offset_nr(leaf, nr - 1);
1558 }
1559 
1560 
1561 /*
1562  * search for key in the extent_buffer.  The items start at offset p,
1563  * and they are item_size apart.  There are 'max' items in p.
1564  *
1565  * the slot in the array is returned via slot, and it points to
1566  * the place where you would insert key if it is not found in
1567  * the array.
1568  *
1569  * slot may point to max if the key is bigger than all of the keys
1570  */
1571 static noinline int generic_bin_search(struct extent_buffer *eb,
1572 				       unsigned long p,
1573 				       int item_size, struct btrfs_key *key,
1574 				       int max, int *slot)
1575 {
1576 	int low = 0;
1577 	int high = max;
1578 	int mid;
1579 	int ret;
1580 	struct btrfs_disk_key *tmp = NULL;
1581 	struct btrfs_disk_key unaligned;
1582 	unsigned long offset;
1583 	char *kaddr = NULL;
1584 	unsigned long map_start = 0;
1585 	unsigned long map_len = 0;
1586 	int err;
1587 
1588 	while (low < high) {
1589 		mid = (low + high) / 2;
1590 		offset = p + mid * item_size;
1591 
1592 		if (!kaddr || offset < map_start ||
1593 		    (offset + sizeof(struct btrfs_disk_key)) >
1594 		    map_start + map_len) {
1595 
1596 			err = map_private_extent_buffer(eb, offset,
1597 						sizeof(struct btrfs_disk_key),
1598 						&kaddr, &map_start, &map_len);
1599 
1600 			if (!err) {
1601 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1602 							map_start);
1603 			} else {
1604 				read_extent_buffer(eb, &unaligned,
1605 						   offset, sizeof(unaligned));
1606 				tmp = &unaligned;
1607 			}
1608 
1609 		} else {
1610 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1611 							map_start);
1612 		}
1613 		ret = comp_keys(tmp, key);
1614 
1615 		if (ret < 0)
1616 			low = mid + 1;
1617 		else if (ret > 0)
1618 			high = mid;
1619 		else {
1620 			*slot = mid;
1621 			return 0;
1622 		}
1623 	}
1624 	*slot = low;
1625 	return 1;
1626 }
1627 
1628 /*
1629  * simple bin_search frontend that does the right thing for
1630  * leaves vs nodes
1631  */
1632 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1633 		      int level, int *slot)
1634 {
1635 	if (level == 0)
1636 		return generic_bin_search(eb,
1637 					  offsetof(struct btrfs_leaf, items),
1638 					  sizeof(struct btrfs_item),
1639 					  key, btrfs_header_nritems(eb),
1640 					  slot);
1641 	else
1642 		return generic_bin_search(eb,
1643 					  offsetof(struct btrfs_node, ptrs),
1644 					  sizeof(struct btrfs_key_ptr),
1645 					  key, btrfs_header_nritems(eb),
1646 					  slot);
1647 }
1648 
1649 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1650 		     int level, int *slot)
1651 {
1652 	return bin_search(eb, key, level, slot);
1653 }
1654 
1655 static void root_add_used(struct btrfs_root *root, u32 size)
1656 {
1657 	spin_lock(&root->accounting_lock);
1658 	btrfs_set_root_used(&root->root_item,
1659 			    btrfs_root_used(&root->root_item) + size);
1660 	spin_unlock(&root->accounting_lock);
1661 }
1662 
1663 static void root_sub_used(struct btrfs_root *root, u32 size)
1664 {
1665 	spin_lock(&root->accounting_lock);
1666 	btrfs_set_root_used(&root->root_item,
1667 			    btrfs_root_used(&root->root_item) - size);
1668 	spin_unlock(&root->accounting_lock);
1669 }
1670 
1671 /* given a node and slot number, this reads the blocks it points to.  The
1672  * extent buffer is returned with a reference taken (but unlocked).
1673  * NULL is returned on error.
1674  */
1675 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1676 				   struct extent_buffer *parent, int slot)
1677 {
1678 	int level = btrfs_header_level(parent);
1679 	if (slot < 0)
1680 		return NULL;
1681 	if (slot >= btrfs_header_nritems(parent))
1682 		return NULL;
1683 
1684 	BUG_ON(level == 0);
1685 
1686 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1687 		       btrfs_level_size(root, level - 1),
1688 		       btrfs_node_ptr_generation(parent, slot));
1689 }
1690 
1691 /*
1692  * node level balancing, used to make sure nodes are in proper order for
1693  * item deletion.  We balance from the top down, so we have to make sure
1694  * that a deletion won't leave an node completely empty later on.
1695  */
1696 static noinline int balance_level(struct btrfs_trans_handle *trans,
1697 			 struct btrfs_root *root,
1698 			 struct btrfs_path *path, int level)
1699 {
1700 	struct extent_buffer *right = NULL;
1701 	struct extent_buffer *mid;
1702 	struct extent_buffer *left = NULL;
1703 	struct extent_buffer *parent = NULL;
1704 	int ret = 0;
1705 	int wret;
1706 	int pslot;
1707 	int orig_slot = path->slots[level];
1708 	u64 orig_ptr;
1709 
1710 	if (level == 0)
1711 		return 0;
1712 
1713 	mid = path->nodes[level];
1714 
1715 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1716 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1717 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1718 
1719 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1720 
1721 	if (level < BTRFS_MAX_LEVEL - 1) {
1722 		parent = path->nodes[level + 1];
1723 		pslot = path->slots[level + 1];
1724 	}
1725 
1726 	/*
1727 	 * deal with the case where there is only one pointer in the root
1728 	 * by promoting the node below to a root
1729 	 */
1730 	if (!parent) {
1731 		struct extent_buffer *child;
1732 
1733 		if (btrfs_header_nritems(mid) != 1)
1734 			return 0;
1735 
1736 		/* promote the child to a root */
1737 		child = read_node_slot(root, mid, 0);
1738 		if (!child) {
1739 			ret = -EROFS;
1740 			btrfs_std_error(root->fs_info, ret);
1741 			goto enospc;
1742 		}
1743 
1744 		btrfs_tree_lock(child);
1745 		btrfs_set_lock_blocking(child);
1746 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1747 		if (ret) {
1748 			btrfs_tree_unlock(child);
1749 			free_extent_buffer(child);
1750 			goto enospc;
1751 		}
1752 
1753 		tree_mod_log_free_eb(root->fs_info, root->node);
1754 		tree_mod_log_set_root_pointer(root, child);
1755 		rcu_assign_pointer(root->node, child);
1756 
1757 		add_root_to_dirty_list(root);
1758 		btrfs_tree_unlock(child);
1759 
1760 		path->locks[level] = 0;
1761 		path->nodes[level] = NULL;
1762 		clean_tree_block(trans, root, mid);
1763 		btrfs_tree_unlock(mid);
1764 		/* once for the path */
1765 		free_extent_buffer(mid);
1766 
1767 		root_sub_used(root, mid->len);
1768 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1769 		/* once for the root ptr */
1770 		free_extent_buffer_stale(mid);
1771 		return 0;
1772 	}
1773 	if (btrfs_header_nritems(mid) >
1774 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1775 		return 0;
1776 
1777 	left = read_node_slot(root, parent, pslot - 1);
1778 	if (left) {
1779 		btrfs_tree_lock(left);
1780 		btrfs_set_lock_blocking(left);
1781 		wret = btrfs_cow_block(trans, root, left,
1782 				       parent, pslot - 1, &left);
1783 		if (wret) {
1784 			ret = wret;
1785 			goto enospc;
1786 		}
1787 	}
1788 	right = read_node_slot(root, parent, pslot + 1);
1789 	if (right) {
1790 		btrfs_tree_lock(right);
1791 		btrfs_set_lock_blocking(right);
1792 		wret = btrfs_cow_block(trans, root, right,
1793 				       parent, pslot + 1, &right);
1794 		if (wret) {
1795 			ret = wret;
1796 			goto enospc;
1797 		}
1798 	}
1799 
1800 	/* first, try to make some room in the middle buffer */
1801 	if (left) {
1802 		orig_slot += btrfs_header_nritems(left);
1803 		wret = push_node_left(trans, root, left, mid, 1);
1804 		if (wret < 0)
1805 			ret = wret;
1806 	}
1807 
1808 	/*
1809 	 * then try to empty the right most buffer into the middle
1810 	 */
1811 	if (right) {
1812 		wret = push_node_left(trans, root, mid, right, 1);
1813 		if (wret < 0 && wret != -ENOSPC)
1814 			ret = wret;
1815 		if (btrfs_header_nritems(right) == 0) {
1816 			clean_tree_block(trans, root, right);
1817 			btrfs_tree_unlock(right);
1818 			del_ptr(trans, root, path, level + 1, pslot + 1);
1819 			root_sub_used(root, right->len);
1820 			btrfs_free_tree_block(trans, root, right, 0, 1);
1821 			free_extent_buffer_stale(right);
1822 			right = NULL;
1823 		} else {
1824 			struct btrfs_disk_key right_key;
1825 			btrfs_node_key(right, &right_key, 0);
1826 			tree_mod_log_set_node_key(root->fs_info, parent,
1827 						  pslot + 1, 0);
1828 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1829 			btrfs_mark_buffer_dirty(parent);
1830 		}
1831 	}
1832 	if (btrfs_header_nritems(mid) == 1) {
1833 		/*
1834 		 * we're not allowed to leave a node with one item in the
1835 		 * tree during a delete.  A deletion from lower in the tree
1836 		 * could try to delete the only pointer in this node.
1837 		 * So, pull some keys from the left.
1838 		 * There has to be a left pointer at this point because
1839 		 * otherwise we would have pulled some pointers from the
1840 		 * right
1841 		 */
1842 		if (!left) {
1843 			ret = -EROFS;
1844 			btrfs_std_error(root->fs_info, ret);
1845 			goto enospc;
1846 		}
1847 		wret = balance_node_right(trans, root, mid, left);
1848 		if (wret < 0) {
1849 			ret = wret;
1850 			goto enospc;
1851 		}
1852 		if (wret == 1) {
1853 			wret = push_node_left(trans, root, left, mid, 1);
1854 			if (wret < 0)
1855 				ret = wret;
1856 		}
1857 		BUG_ON(wret == 1);
1858 	}
1859 	if (btrfs_header_nritems(mid) == 0) {
1860 		clean_tree_block(trans, root, mid);
1861 		btrfs_tree_unlock(mid);
1862 		del_ptr(trans, root, path, level + 1, pslot);
1863 		root_sub_used(root, mid->len);
1864 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1865 		free_extent_buffer_stale(mid);
1866 		mid = NULL;
1867 	} else {
1868 		/* update the parent key to reflect our changes */
1869 		struct btrfs_disk_key mid_key;
1870 		btrfs_node_key(mid, &mid_key, 0);
1871 		tree_mod_log_set_node_key(root->fs_info, parent,
1872 					  pslot, 0);
1873 		btrfs_set_node_key(parent, &mid_key, pslot);
1874 		btrfs_mark_buffer_dirty(parent);
1875 	}
1876 
1877 	/* update the path */
1878 	if (left) {
1879 		if (btrfs_header_nritems(left) > orig_slot) {
1880 			extent_buffer_get(left);
1881 			/* left was locked after cow */
1882 			path->nodes[level] = left;
1883 			path->slots[level + 1] -= 1;
1884 			path->slots[level] = orig_slot;
1885 			if (mid) {
1886 				btrfs_tree_unlock(mid);
1887 				free_extent_buffer(mid);
1888 			}
1889 		} else {
1890 			orig_slot -= btrfs_header_nritems(left);
1891 			path->slots[level] = orig_slot;
1892 		}
1893 	}
1894 	/* double check we haven't messed things up */
1895 	if (orig_ptr !=
1896 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1897 		BUG();
1898 enospc:
1899 	if (right) {
1900 		btrfs_tree_unlock(right);
1901 		free_extent_buffer(right);
1902 	}
1903 	if (left) {
1904 		if (path->nodes[level] != left)
1905 			btrfs_tree_unlock(left);
1906 		free_extent_buffer(left);
1907 	}
1908 	return ret;
1909 }
1910 
1911 /* Node balancing for insertion.  Here we only split or push nodes around
1912  * when they are completely full.  This is also done top down, so we
1913  * have to be pessimistic.
1914  */
1915 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1916 					  struct btrfs_root *root,
1917 					  struct btrfs_path *path, int level)
1918 {
1919 	struct extent_buffer *right = NULL;
1920 	struct extent_buffer *mid;
1921 	struct extent_buffer *left = NULL;
1922 	struct extent_buffer *parent = NULL;
1923 	int ret = 0;
1924 	int wret;
1925 	int pslot;
1926 	int orig_slot = path->slots[level];
1927 
1928 	if (level == 0)
1929 		return 1;
1930 
1931 	mid = path->nodes[level];
1932 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1933 
1934 	if (level < BTRFS_MAX_LEVEL - 1) {
1935 		parent = path->nodes[level + 1];
1936 		pslot = path->slots[level + 1];
1937 	}
1938 
1939 	if (!parent)
1940 		return 1;
1941 
1942 	left = read_node_slot(root, parent, pslot - 1);
1943 
1944 	/* first, try to make some room in the middle buffer */
1945 	if (left) {
1946 		u32 left_nr;
1947 
1948 		btrfs_tree_lock(left);
1949 		btrfs_set_lock_blocking(left);
1950 
1951 		left_nr = btrfs_header_nritems(left);
1952 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1953 			wret = 1;
1954 		} else {
1955 			ret = btrfs_cow_block(trans, root, left, parent,
1956 					      pslot - 1, &left);
1957 			if (ret)
1958 				wret = 1;
1959 			else {
1960 				wret = push_node_left(trans, root,
1961 						      left, mid, 0);
1962 			}
1963 		}
1964 		if (wret < 0)
1965 			ret = wret;
1966 		if (wret == 0) {
1967 			struct btrfs_disk_key disk_key;
1968 			orig_slot += left_nr;
1969 			btrfs_node_key(mid, &disk_key, 0);
1970 			tree_mod_log_set_node_key(root->fs_info, parent,
1971 						  pslot, 0);
1972 			btrfs_set_node_key(parent, &disk_key, pslot);
1973 			btrfs_mark_buffer_dirty(parent);
1974 			if (btrfs_header_nritems(left) > orig_slot) {
1975 				path->nodes[level] = left;
1976 				path->slots[level + 1] -= 1;
1977 				path->slots[level] = orig_slot;
1978 				btrfs_tree_unlock(mid);
1979 				free_extent_buffer(mid);
1980 			} else {
1981 				orig_slot -=
1982 					btrfs_header_nritems(left);
1983 				path->slots[level] = orig_slot;
1984 				btrfs_tree_unlock(left);
1985 				free_extent_buffer(left);
1986 			}
1987 			return 0;
1988 		}
1989 		btrfs_tree_unlock(left);
1990 		free_extent_buffer(left);
1991 	}
1992 	right = read_node_slot(root, parent, pslot + 1);
1993 
1994 	/*
1995 	 * then try to empty the right most buffer into the middle
1996 	 */
1997 	if (right) {
1998 		u32 right_nr;
1999 
2000 		btrfs_tree_lock(right);
2001 		btrfs_set_lock_blocking(right);
2002 
2003 		right_nr = btrfs_header_nritems(right);
2004 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2005 			wret = 1;
2006 		} else {
2007 			ret = btrfs_cow_block(trans, root, right,
2008 					      parent, pslot + 1,
2009 					      &right);
2010 			if (ret)
2011 				wret = 1;
2012 			else {
2013 				wret = balance_node_right(trans, root,
2014 							  right, mid);
2015 			}
2016 		}
2017 		if (wret < 0)
2018 			ret = wret;
2019 		if (wret == 0) {
2020 			struct btrfs_disk_key disk_key;
2021 
2022 			btrfs_node_key(right, &disk_key, 0);
2023 			tree_mod_log_set_node_key(root->fs_info, parent,
2024 						  pslot + 1, 0);
2025 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2026 			btrfs_mark_buffer_dirty(parent);
2027 
2028 			if (btrfs_header_nritems(mid) <= orig_slot) {
2029 				path->nodes[level] = right;
2030 				path->slots[level + 1] += 1;
2031 				path->slots[level] = orig_slot -
2032 					btrfs_header_nritems(mid);
2033 				btrfs_tree_unlock(mid);
2034 				free_extent_buffer(mid);
2035 			} else {
2036 				btrfs_tree_unlock(right);
2037 				free_extent_buffer(right);
2038 			}
2039 			return 0;
2040 		}
2041 		btrfs_tree_unlock(right);
2042 		free_extent_buffer(right);
2043 	}
2044 	return 1;
2045 }
2046 
2047 /*
2048  * readahead one full node of leaves, finding things that are close
2049  * to the block in 'slot', and triggering ra on them.
