1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 45 struct btrfs_path *btrfs_alloc_path(void) 46 { 47 struct btrfs_path *path; 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 return path; 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 if (held) { 84 btrfs_set_lock_blocking_rw(held, held_rw); 85 if (held_rw == BTRFS_WRITE_LOCK) 86 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 87 else if (held_rw == BTRFS_READ_LOCK) 88 held_rw = BTRFS_READ_LOCK_BLOCKING; 89 } 90 btrfs_set_path_blocking(p); 91 92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 93 if (p->nodes[i] && p->locks[i]) { 94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 96 p->locks[i] = BTRFS_WRITE_LOCK; 97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 98 p->locks[i] = BTRFS_READ_LOCK; 99 } 100 } 101 102 if (held) 103 btrfs_clear_lock_blocking_rw(held, held_rw); 104 } 105 106 /* this also releases the path */ 107 void btrfs_free_path(struct btrfs_path *p) 108 { 109 if (!p) 110 return; 111 btrfs_release_path(p); 112 kmem_cache_free(btrfs_path_cachep, p); 113 } 114 115 /* 116 * path release drops references on the extent buffers in the path 117 * and it drops any locks held by this path 118 * 119 * It is safe to call this on paths that no locks or extent buffers held. 120 */ 121 noinline void btrfs_release_path(struct btrfs_path *p) 122 { 123 int i; 124 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 126 p->slots[i] = 0; 127 if (!p->nodes[i]) 128 continue; 129 if (p->locks[i]) { 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 131 p->locks[i] = 0; 132 } 133 free_extent_buffer(p->nodes[i]); 134 p->nodes[i] = NULL; 135 } 136 } 137 138 /* 139 * safely gets a reference on the root node of a tree. A lock 140 * is not taken, so a concurrent writer may put a different node 141 * at the root of the tree. See btrfs_lock_root_node for the 142 * looping required. 143 * 144 * The extent buffer returned by this has a reference taken, so 145 * it won't disappear. It may stop being the root of the tree 146 * at any time because there are no locks held. 147 */ 148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 149 { 150 struct extent_buffer *eb; 151 152 while (1) { 153 rcu_read_lock(); 154 eb = rcu_dereference(root->node); 155 156 /* 157 * RCU really hurts here, we could free up the root node because 158 * it was cow'ed but we may not get the new root node yet so do 159 * the inc_not_zero dance and if it doesn't work then 160 * synchronize_rcu and try again. 161 */ 162 if (atomic_inc_not_zero(&eb->refs)) { 163 rcu_read_unlock(); 164 break; 165 } 166 rcu_read_unlock(); 167 synchronize_rcu(); 168 } 169 return eb; 170 } 171 172 /* loop around taking references on and locking the root node of the 173 * tree until you end up with a lock on the root. A locked buffer 174 * is returned, with a reference held. 175 */ 176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 177 { 178 struct extent_buffer *eb; 179 180 while (1) { 181 eb = btrfs_root_node(root); 182 btrfs_tree_lock(eb); 183 if (eb == root->node) 184 break; 185 btrfs_tree_unlock(eb); 186 free_extent_buffer(eb); 187 } 188 return eb; 189 } 190 191 /* loop around taking references on and locking the root node of the 192 * tree until you end up with a lock on the root. A locked buffer 193 * is returned, with a reference held. 194 */ 195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 196 { 197 struct extent_buffer *eb; 198 199 while (1) { 200 eb = btrfs_root_node(root); 201 btrfs_tree_read_lock(eb); 202 if (eb == root->node) 203 break; 204 btrfs_tree_read_unlock(eb); 205 free_extent_buffer(eb); 206 } 207 return eb; 208 } 209 210 /* cowonly root (everything not a reference counted cow subvolume), just get 211 * put onto a simple dirty list. transaction.c walks this to make sure they 212 * get properly updated on disk. 213 */ 214 static void add_root_to_dirty_list(struct btrfs_root *root) 215 { 216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 218 return; 219 220 spin_lock(&root->fs_info->trans_lock); 221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 222 /* Want the extent tree to be the last on the list */ 223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 224 list_move_tail(&root->dirty_list, 225 &root->fs_info->dirty_cowonly_roots); 226 else 227 list_move(&root->dirty_list, 228 &root->fs_info->dirty_cowonly_roots); 229 } 230 spin_unlock(&root->fs_info->trans_lock); 231 } 232 233 /* 234 * used by snapshot creation to make a copy of a root for a tree with 235 * a given objectid. The buffer with the new root node is returned in 236 * cow_ret, and this func returns zero on success or a negative error code. 237 */ 238 int btrfs_copy_root(struct btrfs_trans_handle *trans, 239 struct btrfs_root *root, 240 struct extent_buffer *buf, 241 struct extent_buffer **cow_ret, u64 new_root_objectid) 242 { 243 struct extent_buffer *cow; 244 int ret = 0; 245 int level; 246 struct btrfs_disk_key disk_key; 247 248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 249 trans->transid != root->fs_info->running_transaction->transid); 250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 251 trans->transid != root->last_trans); 252 253 level = btrfs_header_level(buf); 254 if (level == 0) 255 btrfs_item_key(buf, &disk_key, 0); 256 else 257 btrfs_node_key(buf, &disk_key, 0); 258 259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 260 &disk_key, level, buf->start, 0); 261 if (IS_ERR(cow)) 262 return PTR_ERR(cow); 263 264 copy_extent_buffer(cow, buf, 0, 0, cow->len); 265 btrfs_set_header_bytenr(cow, cow->start); 266 btrfs_set_header_generation(cow, trans->transid); 267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 269 BTRFS_HEADER_FLAG_RELOC); 270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 272 else 273 btrfs_set_header_owner(cow, new_root_objectid); 274 275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 276 BTRFS_FSID_SIZE); 277 278 WARN_ON(btrfs_header_generation(buf) > trans->transid); 279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 280 ret = btrfs_inc_ref(trans, root, cow, 1); 281 else 282 ret = btrfs_inc_ref(trans, root, cow, 0); 283 284 if (ret) 285 return ret; 286 287 btrfs_mark_buffer_dirty(cow); 288 *cow_ret = cow; 289 return 0; 290 } 291 292 enum mod_log_op { 293 MOD_LOG_KEY_REPLACE, 294 MOD_LOG_KEY_ADD, 295 MOD_LOG_KEY_REMOVE, 296 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 297 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 298 MOD_LOG_MOVE_KEYS, 299 MOD_LOG_ROOT_REPLACE, 300 }; 301 302 struct tree_mod_move { 303 int dst_slot; 304 int nr_items; 305 }; 306 307 struct tree_mod_root { 308 u64 logical; 309 u8 level; 310 }; 311 312 struct tree_mod_elem { 313 struct rb_node node; 314 u64 logical; 315 u64 seq; 316 enum mod_log_op op; 317 318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 319 int slot; 320 321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 322 u64 generation; 323 324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 325 struct btrfs_disk_key key; 326 u64 blockptr; 327 328 /* this is used for op == MOD_LOG_MOVE_KEYS */ 329 struct tree_mod_move move; 330 331 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 332 struct tree_mod_root old_root; 333 }; 334 335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 336 { 337 read_lock(&fs_info->tree_mod_log_lock); 338 } 339 340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 341 { 342 read_unlock(&fs_info->tree_mod_log_lock); 343 } 344 345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 346 { 347 write_lock(&fs_info->tree_mod_log_lock); 348 } 349 350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 351 { 352 write_unlock(&fs_info->tree_mod_log_lock); 353 } 354 355 /* 356 * Pull a new tree mod seq number for our operation. 357 */ 358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 359 { 360 return atomic64_inc_return(&fs_info->tree_mod_seq); 361 } 362 363 /* 364 * This adds a new blocker to the tree mod log's blocker list if the @elem 365 * passed does not already have a sequence number set. So when a caller expects 366 * to record tree modifications, it should ensure to set elem->seq to zero 367 * before calling btrfs_get_tree_mod_seq. 368 * Returns a fresh, unused tree log modification sequence number, even if no new 369 * blocker was added. 370 */ 371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 372 struct seq_list *elem) 373 { 374 tree_mod_log_write_lock(fs_info); 375 spin_lock(&fs_info->tree_mod_seq_lock); 376 if (!elem->seq) { 377 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 379 } 380 spin_unlock(&fs_info->tree_mod_seq_lock); 381 tree_mod_log_write_unlock(fs_info); 382 383 return elem->seq; 384 } 385 386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 387 struct seq_list *elem) 388 { 389 struct rb_root *tm_root; 390 struct rb_node *node; 391 struct rb_node *next; 392 struct seq_list *cur_elem; 393 struct tree_mod_elem *tm; 394 u64 min_seq = (u64)-1; 395 u64 seq_putting = elem->seq; 396 397 if (!seq_putting) 398 return; 399 400 spin_lock(&fs_info->tree_mod_seq_lock); 401 list_del(&elem->list); 402 elem->seq = 0; 403 404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 405 if (cur_elem->seq < min_seq) { 406 if (seq_putting > cur_elem->seq) { 407 /* 408 * blocker with lower sequence number exists, we 409 * cannot remove anything from the log 410 */ 411 spin_unlock(&fs_info->tree_mod_seq_lock); 412 return; 413 } 414 min_seq = cur_elem->seq; 415 } 416 } 417 spin_unlock(&fs_info->tree_mod_seq_lock); 418 419 /* 420 * anything that's lower than the lowest existing (read: blocked) 421 * sequence number can be removed from the tree. 422 */ 423 tree_mod_log_write_lock(fs_info); 424 tm_root = &fs_info->tree_mod_log; 425 for (node = rb_first(tm_root); node; node = next) { 426 next = rb_next(node); 427 tm = container_of(node, struct tree_mod_elem, node); 428 if (tm->seq > min_seq) 429 continue; 430 rb_erase(node, tm_root); 431 kfree(tm); 432 } 433 tree_mod_log_write_unlock(fs_info); 434 } 435 436 /* 437 * key order of the log: 438 * node/leaf start address -> sequence 439 * 440 * The 'start address' is the logical address of the *new* root node 441 * for root replace operations, or the logical address of the affected 442 * block for all other operations. 443 * 444 * Note: must be called with write lock (tree_mod_log_write_lock). 445 */ 446 static noinline int 447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 448 { 449 struct rb_root *tm_root; 450 struct rb_node **new; 451 struct rb_node *parent = NULL; 452 struct tree_mod_elem *cur; 453 454 BUG_ON(!tm); 455 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 457 458 tm_root = &fs_info->tree_mod_log; 459 new = &tm_root->rb_node; 460 while (*new) { 461 cur = container_of(*new, struct tree_mod_elem, node); 462 parent = *new; 463 if (cur->logical < tm->logical) 464 new = &((*new)->rb_left); 465 else if (cur->logical > tm->logical) 466 new = &((*new)->rb_right); 467 else if (cur->seq < tm->seq) 468 new = &((*new)->rb_left); 469 else if (cur->seq > tm->seq) 470 new = &((*new)->rb_right); 471 else 472 return -EEXIST; 473 } 474 475 rb_link_node(&tm->node, parent, new); 476 rb_insert_color(&tm->node, tm_root); 477 return 0; 478 } 479 480 /* 481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 482 * returns zero with the tree_mod_log_lock acquired. The caller must hold 483 * this until all tree mod log insertions are recorded in the rb tree and then 484 * call tree_mod_log_write_unlock() to release. 485 */ 486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 487 struct extent_buffer *eb) { 488 smp_mb(); 489 if (list_empty(&(fs_info)->tree_mod_seq_list)) 490 return 1; 491 if (eb && btrfs_header_level(eb) == 0) 492 return 1; 493 494 tree_mod_log_write_lock(fs_info); 495 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 496 tree_mod_log_write_unlock(fs_info); 497 return 1; 498 } 499 500 return 0; 501 } 502 503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 505 struct extent_buffer *eb) 506 { 507 smp_mb(); 508 if (list_empty(&(fs_info)->tree_mod_seq_list)) 509 return 0; 510 if (eb && btrfs_header_level(eb) == 0) 511 return 0; 512 513 return 1; 514 } 515 516 static struct tree_mod_elem * 517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 518 enum mod_log_op op, gfp_t flags) 519 { 520 struct tree_mod_elem *tm; 521 522 tm = kzalloc(sizeof(*tm), flags); 523 if (!tm) 524 return NULL; 525 526 tm->logical = eb->start; 527 if (op != MOD_LOG_KEY_ADD) { 528 btrfs_node_key(eb, &tm->key, slot); 529 tm->blockptr = btrfs_node_blockptr(eb, slot); 530 } 531 tm->op = op; 532 tm->slot = slot; 533 tm->generation = btrfs_node_ptr_generation(eb, slot); 534 RB_CLEAR_NODE(&tm->node); 535 536 return tm; 537 } 538 539 static noinline int 540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 541 struct extent_buffer *eb, int slot, 542 enum mod_log_op op, gfp_t flags) 543 { 544 struct tree_mod_elem *tm; 545 int ret; 546 547 if (!tree_mod_need_log(fs_info, eb)) 548 return 0; 549 550 tm = alloc_tree_mod_elem(eb, slot, op, flags); 551 if (!tm) 552 return -ENOMEM; 553 554 if (tree_mod_dont_log(fs_info, eb)) { 555 kfree(tm); 556 return 0; 557 } 558 559 ret = __tree_mod_log_insert(fs_info, tm); 560 tree_mod_log_write_unlock(fs_info); 561 if (ret) 562 kfree(tm); 563 564 return ret; 565 } 566 567 static noinline int 568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 569 struct extent_buffer *eb, int dst_slot, int src_slot, 570 int nr_items, gfp_t flags) 571 { 572 struct tree_mod_elem *tm = NULL; 573 struct tree_mod_elem **tm_list = NULL; 574 int ret = 0; 575 int i; 576 int locked = 0; 577 578 if (!tree_mod_need_log(fs_info, eb)) 579 return 0; 580 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 582 if (!tm_list) 583 return -ENOMEM; 584 585 tm = kzalloc(sizeof(*tm), flags); 586 if (!tm) { 587 ret = -ENOMEM; 588 goto free_tms; 589 } 590 591 tm->logical = eb->start; 592 tm->slot = src_slot; 593 tm->move.dst_slot = dst_slot; 594 tm->move.nr_items = nr_items; 595 tm->op = MOD_LOG_MOVE_KEYS; 596 597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 600 if (!tm_list[i]) { 601 ret = -ENOMEM; 602 goto free_tms; 603 } 604 } 605 606 if (tree_mod_dont_log(fs_info, eb)) 607 goto free_tms; 608 locked = 1; 609 610 /* 611 * When we override something during the move, we log these removals. 612 * This can only happen when we move towards the beginning of the 613 * buffer, i.e. dst_slot < src_slot. 614 */ 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 616 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 617 if (ret) 618 goto free_tms; 619 } 620 621 ret = __tree_mod_log_insert(fs_info, tm); 622 if (ret) 623 goto free_tms; 624 tree_mod_log_write_unlock(fs_info); 625 kfree(tm_list); 626 627 return 0; 628 free_tms: 629 for (i = 0; i < nr_items; i++) { 630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 632 kfree(tm_list[i]); 633 } 634 if (locked) 635 tree_mod_log_write_unlock(fs_info); 636 kfree(tm_list); 637 kfree(tm); 638 639 return ret; 640 } 641 642 static inline int 643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 644 struct tree_mod_elem **tm_list, 645 int nritems) 646 { 647 int i, j; 648 int ret; 649 650 for (i = nritems - 1; i >= 0; i--) { 651 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 652 if (ret) { 653 for (j = nritems - 1; j > i; j--) 654 rb_erase(&tm_list[j]->node, 655 &fs_info->tree_mod_log); 656 return ret; 657 } 658 } 659 660 return 0; 661 } 662 663 static noinline int 664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 665 struct extent_buffer *old_root, 666 struct extent_buffer *new_root, gfp_t flags, 667 int log_removal) 668 { 669 struct tree_mod_elem *tm = NULL; 670 struct tree_mod_elem **tm_list = NULL; 671 int nritems = 0; 672 int ret = 0; 673 int i; 674 675 if (!tree_mod_need_log(fs_info, NULL)) 676 return 0; 677 678 if (log_removal && btrfs_header_level(old_root) > 0) { 679 nritems = btrfs_header_nritems(old_root); 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 681 flags); 682 if (!tm_list) { 683 ret = -ENOMEM; 684 goto free_tms; 685 } 686 for (i = 0; i < nritems; i++) { 687 tm_list[i] = alloc_tree_mod_elem(old_root, i, 688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 689 if (!tm_list[i]) { 690 ret = -ENOMEM; 691 goto free_tms; 692 } 693 } 694 } 695 696 tm = kzalloc(sizeof(*tm), flags); 697 if (!tm) { 698 ret = -ENOMEM; 699 goto free_tms; 700 } 701 702 tm->logical = new_root->start; 703 tm->old_root.logical = old_root->start; 704 tm->old_root.level = btrfs_header_level(old_root); 705 tm->generation = btrfs_header_generation(old_root); 706 tm->op = MOD_LOG_ROOT_REPLACE; 707 708 if (tree_mod_dont_log(fs_info, NULL)) 709 goto free_tms; 710 711 if (tm_list) 712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 713 if (!ret) 714 ret = __tree_mod_log_insert(fs_info, tm); 715 716 tree_mod_log_write_unlock(fs_info); 717 if (ret) 718 goto free_tms; 719 kfree(tm_list); 720 721 return ret; 722 723 free_tms: 724 if (tm_list) { 725 for (i = 0; i < nritems; i++) 726 kfree(tm_list[i]); 727 kfree(tm_list); 728 } 729 kfree(tm); 730 731 return ret; 732 } 733 734 static struct tree_mod_elem * 735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 736 int smallest) 737 { 738 struct rb_root *tm_root; 739 struct rb_node *node; 740 struct tree_mod_elem *cur = NULL; 741 struct tree_mod_elem *found = NULL; 742 743 tree_mod_log_read_lock(fs_info); 744 tm_root = &fs_info->tree_mod_log; 745 node = tm_root->rb_node; 746 while (node) { 747 cur = container_of(node, struct tree_mod_elem, node); 748 if (cur->logical < start) { 749 node = node->rb_left; 750 } else if (cur->logical > start) { 751 node = node->rb_right; 752 } else if (cur->seq < min_seq) { 753 node = node->rb_left; 754 } else if (!smallest) { 755 /* we want the node with the highest seq */ 756 if (found) 757 BUG_ON(found->seq > cur->seq); 758 found = cur; 759 node = node->rb_left; 760 } else if (cur->seq > min_seq) { 761 /* we want the node with the smallest seq */ 762 if (found) 763 BUG_ON(found->seq < cur->seq); 764 found = cur; 765 node = node->rb_right; 766 } else { 767 found = cur; 768 break; 769 } 770 } 771 tree_mod_log_read_unlock(fs_info); 772 773 return found; 774 } 775 776 /* 777 * this returns the element from the log with the smallest time sequence 778 * value that's in the log (the oldest log item). any element with a time 779 * sequence lower than min_seq will be ignored. 780 */ 781 static struct tree_mod_elem * 782 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 783 u64 min_seq) 784 { 785 return __tree_mod_log_search(fs_info, start, min_seq, 1); 786 } 787 788 /* 789 * this returns the element from the log with the largest time sequence 790 * value that's in the log (the most recent log item). any element with 791 * a time sequence lower than min_seq will be ignored. 