1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include <linux/error-injection.h> 11 #include "messages.h" 12 #include "ctree.h" 13 #include "disk-io.h" 14 #include "transaction.h" 15 #include "print-tree.h" 16 #include "locking.h" 17 #include "volumes.h" 18 #include "qgroup.h" 19 #include "tree-mod-log.h" 20 #include "tree-checker.h" 21 #include "fs.h" 22 #include "accessors.h" 23 #include "extent-tree.h" 24 #include "relocation.h" 25 #include "file-item.h" 26 27 static struct kmem_cache *btrfs_path_cachep; 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 32 const struct btrfs_key *ins_key, struct btrfs_path *path, 33 int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct extent_buffer *dst, 36 struct extent_buffer *src, int empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 41 static const struct btrfs_csums { 42 u16 size; 43 const char name[10]; 44 const char driver[12]; 45 } btrfs_csums[] = { 46 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 47 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 48 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 49 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 50 .driver = "blake2b-256" }, 51 }; 52 53 /* 54 * The leaf data grows from end-to-front in the node. this returns the address 55 * of the start of the last item, which is the stop of the leaf data stack. 56 */ 57 static unsigned int leaf_data_end(const struct extent_buffer *leaf) 58 { 59 u32 nr = btrfs_header_nritems(leaf); 60 61 if (nr == 0) 62 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info); 63 return btrfs_item_offset(leaf, nr - 1); 64 } 65 66 /* 67 * Move data in a @leaf (using memmove, safe for overlapping ranges). 68 * 69 * @leaf: leaf that we're doing a memmove on 70 * @dst_offset: item data offset we're moving to 71 * @src_offset: item data offset were' moving from 72 * @len: length of the data we're moving 73 * 74 * Wrapper around memmove_extent_buffer() that takes into account the header on 75 * the leaf. The btrfs_item offset's start directly after the header, so we 76 * have to adjust any offsets to account for the header in the leaf. This 77 * handles that math to simplify the callers. 78 */ 79 static inline void memmove_leaf_data(const struct extent_buffer *leaf, 80 unsigned long dst_offset, 81 unsigned long src_offset, 82 unsigned long len) 83 { 84 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset, 85 btrfs_item_nr_offset(leaf, 0) + src_offset, len); 86 } 87 88 /* 89 * Copy item data from @src into @dst at the given @offset. 90 * 91 * @dst: destination leaf that we're copying into 92 * @src: source leaf that we're copying from 93 * @dst_offset: item data offset we're copying to 94 * @src_offset: item data offset were' copying from 95 * @len: length of the data we're copying 96 * 97 * Wrapper around copy_extent_buffer() that takes into account the header on 98 * the leaf. The btrfs_item offset's start directly after the header, so we 99 * have to adjust any offsets to account for the header in the leaf. This 100 * handles that math to simplify the callers. 101 */ 102 static inline void copy_leaf_data(const struct extent_buffer *dst, 103 const struct extent_buffer *src, 104 unsigned long dst_offset, 105 unsigned long src_offset, unsigned long len) 106 { 107 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset, 108 btrfs_item_nr_offset(src, 0) + src_offset, len); 109 } 110 111 /* 112 * Move items in a @leaf (using memmove). 113 * 114 * @dst: destination leaf for the items 115 * @dst_item: the item nr we're copying into 116 * @src_item: the item nr we're copying from 117 * @nr_items: the number of items to copy 118 * 119 * Wrapper around memmove_extent_buffer() that does the math to get the 120 * appropriate offsets into the leaf from the item numbers. 121 */ 122 static inline void memmove_leaf_items(const struct extent_buffer *leaf, 123 int dst_item, int src_item, int nr_items) 124 { 125 memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item), 126 btrfs_item_nr_offset(leaf, src_item), 127 nr_items * sizeof(struct btrfs_item)); 128 } 129 130 /* 131 * Copy items from @src into @dst at the given @offset. 132 * 133 * @dst: destination leaf for the items 134 * @src: source leaf for the items 135 * @dst_item: the item nr we're copying into 136 * @src_item: the item nr we're copying from 137 * @nr_items: the number of items to copy 138 * 139 * Wrapper around copy_extent_buffer() that does the math to get the 140 * appropriate offsets into the leaf from the item numbers. 141 */ 142 static inline void copy_leaf_items(const struct extent_buffer *dst, 143 const struct extent_buffer *src, 144 int dst_item, int src_item, int nr_items) 145 { 146 copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item), 147 btrfs_item_nr_offset(src, src_item), 148 nr_items * sizeof(struct btrfs_item)); 149 } 150 151 /* This exists for btrfs-progs usages. */ 152 u16 btrfs_csum_type_size(u16 type) 153 { 154 return btrfs_csums[type].size; 155 } 156 157 int btrfs_super_csum_size(const struct btrfs_super_block *s) 158 { 159 u16 t = btrfs_super_csum_type(s); 160 /* 161 * csum type is validated at mount time 162 */ 163 return btrfs_csum_type_size(t); 164 } 165 166 const char *btrfs_super_csum_name(u16 csum_type) 167 { 168 /* csum type is validated at mount time */ 169 return btrfs_csums[csum_type].name; 170 } 171 172 /* 173 * Return driver name if defined, otherwise the name that's also a valid driver 174 * name 175 */ 176 const char *btrfs_super_csum_driver(u16 csum_type) 177 { 178 /* csum type is validated at mount time */ 179 return btrfs_csums[csum_type].driver[0] ? 