2050  */
2051 static void reada_for_search(struct btrfs_root *root,
2052 			     struct btrfs_path *path,
2053 			     int level, int slot, u64 objectid)
2054 {
2055 	struct extent_buffer *node;
2056 	struct btrfs_disk_key disk_key;
2057 	u32 nritems;
2058 	u64 search;
2059 	u64 target;
2060 	u64 nread = 0;
2061 	u64 gen;
2062 	int direction = path->reada;
2063 	struct extent_buffer *eb;
2064 	u32 nr;
2065 	u32 blocksize;
2066 	u32 nscan = 0;
2067 
2068 	if (level != 1)
2069 		return;
2070 
2071 	if (!path->nodes[level])
2072 		return;
2073 
2074 	node = path->nodes[level];
2075 
2076 	search = btrfs_node_blockptr(node, slot);
2077 	blocksize = btrfs_level_size(root, level - 1);
2078 	eb = btrfs_find_tree_block(root, search, blocksize);
2079 	if (eb) {
2080 		free_extent_buffer(eb);
2081 		return;
2082 	}
2083 
2084 	target = search;
2085 
2086 	nritems = btrfs_header_nritems(node);
2087 	nr = slot;
2088 
2089 	while (1) {
2090 		if (direction < 0) {
2091 			if (nr == 0)
2092 				break;
2093 			nr--;
2094 		} else if (direction > 0) {
2095 			nr++;
2096 			if (nr >= nritems)
2097 				break;
2098 		}
2099 		if (path->reada < 0 && objectid) {
2100 			btrfs_node_key(node, &disk_key, nr);
2101 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2102 				break;
2103 		}
2104 		search = btrfs_node_blockptr(node, nr);
2105 		if ((search <= target && target - search <= 65536) ||
2106 		    (search > target && search - target <= 65536)) {
2107 			gen = btrfs_node_ptr_generation(node, nr);
2108 			readahead_tree_block(root, search, blocksize, gen);
2109 			nread += blocksize;
2110 		}
2111 		nscan++;
2112 		if ((nread > 65536 || nscan > 32))
2113 			break;
2114 	}
2115 }
2116 
2117 /*
2118  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2119  * cache
2120  */
2121 static noinline int reada_for_balance(struct btrfs_root *root,
2122 				      struct btrfs_path *path, int level)
2123 {
2124 	int slot;
2125 	int nritems;
2126 	struct extent_buffer *parent;
2127 	struct extent_buffer *eb;
2128 	u64 gen;
2129 	u64 block1 = 0;
2130 	u64 block2 = 0;
2131 	int ret = 0;
2132 	int blocksize;
2133 
2134 	parent = path->nodes[level + 1];
2135 	if (!parent)
2136 		return 0;
2137 
2138 	nritems = btrfs_header_nritems(parent);
2139 	slot = path->slots[level + 1];
2140 	blocksize = btrfs_level_size(root, level);
2141 
2142 	if (slot > 0) {
2143 		block1 = btrfs_node_blockptr(parent, slot - 1);
2144 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2145 		eb = btrfs_find_tree_block(root, block1, blocksize);
2146 		/*
2147 		 * if we get -eagain from btrfs_buffer_uptodate, we
2148 		 * don't want to return eagain here.  That will loop
2149 		 * forever
2150 		 */
2151 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2152 			block1 = 0;
2153 		free_extent_buffer(eb);
2154 	}
2155 	if (slot + 1 < nritems) {
2156 		block2 = btrfs_node_blockptr(parent, slot + 1);
2157 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2158 		eb = btrfs_find_tree_block(root, block2, blocksize);
2159 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2160 			block2 = 0;
2161 		free_extent_buffer(eb);
2162 	}
2163 	if (block1 || block2) {
2164 		ret = -EAGAIN;
2165 
2166 		/* release the whole path */
2167 		btrfs_release_path(path);
2168 
2169 		/* read the blocks */
2170 		if (block1)
2171 			readahead_tree_block(root, block1, blocksize, 0);
2172 		if (block2)
2173 			readahead_tree_block(root, block2, blocksize, 0);
2174 
2175 		if (block1) {
2176 			eb = read_tree_block(root, block1, blocksize, 0);
2177 			free_extent_buffer(eb);
2178 		}
2179 		if (block2) {
2180 			eb = read_tree_block(root, block2, blocksize, 0);
2181 			free_extent_buffer(eb);
2182 		}
2183 	}
2184 	return ret;
2185 }
2186 
2187 
2188 /*
2189  * when we walk down the tree, it is usually safe to unlock the higher layers
2190  * in the tree.  The exceptions are when our path goes through slot 0, because
2191  * operations on the tree might require changing key pointers higher up in the
2192  * tree.
2193  *
2194  * callers might also have set path->keep_locks, which tells this code to keep
2195  * the lock if the path points to the last slot in the block.  This is part of
2196  * walking through the tree, and selecting the next slot in the higher block.
2197  *
2198  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2199  * if lowest_unlock is 1, level 0 won't be unlocked
2200  */
2201 static noinline void unlock_up(struct btrfs_path *path, int level,
2202 			       int lowest_unlock, int min_write_lock_level,
2203 			       int *write_lock_level)
2204 {
2205 	int i;
2206 	int skip_level = level;
2207 	int no_skips = 0;
2208 	struct extent_buffer *t;
2209 
2210 	if (path->really_keep_locks)
2211 		return;
2212 
2213 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2214 		if (!path->nodes[i])
2215 			break;
2216 		if (!path->locks[i])
2217 			break;
2218 		if (!no_skips && path->slots[i] == 0) {
2219 			skip_level = i + 1;
2220 			continue;
2221 		}
2222 		if (!no_skips && path->keep_locks) {
2223 			u32 nritems;
2224 			t = path->nodes[i];
2225 			nritems = btrfs_header_nritems(t);
2226 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2227 				skip_level = i + 1;
2228 				continue;
2229 			}
2230 		}
2231 		if (skip_level < i && i >= lowest_unlock)
2232 			no_skips = 1;
2233 
2234 		t = path->nodes[i];
2235 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2236 			btrfs_tree_unlock_rw(t, path->locks[i]);
2237 			path->locks[i] = 0;
2238 			if (write_lock_level &&
2239 			    i > min_write_lock_level &&
2240 			    i <= *write_lock_level) {
2241 				*write_lock_level = i - 1;
2242 			}
2243 		}
2244 	}
2245 }
2246 
2247 /*
2248  * This releases any locks held in the path starting at level and
2249  * going all the way up to the root.
2250  *
2251  * btrfs_search_slot will keep the lock held on higher nodes in a few
2252  * corner cases, such as COW of the block at slot zero in the node.  This
2253  * ignores those rules, and it should only be called when there are no
2254  * more updates to be done higher up in the tree.
2255  */
2256 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2257 {
2258 	int i;
2259 
2260 	if (path->keep_locks || path->really_keep_locks)
2261 		return;
2262 
2263 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2264 		if (!path->nodes[i])
2265 			continue;
2266 		if (!path->locks[i])
2267 			continue;
2268 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2269 		path->locks[i] = 0;
2270 	}
2271 }
2272 
2273 /*
2274  * helper function for btrfs_search_slot.  The goal is to find a block
2275  * in cache without setting the path to blocking.  If we find the block
2276  * we return zero and the path is unchanged.
2277  *
2278  * If we can't find the block, we set the path blocking and do some
2279  * reada.  -EAGAIN is returned and the search must be repeated.
2280  */
2281 static int
2282 read_block_for_search(struct btrfs_trans_handle *trans,
2283 		       struct btrfs_root *root, struct btrfs_path *p,
2284 		       struct extent_buffer **eb_ret, int level, int slot,
2285 		       struct btrfs_key *key, u64 time_seq)
2286 {
2287 	u64 blocknr;
2288 	u64 gen;
2289 	u32 blocksize;
2290 	struct extent_buffer *b = *eb_ret;
2291 	struct extent_buffer *tmp;
2292 	int ret;
2293 
2294 	blocknr = btrfs_node_blockptr(b, slot);
2295 	gen = btrfs_node_ptr_generation(b, slot);
2296 	blocksize = btrfs_level_size(root, level - 1);
2297 
2298 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2299 	if (tmp) {
2300 		/* first we do an atomic uptodate check */
2301 		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2302 			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2303 				/*
2304 				 * we found an up to date block without
2305 				 * sleeping, return
2306 				 * right away
2307 				 */
2308 				*eb_ret = tmp;
2309 				return 0;
2310 			}
2311 			/* the pages were up to date, but we failed
2312 			 * the generation number check.  Do a full
2313 			 * read for the generation number that is correct.
2314 			 * We must do this without dropping locks so
2315 			 * we can trust our generation number
2316 			 */
2317 			free_extent_buffer(tmp);
2318 			btrfs_set_path_blocking(p);
2319 
2320 			/* now we're allowed to do a blocking uptodate check */
2321 			tmp = read_tree_block(root, blocknr, blocksize, gen);
2322 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2323 				*eb_ret = tmp;
2324 				return 0;
2325 			}
2326 			free_extent_buffer(tmp);
2327 			btrfs_release_path(p);
2328 			return -EIO;
2329 		}
2330 	}
2331 
2332 	/*
2333 	 * reduce lock contention at high levels
2334 	 * of the btree by dropping locks before
2335 	 * we read.  Don't release the lock on the current
2336 	 * level because we need to walk this node to figure
2337 	 * out which blocks to read.
2338 	 */
2339 	btrfs_unlock_up_safe(p, level + 1);
2340 	btrfs_set_path_blocking(p);
2341 
2342 	free_extent_buffer(tmp);
2343 	if (p->reada)
2344 		reada_for_search(root, p, level, slot, key->objectid);
2345 
2346 	btrfs_release_path(p);
2347 
2348 	ret = -EAGAIN;
2349 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2350 	if (tmp) {
2351 		/*
2352 		 * If the read above didn't mark this buffer up to date,
2353 		 * it will never end up being up to date.  Set ret to EIO now
2354 		 * and give up so that our caller doesn't loop forever
2355 		 * on our EAGAINs.
2356 		 */
2357 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2358 			ret = -EIO;
2359 		free_extent_buffer(tmp);
2360 	}
2361 	return ret;
2362 }
2363 
2364 /*
2365  * helper function for btrfs_search_slot.  This does all of the checks
2366  * for node-level blocks and does any balancing required based on
2367  * the ins_len.
2368  *
2369  * If no extra work was required, zero is returned.  If we had to
2370  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2371  * start over
2372  */
2373 static int
2374 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2375 		       struct btrfs_root *root, struct btrfs_path *p,
2376 		       struct extent_buffer *b, int level, int ins_len,
2377 		       int *write_lock_level)
2378 {
2379 	int ret;
2380 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2381 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2382 		int sret;
2383 
2384 		if (*write_lock_level < level + 1) {
2385 			*write_lock_level = level + 1;
2386 			btrfs_release_path(p);
2387 			goto again;
2388 		}
2389 
2390 		sret = reada_for_balance(root, p, level);
2391 		if (sret)
2392 			goto again;
2393 
2394 		btrfs_set_path_blocking(p);
2395 		sret = split_node(trans, root, p, level);
2396 		btrfs_clear_path_blocking(p, NULL, 0);
2397 
2398 		BUG_ON(sret > 0);
2399 		if (sret) {
2400 			ret = sret;
2401 			goto done;
2402 		}
2403 		b = p->nodes[level];
2404 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2405 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2406 		int sret;
2407 
2408 		if (*write_lock_level < level + 1) {
2409 			*write_lock_level = level + 1;
2410 			btrfs_release_path(p);
2411 			goto again;
2412 		}
2413 
2414 		sret = reada_for_balance(root, p, level);
2415 		if (sret)
2416 			goto again;
2417 
2418 		btrfs_set_path_blocking(p);
2419 		sret = balance_level(trans, root, p, level);
2420 		btrfs_clear_path_blocking(p, NULL, 0);
2421 
2422 		if (sret) {
2423 			ret = sret;
2424 			goto done;
2425 		}
2426 		b = p->nodes[level];
2427 		if (!b) {
2428 			btrfs_release_path(p);
2429 			goto again;
2430 		}
2431 		BUG_ON(btrfs_header_nritems(b) == 1);
2432 	}
2433 	return 0;
2434 
2435 again:
2436 	ret = -EAGAIN;
2437 done:
2438 	return ret;
2439 }
2440 
2441 /*
2442  * look for key in the tree.  path is filled in with nodes along the way
2443  * if key is found, we return zero and you can find the item in the leaf
2444  * level of the path (level 0)
2445  *
2446  * If the key isn't found, the path points to the slot where it should
2447  * be inserted, and 1 is returned.  If there are other errors during the
2448  * search a negative error number is returned.
2449  *
2450  * if ins_len > 0, nodes and leaves will be split as we walk down the
2451  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2452  * possible)
2453  */
2454 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2455 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2456 		      ins_len, int cow)
2457 {
2458 	struct extent_buffer *b;
2459 	int slot;
2460 	int ret;
2461 	int err;
2462 	int level;
2463 	int lowest_unlock = 1;
2464 	int root_lock;
2465 	/* everything at write_lock_level or lower must be write locked */
2466 	int write_lock_level = 0;
2467 	u8 lowest_level = 0;
2468 	int min_write_lock_level;
2469 
2470 	lowest_level = p->lowest_level;
2471 	WARN_ON(lowest_level && ins_len > 0);
2472 	WARN_ON(p->nodes[0] != NULL);
2473 
2474 	if (ins_len < 0) {
2475 		lowest_unlock = 2;
2476 
2477 		/* when we are removing items, we might have to go up to level
2478 		 * two as we update tree pointers  Make sure we keep write
2479 		 * for those levels as well
2480 		 */
2481 		write_lock_level = 2;
2482 	} else if (ins_len > 0) {
2483 		/*
2484 		 * for inserting items, make sure we have a write lock on
2485 		 * level 1 so we can update keys
2486 		 */
2487 		write_lock_level = 1;
2488 	}
2489 
2490 	if (!cow)
2491 		write_lock_level = -1;
2492 
2493 	if (cow && (p->really_keep_locks || p->keep_locks || p->lowest_level))
2494 		write_lock_level = BTRFS_MAX_LEVEL;
2495 
2496 	min_write_lock_level = write_lock_level;
2497 
2498 again:
2499 	/*
2500 	 * we try very hard to do read locks on the root
2501 	 */
2502 	root_lock = BTRFS_READ_LOCK;
2503 	level = 0;
2504 	if (p->search_commit_root) {
2505 		/*
2506 		 * the commit roots are read only
2507 		 * so we always do read locks
2508 		 */
2509 		b = root->commit_root;
2510 		extent_buffer_get(b);
2511 		level = btrfs_header_level(b);
2512 		if (!p->skip_locking)
2513 			btrfs_tree_read_lock(b);
2514 	} else {
2515 		if (p->skip_locking) {
2516 			b = btrfs_root_node(root);
2517 			level = btrfs_header_level(b);
2518 		} else {
2519 			/* we don't know the level of the root node
2520 			 * until we actually have it read locked
2521 			 */
2522 			b = btrfs_read_lock_root_node(root);
2523 			level = btrfs_header_level(b);
2524 			if (level <= write_lock_level) {
2525 				/* whoops, must trade for write lock */
2526 				btrfs_tree_read_unlock(b);
2527 				free_extent_buffer(b);
2528 				b = btrfs_lock_root_node(root);
2529 				root_lock = BTRFS_WRITE_LOCK;
2530 
2531 				/* the level might have changed, check again */
2532 				level = btrfs_header_level(b);
2533 			}
2534 		}
2535 	}
2536 	p->nodes[level] = b;
2537 	if (!p->skip_locking)
2538 		p->locks[level] = root_lock;
2539 
2540 	while (b) {
2541 		level = btrfs_header_level(b);
2542 
2543 		/*
2544 		 * setup the path here so we can release it under lock
2545 		 * contention with the cow code
2546 		 */
2547 		if (cow) {
2548 			/*
2549 			 * if we don't really need to cow this block
2550 			 * then we don't want to set the path blocking,
2551 			 * so we test it here
2552 			 */
2553 			if (!should_cow_block(trans, root, b))
2554 				goto cow_done;
2555 
2556 			btrfs_set_path_blocking(p);
2557 
2558 			/*
2559 			 * must have write locks on this node and the
2560 			 * parent
2561 			 */
2562 			if (level > write_lock_level ||
2563 			    (level + 1 > write_lock_level &&
2564 			    level + 1 < BTRFS_MAX_LEVEL &&
2565 			    p->nodes[level + 1])) {
2566 				write_lock_level = level + 1;
2567 				btrfs_release_path(p);
2568 				goto again;
2569 			}
2570 
2571 			err = btrfs_cow_block(trans, root, b,
2572 					      p->nodes[level + 1],
2573 					      p->slots[level + 1], &b);
2574 			if (err) {
2575 				ret = err;
2576 				goto done;
2577 			}
2578 		}
2579 cow_done:
2580 		BUG_ON(!cow && ins_len);
2581 
2582 		p->nodes[level] = b;
2583 		btrfs_clear_path_blocking(p, NULL, 0);
2584 
2585 		/*
2586 		 * we have a lock on b and as long as we aren't changing
2587 		 * the tree, there is no way to for the items in b to change.
2588 		 * It is safe to drop the lock on our parent before we
2589 		 * go through the expensive btree search on b.
2590 		 *
2591 		 * If cow is true, then we might be changing slot zero,
2592 		 * which may require changing the parent.  So, we can't
2593 		 * drop the lock until after we know which slot we're
2594 		 * operating on.