792 */ 793 static struct tree_mod_elem * 794 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 795 { 796 return __tree_mod_log_search(fs_info, start, min_seq, 0); 797 } 798 799 static noinline int 800 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 801 struct extent_buffer *src, unsigned long dst_offset, 802 unsigned long src_offset, int nr_items) 803 { 804 int ret = 0; 805 struct tree_mod_elem **tm_list = NULL; 806 struct tree_mod_elem **tm_list_add, **tm_list_rem; 807 int i; 808 int locked = 0; 809 810 if (!tree_mod_need_log(fs_info, NULL)) 811 return 0; 812 813 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 814 return 0; 815 816 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 817 GFP_NOFS); 818 if (!tm_list) 819 return -ENOMEM; 820 821 tm_list_add = tm_list; 822 tm_list_rem = tm_list + nr_items; 823 for (i = 0; i < nr_items; i++) { 824 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 825 MOD_LOG_KEY_REMOVE, GFP_NOFS); 826 if (!tm_list_rem[i]) { 827 ret = -ENOMEM; 828 goto free_tms; 829 } 830 831 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 832 MOD_LOG_KEY_ADD, GFP_NOFS); 833 if (!tm_list_add[i]) { 834 ret = -ENOMEM; 835 goto free_tms; 836 } 837 } 838 839 if (tree_mod_dont_log(fs_info, NULL)) 840 goto free_tms; 841 locked = 1; 842 843 for (i = 0; i < nr_items; i++) { 844 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 845 if (ret) 846 goto free_tms; 847 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 848 if (ret) 849 goto free_tms; 850 } 851 852 tree_mod_log_write_unlock(fs_info); 853 kfree(tm_list); 854 855 return 0; 856 857 free_tms: 858 for (i = 0; i < nr_items * 2; i++) { 859 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 860 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 861 kfree(tm_list[i]); 862 } 863 if (locked) 864 tree_mod_log_write_unlock(fs_info); 865 kfree(tm_list); 866 867 return ret; 868 } 869 870 static inline void 871 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 872 int dst_offset, int src_offset, int nr_items) 873 { 874 int ret; 875 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 876 nr_items, GFP_NOFS); 877 BUG_ON(ret < 0); 878 } 879 880 static noinline void 881 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 882 struct extent_buffer *eb, int slot, int atomic) 883 { 884 int ret; 885 886 ret = tree_mod_log_insert_key(fs_info, eb, slot, 887 MOD_LOG_KEY_REPLACE, 888 atomic ? GFP_ATOMIC : GFP_NOFS); 889 BUG_ON(ret < 0); 890 } 891 892 static noinline int 893 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 894 { 895 struct tree_mod_elem **tm_list = NULL; 896 int nritems = 0; 897 int i; 898 int ret = 0; 899 900 if (btrfs_header_level(eb) == 0) 901 return 0; 902 903 if (!tree_mod_need_log(fs_info, NULL)) 904 return 0; 905 906 nritems = btrfs_header_nritems(eb); 907 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 908 if (!tm_list) 909 return -ENOMEM; 910 911 for (i = 0; i < nritems; i++) { 912 tm_list[i] = alloc_tree_mod_elem(eb, i, 913 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 914 if (!tm_list[i]) { 915 ret = -ENOMEM; 916 goto free_tms; 917 } 918 } 919 920 if (tree_mod_dont_log(fs_info, eb)) 921 goto free_tms; 922 923 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 924 tree_mod_log_write_unlock(fs_info); 925 if (ret) 926 goto free_tms; 927 kfree(tm_list); 928 929 return 0; 930 931 free_tms: 932 for (i = 0; i < nritems; i++) 933 kfree(tm_list[i]); 934 kfree(tm_list); 935 936 return ret; 937 } 938 939 static noinline void 940 tree_mod_log_set_root_pointer(struct btrfs_root *root, 941 struct extent_buffer *new_root_node, 942 int log_removal) 943 { 944 int ret; 945 ret = tree_mod_log_insert_root(root->fs_info, root->node, 946 new_root_node, GFP_NOFS, log_removal); 947 BUG_ON(ret < 0); 948 } 949 950 /* 951 * check if the tree block can be shared by multiple trees 952 */ 953 int btrfs_block_can_be_shared(struct btrfs_root *root, 954 struct extent_buffer *buf) 955 { 956 /* 957 * Tree blocks not in refernece counted trees and tree roots 958 * are never shared. If a block was allocated after the last 959 * snapshot and the block was not allocated by tree relocation, 960 * we know the block is not shared. 961 */ 962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 963 buf != root->node && buf != root->commit_root && 964 (btrfs_header_generation(buf) <= 965 btrfs_root_last_snapshot(&root->root_item) || 966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 967 return 1; 968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 969 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 970 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 971 return 1; 972 #endif 973 return 0; 974 } 975 976 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 977 struct btrfs_root *root, 978 struct extent_buffer *buf, 979 struct extent_buffer *cow, 980 int *last_ref) 981 { 982 u64 refs; 983 u64 owner; 984 u64 flags; 985 u64 new_flags = 0; 986 int ret; 987 988 /* 989 * Backrefs update rules: 990 * 991 * Always use full backrefs for extent pointers in tree block 992 * allocated by tree relocation. 993 * 994 * If a shared tree block is no longer referenced by its owner 995 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 996 * use full backrefs for extent pointers in tree block. 997 * 998 * If a tree block is been relocating 999 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1000 * use full backrefs for extent pointers in tree block. 1001 * The reason for this is some operations (such as drop tree) 1002 * are only allowed for blocks use full backrefs. 1003 */ 1004 1005 if (btrfs_block_can_be_shared(root, buf)) { 1006 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1007 btrfs_header_level(buf), 1, 1008 &refs, &flags); 1009 if (ret) 1010 return ret; 1011 if (refs == 0) { 1012 ret = -EROFS; 1013 btrfs_std_error(root->fs_info, ret, NULL); 1014 return ret; 1015 } 1016 } else { 1017 refs = 1; 1018 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1019 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1020 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1021 else 1022 flags = 0; 1023 } 1024 1025 owner = btrfs_header_owner(buf); 1026 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1027 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1028 1029 if (refs > 1) { 1030 if ((owner == root->root_key.objectid || 1031 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1032 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1033 ret = btrfs_inc_ref(trans, root, buf, 1); 1034 BUG_ON(ret); /* -ENOMEM */ 1035 1036 if (root->root_key.objectid == 1037 BTRFS_TREE_RELOC_OBJECTID) { 1038 ret = btrfs_dec_ref(trans, root, buf, 0); 1039 BUG_ON(ret); /* -ENOMEM */ 1040 ret = btrfs_inc_ref(trans, root, cow, 1); 1041 BUG_ON(ret); /* -ENOMEM */ 1042 } 1043 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1044 } else { 1045 1046 if (root->root_key.objectid == 1047 BTRFS_TREE_RELOC_OBJECTID) 1048 ret = btrfs_inc_ref(trans, root, cow, 1); 1049 else 1050 ret = btrfs_inc_ref(trans, root, cow, 0); 1051 BUG_ON(ret); /* -ENOMEM */ 1052 } 1053 if (new_flags != 0) { 1054 int level = btrfs_header_level(buf); 1055 1056 ret = btrfs_set_disk_extent_flags(trans, root, 1057 buf->start, 1058 buf->len, 1059 new_flags, level, 0); 1060 if (ret) 1061 return ret; 1062 } 1063 } else { 1064 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1065 if (root->root_key.objectid == 1066 BTRFS_TREE_RELOC_OBJECTID) 1067 ret = btrfs_inc_ref(trans, root, cow, 1); 1068 else 1069 ret = btrfs_inc_ref(trans, root, cow, 0); 1070 BUG_ON(ret); /* -ENOMEM */ 1071 ret = btrfs_dec_ref(trans, root, buf, 1); 1072 BUG_ON(ret); /* -ENOMEM */ 1073 } 1074 clean_tree_block(trans, root->fs_info, buf); 1075 *last_ref = 1; 1076 } 1077 return 0; 1078 } 1079 1080 /* 1081 * does the dirty work in cow of a single block. The parent block (if 1082 * supplied) is updated to point to the new cow copy. The new buffer is marked 1083 * dirty and returned locked. If you modify the block it needs to be marked 1084 * dirty again. 1085 * 1086 * search_start -- an allocation hint for the new block 1087 * 1088 * empty_size -- a hint that you plan on doing more cow. This is the size in 1089 * bytes the allocator should try to find free next to the block it returns. 1090 * This is just a hint and may be ignored by the allocator. 1091 */ 1092 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1093 struct btrfs_root *root, 1094 struct extent_buffer *buf, 1095 struct extent_buffer *parent, int parent_slot, 1096 struct extent_buffer **cow_ret, 1097 u64 search_start, u64 empty_size) 1098 { 1099 struct btrfs_disk_key disk_key; 1100 struct extent_buffer *cow; 1101 int level, ret; 1102 int last_ref = 0; 1103 int unlock_orig = 0; 1104 u64 parent_start; 1105 1106 if (*cow_ret == buf) 1107 unlock_orig = 1; 1108 1109 btrfs_assert_tree_locked(buf); 1110 1111 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1112 trans->transid != root->fs_info->running_transaction->transid); 1113 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1114 trans->transid != root->last_trans); 1115 1116 level = btrfs_header_level(buf); 1117 1118 if (level == 0) 1119 btrfs_item_key(buf, &disk_key, 0); 1120 else 1121 btrfs_node_key(buf, &disk_key, 0); 1122 1123 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1124 if (parent) 1125 parent_start = parent->start; 1126 else 1127 parent_start = 0; 1128 } else 1129 parent_start = 0; 1130 1131 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1132 root->root_key.objectid, &disk_key, level, 1133 search_start, empty_size); 1134 if (IS_ERR(cow)) 1135 return PTR_ERR(cow); 1136 1137 /* cow is set to blocking by btrfs_init_new_buffer */ 1138 1139 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1140 btrfs_set_header_bytenr(cow, cow->start); 1141 btrfs_set_header_generation(cow, trans->transid); 1142 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1143 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1144 BTRFS_HEADER_FLAG_RELOC); 1145 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1146 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1147 else 1148 btrfs_set_header_owner(cow, root->root_key.objectid); 1149 1150 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1151 BTRFS_FSID_SIZE); 1152 1153 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1154 if (ret) { 1155 btrfs_abort_transaction(trans, root, ret); 1156 return ret; 1157 } 1158 1159 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1160 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1161 if (ret) { 1162 btrfs_abort_transaction(trans, root, ret); 1163 return ret; 1164 } 1165 } 1166 1167 if (buf == root->node) { 1168 WARN_ON(parent && parent != buf); 1169 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1170 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1171 parent_start = buf->start; 1172 else 1173 parent_start = 0; 1174 1175 extent_buffer_get(cow); 1176 tree_mod_log_set_root_pointer(root, cow, 1); 1177 rcu_assign_pointer(root->node, cow); 1178 1179 btrfs_free_tree_block(trans, root, buf, parent_start, 1180 last_ref); 1181 free_extent_buffer(buf); 1182 add_root_to_dirty_list(root); 1183 } else { 1184 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1185 parent_start = parent->start; 1186 else 1187 parent_start = 0; 1188 1189 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1190 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1191 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1192 btrfs_set_node_blockptr(parent, parent_slot, 1193 cow->start); 1194 btrfs_set_node_ptr_generation(parent, parent_slot, 1195 trans->transid); 1196 btrfs_mark_buffer_dirty(parent); 1197 if (last_ref) { 1198 ret = tree_mod_log_free_eb(root->fs_info, buf); 1199 if (ret) { 1200 btrfs_abort_transaction(trans, root, ret); 1201 return ret; 1202 } 1203 } 1204 btrfs_free_tree_block(trans, root, buf, parent_start, 1205 last_ref); 1206 } 1207 if (unlock_orig) 1208 btrfs_tree_unlock(buf); 1209 free_extent_buffer_stale(buf); 1210 btrfs_mark_buffer_dirty(cow); 1211 *cow_ret = cow; 1212 return 0; 1213 } 1214 1215 /* 1216 * returns the logical address of the oldest predecessor of the given root. 1217 * entries older than time_seq are ignored. 1218 */ 1219 static struct tree_mod_elem * 1220 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1221 struct extent_buffer *eb_root, u64 time_seq) 1222 { 1223 struct tree_mod_elem *tm; 1224 struct tree_mod_elem *found = NULL; 1225 u64 root_logical = eb_root->start; 1226 int looped = 0; 1227 1228 if (!time_seq) 1229 return NULL; 1230 1231 /* 1232 * the very last operation that's logged for a root is the 1233 * replacement operation (if it is replaced at all). this has 1234 * the logical address of the *new* root, making it the very 1235 * first operation that's logged for this root. 1236 */ 1237 while (1) { 1238 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1239 time_seq); 1240 if (!looped && !tm) 1241 return NULL; 1242 /* 1243 * if there are no tree operation for the oldest root, we simply 1244 * return it. this should only happen if that (old) root is at 1245 * level 0. 1246 */ 1247 if (!tm) 1248 break; 1249 1250 /* 1251 * if there's an operation that's not a root replacement, we 1252 * found the oldest version of our root. normally, we'll find a 1253 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1254 */ 1255 if (tm->op != MOD_LOG_ROOT_REPLACE) 1256 break; 1257 1258 found = tm; 1259 root_logical = tm->old_root.logical; 1260 looped = 1; 1261 } 1262 1263 /* if there's no old root to return, return what we found instead */ 1264 if (!found) 1265 found = tm; 1266 1267 return found; 1268 } 1269 1270 /* 1271 * tm is a pointer to the first operation to rewind within eb. then, all 1272 * previous operations will be rewinded (until we reach something older than 1273 * time_seq). 1274 */ 1275 static void 1276 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1277 u64 time_seq, struct tree_mod_elem *first_tm) 1278 { 1279 u32 n; 1280 struct rb_node *next; 1281 struct tree_mod_elem *tm = first_tm; 1282 unsigned long o_dst; 1283 unsigned long o_src; 1284 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1285 1286 n = btrfs_header_nritems(eb); 1287 tree_mod_log_read_lock(fs_info); 1288 while (tm && tm->seq >= time_seq) { 1289 /* 1290 * all the operations are recorded with the operator used for 1291 * the modification. as we're going backwards, we do the 1292 * opposite of each operation here. 1293 */ 1294 switch (tm->op) { 1295 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1296 BUG_ON(tm->slot < n); 1297 /* Fallthrough */ 1298 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1299 case MOD_LOG_KEY_REMOVE: 1300 btrfs_set_node_key(eb, &tm->key, tm->slot); 1301 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1302 btrfs_set_node_ptr_generation(eb, tm->slot, 1303 tm->generation); 1304 n++; 1305 break; 1306 case MOD_LOG_KEY_REPLACE: 1307 BUG_ON(tm->slot >= n); 1308 btrfs_set_node_key(eb, &tm->key, tm->slot); 1309 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1310 btrfs_set_node_ptr_generation(eb, tm->slot, 1311 tm->generation); 1312 break; 1313 case MOD_LOG_KEY_ADD: 1314 /* if a move operation is needed it's in the log */ 1315 n--; 1316 break; 1317 case MOD_LOG_MOVE_KEYS: 1318 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1319 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1320 memmove_extent_buffer(eb, o_dst, o_src, 1321 tm->move.nr_items * p_size); 1322 break; 1323 case MOD_LOG_ROOT_REPLACE: 1324 /* 1325 * this operation is special. for roots, this must be 1326 * handled explicitly before rewinding. 1327 * for non-roots, this operation may exist if the node 1328 * was a root: root A -> child B; then A gets empty and 1329 * B is promoted to the new root. in the mod log, we'll 1330 * have a root-replace operation for B, a tree block 1331 * that is no root. we simply ignore that operation. 1332 */ 1333 break; 1334 } 1335 next = rb_next(&tm->node); 1336 if (!next) 1337 break; 1338 tm = container_of(next, struct tree_mod_elem, node); 1339 if (tm->logical != first_tm->logical) 1340 break; 1341 } 1342 tree_mod_log_read_unlock(fs_info); 1343 btrfs_set_header_nritems(eb, n); 1344 } 1345 1346 /* 1347 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1348 * is returned. If rewind operations happen, a fresh buffer is returned. The 1349 * returned buffer is always read-locked. If the returned buffer is not the 1350 * input buffer, the lock on the input buffer is released and the input buffer 1351 * is freed (its refcount is decremented). 1352 */ 1353 static struct extent_buffer * 1354 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1355 struct extent_buffer *eb, u64 time_seq) 1356 { 1357 struct extent_buffer *eb_rewin; 1358 struct tree_mod_elem *tm; 1359 1360 if (!time_seq) 1361 return eb; 1362 1363 if (btrfs_header_level(eb) == 0) 1364 return eb; 1365 1366 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1367 if (!tm) 1368 return eb; 1369 1370 btrfs_set_path_blocking(path); 1371 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1372 1373 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1374 BUG_ON(tm->slot != 0); 1375 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1376 if (!eb_rewin) { 1377 btrfs_tree_read_unlock_blocking(eb); 1378 free_extent_buffer(eb); 1379 return NULL; 1380 } 1381 btrfs_set_header_bytenr(eb_rewin, eb->start); 1382 btrfs_set_header_backref_rev(eb_rewin, 1383 btrfs_header_backref_rev(eb)); 1384 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1385 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1386 } else { 1387 eb_rewin = btrfs_clone_extent_buffer(eb); 1388 if (!eb_rewin) { 1389 btrfs_tree_read_unlock_blocking(eb); 1390 free_extent_buffer(eb); 1391 return NULL; 1392 } 1393 } 1394 1395 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1396 btrfs_tree_read_unlock_blocking(eb); 1397 free_extent_buffer(eb); 1398 1399 extent_buffer_get(eb_rewin); 1400 btrfs_tree_read_lock(eb_rewin); 1401 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1402 WARN_ON(btrfs_header_nritems(eb_rewin) > 1403 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1404 1405 return eb_rewin; 1406 } 1407 1408 /* 1409 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1410 * value. If there are no changes, the current root->root_node is returned. If 1411 * anything changed in between, there's a fresh buffer allocated on which the 1412 * rewind operations are done. In any case, the returned buffer is read locked. 1413 * Returns NULL on error (with no locks held). 1414 */ 1415 static inline struct extent_buffer * 1416 get_old_root(struct btrfs_root *root, u64 time_seq) 1417 { 1418 struct tree_mod_elem *tm; 1419 struct extent_buffer *eb = NULL; 1420 struct extent_buffer *eb_root; 1421 struct extent_buffer *old; 1422 struct tree_mod_root *old_root = NULL; 1423 u64 old_generation = 0; 1424 u64 logical; 1425 1426 eb_root = btrfs_read_lock_root_node(root); 1427 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1428 if (!tm) 1429 return eb_root; 1430 1431 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1432 old_root = &tm->old_root; 1433 old_generation = tm->generation; 1434 logical = old_root->logical; 1435 } else { 1436 logical = eb_root->start; 1437 } 1438 1439 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1440 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1441 btrfs_tree_read_unlock(eb_root); 1442 free_extent_buffer(eb_root); 1443 old = read_tree_block(root, logical, 0); 1444 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1445 if (!IS_ERR(old)) 1446 free_extent_buffer(old); 1447 btrfs_warn(root->fs_info, 1448 "failed to read tree block %llu from get_old_root", logical); 1449 } else { 1450 eb = btrfs_clone_extent_buffer(old); 1451 free_extent_buffer(old); 1452 } 1453 } else if (old_root) { 1454 btrfs_tree_read_unlock(eb_root); 1455 free_extent_buffer(eb_root); 1456 eb = alloc_dummy_extent_buffer(root->fs_info, logical); 1457 } else { 1458 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1459 eb = btrfs_clone_extent_buffer(eb_root); 1460 btrfs_tree_read_unlock_blocking(eb_root); 1461 free_extent_buffer(eb_root); 1462 } 1463 1464 if (!eb) 1465 return NULL; 1466 extent_buffer_get(eb); 1467 btrfs_tree_read_lock(eb); 1468 if (old_root) { 1469 btrfs_set_header_bytenr(eb, eb->start); 1470 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1471 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1472 btrfs_set_header_level(eb, old_root->level); 1473 btrfs_set_header_generation(eb, old_generation); 1474 } 1475 if (tm) 1476 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1477 else 1478 WARN_ON(btrfs_header_level(eb) != 0); 1479 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1480 1481 return eb; 1482 } 1483 1484 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1485 { 1486 struct tree_mod_elem *tm; 1487 int level; 1488 struct extent_buffer *eb_root = btrfs_root_node(root); 1489 1490 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1491 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1492 level = tm->old_root.level; 1493 } else { 1494 level = btrfs_header_level(eb_root); 1495 } 1496 free_extent_buffer(eb_root); 1497 1498 return level; 1499 } 1500 1501 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1502 struct btrfs_root *root, 1503 struct extent_buffer *buf) 1504 { 1505 if (btrfs_test_is_dummy_root(root)) 1506 return 0; 1507 1508 /* ensure we can see the force_cow */ 1509 smp_rmb(); 1510 1511 /* 1512 * We do not need to cow a block if 1513 * 1) this block is not created or changed in this transaction; 1514 * 2) this block does not belong to TREE_RELOC tree; 1515 * 3) the root is not forced COW. 1516 * 1517 * What is forced COW: 1518 * when we create snapshot during commiting the transaction, 1519 * after we've finished coping src root, we must COW the shared 1520 * block to ensure the metadata consistency. 