180 btrfs_csums[csum_type].driver : 181 btrfs_csums[csum_type].name; 182 } 183 184 size_t __attribute_const__ btrfs_get_num_csums(void) 185 { 186 return ARRAY_SIZE(btrfs_csums); 187 } 188 189 struct btrfs_path *btrfs_alloc_path(void) 190 { 191 might_sleep(); 192 193 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 194 } 195 196 /* this also releases the path */ 197 void btrfs_free_path(struct btrfs_path *p) 198 { 199 if (!p) 200 return; 201 btrfs_release_path(p); 202 kmem_cache_free(btrfs_path_cachep, p); 203 } 204 205 /* 206 * path release drops references on the extent buffers in the path 207 * and it drops any locks held by this path 208 * 209 * It is safe to call this on paths that no locks or extent buffers held. 210 */ 211 noinline void btrfs_release_path(struct btrfs_path *p) 212 { 213 int i; 214 215 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 216 p->slots[i] = 0; 217 if (!p->nodes[i]) 218 continue; 219 if (p->locks[i]) { 220 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 221 p->locks[i] = 0; 222 } 223 free_extent_buffer(p->nodes[i]); 224 p->nodes[i] = NULL; 225 } 226 } 227 228 /* 229 * We want the transaction abort to print stack trace only for errors where the 230 * cause could be a bug, eg. due to ENOSPC, and not for common errors that are 231 * caused by external factors. 232 */ 233 bool __cold abort_should_print_stack(int errno) 234 { 235 switch (errno) { 236 case -EIO: 237 case -EROFS: 238 case -ENOMEM: 239 return false; 240 } 241 return true; 242 } 243 244 /* 245 * safely gets a reference on the root node of a tree. A lock 246 * is not taken, so a concurrent writer may put a different node 247 * at the root of the tree. See btrfs_lock_root_node for the 248 * looping required. 249 * 250 * The extent buffer returned by this has a reference taken, so 251 * it won't disappear. It may stop being the root of the tree 252 * at any time because there are no locks held. 253 */ 254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 255 { 256 struct extent_buffer *eb; 257 258 while (1) { 259 rcu_read_lock(); 260 eb = rcu_dereference(root->node); 261 262 /* 263 * RCU really hurts here, we could free up the root node because 264 * it was COWed but we may not get the new root node yet so do 265 * the inc_not_zero dance and if it doesn't work then 266 * synchronize_rcu and try again. 267 */ 268 if (atomic_inc_not_zero(&eb->refs)) { 269 rcu_read_unlock(); 270 break; 271 } 272 rcu_read_unlock(); 273 synchronize_rcu(); 274 } 275 return eb; 276 } 277 278 /* 279 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 280 * just get put onto a simple dirty list. Transaction walks this list to make 281 * sure they get properly updated on disk. 282 */ 283 static void add_root_to_dirty_list(struct btrfs_root *root) 284 { 285 struct btrfs_fs_info *fs_info = root->fs_info; 286 287 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 288 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 289 return; 290 291 spin_lock(&fs_info->trans_lock); 292 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 293 /* Want the extent tree to be the last on the list */ 294 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 295 list_move_tail(&root->dirty_list, 296 &fs_info->dirty_cowonly_roots); 297 else 298 list_move(&root->dirty_list, 299 &fs_info->dirty_cowonly_roots); 300 } 301 spin_unlock(&fs_info->trans_lock); 302 } 303 304 /* 305 * used by snapshot creation to make a copy of a root for a tree with 306 * a given objectid. The buffer with the new root node is returned in 307 * cow_ret, and this func returns zero on success or a negative error code. 308 */ 309 int btrfs_copy_root(struct btrfs_trans_handle *trans, 310 struct btrfs_root *root, 311 struct extent_buffer *buf, 312 struct extent_buffer **cow_ret, u64 new_root_objectid) 313 { 314 struct btrfs_fs_info *fs_info = root->fs_info; 315 struct extent_buffer *cow; 316 int ret = 0; 317 int level; 318 struct btrfs_disk_key disk_key; 319 320 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 321 trans->transid != fs_info->running_transaction->transid); 322 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 323 trans->transid != root->last_trans); 324 325 level = btrfs_header_level(buf); 326 if (level == 0) 327 btrfs_item_key(buf, &disk_key, 0); 328 else 329 btrfs_node_key(buf, &disk_key, 0); 330 331 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 332 &disk_key, level, buf->start, 0, 333 BTRFS_NESTING_NEW_ROOT); 334 if (IS_ERR(cow)) 335 return PTR_ERR(cow); 336 337 copy_extent_buffer_full(cow, buf); 338 btrfs_set_header_bytenr(cow, cow->start); 339 btrfs_set_header_generation(cow, trans->transid); 340 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 341 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 342 BTRFS_HEADER_FLAG_RELOC); 343 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 344 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 345 else 346 btrfs_set_header_owner(cow, new_root_objectid); 347 348 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 349 350 WARN_ON(btrfs_header_generation(buf) > trans->transid); 351 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 352 ret = btrfs_inc_ref(trans, root, cow, 1); 353 else 354 ret = btrfs_inc_ref(trans, root, cow, 0); 355 if (ret) { 356 btrfs_tree_unlock(cow); 357 free_extent_buffer(cow); 358 btrfs_abort_transaction(trans, ret); 359 return ret; 360 } 361 362 btrfs_mark_buffer_dirty(trans, cow); 363 *cow_ret = cow; 364 return 0; 365 } 366 367 /* 368 * check if the tree block can be shared by multiple trees 369 */ 370 int btrfs_block_can_be_shared(struct btrfs_trans_handle *trans, 371 struct btrfs_root *root, 372 struct extent_buffer *buf) 373 { 374 /* 375 * Tree blocks not in shareable trees and tree roots are never shared. 376 * If a block was allocated after the last snapshot and the block was 377 * not allocated by tree relocation, we know the block is not shared. 378 */ 379 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 380 buf != root->node && 381 (btrfs_header_generation(buf) <= 382 btrfs_root_last_snapshot(&root->root_item) || 383 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) { 384 if (buf != root->commit_root) 385 return 1; 386 /* 387 * An extent buffer that used to be the commit root may still be 388 * shared because the tree height may have increased and it 389 * became a child of a higher level root. This can happen when 390 * snapshotting a subvolume created in the current transaction. 391 */ 392 if (btrfs_header_generation(buf) == trans->transid) 393 return 1; 394 } 395 396 return 0; 397 } 398 399 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 400 struct btrfs_root *root, 401 struct extent_buffer *buf, 402 struct extent_buffer *cow, 403 int *last_ref) 404 { 405 struct btrfs_fs_info *fs_info = root->fs_info; 406 u64 refs; 407 u64 owner; 408 u64 flags; 409 u64 new_flags = 0; 410 int ret; 411 412 /* 413 * Backrefs update rules: 414 * 415 * Always use full backrefs for extent pointers in tree block 416 * allocated by tree relocation. 