2595 		 */
2596 		if (!cow)
2597 			btrfs_unlock_up_safe(p, level + 1);
2598 
2599 		ret = bin_search(b, key, level, &slot);
2600 
2601 		if (level != 0) {
2602 			int dec = 0;
2603 			if (ret && slot > 0) {
2604 				dec = 1;
2605 				slot -= 1;
2606 			}
2607 			p->slots[level] = slot;
2608 			err = setup_nodes_for_search(trans, root, p, b, level,
2609 					     ins_len, &write_lock_level);
2610 			if (err == -EAGAIN)
2611 				goto again;
2612 			if (err) {
2613 				ret = err;
2614 				goto done;
2615 			}
2616 			b = p->nodes[level];
2617 			slot = p->slots[level];
2618 
2619 			/*
2620 			 * slot 0 is special, if we change the key
2621 			 * we have to update the parent pointer
2622 			 * which means we must have a write lock
2623 			 * on the parent
2624 			 */
2625 			if (slot == 0 && cow &&
2626 			    write_lock_level < level + 1) {
2627 				write_lock_level = level + 1;
2628 				btrfs_release_path(p);
2629 				goto again;
2630 			}
2631 
2632 			unlock_up(p, level, lowest_unlock,
2633 				  min_write_lock_level, &write_lock_level);
2634 
2635 			if (level == lowest_level) {
2636 				if (dec)
2637 					p->slots[level]++;
2638 				goto done;
2639 			}
2640 
2641 			err = read_block_for_search(trans, root, p,
2642 						    &b, level, slot, key, 0);
2643 			if (err == -EAGAIN)
2644 				goto again;
2645 			if (err) {
2646 				ret = err;
2647 				goto done;
2648 			}
2649 
2650 			if (!p->skip_locking) {
2651 				level = btrfs_header_level(b);
2652 				if (level <= write_lock_level) {
2653 					err = btrfs_try_tree_write_lock(b);
2654 					if (!err) {
2655 						btrfs_set_path_blocking(p);
2656 						btrfs_tree_lock(b);
2657 						btrfs_clear_path_blocking(p, b,
2658 								  BTRFS_WRITE_LOCK);
2659 					}
2660 					p->locks[level] = BTRFS_WRITE_LOCK;
2661 				} else {
2662 					err = btrfs_try_tree_read_lock(b);
2663 					if (!err) {
2664 						btrfs_set_path_blocking(p);
2665 						btrfs_tree_read_lock(b);
2666 						btrfs_clear_path_blocking(p, b,
2667 								  BTRFS_READ_LOCK);
2668 					}
2669 					p->locks[level] = BTRFS_READ_LOCK;
2670 				}
2671 				p->nodes[level] = b;
2672 			}
2673 		} else {
2674 			p->slots[level] = slot;
2675 			if (ins_len > 0 &&
2676 			    btrfs_leaf_free_space(root, b) < ins_len) {
2677 				if (write_lock_level < 1) {
2678 					write_lock_level = 1;
2679 					btrfs_release_path(p);
2680 					goto again;
2681 				}
2682 
2683 				btrfs_set_path_blocking(p);
2684 				err = split_leaf(trans, root, key,
2685 						 p, ins_len, ret == 0);
2686 				btrfs_clear_path_blocking(p, NULL, 0);
2687 
2688 				BUG_ON(err > 0);
2689 				if (err) {
2690 					ret = err;
2691 					goto done;
2692 				}
2693 			}
2694 			if (!p->search_for_split)
2695 				unlock_up(p, level, lowest_unlock,
2696 					  min_write_lock_level, &write_lock_level);
2697 			goto done;
2698 		}
2699 	}
2700 	ret = 1;
2701 done:
2702 	/*
2703 	 * we don't really know what they plan on doing with the path
2704 	 * from here on, so for now just mark it as blocking
2705 	 */
2706 	if (!p->leave_spinning)
2707 		btrfs_set_path_blocking(p);
2708 	if (ret < 0)
2709 		btrfs_release_path(p);
2710 	return ret;
2711 }
2712 
2713 /*
2714  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2715  * current state of the tree together with the operations recorded in the tree
2716  * modification log to search for the key in a previous version of this tree, as
2717  * denoted by the time_seq parameter.
2718  *
2719  * Naturally, there is no support for insert, delete or cow operations.
2720  *
2721  * The resulting path and return value will be set up as if we called
2722  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2723  */
2724 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2725 			  struct btrfs_path *p, u64 time_seq)
2726 {
2727 	struct extent_buffer *b;
2728 	int slot;
2729 	int ret;
2730 	int err;
2731 	int level;
2732 	int lowest_unlock = 1;
2733 	u8 lowest_level = 0;
2734 
2735 	lowest_level = p->lowest_level;
2736 	WARN_ON(p->nodes[0] != NULL);
2737 
2738 	if (p->search_commit_root) {
2739 		BUG_ON(time_seq);
2740 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2741 	}
2742 
2743 again:
2744 	b = get_old_root(root, time_seq);
2745 	level = btrfs_header_level(b);
2746 	p->locks[level] = BTRFS_READ_LOCK;
2747 
2748 	while (b) {
2749 		level = btrfs_header_level(b);
2750 		p->nodes[level] = b;
2751 		btrfs_clear_path_blocking(p, NULL, 0);
2752 
2753 		/*
2754 		 * we have a lock on b and as long as we aren't changing
2755 		 * the tree, there is no way to for the items in b to change.
2756 		 * It is safe to drop the lock on our parent before we
2757 		 * go through the expensive btree search on b.
2758 		 */
2759 		btrfs_unlock_up_safe(p, level + 1);
2760 
2761 		ret = bin_search(b, key, level, &slot);
2762 
2763 		if (level != 0) {
2764 			int dec = 0;
2765 			if (ret && slot > 0) {
2766 				dec = 1;
2767 				slot -= 1;
2768 			}
2769 			p->slots[level] = slot;
2770 			unlock_up(p, level, lowest_unlock, 0, NULL);
2771 
2772 			if (level == lowest_level) {
2773 				if (dec)
2774 					p->slots[level]++;
2775 				goto done;
2776 			}
2777 
2778 			err = read_block_for_search(NULL, root, p, &b, level,
2779 						    slot, key, time_seq);
2780 			if (err == -EAGAIN)
2781 				goto again;
2782 			if (err) {
2783 				ret = err;
2784 				goto done;
2785 			}
2786 
2787 			level = btrfs_header_level(b);
2788 			err = btrfs_try_tree_read_lock(b);
2789 			if (!err) {
2790 				btrfs_set_path_blocking(p);
2791 				btrfs_tree_read_lock(b);
2792 				btrfs_clear_path_blocking(p, b,
2793 							  BTRFS_READ_LOCK);
2794 			}
2795 			p->locks[level] = BTRFS_READ_LOCK;
2796 			p->nodes[level] = b;
2797 			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2798 			if (b != p->nodes[level]) {
2799 				btrfs_tree_unlock_rw(p->nodes[level],
2800 						     p->locks[level]);
2801 				p->locks[level] = 0;
2802 				p->nodes[level] = b;
2803 			}
2804 		} else {
2805 			p->slots[level] = slot;
2806 			unlock_up(p, level, lowest_unlock, 0, NULL);
2807 			goto done;
2808 		}
2809 	}
2810 	ret = 1;
2811 done:
2812 	if (!p->leave_spinning)
2813 		btrfs_set_path_blocking(p);
2814 	if (ret < 0)
2815 		btrfs_release_path(p);
2816 
2817 	return ret;
2818 }
2819 
2820 /*
2821  * helper to use instead of search slot if no exact match is needed but
2822  * instead the next or previous item should be returned.
2823  * When find_higher is true, the next higher item is returned, the next lower
2824  * otherwise.
2825  * When return_any and find_higher are both true, and no higher item is found,
2826  * return the next lower instead.
2827  * When return_any is true and find_higher is false, and no lower item is found,
2828  * return the next higher instead.
2829  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2830  * < 0 on error
2831  */
2832 int btrfs_search_slot_for_read(struct btrfs_root *root,
2833 			       struct btrfs_key *key, struct btrfs_path *p,
2834 			       int find_higher, int return_any)
2835 {
2836 	int ret;
2837 	struct extent_buffer *leaf;
2838 
2839 again:
2840 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2841 	if (ret <= 0)
2842 		return ret;
2843 	/*
2844 	 * a return value of 1 means the path is at the position where the
2845 	 * item should be inserted. Normally this is the next bigger item,
2846 	 * but in case the previous item is the last in a leaf, path points
2847 	 * to the first free slot in the previous leaf, i.e. at an invalid
2848 	 * item.
2849 	 */
2850 	leaf = p->nodes[0];
2851 
2852 	if (find_higher) {
2853 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2854 			ret = btrfs_next_leaf(root, p);
2855 			if (ret <= 0)
2856 				return ret;
2857 			if (!return_any)
2858 				return 1;
2859 			/*
2860 			 * no higher item found, return the next
2861 			 * lower instead
2862 			 */
2863 			return_any = 0;
2864 			find_higher = 0;
2865 			btrfs_release_path(p);
2866 			goto again;
2867 		}
2868 	} else {
2869 		if (p->slots[0] == 0) {
2870 			ret = btrfs_prev_leaf(root, p);
2871 			if (ret < 0)
2872 				return ret;
2873 			if (!ret) {
2874 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2875 				return 0;
2876 			}
2877 			if (!return_any)
2878 				return 1;
2879 			/*
2880 			 * no lower item found, return the next
2881 			 * higher instead
2882 			 */
2883 			return_any = 0;
2884 			find_higher = 1;
2885 			btrfs_release_path(p);
2886 			goto again;
2887 		} else {
2888 			--p->slots[0];
2889 		}
2890 	}
2891 	return 0;
2892 }
2893 
2894 /*
2895  * adjust the pointers going up the tree, starting at level
2896  * making sure the right key of each node is points to 'key'.
2897  * This is used after shifting pointers to the left, so it stops
2898  * fixing up pointers when a given leaf/node is not in slot 0 of the
2899  * higher levels
2900  *
2901  */
2902 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2903 			   struct btrfs_root *root, struct btrfs_path *path,
2904 			   struct btrfs_disk_key *key, int level)
2905 {
2906 	int i;
2907 	struct extent_buffer *t;
2908 
2909 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2910 		int tslot = path->slots[i];
2911 		if (!path->nodes[i])
2912 			break;
2913 		t = path->nodes[i];
2914 		tree_mod_log_set_node_key(root->fs_info, t, tslot, 1);
2915 		btrfs_set_node_key(t, key, tslot);
2916 		btrfs_mark_buffer_dirty(path->nodes[i]);
2917 		if (tslot != 0)
2918 			break;
2919 	}
2920 }
2921 
2922 /*
2923  * update item key.
2924  *
2925  * This function isn't completely safe. It's the caller's responsibility
2926  * that the new key won't break the order
2927  */
2928 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2929 			     struct btrfs_root *root, struct btrfs_path *path,
2930 			     struct btrfs_key *new_key)
2931 {
2932 	struct btrfs_disk_key disk_key;
2933 	struct extent_buffer *eb;
2934 	int slot;
2935 
2936 	eb = path->nodes[0];
2937 	slot = path->slots[0];
2938 	if (slot > 0) {
2939 		btrfs_item_key(eb, &disk_key, slot - 1);
2940 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2941 	}
2942 	if (slot < btrfs_header_nritems(eb) - 1) {
2943 		btrfs_item_key(eb, &disk_key, slot + 1);
2944 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2945 	}
2946 
2947 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2948 	btrfs_set_item_key(eb, &disk_key, slot);
2949 	btrfs_mark_buffer_dirty(eb);
2950 	if (slot == 0)
2951 		fixup_low_keys(trans, root, path, &disk_key, 1);
2952 }
2953 
2954 /*
2955  * try to push data from one node into the next node left in the
2956  * tree.
2957  *
2958  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2959  * error, and > 0 if there was no room in the left hand block.
2960  */
2961 static int push_node_left(struct btrfs_trans_handle *trans,
2962 			  struct btrfs_root *root, struct extent_buffer *dst,
2963 			  struct extent_buffer *src, int empty)
2964 {
2965 	int push_items = 0;
2966 	int src_nritems;
2967 	int dst_nritems;
2968 	int ret = 0;
2969 
2970 	src_nritems = btrfs_header_nritems(src);
2971 	dst_nritems = btrfs_header_nritems(dst);
2972 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2973 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2974 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2975 
2976 	if (!empty && src_nritems <= 8)
2977 		return 1;
2978 
2979 	if (push_items <= 0)
2980 		return 1;
2981 
2982 	if (empty) {
2983 		push_items = min(src_nritems, push_items);
2984 		if (push_items < src_nritems) {
2985 			/* leave at least 8 pointers in the node if
2986 			 * we aren't going to empty it
2987 			 */
2988 			if (src_nritems - push_items < 8) {
2989 				if (push_items <= 8)
2990 					return 1;
2991 				push_items -= 8;
2992 			}
2993 		}
2994 	} else
2995 		push_items = min(src_nritems - 8, push_items);
2996 
2997 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
2998 			     push_items);
2999 	copy_extent_buffer(dst, src,
3000 			   btrfs_node_key_ptr_offset(dst_nritems),
3001 			   btrfs_node_key_ptr_offset(0),
3002 			   push_items * sizeof(struct btrfs_key_ptr));
3003 
3004 	if (push_items < src_nritems) {
3005 		/*
3006 		 * don't call tree_mod_log_eb_move here, key removal was already
3007 		 * fully logged by tree_mod_log_eb_copy above.
3008 		 */
3009 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3010 				      btrfs_node_key_ptr_offset(push_items),
3011 				      (src_nritems - push_items) *
3012 				      sizeof(struct btrfs_key_ptr));
3013 	}
3014 	btrfs_set_header_nritems(src, src_nritems - push_items);
3015 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3016 	btrfs_mark_buffer_dirty(src);
3017 	btrfs_mark_buffer_dirty(dst);
3018 
3019 	return ret;
3020 }
3021 
3022 /*
3023  * try to push data from one node into the next node right in the
3024  * tree.
3025  *
3026  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3027  * error, and > 0 if there was no room in the right hand block.
3028  *
3029  * this will  only push up to 1/2 the contents of the left node over
3030  */
3031 static int balance_node_right(struct btrfs_trans_handle *trans,
3032 			      struct btrfs_root *root,
3033 			      struct extent_buffer *dst,
3034 			      struct extent_buffer *src)
3035 {
3036 	int push_items = 0;
3037 	int max_push;
3038 	int src_nritems;
3039 	int dst_nritems;
3040 	int ret = 0;
3041 
3042 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3043 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3044 
3045 	src_nritems = btrfs_header_nritems(src);
3046 	dst_nritems = btrfs_header_nritems(dst);
3047 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3048 	if (push_items <= 0)
3049 		return 1;
3050 
3051 	if (src_nritems < 4)
3052 		return 1;
3053 
3054 	max_push = src_nritems / 2 + 1;
3055 	/* don't try to empty the node */
3056 	if (max_push >= src_nritems)
3057 		return 1;
3058 
3059 	if (max_push < push_items)
3060 		push_items = max_push;
3061 
3062 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3063 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3064 				      btrfs_node_key_ptr_offset(0),
3065 				      (dst_nritems) *
3066 				      sizeof(struct btrfs_key_ptr));
3067 
3068 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3069 			     src_nritems - push_items, push_items);
3070 	copy_extent_buffer(dst, src,
3071 			   btrfs_node_key_ptr_offset(0),
3072 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3073 			   push_items * sizeof(struct btrfs_key_ptr));
3074 
3075 	btrfs_set_header_nritems(src, src_nritems - push_items);
3076 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3077 
3078 	btrfs_mark_buffer_dirty(src);
3079 	btrfs_mark_buffer_dirty(dst);
3080 
3081 	return ret;
3082 }
3083 
3084 /*
3085  * helper function to insert a new root level in the tree.
3086  * A new node is allocated, and a single item is inserted to
3087  * point to the existing root
3088  *
3089  * returns zero on success or < 0 on failure.
3090  */
3091 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3092 			   struct btrfs_root *root,
3093 			   struct btrfs_path *path, int level)
3094 {
3095 	u64 lower_gen;
3096 	struct extent_buffer *lower;
3097 	struct extent_buffer *c;
3098 	struct extent_buffer *old;
3099 	struct btrfs_disk_key lower_key;
3100 
3101 	BUG_ON(path->nodes[level]);
3102 	BUG_ON(path->nodes[level-1] != root->node);
3103 
3104 	lower = path->nodes[level-1];
3105 	if (level == 1)
3106 		btrfs_item_key(lower, &lower_key, 0);
3107 	else
3108 		btrfs_node_key(lower, &lower_key, 0);
3109 
3110 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3111 				   root->root_key.objectid, &lower_key,
3112 				   level, root->node->start, 0);
3113 	if (IS_ERR(c))
3114 		return PTR_ERR(c);
3115 
3116 	root_add_used(root, root->nodesize);
3117 
3118 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3119 	btrfs_set_header_nritems(c, 1);
3120 	btrfs_set_header_level(c, level);
3121 	btrfs_set_header_bytenr(c, c->start);
3122 	btrfs_set_header_generation(c, trans->transid);
3123 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3124 	btrfs_set_header_owner(c, root->root_key.objectid);
3125 
3126 	write_extent_buffer(c, root->fs_info->fsid,
3127 			    (unsigned long)btrfs_header_fsid(c),
3128 			    BTRFS_FSID_SIZE);
3129 
3130 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3131 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
3132 			    BTRFS_UUID_SIZE);
3133 
3134 	btrfs_set_node_key(c, &lower_key, 0);
3135 	btrfs_set_node_blockptr(c, 0, lower->start);
3136 	lower_gen = btrfs_header_generation(lower);
3137 	WARN_ON(lower_gen != trans->transid);
3138 
3139 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3140 
3141 	btrfs_mark_buffer_dirty(c);
3142 
3143 	old = root->node;
3144 	tree_mod_log_set_root_pointer(root, c);
3145 	rcu_assign_pointer(root->node, c);
3146 
3147 	/* the super has an extra ref to root->node */
3148 	free_extent_buffer(old);
3149 
3150 	add_root_to_dirty_list(root);
3151 	extent_buffer_get(c);
3152 	path->nodes[level] = c;
3153 	path->locks[level] = BTRFS_WRITE_LOCK;
3154 	path->slots[level] = 0;
3155 	return 0;
3156 }
3157 
3158 /*
3159  * worker function to insert a single pointer in a node.