1521 */ 1522 if (btrfs_header_generation(buf) == trans->transid && 1523 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1524 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1525 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1526 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1527 return 0; 1528 return 1; 1529 } 1530 1531 /* 1532 * cows a single block, see __btrfs_cow_block for the real work. 1533 * This version of it has extra checks so that a block isn't cow'd more than 1534 * once per transaction, as long as it hasn't been written yet 1535 */ 1536 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1537 struct btrfs_root *root, struct extent_buffer *buf, 1538 struct extent_buffer *parent, int parent_slot, 1539 struct extent_buffer **cow_ret) 1540 { 1541 u64 search_start; 1542 int ret; 1543 1544 if (trans->transaction != root->fs_info->running_transaction) 1545 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1546 trans->transid, 1547 root->fs_info->running_transaction->transid); 1548 1549 if (trans->transid != root->fs_info->generation) 1550 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1551 trans->transid, root->fs_info->generation); 1552 1553 if (!should_cow_block(trans, root, buf)) { 1554 *cow_ret = buf; 1555 return 0; 1556 } 1557 1558 search_start = buf->start & ~((u64)SZ_1G - 1); 1559 1560 if (parent) 1561 btrfs_set_lock_blocking(parent); 1562 btrfs_set_lock_blocking(buf); 1563 1564 ret = __btrfs_cow_block(trans, root, buf, parent, 1565 parent_slot, cow_ret, search_start, 0); 1566 1567 trace_btrfs_cow_block(root, buf, *cow_ret); 1568 1569 return ret; 1570 } 1571 1572 /* 1573 * helper function for defrag to decide if two blocks pointed to by a 1574 * node are actually close by 1575 */ 1576 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1577 { 1578 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1579 return 1; 1580 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1581 return 1; 1582 return 0; 1583 } 1584 1585 /* 1586 * compare two keys in a memcmp fashion 1587 */ 1588 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1589 { 1590 struct btrfs_key k1; 1591 1592 btrfs_disk_key_to_cpu(&k1, disk); 1593 1594 return btrfs_comp_cpu_keys(&k1, k2); 1595 } 1596 1597 /* 1598 * same as comp_keys only with two btrfs_key's 1599 */ 1600 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1601 { 1602 if (k1->objectid > k2->objectid) 1603 return 1; 1604 if (k1->objectid < k2->objectid) 1605 return -1; 1606 if (k1->type > k2->type) 1607 return 1; 1608 if (k1->type < k2->type) 1609 return -1; 1610 if (k1->offset > k2->offset) 1611 return 1; 1612 if (k1->offset < k2->offset) 1613 return -1; 1614 return 0; 1615 } 1616 1617 /* 1618 * this is used by the defrag code to go through all the 1619 * leaves pointed to by a node and reallocate them so that 1620 * disk order is close to key order 1621 */ 1622 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1623 struct btrfs_root *root, struct extent_buffer *parent, 1624 int start_slot, u64 *last_ret, 1625 struct btrfs_key *progress) 1626 { 1627 struct extent_buffer *cur; 1628 u64 blocknr; 1629 u64 gen; 1630 u64 search_start = *last_ret; 1631 u64 last_block = 0; 1632 u64 other; 1633 u32 parent_nritems; 1634 int end_slot; 1635 int i; 1636 int err = 0; 1637 int parent_level; 1638 int uptodate; 1639 u32 blocksize; 1640 int progress_passed = 0; 1641 struct btrfs_disk_key disk_key; 1642 1643 parent_level = btrfs_header_level(parent); 1644 1645 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1646 WARN_ON(trans->transid != root->fs_info->generation); 1647 1648 parent_nritems = btrfs_header_nritems(parent); 1649 blocksize = root->nodesize; 1650 end_slot = parent_nritems - 1; 1651 1652 if (parent_nritems <= 1) 1653 return 0; 1654 1655 btrfs_set_lock_blocking(parent); 1656 1657 for (i = start_slot; i <= end_slot; i++) { 1658 int close = 1; 1659 1660 btrfs_node_key(parent, &disk_key, i); 1661 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1662 continue; 1663 1664 progress_passed = 1; 1665 blocknr = btrfs_node_blockptr(parent, i); 1666 gen = btrfs_node_ptr_generation(parent, i); 1667 if (last_block == 0) 1668 last_block = blocknr; 1669 1670 if (i > 0) { 1671 other = btrfs_node_blockptr(parent, i - 1); 1672 close = close_blocks(blocknr, other, blocksize); 1673 } 1674 if (!close && i < end_slot) { 1675 other = btrfs_node_blockptr(parent, i + 1); 1676 close = close_blocks(blocknr, other, blocksize); 1677 } 1678 if (close) { 1679 last_block = blocknr; 1680 continue; 1681 } 1682 1683 cur = btrfs_find_tree_block(root->fs_info, blocknr); 1684 if (cur) 1685 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1686 else 1687 uptodate = 0; 1688 if (!cur || !uptodate) { 1689 if (!cur) { 1690 cur = read_tree_block(root, blocknr, gen); 1691 if (IS_ERR(cur)) { 1692 return PTR_ERR(cur); 1693 } else if (!extent_buffer_uptodate(cur)) { 1694 free_extent_buffer(cur); 1695 return -EIO; 1696 } 1697 } else if (!uptodate) { 1698 err = btrfs_read_buffer(cur, gen); 1699 if (err) { 1700 free_extent_buffer(cur); 1701 return err; 1702 } 1703 } 1704 } 1705 if (search_start == 0) 1706 search_start = last_block; 1707 1708 btrfs_tree_lock(cur); 1709 btrfs_set_lock_blocking(cur); 1710 err = __btrfs_cow_block(trans, root, cur, parent, i, 1711 &cur, search_start, 1712 min(16 * blocksize, 1713 (end_slot - i) * blocksize)); 1714 if (err) { 1715 btrfs_tree_unlock(cur); 1716 free_extent_buffer(cur); 1717 break; 1718 } 1719 search_start = cur->start; 1720 last_block = cur->start; 1721 *last_ret = search_start; 1722 btrfs_tree_unlock(cur); 1723 free_extent_buffer(cur); 1724 } 1725 return err; 1726 } 1727 1728 /* 1729 * The leaf data grows from end-to-front in the node. 1730 * this returns the address of the start of the last item, 1731 * which is the stop of the leaf data stack 1732 */ 1733 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1734 struct extent_buffer *leaf) 1735 { 1736 u32 nr = btrfs_header_nritems(leaf); 1737 if (nr == 0) 1738 return BTRFS_LEAF_DATA_SIZE(root); 1739 return btrfs_item_offset_nr(leaf, nr - 1); 1740 } 1741 1742 1743 /* 1744 * search for key in the extent_buffer. The items start at offset p, 1745 * and they are item_size apart. There are 'max' items in p. 1746 * 1747 * the slot in the array is returned via slot, and it points to 1748 * the place where you would insert key if it is not found in 1749 * the array. 1750 * 1751 * slot may point to max if the key is bigger than all of the keys 1752 */ 1753 static noinline int generic_bin_search(struct extent_buffer *eb, 1754 unsigned long p, 1755 int item_size, struct btrfs_key *key, 1756 int max, int *slot) 1757 { 1758 int low = 0; 1759 int high = max; 1760 int mid; 1761 int ret; 1762 struct btrfs_disk_key *tmp = NULL; 1763 struct btrfs_disk_key unaligned; 1764 unsigned long offset; 1765 char *kaddr = NULL; 1766 unsigned long map_start = 0; 1767 unsigned long map_len = 0; 1768 int err; 1769 1770 while (low < high) { 1771 mid = (low + high) / 2; 1772 offset = p + mid * item_size; 1773 1774 if (!kaddr || offset < map_start || 1775 (offset + sizeof(struct btrfs_disk_key)) > 1776 map_start + map_len) { 1777 1778 err = map_private_extent_buffer(eb, offset, 1779 sizeof(struct btrfs_disk_key), 1780 &kaddr, &map_start, &map_len); 1781 1782 if (!err) { 1783 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1784 map_start); 1785 } else { 1786 read_extent_buffer(eb, &unaligned, 1787 offset, sizeof(unaligned)); 1788 tmp = &unaligned; 1789 } 1790 1791 } else { 1792 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1793 map_start); 1794 } 1795 ret = comp_keys(tmp, key); 1796 1797 if (ret < 0) 1798 low = mid + 1; 1799 else if (ret > 0) 1800 high = mid; 1801 else { 1802 *slot = mid; 1803 return 0; 1804 } 1805 } 1806 *slot = low; 1807 return 1; 1808 } 1809 1810 /* 1811 * simple bin_search frontend that does the right thing for 1812 * leaves vs nodes 1813 */ 1814 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1815 int level, int *slot) 1816 { 1817 if (level == 0) 1818 return generic_bin_search(eb, 1819 offsetof(struct btrfs_leaf, items), 1820 sizeof(struct btrfs_item), 1821 key, btrfs_header_nritems(eb), 1822 slot); 1823 else 1824 return generic_bin_search(eb, 1825 offsetof(struct btrfs_node, ptrs), 1826 sizeof(struct btrfs_key_ptr), 1827 key, btrfs_header_nritems(eb), 1828 slot); 1829 } 1830 1831 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1832 int level, int *slot) 1833 { 1834 return bin_search(eb, key, level, slot); 1835 } 1836 1837 static void root_add_used(struct btrfs_root *root, u32 size) 1838 { 1839 spin_lock(&root->accounting_lock); 1840 btrfs_set_root_used(&root->root_item, 1841 btrfs_root_used(&root->root_item) + size); 1842 spin_unlock(&root->accounting_lock); 1843 } 1844 1845 static void root_sub_used(struct btrfs_root *root, u32 size) 1846 { 1847 spin_lock(&root->accounting_lock); 1848 btrfs_set_root_used(&root->root_item, 1849 btrfs_root_used(&root->root_item) - size); 1850 spin_unlock(&root->accounting_lock); 1851 } 1852 1853 /* given a node and slot number, this reads the blocks it points to. The 1854 * extent buffer is returned with a reference taken (but unlocked). 1855 * NULL is returned on error. 1856 */ 1857 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1858 struct extent_buffer *parent, int slot) 1859 { 1860 int level = btrfs_header_level(parent); 1861 struct extent_buffer *eb; 1862 1863 if (slot < 0) 1864 return NULL; 1865 if (slot >= btrfs_header_nritems(parent)) 1866 return NULL; 1867 1868 BUG_ON(level == 0); 1869 1870 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1871 btrfs_node_ptr_generation(parent, slot)); 1872 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) { 1873 if (!IS_ERR(eb)) 1874 free_extent_buffer(eb); 1875 eb = NULL; 1876 } 1877 1878 return eb; 1879 } 1880 1881 /* 1882 * node level balancing, used to make sure nodes are in proper order for 1883 * item deletion. We balance from the top down, so we have to make sure 1884 * that a deletion won't leave an node completely empty later on. 1885 */ 1886 static noinline int balance_level(struct btrfs_trans_handle *trans, 1887 struct btrfs_root *root, 1888 struct btrfs_path *path, int level) 1889 { 1890 struct extent_buffer *right = NULL; 1891 struct extent_buffer *mid; 1892 struct extent_buffer *left = NULL; 1893 struct extent_buffer *parent = NULL; 1894 int ret = 0; 1895 int wret; 1896 int pslot; 1897 int orig_slot = path->slots[level]; 1898 u64 orig_ptr; 1899 1900 if (level == 0) 1901 return 0; 1902 1903 mid = path->nodes[level]; 1904 1905 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1906 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1907 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1908 1909 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1910 1911 if (level < BTRFS_MAX_LEVEL - 1) { 1912 parent = path->nodes[level + 1]; 1913 pslot = path->slots[level + 1]; 1914 } 1915 1916 /* 1917 * deal with the case where there is only one pointer in the root 1918 * by promoting the node below to a root 1919 */ 1920 if (!parent) { 1921 struct extent_buffer *child; 1922 1923 if (btrfs_header_nritems(mid) != 1) 1924 return 0; 1925 1926 /* promote the child to a root */ 1927 child = read_node_slot(root, mid, 0); 1928 if (!child) { 1929 ret = -EROFS; 1930 btrfs_std_error(root->fs_info, ret, NULL); 1931 goto enospc; 1932 } 1933 1934 btrfs_tree_lock(child); 1935 btrfs_set_lock_blocking(child); 1936 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1937 if (ret) { 1938 btrfs_tree_unlock(child); 1939 free_extent_buffer(child); 1940 goto enospc; 1941 } 1942 1943 tree_mod_log_set_root_pointer(root, child, 1); 1944 rcu_assign_pointer(root->node, child); 1945 1946 add_root_to_dirty_list(root); 1947 btrfs_tree_unlock(child); 1948 1949 path->locks[level] = 0; 1950 path->nodes[level] = NULL; 1951 clean_tree_block(trans, root->fs_info, mid); 1952 btrfs_tree_unlock(mid); 1953 /* once for the path */ 1954 free_extent_buffer(mid); 1955 1956 root_sub_used(root, mid->len); 1957 btrfs_free_tree_block(trans, root, mid, 0, 1); 1958 /* once for the root ptr */ 1959 free_extent_buffer_stale(mid); 1960 return 0; 1961 } 1962 if (btrfs_header_nritems(mid) > 1963 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1964 return 0; 1965 1966 left = read_node_slot(root, parent, pslot - 1); 1967 if (left) { 1968 btrfs_tree_lock(left); 1969 btrfs_set_lock_blocking(left); 1970 wret = btrfs_cow_block(trans, root, left, 1971 parent, pslot - 1, &left); 1972 if (wret) { 1973 ret = wret; 1974 goto enospc; 1975 } 1976 } 1977 right = read_node_slot(root, parent, pslot + 1); 1978 if (right) { 1979 btrfs_tree_lock(right); 1980 btrfs_set_lock_blocking(right); 1981 wret = btrfs_cow_block(trans, root, right, 1982 parent, pslot + 1, &right); 1983 if (wret) { 1984 ret = wret; 1985 goto enospc; 1986 } 1987 } 1988 1989 /* first, try to make some room in the middle buffer */ 1990 if (left) { 1991 orig_slot += btrfs_header_nritems(left); 1992 wret = push_node_left(trans, root, left, mid, 1); 1993 if (wret < 0) 1994 ret = wret; 1995 } 1996 1997 /* 1998 * then try to empty the right most buffer into the middle 1999 */ 2000 if (right) { 2001 wret = push_node_left(trans, root, mid, right, 1); 2002 if (wret < 0 && wret != -ENOSPC) 2003 ret = wret; 2004 if (btrfs_header_nritems(right) == 0) { 2005 clean_tree_block(trans, root->fs_info, right); 2006 btrfs_tree_unlock(right); 2007 del_ptr(root, path, level + 1, pslot + 1); 2008 root_sub_used(root, right->len); 2009 btrfs_free_tree_block(trans, root, right, 0, 1); 2010 free_extent_buffer_stale(right); 2011 right = NULL; 2012 } else { 2013 struct btrfs_disk_key right_key; 2014 btrfs_node_key(right, &right_key, 0); 2015 tree_mod_log_set_node_key(root->fs_info, parent, 2016 pslot + 1, 0); 2017 btrfs_set_node_key(parent, &right_key, pslot + 1); 2018 btrfs_mark_buffer_dirty(parent); 2019 } 2020 } 2021 if (btrfs_header_nritems(mid) == 1) { 2022 /* 2023 * we're not allowed to leave a node with one item in the 2024 * tree during a delete. A deletion from lower in the tree 2025 * could try to delete the only pointer in this node. 2026 * So, pull some keys from the left. 2027 * There has to be a left pointer at this point because 2028 * otherwise we would have pulled some pointers from the 2029 * right 2030 */ 2031 if (!left) { 2032 ret = -EROFS; 2033 btrfs_std_error(root->fs_info, ret, NULL); 2034 goto enospc; 2035 } 2036 wret = balance_node_right(trans, root, mid, left); 2037 if (wret < 0) { 2038 ret = wret; 2039 goto enospc; 2040 } 2041 if (wret == 1) { 2042 wret = push_node_left(trans, root, left, mid, 1); 2043 if (wret < 0) 2044 ret = wret; 2045 } 2046 BUG_ON(wret == 1); 2047 } 2048 if (btrfs_header_nritems(mid) == 0) { 2049 clean_tree_block(trans, root->fs_info, mid); 2050 btrfs_tree_unlock(mid); 2051 del_ptr(root, path, level + 1, pslot); 2052 root_sub_used(root, mid->len); 2053 btrfs_free_tree_block(trans, root, mid, 0, 1); 2054 free_extent_buffer_stale(mid); 2055 mid = NULL; 2056 } else { 2057 /* update the parent key to reflect our changes */ 2058 struct btrfs_disk_key mid_key; 2059 btrfs_node_key(mid, &mid_key, 0); 2060 tree_mod_log_set_node_key(root->fs_info, parent, 2061 pslot, 0); 2062 btrfs_set_node_key(parent, &mid_key, pslot); 2063 btrfs_mark_buffer_dirty(parent); 2064 } 2065 2066 /* update the path */ 2067 if (left) { 2068 if (btrfs_header_nritems(left) > orig_slot) { 2069 extent_buffer_get(left); 2070 /* left was locked after cow */ 2071 path->nodes[level] = left; 2072 path->slots[level + 1] -= 1; 2073 path->slots[level] = orig_slot; 2074 if (mid) { 2075 btrfs_tree_unlock(mid); 2076 free_extent_buffer(mid); 2077 } 2078 } else { 2079 orig_slot -= btrfs_header_nritems(left); 2080 path->slots[level] = orig_slot; 2081 } 2082 } 2083 /* double check we haven't messed things up */ 2084 if (orig_ptr != 2085 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2086 BUG(); 2087 enospc: 2088 if (right) { 2089 btrfs_tree_unlock(right); 2090 free_extent_buffer(right); 2091 } 2092 if (left) { 2093 if (path->nodes[level] != left) 2094 btrfs_tree_unlock(left); 2095 free_extent_buffer(left); 2096 } 2097 return ret; 2098 } 2099 2100 /* Node balancing for insertion. Here we only split or push nodes around 2101 * when they are completely full. This is also done top down, so we 2102 * have to be pessimistic. 2103 */ 2104 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2105 struct btrfs_root *root, 2106 struct btrfs_path *path, int level) 2107 { 2108 struct extent_buffer *right = NULL; 2109 struct extent_buffer *mid; 2110 struct extent_buffer *left = NULL; 2111 struct extent_buffer *parent = NULL; 2112 int ret = 0; 2113 int wret; 2114 int pslot; 2115 int orig_slot = path->slots[level]; 2116 2117 if (level == 0) 2118 return 1; 2119 2120 mid = path->nodes[level]; 2121 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2122 2123 if (level < BTRFS_MAX_LEVEL - 1) { 2124 parent = path->nodes[level + 1]; 2125 pslot = path->slots[level + 1]; 2126 } 2127 2128 if (!parent) 2129 return 1; 2130 2131 left = read_node_slot(root, parent, pslot - 1); 2132 2133 /* first, try to make some room in the middle buffer */ 2134 if (left) { 2135 u32 left_nr; 2136 2137 btrfs_tree_lock(left); 2138 btrfs_set_lock_blocking(left); 2139 2140 left_nr = btrfs_header_nritems(left); 2141 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2142 wret = 1; 2143 } else { 2144 ret = btrfs_cow_block(trans, root, left, parent, 2145 pslot - 1, &left); 2146 if (ret) 2147 wret = 1; 2148 else { 2149 wret = push_node_left(trans, root, 2150 left, mid, 0); 2151 } 2152 } 2153 if (wret < 0) 2154 ret = wret; 2155 if (wret == 0) { 2156 struct btrfs_disk_key disk_key; 2157 orig_slot += left_nr; 2158 btrfs_node_key(mid, &disk_key, 0); 2159 tree_mod_log_set_node_key(root->fs_info, parent, 2160 pslot, 0); 2161 btrfs_set_node_key(parent, &disk_key, pslot); 2162 btrfs_mark_buffer_dirty(parent); 2163 if (btrfs_header_nritems(left) > orig_slot) { 2164 path->nodes[level] = left; 2165 path->slots[level + 1] -= 1; 2166 path->slots[level] = orig_slot; 2167 btrfs_tree_unlock(mid); 2168 free_extent_buffer(mid); 2169 } else { 2170 orig_slot -= 2171 btrfs_header_nritems(left); 2172 path->slots[level] = orig_slot; 2173 btrfs_tree_unlock(left); 2174 free_extent_buffer(left); 2175 } 2176 return 0; 2177 } 2178 btrfs_tree_unlock(left); 2179 free_extent_buffer(left); 2180 } 2181 right = read_node_slot(root, parent, pslot + 1); 2182 2183 /* 2184 * then try to empty the right most buffer into the middle 2185 */ 2186 if (right) { 2187 u32 right_nr; 2188 2189 btrfs_tree_lock(right); 2190 btrfs_set_lock_blocking(right); 2191 2192 right_nr = btrfs_header_nritems(right); 2193 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2194 wret = 1; 2195 } else { 2196 ret = btrfs_cow_block(trans, root, right, 2197 parent, pslot + 1, 2198 &right); 2199 if (ret) 2200 wret = 1; 2201 else { 2202 wret = balance_node_right(trans, root, 2203 right, mid); 2204 } 2205 } 2206 if (wret < 0) 2207 ret = wret; 2208 if (wret == 0) { 2209 struct btrfs_disk_key disk_key; 2210 2211 btrfs_node_key(right, &disk_key, 0); 2212 tree_mod_log_set_node_key(root->fs_info, parent, 2213 pslot + 1, 0); 2214 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2215 btrfs_mark_buffer_dirty(parent); 2216 2217 if (btrfs_header_nritems(mid) <= orig_slot) { 2218 path->nodes[level] = right; 2219 path->slots[level + 1] += 1; 2220 path->slots[level] = orig_slot - 2221 btrfs_header_nritems(mid); 2222 btrfs_tree_unlock(mid); 2223 free_extent_buffer(mid); 2224 } else { 2225 btrfs_tree_unlock(right); 2226 free_extent_buffer(right); 2227 } 2228 return 0; 2229 } 2230 btrfs_tree_unlock(right); 2231 free_extent_buffer(right); 2232 } 2233 return 1; 2234 } 2235 2236 /* 2237 * readahead one full node of leaves, finding things that are close 2238 * to the block in 'slot', and triggering ra on them. 2239 */ 2240 static void reada_for_search(struct btrfs_root *root, 2241 struct btrfs_path *path, 2242 int level, int slot, u64 objectid) 2243 { 2244 struct extent_buffer *node; 2245 struct btrfs_disk_key disk_key; 2246 u32 nritems; 2247 u64 search; 2248 u64 target; 2249 u64 nread = 0; 2250 u64 gen; 2251 struct extent_buffer *eb; 2252 u32 nr; 2253 u32 blocksize; 2254 u32 nscan = 0; 2255 2256 if (level != 1) 2257 return; 2258 2259 if (!path->nodes[level]) 2260 return; 2261 2262 node = path->nodes[level]; 2263 2264 search = btrfs_node_blockptr(node, slot); 2265 blocksize = root->nodesize; 2266 eb = btrfs_find_tree_block(root->fs_info, search); 2267 if (eb) { 2268 free_extent_buffer(eb); 2269 return; 2270 } 2271 2272 target = search; 2273 2274 nritems = btrfs_header_nritems(node); 2275 nr = slot; 2276 2277 while (1) { 2278 if (path->reada == READA_BACK) { 2279 if (nr == 0) 2280 break; 2281 nr--; 2282 } else if (path->reada == READA_FORWARD) { 2283 nr++; 2284 if (nr >= nritems) 2285 break; 2286 } 2287 if (path->reada == READA_BACK && objectid) { 2288 btrfs_node_key(node, &disk_key, nr); 2289 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2290 break; 2291 } 2292 search = btrfs_node_blockptr(node, nr); 2293 if ((search <= target && target - search <= 65536) || 2294 (search > target && search - target <= 65536)) { 2295 gen = btrfs_node_ptr_generation(node, nr); 2296 readahead_tree_block(root, search); 2297 nread += blocksize; 2298 } 2299 nscan++; 2300 if ((nread > 65536 || nscan > 32)) 2301 break; 2302 } 2303 } 2304 2305 static noinline void reada_for_balance(struct btrfs_root *root, 2306 struct btrfs_path *path, int level) 2307 { 2308 int slot; 2309 int nritems; 2310 struct extent_buffer *parent; 2311 struct extent_buffer *eb; 2312 u64 gen; 2313 u64 block1 = 0; 2314 u64 block2 = 0; 2315 2316 parent = path->nodes[level + 1]; 2317 if (!parent) 2318 return; 2319 2320 nritems = btrfs_header_nritems(parent); 2321 slot = path->slots[level + 1]; 2322 2323 if (slot > 0) { 2324 block1 = btrfs_node_blockptr(parent, slot - 1); 2325 gen = btrfs_node_ptr_generation(parent, slot - 1); 2326 eb = btrfs_find_tree_block(root->fs_info, block1); 2327 /* 2328 * if we get -eagain from btrfs_buffer_uptodate, we 2329 * don't want to return eagain here. That will loop 2330 * forever 2331 */ 2332 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2333 block1 = 0; 2334 free_extent_buffer(eb); 2335 } 2336 if (slot + 1 < nritems) { 2337 block2 = btrfs_node_blockptr(parent, slot + 1); 2338 gen = btrfs_node_ptr_generation(parent, slot + 1); 2339 eb = btrfs_find_tree_block(root->fs_info, block2); 2340 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2341 block2 = 0; 2342 free_extent_buffer(eb); 2343 } 2344 2345 if (block1) 2346 readahead_tree_block(root, block1); 2347 if (block2) 2348 readahead_tree_block(root, block2); 2349 } 2350 2351 2352 /* 2353 * when we walk down the tree, it is usually safe to unlock the higher layers 2354 * in the tree. The exceptions are when our path goes through slot 0, because 2355 * operations on the tree might require changing key pointers higher up in the 2356 * tree. 2357 * 2358 * callers might also have set path->keep_locks, which tells this code to keep 2359 * the lock if the path points to the last slot in the block. This is part of 2360 * walking through the tree, and selecting the next slot in the higher block. 