417 * 418 * If a shared tree block is no longer referenced by its owner 419 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 420 * use full backrefs for extent pointers in tree block. 421 * 422 * If a tree block is been relocating 423 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 424 * use full backrefs for extent pointers in tree block. 425 * The reason for this is some operations (such as drop tree) 426 * are only allowed for blocks use full backrefs. 427 */ 428 429 if (btrfs_block_can_be_shared(trans, root, buf)) { 430 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 431 btrfs_header_level(buf), 1, 432 &refs, &flags); 433 if (ret) 434 return ret; 435 if (unlikely(refs == 0)) { 436 btrfs_crit(fs_info, 437 "found 0 references for tree block at bytenr %llu level %d root %llu", 438 buf->start, btrfs_header_level(buf), 439 btrfs_root_id(root)); 440 ret = -EUCLEAN; 441 btrfs_abort_transaction(trans, ret); 442 return ret; 443 } 444 } else { 445 refs = 1; 446 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 447 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 448 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 449 else 450 flags = 0; 451 } 452 453 owner = btrfs_header_owner(buf); 454 if (unlikely(owner == BTRFS_TREE_RELOC_OBJECTID && 455 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))) { 456 btrfs_crit(fs_info, 457 "found tree block at bytenr %llu level %d root %llu refs %llu flags %llx without full backref flag set", 458 buf->start, btrfs_header_level(buf), 459 btrfs_root_id(root), refs, flags); 460 ret = -EUCLEAN; 461 btrfs_abort_transaction(trans, ret); 462 return ret; 463 } 464 465 if (refs > 1) { 466 if ((owner == root->root_key.objectid || 467 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 468 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 469 ret = btrfs_inc_ref(trans, root, buf, 1); 470 if (ret) 471 return ret; 472 473 if (root->root_key.objectid == 474 BTRFS_TREE_RELOC_OBJECTID) { 475 ret = btrfs_dec_ref(trans, root, buf, 0); 476 if (ret) 477 return ret; 478 ret = btrfs_inc_ref(trans, root, cow, 1); 479 if (ret) 480 return ret; 481 } 482 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 483 } else { 484 485 if (root->root_key.objectid == 486 BTRFS_TREE_RELOC_OBJECTID) 487 ret = btrfs_inc_ref(trans, root, cow, 1); 488 else 489 ret = btrfs_inc_ref(trans, root, cow, 0); 490 if (ret) 491 return ret; 492 } 493 if (new_flags != 0) { 494 ret = btrfs_set_disk_extent_flags(trans, buf, new_flags); 495 if (ret) 496 return ret; 497 } 498 } else { 499 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 500 if (root->root_key.objectid == 501 BTRFS_TREE_RELOC_OBJECTID) 502 ret = btrfs_inc_ref(trans, root, cow, 1); 503 else 504 ret = btrfs_inc_ref(trans, root, cow, 0); 505 if (ret) 506 return ret; 507 ret = btrfs_dec_ref(trans, root, buf, 1); 508 if (ret) 509 return ret; 510 } 511 btrfs_clear_buffer_dirty(trans, buf); 512 *last_ref = 1; 513 } 514 return 0; 515 } 516 517 /* 518 * does the dirty work in cow of a single block. The parent block (if 519 * supplied) is updated to point to the new cow copy. The new buffer is marked 520 * dirty and returned locked. If you modify the block it needs to be marked 521 * dirty again. 522 * 523 * search_start -- an allocation hint for the new block 524 * 525 * empty_size -- a hint that you plan on doing more cow. This is the size in 526 * bytes the allocator should try to find free next to the block it returns. 527 * This is just a hint and may be ignored by the allocator. 528 */ 529 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 530 struct btrfs_root *root, 531 struct extent_buffer *buf, 532 struct extent_buffer *parent, int parent_slot, 533 struct extent_buffer **cow_ret, 534 u64 search_start, u64 empty_size, 535 enum btrfs_lock_nesting nest) 536 { 537 struct btrfs_fs_info *fs_info = root->fs_info; 538 struct btrfs_disk_key disk_key; 539 struct extent_buffer *cow; 540 int level, ret; 541 int last_ref = 0; 542 int unlock_orig = 0; 543 u64 parent_start = 0; 544 545 if (*cow_ret == buf) 546 unlock_orig = 1; 547 548 btrfs_assert_tree_write_locked(buf); 549 550 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 551 trans->transid != fs_info->running_transaction->transid); 552 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 553 trans->transid != root->last_trans); 554 555 level = btrfs_header_level(buf); 556 557 if (level == 0) 558 btrfs_item_key(buf, &disk_key, 0); 559 else 560 btrfs_node_key(buf, &disk_key, 0); 561 562 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 563 parent_start = parent->start; 564 565 cow = btrfs_alloc_tree_block(trans, root, parent_start, 566 root->root_key.objectid, &disk_key, level, 567 search_start, empty_size, nest); 568 if (IS_ERR(cow)) 569 return PTR_ERR(cow); 570 571 /* cow is set to blocking by btrfs_init_new_buffer */ 572 573 copy_extent_buffer_full(cow, buf); 574 btrfs_set_header_bytenr(cow, cow->start); 575 btrfs_set_header_generation(cow, trans->transid); 576 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 577 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 578 BTRFS_HEADER_FLAG_RELOC); 579 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 580 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 581 else 582 btrfs_set_header_owner(cow, root->root_key.objectid); 583 584 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 585 586 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 587 if (ret) { 588 btrfs_tree_unlock(cow); 589 free_extent_buffer(cow); 590 btrfs_abort_transaction(trans, ret); 591 return ret; 592 } 593 594 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 595 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 596 if (ret) { 597 btrfs_tree_unlock(cow); 598 free_extent_buffer(cow); 599 btrfs_abort_transaction(trans, ret); 600 return ret; 601 } 602 } 603 604 if (buf == root->node) { 605 WARN_ON(parent && parent != buf); 606 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 