3160  * the node should have enough room for the pointer already
3161  *
3162  * slot and level indicate where you want the key to go, and
3163  * blocknr is the block the key points to.
3164  */
3165 static void insert_ptr(struct btrfs_trans_handle *trans,
3166 		       struct btrfs_root *root, struct btrfs_path *path,
3167 		       struct btrfs_disk_key *key, u64 bytenr,
3168 		       int slot, int level)
3169 {
3170 	struct extent_buffer *lower;
3171 	int nritems;
3172 	int ret;
3173 
3174 	BUG_ON(!path->nodes[level]);
3175 	btrfs_assert_tree_locked(path->nodes[level]);
3176 	lower = path->nodes[level];
3177 	nritems = btrfs_header_nritems(lower);
3178 	BUG_ON(slot > nritems);
3179 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3180 	if (slot != nritems) {
3181 		if (level)
3182 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3183 					     slot, nritems - slot);
3184 		memmove_extent_buffer(lower,
3185 			      btrfs_node_key_ptr_offset(slot + 1),
3186 			      btrfs_node_key_ptr_offset(slot),
3187 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3188 	}
3189 	if (level) {
3190 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3191 					      MOD_LOG_KEY_ADD);
3192 		BUG_ON(ret < 0);
3193 	}
3194 	btrfs_set_node_key(lower, key, slot);
3195 	btrfs_set_node_blockptr(lower, slot, bytenr);
3196 	WARN_ON(trans->transid == 0);
3197 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3198 	btrfs_set_header_nritems(lower, nritems + 1);
3199 	btrfs_mark_buffer_dirty(lower);
3200 }
3201 
3202 /*
3203  * split the node at the specified level in path in two.
3204  * The path is corrected to point to the appropriate node after the split
3205  *
3206  * Before splitting this tries to make some room in the node by pushing
3207  * left and right, if either one works, it returns right away.
3208  *
3209  * returns 0 on success and < 0 on failure
3210  */
3211 static noinline int split_node(struct btrfs_trans_handle *trans,
3212 			       struct btrfs_root *root,
3213 			       struct btrfs_path *path, int level)
3214 {
3215 	struct extent_buffer *c;
3216 	struct extent_buffer *split;
3217 	struct btrfs_disk_key disk_key;
3218 	int mid;
3219 	int ret;
3220 	u32 c_nritems;
3221 
3222 	c = path->nodes[level];
3223 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3224 	if (c == root->node) {
3225 		/* trying to split the root, lets make a new one */
3226 		ret = insert_new_root(trans, root, path, level + 1);
3227 		if (ret)
3228 			return ret;
3229 	} else {
3230 		ret = push_nodes_for_insert(trans, root, path, level);
3231 		c = path->nodes[level];
3232 		if (!ret && btrfs_header_nritems(c) <
3233 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3234 			return 0;
3235 		if (ret < 0)
3236 			return ret;
3237 	}
3238 
3239 	c_nritems = btrfs_header_nritems(c);
3240 	mid = (c_nritems + 1) / 2;
3241 	btrfs_node_key(c, &disk_key, mid);
3242 
3243 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3244 					root->root_key.objectid,
3245 					&disk_key, level, c->start, 0);
3246 	if (IS_ERR(split))
3247 		return PTR_ERR(split);
3248 
3249 	root_add_used(root, root->nodesize);
3250 
3251 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3252 	btrfs_set_header_level(split, btrfs_header_level(c));
3253 	btrfs_set_header_bytenr(split, split->start);
3254 	btrfs_set_header_generation(split, trans->transid);
3255 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3256 	btrfs_set_header_owner(split, root->root_key.objectid);
3257 	write_extent_buffer(split, root->fs_info->fsid,
3258 			    (unsigned long)btrfs_header_fsid(split),
3259 			    BTRFS_FSID_SIZE);
3260 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3261 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
3262 			    BTRFS_UUID_SIZE);
3263 
3264 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3265 	copy_extent_buffer(split, c,
3266 			   btrfs_node_key_ptr_offset(0),
3267 			   btrfs_node_key_ptr_offset(mid),
3268 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3269 	btrfs_set_header_nritems(split, c_nritems - mid);
3270 	btrfs_set_header_nritems(c, mid);
3271 	ret = 0;
3272 
3273 	btrfs_mark_buffer_dirty(c);
3274 	btrfs_mark_buffer_dirty(split);
3275 
3276 	insert_ptr(trans, root, path, &disk_key, split->start,
3277 		   path->slots[level + 1] + 1, level + 1);
3278 
3279 	if (path->slots[level] >= mid) {
3280 		path->slots[level] -= mid;
3281 		btrfs_tree_unlock(c);
3282 		free_extent_buffer(c);
3283 		path->nodes[level] = split;
3284 		path->slots[level + 1] += 1;
3285 	} else {
3286 		btrfs_tree_unlock(split);
3287 		free_extent_buffer(split);
3288 	}
3289 	return ret;
3290 }
3291 
3292 /*
3293  * how many bytes are required to store the items in a leaf.  start
3294  * and nr indicate which items in the leaf to check.  This totals up the
3295  * space used both by the item structs and the item data
3296  */
3297 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3298 {
3299 	struct btrfs_item *start_item;
3300 	struct btrfs_item *end_item;
3301 	struct btrfs_map_token token;
3302 	int data_len;
3303 	int nritems = btrfs_header_nritems(l);
3304 	int end = min(nritems, start + nr) - 1;
3305 
3306 	if (!nr)
3307 		return 0;
3308 	btrfs_init_map_token(&token);
3309 	start_item = btrfs_item_nr(l, start);
3310 	end_item = btrfs_item_nr(l, end);
3311 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3312 		btrfs_token_item_size(l, start_item, &token);
3313 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3314 	data_len += sizeof(struct btrfs_item) * nr;
3315 	WARN_ON(data_len < 0);
3316 	return data_len;
3317 }
3318 
3319 /*
3320  * The space between the end of the leaf items and
3321  * the start of the leaf data.  IOW, how much room
3322  * the leaf has left for both items and data
3323  */
3324 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3325 				   struct extent_buffer *leaf)
3326 {
3327 	int nritems = btrfs_header_nritems(leaf);
3328 	int ret;
3329 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3330 	if (ret < 0) {
3331 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3332 		       "used %d nritems %d\n",
3333 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3334 		       leaf_space_used(leaf, 0, nritems), nritems);
3335 	}
3336 	return ret;
3337 }
3338 
3339 /*
3340  * min slot controls the lowest index we're willing to push to the
3341  * right.  We'll push up to and including min_slot, but no lower
3342  */
3343 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3344 				      struct btrfs_root *root,
3345 				      struct btrfs_path *path,
3346 				      int data_size, int empty,
3347 				      struct extent_buffer *right,
3348 				      int free_space, u32 left_nritems,
3349 				      u32 min_slot)
3350 {
3351 	struct extent_buffer *left = path->nodes[0];
3352 	struct extent_buffer *upper = path->nodes[1];
3353 	struct btrfs_map_token token;
3354 	struct btrfs_disk_key disk_key;
3355 	int slot;
3356 	u32 i;
3357 	int push_space = 0;
3358 	int push_items = 0;
3359 	struct btrfs_item *item;
3360 	u32 nr;
3361 	u32 right_nritems;
3362 	u32 data_end;
3363 	u32 this_item_size;
3364 
3365 	btrfs_init_map_token(&token);
3366 
3367 	if (empty)
3368 		nr = 0;
3369 	else
3370 		nr = max_t(u32, 1, min_slot);
3371 
3372 	if (path->slots[0] >= left_nritems)
3373 		push_space += data_size;
3374 
3375 	slot = path->slots[1];
3376 	i = left_nritems - 1;
3377 	while (i >= nr) {
3378 		item = btrfs_item_nr(left, i);
3379 
3380 		if (!empty && push_items > 0) {
3381 			if (path->slots[0] > i)
3382 				break;
3383 			if (path->slots[0] == i) {
3384 				int space = btrfs_leaf_free_space(root, left);
3385 				if (space + push_space * 2 > free_space)
3386 					break;
3387 			}
3388 		}
3389 
3390 		if (path->slots[0] == i)
3391 			push_space += data_size;
3392 
3393 		this_item_size = btrfs_item_size(left, item);
3394 		if (this_item_size + sizeof(*item) + push_space > free_space)
3395 			break;
3396 
3397 		push_items++;
3398 		push_space += this_item_size + sizeof(*item);
3399 		if (i == 0)
3400 			break;
3401 		i--;
3402 	}
3403 
3404 	if (push_items == 0)
3405 		goto out_unlock;
3406 
3407 	WARN_ON(!empty && push_items == left_nritems);
3408 
3409 	/* push left to right */
3410 	right_nritems = btrfs_header_nritems(right);
3411 
3412 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3413 	push_space -= leaf_data_end(root, left);
3414 
3415 	/* make room in the right data area */
3416 	data_end = leaf_data_end(root, right);
3417 	memmove_extent_buffer(right,
3418 			      btrfs_leaf_data(right) + data_end - push_space,
3419 			      btrfs_leaf_data(right) + data_end,
3420 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3421 
3422 	/* copy from the left data area */
3423 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3424 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3425 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3426 		     push_space);
3427 
3428 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3429 			      btrfs_item_nr_offset(0),
3430 			      right_nritems * sizeof(struct btrfs_item));
3431 
3432 	/* copy the items from left to right */
3433 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3434 		   btrfs_item_nr_offset(left_nritems - push_items),
3435 		   push_items * sizeof(struct btrfs_item));
3436 
3437 	/* update the item pointers */
3438 	right_nritems += push_items;
3439 	btrfs_set_header_nritems(right, right_nritems);
3440 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3441 	for (i = 0; i < right_nritems; i++) {
3442 		item = btrfs_item_nr(right, i);
3443 		push_space -= btrfs_token_item_size(right, item, &token);
3444 		btrfs_set_token_item_offset(right, item, push_space, &token);
3445 	}
3446 
3447 	left_nritems -= push_items;
3448 	btrfs_set_header_nritems(left, left_nritems);
3449 
3450 	if (left_nritems)
3451 		btrfs_mark_buffer_dirty(left);
3452 	else
3453 		clean_tree_block(trans, root, left);
3454 
3455 	btrfs_mark_buffer_dirty(right);
3456 
3457 	btrfs_item_key(right, &disk_key, 0);
3458 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3459 	btrfs_mark_buffer_dirty(upper);
3460 
3461 	/* then fixup the leaf pointer in the path */
3462 	if (path->slots[0] >= left_nritems) {
3463 		path->slots[0] -= left_nritems;
3464 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3465 			clean_tree_block(trans, root, path->nodes[0]);
3466 		btrfs_tree_unlock(path->nodes[0]);
3467 		free_extent_buffer(path->nodes[0]);
3468 		path->nodes[0] = right;
3469 		path->slots[1] += 1;
3470 	} else {
3471 		btrfs_tree_unlock(right);
3472 		free_extent_buffer(right);
3473 	}
3474 	return 0;
3475 
3476 out_unlock:
3477 	btrfs_tree_unlock(right);
3478 	free_extent_buffer(right);
3479 	return 1;
3480 }
3481 
3482 /*
3483  * push some data in the path leaf to the right, trying to free up at
3484  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3485  *
3486  * returns 1 if the push failed because the other node didn't have enough
3487  * room, 0 if everything worked out and < 0 if there were major errors.
3488  *
3489  * this will push starting from min_slot to the end of the leaf.  It won't
3490  * push any slot lower than min_slot
3491  */
3492 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3493 			   *root, struct btrfs_path *path,
3494 			   int min_data_size, int data_size,
3495 			   int empty, u32 min_slot)
3496 {
3497 	struct extent_buffer *left = path->nodes[0];
3498 	struct extent_buffer *right;
3499 	struct extent_buffer *upper;
3500 	int slot;
3501 	int free_space;
3502 	u32 left_nritems;
3503 	int ret;
3504 
3505 	if (!path->nodes[1])
3506 		return 1;
3507 
3508 	slot = path->slots[1];
3509 	upper = path->nodes[1];
3510 	if (slot >= btrfs_header_nritems(upper) - 1)
3511 		return 1;
3512 
3513 	btrfs_assert_tree_locked(path->nodes[1]);
3514 
3515 	right = read_node_slot(root, upper, slot + 1);
3516 	if (right == NULL)
3517 		return 1;
3518 
3519 	btrfs_tree_lock(right);
3520 	btrfs_set_lock_blocking(right);
3521 
3522 	free_space = btrfs_leaf_free_space(root, right);
3523 	if (free_space < data_size)
3524 		goto out_unlock;
3525 
3526 	/* cow and double check */
3527 	ret = btrfs_cow_block(trans, root, right, upper,
3528 			      slot + 1, &right);
3529 	if (ret)
3530 		goto out_unlock;
3531 
3532 	free_space = btrfs_leaf_free_space(root, right);
3533 	if (free_space < data_size)
3534 		goto out_unlock;
3535 
3536 	left_nritems = btrfs_header_nritems(left);
3537 	if (left_nritems == 0)
3538 		goto out_unlock;
3539 
3540 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3541 				right, free_space, left_nritems, min_slot);
3542 out_unlock:
3543 	btrfs_tree_unlock(right);
3544 	free_extent_buffer(right);
3545 	return 1;
3546 }
3547 
3548 /*
3549  * push some data in the path leaf to the left, trying to free up at
3550  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3551  *
3552  * max_slot can put a limit on how far into the leaf we'll push items.  The
3553  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3554  * items
3555  */
3556 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3557 				     struct btrfs_root *root,
3558 				     struct btrfs_path *path, int data_size,
3559 				     int empty, struct extent_buffer *left,
3560 				     int free_space, u32 right_nritems,
3561 				     u32 max_slot)
3562 {
3563 	struct btrfs_disk_key disk_key;
3564 	struct extent_buffer *right = path->nodes[0];
3565 	int i;
3566 	int push_space = 0;
3567 	int push_items = 0;
3568 	struct btrfs_item *item;
3569 	u32 old_left_nritems;
3570 	u32 nr;
3571 	int ret = 0;
3572 	u32 this_item_size;
3573 	u32 old_left_item_size;
3574 	struct btrfs_map_token token;
3575 
3576 	btrfs_init_map_token(&token);
3577 
3578 	if (empty)
3579 		nr = min(right_nritems, max_slot);
3580 	else
3581 		nr = min(right_nritems - 1, max_slot);
3582 
3583 	for (i = 0; i < nr; i++) {
3584 		item = btrfs_item_nr(right, i);
3585 
3586 		if (!empty && push_items > 0) {
3587 			if (path->slots[0] < i)
3588 				break;
3589 			if (path->slots[0] == i) {
3590 				int space = btrfs_leaf_free_space(root, right);
3591 				if (space + push_space * 2 > free_space)
3592 					break;
3593 			}
3594 		}
3595 
3596 		if (path->slots[0] == i)
3597 			push_space += data_size;
3598 
3599 		this_item_size = btrfs_item_size(right, item);
3600 		if (this_item_size + sizeof(*item) + push_space > free_space)
3601 			break;
3602 
3603 		push_items++;
3604 		push_space += this_item_size + sizeof(*item);
3605 	}
3606 
3607 	if (push_items == 0) {
3608 		ret = 1;
3609 		goto out;
3610 	}
3611 	if (!empty && push_items == btrfs_header_nritems(right))
3612 		WARN_ON(1);
3613 
3614 	/* push data from right to left */
3615 	copy_extent_buffer(left, right,
3616 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3617 			   btrfs_item_nr_offset(0),
3618 			   push_items * sizeof(struct btrfs_item));
3619 
3620 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3621 		     btrfs_item_offset_nr(right, push_items - 1);
3622 
3623 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3624 		     leaf_data_end(root, left) - push_space,
3625 		     btrfs_leaf_data(right) +
3626 		     btrfs_item_offset_nr(right, push_items - 1),
3627 		     push_space);
3628 	old_left_nritems = btrfs_header_nritems(left);
3629 	BUG_ON(old_left_nritems <= 0);
3630 
3631 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3632 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3633 		u32 ioff;
3634 
3635 		item = btrfs_item_nr(left, i);
3636 
3637 		ioff = btrfs_token_item_offset(left, item, &token);
3638 		btrfs_set_token_item_offset(left, item,
3639 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3640 		      &token);
3641 	}
3642 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3643 
3644 	/* fixup right node */
3645 	if (push_items > right_nritems)
3646 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3647 		       right_nritems);
3648 
3649 	if (push_items < right_nritems) {
3650 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3651 						  leaf_data_end(root, right);
3652 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3653 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3654 				      btrfs_leaf_data(right) +
3655 				      leaf_data_end(root, right), push_space);
3656 
3657 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3658 			      btrfs_item_nr_offset(push_items),
3659 			     (btrfs_header_nritems(right) - push_items) *
3660 			     sizeof(struct btrfs_item));
3661 	}
3662 	right_nritems -= push_items;
3663 	btrfs_set_header_nritems(right, right_nritems);
3664 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3665 	for (i = 0; i < right_nritems; i++) {
3666 		item = btrfs_item_nr(right, i);
3667 
3668 		push_space = push_space - btrfs_token_item_size(right,
3669 								item, &token);
3670 		btrfs_set_token_item_offset(right, item, push_space, &token);
3671 	}
3672 
3673 	btrfs_mark_buffer_dirty(left);
3674 	if (right_nritems)
3675 		btrfs_mark_buffer_dirty(right);
3676 	else
3677 		clean_tree_block(trans, root, right);
3678 
3679 	btrfs_item_key(right, &disk_key, 0);
3680 	fixup_low_keys(trans, root, path, &disk_key, 1);
3681 
3682 	/* then fixup the leaf pointer in the path */
3683 	if (path->slots[0] < push_items) {
3684 		path->slots[0] += old_left_nritems;
3685 		btrfs_tree_unlock(path->nodes[0]);
3686 		free_extent_buffer(path->nodes[0]);
3687 		path->nodes[0] = left;
3688 		path->slots[1] -= 1;
3689 	} else {
3690 		btrfs_tree_unlock(left);
3691 		free_extent_buffer(left);
3692 		path->slots[0] -= push_items;
3693 	}
3694 	BUG_ON(path->slots[0] < 0);
3695 	return ret;
3696 out:
3697 	btrfs_tree_unlock(left);
3698 	free_extent_buffer(left);
3699 	return ret;
3700 }
3701 
3702 /*
3703  * push some data in the path leaf to the left, trying to free up at
3704  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3705  *
3706  * max_slot can put a limit on how far into the leaf we'll push items.  The
3707  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3708  * items
3709  */
3710 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3711 			  *root, struct btrfs_path *path, int min_data_size,
3712 			  int data_size, int empty, u32 max_slot)
3713 {
3714 	struct extent_buffer *right = path->nodes[0];
3715 	struct extent_buffer *left;
3716 	int slot;
3717 	int free_space;
3718 	u32 right_nritems;
3719 	int ret = 0;
3720 
3721 	slot = path->slots[1];
3722 	if (slot == 0)
3723 		return 1;
3724 	if (!path->nodes[1])
3725 		return 1;
3726 
3727 	right_nritems = btrfs_header_nritems(right);
3728 	if (right_nritems == 0)
3729 		return 1;
3730 
3731 	btrfs_assert_tree_locked(path->nodes[1]);
3732 
3733 	left = read_node_slot(root, path->nodes[1], slot - 1);
3734 	if (left == NULL)
3735 		return 1;
3736 
3737 	btrfs_tree_lock(left);
3738 	btrfs_set_lock_blocking(left);
3739 
3740 	free_space = btrfs_leaf_free_space(root, left);
3741 	if (free_space < data_size) {
3742 		ret = 1;
3743 		goto out;
3744 	}
3745 
3746 	/* cow and double check */
3747 	ret = btrfs_cow_block(trans, root, left,
3748 			      path->nodes[1], slot - 1, &left);
3749 	if (ret) {
3750 		/* we hit -ENOSPC, but it isn't fatal here */
3751 		if (ret == -ENOSPC)
3752 			ret = 1;
3753 		goto out;
3754 	}
3755 
3756 	free_space = btrfs_leaf_free_space(root, left);
3757 	if (free_space < data_size) {
3758 		ret = 1;
3759 		goto out;
3760 	}
3761 
3762 	return __push_leaf_left(trans, root, path, min_data_size,
3763 			       empty, left, free_space, right_nritems,
3764 			       max_slot);
3765 out:
3766 	btrfs_tree_unlock(left);
3767 	free_extent_buffer(left);
3768 	return ret;
3769 }
3770 
3771 /*
3772  * split the path's leaf in two, making sure there is at least data_size
3773  * available for the resulting leaf level of the path.