2361 * 2362 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2363 * if lowest_unlock is 1, level 0 won't be unlocked 2364 */ 2365 static noinline void unlock_up(struct btrfs_path *path, int level, 2366 int lowest_unlock, int min_write_lock_level, 2367 int *write_lock_level) 2368 { 2369 int i; 2370 int skip_level = level; 2371 int no_skips = 0; 2372 struct extent_buffer *t; 2373 2374 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2375 if (!path->nodes[i]) 2376 break; 2377 if (!path->locks[i]) 2378 break; 2379 if (!no_skips && path->slots[i] == 0) { 2380 skip_level = i + 1; 2381 continue; 2382 } 2383 if (!no_skips && path->keep_locks) { 2384 u32 nritems; 2385 t = path->nodes[i]; 2386 nritems = btrfs_header_nritems(t); 2387 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2388 skip_level = i + 1; 2389 continue; 2390 } 2391 } 2392 if (skip_level < i && i >= lowest_unlock) 2393 no_skips = 1; 2394 2395 t = path->nodes[i]; 2396 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2397 btrfs_tree_unlock_rw(t, path->locks[i]); 2398 path->locks[i] = 0; 2399 if (write_lock_level && 2400 i > min_write_lock_level && 2401 i <= *write_lock_level) { 2402 *write_lock_level = i - 1; 2403 } 2404 } 2405 } 2406 } 2407 2408 /* 2409 * This releases any locks held in the path starting at level and 2410 * going all the way up to the root. 2411 * 2412 * btrfs_search_slot will keep the lock held on higher nodes in a few 2413 * corner cases, such as COW of the block at slot zero in the node. This 2414 * ignores those rules, and it should only be called when there are no 2415 * more updates to be done higher up in the tree. 2416 */ 2417 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2418 { 2419 int i; 2420 2421 if (path->keep_locks) 2422 return; 2423 2424 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2425 if (!path->nodes[i]) 2426 continue; 2427 if (!path->locks[i]) 2428 continue; 2429 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2430 path->locks[i] = 0; 2431 } 2432 } 2433 2434 /* 2435 * helper function for btrfs_search_slot. The goal is to find a block 2436 * in cache without setting the path to blocking. If we find the block 2437 * we return zero and the path is unchanged. 2438 * 2439 * If we can't find the block, we set the path blocking and do some 2440 * reada. -EAGAIN is returned and the search must be repeated. 2441 */ 2442 static int 2443 read_block_for_search(struct btrfs_trans_handle *trans, 2444 struct btrfs_root *root, struct btrfs_path *p, 2445 struct extent_buffer **eb_ret, int level, int slot, 2446 struct btrfs_key *key, u64 time_seq) 2447 { 2448 u64 blocknr; 2449 u64 gen; 2450 struct extent_buffer *b = *eb_ret; 2451 struct extent_buffer *tmp; 2452 int ret; 2453 2454 blocknr = btrfs_node_blockptr(b, slot); 2455 gen = btrfs_node_ptr_generation(b, slot); 2456 2457 tmp = btrfs_find_tree_block(root->fs_info, blocknr); 2458 if (tmp) { 2459 /* first we do an atomic uptodate check */ 2460 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2461 *eb_ret = tmp; 2462 return 0; 2463 } 2464 2465 /* the pages were up to date, but we failed 2466 * the generation number check. Do a full 2467 * read for the generation number that is correct. 2468 * We must do this without dropping locks so 2469 * we can trust our generation number 2470 */ 2471 btrfs_set_path_blocking(p); 2472 2473 /* now we're allowed to do a blocking uptodate check */ 2474 ret = btrfs_read_buffer(tmp, gen); 2475 if (!ret) { 2476 *eb_ret = tmp; 2477 return 0; 2478 } 2479 free_extent_buffer(tmp); 2480 btrfs_release_path(p); 2481 return -EIO; 2482 } 2483 2484 /* 2485 * reduce lock contention at high levels 2486 * of the btree by dropping locks before 2487 * we read. Don't release the lock on the current 2488 * level because we need to walk this node to figure 2489 * out which blocks to read. 2490 */ 2491 btrfs_unlock_up_safe(p, level + 1); 2492 btrfs_set_path_blocking(p); 2493 2494 free_extent_buffer(tmp); 2495 if (p->reada != READA_NONE) 2496 reada_for_search(root, p, level, slot, key->objectid); 2497 2498 btrfs_release_path(p); 2499 2500 ret = -EAGAIN; 2501 tmp = read_tree_block(root, blocknr, 0); 2502 if (!IS_ERR(tmp)) { 2503 /* 2504 * If the read above didn't mark this buffer up to date, 2505 * it will never end up being up to date. Set ret to EIO now 2506 * and give up so that our caller doesn't loop forever 2507 * on our EAGAINs. 2508 */ 2509 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2510 ret = -EIO; 2511 free_extent_buffer(tmp); 2512 } 2513 return ret; 2514 } 2515 2516 /* 2517 * helper function for btrfs_search_slot. This does all of the checks 2518 * for node-level blocks and does any balancing required based on 2519 * the ins_len. 2520 * 2521 * If no extra work was required, zero is returned. If we had to 2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2523 * start over 2524 */ 2525 static int 2526 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2527 struct btrfs_root *root, struct btrfs_path *p, 2528 struct extent_buffer *b, int level, int ins_len, 2529 int *write_lock_level) 2530 { 2531 int ret; 2532 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2533 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2534 int sret; 2535 2536 if (*write_lock_level < level + 1) { 2537 *write_lock_level = level + 1; 2538 btrfs_release_path(p); 2539 goto again; 2540 } 2541 2542 btrfs_set_path_blocking(p); 2543 reada_for_balance(root, p, level); 2544 sret = split_node(trans, root, p, level); 2545 btrfs_clear_path_blocking(p, NULL, 0); 2546 2547 BUG_ON(sret > 0); 2548 if (sret) { 2549 ret = sret; 2550 goto done; 2551 } 2552 b = p->nodes[level]; 2553 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2554 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2555 int sret; 2556 2557 if (*write_lock_level < level + 1) { 2558 *write_lock_level = level + 1; 2559 btrfs_release_path(p); 2560 goto again; 2561 } 2562 2563 btrfs_set_path_blocking(p); 2564 reada_for_balance(root, p, level); 2565 sret = balance_level(trans, root, p, level); 2566 btrfs_clear_path_blocking(p, NULL, 0); 2567 2568 if (sret) { 2569 ret = sret; 2570 goto done; 2571 } 2572 b = p->nodes[level]; 2573 if (!b) { 2574 btrfs_release_path(p); 2575 goto again; 2576 } 2577 BUG_ON(btrfs_header_nritems(b) == 1); 2578 } 2579 return 0; 2580 2581 again: 2582 ret = -EAGAIN; 2583 done: 2584 return ret; 2585 } 2586 2587 static void key_search_validate(struct extent_buffer *b, 2588 struct btrfs_key *key, 2589 int level) 2590 { 2591 #ifdef CONFIG_BTRFS_ASSERT 2592 struct btrfs_disk_key disk_key; 2593 2594 btrfs_cpu_key_to_disk(&disk_key, key); 2595 2596 if (level == 0) 2597 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2598 offsetof(struct btrfs_leaf, items[0].key), 2599 sizeof(disk_key))); 2600 else 2601 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2602 offsetof(struct btrfs_node, ptrs[0].key), 2603 sizeof(disk_key))); 2604 #endif 2605 } 2606 2607 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2608 int level, int *prev_cmp, int *slot) 2609 { 2610 if (*prev_cmp != 0) { 2611 *prev_cmp = bin_search(b, key, level, slot); 2612 return *prev_cmp; 2613 } 2614 2615 key_search_validate(b, key, level); 2616 *slot = 0; 2617 2618 return 0; 2619 } 2620 2621 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2622 u64 iobjectid, u64 ioff, u8 key_type, 2623 struct btrfs_key *found_key) 2624 { 2625 int ret; 2626 struct btrfs_key key; 2627 struct extent_buffer *eb; 2628 2629 ASSERT(path); 2630 ASSERT(found_key); 2631 2632 key.type = key_type; 2633 key.objectid = iobjectid; 2634 key.offset = ioff; 2635 2636 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2637 if (ret < 0) 2638 return ret; 2639 2640 eb = path->nodes[0]; 2641 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2642 ret = btrfs_next_leaf(fs_root, path); 2643 if (ret) 2644 return ret; 2645 eb = path->nodes[0]; 2646 } 2647 2648 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2649 if (found_key->type != key.type || 2650 found_key->objectid != key.objectid) 2651 return 1; 2652 2653 return 0; 2654 } 2655 2656 /* 2657 * look for key in the tree. path is filled in with nodes along the way 2658 * if key is found, we return zero and you can find the item in the leaf 2659 * level of the path (level 0) 2660 * 2661 * If the key isn't found, the path points to the slot where it should 2662 * be inserted, and 1 is returned. If there are other errors during the 2663 * search a negative error number is returned. 2664 * 2665 * if ins_len > 0, nodes and leaves will be split as we walk down the 2666 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2667 * possible) 2668 */ 2669 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2670 *root, struct btrfs_key *key, struct btrfs_path *p, int 2671 ins_len, int cow) 2672 { 2673 struct extent_buffer *b; 2674 int slot; 2675 int ret; 2676 int err; 2677 int level; 2678 int lowest_unlock = 1; 2679 int root_lock; 2680 /* everything at write_lock_level or lower must be write locked */ 2681 int write_lock_level = 0; 2682 u8 lowest_level = 0; 2683 int min_write_lock_level; 2684 int prev_cmp; 2685 2686 lowest_level = p->lowest_level; 2687 WARN_ON(lowest_level && ins_len > 0); 2688 WARN_ON(p->nodes[0] != NULL); 2689 BUG_ON(!cow && ins_len); 2690 2691 if (ins_len < 0) { 2692 lowest_unlock = 2; 2693 2694 /* when we are removing items, we might have to go up to level 2695 * two as we update tree pointers Make sure we keep write 2696 * for those levels as well 2697 */ 2698 write_lock_level = 2; 2699 } else if (ins_len > 0) { 2700 /* 2701 * for inserting items, make sure we have a write lock on 2702 * level 1 so we can update keys 2703 */ 2704 write_lock_level = 1; 2705 } 2706 2707 if (!cow) 2708 write_lock_level = -1; 2709 2710 if (cow && (p->keep_locks || p->lowest_level)) 2711 write_lock_level = BTRFS_MAX_LEVEL; 2712 2713 min_write_lock_level = write_lock_level; 2714 2715 again: 2716 prev_cmp = -1; 2717 /* 2718 * we try very hard to do read locks on the root 2719 */ 2720 root_lock = BTRFS_READ_LOCK; 2721 level = 0; 2722 if (p->search_commit_root) { 2723 /* 2724 * the commit roots are read only 2725 * so we always do read locks 2726 */ 2727 if (p->need_commit_sem) 2728 down_read(&root->fs_info->commit_root_sem); 2729 b = root->commit_root; 2730 extent_buffer_get(b); 2731 level = btrfs_header_level(b); 2732 if (p->need_commit_sem) 2733 up_read(&root->fs_info->commit_root_sem); 2734 if (!p->skip_locking) 2735 btrfs_tree_read_lock(b); 2736 } else { 2737 if (p->skip_locking) { 2738 b = btrfs_root_node(root); 2739 level = btrfs_header_level(b); 2740 } else { 2741 /* we don't know the level of the root node 2742 * until we actually have it read locked 2743 */ 2744 b = btrfs_read_lock_root_node(root); 2745 level = btrfs_header_level(b); 2746 if (level <= write_lock_level) { 2747 /* whoops, must trade for write lock */ 2748 btrfs_tree_read_unlock(b); 2749 free_extent_buffer(b); 2750 b = btrfs_lock_root_node(root); 2751 root_lock = BTRFS_WRITE_LOCK; 2752 2753 /* the level might have changed, check again */ 2754 level = btrfs_header_level(b); 2755 } 2756 } 2757 } 2758 p->nodes[level] = b; 2759 if (!p->skip_locking) 2760 p->locks[level] = root_lock; 2761 2762 while (b) { 2763 level = btrfs_header_level(b); 2764 2765 /* 2766 * setup the path here so we can release it under lock 2767 * contention with the cow code 2768 */ 2769 if (cow) { 2770 /* 2771 * if we don't really need to cow this block 2772 * then we don't want to set the path blocking, 2773 * so we test it here 2774 */ 2775 if (!should_cow_block(trans, root, b)) 2776 goto cow_done; 2777 2778 /* 2779 * must have write locks on this node and the 2780 * parent 2781 */ 2782 if (level > write_lock_level || 2783 (level + 1 > write_lock_level && 2784 level + 1 < BTRFS_MAX_LEVEL && 2785 p->nodes[level + 1])) { 2786 write_lock_level = level + 1; 2787 btrfs_release_path(p); 2788 goto again; 2789 } 2790 2791 btrfs_set_path_blocking(p); 2792 err = btrfs_cow_block(trans, root, b, 2793 p->nodes[level + 1], 2794 p->slots[level + 1], &b); 2795 if (err) { 2796 ret = err; 2797 goto done; 2798 } 2799 } 2800 cow_done: 2801 p->nodes[level] = b; 2802 btrfs_clear_path_blocking(p, NULL, 0); 2803 2804 /* 2805 * we have a lock on b and as long as we aren't changing 2806 * the tree, there is no way to for the items in b to change. 2807 * It is safe to drop the lock on our parent before we 2808 * go through the expensive btree search on b. 2809 * 2810 * If we're inserting or deleting (ins_len != 0), then we might 2811 * be changing slot zero, which may require changing the parent. 2812 * So, we can't drop the lock until after we know which slot 2813 * we're operating on. 2814 */ 2815 if (!ins_len && !p->keep_locks) { 2816 int u = level + 1; 2817 2818 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2819 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2820 p->locks[u] = 0; 2821 } 2822 } 2823 2824 ret = key_search(b, key, level, &prev_cmp, &slot); 2825 2826 if (level != 0) { 2827 int dec = 0; 2828 if (ret && slot > 0) { 2829 dec = 1; 2830 slot -= 1; 2831 } 2832 p->slots[level] = slot; 2833 err = setup_nodes_for_search(trans, root, p, b, level, 2834 ins_len, &write_lock_level); 2835 if (err == -EAGAIN) 2836 goto again; 2837 if (err) { 2838 ret = err; 2839 goto done; 2840 } 2841 b = p->nodes[level]; 2842 slot = p->slots[level]; 2843 2844 /* 2845 * slot 0 is special, if we change the key 2846 * we have to update the parent pointer 2847 * which means we must have a write lock 2848 * on the parent 2849 */ 2850 if (slot == 0 && ins_len && 2851 write_lock_level < level + 1) { 2852 write_lock_level = level + 1; 2853 btrfs_release_path(p); 2854 goto again; 2855 } 2856 2857 unlock_up(p, level, lowest_unlock, 2858 min_write_lock_level, &write_lock_level); 2859 2860 if (level == lowest_level) { 2861 if (dec) 2862 p->slots[level]++; 2863 goto done; 2864 } 2865 2866 err = read_block_for_search(trans, root, p, 2867 &b, level, slot, key, 0); 2868 if (err == -EAGAIN) 2869 goto again; 2870 if (err) { 2871 ret = err; 2872 goto done; 2873 } 2874 2875 if (!p->skip_locking) { 2876 level = btrfs_header_level(b); 2877 if (level <= write_lock_level) { 2878 err = btrfs_try_tree_write_lock(b); 2879 if (!err) { 2880 btrfs_set_path_blocking(p); 2881 btrfs_tree_lock(b); 2882 btrfs_clear_path_blocking(p, b, 2883 BTRFS_WRITE_LOCK); 2884 } 2885 p->locks[level] = BTRFS_WRITE_LOCK; 2886 } else { 2887 err = btrfs_tree_read_lock_atomic(b); 2888 if (!err) { 2889 btrfs_set_path_blocking(p); 2890 btrfs_tree_read_lock(b); 2891 btrfs_clear_path_blocking(p, b, 2892 BTRFS_READ_LOCK); 2893 } 2894 p->locks[level] = BTRFS_READ_LOCK; 2895 } 2896 p->nodes[level] = b; 2897 } 2898 } else { 2899 p->slots[level] = slot; 2900 if (ins_len > 0 && 2901 btrfs_leaf_free_space(root, b) < ins_len) { 2902 if (write_lock_level < 1) { 2903 write_lock_level = 1; 2904 btrfs_release_path(p); 2905 goto again; 2906 } 2907 2908 btrfs_set_path_blocking(p); 2909 err = split_leaf(trans, root, key, 2910 p, ins_len, ret == 0); 2911 btrfs_clear_path_blocking(p, NULL, 0); 2912 2913 BUG_ON(err > 0); 2914 if (err) { 2915 ret = err; 2916 goto done; 2917 } 2918 } 2919 if (!p->search_for_split) 2920 unlock_up(p, level, lowest_unlock, 2921 min_write_lock_level, &write_lock_level); 2922 goto done; 2923 } 2924 } 2925 ret = 1; 2926 done: 2927 /* 2928 * we don't really know what they plan on doing with the path 2929 * from here on, so for now just mark it as blocking 2930 */ 2931 if (!p->leave_spinning) 2932 btrfs_set_path_blocking(p); 2933 if (ret < 0 && !p->skip_release_on_error) 2934 btrfs_release_path(p); 2935 return ret; 2936 } 2937 2938 /* 2939 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2940 * current state of the tree together with the operations recorded in the tree 2941 * modification log to search for the key in a previous version of this tree, as 2942 * denoted by the time_seq parameter. 2943 * 2944 * Naturally, there is no support for insert, delete or cow operations. 2945 * 2946 * The resulting path and return value will be set up as if we called 2947 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2948 */ 2949 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2950 struct btrfs_path *p, u64 time_seq) 2951 { 2952 struct extent_buffer *b; 2953 int slot; 2954 int ret; 2955 int err; 2956 int level; 2957 int lowest_unlock = 1; 2958 u8 lowest_level = 0; 2959 int prev_cmp = -1; 2960 2961 lowest_level = p->lowest_level; 2962 WARN_ON(p->nodes[0] != NULL); 2963 2964 if (p->search_commit_root) { 2965 BUG_ON(time_seq); 2966 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2967 } 2968 2969 again: 2970 b = get_old_root(root, time_seq); 2971 level = btrfs_header_level(b); 2972 p->locks[level] = BTRFS_READ_LOCK; 2973 2974 while (b) { 2975 level = btrfs_header_level(b); 2976 p->nodes[level] = b; 2977 btrfs_clear_path_blocking(p, NULL, 0); 2978 2979 /* 2980 * we have a lock on b and as long as we aren't changing 2981 * the tree, there is no way to for the items in b to change. 2982 * It is safe to drop the lock on our parent before we 2983 * go through the expensive btree search on b. 2984 */ 2985 btrfs_unlock_up_safe(p, level + 1); 2986 2987 /* 2988 * Since we can unwind eb's we want to do a real search every 2989 * time. 2990 */ 2991 prev_cmp = -1; 2992 ret = key_search(b, key, level, &prev_cmp, &slot); 2993 2994 if (level != 0) { 2995 int dec = 0; 2996 if (ret && slot > 0) { 2997 dec = 1; 2998 slot -= 1; 2999 } 3000 p->slots[level] = slot; 3001 unlock_up(p, level, lowest_unlock, 0, NULL); 3002 3003 if (level == lowest_level) { 3004 if (dec) 3005 p->slots[level]++; 3006 goto done; 3007 } 3008 3009 err = read_block_for_search(NULL, root, p, &b, level, 3010 slot, key, time_seq); 3011 if (err == -EAGAIN) 3012 goto again; 3013 if (err) { 3014 ret = err; 3015 goto done; 3016 } 3017 3018 level = btrfs_header_level(b); 3019 err = btrfs_tree_read_lock_atomic(b); 3020 if (!err) { 3021 btrfs_set_path_blocking(p); 3022 btrfs_tree_read_lock(b); 3023 btrfs_clear_path_blocking(p, b, 3024 BTRFS_READ_LOCK); 3025 } 3026 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3027 if (!b) { 3028 ret = -ENOMEM; 3029 goto done; 3030 } 3031 p->locks[level] = BTRFS_READ_LOCK; 3032 p->nodes[level] = b; 3033 } else { 3034 p->slots[level] = slot; 3035 unlock_up(p, level, lowest_unlock, 0, NULL); 3036 goto done; 3037 } 3038 } 3039 ret = 1; 3040 done: 3041 if (!p->leave_spinning) 3042 btrfs_set_path_blocking(p); 3043 if (ret < 0) 3044 btrfs_release_path(p); 3045 3046 return ret; 3047 } 3048 3049 /* 3050 * helper to use instead of search slot if no exact match is needed but 3051 * instead the next or previous item should be returned. 3052 * When find_higher is true, the next higher item is returned, the next lower 3053 * otherwise. 3054 * When return_any and find_higher are both true, and no higher item is found, 3055 * return the next lower instead. 3056 * When return_any is true and find_higher is false, and no lower item is found, 3057 * return the next higher instead. 