607 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 608 parent_start = buf->start; 609 610 ret = btrfs_tree_mod_log_insert_root(root->node, cow, true); 611 if (ret < 0) { 612 btrfs_tree_unlock(cow); 613 free_extent_buffer(cow); 614 btrfs_abort_transaction(trans, ret); 615 return ret; 616 } 617 atomic_inc(&cow->refs); 618 rcu_assign_pointer(root->node, cow); 619 620 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 621 parent_start, last_ref); 622 free_extent_buffer(buf); 623 add_root_to_dirty_list(root); 624 if (ret < 0) { 625 btrfs_tree_unlock(cow); 626 free_extent_buffer(cow); 627 btrfs_abort_transaction(trans, ret); 628 return ret; 629 } 630 } else { 631 WARN_ON(trans->transid != btrfs_header_generation(parent)); 632 ret = btrfs_tree_mod_log_insert_key(parent, parent_slot, 633 BTRFS_MOD_LOG_KEY_REPLACE); 634 if (ret) { 635 btrfs_tree_unlock(cow); 636 free_extent_buffer(cow); 637 btrfs_abort_transaction(trans, ret); 638 return ret; 639 } 640 btrfs_set_node_blockptr(parent, parent_slot, 641 cow->start); 642 btrfs_set_node_ptr_generation(parent, parent_slot, 643 trans->transid); 644 btrfs_mark_buffer_dirty(trans, parent); 645 if (last_ref) { 646 ret = btrfs_tree_mod_log_free_eb(buf); 647 if (ret) { 648 btrfs_tree_unlock(cow); 649 free_extent_buffer(cow); 650 btrfs_abort_transaction(trans, ret); 651 return ret; 652 } 653 } 654 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), buf, 655 parent_start, last_ref); 656 if (ret < 0) { 657 btrfs_tree_unlock(cow); 658 free_extent_buffer(cow); 659 btrfs_abort_transaction(trans, ret); 660 return ret; 661 } 662 } 663 if (unlock_orig) 664 btrfs_tree_unlock(buf); 665 free_extent_buffer_stale(buf); 666 btrfs_mark_buffer_dirty(trans, cow); 667 *cow_ret = cow; 668 return 0; 669 } 670 671 static inline int should_cow_block(struct btrfs_trans_handle *trans, 672 struct btrfs_root *root, 673 struct extent_buffer *buf) 674 { 675 if (btrfs_is_testing(root->fs_info)) 676 return 0; 677 678 /* Ensure we can see the FORCE_COW bit */ 679 smp_mb__before_atomic(); 680 681 /* 682 * We do not need to cow a block if 683 * 1) this block is not created or changed in this transaction; 684 * 2) this block does not belong to TREE_RELOC tree; 685 * 3) the root is not forced COW. 686 * 687 * What is forced COW: 688 * when we create snapshot during committing the transaction, 689 * after we've finished copying src root, we must COW the shared 690 * block to ensure the metadata consistency. 691 */ 692 if (btrfs_header_generation(buf) == trans->transid && 693 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 694 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 695 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 696 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 697 return 0; 698 return 1; 699 } 700 701 /* 702 * cows a single block, see __btrfs_cow_block for the real work. 703 * This version of it has extra checks so that a block isn't COWed more than 704 * once per transaction, as long as it hasn't been written yet 705 */ 706 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 707 struct btrfs_root *root, struct extent_buffer *buf, 708 struct extent_buffer *parent, int parent_slot, 709 struct extent_buffer **cow_ret, 710 enum btrfs_lock_nesting nest) 711 { 712 struct btrfs_fs_info *fs_info = root->fs_info; 713 u64 search_start; 714 int ret; 715 716 if (unlikely(test_bit(BTRFS_ROOT_DELETING, &root->state))) { 717 btrfs_abort_transaction(trans, -EUCLEAN); 718 btrfs_crit(fs_info, 719 "attempt to COW block %llu on root %llu that is being deleted", 720 buf->start, btrfs_root_id(root)); 721 return -EUCLEAN; 722 } 723 724 /* 725 * COWing must happen through a running transaction, which always 726 * matches the current fs generation (it's a transaction with a state 727 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs 728 * into error state to prevent the commit of any transaction. 729 */ 730 if (unlikely(trans->transaction != fs_info->running_transaction || 731 trans->transid != fs_info->generation)) { 732 btrfs_abort_transaction(trans, -EUCLEAN); 733 btrfs_crit(fs_info, 734 "unexpected transaction when attempting to COW block %llu on root %llu, transaction %llu running transaction %llu fs generation %llu", 735 buf->start, btrfs_root_id(root), trans->transid, 736 fs_info->running_transaction->transid, 737 fs_info->generation); 738 return -EUCLEAN; 739 } 740 741 if (!should_cow_block(trans, root, buf)) { 742 *cow_ret = buf; 743 return 0; 744 } 745 746 search_start = buf->start & ~((u64)SZ_1G - 1); 747 748 /* 749 * Before CoWing this block for later modification, check if it's 750 * the subtree root and do the delayed subtree trace if needed. 751 * 752 * Also We don't care about the error, as it's handled internally. 753 */ 754 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 755 ret = __btrfs_cow_block(trans, root, buf, parent, 756 parent_slot, cow_ret, search_start, 0, nest); 757 758 trace_btrfs_cow_block(root, buf, *cow_ret); 759 760 return ret; 761 } 762 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 763 764 /* 765 * helper function for defrag to decide if two blocks pointed to by a 766 * node are actually close by 767 */ 768 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 769 { 770 if (blocknr < other && other - (blocknr + blocksize) < 32768) 771 return 1; 772 if (blocknr > other && blocknr - (other + blocksize) < 32768) 773 return 1; 774 return 0; 775 } 776 777 #ifdef __LITTLE_ENDIAN 778 779 /* 780 * Compare two keys, on little-endian the disk order is same as CPU order and 781 * we can avoid the conversion. 