3774  */
3775 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3776 				    struct btrfs_root *root,
3777 				    struct btrfs_path *path,
3778 				    struct extent_buffer *l,
3779 				    struct extent_buffer *right,
3780 				    int slot, int mid, int nritems)
3781 {
3782 	int data_copy_size;
3783 	int rt_data_off;
3784 	int i;
3785 	struct btrfs_disk_key disk_key;
3786 	struct btrfs_map_token token;
3787 
3788 	btrfs_init_map_token(&token);
3789 
3790 	nritems = nritems - mid;
3791 	btrfs_set_header_nritems(right, nritems);
3792 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3793 
3794 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3795 			   btrfs_item_nr_offset(mid),
3796 			   nritems * sizeof(struct btrfs_item));
3797 
3798 	copy_extent_buffer(right, l,
3799 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3800 		     data_copy_size, btrfs_leaf_data(l) +
3801 		     leaf_data_end(root, l), data_copy_size);
3802 
3803 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3804 		      btrfs_item_end_nr(l, mid);
3805 
3806 	for (i = 0; i < nritems; i++) {
3807 		struct btrfs_item *item = btrfs_item_nr(right, i);
3808 		u32 ioff;
3809 
3810 		ioff = btrfs_token_item_offset(right, item, &token);
3811 		btrfs_set_token_item_offset(right, item,
3812 					    ioff + rt_data_off, &token);
3813 	}
3814 
3815 	btrfs_set_header_nritems(l, mid);
3816 	btrfs_item_key(right, &disk_key, 0);
3817 	insert_ptr(trans, root, path, &disk_key, right->start,
3818 		   path->slots[1] + 1, 1);
3819 
3820 	btrfs_mark_buffer_dirty(right);
3821 	btrfs_mark_buffer_dirty(l);
3822 	BUG_ON(path->slots[0] != slot);
3823 
3824 	if (mid <= slot) {
3825 		btrfs_tree_unlock(path->nodes[0]);
3826 		free_extent_buffer(path->nodes[0]);
3827 		path->nodes[0] = right;
3828 		path->slots[0] -= mid;
3829 		path->slots[1] += 1;
3830 	} else {
3831 		btrfs_tree_unlock(right);
3832 		free_extent_buffer(right);
3833 	}
3834 
3835 	BUG_ON(path->slots[0] < 0);
3836 }
3837 
3838 /*
3839  * double splits happen when we need to insert a big item in the middle
3840  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3841  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3842  *          A                 B                 C
3843  *
3844  * We avoid this by trying to push the items on either side of our target
3845  * into the adjacent leaves.  If all goes well we can avoid the double split
3846  * completely.
3847  */
3848 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3849 					  struct btrfs_root *root,
3850 					  struct btrfs_path *path,
3851 					  int data_size)
3852 {
3853 	int ret;
3854 	int progress = 0;
3855 	int slot;
3856 	u32 nritems;
3857 
3858 	slot = path->slots[0];
3859 
3860 	/*
3861 	 * try to push all the items after our slot into the
3862 	 * right leaf
3863 	 */
3864 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3865 	if (ret < 0)
3866 		return ret;
3867 
3868 	if (ret == 0)
3869 		progress++;
3870 
3871 	nritems = btrfs_header_nritems(path->nodes[0]);
3872 	/*
3873 	 * our goal is to get our slot at the start or end of a leaf.  If
3874 	 * we've done so we're done
3875 	 */
3876 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3877 		return 0;
3878 
3879 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3880 		return 0;
3881 
3882 	/* try to push all the items before our slot into the next leaf */
3883 	slot = path->slots[0];
3884 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3885 	if (ret < 0)
3886 		return ret;
3887 
3888 	if (ret == 0)
3889 		progress++;
3890 
3891 	if (progress)
3892 		return 0;
3893 	return 1;
3894 }
3895 
3896 /*
3897  * split the path's leaf in two, making sure there is at least data_size
3898  * available for the resulting leaf level of the path.
3899  *
3900  * returns 0 if all went well and < 0 on failure.
3901  */
3902 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3903 			       struct btrfs_root *root,
3904 			       struct btrfs_key *ins_key,
3905 			       struct btrfs_path *path, int data_size,
3906 			       int extend)
3907 {
3908 	struct btrfs_disk_key disk_key;
3909 	struct extent_buffer *l;
3910 	u32 nritems;
3911 	int mid;
3912 	int slot;
3913 	struct extent_buffer *right;
3914 	int ret = 0;
3915 	int wret;
3916 	int split;
3917 	int num_doubles = 0;
3918 	int tried_avoid_double = 0;
3919 
3920 	l = path->nodes[0];
3921 	slot = path->slots[0];
3922 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3923 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3924 		return -EOVERFLOW;
3925 
3926 	/* first try to make some room by pushing left and right */
3927 	if (data_size) {
3928 		wret = push_leaf_right(trans, root, path, data_size,
3929 				       data_size, 0, 0);
3930 		if (wret < 0)
3931 			return wret;
3932 		if (wret) {
3933 			wret = push_leaf_left(trans, root, path, data_size,
3934 					      data_size, 0, (u32)-1);
3935 			if (wret < 0)
3936 				return wret;
3937 		}
3938 		l = path->nodes[0];
3939 
3940 		/* did the pushes work? */
3941 		if (btrfs_leaf_free_space(root, l) >= data_size)
3942 			return 0;
3943 	}
3944 
3945 	if (!path->nodes[1]) {
3946 		ret = insert_new_root(trans, root, path, 1);
3947 		if (ret)
3948 			return ret;
3949 	}
3950 again:
3951 	split = 1;
3952 	l = path->nodes[0];
3953 	slot = path->slots[0];
3954 	nritems = btrfs_header_nritems(l);
3955 	mid = (nritems + 1) / 2;
3956 
3957 	if (mid <= slot) {
3958 		if (nritems == 1 ||
3959 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3960 			BTRFS_LEAF_DATA_SIZE(root)) {
3961 			if (slot >= nritems) {
3962 				split = 0;
3963 			} else {
3964 				mid = slot;
3965 				if (mid != nritems &&
3966 				    leaf_space_used(l, mid, nritems - mid) +
3967 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3968 					if (data_size && !tried_avoid_double)
3969 						goto push_for_double;
3970 					split = 2;
3971 				}
3972 			}
3973 		}
3974 	} else {
3975 		if (leaf_space_used(l, 0, mid) + data_size >
3976 			BTRFS_LEAF_DATA_SIZE(root)) {
3977 			if (!extend && data_size && slot == 0) {
3978 				split = 0;
3979 			} else if ((extend || !data_size) && slot == 0) {
3980 				mid = 1;
3981 			} else {
3982 				mid = slot;
3983 				if (mid != nritems &&
3984 				    leaf_space_used(l, mid, nritems - mid) +
3985 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3986 					if (data_size && !tried_avoid_double)
3987 						goto push_for_double;
3988 					split = 2 ;
3989 				}
3990 			}
3991 		}
3992 	}
3993 
3994 	if (split == 0)
3995 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3996 	else
3997 		btrfs_item_key(l, &disk_key, mid);
3998 
3999 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4000 					root->root_key.objectid,
4001 					&disk_key, 0, l->start, 0);
4002 	if (IS_ERR(right))
4003 		return PTR_ERR(right);
4004 
4005 	root_add_used(root, root->leafsize);
4006 
4007 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4008 	btrfs_set_header_bytenr(right, right->start);
4009 	btrfs_set_header_generation(right, trans->transid);
4010 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4011 	btrfs_set_header_owner(right, root->root_key.objectid);
4012 	btrfs_set_header_level(right, 0);
4013 	write_extent_buffer(right, root->fs_info->fsid,
4014 			    (unsigned long)btrfs_header_fsid(right),
4015 			    BTRFS_FSID_SIZE);
4016 
4017 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4018 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
4019 			    BTRFS_UUID_SIZE);
4020 
4021 	if (split == 0) {
4022 		if (mid <= slot) {
4023 			btrfs_set_header_nritems(right, 0);
4024 			insert_ptr(trans, root, path, &disk_key, right->start,
4025 				   path->slots[1] + 1, 1);
4026 			btrfs_tree_unlock(path->nodes[0]);
4027 			free_extent_buffer(path->nodes[0]);
4028 			path->nodes[0] = right;
4029 			path->slots[0] = 0;
4030 			path->slots[1] += 1;
4031 		} else {
4032 			btrfs_set_header_nritems(right, 0);
4033 			insert_ptr(trans, root, path, &disk_key, right->start,
4034 					  path->slots[1], 1);
4035 			btrfs_tree_unlock(path->nodes[0]);
4036 			free_extent_buffer(path->nodes[0]);
4037 			path->nodes[0] = right;
4038 			path->slots[0] = 0;
4039 			if (path->slots[1] == 0)
4040 				fixup_low_keys(trans, root, path,
4041 					       &disk_key, 1);
4042 		}
4043 		btrfs_mark_buffer_dirty(right);
4044 		return ret;
4045 	}
4046 
4047 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4048 
4049 	if (split == 2) {
4050 		BUG_ON(num_doubles != 0);
4051 		num_doubles++;
4052 		goto again;
4053 	}
4054 
4055 	return 0;
4056 
4057 push_for_double:
4058 	push_for_double_split(trans, root, path, data_size);
4059 	tried_avoid_double = 1;
4060 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4061 		return 0;
4062 	goto again;
4063 }
4064 
4065 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4066 					 struct btrfs_root *root,
4067 					 struct btrfs_path *path, int ins_len)
4068 {
4069 	struct btrfs_key key;
4070 	struct extent_buffer *leaf;
4071 	struct btrfs_file_extent_item *fi;
4072 	u64 extent_len = 0;
4073 	u32 item_size;
4074 	int ret;
4075 
4076 	leaf = path->nodes[0];
4077 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4078 
4079 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4080 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4081 
4082 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4083 		return 0;
4084 
4085 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4086 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4087 		fi = btrfs_item_ptr(leaf, path->slots[0],
4088 				    struct btrfs_file_extent_item);
4089 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4090 	}
4091 	btrfs_release_path(path);
4092 
4093 	path->keep_locks = 1;
4094 	path->search_for_split = 1;
4095 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4096 	path->search_for_split = 0;
4097 	if (ret < 0)
4098 		goto err;
4099 
4100 	ret = -EAGAIN;
4101 	leaf = path->nodes[0];
4102 	/* if our item isn't there or got smaller, return now */
4103 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4104 		goto err;
4105 
4106 	/* the leaf has  changed, it now has room.  return now */
4107 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4108 		goto err;
4109 
4110 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4111 		fi = btrfs_item_ptr(leaf, path->slots[0],
4112 				    struct btrfs_file_extent_item);
4113 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4114 			goto err;
4115 	}
4116 
4117 	btrfs_set_path_blocking(path);
4118 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4119 	if (ret)
4120 		goto err;
4121 
4122 	path->keep_locks = 0;
4123 	btrfs_unlock_up_safe(path, 1);
4124 	return 0;
4125 err:
4126 	path->keep_locks = 0;
4127 	return ret;
4128 }
4129 
4130 static noinline int split_item(struct btrfs_trans_handle *trans,
4131 			       struct btrfs_root *root,
4132 			       struct btrfs_path *path,
4133 			       struct btrfs_key *new_key,
4134 			       unsigned long split_offset)
4135 {
4136 	struct extent_buffer *leaf;
4137 	struct btrfs_item *item;
4138 	struct btrfs_item *new_item;
4139 	int slot;
4140 	char *buf;
4141 	u32 nritems;
4142 	u32 item_size;
4143 	u32 orig_offset;
4144 	struct btrfs_disk_key disk_key;
4145 
4146 	leaf = path->nodes[0];
4147 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4148 
4149 	btrfs_set_path_blocking(path);
4150 
4151 	item = btrfs_item_nr(leaf, path->slots[0]);
4152 	orig_offset = btrfs_item_offset(leaf, item);
4153 	item_size = btrfs_item_size(leaf, item);
4154 
4155 	buf = kmalloc(item_size, GFP_NOFS);
4156 	if (!buf)
4157 		return -ENOMEM;
4158 
4159 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4160 			    path->slots[0]), item_size);
4161 
4162 	slot = path->slots[0] + 1;
4163 	nritems = btrfs_header_nritems(leaf);
4164 	if (slot != nritems) {
4165 		/* shift the items */
4166 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4167 				btrfs_item_nr_offset(slot),
4168 				(nritems - slot) * sizeof(struct btrfs_item));
4169 	}
4170 
4171 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4172 	btrfs_set_item_key(leaf, &disk_key, slot);
4173 
4174 	new_item = btrfs_item_nr(leaf, slot);
4175 
4176 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4177 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4178 
4179 	btrfs_set_item_offset(leaf, item,
4180 			      orig_offset + item_size - split_offset);
4181 	btrfs_set_item_size(leaf, item, split_offset);
4182 
4183 	btrfs_set_header_nritems(leaf, nritems + 1);
4184 
4185 	/* write the data for the start of the original item */
4186 	write_extent_buffer(leaf, buf,
4187 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4188 			    split_offset);
4189 
4190 	/* write the data for the new item */
4191 	write_extent_buffer(leaf, buf + split_offset,
4192 			    btrfs_item_ptr_offset(leaf, slot),
4193 			    item_size - split_offset);
4194 	btrfs_mark_buffer_dirty(leaf);
4195 
4196 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4197 	kfree(buf);
4198 	return 0;
4199 }
4200 
4201 /*
4202  * This function splits a single item into two items,
4203  * giving 'new_key' to the new item and splitting the
4204  * old one at split_offset (from the start of the item).