3058 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3059 * < 0 on error 3060 */ 3061 int btrfs_search_slot_for_read(struct btrfs_root *root, 3062 struct btrfs_key *key, struct btrfs_path *p, 3063 int find_higher, int return_any) 3064 { 3065 int ret; 3066 struct extent_buffer *leaf; 3067 3068 again: 3069 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3070 if (ret <= 0) 3071 return ret; 3072 /* 3073 * a return value of 1 means the path is at the position where the 3074 * item should be inserted. Normally this is the next bigger item, 3075 * but in case the previous item is the last in a leaf, path points 3076 * to the first free slot in the previous leaf, i.e. at an invalid 3077 * item. 3078 */ 3079 leaf = p->nodes[0]; 3080 3081 if (find_higher) { 3082 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3083 ret = btrfs_next_leaf(root, p); 3084 if (ret <= 0) 3085 return ret; 3086 if (!return_any) 3087 return 1; 3088 /* 3089 * no higher item found, return the next 3090 * lower instead 3091 */ 3092 return_any = 0; 3093 find_higher = 0; 3094 btrfs_release_path(p); 3095 goto again; 3096 } 3097 } else { 3098 if (p->slots[0] == 0) { 3099 ret = btrfs_prev_leaf(root, p); 3100 if (ret < 0) 3101 return ret; 3102 if (!ret) { 3103 leaf = p->nodes[0]; 3104 if (p->slots[0] == btrfs_header_nritems(leaf)) 3105 p->slots[0]--; 3106 return 0; 3107 } 3108 if (!return_any) 3109 return 1; 3110 /* 3111 * no lower item found, return the next 3112 * higher instead 3113 */ 3114 return_any = 0; 3115 find_higher = 1; 3116 btrfs_release_path(p); 3117 goto again; 3118 } else { 3119 --p->slots[0]; 3120 } 3121 } 3122 return 0; 3123 } 3124 3125 /* 3126 * adjust the pointers going up the tree, starting at level 3127 * making sure the right key of each node is points to 'key'. 3128 * This is used after shifting pointers to the left, so it stops 3129 * fixing up pointers when a given leaf/node is not in slot 0 of the 3130 * higher levels 3131 * 3132 */ 3133 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3134 struct btrfs_path *path, 3135 struct btrfs_disk_key *key, int level) 3136 { 3137 int i; 3138 struct extent_buffer *t; 3139 3140 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3141 int tslot = path->slots[i]; 3142 if (!path->nodes[i]) 3143 break; 3144 t = path->nodes[i]; 3145 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3146 btrfs_set_node_key(t, key, tslot); 3147 btrfs_mark_buffer_dirty(path->nodes[i]); 3148 if (tslot != 0) 3149 break; 3150 } 3151 } 3152 3153 /* 3154 * update item key. 3155 * 3156 * This function isn't completely safe. It's the caller's responsibility 3157 * that the new key won't break the order 3158 */ 3159 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3160 struct btrfs_path *path, 3161 struct btrfs_key *new_key) 3162 { 3163 struct btrfs_disk_key disk_key; 3164 struct extent_buffer *eb; 3165 int slot; 3166 3167 eb = path->nodes[0]; 3168 slot = path->slots[0]; 3169 if (slot > 0) { 3170 btrfs_item_key(eb, &disk_key, slot - 1); 3171 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3172 } 3173 if (slot < btrfs_header_nritems(eb) - 1) { 3174 btrfs_item_key(eb, &disk_key, slot + 1); 3175 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3176 } 3177 3178 btrfs_cpu_key_to_disk(&disk_key, new_key); 3179 btrfs_set_item_key(eb, &disk_key, slot); 3180 btrfs_mark_buffer_dirty(eb); 3181 if (slot == 0) 3182 fixup_low_keys(fs_info, path, &disk_key, 1); 3183 } 3184 3185 /* 3186 * try to push data from one node into the next node left in the 3187 * tree. 3188 * 3189 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3190 * error, and > 0 if there was no room in the left hand block. 3191 */ 3192 static int push_node_left(struct btrfs_trans_handle *trans, 3193 struct btrfs_root *root, struct extent_buffer *dst, 3194 struct extent_buffer *src, int empty) 3195 { 3196 int push_items = 0; 3197 int src_nritems; 3198 int dst_nritems; 3199 int ret = 0; 3200 3201 src_nritems = btrfs_header_nritems(src); 3202 dst_nritems = btrfs_header_nritems(dst); 3203 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3204 WARN_ON(btrfs_header_generation(src) != trans->transid); 3205 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3206 3207 if (!empty && src_nritems <= 8) 3208 return 1; 3209 3210 if (push_items <= 0) 3211 return 1; 3212 3213 if (empty) { 3214 push_items = min(src_nritems, push_items); 3215 if (push_items < src_nritems) { 3216 /* leave at least 8 pointers in the node if 3217 * we aren't going to empty it 3218 */ 3219 if (src_nritems - push_items < 8) { 3220 if (push_items <= 8) 3221 return 1; 3222 push_items -= 8; 3223 } 3224 } 3225 } else 3226 push_items = min(src_nritems - 8, push_items); 3227 3228 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3229 push_items); 3230 if (ret) { 3231 btrfs_abort_transaction(trans, root, ret); 3232 return ret; 3233 } 3234 copy_extent_buffer(dst, src, 3235 btrfs_node_key_ptr_offset(dst_nritems), 3236 btrfs_node_key_ptr_offset(0), 3237 push_items * sizeof(struct btrfs_key_ptr)); 3238 3239 if (push_items < src_nritems) { 3240 /* 3241 * don't call tree_mod_log_eb_move here, key removal was already 3242 * fully logged by tree_mod_log_eb_copy above. 3243 */ 3244 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3245 btrfs_node_key_ptr_offset(push_items), 3246 (src_nritems - push_items) * 3247 sizeof(struct btrfs_key_ptr)); 3248 } 3249 btrfs_set_header_nritems(src, src_nritems - push_items); 3250 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3251 btrfs_mark_buffer_dirty(src); 3252 btrfs_mark_buffer_dirty(dst); 3253 3254 return ret; 3255 } 3256 3257 /* 3258 * try to push data from one node into the next node right in the 3259 * tree. 3260 * 3261 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3262 * error, and > 0 if there was no room in the right hand block. 3263 * 3264 * this will only push up to 1/2 the contents of the left node over 3265 */ 3266 static int balance_node_right(struct btrfs_trans_handle *trans, 3267 struct btrfs_root *root, 3268 struct extent_buffer *dst, 3269 struct extent_buffer *src) 3270 { 3271 int push_items = 0; 3272 int max_push; 3273 int src_nritems; 3274 int dst_nritems; 3275 int ret = 0; 3276 3277 WARN_ON(btrfs_header_generation(src) != trans->transid); 3278 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3279 3280 src_nritems = btrfs_header_nritems(src); 3281 dst_nritems = btrfs_header_nritems(dst); 3282 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3283 if (push_items <= 0) 3284 return 1; 3285 3286 if (src_nritems < 4) 3287 return 1; 3288 3289 max_push = src_nritems / 2 + 1; 3290 /* don't try to empty the node */ 3291 if (max_push >= src_nritems) 3292 return 1; 3293 3294 if (max_push < push_items) 3295 push_items = max_push; 3296 3297 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3298 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3299 btrfs_node_key_ptr_offset(0), 3300 (dst_nritems) * 3301 sizeof(struct btrfs_key_ptr)); 3302 3303 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3304 src_nritems - push_items, push_items); 3305 if (ret) { 3306 btrfs_abort_transaction(trans, root, ret); 3307 return ret; 3308 } 3309 copy_extent_buffer(dst, src, 3310 btrfs_node_key_ptr_offset(0), 3311 btrfs_node_key_ptr_offset(src_nritems - push_items), 3312 push_items * sizeof(struct btrfs_key_ptr)); 3313 3314 btrfs_set_header_nritems(src, src_nritems - push_items); 3315 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3316 3317 btrfs_mark_buffer_dirty(src); 3318 btrfs_mark_buffer_dirty(dst); 3319 3320 return ret; 3321 } 3322 3323 /* 3324 * helper function to insert a new root level in the tree. 3325 * A new node is allocated, and a single item is inserted to 3326 * point to the existing root 3327 * 3328 * returns zero on success or < 0 on failure. 3329 */ 3330 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3331 struct btrfs_root *root, 3332 struct btrfs_path *path, int level) 3333 { 3334 u64 lower_gen; 3335 struct extent_buffer *lower; 3336 struct extent_buffer *c; 3337 struct extent_buffer *old; 3338 struct btrfs_disk_key lower_key; 3339 3340 BUG_ON(path->nodes[level]); 3341 BUG_ON(path->nodes[level-1] != root->node); 3342 3343 lower = path->nodes[level-1]; 3344 if (level == 1) 3345 btrfs_item_key(lower, &lower_key, 0); 3346 else 3347 btrfs_node_key(lower, &lower_key, 0); 3348 3349 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3350 &lower_key, level, root->node->start, 0); 3351 if (IS_ERR(c)) 3352 return PTR_ERR(c); 3353 3354 root_add_used(root, root->nodesize); 3355 3356 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3357 btrfs_set_header_nritems(c, 1); 3358 btrfs_set_header_level(c, level); 3359 btrfs_set_header_bytenr(c, c->start); 3360 btrfs_set_header_generation(c, trans->transid); 3361 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3362 btrfs_set_header_owner(c, root->root_key.objectid); 3363 3364 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3365 BTRFS_FSID_SIZE); 3366 3367 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3368 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3369 3370 btrfs_set_node_key(c, &lower_key, 0); 3371 btrfs_set_node_blockptr(c, 0, lower->start); 3372 lower_gen = btrfs_header_generation(lower); 3373 WARN_ON(lower_gen != trans->transid); 3374 3375 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3376 3377 btrfs_mark_buffer_dirty(c); 3378 3379 old = root->node; 3380 tree_mod_log_set_root_pointer(root, c, 0); 3381 rcu_assign_pointer(root->node, c); 3382 3383 /* the super has an extra ref to root->node */ 3384 free_extent_buffer(old); 3385 3386 add_root_to_dirty_list(root); 3387 extent_buffer_get(c); 3388 path->nodes[level] = c; 3389 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3390 path->slots[level] = 0; 3391 return 0; 3392 } 3393 3394 /* 3395 * worker function to insert a single pointer in a node. 3396 * the node should have enough room for the pointer already 3397 * 3398 * slot and level indicate where you want the key to go, and 3399 * blocknr is the block the key points to. 3400 */ 3401 static void insert_ptr(struct btrfs_trans_handle *trans, 3402 struct btrfs_root *root, struct btrfs_path *path, 3403 struct btrfs_disk_key *key, u64 bytenr, 3404 int slot, int level) 3405 { 3406 struct extent_buffer *lower; 3407 int nritems; 3408 int ret; 3409 3410 BUG_ON(!path->nodes[level]); 3411 btrfs_assert_tree_locked(path->nodes[level]); 3412 lower = path->nodes[level]; 3413 nritems = btrfs_header_nritems(lower); 3414 BUG_ON(slot > nritems); 3415 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3416 if (slot != nritems) { 3417 if (level) 3418 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3419 slot, nritems - slot); 3420 memmove_extent_buffer(lower, 3421 btrfs_node_key_ptr_offset(slot + 1), 3422 btrfs_node_key_ptr_offset(slot), 3423 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3424 } 3425 if (level) { 3426 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3427 MOD_LOG_KEY_ADD, GFP_NOFS); 3428 BUG_ON(ret < 0); 3429 } 3430 btrfs_set_node_key(lower, key, slot); 3431 btrfs_set_node_blockptr(lower, slot, bytenr); 3432 WARN_ON(trans->transid == 0); 3433 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3434 btrfs_set_header_nritems(lower, nritems + 1); 3435 btrfs_mark_buffer_dirty(lower); 3436 } 3437 3438 /* 3439 * split the node at the specified level in path in two. 3440 * The path is corrected to point to the appropriate node after the split 3441 * 3442 * Before splitting this tries to make some room in the node by pushing 3443 * left and right, if either one works, it returns right away. 3444 * 3445 * returns 0 on success and < 0 on failure 3446 */ 3447 static noinline int split_node(struct btrfs_trans_handle *trans, 3448 struct btrfs_root *root, 3449 struct btrfs_path *path, int level) 3450 { 3451 struct extent_buffer *c; 3452 struct extent_buffer *split; 3453 struct btrfs_disk_key disk_key; 3454 int mid; 3455 int ret; 3456 u32 c_nritems; 3457 3458 c = path->nodes[level]; 3459 WARN_ON(btrfs_header_generation(c) != trans->transid); 3460 if (c == root->node) { 3461 /* 3462 * trying to split the root, lets make a new one 3463 * 3464 * tree mod log: We don't log_removal old root in 3465 * insert_new_root, because that root buffer will be kept as a 3466 * normal node. We are going to log removal of half of the 3467 * elements below with tree_mod_log_eb_copy. We're holding a 3468 * tree lock on the buffer, which is why we cannot race with 3469 * other tree_mod_log users. 3470 */ 3471 ret = insert_new_root(trans, root, path, level + 1); 3472 if (ret) 3473 return ret; 3474 } else { 3475 ret = push_nodes_for_insert(trans, root, path, level); 3476 c = path->nodes[level]; 3477 if (!ret && btrfs_header_nritems(c) < 3478 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3479 return 0; 3480 if (ret < 0) 3481 return ret; 3482 } 3483 3484 c_nritems = btrfs_header_nritems(c); 3485 mid = (c_nritems + 1) / 2; 3486 btrfs_node_key(c, &disk_key, mid); 3487 3488 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3489 &disk_key, level, c->start, 0); 3490 if (IS_ERR(split)) 3491 return PTR_ERR(split); 3492 3493 root_add_used(root, root->nodesize); 3494 3495 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3496 btrfs_set_header_level(split, btrfs_header_level(c)); 3497 btrfs_set_header_bytenr(split, split->start); 3498 btrfs_set_header_generation(split, trans->transid); 3499 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3500 btrfs_set_header_owner(split, root->root_key.objectid); 3501 write_extent_buffer(split, root->fs_info->fsid, 3502 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3503 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3504 btrfs_header_chunk_tree_uuid(split), 3505 BTRFS_UUID_SIZE); 3506 3507 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3508 mid, c_nritems - mid); 3509 if (ret) { 3510 btrfs_abort_transaction(trans, root, ret); 3511 return ret; 3512 } 3513 copy_extent_buffer(split, c, 3514 btrfs_node_key_ptr_offset(0), 3515 btrfs_node_key_ptr_offset(mid), 3516 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3517 btrfs_set_header_nritems(split, c_nritems - mid); 3518 btrfs_set_header_nritems(c, mid); 3519 ret = 0; 3520 3521 btrfs_mark_buffer_dirty(c); 3522 btrfs_mark_buffer_dirty(split); 3523 3524 insert_ptr(trans, root, path, &disk_key, split->start, 3525 path->slots[level + 1] + 1, level + 1); 3526 3527 if (path->slots[level] >= mid) { 3528 path->slots[level] -= mid; 3529 btrfs_tree_unlock(c); 3530 free_extent_buffer(c); 3531 path->nodes[level] = split; 3532 path->slots[level + 1] += 1; 3533 } else { 3534 btrfs_tree_unlock(split); 3535 free_extent_buffer(split); 3536 } 3537 return ret; 3538 } 3539 3540 /* 3541 * how many bytes are required to store the items in a leaf. start 3542 * and nr indicate which items in the leaf to check. This totals up the 3543 * space used both by the item structs and the item data 3544 */ 3545 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3546 { 3547 struct btrfs_item *start_item; 3548 struct btrfs_item *end_item; 3549 struct btrfs_map_token token; 3550 int data_len; 3551 int nritems = btrfs_header_nritems(l); 3552 int end = min(nritems, start + nr) - 1; 3553 3554 if (!nr) 3555 return 0; 3556 btrfs_init_map_token(&token); 3557 start_item = btrfs_item_nr(start); 3558 end_item = btrfs_item_nr(end); 3559 data_len = btrfs_token_item_offset(l, start_item, &token) + 3560 btrfs_token_item_size(l, start_item, &token); 3561 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3562 data_len += sizeof(struct btrfs_item) * nr; 3563 WARN_ON(data_len < 0); 3564 return data_len; 3565 } 3566 3567 /* 3568 * The space between the end of the leaf items and 3569 * the start of the leaf data. IOW, how much room 3570 * the leaf has left for both items and data 3571 */ 3572 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3573 struct extent_buffer *leaf) 3574 { 3575 int nritems = btrfs_header_nritems(leaf); 3576 int ret; 3577 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3578 if (ret < 0) { 3579 btrfs_crit(root->fs_info, 3580 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3581 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3582 leaf_space_used(leaf, 0, nritems), nritems); 3583 } 3584 return ret; 3585 } 3586 3587 /* 3588 * min slot controls the lowest index we're willing to push to the 3589 * right. We'll push up to and including min_slot, but no lower 3590 */ 3591 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3592 struct btrfs_root *root, 3593 struct btrfs_path *path, 3594 int data_size, int empty, 3595 struct extent_buffer *right, 3596 int free_space, u32 left_nritems, 3597 u32 min_slot) 3598 { 3599 struct extent_buffer *left = path->nodes[0]; 3600 struct extent_buffer *upper = path->nodes[1]; 3601 struct btrfs_map_token token; 3602 struct btrfs_disk_key disk_key; 3603 int slot; 3604 u32 i; 3605 int push_space = 0; 3606 int push_items = 0; 3607 struct btrfs_item *item; 3608 u32 nr; 3609 u32 right_nritems; 3610 u32 data_end; 3611 u32 this_item_size; 3612 3613 btrfs_init_map_token(&token); 3614 3615 if (empty) 3616 nr = 0; 3617 else 3618 nr = max_t(u32, 1, min_slot); 3619 3620 if (path->slots[0] >= left_nritems) 3621 push_space += data_size; 3622 3623 slot = path->slots[1]; 3624 i = left_nritems - 1; 3625 while (i >= nr) { 3626 item = btrfs_item_nr(i); 3627 3628 if (!empty && push_items > 0) { 3629 if (path->slots[0] > i) 3630 break; 3631 if (path->slots[0] == i) { 3632 int space = btrfs_leaf_free_space(root, left); 3633 if (space + push_space * 2 > free_space) 3634 break; 3635 } 3636 } 3637 3638 if (path->slots[0] == i) 3639 push_space += data_size; 3640 3641 this_item_size = btrfs_item_size(left, item); 3642 if (this_item_size + sizeof(*item) + push_space > free_space) 3643 break; 3644 3645 push_items++; 3646 push_space += this_item_size + sizeof(*item); 3647 if (i == 0) 3648 break; 3649 i--; 3650 } 3651 3652 if (push_items == 0) 3653 goto out_unlock; 3654 3655 WARN_ON(!empty && push_items == left_nritems); 3656 3657 /* push left to right */ 3658 right_nritems = btrfs_header_nritems(right); 3659 3660 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3661 push_space -= leaf_data_end(root, left); 3662 3663 /* make room in the right data area */ 3664 data_end = leaf_data_end(root, right); 3665 memmove_extent_buffer(right, 3666 btrfs_leaf_data(right) + data_end - push_space, 3667 btrfs_leaf_data(right) + data_end, 3668 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3669 3670 /* copy from the left data area */ 3671 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3672 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3673 btrfs_leaf_data(left) + leaf_data_end(root, left), 3674 push_space); 3675 3676 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3677 btrfs_item_nr_offset(0), 3678 right_nritems * sizeof(struct btrfs_item)); 3679 3680 /* copy the items from left to right */ 3681 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3682 btrfs_item_nr_offset(left_nritems - push_items), 3683 push_items * sizeof(struct btrfs_item)); 3684 3685 /* update the item pointers */ 3686 right_nritems += push_items; 3687 btrfs_set_header_nritems(right, right_nritems); 3688 push_space = BTRFS_LEAF_DATA_SIZE(root); 3689 for (i = 0; i < right_nritems; i++) { 3690 item = btrfs_item_nr(i); 3691 push_space -= btrfs_token_item_size(right, item, &token); 3692 btrfs_set_token_item_offset(right, item, push_space, &token); 3693 } 3694 3695 left_nritems -= push_items; 3696 btrfs_set_header_nritems(left, left_nritems); 3697 3698 if (left_nritems) 3699 btrfs_mark_buffer_dirty(left); 3700 else 3701 clean_tree_block(trans, root->fs_info, left); 3702 3703 btrfs_mark_buffer_dirty(right); 3704 3705 btrfs_item_key(right, &disk_key, 0); 3706 btrfs_set_node_key(upper, &disk_key, slot + 1); 3707 btrfs_mark_buffer_dirty(upper); 3708 3709 /* then fixup the leaf pointer in the path */ 3710 if (path->slots[0] >= left_nritems) { 3711 path->slots[0] -= left_nritems; 3712 if (btrfs_header_nritems(path->nodes[0]) == 0) 3713 clean_tree_block(trans, root->fs_info, path->nodes[0]); 3714 btrfs_tree_unlock(path->nodes[0]); 3715 free_extent_buffer(path->nodes[0]); 3716 path->nodes[0] = right; 3717 path->slots[1] += 1; 3718 } else { 3719 btrfs_tree_unlock(right); 3720 free_extent_buffer(right); 3721 } 3722 return 0; 3723 3724 out_unlock: 3725 btrfs_tree_unlock(right); 3726 free_extent_buffer(right); 3727 return 1; 3728 } 3729 3730 /* 3731 * push some data in the path leaf to the right, trying to free up at 3732 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3733 * 3734 * returns 1 if the push failed because the other node didn't have enough 3735 * room, 0 if everything worked out and < 0 if there were major errors. 