782 */ 783 static int comp_keys(const struct btrfs_disk_key *disk_key, 784 const struct btrfs_key *k2) 785 { 786 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 787 788 return btrfs_comp_cpu_keys(k1, k2); 789 } 790 791 #else 792 793 /* 794 * compare two keys in a memcmp fashion 795 */ 796 static int comp_keys(const struct btrfs_disk_key *disk, 797 const struct btrfs_key *k2) 798 { 799 struct btrfs_key k1; 800 801 btrfs_disk_key_to_cpu(&k1, disk); 802 803 return btrfs_comp_cpu_keys(&k1, k2); 804 } 805 #endif 806 807 /* 808 * same as comp_keys only with two btrfs_key's 809 */ 810 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 811 { 812 if (k1->objectid > k2->objectid) 813 return 1; 814 if (k1->objectid < k2->objectid) 815 return -1; 816 if (k1->type > k2->type) 817 return 1; 818 if (k1->type < k2->type) 819 return -1; 820 if (k1->offset > k2->offset) 821 return 1; 822 if (k1->offset < k2->offset) 823 return -1; 824 return 0; 825 } 826 827 /* 828 * this is used by the defrag code to go through all the 829 * leaves pointed to by a node and reallocate them so that 830 * disk order is close to key order 831 */ 832 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 833 struct btrfs_root *root, struct extent_buffer *parent, 834 int start_slot, u64 *last_ret, 835 struct btrfs_key *progress) 836 { 837 struct btrfs_fs_info *fs_info = root->fs_info; 838 struct extent_buffer *cur; 839 u64 blocknr; 840 u64 search_start = *last_ret; 841 u64 last_block = 0; 842 u64 other; 843 u32 parent_nritems; 844 int end_slot; 845 int i; 846 int err = 0; 847 u32 blocksize; 848 int progress_passed = 0; 849 struct btrfs_disk_key disk_key; 850 851 /* 852 * COWing must happen through a running transaction, which always 853 * matches the current fs generation (it's a transaction with a state 854 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs 855 * into error state to prevent the commit of any transaction. 856 */ 857 if (unlikely(trans->transaction != fs_info->running_transaction || 858 trans->transid != fs_info->generation)) { 859 btrfs_abort_transaction(trans, -EUCLEAN); 860 btrfs_crit(fs_info, 861 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu", 862 parent->start, btrfs_root_id(root), trans->transid, 863 fs_info->running_transaction->transid, 864 fs_info->generation); 865 return -EUCLEAN; 866 } 867 868 parent_nritems = btrfs_header_nritems(parent); 869 blocksize = fs_info->nodesize; 870 end_slot = parent_nritems - 1; 871 872 if (parent_nritems <= 1) 873 return 0; 874 875 for (i = start_slot; i <= end_slot; i++) { 876 int close = 1; 877 878 btrfs_node_key(parent, &disk_key, i); 879 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 880 continue; 881 882 progress_passed = 1; 883 blocknr = btrfs_node_blockptr(parent, i); 884 if (last_block == 0) 885 last_block = blocknr; 886 887 if (i > 0) { 888 other = btrfs_node_blockptr(parent, i - 1); 889 close = close_blocks(blocknr, other, blocksize); 890 } 891 if (!close && i < end_slot) { 892 other = btrfs_node_blockptr(parent, i + 1); 893 close = close_blocks(blocknr, other, blocksize); 894 } 895 if (close) { 896 last_block = blocknr; 897 continue; 898 } 899 900 cur = btrfs_read_node_slot(parent, i); 901 if (IS_ERR(cur)) 902 return PTR_ERR(cur); 903 if (search_start == 0) 904 search_start = last_block; 905 906 btrfs_tree_lock(cur); 907 err = __btrfs_cow_block(trans, root, cur, parent, i, 908 &cur, search_start, 909 min(16 * blocksize, 910 (end_slot - i) * blocksize), 911 BTRFS_NESTING_COW); 912 if (err) { 913 btrfs_tree_unlock(cur); 914 free_extent_buffer(cur); 915 break; 916 } 917 search_start = cur->start; 918 last_block = cur->start; 919 *last_ret = search_start; 920 btrfs_tree_unlock(cur); 921 free_extent_buffer(cur); 922 } 923 return err; 924 } 925 926 /* 927 * Search for a key in the given extent_buffer. 928 * 929 * The lower boundary for the search is specified by the slot number @first_slot. 930 * Use a value of 0 to search over the whole extent buffer. Works for both 931 * leaves and nodes. 932 * 933 * The slot in the extent buffer is returned via @slot. If the key exists in the 934 * extent buffer, then @slot will point to the slot where the key is, otherwise 935 * it points to the slot where you would insert the key. 936 * 937 * Slot may point to the total number of items (i.e. one position beyond the last 938 * key) if the key is bigger than the last key in the extent buffer. 939 */ 940 int btrfs_bin_search(struct extent_buffer *eb, int first_slot, 941 const struct btrfs_key *key, int *slot) 942 { 943 unsigned long p; 944 int item_size; 945 /* 946 * Use unsigned types for the low and high slots, so that we get a more 947 * efficient division in the search loop below. 948 */ 949 u32 low = first_slot; 950 u32 high = btrfs_header_nritems(eb); 951 int ret; 952 const int key_size = sizeof(struct btrfs_disk_key); 953 954 if (unlikely(low > high)) { 955 btrfs_err(eb->fs_info, 956 "%s: low (%u) > high (%u) eb %llu owner %llu level %d", 957 __func__, low, high, eb->start, 958 btrfs_header_owner(eb), btrfs_header_level(eb)); 959 return -EINVAL; 960 } 961 962 if (btrfs_header_level(eb) == 0) { 963 p = offsetof(struct btrfs_leaf, items); 964 item_size = sizeof(struct btrfs_item); 965 } else { 966 p = offsetof(struct btrfs_node, ptrs); 967 item_size = sizeof(struct btrfs_key_ptr); 968 } 969 970 while (low < high) { 971 unsigned long oip; 972 unsigned long offset; 973 struct btrfs_disk_key *tmp; 974 struct btrfs_disk_key unaligned; 975 int mid; 976 977 mid = (low + high) / 2; 978 offset = p + mid * item_size; 979 oip = offset_in_page(offset); 980 981 if (oip + key_size <= PAGE_SIZE) { 982 const unsigned long idx = get_eb_page_index(offset); 983 char *kaddr = page_address(eb->pages[idx]); 984 985 oip = get_eb_offset_in_page(eb, offset); 986 tmp = (struct btrfs_disk_key *)(kaddr + oip); 987 } else { 988 read_extent_buffer(eb, &unaligned, offset, key_size); 989 tmp = &unaligned; 990 } 991 992 ret = comp_keys(tmp, key); 993 994 if (ret < 0) 995 low = mid + 1; 996 else if (ret > 0) 997 high = mid; 998 else { 999 *slot = mid; 1000 return 0; 1001 } 1002 } 1003 *slot = low; 1004 return 1; 1005 } 1006 1007 static void root_add_used(struct btrfs_root *root, u32 size) 1008 { 1009 spin_lock(&root->accounting_lock); 1010 btrfs_set_root_used(&root->root_item, 1011 btrfs_root_used(&root->root_item) + size); 1012 spin_unlock(&root->accounting_lock); 1013 } 1014 1015 static void root_sub_used(struct btrfs_root *root, u32 size) 1016 { 1017 spin_lock(&root->accounting_lock); 1018 btrfs_set_root_used(&root->root_item, 1019 btrfs_root_used(&root->root_item) - size); 1020 spin_unlock(&root->accounting_lock); 1021 } 1022 1023 /* given a node and slot number, this reads the blocks it points to. The 1024 * extent buffer is returned with a reference taken (but unlocked). 