4205  *
4206  * The path may be released by this operation.  After
4207  * the split, the path is pointing to the old item.  The
4208  * new item is going to be in the same node as the old one.
4209  *
4210  * Note, the item being split must be smaller enough to live alone on
4211  * a tree block with room for one extra struct btrfs_item
4212  *
4213  * This allows us to split the item in place, keeping a lock on the
4214  * leaf the entire time.
4215  */
4216 int btrfs_split_item(struct btrfs_trans_handle *trans,
4217 		     struct btrfs_root *root,
4218 		     struct btrfs_path *path,
4219 		     struct btrfs_key *new_key,
4220 		     unsigned long split_offset)
4221 {
4222 	int ret;
4223 	ret = setup_leaf_for_split(trans, root, path,
4224 				   sizeof(struct btrfs_item));
4225 	if (ret)
4226 		return ret;
4227 
4228 	ret = split_item(trans, root, path, new_key, split_offset);
4229 	return ret;
4230 }
4231 
4232 /*
4233  * This function duplicate a item, giving 'new_key' to the new item.
4234  * It guarantees both items live in the same tree leaf and the new item
4235  * is contiguous with the original item.
4236  *
4237  * This allows us to split file extent in place, keeping a lock on the
4238  * leaf the entire time.
4239  */
4240 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4241 			 struct btrfs_root *root,
4242 			 struct btrfs_path *path,
4243 			 struct btrfs_key *new_key)
4244 {
4245 	struct extent_buffer *leaf;
4246 	int ret;
4247 	u32 item_size;
4248 
4249 	leaf = path->nodes[0];
4250 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4251 	ret = setup_leaf_for_split(trans, root, path,
4252 				   item_size + sizeof(struct btrfs_item));
4253 	if (ret)
4254 		return ret;
4255 
4256 	path->slots[0]++;
4257 	setup_items_for_insert(trans, root, path, new_key, &item_size,
4258 			       item_size, item_size +
4259 			       sizeof(struct btrfs_item), 1);
4260 	leaf = path->nodes[0];
4261 	memcpy_extent_buffer(leaf,
4262 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4263 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4264 			     item_size);
4265 	return 0;
4266 }
4267 
4268 /*
4269  * make the item pointed to by the path smaller.  new_size indicates
4270  * how small to make it, and from_end tells us if we just chop bytes
4271  * off the end of the item or if we shift the item to chop bytes off
4272  * the front.
4273  */
4274 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4275 			 struct btrfs_root *root,
4276 			 struct btrfs_path *path,
4277 			 u32 new_size, int from_end)
4278 {
4279 	int slot;
4280 	struct extent_buffer *leaf;
4281 	struct btrfs_item *item;
4282 	u32 nritems;
4283 	unsigned int data_end;
4284 	unsigned int old_data_start;
4285 	unsigned int old_size;
4286 	unsigned int size_diff;
4287 	int i;
4288 	struct btrfs_map_token token;
4289 
4290 	btrfs_init_map_token(&token);
4291 
4292 	leaf = path->nodes[0];
4293 	slot = path->slots[0];
4294 
4295 	old_size = btrfs_item_size_nr(leaf, slot);
4296 	if (old_size == new_size)
4297 		return;
4298 
4299 	nritems = btrfs_header_nritems(leaf);
4300 	data_end = leaf_data_end(root, leaf);
4301 
4302 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4303 
4304 	size_diff = old_size - new_size;
4305 
4306 	BUG_ON(slot < 0);
4307 	BUG_ON(slot >= nritems);
4308 
4309 	/*
4310 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4311 	 */
4312 	/* first correct the data pointers */
4313 	for (i = slot; i < nritems; i++) {
4314 		u32 ioff;
4315 		item = btrfs_item_nr(leaf, i);
4316 
4317 		ioff = btrfs_token_item_offset(leaf, item, &token);
4318 		btrfs_set_token_item_offset(leaf, item,
4319 					    ioff + size_diff, &token);
4320 	}
4321 
4322 	/* shift the data */
4323 	if (from_end) {
4324 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4325 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4326 			      data_end, old_data_start + new_size - data_end);
4327 	} else {
4328 		struct btrfs_disk_key disk_key;
4329 		u64 offset;
4330 
4331 		btrfs_item_key(leaf, &disk_key, slot);
4332 
4333 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4334 			unsigned long ptr;
4335 			struct btrfs_file_extent_item *fi;
4336 
4337 			fi = btrfs_item_ptr(leaf, slot,
4338 					    struct btrfs_file_extent_item);
4339 			fi = (struct btrfs_file_extent_item *)(
4340 			     (unsigned long)fi - size_diff);
4341 
4342 			if (btrfs_file_extent_type(leaf, fi) ==
4343 			    BTRFS_FILE_EXTENT_INLINE) {
4344 				ptr = btrfs_item_ptr_offset(leaf, slot);
4345 				memmove_extent_buffer(leaf, ptr,
4346 				      (unsigned long)fi,
4347 				      offsetof(struct btrfs_file_extent_item,
4348 						 disk_bytenr));
4349 			}
4350 		}
4351 
4352 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4353 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4354 			      data_end, old_data_start - data_end);
4355 
4356 		offset = btrfs_disk_key_offset(&disk_key);
4357 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4358 		btrfs_set_item_key(leaf, &disk_key, slot);
4359 		if (slot == 0)
4360 			fixup_low_keys(trans, root, path, &disk_key, 1);
4361 	}
4362 
4363 	item = btrfs_item_nr(leaf, slot);
4364 	btrfs_set_item_size(leaf, item, new_size);
4365 	btrfs_mark_buffer_dirty(leaf);
4366 
4367 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4368 		btrfs_print_leaf(root, leaf);
4369 		BUG();
4370 	}
4371 }
4372 
4373 /*
4374  * make the item pointed to by the path bigger, data_size is the new size.
4375  */
4376 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4377 		       struct btrfs_root *root, struct btrfs_path *path,
4378 		       u32 data_size)
4379 {
4380 	int slot;
4381 	struct extent_buffer *leaf;
4382 	struct btrfs_item *item;
4383 	u32 nritems;
4384 	unsigned int data_end;
4385 	unsigned int old_data;
4386 	unsigned int old_size;
4387 	int i;
4388 	struct btrfs_map_token token;
4389 
4390 	btrfs_init_map_token(&token);
4391 
4392 	leaf = path->nodes[0];
4393 
4394 	nritems = btrfs_header_nritems(leaf);
4395 	data_end = leaf_data_end(root, leaf);
4396 
4397 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4398 		btrfs_print_leaf(root, leaf);
4399 		BUG();
4400 	}
4401 	slot = path->slots[0];
4402 	old_data = btrfs_item_end_nr(leaf, slot);
4403 
4404 	BUG_ON(slot < 0);
4405 	if (slot >= nritems) {
4406 		btrfs_print_leaf(root, leaf);
4407 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4408 		       slot, nritems);
4409 		BUG_ON(1);
4410 	}
4411 
4412 	/*
4413 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4414 	 */
4415 	/* first correct the data pointers */
4416 	for (i = slot; i < nritems; i++) {
4417 		u32 ioff;
4418 		item = btrfs_item_nr(leaf, i);
4419 
4420 		ioff = btrfs_token_item_offset(leaf, item, &token);
4421 		btrfs_set_token_item_offset(leaf, item,
4422 					    ioff - data_size, &token);
4423 	}
4424 
4425 	/* shift the data */
4426 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4427 		      data_end - data_size, btrfs_leaf_data(leaf) +
4428 		      data_end, old_data - data_end);
4429 
4430 	data_end = old_data;
4431 	old_size = btrfs_item_size_nr(leaf, slot);
4432 	item = btrfs_item_nr(leaf, slot);
4433 	btrfs_set_item_size(leaf, item, old_size + data_size);
4434 	btrfs_mark_buffer_dirty(leaf);
4435 
4436 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4437 		btrfs_print_leaf(root, leaf);
4438 		BUG();
4439 	}
4440 }
4441 
4442 /*
4443  * this is a helper for btrfs_insert_empty_items, the main goal here is
4444  * to save stack depth by doing the bulk of the work in a function
4445  * that doesn't call btrfs_search_slot
4446  */
4447 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4448 			    struct btrfs_root *root, struct btrfs_path *path,
4449 			    struct btrfs_key *cpu_key, u32 *data_size,
4450 			    u32 total_data, u32 total_size, int nr)
4451 {
4452 	struct btrfs_item *item;
4453 	int i;
4454 	u32 nritems;
4455 	unsigned int data_end;
4456 	struct btrfs_disk_key disk_key;
4457 	struct extent_buffer *leaf;
4458 	int slot;
4459 	struct btrfs_map_token token;
4460 
4461 	btrfs_init_map_token(&token);
4462 
4463 	leaf = path->nodes[0];
4464 	slot = path->slots[0];
4465 
4466 	nritems = btrfs_header_nritems(leaf);
4467 	data_end = leaf_data_end(root, leaf);
4468 
4469 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4470 		btrfs_print_leaf(root, leaf);
4471 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4472 		       total_size, btrfs_leaf_free_space(root, leaf));
4473 		BUG();
4474 	}
4475 
4476 	if (slot != nritems) {
4477 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4478 
4479 		if (old_data < data_end) {
4480 			btrfs_print_leaf(root, leaf);
4481 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4482 			       slot, old_data, data_end);
4483 			BUG_ON(1);
4484 		}
4485 		/*
4486 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4487 		 */
4488 		/* first correct the data pointers */
4489 		for (i = slot; i < nritems; i++) {
4490 			u32 ioff;
4491 
4492 			item = btrfs_item_nr(leaf, i);
4493 			ioff = btrfs_token_item_offset(leaf, item, &token);
4494 			btrfs_set_token_item_offset(leaf, item,
4495 						    ioff - total_data, &token);
4496 		}
4497 		/* shift the items */
4498 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4499 			      btrfs_item_nr_offset(slot),
4500 			      (nritems - slot) * sizeof(struct btrfs_item));
4501 
4502 		/* shift the data */
4503 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4504 			      data_end - total_data, btrfs_leaf_data(leaf) +
4505 			      data_end, old_data - data_end);
4506 		data_end = old_data;
4507 	}
4508 
4509 	/* setup the item for the new data */
4510 	for (i = 0; i < nr; i++) {
4511 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4512 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4513 		item = btrfs_item_nr(leaf, slot + i);
4514 		btrfs_set_token_item_offset(leaf, item,
4515 					    data_end - data_size[i], &token);
4516 		data_end -= data_size[i];
4517 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4518 	}
4519 
4520 	btrfs_set_header_nritems(leaf, nritems + nr);
4521 
4522 	if (slot == 0) {
4523 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4524 		fixup_low_keys(trans, root, path, &disk_key, 1);
4525 	}
4526 	btrfs_unlock_up_safe(path, 1);
4527 	btrfs_mark_buffer_dirty(leaf);
4528 
4529 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4530 		btrfs_print_leaf(root, leaf);
4531 		BUG();
4532 	}
4533 }
4534 
4535 /*
4536  * Given a key and some data, insert items into the tree.
4537  * This does all the path init required, making room in the tree if needed.
4538  */
4539 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4540 			    struct btrfs_root *root,
4541 			    struct btrfs_path *path,
4542 			    struct btrfs_key *cpu_key, u32 *data_size,
4543 			    int nr)
4544 {
4545 	int ret = 0;
4546 	int slot;
4547 	int i;
4548 	u32 total_size = 0;
4549 	u32 total_data = 0;
4550 
4551 	for (i = 0; i < nr; i++)
4552 		total_data += data_size[i];
4553 
4554 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4555 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4556 	if (ret == 0)
4557 		return -EEXIST;
4558 	if (ret < 0)
4559 		return ret;
4560 
4561 	slot = path->slots[0];
4562 	BUG_ON(slot < 0);
4563 
4564 	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4565 			       total_data, total_size, nr);
4566 	return 0;
4567 }
4568 
4569 /*
4570  * Given a key and some data, insert an item into the tree.
4571  * This does all the path init required, making room in the tree if needed.
4572  */
4573 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4574 		      *root, struct btrfs_key *cpu_key, void *data, u32
4575 		      data_size)
4576 {
4577 	int ret = 0;
4578 	struct btrfs_path *path;
4579 	struct extent_buffer *leaf;
4580 	unsigned long ptr;
4581 
4582 	path = btrfs_alloc_path();
4583 	if (!path)
4584 		return -ENOMEM;
4585 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4586 	if (!ret) {
4587 		leaf = path->nodes[0];
4588 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4589 		write_extent_buffer(leaf, data, ptr, data_size);
4590 		btrfs_mark_buffer_dirty(leaf);
4591 	}
4592 	btrfs_free_path(path);
4593 	return ret;
4594 }
4595 
4596 /*
4597  * delete the pointer from a given node.
4598  *
4599  * the tree should have been previously balanced so the deletion does not
4600  * empty a node.
4601  */
4602 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4603 		    struct btrfs_path *path, int level, int slot)
4604 {
4605 	struct extent_buffer *parent = path->nodes[level];
4606 	u32 nritems;
4607 	int ret;
4608 
4609 	nritems = btrfs_header_nritems(parent);
4610 	if (slot != nritems - 1) {
4611 		if (level)
4612 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4613 					     slot + 1, nritems - slot - 1);
4614 		memmove_extent_buffer(parent,
4615 			      btrfs_node_key_ptr_offset(slot),
4616 			      btrfs_node_key_ptr_offset(slot + 1),
4617 			      sizeof(struct btrfs_key_ptr) *
4618 			      (nritems - slot - 1));
4619 	} else if (level) {
4620 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4621 					      MOD_LOG_KEY_REMOVE);
4622 		BUG_ON(ret < 0);
4623 	}
4624 
4625 	nritems--;
4626 	btrfs_set_header_nritems(parent, nritems);
4627 	if (nritems == 0 && parent == root->node) {
4628 		BUG_ON(btrfs_header_level(root->node) != 1);
4629 		/* just turn the root into a leaf and break */
4630 		btrfs_set_header_level(root->node, 0);
4631 	} else if (slot == 0) {
4632 		struct btrfs_disk_key disk_key;
4633 
4634 		btrfs_node_key(parent, &disk_key, 0);
4635 		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4636 	}
4637 	btrfs_mark_buffer_dirty(parent);
4638 }
4639 
4640 /*
4641  * a helper function to delete the leaf pointed to by path->slots[1] and
4642  * path->nodes[1].
4643  *
4644  * This deletes the pointer in path->nodes[1] and frees the leaf
4645  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4646  *
4647  * The path must have already been setup for deleting the leaf, including
4648  * all the proper balancing.  path->nodes[1] must be locked.
4649  */
4650 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4651 				    struct btrfs_root *root,
4652 				    struct btrfs_path *path,
4653 				    struct extent_buffer *leaf)
4654 {
4655 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4656 	del_ptr(trans, root, path, 1, path->slots[1]);
4657 
4658 	/*
4659 	 * btrfs_free_extent is expensive, we want to make sure we
4660 	 * aren't holding any locks when we call it
4661 	 */
4662 	btrfs_unlock_up_safe(path, 0);
4663 
4664 	root_sub_used(root, leaf->len);
4665 
4666 	extent_buffer_get(leaf);
4667 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4668 	free_extent_buffer_stale(leaf);
4669 }
4670 /*
4671  * delete the item at the leaf level in path.  If that empties
4672  * the leaf, remove it from the tree
4673  */
4674 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4675 		    struct btrfs_path *path, int slot, int nr)
4676 {
4677 	struct extent_buffer *leaf;
4678 	struct btrfs_item *item;
4679 	int last_off;
4680 	int dsize = 0;
4681 	int ret = 0;
4682 	int wret;
4683 	int i;
4684 	u32 nritems;
4685 	struct btrfs_map_token token;
4686 
4687 	btrfs_init_map_token(&token);
4688 
4689 	leaf = path->nodes[0];
4690 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4691 
4692 	for (i = 0; i < nr; i++)
4693 		dsize += btrfs_item_size_nr(leaf, slot + i);
4694 
4695 	nritems = btrfs_header_nritems(leaf);
4696 
4697 	if (slot + nr != nritems) {
4698 		int data_end = leaf_data_end(root, leaf);
4699 
4700 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4701 			      data_end + dsize,
4702 			      btrfs_leaf_data(leaf) + data_end,
4703 			      last_off - data_end);
4704 
4705 		for (i = slot + nr; i < nritems; i++) {
4706 			u32 ioff;
4707 
4708 			item = btrfs_item_nr(leaf, i);
4709 			ioff = btrfs_token_item_offset(leaf, item, &token);
4710 			btrfs_set_token_item_offset(leaf, item,
4711 						    ioff + dsize, &token);
4712 		}
4713 
4714 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4715 			      btrfs_item_nr_offset(slot + nr),
4716 			      sizeof(struct btrfs_item) *
4717 			      (nritems - slot - nr));
4718 	}
4719 	btrfs_set_header_nritems(leaf, nritems - nr);
4720 	nritems -= nr;
4721 
4722 	/* delete the leaf if we've emptied it */
4723 	if (nritems == 0) {
4724 		if (leaf == root->node) {
4725 			btrfs_set_header_level(leaf, 0);
4726 		} else {
4727 			btrfs_set_path_blocking(path);
4728 			clean_tree_block(trans, root, leaf);
4729 			btrfs_del_leaf(trans, root, path, leaf);
4730 		}
4731 	} else {
4732 		int used = leaf_space_used(leaf, 0, nritems);
4733 		if (slot == 0) {
4734 			struct btrfs_disk_key disk_key;
4735 
4736 			btrfs_item_key(leaf, &disk_key, 0);
4737 			fixup_low_keys(trans, root, path, &disk_key, 1);
4738 		}
4739 
4740 		/* delete the leaf if it is mostly empty */
4741 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4742 			/* push_leaf_left fixes the path.