3736 * 3737 * this will push starting from min_slot to the end of the leaf. It won't 3738 * push any slot lower than min_slot 3739 */ 3740 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3741 *root, struct btrfs_path *path, 3742 int min_data_size, int data_size, 3743 int empty, u32 min_slot) 3744 { 3745 struct extent_buffer *left = path->nodes[0]; 3746 struct extent_buffer *right; 3747 struct extent_buffer *upper; 3748 int slot; 3749 int free_space; 3750 u32 left_nritems; 3751 int ret; 3752 3753 if (!path->nodes[1]) 3754 return 1; 3755 3756 slot = path->slots[1]; 3757 upper = path->nodes[1]; 3758 if (slot >= btrfs_header_nritems(upper) - 1) 3759 return 1; 3760 3761 btrfs_assert_tree_locked(path->nodes[1]); 3762 3763 right = read_node_slot(root, upper, slot + 1); 3764 if (right == NULL) 3765 return 1; 3766 3767 btrfs_tree_lock(right); 3768 btrfs_set_lock_blocking(right); 3769 3770 free_space = btrfs_leaf_free_space(root, right); 3771 if (free_space < data_size) 3772 goto out_unlock; 3773 3774 /* cow and double check */ 3775 ret = btrfs_cow_block(trans, root, right, upper, 3776 slot + 1, &right); 3777 if (ret) 3778 goto out_unlock; 3779 3780 free_space = btrfs_leaf_free_space(root, right); 3781 if (free_space < data_size) 3782 goto out_unlock; 3783 3784 left_nritems = btrfs_header_nritems(left); 3785 if (left_nritems == 0) 3786 goto out_unlock; 3787 3788 if (path->slots[0] == left_nritems && !empty) { 3789 /* Key greater than all keys in the leaf, right neighbor has 3790 * enough room for it and we're not emptying our leaf to delete 3791 * it, therefore use right neighbor to insert the new item and 3792 * no need to touch/dirty our left leaft. */ 3793 btrfs_tree_unlock(left); 3794 free_extent_buffer(left); 3795 path->nodes[0] = right; 3796 path->slots[0] = 0; 3797 path->slots[1]++; 3798 return 0; 3799 } 3800 3801 return __push_leaf_right(trans, root, path, min_data_size, empty, 3802 right, free_space, left_nritems, min_slot); 3803 out_unlock: 3804 btrfs_tree_unlock(right); 3805 free_extent_buffer(right); 3806 return 1; 3807 } 3808 3809 /* 3810 * push some data in the path leaf to the left, trying to free up at 3811 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3812 * 3813 * max_slot can put a limit on how far into the leaf we'll push items. The 3814 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3815 * items 3816 */ 3817 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3818 struct btrfs_root *root, 3819 struct btrfs_path *path, int data_size, 3820 int empty, struct extent_buffer *left, 3821 int free_space, u32 right_nritems, 3822 u32 max_slot) 3823 { 3824 struct btrfs_disk_key disk_key; 3825 struct extent_buffer *right = path->nodes[0]; 3826 int i; 3827 int push_space = 0; 3828 int push_items = 0; 3829 struct btrfs_item *item; 3830 u32 old_left_nritems; 3831 u32 nr; 3832 int ret = 0; 3833 u32 this_item_size; 3834 u32 old_left_item_size; 3835 struct btrfs_map_token token; 3836 3837 btrfs_init_map_token(&token); 3838 3839 if (empty) 3840 nr = min(right_nritems, max_slot); 3841 else 3842 nr = min(right_nritems - 1, max_slot); 3843 3844 for (i = 0; i < nr; i++) { 3845 item = btrfs_item_nr(i); 3846 3847 if (!empty && push_items > 0) { 3848 if (path->slots[0] < i) 3849 break; 3850 if (path->slots[0] == i) { 3851 int space = btrfs_leaf_free_space(root, right); 3852 if (space + push_space * 2 > free_space) 3853 break; 3854 } 3855 } 3856 3857 if (path->slots[0] == i) 3858 push_space += data_size; 3859 3860 this_item_size = btrfs_item_size(right, item); 3861 if (this_item_size + sizeof(*item) + push_space > free_space) 3862 break; 3863 3864 push_items++; 3865 push_space += this_item_size + sizeof(*item); 3866 } 3867 3868 if (push_items == 0) { 3869 ret = 1; 3870 goto out; 3871 } 3872 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3873 3874 /* push data from right to left */ 3875 copy_extent_buffer(left, right, 3876 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3877 btrfs_item_nr_offset(0), 3878 push_items * sizeof(struct btrfs_item)); 3879 3880 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3881 btrfs_item_offset_nr(right, push_items - 1); 3882 3883 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3884 leaf_data_end(root, left) - push_space, 3885 btrfs_leaf_data(right) + 3886 btrfs_item_offset_nr(right, push_items - 1), 3887 push_space); 3888 old_left_nritems = btrfs_header_nritems(left); 3889 BUG_ON(old_left_nritems <= 0); 3890 3891 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3892 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3893 u32 ioff; 3894 3895 item = btrfs_item_nr(i); 3896 3897 ioff = btrfs_token_item_offset(left, item, &token); 3898 btrfs_set_token_item_offset(left, item, 3899 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3900 &token); 3901 } 3902 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3903 3904 /* fixup right node */ 3905 if (push_items > right_nritems) 3906 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3907 right_nritems); 3908 3909 if (push_items < right_nritems) { 3910 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3911 leaf_data_end(root, right); 3912 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3913 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3914 btrfs_leaf_data(right) + 3915 leaf_data_end(root, right), push_space); 3916 3917 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3918 btrfs_item_nr_offset(push_items), 3919 (btrfs_header_nritems(right) - push_items) * 3920 sizeof(struct btrfs_item)); 3921 } 3922 right_nritems -= push_items; 3923 btrfs_set_header_nritems(right, right_nritems); 3924 push_space = BTRFS_LEAF_DATA_SIZE(root); 3925 for (i = 0; i < right_nritems; i++) { 3926 item = btrfs_item_nr(i); 3927 3928 push_space = push_space - btrfs_token_item_size(right, 3929 item, &token); 3930 btrfs_set_token_item_offset(right, item, push_space, &token); 3931 } 3932 3933 btrfs_mark_buffer_dirty(left); 3934 if (right_nritems) 3935 btrfs_mark_buffer_dirty(right); 3936 else 3937 clean_tree_block(trans, root->fs_info, right); 3938 3939 btrfs_item_key(right, &disk_key, 0); 3940 fixup_low_keys(root->fs_info, path, &disk_key, 1); 3941 3942 /* then fixup the leaf pointer in the path */ 3943 if (path->slots[0] < push_items) { 3944 path->slots[0] += old_left_nritems; 3945 btrfs_tree_unlock(path->nodes[0]); 3946 free_extent_buffer(path->nodes[0]); 3947 path->nodes[0] = left; 3948 path->slots[1] -= 1; 3949 } else { 3950 btrfs_tree_unlock(left); 3951 free_extent_buffer(left); 3952 path->slots[0] -= push_items; 3953 } 3954 BUG_ON(path->slots[0] < 0); 3955 return ret; 3956 out: 3957 btrfs_tree_unlock(left); 3958 free_extent_buffer(left); 3959 return ret; 3960 } 3961 3962 /* 3963 * push some data in the path leaf to the left, trying to free up at 3964 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3965 * 3966 * max_slot can put a limit on how far into the leaf we'll push items. The 3967 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3968 * items 3969 */ 3970 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3971 *root, struct btrfs_path *path, int min_data_size, 3972 int data_size, int empty, u32 max_slot) 3973 { 3974 struct extent_buffer *right = path->nodes[0]; 3975 struct extent_buffer *left; 3976 int slot; 3977 int free_space; 3978 u32 right_nritems; 3979 int ret = 0; 3980 3981 slot = path->slots[1]; 3982 if (slot == 0) 3983 return 1; 3984 if (!path->nodes[1]) 3985 return 1; 3986 3987 right_nritems = btrfs_header_nritems(right); 3988 if (right_nritems == 0) 3989 return 1; 3990 3991 btrfs_assert_tree_locked(path->nodes[1]); 3992 3993 left = read_node_slot(root, path->nodes[1], slot - 1); 3994 if (left == NULL) 3995 return 1; 3996 3997 btrfs_tree_lock(left); 3998 btrfs_set_lock_blocking(left); 3999 4000 free_space = btrfs_leaf_free_space(root, left); 4001 if (free_space < data_size) { 4002 ret = 1; 4003 goto out; 4004 } 4005 4006 /* cow and double check */ 4007 ret = btrfs_cow_block(trans, root, left, 4008 path->nodes[1], slot - 1, &left); 4009 if (ret) { 4010 /* we hit -ENOSPC, but it isn't fatal here */ 4011 if (ret == -ENOSPC) 4012 ret = 1; 4013 goto out; 4014 } 4015 4016 free_space = btrfs_leaf_free_space(root, left); 4017 if (free_space < data_size) { 4018 ret = 1; 4019 goto out; 4020 } 4021 4022 return __push_leaf_left(trans, root, path, min_data_size, 4023 empty, left, free_space, right_nritems, 4024 max_slot); 4025 out: 4026 btrfs_tree_unlock(left); 4027 free_extent_buffer(left); 4028 return ret; 4029 } 4030 4031 /* 4032 * split the path's leaf in two, making sure there is at least data_size 4033 * available for the resulting leaf level of the path. 4034 */ 4035 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4036 struct btrfs_root *root, 4037 struct btrfs_path *path, 4038 struct extent_buffer *l, 4039 struct extent_buffer *right, 4040 int slot, int mid, int nritems) 4041 { 4042 int data_copy_size; 4043 int rt_data_off; 4044 int i; 4045 struct btrfs_disk_key disk_key; 4046 struct btrfs_map_token token; 4047 4048 btrfs_init_map_token(&token); 4049 4050 nritems = nritems - mid; 4051 btrfs_set_header_nritems(right, nritems); 4052 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4053 4054 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4055 btrfs_item_nr_offset(mid), 4056 nritems * sizeof(struct btrfs_item)); 4057 4058 copy_extent_buffer(right, l, 4059 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4060 data_copy_size, btrfs_leaf_data(l) + 4061 leaf_data_end(root, l), data_copy_size); 4062 4063 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4064 btrfs_item_end_nr(l, mid); 4065 4066 for (i = 0; i < nritems; i++) { 4067 struct btrfs_item *item = btrfs_item_nr(i); 4068 u32 ioff; 4069 4070 ioff = btrfs_token_item_offset(right, item, &token); 4071 btrfs_set_token_item_offset(right, item, 4072 ioff + rt_data_off, &token); 4073 } 4074 4075 btrfs_set_header_nritems(l, mid); 4076 btrfs_item_key(right, &disk_key, 0); 4077 insert_ptr(trans, root, path, &disk_key, right->start, 4078 path->slots[1] + 1, 1); 4079 4080 btrfs_mark_buffer_dirty(right); 4081 btrfs_mark_buffer_dirty(l); 4082 BUG_ON(path->slots[0] != slot); 4083 4084 if (mid <= slot) { 4085 btrfs_tree_unlock(path->nodes[0]); 4086 free_extent_buffer(path->nodes[0]); 4087 path->nodes[0] = right; 4088 path->slots[0] -= mid; 4089 path->slots[1] += 1; 4090 } else { 4091 btrfs_tree_unlock(right); 4092 free_extent_buffer(right); 4093 } 4094 4095 BUG_ON(path->slots[0] < 0); 4096 } 4097 4098 /* 4099 * double splits happen when we need to insert a big item in the middle 4100 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4101 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4102 * A B C 4103 * 4104 * We avoid this by trying to push the items on either side of our target 4105 * into the adjacent leaves. If all goes well we can avoid the double split 4106 * completely. 4107 */ 4108 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4109 struct btrfs_root *root, 4110 struct btrfs_path *path, 4111 int data_size) 4112 { 4113 int ret; 4114 int progress = 0; 4115 int slot; 4116 u32 nritems; 4117 int space_needed = data_size; 4118 4119 slot = path->slots[0]; 4120 if (slot < btrfs_header_nritems(path->nodes[0])) 4121 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4122 4123 /* 4124 * try to push all the items after our slot into the 4125 * right leaf 4126 */ 4127 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4128 if (ret < 0) 4129 return ret; 4130 4131 if (ret == 0) 4132 progress++; 4133 4134 nritems = btrfs_header_nritems(path->nodes[0]); 4135 /* 4136 * our goal is to get our slot at the start or end of a leaf. If 4137 * we've done so we're done 4138 */ 4139 if (path->slots[0] == 0 || path->slots[0] == nritems) 4140 return 0; 4141 4142 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4143 return 0; 4144 4145 /* try to push all the items before our slot into the next leaf */ 4146 slot = path->slots[0]; 4147 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4148 if (ret < 0) 4149 return ret; 4150 4151 if (ret == 0) 4152 progress++; 4153 4154 if (progress) 4155 return 0; 4156 return 1; 4157 } 4158 4159 /* 4160 * split the path's leaf in two, making sure there is at least data_size 4161 * available for the resulting leaf level of the path. 4162 * 4163 * returns 0 if all went well and < 0 on failure. 4164 */ 4165 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4166 struct btrfs_root *root, 4167 struct btrfs_key *ins_key, 4168 struct btrfs_path *path, int data_size, 4169 int extend) 4170 { 4171 struct btrfs_disk_key disk_key; 4172 struct extent_buffer *l; 4173 u32 nritems; 4174 int mid; 4175 int slot; 4176 struct extent_buffer *right; 4177 struct btrfs_fs_info *fs_info = root->fs_info; 4178 int ret = 0; 4179 int wret; 4180 int split; 4181 int num_doubles = 0; 4182 int tried_avoid_double = 0; 4183 4184 l = path->nodes[0]; 4185 slot = path->slots[0]; 4186 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4187 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4188 return -EOVERFLOW; 4189 4190 /* first try to make some room by pushing left and right */ 4191 if (data_size && path->nodes[1]) { 4192 int space_needed = data_size; 4193 4194 if (slot < btrfs_header_nritems(l)) 4195 space_needed -= btrfs_leaf_free_space(root, l); 4196 4197 wret = push_leaf_right(trans, root, path, space_needed, 4198 space_needed, 0, 0); 4199 if (wret < 0) 4200 return wret; 4201 if (wret) { 4202 wret = push_leaf_left(trans, root, path, space_needed, 4203 space_needed, 0, (u32)-1); 4204 if (wret < 0) 4205 return wret; 4206 } 4207 l = path->nodes[0]; 4208 4209 /* did the pushes work? */ 4210 if (btrfs_leaf_free_space(root, l) >= data_size) 4211 return 0; 4212 } 4213 4214 if (!path->nodes[1]) { 4215 ret = insert_new_root(trans, root, path, 1); 4216 if (ret) 4217 return ret; 4218 } 4219 again: 4220 split = 1; 4221 l = path->nodes[0]; 4222 slot = path->slots[0]; 4223 nritems = btrfs_header_nritems(l); 4224 mid = (nritems + 1) / 2; 4225 4226 if (mid <= slot) { 4227 if (nritems == 1 || 4228 leaf_space_used(l, mid, nritems - mid) + data_size > 4229 BTRFS_LEAF_DATA_SIZE(root)) { 4230 if (slot >= nritems) { 4231 split = 0; 4232 } else { 4233 mid = slot; 4234 if (mid != nritems && 4235 leaf_space_used(l, mid, nritems - mid) + 4236 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4237 if (data_size && !tried_avoid_double) 4238 goto push_for_double; 4239 split = 2; 4240 } 4241 } 4242 } 4243 } else { 4244 if (leaf_space_used(l, 0, mid) + data_size > 4245 BTRFS_LEAF_DATA_SIZE(root)) { 4246 if (!extend && data_size && slot == 0) { 4247 split = 0; 4248 } else if ((extend || !data_size) && slot == 0) { 4249 mid = 1; 4250 } else { 4251 mid = slot; 4252 if (mid != nritems && 4253 leaf_space_used(l, mid, nritems - mid) + 4254 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4255 if (data_size && !tried_avoid_double) 4256 goto push_for_double; 4257 split = 2; 4258 } 4259 } 4260 } 4261 } 4262 4263 if (split == 0) 4264 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4265 else 4266 btrfs_item_key(l, &disk_key, mid); 4267 4268 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4269 &disk_key, 0, l->start, 0); 4270 if (IS_ERR(right)) 4271 return PTR_ERR(right); 4272 4273 root_add_used(root, root->nodesize); 4274 4275 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4276 btrfs_set_header_bytenr(right, right->start); 4277 btrfs_set_header_generation(right, trans->transid); 4278 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4279 btrfs_set_header_owner(right, root->root_key.objectid); 4280 btrfs_set_header_level(right, 0); 4281 write_extent_buffer(right, fs_info->fsid, 4282 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4283 4284 write_extent_buffer(right, fs_info->chunk_tree_uuid, 4285 btrfs_header_chunk_tree_uuid(right), 4286 BTRFS_UUID_SIZE); 4287 4288 if (split == 0) { 4289 if (mid <= slot) { 4290 btrfs_set_header_nritems(right, 0); 4291 insert_ptr(trans, root, path, &disk_key, right->start, 4292 path->slots[1] + 1, 1); 4293 btrfs_tree_unlock(path->nodes[0]); 4294 free_extent_buffer(path->nodes[0]); 4295 path->nodes[0] = right; 4296 path->slots[0] = 0; 4297 path->slots[1] += 1; 4298 } else { 4299 btrfs_set_header_nritems(right, 0); 4300 insert_ptr(trans, root, path, &disk_key, right->start, 4301 path->slots[1], 1); 4302 btrfs_tree_unlock(path->nodes[0]); 4303 free_extent_buffer(path->nodes[0]); 4304 path->nodes[0] = right; 4305 path->slots[0] = 0; 4306 if (path->slots[1] == 0) 4307 fixup_low_keys(fs_info, path, &disk_key, 1); 4308 } 4309 btrfs_mark_buffer_dirty(right); 4310 return ret; 4311 } 4312 4313 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4314 4315 if (split == 2) { 4316 BUG_ON(num_doubles != 0); 4317 num_doubles++; 4318 goto again; 4319 } 4320 4321 return 0; 4322 4323 push_for_double: 4324 push_for_double_split(trans, root, path, data_size); 4325 tried_avoid_double = 1; 4326 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4327 return 0; 4328 goto again; 4329 } 4330 4331 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4332 struct btrfs_root *root, 4333 struct btrfs_path *path, int ins_len) 4334 { 4335 struct btrfs_key key; 4336 struct extent_buffer *leaf; 4337 struct btrfs_file_extent_item *fi; 4338 u64 extent_len = 0; 4339 u32 item_size; 4340 int ret; 4341 4342 leaf = path->nodes[0]; 4343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4344 4345 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4346 key.type != BTRFS_EXTENT_CSUM_KEY); 4347 4348 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4349 return 0; 4350 4351 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4352 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4353 fi = btrfs_item_ptr(leaf, path->slots[0], 4354 struct btrfs_file_extent_item); 4355 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4356 } 4357 btrfs_release_path(path); 4358 4359 path->keep_locks = 1; 4360 path->search_for_split = 1; 4361 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4362 path->search_for_split = 0; 4363 if (ret > 0) 4364 ret = -EAGAIN; 4365 if (ret < 0) 4366 goto err; 4367 4368 ret = -EAGAIN; 4369 leaf = path->nodes[0]; 4370 /* if our item isn't there, return now */ 4371 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4372 goto err; 4373 4374 /* the leaf has changed, it now has room. return now */ 4375 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4376 goto err; 4377 4378 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4379 fi = btrfs_item_ptr(leaf, path->slots[0], 4380 struct btrfs_file_extent_item); 4381 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4382 goto err; 4383 } 4384 4385 btrfs_set_path_blocking(path); 4386 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4387 if (ret) 4388 goto err; 4389 4390 path->keep_locks = 0; 4391 btrfs_unlock_up_safe(path, 1); 4392 return 0; 4393 err: 4394 path->keep_locks = 0; 4395 return ret; 4396 } 4397 4398 static noinline int split_item(struct btrfs_trans_handle *trans, 4399 struct btrfs_root *root, 4400 struct btrfs_path *path, 4401 struct btrfs_key *new_key, 4402 unsigned long split_offset) 4403 { 4404 struct extent_buffer *leaf; 4405 struct btrfs_item *item; 4406 struct btrfs_item *new_item; 4407 int slot; 4408 char *buf; 4409 u32 nritems; 4410 u32 item_size; 4411 u32 orig_offset; 4412 struct btrfs_disk_key disk_key; 4413 4414 leaf = path->nodes[0]; 4415 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4416 4417 btrfs_set_path_blocking(path); 4418 4419 item = btrfs_item_nr(path->slots[0]); 4420 orig_offset = btrfs_item_offset(leaf, item); 4421 item_size = btrfs_item_size(leaf, item); 4422 4423 buf = kmalloc(item_size, GFP_NOFS); 4424 if (!buf) 4425 return -ENOMEM; 4426 4427 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4428 path->slots[0]), item_size); 4429 4430 slot = path->slots[0] + 1; 4431 nritems = btrfs_header_nritems(leaf); 4432 if (slot != nritems) { 4433 /* shift the items */ 4434 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4435 btrfs_item_nr_offset(slot), 4436 (nritems - slot) * sizeof(struct btrfs_item)); 4437 } 4438 4439 btrfs_cpu_key_to_disk(&disk_key, new_key); 4440 btrfs_set_item_key(leaf, &disk_key, slot); 4441 4442 new_item = btrfs_item_nr(slot); 4443 4444 btrfs_set_item_offset(leaf, new_item, orig_offset); 4445 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4446 4447 btrfs_set_item_offset(leaf, item, 4448 orig_offset + item_size - split_offset); 4449 btrfs_set_item_size(leaf, item, split_offset); 4450 4451 btrfs_set_header_nritems(leaf, nritems + 1); 4452 4453 /* write the data for the start of the original item */ 4454 write_extent_buffer(leaf, buf, 4455 btrfs_item_ptr_offset(leaf, path->slots[0]), 4456 split_offset); 4457 4458 /* write the data for the new item */ 4459 write_extent_buffer(leaf, buf + split_offset, 4460 btrfs_item_ptr_offset(leaf, slot), 4461 item_size - split_offset); 4462 btrfs_mark_buffer_dirty(leaf); 4463 4464 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4465 kfree(buf); 4466 return 0; 4467 } 4468 4469 /* 4470 * This function splits a single item into two items, 4471 * giving 'new_key' to the new item and splitting the 4472 * old one at split_offset (from the start of the item). 