1025 */ 1026 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1027 int slot) 1028 { 1029 int level = btrfs_header_level(parent); 1030 struct btrfs_tree_parent_check check = { 0 }; 1031 struct extent_buffer *eb; 1032 1033 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1034 return ERR_PTR(-ENOENT); 1035 1036 ASSERT(level); 1037 1038 check.level = level - 1; 1039 check.transid = btrfs_node_ptr_generation(parent, slot); 1040 check.owner_root = btrfs_header_owner(parent); 1041 check.has_first_key = true; 1042 btrfs_node_key_to_cpu(parent, &check.first_key, slot); 1043 1044 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1045 &check); 1046 if (IS_ERR(eb)) 1047 return eb; 1048 if (!extent_buffer_uptodate(eb)) { 1049 free_extent_buffer(eb); 1050 return ERR_PTR(-EIO); 1051 } 1052 1053 return eb; 1054 } 1055 1056 /* 1057 * node level balancing, used to make sure nodes are in proper order for 1058 * item deletion. We balance from the top down, so we have to make sure 1059 * that a deletion won't leave an node completely empty later on. 1060 */ 1061 static noinline int balance_level(struct btrfs_trans_handle *trans, 1062 struct btrfs_root *root, 1063 struct btrfs_path *path, int level) 1064 { 1065 struct btrfs_fs_info *fs_info = root->fs_info; 1066 struct extent_buffer *right = NULL; 1067 struct extent_buffer *mid; 1068 struct extent_buffer *left = NULL; 1069 struct extent_buffer *parent = NULL; 1070 int ret = 0; 1071 int wret; 1072 int pslot; 1073 int orig_slot = path->slots[level]; 1074 u64 orig_ptr; 1075 1076 ASSERT(level > 0); 1077 1078 mid = path->nodes[level]; 1079 1080 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 1081 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1082 1083 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1084 1085 if (level < BTRFS_MAX_LEVEL - 1) { 1086 parent = path->nodes[level + 1]; 1087 pslot = path->slots[level + 1]; 1088 } 1089 1090 /* 1091 * deal with the case where there is only one pointer in the root 1092 * by promoting the node below to a root 1093 */ 1094 if (!parent) { 1095 struct extent_buffer *child; 1096 1097 if (btrfs_header_nritems(mid) != 1) 1098 return 0; 1099 1100 /* promote the child to a root */ 1101 child = btrfs_read_node_slot(mid, 0); 1102 if (IS_ERR(child)) { 1103 ret = PTR_ERR(child); 1104 goto out; 1105 } 1106 1107 btrfs_tree_lock(child); 1108 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 1109 BTRFS_NESTING_COW); 1110 if (ret) { 1111 btrfs_tree_unlock(child); 1112 free_extent_buffer(child); 1113 goto out; 1114 } 1115 1116 ret = btrfs_tree_mod_log_insert_root(root->node, child, true); 1117 if (ret < 0) { 1118 btrfs_tree_unlock(child); 1119 free_extent_buffer(child); 1120 btrfs_abort_transaction(trans, ret); 1121 goto out; 1122 } 1123 rcu_assign_pointer(root->node, child); 1124 1125 add_root_to_dirty_list(root); 1126 btrfs_tree_unlock(child); 1127 1128 path->locks[level] = 0; 1129 path->nodes[level] = NULL; 1130 btrfs_clear_buffer_dirty(trans, mid); 1131 btrfs_tree_unlock(mid); 1132 /* once for the path */ 1133 free_extent_buffer(mid); 1134 1135 root_sub_used(root, mid->len); 1136 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1137 /* once for the root ptr */ 1138 free_extent_buffer_stale(mid); 1139 if (ret < 0) { 1140 btrfs_abort_transaction(trans, ret); 1141 goto out; 1142 } 1143 return 0; 1144 } 1145 if (btrfs_header_nritems(mid) > 1146 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1147 return 0; 1148 1149 if (pslot) { 1150 left = btrfs_read_node_slot(parent, pslot - 1); 1151 if (IS_ERR(left)) { 1152 ret = PTR_ERR(left); 1153 left = NULL; 1154 goto out; 1155 } 1156 1157 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1158 wret = btrfs_cow_block(trans, root, left, 1159 parent, pslot - 1, &left, 1160 BTRFS_NESTING_LEFT_COW); 1161 if (wret) { 1162 ret = wret; 1163 goto out; 1164 } 1165 } 1166 1167 if (pslot + 1 < btrfs_header_nritems(parent)) { 1168 right = btrfs_read_node_slot(parent, pslot + 1); 1169 if (IS_ERR(right)) { 1170 ret = PTR_ERR(right); 1171 right = NULL; 1172 goto out; 1173 } 1174 1175 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1176 wret = btrfs_cow_block(trans, root, right, 1177 parent, pslot + 1, &right, 1178 BTRFS_NESTING_RIGHT_COW); 1179 if (wret) { 1180 ret = wret; 1181 goto out; 1182 } 1183 } 1184 1185 /* first, try to make some room in the middle buffer */ 1186 if (left) { 1187 orig_slot += btrfs_header_nritems(left); 1188 wret = push_node_left(trans, left, mid, 1); 1189 if (wret < 0) 1190 ret = wret; 1191 } 1192 1193 /* 1194 * then try to empty the right most buffer into the middle 1195 */ 1196 if (right) { 1197 wret = push_node_left(trans, mid, right, 1); 1198 if (wret < 0 && wret != -ENOSPC) 1199 ret = wret; 1200 if (btrfs_header_nritems(right) == 0) { 1201 btrfs_clear_buffer_dirty(trans, right); 1202 btrfs_tree_unlock(right); 1203 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1); 1204 if (ret < 0) { 1205 free_extent_buffer_stale(right); 1206 right = NULL; 1207 goto out; 1208 } 1209 root_sub_used(root, right->len); 1210 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), right, 1211 0, 1); 1212 free_extent_buffer_stale(right); 1213 right = NULL; 1214 if (ret < 0) { 1215 btrfs_abort_transaction(trans, ret); 1216 goto out; 1217 } 1218 } else { 1219 struct btrfs_disk_key right_key; 1220 btrfs_node_key(right, &right_key, 0); 1221 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1222 BTRFS_MOD_LOG_KEY_REPLACE); 1223 if (ret < 0) { 1224 btrfs_abort_transaction(trans, ret); 1225 goto out; 1226 } 1227 btrfs_set_node_key(parent, &right_key, pslot + 1); 1228 btrfs_mark_buffer_dirty(trans, parent); 1229 } 1230 } 1231 if (btrfs_header_nritems(mid) == 1) { 1232 /* 1233 * we're not allowed to leave a node with one item in the 1234 * tree during a delete. A deletion from lower in the tree 1235 * could try to delete the only pointer in this node. 1236 * So, pull some keys from the left. 1237 * There has to be a left pointer at this point because 1238 * otherwise we would have pulled some pointers from the 1239 * right 1240 */ 1241 if (unlikely(!left)) { 1242 btrfs_crit(fs_info, 1243 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu", 