4743 			 * make sure the path still points to our leaf
4744 			 * for possible call to del_ptr below
4745 			 */
4746 			slot = path->slots[1];
4747 			extent_buffer_get(leaf);
4748 
4749 			btrfs_set_path_blocking(path);
4750 			wret = push_leaf_left(trans, root, path, 1, 1,
4751 					      1, (u32)-1);
4752 			if (wret < 0 && wret != -ENOSPC)
4753 				ret = wret;
4754 
4755 			if (path->nodes[0] == leaf &&
4756 			    btrfs_header_nritems(leaf)) {
4757 				wret = push_leaf_right(trans, root, path, 1,
4758 						       1, 1, 0);
4759 				if (wret < 0 && wret != -ENOSPC)
4760 					ret = wret;
4761 			}
4762 
4763 			if (btrfs_header_nritems(leaf) == 0) {
4764 				path->slots[1] = slot;
4765 				btrfs_del_leaf(trans, root, path, leaf);
4766 				free_extent_buffer(leaf);
4767 				ret = 0;
4768 			} else {
4769 				/* if we're still in the path, make sure
4770 				 * we're dirty.  Otherwise, one of the
4771 				 * push_leaf functions must have already
4772 				 * dirtied this buffer
4773 				 */
4774 				if (path->nodes[0] == leaf)
4775 					btrfs_mark_buffer_dirty(leaf);
4776 				free_extent_buffer(leaf);
4777 			}
4778 		} else {
4779 			btrfs_mark_buffer_dirty(leaf);
4780 		}
4781 	}
4782 	return ret;
4783 }
4784 
4785 /*
4786  * search the tree again to find a leaf with lesser keys
4787  * returns 0 if it found something or 1 if there are no lesser leaves.
4788  * returns < 0 on io errors.
4789  *
4790  * This may release the path, and so you may lose any locks held at the
4791  * time you call it.
4792  */
4793 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4794 {
4795 	struct btrfs_key key;
4796 	struct btrfs_disk_key found_key;
4797 	int ret;
4798 
4799 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4800 
4801 	if (key.offset > 0)
4802 		key.offset--;
4803 	else if (key.type > 0)
4804 		key.type--;
4805 	else if (key.objectid > 0)
4806 		key.objectid--;
4807 	else
4808 		return 1;
4809 
4810 	btrfs_release_path(path);
4811 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4812 	if (ret < 0)
4813 		return ret;
4814 	btrfs_item_key(path->nodes[0], &found_key, 0);
4815 	ret = comp_keys(&found_key, &key);
4816 	if (ret < 0)
4817 		return 0;
4818 	return 1;
4819 }
4820 
4821 /*
4822  * A helper function to walk down the tree starting at min_key, and looking
4823  * for nodes or leaves that are have a minimum transaction id.
4824  * This is used by the btree defrag code, and tree logging
4825  *
4826  * This does not cow, but it does stuff the starting key it finds back
4827  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4828  * key and get a writable path.
4829  *
4830  * This does lock as it descends, and path->keep_locks should be set
4831  * to 1 by the caller.
4832  *
4833  * This honors path->lowest_level to prevent descent past a given level
4834  * of the tree.
4835  *
4836  * min_trans indicates the oldest transaction that you are interested
4837  * in walking through.  Any nodes or leaves older than min_trans are
4838  * skipped over (without reading them).
4839  *
4840  * returns zero if something useful was found, < 0 on error and 1 if there
4841  * was nothing in the tree that matched the search criteria.
4842  */
4843 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4844 			 struct btrfs_key *max_key,
4845 			 struct btrfs_path *path,
4846 			 u64 min_trans)
4847 {
4848 	struct extent_buffer *cur;
4849 	struct btrfs_key found_key;
4850 	int slot;
4851 	int sret;
4852 	u32 nritems;
4853 	int level;
4854 	int ret = 1;
4855 
4856 	WARN_ON(!path->keep_locks);
4857 again:
4858 	cur = btrfs_read_lock_root_node(root);
4859 	level = btrfs_header_level(cur);
4860 	WARN_ON(path->nodes[level]);
4861 	path->nodes[level] = cur;
4862 	path->locks[level] = BTRFS_READ_LOCK;
4863 
4864 	if (btrfs_header_generation(cur) < min_trans) {
4865 		ret = 1;
4866 		goto out;
4867 	}
4868 	while (1) {
4869 		nritems = btrfs_header_nritems(cur);
4870 		level = btrfs_header_level(cur);
4871 		sret = bin_search(cur, min_key, level, &slot);
4872 
4873 		/* at the lowest level, we're done, setup the path and exit */
4874 		if (level == path->lowest_level) {
4875 			if (slot >= nritems)
4876 				goto find_next_key;
4877 			ret = 0;
4878 			path->slots[level] = slot;
4879 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4880 			goto out;
4881 		}
4882 		if (sret && slot > 0)
4883 			slot--;
4884 		/*
4885 		 * check this node pointer against the min_trans parameters.
4886 		 * If it is too old, old, skip to the next one.
4887 		 */
4888 		while (slot < nritems) {
4889 			u64 blockptr;
4890 			u64 gen;
4891 
4892 			blockptr = btrfs_node_blockptr(cur, slot);
4893 			gen = btrfs_node_ptr_generation(cur, slot);
4894 			if (gen < min_trans) {
4895 				slot++;
4896 				continue;
4897 			}
4898 			break;
4899 		}
4900 find_next_key:
4901 		/*
4902 		 * we didn't find a candidate key in this node, walk forward
4903 		 * and find another one
4904 		 */
4905 		if (slot >= nritems) {
4906 			path->slots[level] = slot;
4907 			btrfs_set_path_blocking(path);
4908 			sret = btrfs_find_next_key(root, path, min_key, level,
4909 						  min_trans);
4910 			if (sret == 0) {
4911 				btrfs_release_path(path);
4912 				goto again;
4913 			} else {
4914 				goto out;
4915 			}
4916 		}
4917 		/* save our key for returning back */
4918 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4919 		path->slots[level] = slot;
4920 		if (level == path->lowest_level) {
4921 			ret = 0;
4922 			unlock_up(path, level, 1, 0, NULL);
4923 			goto out;
4924 		}
4925 		btrfs_set_path_blocking(path);
4926 		cur = read_node_slot(root, cur, slot);
4927 		BUG_ON(!cur); /* -ENOMEM */
4928 
4929 		btrfs_tree_read_lock(cur);
4930 
4931 		path->locks[level - 1] = BTRFS_READ_LOCK;
4932 		path->nodes[level - 1] = cur;
4933 		unlock_up(path, level, 1, 0, NULL);
4934 		btrfs_clear_path_blocking(path, NULL, 0);
4935 	}
4936 out:
4937 	if (ret == 0)
4938 		memcpy(min_key, &found_key, sizeof(found_key));
4939 	btrfs_set_path_blocking(path);
4940 	return ret;
4941 }
4942 
4943 static void tree_move_down(struct btrfs_root *root,
4944 			   struct btrfs_path *path,
4945 			   int *level, int root_level)
4946 {
4947 	BUG_ON(*level == 0);
4948 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4949 					path->slots[*level]);
4950 	path->slots[*level - 1] = 0;
4951 	(*level)--;
4952 }
4953 
4954 static int tree_move_next_or_upnext(struct btrfs_root *root,
4955 				    struct btrfs_path *path,
4956 				    int *level, int root_level)
4957 {
4958 	int ret = 0;
4959 	int nritems;
4960 	nritems = btrfs_header_nritems(path->nodes[*level]);
4961 
4962 	path->slots[*level]++;
4963 
4964 	while (path->slots[*level] >= nritems) {
4965 		if (*level == root_level)
4966 			return -1;
4967 
4968 		/* move upnext */
4969 		path->slots[*level] = 0;
4970 		free_extent_buffer(path->nodes[*level]);
4971 		path->nodes[*level] = NULL;
4972 		(*level)++;
4973 		path->slots[*level]++;
4974 
4975 		nritems = btrfs_header_nritems(path->nodes[*level]);
4976 		ret = 1;
4977 	}
4978 	return ret;
4979 }
4980 
4981 /*
4982  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
4983  * or down.
4984  */
4985 static int tree_advance(struct btrfs_root *root,
4986 			struct btrfs_path *path,
4987 			int *level, int root_level,
4988 			int allow_down,
4989 			struct btrfs_key *key)
4990 {
4991 	int ret;
4992 
4993 	if (*level == 0 || !allow_down) {
4994 		ret = tree_move_next_or_upnext(root, path, level, root_level);
4995 	} else {
4996 		tree_move_down(root, path, level, root_level);
4997 		ret = 0;
4998 	}
4999 	if (ret >= 0) {
5000 		if (*level == 0)
5001 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5002 					path->slots[*level]);
5003 		else
5004 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5005 					path->slots[*level]);
5006 	}
5007 	return ret;
5008 }
5009 
5010 static int tree_compare_item(struct btrfs_root *left_root,
5011 			     struct btrfs_path *left_path,
5012 			     struct btrfs_path *right_path,
5013 			     char *tmp_buf)
5014 {
5015 	int cmp;
5016 	int len1, len2;
5017 	unsigned long off1, off2;
5018 
5019 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5020 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5021 	if (len1 != len2)
5022 		return 1;
5023 
5024 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5025 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5026 				right_path->slots[0]);
5027 
5028 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5029 
5030 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5031 	if (cmp)
5032 		return 1;
5033 	return 0;
5034 }
5035 
5036 #define ADVANCE 1
5037 #define ADVANCE_ONLY_NEXT -1
5038 
5039 /*
5040  * This function compares two trees and calls the provided callback for
5041  * every changed/new/deleted item it finds.
5042  * If shared tree blocks are encountered, whole subtrees are skipped, making
5043  * the compare pretty fast on snapshotted subvolumes.
5044  *
5045  * This currently works on commit roots only. As commit roots are read only,
5046  * we don't do any locking. The commit roots are protected with transactions.
5047  * Transactions are ended and rejoined when a commit is tried in between.
5048  *
5049  * This function checks for modifications done to the trees while comparing.
5050  * If it detects a change, it aborts immediately.
5051  */
5052 int btrfs_compare_trees(struct btrfs_root *left_root,
5053 			struct btrfs_root *right_root,
5054 			btrfs_changed_cb_t changed_cb, void *ctx)
5055 {
5056 	int ret;
5057 	int cmp;
5058 	struct btrfs_trans_handle *trans = NULL;
5059 	struct btrfs_path *left_path = NULL;
5060 	struct btrfs_path *right_path = NULL;
5061 	struct btrfs_key left_key;
5062 	struct btrfs_key right_key;
5063 	char *tmp_buf = NULL;
5064 	int left_root_level;
5065 	int right_root_level;
5066 	int left_level;
5067 	int right_level;
5068 	int left_end_reached;
5069 	int right_end_reached;
5070 	int advance_left;
5071 	int advance_right;
5072 	u64 left_blockptr;
5073 	u64 right_blockptr;
5074 	u64 left_start_ctransid;
5075 	u64 right_start_ctransid;
5076 	u64 ctransid;
5077 
5078 	left_path = btrfs_alloc_path();
5079 	if (!left_path) {
5080 		ret = -ENOMEM;
5081 		goto out;
5082 	}
5083 	right_path = btrfs_alloc_path();
5084 	if (!right_path) {
5085 		ret = -ENOMEM;
5086 		goto out;
5087 	}
5088 
5089 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5090 	if (!tmp_buf) {
5091 		ret = -ENOMEM;
5092 		goto out;
5093 	}
5094 
5095 	left_path->search_commit_root = 1;
5096 	left_path->skip_locking = 1;
5097 	right_path->search_commit_root = 1;
5098 	right_path->skip_locking = 1;
5099 
5100 	spin_lock(&left_root->root_item_lock);
5101 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5102 	spin_unlock(&left_root->root_item_lock);
5103 
5104 	spin_lock(&right_root->root_item_lock);
5105 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5106 	spin_unlock(&right_root->root_item_lock);
5107 
5108 	trans = btrfs_join_transaction(left_root);
5109 	if (IS_ERR(trans)) {
5110 		ret = PTR_ERR(trans);
5111 		trans = NULL;
5112 		goto out;
5113 	}
5114 
5115 	/*
5116 	 * Strategy: Go to the first items of both trees. Then do
5117 	 *
5118 	 * If both trees are at level 0
5119 	 *   Compare keys of current items
5120 	 *     If left < right treat left item as new, advance left tree
5121 	 *       and repeat
5122 	 *     If left > right treat right item as deleted, advance right tree
5123 	 *       and repeat
5124 	 *     If left == right do deep compare of items, treat as changed if
5125 	 *       needed, advance both trees and repeat
5126 	 * If both trees are at the same level but not at level 0
5127 	 *   Compare keys of current nodes/leafs
5128 	 *     If left < right advance left tree and repeat
5129 	 *     If left > right advance right tree and repeat
5130 	 *     If left == right compare blockptrs of the next nodes/leafs
5131 	 *       If they match advance both trees but stay at the same level
5132 	 *         and repeat
5133 	 *       If they don't match advance both trees while allowing to go
5134 	 *         deeper and repeat
5135 	 * If tree levels are different
5136 	 *   Advance the tree that needs it and repeat
5137 	 *
5138 	 * Advancing a tree means:
5139 	 *   If we are at level 0, try to go to the next slot. If that's not
5140 	 *   possible, go one level up and repeat. Stop when we found a level
5141 	 *   where we could go to the next slot. We may at this point be on a
5142 	 *   node or a leaf.
5143 	 *
5144 	 *   If we are not at level 0 and not on shared tree blocks, go one
5145 	 *   level deeper.
5146 	 *
5147 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5148 	 *   the right if possible or go up and right.
5149 	 */
5150 
5151 	left_level = btrfs_header_level(left_root->commit_root);
5152 	left_root_level = left_level;
5153 	left_path->nodes[left_level] = left_root->commit_root;
5154 	extent_buffer_get(left_path->nodes[left_level]);
5155 
5156 	right_level = btrfs_header_level(right_root->commit_root);
5157 	right_root_level = right_level;
5158 	right_path->nodes[right_level] = right_root->commit_root;
5159 	extent_buffer_get(right_path->nodes[right_level]);
5160 
5161 	if (left_level == 0)
5162 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5163 				&left_key, left_path->slots[left_level]);
5164 	else
5165 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5166 				&left_key, left_path->slots[left_level]);
5167 	if (right_level == 0)
5168 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5169 				&right_key, right_path->slots[right_level]);
5170 	else
5171 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5172 				&right_key, right_path->slots[right_level]);
5173 
5174 	left_end_reached = right_end_reached = 0;
5175 	advance_left = advance_right = 0;
5176 
5177 	while (1) {
5178 		/*
5179 		 * We need to make sure the transaction does not get committed
5180 		 * while we do anything on commit roots. This means, we need to
5181 		 * join and leave transactions for every item that we process.