4473 * 4474 * The path may be released by this operation. After 4475 * the split, the path is pointing to the old item. The 4476 * new item is going to be in the same node as the old one. 4477 * 4478 * Note, the item being split must be smaller enough to live alone on 4479 * a tree block with room for one extra struct btrfs_item 4480 * 4481 * This allows us to split the item in place, keeping a lock on the 4482 * leaf the entire time. 4483 */ 4484 int btrfs_split_item(struct btrfs_trans_handle *trans, 4485 struct btrfs_root *root, 4486 struct btrfs_path *path, 4487 struct btrfs_key *new_key, 4488 unsigned long split_offset) 4489 { 4490 int ret; 4491 ret = setup_leaf_for_split(trans, root, path, 4492 sizeof(struct btrfs_item)); 4493 if (ret) 4494 return ret; 4495 4496 ret = split_item(trans, root, path, new_key, split_offset); 4497 return ret; 4498 } 4499 4500 /* 4501 * This function duplicate a item, giving 'new_key' to the new item. 4502 * It guarantees both items live in the same tree leaf and the new item 4503 * is contiguous with the original item. 4504 * 4505 * This allows us to split file extent in place, keeping a lock on the 4506 * leaf the entire time. 4507 */ 4508 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4509 struct btrfs_root *root, 4510 struct btrfs_path *path, 4511 struct btrfs_key *new_key) 4512 { 4513 struct extent_buffer *leaf; 4514 int ret; 4515 u32 item_size; 4516 4517 leaf = path->nodes[0]; 4518 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4519 ret = setup_leaf_for_split(trans, root, path, 4520 item_size + sizeof(struct btrfs_item)); 4521 if (ret) 4522 return ret; 4523 4524 path->slots[0]++; 4525 setup_items_for_insert(root, path, new_key, &item_size, 4526 item_size, item_size + 4527 sizeof(struct btrfs_item), 1); 4528 leaf = path->nodes[0]; 4529 memcpy_extent_buffer(leaf, 4530 btrfs_item_ptr_offset(leaf, path->slots[0]), 4531 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4532 item_size); 4533 return 0; 4534 } 4535 4536 /* 4537 * make the item pointed to by the path smaller. new_size indicates 4538 * how small to make it, and from_end tells us if we just chop bytes 4539 * off the end of the item or if we shift the item to chop bytes off 4540 * the front. 4541 */ 4542 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4543 u32 new_size, int from_end) 4544 { 4545 int slot; 4546 struct extent_buffer *leaf; 4547 struct btrfs_item *item; 4548 u32 nritems; 4549 unsigned int data_end; 4550 unsigned int old_data_start; 4551 unsigned int old_size; 4552 unsigned int size_diff; 4553 int i; 4554 struct btrfs_map_token token; 4555 4556 btrfs_init_map_token(&token); 4557 4558 leaf = path->nodes[0]; 4559 slot = path->slots[0]; 4560 4561 old_size = btrfs_item_size_nr(leaf, slot); 4562 if (old_size == new_size) 4563 return; 4564 4565 nritems = btrfs_header_nritems(leaf); 4566 data_end = leaf_data_end(root, leaf); 4567 4568 old_data_start = btrfs_item_offset_nr(leaf, slot); 4569 4570 size_diff = old_size - new_size; 4571 4572 BUG_ON(slot < 0); 4573 BUG_ON(slot >= nritems); 4574 4575 /* 4576 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4577 */ 4578 /* first correct the data pointers */ 4579 for (i = slot; i < nritems; i++) { 4580 u32 ioff; 4581 item = btrfs_item_nr(i); 4582 4583 ioff = btrfs_token_item_offset(leaf, item, &token); 4584 btrfs_set_token_item_offset(leaf, item, 4585 ioff + size_diff, &token); 4586 } 4587 4588 /* shift the data */ 4589 if (from_end) { 4590 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4591 data_end + size_diff, btrfs_leaf_data(leaf) + 4592 data_end, old_data_start + new_size - data_end); 4593 } else { 4594 struct btrfs_disk_key disk_key; 4595 u64 offset; 4596 4597 btrfs_item_key(leaf, &disk_key, slot); 4598 4599 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4600 unsigned long ptr; 4601 struct btrfs_file_extent_item *fi; 4602 4603 fi = btrfs_item_ptr(leaf, slot, 4604 struct btrfs_file_extent_item); 4605 fi = (struct btrfs_file_extent_item *)( 4606 (unsigned long)fi - size_diff); 4607 4608 if (btrfs_file_extent_type(leaf, fi) == 4609 BTRFS_FILE_EXTENT_INLINE) { 4610 ptr = btrfs_item_ptr_offset(leaf, slot); 4611 memmove_extent_buffer(leaf, ptr, 4612 (unsigned long)fi, 4613 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4614 } 4615 } 4616 4617 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4618 data_end + size_diff, btrfs_leaf_data(leaf) + 4619 data_end, old_data_start - data_end); 4620 4621 offset = btrfs_disk_key_offset(&disk_key); 4622 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4623 btrfs_set_item_key(leaf, &disk_key, slot); 4624 if (slot == 0) 4625 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4626 } 4627 4628 item = btrfs_item_nr(slot); 4629 btrfs_set_item_size(leaf, item, new_size); 4630 btrfs_mark_buffer_dirty(leaf); 4631 4632 if (btrfs_leaf_free_space(root, leaf) < 0) { 4633 btrfs_print_leaf(root, leaf); 4634 BUG(); 4635 } 4636 } 4637 4638 /* 4639 * make the item pointed to by the path bigger, data_size is the added size. 4640 */ 4641 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4642 u32 data_size) 4643 { 4644 int slot; 4645 struct extent_buffer *leaf; 4646 struct btrfs_item *item; 4647 u32 nritems; 4648 unsigned int data_end; 4649 unsigned int old_data; 4650 unsigned int old_size; 4651 int i; 4652 struct btrfs_map_token token; 4653 4654 btrfs_init_map_token(&token); 4655 4656 leaf = path->nodes[0]; 4657 4658 nritems = btrfs_header_nritems(leaf); 4659 data_end = leaf_data_end(root, leaf); 4660 4661 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4662 btrfs_print_leaf(root, leaf); 4663 BUG(); 4664 } 4665 slot = path->slots[0]; 4666 old_data = btrfs_item_end_nr(leaf, slot); 4667 4668 BUG_ON(slot < 0); 4669 if (slot >= nritems) { 4670 btrfs_print_leaf(root, leaf); 4671 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4672 slot, nritems); 4673 BUG_ON(1); 4674 } 4675 4676 /* 4677 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4678 */ 4679 /* first correct the data pointers */ 4680 for (i = slot; i < nritems; i++) { 4681 u32 ioff; 4682 item = btrfs_item_nr(i); 4683 4684 ioff = btrfs_token_item_offset(leaf, item, &token); 4685 btrfs_set_token_item_offset(leaf, item, 4686 ioff - data_size, &token); 4687 } 4688 4689 /* shift the data */ 4690 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4691 data_end - data_size, btrfs_leaf_data(leaf) + 4692 data_end, old_data - data_end); 4693 4694 data_end = old_data; 4695 old_size = btrfs_item_size_nr(leaf, slot); 4696 item = btrfs_item_nr(slot); 4697 btrfs_set_item_size(leaf, item, old_size + data_size); 4698 btrfs_mark_buffer_dirty(leaf); 4699 4700 if (btrfs_leaf_free_space(root, leaf) < 0) { 4701 btrfs_print_leaf(root, leaf); 4702 BUG(); 4703 } 4704 } 4705 4706 /* 4707 * this is a helper for btrfs_insert_empty_items, the main goal here is 4708 * to save stack depth by doing the bulk of the work in a function 4709 * that doesn't call btrfs_search_slot 4710 */ 4711 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4712 struct btrfs_key *cpu_key, u32 *data_size, 4713 u32 total_data, u32 total_size, int nr) 4714 { 4715 struct btrfs_item *item; 4716 int i; 4717 u32 nritems; 4718 unsigned int data_end; 4719 struct btrfs_disk_key disk_key; 4720 struct extent_buffer *leaf; 4721 int slot; 4722 struct btrfs_map_token token; 4723 4724 if (path->slots[0] == 0) { 4725 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4726 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4727 } 4728 btrfs_unlock_up_safe(path, 1); 4729 4730 btrfs_init_map_token(&token); 4731 4732 leaf = path->nodes[0]; 4733 slot = path->slots[0]; 4734 4735 nritems = btrfs_header_nritems(leaf); 4736 data_end = leaf_data_end(root, leaf); 4737 4738 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4739 btrfs_print_leaf(root, leaf); 4740 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4741 total_size, btrfs_leaf_free_space(root, leaf)); 4742 BUG(); 4743 } 4744 4745 if (slot != nritems) { 4746 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4747 4748 if (old_data < data_end) { 4749 btrfs_print_leaf(root, leaf); 4750 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4751 slot, old_data, data_end); 4752 BUG_ON(1); 4753 } 4754 /* 4755 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4756 */ 4757 /* first correct the data pointers */ 4758 for (i = slot; i < nritems; i++) { 4759 u32 ioff; 4760 4761 item = btrfs_item_nr( i); 4762 ioff = btrfs_token_item_offset(leaf, item, &token); 4763 btrfs_set_token_item_offset(leaf, item, 4764 ioff - total_data, &token); 4765 } 4766 /* shift the items */ 4767 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4768 btrfs_item_nr_offset(slot), 4769 (nritems - slot) * sizeof(struct btrfs_item)); 4770 4771 /* shift the data */ 4772 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4773 data_end - total_data, btrfs_leaf_data(leaf) + 4774 data_end, old_data - data_end); 4775 data_end = old_data; 4776 } 4777 4778 /* setup the item for the new data */ 4779 for (i = 0; i < nr; i++) { 4780 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4781 btrfs_set_item_key(leaf, &disk_key, slot + i); 4782 item = btrfs_item_nr(slot + i); 4783 btrfs_set_token_item_offset(leaf, item, 4784 data_end - data_size[i], &token); 4785 data_end -= data_size[i]; 4786 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4787 } 4788 4789 btrfs_set_header_nritems(leaf, nritems + nr); 4790 btrfs_mark_buffer_dirty(leaf); 4791 4792 if (btrfs_leaf_free_space(root, leaf) < 0) { 4793 btrfs_print_leaf(root, leaf); 4794 BUG(); 4795 } 4796 } 4797 4798 /* 4799 * Given a key and some data, insert items into the tree. 4800 * This does all the path init required, making room in the tree if needed. 4801 */ 4802 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4803 struct btrfs_root *root, 4804 struct btrfs_path *path, 4805 struct btrfs_key *cpu_key, u32 *data_size, 4806 int nr) 4807 { 4808 int ret = 0; 4809 int slot; 4810 int i; 4811 u32 total_size = 0; 4812 u32 total_data = 0; 4813 4814 for (i = 0; i < nr; i++) 4815 total_data += data_size[i]; 4816 4817 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4818 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4819 if (ret == 0) 4820 return -EEXIST; 4821 if (ret < 0) 4822 return ret; 4823 4824 slot = path->slots[0]; 4825 BUG_ON(slot < 0); 4826 4827 setup_items_for_insert(root, path, cpu_key, data_size, 4828 total_data, total_size, nr); 4829 return 0; 4830 } 4831 4832 /* 4833 * Given a key and some data, insert an item into the tree. 4834 * This does all the path init required, making room in the tree if needed. 4835 */ 4836 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4837 *root, struct btrfs_key *cpu_key, void *data, u32 4838 data_size) 4839 { 4840 int ret = 0; 4841 struct btrfs_path *path; 4842 struct extent_buffer *leaf; 4843 unsigned long ptr; 4844 4845 path = btrfs_alloc_path(); 4846 if (!path) 4847 return -ENOMEM; 4848 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4849 if (!ret) { 4850 leaf = path->nodes[0]; 4851 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4852 write_extent_buffer(leaf, data, ptr, data_size); 4853 btrfs_mark_buffer_dirty(leaf); 4854 } 4855 btrfs_free_path(path); 4856 return ret; 4857 } 4858 4859 /* 4860 * delete the pointer from a given node. 4861 * 4862 * the tree should have been previously balanced so the deletion does not 4863 * empty a node. 4864 */ 4865 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4866 int level, int slot) 4867 { 4868 struct extent_buffer *parent = path->nodes[level]; 4869 u32 nritems; 4870 int ret; 4871 4872 nritems = btrfs_header_nritems(parent); 4873 if (slot != nritems - 1) { 4874 if (level) 4875 tree_mod_log_eb_move(root->fs_info, parent, slot, 4876 slot + 1, nritems - slot - 1); 4877 memmove_extent_buffer(parent, 4878 btrfs_node_key_ptr_offset(slot), 4879 btrfs_node_key_ptr_offset(slot + 1), 4880 sizeof(struct btrfs_key_ptr) * 4881 (nritems - slot - 1)); 4882 } else if (level) { 4883 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4884 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4885 BUG_ON(ret < 0); 4886 } 4887 4888 nritems--; 4889 btrfs_set_header_nritems(parent, nritems); 4890 if (nritems == 0 && parent == root->node) { 4891 BUG_ON(btrfs_header_level(root->node) != 1); 4892 /* just turn the root into a leaf and break */ 4893 btrfs_set_header_level(root->node, 0); 4894 } else if (slot == 0) { 4895 struct btrfs_disk_key disk_key; 4896 4897 btrfs_node_key(parent, &disk_key, 0); 4898 fixup_low_keys(root->fs_info, path, &disk_key, level + 1); 4899 } 4900 btrfs_mark_buffer_dirty(parent); 4901 } 4902 4903 /* 4904 * a helper function to delete the leaf pointed to by path->slots[1] and 4905 * path->nodes[1]. 4906 * 4907 * This deletes the pointer in path->nodes[1] and frees the leaf 4908 * block extent. zero is returned if it all worked out, < 0 otherwise. 4909 * 4910 * The path must have already been setup for deleting the leaf, including 4911 * all the proper balancing. path->nodes[1] must be locked. 4912 */ 4913 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4914 struct btrfs_root *root, 4915 struct btrfs_path *path, 4916 struct extent_buffer *leaf) 4917 { 4918 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4919 del_ptr(root, path, 1, path->slots[1]); 4920 4921 /* 4922 * btrfs_free_extent is expensive, we want to make sure we 4923 * aren't holding any locks when we call it 4924 */ 4925 btrfs_unlock_up_safe(path, 0); 4926 4927 root_sub_used(root, leaf->len); 4928 4929 extent_buffer_get(leaf); 4930 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4931 free_extent_buffer_stale(leaf); 4932 } 4933 /* 4934 * delete the item at the leaf level in path. If that empties 4935 * the leaf, remove it from the tree 4936 */ 4937 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4938 struct btrfs_path *path, int slot, int nr) 4939 { 4940 struct extent_buffer *leaf; 4941 struct btrfs_item *item; 4942 u32 last_off; 4943 u32 dsize = 0; 4944 int ret = 0; 4945 int wret; 4946 int i; 4947 u32 nritems; 4948 struct btrfs_map_token token; 4949 4950 btrfs_init_map_token(&token); 4951 4952 leaf = path->nodes[0]; 4953 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4954 4955 for (i = 0; i < nr; i++) 4956 dsize += btrfs_item_size_nr(leaf, slot + i); 4957 4958 nritems = btrfs_header_nritems(leaf); 4959 4960 if (slot + nr != nritems) { 4961 int data_end = leaf_data_end(root, leaf); 4962 4963 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4964 data_end + dsize, 4965 btrfs_leaf_data(leaf) + data_end, 4966 last_off - data_end); 4967 4968 for (i = slot + nr; i < nritems; i++) { 4969 u32 ioff; 4970 4971 item = btrfs_item_nr(i); 4972 ioff = btrfs_token_item_offset(leaf, item, &token); 4973 btrfs_set_token_item_offset(leaf, item, 4974 ioff + dsize, &token); 4975 } 4976 4977 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4978 btrfs_item_nr_offset(slot + nr), 4979 sizeof(struct btrfs_item) * 4980 (nritems - slot - nr)); 4981 } 4982 btrfs_set_header_nritems(leaf, nritems - nr); 4983 nritems -= nr; 4984 4985 /* delete the leaf if we've emptied it */ 4986 if (nritems == 0) { 4987 if (leaf == root->node) { 4988 btrfs_set_header_level(leaf, 0); 4989 } else { 4990 btrfs_set_path_blocking(path); 4991 clean_tree_block(trans, root->fs_info, leaf); 4992 btrfs_del_leaf(trans, root, path, leaf); 4993 } 4994 } else { 4995 int used = leaf_space_used(leaf, 0, nritems); 4996 if (slot == 0) { 4997 struct btrfs_disk_key disk_key; 4998 4999 btrfs_item_key(leaf, &disk_key, 0); 5000 fixup_low_keys(root->fs_info, path, &disk_key, 1); 5001 } 5002 5003 /* delete the leaf if it is mostly empty */ 5004 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5005 /* push_leaf_left fixes the path. 5006 * make sure the path still points to our leaf 5007 * for possible call to del_ptr below 5008 */ 5009 slot = path->slots[1]; 5010 extent_buffer_get(leaf); 5011 5012 btrfs_set_path_blocking(path); 5013 wret = push_leaf_left(trans, root, path, 1, 1, 5014 1, (u32)-1); 5015 if (wret < 0 && wret != -ENOSPC) 5016 ret = wret; 5017 5018 if (path->nodes[0] == leaf && 5019 btrfs_header_nritems(leaf)) { 5020 wret = push_leaf_right(trans, root, path, 1, 5021 1, 1, 0); 5022 if (wret < 0 && wret != -ENOSPC) 5023 ret = wret; 5024 } 5025 5026 if (btrfs_header_nritems(leaf) == 0) { 5027 path->slots[1] = slot; 5028 btrfs_del_leaf(trans, root, path, leaf); 5029 free_extent_buffer(leaf); 5030 ret = 0; 5031 } else { 5032 /* if we're still in the path, make sure 5033 * we're dirty. Otherwise, one of the 5034 * push_leaf functions must have already 5035 * dirtied this buffer 5036 */ 5037 if (path->nodes[0] == leaf) 5038 btrfs_mark_buffer_dirty(leaf); 5039 free_extent_buffer(leaf); 5040 } 5041 } else { 5042 btrfs_mark_buffer_dirty(leaf); 5043 } 5044 } 5045 return ret; 5046 } 5047 5048 /* 5049 * search the tree again to find a leaf with lesser keys 5050 * returns 0 if it found something or 1 if there are no lesser leaves. 5051 * returns < 0 on io errors. 5052 * 5053 * This may release the path, and so you may lose any locks held at the 5054 * time you call it. 5055 */ 5056 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5057 { 5058 struct btrfs_key key; 5059 struct btrfs_disk_key found_key; 5060 int ret; 5061 5062 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5063 5064 if (key.offset > 0) { 5065 key.offset--; 5066 } else if (key.type > 0) { 5067 key.type--; 5068 key.offset = (u64)-1; 5069 } else if (key.objectid > 0) { 5070 key.objectid--; 5071 key.type = (u8)-1; 5072 key.offset = (u64)-1; 5073 } else { 5074 return 1; 5075 } 5076 5077 btrfs_release_path(path); 5078 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5079 if (ret < 0) 5080 return ret; 5081 btrfs_item_key(path->nodes[0], &found_key, 0); 5082 ret = comp_keys(&found_key, &key); 5083 /* 5084 * We might have had an item with the previous key in the tree right 5085 * before we released our path. And after we released our path, that 5086 * item might have been pushed to the first slot (0) of the leaf we 5087 * were holding due to a tree balance. Alternatively, an item with the 5088 * previous key can exist as the only element of a leaf (big fat item). 5089 * Therefore account for these 2 cases, so that our callers (like 5090 * btrfs_previous_item) don't miss an existing item with a key matching 5091 * the previous key we computed above. 5092 */ 5093 if (ret <= 0) 5094 return 0; 5095 return 1; 5096 } 5097 5098 /* 5099 * A helper function to walk down the tree starting at min_key, and looking 5100 * for nodes or leaves that are have a minimum transaction id. 5101 * This is used by the btree defrag code, and tree logging 5102 * 5103 * This does not cow, but it does stuff the starting key it finds back 5104 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5105 * key and get a writable path. 5106 * 5107 * This does lock as it descends, and path->keep_locks should be set 5108 * to 1 by the caller. 5109 * 5110 * This honors path->lowest_level to prevent descent past a given level 5111 * of the tree. 5112 * 5113 * min_trans indicates the oldest transaction that you are interested 5114 * in walking through. Any nodes or leaves older than min_trans are 5115 * skipped over (without reading them). 5116 * 5117 * returns zero if something useful was found, < 0 on error and 1 if there 5118 * was nothing in the tree that matched the search criteria. 5119 */ 5120 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5121 struct btrfs_path *path, 5122 u64 min_trans) 5123 { 5124 struct extent_buffer *cur; 5125 struct btrfs_key found_key; 5126 int slot; 5127 int sret; 5128 u32 nritems; 5129 int level; 5130 int ret = 1; 5131 int keep_locks = path->keep_locks; 5132 5133 path->keep_locks = 1; 5134 again: 5135 cur = btrfs_read_lock_root_node(root); 5136 level = btrfs_header_level(cur); 5137 WARN_ON(path->nodes[level]); 5138 path->nodes[level] = cur; 5139 path->locks[level] = BTRFS_READ_LOCK; 5140 5141 if (btrfs_header_generation(cur) < min_trans) { 5142 ret = 1; 5143 goto out; 5144 } 5145 while (1) { 5146 nritems = btrfs_header_nritems(cur); 5147 level = btrfs_header_level(cur); 5148 sret = bin_search(cur, min_key, level, &slot); 5149 5150 /* at the lowest level, we're done, setup the path and exit */ 5151 if (level == path->lowest_level) { 5152 if (slot >= nritems) 5153 goto find_next_key; 5154 ret = 0; 5155 path->slots[level] = slot; 5156 btrfs_item_key_to_cpu(cur, &found_key, slot); 5157 goto out; 5158 } 5159 if (sret && slot > 0) 5160 slot--; 5161 /* 5162 * check this node pointer against the min_trans parameters. 