1244 parent->start, btrfs_header_level(parent), 1245 mid->start, btrfs_root_id(root)); 1246 ret = -EUCLEAN; 1247 btrfs_abort_transaction(trans, ret); 1248 goto out; 1249 } 1250 wret = balance_node_right(trans, mid, left); 1251 if (wret < 0) { 1252 ret = wret; 1253 goto out; 1254 } 1255 if (wret == 1) { 1256 wret = push_node_left(trans, left, mid, 1); 1257 if (wret < 0) 1258 ret = wret; 1259 } 1260 BUG_ON(wret == 1); 1261 } 1262 if (btrfs_header_nritems(mid) == 0) { 1263 btrfs_clear_buffer_dirty(trans, mid); 1264 btrfs_tree_unlock(mid); 1265 ret = btrfs_del_ptr(trans, root, path, level + 1, pslot); 1266 if (ret < 0) { 1267 free_extent_buffer_stale(mid); 1268 mid = NULL; 1269 goto out; 1270 } 1271 root_sub_used(root, mid->len); 1272 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1); 1273 free_extent_buffer_stale(mid); 1274 mid = NULL; 1275 if (ret < 0) { 1276 btrfs_abort_transaction(trans, ret); 1277 goto out; 1278 } 1279 } else { 1280 /* update the parent key to reflect our changes */ 1281 struct btrfs_disk_key mid_key; 1282 btrfs_node_key(mid, &mid_key, 0); 1283 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1284 BTRFS_MOD_LOG_KEY_REPLACE); 1285 if (ret < 0) { 1286 btrfs_abort_transaction(trans, ret); 1287 goto out; 1288 } 1289 btrfs_set_node_key(parent, &mid_key, pslot); 1290 btrfs_mark_buffer_dirty(trans, parent); 1291 } 1292 1293 /* update the path */ 1294 if (left) { 1295 if (btrfs_header_nritems(left) > orig_slot) { 1296 atomic_inc(&left->refs); 1297 /* left was locked after cow */ 1298 path->nodes[level] = left; 1299 path->slots[level + 1] -= 1; 1300 path->slots[level] = orig_slot; 1301 if (mid) { 1302 btrfs_tree_unlock(mid); 1303 free_extent_buffer(mid); 1304 } 1305 } else { 1306 orig_slot -= btrfs_header_nritems(left); 1307 path->slots[level] = orig_slot; 1308 } 1309 } 1310 /* double check we haven't messed things up */ 1311 if (orig_ptr != 1312 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1313 BUG(); 1314 out: 1315 if (right) { 1316 btrfs_tree_unlock(right); 1317 free_extent_buffer(right); 1318 } 1319 if (left) { 1320 if (path->nodes[level] != left) 1321 btrfs_tree_unlock(left); 1322 free_extent_buffer(left); 1323 } 1324 return ret; 1325 } 1326 1327 /* Node balancing for insertion. Here we only split or push nodes around 1328 * when they are completely full. This is also done top down, so we 1329 * have to be pessimistic. 1330 */ 1331 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1332 struct btrfs_root *root, 1333 struct btrfs_path *path, int level) 1334 { 1335 struct btrfs_fs_info *fs_info = root->fs_info; 1336 struct extent_buffer *right = NULL; 1337 struct extent_buffer *mid; 1338 struct extent_buffer *left = NULL; 1339 struct extent_buffer *parent = NULL; 1340 int ret = 0; 1341 int wret; 1342 int pslot; 1343 int orig_slot = path->slots[level]; 1344 1345 if (level == 0) 1346 return 1; 1347 1348 mid = path->nodes[level]; 1349 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1350 1351 if (level < BTRFS_MAX_LEVEL - 1) { 1352 parent = path->nodes[level + 1]; 1353 pslot = path->slots[level + 1]; 1354 } 1355 1356 if (!parent) 1357 return 1; 1358 1359 /* first, try to make some room in the middle buffer */ 1360 if (pslot) { 1361 u32 left_nr; 1362 1363 left = btrfs_read_node_slot(parent, pslot - 1); 1364 if (IS_ERR(left)) 1365 return PTR_ERR(left); 1366 1367 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1368 1369 left_nr = btrfs_header_nritems(left); 1370 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1371 wret = 1; 1372 } else { 1373 ret = btrfs_cow_block(trans, root, left, parent, 1374 pslot - 1, &left, 1375 BTRFS_NESTING_LEFT_COW); 1376 if (ret) 1377 wret = 1; 1378 else { 1379 wret = push_node_left(trans, left, mid, 0); 1380 } 1381 } 1382 if (wret < 0) 1383 ret = wret; 1384 if (wret == 0) { 1385 struct btrfs_disk_key disk_key; 1386 orig_slot += left_nr; 1387 btrfs_node_key(mid, &disk_key, 0); 1388 ret = btrfs_tree_mod_log_insert_key(parent, pslot, 1389 BTRFS_MOD_LOG_KEY_REPLACE); 1390 if (ret < 0) { 1391 btrfs_tree_unlock(left); 1392 free_extent_buffer(left); 1393 btrfs_abort_transaction(trans, ret); 1394 return ret; 1395 } 1396 btrfs_set_node_key(parent, &disk_key, pslot); 1397 btrfs_mark_buffer_dirty(trans, parent); 1398 if (btrfs_header_nritems(left) > orig_slot) { 1399 path->nodes[level] = left; 1400 path->slots[level + 1] -= 1; 1401 path->slots[level] = orig_slot; 1402 btrfs_tree_unlock(mid); 1403 free_extent_buffer(mid); 1404 } else { 1405 orig_slot -= 1406 btrfs_header_nritems(left); 1407 path->slots[level] = orig_slot; 1408 btrfs_tree_unlock(left); 1409 free_extent_buffer(left); 1410 } 1411 return 0; 1412 } 1413 btrfs_tree_unlock(left); 1414 free_extent_buffer(left); 1415 } 1416 1417 /* 1418 * then try to empty the right most buffer into the middle 1419 */ 1420 if (pslot + 1 < btrfs_header_nritems(parent)) { 1421 u32 right_nr; 1422 1423 right = btrfs_read_node_slot(parent, pslot + 1); 1424 if (IS_ERR(right)) 1425 return PTR_ERR(right); 1426 1427 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1428 1429 right_nr = btrfs_header_nritems(right); 1430 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 1431 wret = 1; 1432 } else { 1433 ret = btrfs_cow_block(trans, root, right, 1434 parent, pslot + 1, 1435 &right, BTRFS_NESTING_RIGHT_COW); 1436 if (ret) 1437 wret = 1; 1438 else { 1439 wret = balance_node_right(trans, right, mid); 1440 } 1441 } 1442 if (wret < 0) 1443 ret = wret; 1444 if (wret == 0) { 1445 struct btrfs_disk_key disk_key; 1446 1447 btrfs_node_key(right, &disk_key, 0); 1448 ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1, 1449 BTRFS_MOD_LOG_KEY_REPLACE); 1450 if (ret < 0) { 1451 btrfs_tree_unlock(right); 1452 free_extent_buffer(right); 1453 btrfs_abort_transaction(trans, ret); 1454 return ret; 1455 } 1456 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1457 btrfs_mark_buffer_dirty(trans, parent); 1458 1459 if (btrfs_header_nritems(mid) <= orig_slot) { 1460 path->nodes[level] = right; 1461 path->slots[level + 1] += 1; 1462 path->slots[level] = orig_slot - 1463 btrfs_header_nritems(mid); 1464 btrfs_tree_unlock(mid); 1465 free_extent_buffer(mid); 1466 } else { 1467 btrfs_tree_unlock(right); 1468 