5182 		 */
5183 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5184 			btrfs_release_path(left_path);
5185 			btrfs_release_path(right_path);
5186 
5187 			ret = btrfs_end_transaction(trans, left_root);
5188 			trans = NULL;
5189 			if (ret < 0)
5190 				goto out;
5191 		}
5192 		/* now rejoin the transaction */
5193 		if (!trans) {
5194 			trans = btrfs_join_transaction(left_root);
5195 			if (IS_ERR(trans)) {
5196 				ret = PTR_ERR(trans);
5197 				trans = NULL;
5198 				goto out;
5199 			}
5200 
5201 			spin_lock(&left_root->root_item_lock);
5202 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5203 			spin_unlock(&left_root->root_item_lock);
5204 			if (ctransid != left_start_ctransid)
5205 				left_start_ctransid = 0;
5206 
5207 			spin_lock(&right_root->root_item_lock);
5208 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5209 			spin_unlock(&right_root->root_item_lock);
5210 			if (ctransid != right_start_ctransid)
5211 				right_start_ctransid = 0;
5212 
5213 			if (!left_start_ctransid || !right_start_ctransid) {
5214 				WARN(1, KERN_WARNING
5215 					"btrfs: btrfs_compare_tree detected "
5216 					"a change in one of the trees while "
5217 					"iterating. This is probably a "
5218 					"bug.\n");
5219 				ret = -EIO;
5220 				goto out;
5221 			}
5222 
5223 			/*
5224 			 * the commit root may have changed, so start again
5225 			 * where we stopped
5226 			 */
5227 			left_path->lowest_level = left_level;
5228 			right_path->lowest_level = right_level;
5229 			ret = btrfs_search_slot(NULL, left_root,
5230 					&left_key, left_path, 0, 0);
5231 			if (ret < 0)
5232 				goto out;
5233 			ret = btrfs_search_slot(NULL, right_root,
5234 					&right_key, right_path, 0, 0);
5235 			if (ret < 0)
5236 				goto out;
5237 		}
5238 
5239 		if (advance_left && !left_end_reached) {
5240 			ret = tree_advance(left_root, left_path, &left_level,
5241 					left_root_level,
5242 					advance_left != ADVANCE_ONLY_NEXT,
5243 					&left_key);
5244 			if (ret < 0)
5245 				left_end_reached = ADVANCE;
5246 			advance_left = 0;
5247 		}
5248 		if (advance_right && !right_end_reached) {
5249 			ret = tree_advance(right_root, right_path, &right_level,
5250 					right_root_level,
5251 					advance_right != ADVANCE_ONLY_NEXT,
5252 					&right_key);
5253 			if (ret < 0)
5254 				right_end_reached = ADVANCE;
5255 			advance_right = 0;
5256 		}
5257 
5258 		if (left_end_reached && right_end_reached) {
5259 			ret = 0;
5260 			goto out;
5261 		} else if (left_end_reached) {
5262 			if (right_level == 0) {
5263 				ret = changed_cb(left_root, right_root,
5264 						left_path, right_path,
5265 						&right_key,
5266 						BTRFS_COMPARE_TREE_DELETED,
5267 						ctx);
5268 				if (ret < 0)
5269 					goto out;
5270 			}
5271 			advance_right = ADVANCE;
5272 			continue;
5273 		} else if (right_end_reached) {
5274 			if (left_level == 0) {
5275 				ret = changed_cb(left_root, right_root,
5276 						left_path, right_path,
5277 						&left_key,
5278 						BTRFS_COMPARE_TREE_NEW,
5279 						ctx);
5280 				if (ret < 0)
5281 					goto out;
5282 			}
5283 			advance_left = ADVANCE;
5284 			continue;
5285 		}
5286 
5287 		if (left_level == 0 && right_level == 0) {
5288 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5289 			if (cmp < 0) {
5290 				ret = changed_cb(left_root, right_root,
5291 						left_path, right_path,
5292 						&left_key,
5293 						BTRFS_COMPARE_TREE_NEW,
5294 						ctx);
5295 				if (ret < 0)
5296 					goto out;
5297 				advance_left = ADVANCE;
5298 			} else if (cmp > 0) {
5299 				ret = changed_cb(left_root, right_root,
5300 						left_path, right_path,
5301 						&right_key,
5302 						BTRFS_COMPARE_TREE_DELETED,
5303 						ctx);
5304 				if (ret < 0)
5305 					goto out;
5306 				advance_right = ADVANCE;
5307 			} else {
5308 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5309 				ret = tree_compare_item(left_root, left_path,
5310 						right_path, tmp_buf);
5311 				if (ret) {
5312 					WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5313 					ret = changed_cb(left_root, right_root,
5314 						left_path, right_path,
5315 						&left_key,
5316 						BTRFS_COMPARE_TREE_CHANGED,
5317 						ctx);
5318 					if (ret < 0)
5319 						goto out;
5320 				}
5321 				advance_left = ADVANCE;
5322 				advance_right = ADVANCE;
5323 			}
5324 		} else if (left_level == right_level) {
5325 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5326 			if (cmp < 0) {
5327 				advance_left = ADVANCE;
5328 			} else if (cmp > 0) {
5329 				advance_right = ADVANCE;
5330 			} else {
5331 				left_blockptr = btrfs_node_blockptr(
5332 						left_path->nodes[left_level],
5333 						left_path->slots[left_level]);
5334 				right_blockptr = btrfs_node_blockptr(
5335 						right_path->nodes[right_level],
5336 						right_path->slots[right_level]);
5337 				if (left_blockptr == right_blockptr) {
5338 					/*
5339 					 * As we're on a shared block, don't
5340 					 * allow to go deeper.
5341 					 */
5342 					advance_left = ADVANCE_ONLY_NEXT;
5343 					advance_right = ADVANCE_ONLY_NEXT;
5344 				} else {
5345 					advance_left = ADVANCE;
5346 					advance_right = ADVANCE;
5347 				}
5348 			}
5349 		} else if (left_level < right_level) {
5350 			advance_right = ADVANCE;
5351 		} else {
5352 			advance_left = ADVANCE;
5353 		}
5354 	}
5355 
5356 out:
5357 	btrfs_free_path(left_path);
5358 	btrfs_free_path(right_path);
5359 	kfree(tmp_buf);
5360 
5361 	if (trans) {
5362 		if (!ret)
5363 			ret = btrfs_end_transaction(trans, left_root);
5364 		else
5365 			btrfs_end_transaction(trans, left_root);
5366 	}
5367 
5368 	return ret;
5369 }
5370 
5371 /*
5372  * this is similar to btrfs_next_leaf, but does not try to preserve
5373  * and fixup the path.  It looks for and returns the next key in the
5374  * tree based on the current path and the min_trans parameters.
5375  *
5376  * 0 is returned if another key is found, < 0 if there are any errors
5377  * and 1 is returned if there are no higher keys in the tree
5378  *
5379  * path->keep_locks should be set to 1 on the search made before
5380  * calling this function.
5381  */
5382 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5383 			struct btrfs_key *key, int level, u64 min_trans)
5384 {
5385 	int slot;
5386 	struct extent_buffer *c;
5387 
5388 	WARN_ON(!path->keep_locks);
5389 	while (level < BTRFS_MAX_LEVEL) {
5390 		if (!path->nodes[level])
5391 			return 1;
5392 
5393 		slot = path->slots[level] + 1;
5394 		c = path->nodes[level];
5395 next:
5396 		if (slot >= btrfs_header_nritems(c)) {
5397 			int ret;
5398 			int orig_lowest;
5399 			struct btrfs_key cur_key;
5400 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5401 			    !path->nodes[level + 1])
5402 				return 1;
5403 
5404 			if (path->locks[level + 1]) {
5405 				level++;
5406 				continue;
5407 			}
5408 
5409 			slot = btrfs_header_nritems(c) - 1;
5410 			if (level == 0)
5411 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5412 			else
5413 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5414 
5415 			orig_lowest = path->lowest_level;
5416 			btrfs_release_path(path);
5417 			path->lowest_level = level;
5418 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5419 						0, 0);
5420 			path->lowest_level = orig_lowest;
5421 			if (ret < 0)
5422 				return ret;
5423 
5424 			c = path->nodes[level];
5425 			slot = path->slots[level];
5426 			if (ret == 0)
5427 				slot++;
5428 			goto next;
5429 		}
5430 
5431 		if (level == 0)
5432 			btrfs_item_key_to_cpu(c, key, slot);
5433 		else {
5434 			u64 gen = btrfs_node_ptr_generation(c, slot);
5435 
5436 			if (gen < min_trans) {
5437 				slot++;
5438 				goto next;
5439 			}
5440 			btrfs_node_key_to_cpu(c, key, slot);
5441 		}
5442 		return 0;
5443 	}
5444 	return 1;
5445 }
5446 
5447 /*
5448  * search the tree again to find a leaf with greater keys
5449  * returns 0 if it found something or 1 if there are no greater leaves.
5450  * returns < 0 on io errors.
5451  */
5452 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5453 {
5454 	return btrfs_next_old_leaf(root, path, 0);
5455 }
5456 
5457 /* Release the path up to but not including the given level */
5458 static void btrfs_release_level(struct btrfs_path *path, int level)
5459 {
5460 	int i;
5461 
5462 	for (i = 0; i < level; i++) {
5463 		path->slots[i] = 0;
5464 		if (!path->nodes[i])
5465 			continue;
5466 		if (path->locks[i]) {
5467 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
5468 			path->locks[i] = 0;
5469 		}
5470 		free_extent_buffer(path->nodes[i]);
5471 		path->nodes[i] = NULL;
5472 	}
5473 }
5474 
5475 /*
5476  * This function assumes 2 things
5477  *
5478  * 1) You are using path->keep_locks
5479  * 2) You are not inserting items.
5480  *
5481  * If either of these are not true do not use this function. If you need a next
5482  * leaf with either of these not being true then this function can be easily
5483  * adapted to do that, but at the moment these are the limitations.
5484  */
5485 int btrfs_next_leaf_write(struct btrfs_trans_handle *trans,
5486 			  struct btrfs_root *root, struct btrfs_path *path,
5487 			  int del)
5488 {
5489 	struct extent_buffer *b;
5490 	struct btrfs_key key;
5491 	u32 nritems;
5492 	int level = 1;
5493 	int slot;
5494 	int ret = 1;
5495 	int write_lock_level = BTRFS_MAX_LEVEL;
5496 	int ins_len = del ? -1 : 0;
5497 
5498 	WARN_ON(!(path->keep_locks || path->really_keep_locks));
5499 
5500 	nritems = btrfs_header_nritems(path->nodes[0]);
5501 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5502 
5503 	while (path->nodes[level]) {
5504 		nritems = btrfs_header_nritems(path->nodes[level]);
5505 		if (!(path->locks[level] & BTRFS_WRITE_LOCK)) {
5506 search:
5507 			btrfs_release_path(path);
5508 			ret = btrfs_search_slot(trans, root, &key, path,
5509 						ins_len, 1);
5510 			if (ret < 0)
5511 				goto out;
5512 			level = 1;
5513 			continue;
5514 		}
5515 
5516 		if (path->slots[level] >= nritems - 1) {
5517 			level++;
5518 			continue;
5519 		}
5520 
5521 		btrfs_release_level(path, level);
5522 		break;
5523 	}
5524 
5525 	if (!path->nodes[level]) {
5526 		ret = 1;
5527 		goto out;
5528 	}
5529 
5530 	path->slots[level]++;
5531 	b = path->nodes[level];
5532 
5533 	while (b) {
5534 		level = btrfs_header_level(b);
5535 
5536 		if (!should_cow_block(trans, root, b))
5537 			goto cow_done;
5538 
5539 		btrfs_set_path_blocking(path);
5540 		ret = btrfs_cow_block(trans, root, b,
5541 				      path->nodes[level + 1],
5542 				      path->slots[level + 1], &b);
5543 		if (ret)
5544 			goto out;
5545 cow_done:
5546 		path->nodes[level] = b;
5547 		btrfs_clear_path_blocking(path, NULL, 0);
5548 		if (level != 0) {
5549 			ret = setup_nodes_for_search(trans, root, path, b,
5550 						     level, ins_len,
5551 						     &write_lock_level);
5552 			if (ret == -EAGAIN)
5553 				goto search;
5554 			if (ret)
5555 				goto out;
5556 
5557 			b = path->nodes[level];
5558 			slot = path->slots[level];
5559 
5560 			ret = read_block_for_search(trans, root, path,
5561 						    &b, level, slot, &key, 0);
5562 			if (ret == -EAGAIN)
5563 				goto search;
5564 			if (ret)
5565 				goto out;
5566 			level = btrfs_header_level(b);
5567 			if (!btrfs_try_tree_write_lock(b)) {
5568 				btrfs_set_path_blocking(path);
5569 				btrfs_tree_lock(b);
5570 				btrfs_clear_path_blocking(path, b,
5571 							  BTRFS_WRITE_LOCK);
5572 			}
5573 			path->locks[level] = BTRFS_WRITE_LOCK;
5574 			path->nodes[level] = b;
5575 			path->slots[level] = 0;
5576 		} else {
5577 			path->slots[level] = 0;
5578 			ret = 0;
5579 			break;
5580 		}
5581 	}
5582 
5583 out:
5584 	if (ret)
5585 		btrfs_release_path(path);
5586 
5587 	return ret;
5588 }
5589 
5590 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5591 			u64 time_seq)
5592 {
5593 	int slot;
5594 	int level;
5595 	struct extent_buffer *c;
5596 	struct extent_buffer *next;
5597 	struct btrfs_key key;
5598 	u32 nritems;
5599 	int ret;
5600 	int old_spinning = path->leave_spinning;
5601 	int next_rw_lock = 0;
5602 
5603 	nritems = btrfs_header_nritems(path->nodes[0]);
5604 	if (nritems == 0)
5605 		return 1;
5606 
5607 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5608 again:
5609 	level = 1;
5610 	next = NULL;
5611 	next_rw_lock = 0;
5612 	btrfs_release_path(path);
5613 
5614 	path->keep_locks = 1;
5615 	path->leave_spinning = 1;
5616 
5617 	if (time_seq)
5618 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5619 	else
5620 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5621 	path->keep_locks = 0;
5622 
5623 	if (ret < 0)
5624 		return ret;
5625 
5626 	nritems = btrfs_header_nritems(path->nodes[0]);
5627 	/*
5628 	 * by releasing the path above we dropped all our locks.  A balance
5629 	 * could have added more items next to the key that used to be
5630 	 * at the very end of the block.  So, check again here and
5631 	 * advance the path if there are now more items available.
5632 	 */
5633 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5634 		if (ret == 0)
5635 			path->slots[0]++;
5636 		ret = 0;
5637 		goto done;
5638 	}
5639 
5640 	while (level < BTRFS_MAX_LEVEL) {
5641 		if (!path->nodes[level]) {
5642 			ret = 1;
5643 			goto done;
5644 		}
5645 
5646 		slot = path->slots[level] + 1;
5647 		c = path->nodes[level];
5648 		if (slot >= btrfs_header_nritems(c)) {
5649 			level++;
5650 			if (level == BTRFS_MAX_LEVEL) {
5651 				ret = 1;
5652 				goto done;
5653 			}
5654 			continue;
5655 		}
5656 
5657 		if (next) {
5658 			btrfs_tree_unlock_rw(next, next_rw_lock);
5659 			free_extent_buffer(next);
5660 		}
5661 
5662 		next = c;
5663 		next_rw_lock = path->locks[level];
5664 		ret = read_block_for_search(NULL, root, path, &next, level,
5665 					    slot, &key, 0);
5666 		if (ret == -EAGAIN)
5667 			goto again;
5668 
5669 		if (ret < 0) {
5670 			btrfs_release_path(path);
5671 			goto done;
5672 		}
5673 
5674 		if (!path->skip_locking) {
5675 			ret = btrfs_try_tree_read_lock(next);
5676 			if (!ret && time_seq) {
5677 				/*
5678 				 * If we don't get the lock, we may be racing
5679 				 * with push_leaf_left, holding that lock while
5680 				 * itself waiting for the leaf we've currently
5681 				 * locked. To solve this situation, we give up
5682 				 * on our lock and cycle.
5683 				 */
5684 				free_extent_buffer(next);
5685 				btrfs_release_path(path);
5686 				cond_resched();
5687 				goto again;
5688 			}
5689 			if (!ret) {
5690 				btrfs_set_path_blocking(path);
5691 				btrfs_tree_read_lock(next);
5692 				btrfs_clear_path_blocking(path, next,
5693 							  BTRFS_READ_LOCK);
5694 			}
5695 			next_rw_lock = BTRFS_READ_LOCK;
5696 		}
5697 		break;
5698 	}
5699 	path->slots[level] = slot;
5700 	while (1) {
5701 		level--;
5702 		c = path->nodes[level];
5703 		if (path->locks[level])
5704 			btrfs_tree_unlock_rw(c, path->locks[level]);
5705 
5706 		free_extent_buffer(c);
5707 		path->nodes[level] = next;
5708 		path->slots[level] = 0;
5709 		if (!path->skip_locking)
5710 			path->locks[level] = next_rw_lock;
5711 		if (!level)
5712 			break;
5713 
5714 		ret = read_block_for_search(NULL, root, path, &next, level,
5715 					    0, &key, 0);
5716 		if (ret == -EAGAIN)
5717 			goto again;
5718 
5719 		if (ret < 0) {
5720 			btrfs_release_path(path);
5721 			goto done;
5722 		}
5723 
5724 		if (!path->skip_locking) {
5725 			ret = btrfs_try_tree_read_lock(next);
5726 			if (!ret) {
5727 				btrfs_set_path_blocking(path);
5728 				btrfs_tree_read_lock(next);
5729 				btrfs_clear_path_blocking(path, next,
5730 							  BTRFS_READ_LOCK);
5731 			}
5732 			next_rw_lock = BTRFS_READ_LOCK;
5733 		}
5734 	}
5735 	ret = 0;
5736 done:
5737 	unlock_up(path, 0, 1, 0, NULL);
5738 	path->leave_spinning = old_spinning;
5739 	if (!old_spinning)
5740 		btrfs_set_path_blocking(path);
5741 
5742 	return ret;
5743 }
5744 
5745 /*
5746  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5747  * searching until it gets past min_objectid or finds an item of 'type'
5748  *
5749  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5750  */
5751 int btrfs_previous_item(struct btrfs_root *root,
5752 			struct btrfs_path *path, u64 min_objectid,
5753 			int type)
5754 {
5755 	struct btrfs_key found_key;
5756 	struct extent_buffer *leaf;
5757 	u32 nritems;
5758 	int ret;
5759 
5760 	while (1) {
5761 		if (path->slots[0] == 0) {
5762 			btrfs_set_path_blocking(path);
5763 			ret = btrfs_prev_leaf(root, path);
5764 			if (ret != 0)
5765 				return ret;
5766 		} else {
5767 			path->slots[0]--;
5768 		}
5769 		leaf = path->nodes[0];
5770 		nritems = btrfs_header_nritems(leaf);
5771 		if (nritems == 0)
5772 			return 1;
5773 		if (path->slots[0] == nritems)
5774 			path->slots[0]--;
5775 
5776 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5777 		if (found_key.objectid < min_objectid)
5778 			break;
5779 		if (found_key.type == type)
5780 			return 0;
5781 		if (found_key.objectid == min_objectid &&
5782 		    found_key.type < type)
5783 			break;
5784 	}
5785 	return 1;
5786 }
5787