5163 * If it is too old, old, skip to the next one. 5164 */ 5165 while (slot < nritems) { 5166 u64 gen; 5167 5168 gen = btrfs_node_ptr_generation(cur, slot); 5169 if (gen < min_trans) { 5170 slot++; 5171 continue; 5172 } 5173 break; 5174 } 5175 find_next_key: 5176 /* 5177 * we didn't find a candidate key in this node, walk forward 5178 * and find another one 5179 */ 5180 if (slot >= nritems) { 5181 path->slots[level] = slot; 5182 btrfs_set_path_blocking(path); 5183 sret = btrfs_find_next_key(root, path, min_key, level, 5184 min_trans); 5185 if (sret == 0) { 5186 btrfs_release_path(path); 5187 goto again; 5188 } else { 5189 goto out; 5190 } 5191 } 5192 /* save our key for returning back */ 5193 btrfs_node_key_to_cpu(cur, &found_key, slot); 5194 path->slots[level] = slot; 5195 if (level == path->lowest_level) { 5196 ret = 0; 5197 goto out; 5198 } 5199 btrfs_set_path_blocking(path); 5200 cur = read_node_slot(root, cur, slot); 5201 BUG_ON(!cur); /* -ENOMEM */ 5202 5203 btrfs_tree_read_lock(cur); 5204 5205 path->locks[level - 1] = BTRFS_READ_LOCK; 5206 path->nodes[level - 1] = cur; 5207 unlock_up(path, level, 1, 0, NULL); 5208 btrfs_clear_path_blocking(path, NULL, 0); 5209 } 5210 out: 5211 path->keep_locks = keep_locks; 5212 if (ret == 0) { 5213 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5214 btrfs_set_path_blocking(path); 5215 memcpy(min_key, &found_key, sizeof(found_key)); 5216 } 5217 return ret; 5218 } 5219 5220 static void tree_move_down(struct btrfs_root *root, 5221 struct btrfs_path *path, 5222 int *level, int root_level) 5223 { 5224 BUG_ON(*level == 0); 5225 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5226 path->slots[*level]); 5227 path->slots[*level - 1] = 0; 5228 (*level)--; 5229 } 5230 5231 static int tree_move_next_or_upnext(struct btrfs_root *root, 5232 struct btrfs_path *path, 5233 int *level, int root_level) 5234 { 5235 int ret = 0; 5236 int nritems; 5237 nritems = btrfs_header_nritems(path->nodes[*level]); 5238 5239 path->slots[*level]++; 5240 5241 while (path->slots[*level] >= nritems) { 5242 if (*level == root_level) 5243 return -1; 5244 5245 /* move upnext */ 5246 path->slots[*level] = 0; 5247 free_extent_buffer(path->nodes[*level]); 5248 path->nodes[*level] = NULL; 5249 (*level)++; 5250 path->slots[*level]++; 5251 5252 nritems = btrfs_header_nritems(path->nodes[*level]); 5253 ret = 1; 5254 } 5255 return ret; 5256 } 5257 5258 /* 5259 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5260 * or down. 5261 */ 5262 static int tree_advance(struct btrfs_root *root, 5263 struct btrfs_path *path, 5264 int *level, int root_level, 5265 int allow_down, 5266 struct btrfs_key *key) 5267 { 5268 int ret; 5269 5270 if (*level == 0 || !allow_down) { 5271 ret = tree_move_next_or_upnext(root, path, level, root_level); 5272 } else { 5273 tree_move_down(root, path, level, root_level); 5274 ret = 0; 5275 } 5276 if (ret >= 0) { 5277 if (*level == 0) 5278 btrfs_item_key_to_cpu(path->nodes[*level], key, 5279 path->slots[*level]); 5280 else 5281 btrfs_node_key_to_cpu(path->nodes[*level], key, 5282 path->slots[*level]); 5283 } 5284 return ret; 5285 } 5286 5287 static int tree_compare_item(struct btrfs_root *left_root, 5288 struct btrfs_path *left_path, 5289 struct btrfs_path *right_path, 5290 char *tmp_buf) 5291 { 5292 int cmp; 5293 int len1, len2; 5294 unsigned long off1, off2; 5295 5296 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5297 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5298 if (len1 != len2) 5299 return 1; 5300 5301 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5302 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5303 right_path->slots[0]); 5304 5305 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5306 5307 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5308 if (cmp) 5309 return 1; 5310 return 0; 5311 } 5312 5313 #define ADVANCE 1 5314 #define ADVANCE_ONLY_NEXT -1 5315 5316 /* 5317 * This function compares two trees and calls the provided callback for 5318 * every changed/new/deleted item it finds. 5319 * If shared tree blocks are encountered, whole subtrees are skipped, making 5320 * the compare pretty fast on snapshotted subvolumes. 5321 * 5322 * This currently works on commit roots only. As commit roots are read only, 5323 * we don't do any locking. The commit roots are protected with transactions. 5324 * Transactions are ended and rejoined when a commit is tried in between. 5325 * 5326 * This function checks for modifications done to the trees while comparing. 5327 * If it detects a change, it aborts immediately. 5328 */ 5329 int btrfs_compare_trees(struct btrfs_root *left_root, 5330 struct btrfs_root *right_root, 5331 btrfs_changed_cb_t changed_cb, void *ctx) 5332 { 5333 int ret; 5334 int cmp; 5335 struct btrfs_path *left_path = NULL; 5336 struct btrfs_path *right_path = NULL; 5337 struct btrfs_key left_key; 5338 struct btrfs_key right_key; 5339 char *tmp_buf = NULL; 5340 int left_root_level; 5341 int right_root_level; 5342 int left_level; 5343 int right_level; 5344 int left_end_reached; 5345 int right_end_reached; 5346 int advance_left; 5347 int advance_right; 5348 u64 left_blockptr; 5349 u64 right_blockptr; 5350 u64 left_gen; 5351 u64 right_gen; 5352 5353 left_path = btrfs_alloc_path(); 5354 if (!left_path) { 5355 ret = -ENOMEM; 5356 goto out; 5357 } 5358 right_path = btrfs_alloc_path(); 5359 if (!right_path) { 5360 ret = -ENOMEM; 5361 goto out; 5362 } 5363 5364 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL); 5365 if (!tmp_buf) { 5366 ret = -ENOMEM; 5367 goto out; 5368 } 5369 5370 left_path->search_commit_root = 1; 5371 left_path->skip_locking = 1; 5372 right_path->search_commit_root = 1; 5373 right_path->skip_locking = 1; 5374 5375 /* 5376 * Strategy: Go to the first items of both trees. Then do 5377 * 5378 * If both trees are at level 0 5379 * Compare keys of current items 5380 * If left < right treat left item as new, advance left tree 5381 * and repeat 5382 * If left > right treat right item as deleted, advance right tree 5383 * and repeat 5384 * If left == right do deep compare of items, treat as changed if 5385 * needed, advance both trees and repeat 5386 * If both trees are at the same level but not at level 0 5387 * Compare keys of current nodes/leafs 5388 * If left < right advance left tree and repeat 5389 * If left > right advance right tree and repeat 5390 * If left == right compare blockptrs of the next nodes/leafs 5391 * If they match advance both trees but stay at the same level 5392 * and repeat 5393 * If they don't match advance both trees while allowing to go 5394 * deeper and repeat 5395 * If tree levels are different 5396 * Advance the tree that needs it and repeat 5397 * 5398 * Advancing a tree means: 5399 * If we are at level 0, try to go to the next slot. If that's not 5400 * possible, go one level up and repeat. Stop when we found a level 5401 * where we could go to the next slot. We may at this point be on a 5402 * node or a leaf. 5403 * 5404 * If we are not at level 0 and not on shared tree blocks, go one 5405 * level deeper. 5406 * 5407 * If we are not at level 0 and on shared tree blocks, go one slot to 5408 * the right if possible or go up and right. 5409 */ 5410 5411 down_read(&left_root->fs_info->commit_root_sem); 5412 left_level = btrfs_header_level(left_root->commit_root); 5413 left_root_level = left_level; 5414 left_path->nodes[left_level] = left_root->commit_root; 5415 extent_buffer_get(left_path->nodes[left_level]); 5416 5417 right_level = btrfs_header_level(right_root->commit_root); 5418 right_root_level = right_level; 5419 right_path->nodes[right_level] = right_root->commit_root; 5420 extent_buffer_get(right_path->nodes[right_level]); 5421 up_read(&left_root->fs_info->commit_root_sem); 5422 5423 if (left_level == 0) 5424 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5425 &left_key, left_path->slots[left_level]); 5426 else 5427 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5428 &left_key, left_path->slots[left_level]); 5429 if (right_level == 0) 5430 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5431 &right_key, right_path->slots[right_level]); 5432 else 5433 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5434 &right_key, right_path->slots[right_level]); 5435 5436 left_end_reached = right_end_reached = 0; 5437 advance_left = advance_right = 0; 5438 5439 while (1) { 5440 if (advance_left && !left_end_reached) { 5441 ret = tree_advance(left_root, left_path, &left_level, 5442 left_root_level, 5443 advance_left != ADVANCE_ONLY_NEXT, 5444 &left_key); 5445 if (ret < 0) 5446 left_end_reached = ADVANCE; 5447 advance_left = 0; 5448 } 5449 if (advance_right && !right_end_reached) { 5450 ret = tree_advance(right_root, right_path, &right_level, 5451 right_root_level, 5452 advance_right != ADVANCE_ONLY_NEXT, 5453 &right_key); 5454 if (ret < 0) 5455 right_end_reached = ADVANCE; 5456 advance_right = 0; 5457 } 5458 5459 if (left_end_reached && right_end_reached) { 5460 ret = 0; 5461 goto out; 5462 } else if (left_end_reached) { 5463 if (right_level == 0) { 5464 ret = changed_cb(left_root, right_root, 5465 left_path, right_path, 5466 &right_key, 5467 BTRFS_COMPARE_TREE_DELETED, 5468 ctx); 5469 if (ret < 0) 5470 goto out; 5471 } 5472 advance_right = ADVANCE; 5473 continue; 5474 } else if (right_end_reached) { 5475 if (left_level == 0) { 5476 ret = changed_cb(left_root, right_root, 5477 left_path, right_path, 5478 &left_key, 5479 BTRFS_COMPARE_TREE_NEW, 5480 ctx); 5481 if (ret < 0) 5482 goto out; 5483 } 5484 advance_left = ADVANCE; 5485 continue; 5486 } 5487 5488 if (left_level == 0 && right_level == 0) { 5489 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5490 if (cmp < 0) { 5491 ret = changed_cb(left_root, right_root, 5492 left_path, right_path, 5493 &left_key, 5494 BTRFS_COMPARE_TREE_NEW, 5495 ctx); 5496 if (ret < 0) 5497 goto out; 5498 advance_left = ADVANCE; 5499 } else if (cmp > 0) { 5500 ret = changed_cb(left_root, right_root, 5501 left_path, right_path, 5502 &right_key, 5503 BTRFS_COMPARE_TREE_DELETED, 5504 ctx); 5505 if (ret < 0) 5506 goto out; 5507 advance_right = ADVANCE; 5508 } else { 5509 enum btrfs_compare_tree_result result; 5510 5511 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5512 ret = tree_compare_item(left_root, left_path, 5513 right_path, tmp_buf); 5514 if (ret) 5515 result = BTRFS_COMPARE_TREE_CHANGED; 5516 else 5517 result = BTRFS_COMPARE_TREE_SAME; 5518 ret = changed_cb(left_root, right_root, 5519 left_path, right_path, 5520 &left_key, result, ctx); 5521 if (ret < 0) 5522 goto out; 5523 advance_left = ADVANCE; 5524 advance_right = ADVANCE; 5525 } 5526 } else if (left_level == right_level) { 5527 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5528 if (cmp < 0) { 5529 advance_left = ADVANCE; 5530 } else if (cmp > 0) { 5531 advance_right = ADVANCE; 5532 } else { 5533 left_blockptr = btrfs_node_blockptr( 5534 left_path->nodes[left_level], 5535 left_path->slots[left_level]); 5536 right_blockptr = btrfs_node_blockptr( 5537 right_path->nodes[right_level], 5538 right_path->slots[right_level]); 5539 left_gen = btrfs_node_ptr_generation( 5540 left_path->nodes[left_level], 5541 left_path->slots[left_level]); 5542 right_gen = btrfs_node_ptr_generation( 5543 right_path->nodes[right_level], 5544 right_path->slots[right_level]); 5545 if (left_blockptr == right_blockptr && 5546 left_gen == right_gen) { 5547 /* 5548 * As we're on a shared block, don't 5549 * allow to go deeper. 5550 */ 5551 advance_left = ADVANCE_ONLY_NEXT; 5552 advance_right = ADVANCE_ONLY_NEXT; 5553 } else { 5554 advance_left = ADVANCE; 5555 advance_right = ADVANCE; 5556 } 5557 } 5558 } else if (left_level < right_level) { 5559 advance_right = ADVANCE; 5560 } else { 5561 advance_left = ADVANCE; 5562 } 5563 } 5564 5565 out: 5566 btrfs_free_path(left_path); 5567 btrfs_free_path(right_path); 5568 kfree(tmp_buf); 5569 return ret; 5570 } 5571 5572 /* 5573 * this is similar to btrfs_next_leaf, but does not try to preserve 5574 * and fixup the path. It looks for and returns the next key in the 5575 * tree based on the current path and the min_trans parameters. 5576 * 5577 * 0 is returned if another key is found, < 0 if there are any errors 5578 * and 1 is returned if there are no higher keys in the tree 5579 * 5580 * path->keep_locks should be set to 1 on the search made before 5581 * calling this function. 5582 */ 5583 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5584 struct btrfs_key *key, int level, u64 min_trans) 5585 { 5586 int slot; 5587 struct extent_buffer *c; 5588 5589 WARN_ON(!path->keep_locks); 5590 while (level < BTRFS_MAX_LEVEL) { 5591 if (!path->nodes[level]) 5592 return 1; 5593 5594 slot = path->slots[level] + 1; 5595 c = path->nodes[level]; 5596 next: 5597 if (slot >= btrfs_header_nritems(c)) { 5598 int ret; 5599 int orig_lowest; 5600 struct btrfs_key cur_key; 5601 if (level + 1 >= BTRFS_MAX_LEVEL || 5602 !path->nodes[level + 1]) 5603 return 1; 5604 5605 if (path->locks[level + 1]) { 5606 level++; 5607 continue; 5608 } 5609 5610 slot = btrfs_header_nritems(c) - 1; 5611 if (level == 0) 5612 btrfs_item_key_to_cpu(c, &cur_key, slot); 5613 else 5614 btrfs_node_key_to_cpu(c, &cur_key, slot); 5615 5616 orig_lowest = path->lowest_level; 5617 btrfs_release_path(path); 5618 path->lowest_level = level; 5619 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5620 0, 0); 5621 path->lowest_level = orig_lowest; 5622 if (ret < 0) 5623 return ret; 5624 5625 c = path->nodes[level]; 5626 slot = path->slots[level]; 5627 if (ret == 0) 5628 slot++; 5629 goto next; 5630 } 5631 5632 if (level == 0) 5633 btrfs_item_key_to_cpu(c, key, slot); 5634 else { 5635 u64 gen = btrfs_node_ptr_generation(c, slot); 5636 5637 if (gen < min_trans) { 5638 slot++; 5639 goto next; 5640 } 5641 btrfs_node_key_to_cpu(c, key, slot); 5642 } 5643 return 0; 5644 } 5645 return 1; 5646 } 5647 5648 /* 5649 * search the tree again to find a leaf with greater keys 5650 * returns 0 if it found something or 1 if there are no greater leaves. 5651 * returns < 0 on io errors. 5652 */ 5653 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5654 { 5655 return btrfs_next_old_leaf(root, path, 0); 5656 } 5657 5658 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5659 u64 time_seq) 5660 { 5661 int slot; 5662 int level; 5663 struct extent_buffer *c; 5664 struct extent_buffer *next; 5665 struct btrfs_key key; 5666 u32 nritems; 5667 int ret; 5668 int old_spinning = path->leave_spinning; 5669 int next_rw_lock = 0; 5670 5671 nritems = btrfs_header_nritems(path->nodes[0]); 5672 if (nritems == 0) 5673 return 1; 5674 5675 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5676 again: 5677 level = 1; 5678 next = NULL; 5679 next_rw_lock = 0; 5680 btrfs_release_path(path); 5681 5682 path->keep_locks = 1; 5683 path->leave_spinning = 1; 5684 5685 if (time_seq) 5686 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5687 else 5688 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5689 path->keep_locks = 0; 5690 5691 if (ret < 0) 5692 return ret; 5693 5694 nritems = btrfs_header_nritems(path->nodes[0]); 5695 /* 5696 * by releasing the path above we dropped all our locks. A balance 5697 * could have added more items next to the key that used to be 5698 * at the very end of the block. So, check again here and 5699 * advance the path if there are now more items available. 5700 */ 5701 if (nritems > 0 && path->slots[0] < nritems - 1) { 5702 if (ret == 0) 5703 path->slots[0]++; 5704 ret = 0; 5705 goto done; 5706 } 5707 /* 5708 * So the above check misses one case: 5709 * - after releasing the path above, someone has removed the item that 5710 * used to be at the very end of the block, and balance between leafs 5711 * gets another one with bigger key.offset to replace it. 5712 * 5713 * This one should be returned as well, or we can get leaf corruption 5714 * later(esp. in __btrfs_drop_extents()). 5715 * 5716 * And a bit more explanation about this check, 5717 * with ret > 0, the key isn't found, the path points to the slot 5718 * where it should be inserted, so the path->slots[0] item must be the 5719 * bigger one. 5720 */ 5721 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5722 ret = 0; 5723 goto done; 5724 } 5725 5726 while (level < BTRFS_MAX_LEVEL) { 5727 if (!path->nodes[level]) { 5728 ret = 1; 5729 goto done; 5730 } 5731 5732 slot = path->slots[level] + 1; 5733 c = path->nodes[level]; 5734 if (slot >= btrfs_header_nritems(c)) { 5735 level++; 5736 if (level == BTRFS_MAX_LEVEL) { 5737 ret = 1; 5738 goto done; 5739 } 5740 continue; 5741 } 5742 5743 if (next) { 5744 btrfs_tree_unlock_rw(next, next_rw_lock); 5745 free_extent_buffer(next); 5746 } 5747 5748 next = c; 5749 next_rw_lock = path->locks[level]; 5750 ret = read_block_for_search(NULL, root, path, &next, level, 5751 slot, &key, 0); 5752 if (ret == -EAGAIN) 5753 goto again; 5754 5755 if (ret < 0) { 5756 btrfs_release_path(path); 5757 goto done; 5758 } 5759 5760 if (!path->skip_locking) { 5761 ret = btrfs_try_tree_read_lock(next); 5762 if (!ret && time_seq) { 5763 /* 5764 * If we don't get the lock, we may be racing 5765 * with push_leaf_left, holding that lock while 5766 * itself waiting for the leaf we've currently 5767 * locked. To solve this situation, we give up 5768 * on our lock and cycle. 5769 */ 5770 free_extent_buffer(next); 5771 btrfs_release_path(path); 5772 cond_resched(); 5773 goto again; 5774 } 5775 if (!ret) { 5776 btrfs_set_path_blocking(path); 5777 btrfs_tree_read_lock(next); 5778 btrfs_clear_path_blocking(path, next, 5779 BTRFS_READ_LOCK); 5780 } 5781 next_rw_lock = BTRFS_READ_LOCK; 5782 } 5783 break; 5784 } 5785 path->slots[level] = slot; 5786 while (1) { 5787 level--; 5788 c = path->nodes[level]; 5789 if (path->locks[level]) 5790 btrfs_tree_unlock_rw(c, path->locks[level]); 5791 5792 free_extent_buffer(c); 5793 path->nodes[level] = next; 5794 path->slots[level] = 0; 5795 if (!path->skip_locking) 5796 path->locks[level] = next_rw_lock; 5797 if (!level) 5798 break; 5799 5800 ret = read_block_for_search(NULL, root, path, &next, level, 5801 0, &key, 0); 5802 if (ret == -EAGAIN) 5803 goto again; 5804 5805 if (ret < 0) { 5806 btrfs_release_path(path); 5807 goto done; 5808 } 5809 5810 if (!path->skip_locking) { 5811 ret = btrfs_try_tree_read_lock(next); 5812 if (!ret) { 5813 btrfs_set_path_blocking(path); 5814 btrfs_tree_read_lock(next); 5815 btrfs_clear_path_blocking(path, next, 5816 BTRFS_READ_LOCK); 5817 } 5818 next_rw_lock = BTRFS_READ_LOCK; 5819 } 5820 } 5821 ret = 0; 5822 done: 5823 unlock_up(path, 0, 1, 0, NULL); 5824 path->leave_spinning = old_spinning; 5825 if (!old_spinning) 5826 btrfs_set_path_blocking(path); 5827 5828 return ret; 5829 } 5830 5831 /* 5832 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5833 * searching until it gets past min_objectid or finds an item of 'type' 5834 * 5835 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5836 */ 5837 int btrfs_previous_item(struct btrfs_root *root, 5838 struct btrfs_path *path, u64 min_objectid, 5839 int type) 5840 { 5841 struct btrfs_key found_key; 5842 struct extent_buffer *leaf; 5843 u32 nritems; 5844 int ret; 5845 5846 while (1) { 5847 if (path->slots[0] == 0) { 5848 btrfs_set_path_blocking(path); 5849 ret = btrfs_prev_leaf(root, path); 5850 if (ret != 0) 5851 return ret; 5852 } else { 5853 path->slots[0]--; 5854 } 5855 leaf = path->nodes[0]; 5856 nritems = btrfs_header_nritems(leaf); 5857 if (nritems == 0) 5858 return 1; 5859 if (path->slots[0] == nritems) 5860 path->slots[0]--; 5861 5862 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5863 if (found_key.objectid < min_objectid) 5864 break; 5865 if (found_key.type == type) 5866 return 0; 5867 if (found_key.objectid == min_objectid && 5868 found_key.type < type) 5869 break; 5870 } 5871 return 1; 5872 } 5873 5874 /* 5875 * search in extent tree to find a previous Metadata/Data extent item with 5876 * min objecitd. 5877 * 5878 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5879 */ 5880 int btrfs_previous_extent_item(struct btrfs_root *root, 5881 struct btrfs_path *path, u64 min_objectid) 5882 { 5883 struct btrfs_key found_key; 5884 struct extent_buffer *leaf; 5885 u32 nritems; 5886 int ret; 5887 5888 while (1) { 5889 if (path->slots[0] == 0) { 5890 btrfs_set_path_blocking(path); 5891 ret = btrfs_prev_leaf(root, path); 5892 if (ret != 0) 5893 return ret; 5894 } else { 5895 path->slots[0]--; 5896 } 5897 leaf = path->nodes[0]; 5898 nritems = btrfs_header_nritems(leaf); 5899 if (nritems == 0) 5900 return 1; 5901 if (path->slots[0] == nritems) 5902 path->slots[0]--; 5903 5904 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5905 if (found_key.objectid < min_objectid) 5906 break; 5907 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5908 found_key.type == BTRFS_METADATA_ITEM_KEY) 5909 return 0; 5910 if (found_key.objectid == min_objectid && 5911 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5912 break; 5913 } 5914 return 1; 5915 } 5916