free_extent_buffer(right); 1469 } 1470 return 0; 1471 } 1472 btrfs_tree_unlock(right); 1473 free_extent_buffer(right); 1474 } 1475 return 1; 1476 } 1477 1478 /* 1479 * readahead one full node of leaves, finding things that are close 1480 * to the block in 'slot', and triggering ra on them. 1481 */ 1482 static void reada_for_search(struct btrfs_fs_info *fs_info, 1483 struct btrfs_path *path, 1484 int level, int slot, u64 objectid) 1485 { 1486 struct extent_buffer *node; 1487 struct btrfs_disk_key disk_key; 1488 u32 nritems; 1489 u64 search; 1490 u64 target; 1491 u64 nread = 0; 1492 u64 nread_max; 1493 u32 nr; 1494 u32 blocksize; 1495 u32 nscan = 0; 1496 1497 if (level != 1 && path->reada != READA_FORWARD_ALWAYS) 1498 return; 1499 1500 if (!path->nodes[level]) 1501 return; 1502 1503 node = path->nodes[level]; 1504 1505 /* 1506 * Since the time between visiting leaves is much shorter than the time 1507 * between visiting nodes, limit read ahead of nodes to 1, to avoid too 1508 * much IO at once (possibly random). 1509 */ 1510 if (path->reada == READA_FORWARD_ALWAYS) { 1511 if (level > 1) 1512 nread_max = node->fs_info->nodesize; 1513 else 1514 nread_max = SZ_128K; 1515 } else { 1516 nread_max = SZ_64K; 1517 } 1518 1519 search = btrfs_node_blockptr(node, slot); 1520 blocksize = fs_info->nodesize; 1521 if (path->reada != READA_FORWARD_ALWAYS) { 1522 struct extent_buffer *eb; 1523 1524 eb = find_extent_buffer(fs_info, search); 1525 if (eb) { 1526 free_extent_buffer(eb); 1527 return; 1528 } 1529 } 1530 1531 target = search; 1532 1533 nritems = btrfs_header_nritems(node); 1534 nr = slot; 1535 1536 while (1) { 1537 if (path->reada == READA_BACK) { 1538 if (nr == 0) 1539 break; 1540 nr--; 1541 } else if (path->reada == READA_FORWARD || 1542 path->reada == READA_FORWARD_ALWAYS) { 1543 nr++; 1544 if (nr >= nritems) 1545 break; 1546 } 1547 if (path->reada == READA_BACK && objectid) { 1548 btrfs_node_key(node, &disk_key, nr); 1549 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1550 break; 1551 } 1552 search = btrfs_node_blockptr(node, nr); 1553 if (path->reada == READA_FORWARD_ALWAYS || 1554 (search <= target && target - search <= 65536) || 1555 (search > target && search - target <= 65536)) { 1556 btrfs_readahead_node_child(node, nr); 1557 nread += blocksize; 1558 } 1559 nscan++; 1560 if (nread > nread_max || nscan > 32) 1561 break; 1562 } 1563 } 1564 1565 static noinline void reada_for_balance(struct btrfs_path *path, int level) 1566 { 1567 struct extent_buffer *parent; 1568 int slot; 1569 int nritems; 1570 1571 parent = path->nodes[level + 1]; 1572 if (!parent) 1573 return; 1574 1575 nritems = btrfs_header_nritems(parent); 1576 slot = path->slots[level + 1]; 1577 1578 if (slot > 0) 1579 btrfs_readahead_node_child(parent, slot - 1); 1580 if (slot + 1 < nritems) 1581 btrfs_readahead_node_child(parent, slot + 1); 1582 } 1583 1584 1585 /* 1586 * when we walk down the tree, it is usually safe to unlock the higher layers 1587 * in the tree. The exceptions are when our path goes through slot 0, because 1588 * operations on the tree might require changing key pointers higher up in the 1589 * tree. 1590 * 1591 * callers might also have set path->keep_locks, which tells this code to keep 1592 * the lock if the path points to the last slot in the block. This is part of 1593 * walking through the tree, and selecting the next slot in the higher block. 1594 * 1595 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1596 * if lowest_unlock is 1, level 0 won't be unlocked 1597 */ 1598 static noinline void unlock_up(struct btrfs_path *path, int level, 1599 int lowest_unlock, int min_write_lock_level, 1600 int *write_lock_level) 1601 { 1602 int i; 1603 int skip_level = level; 1604 bool check_skip = true; 1605 1606 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1607 if (!path->nodes[i]) 1608 break; 1609 if (!path->locks[i]) 1610 break; 1611 1612 if (check_skip) { 1613 if (path->slots[i] == 0) { 1614 skip_level = i + 1; 1615 continue; 1616 } 1617 1618 if (path->keep_locks) { 1619 u32 nritems; 1620 1621 nritems = btrfs_header_nritems(path->nodes[i]); 1622 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1623 skip_level = i + 1; 1624 continue; 1625 } 1626 } 1627 } 1628 1629 if (i >= lowest_unlock && i > skip_level) { 1630 check_skip = false; 1631 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1632 path->locks[i] = 0; 1633 if (write_lock_level && 1634 i > min_write_lock_level && 1635 i <= *write_lock_level) { 1636 *write_lock_level = i - 1; 1637 } 1638 } 1639 } 1640 } 1641 1642 /* 1643 * Helper function for btrfs_search_slot() and other functions that do a search 1644 * on a btree. The goal is to find a tree block in the cache (the radix tree at 1645 * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read 1646 * its pages from disk. 1647 * 1648 * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the 1649 * whole btree search, starting again from the current root node. 1650 */ 1651 static int 1652 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 1653 struct extent_buffer **eb_ret, int level, int slot, 1654 const struct btrfs_key *key) 1655 { 1656 struct btrfs_fs_info *fs_info = root->fs_info; 1657 struct btrfs_tree_parent_check check = { 0 }; 1658 u64 blocknr; 1659 u64 gen; 1660 struct extent_buffer *tmp; 1661 int ret; 1662 int parent_level; 1663 bool unlock_up; 1664 1665 unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]); 1666 blocknr = btrfs_node_blockptr(*eb_ret, slot); 1667 gen = btrfs_node_ptr_generation(*eb_ret, slot); 1668 parent_level = btrfs_header_level(*eb_ret); 1669 btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot); 1670 check.has_first_key = true; 1671 check.level = parent_level - 1; 1672 check.transid = gen; 1673 check.owner_root = root->root_key.objectid; 1674 1675 /* 1676 * If we need to read an extent buffer from disk and we are holding locks 1677 * on upper level nodes, we unlock all the upper nodes before reading the 1678 * extent buffer, and then return -EAGAIN to the caller as it needs to 1679 * restart the search. We don't release the lock on the current level 1680 * because we need to walk this node to figure out which blocks to read. 1681 */ 1682 tmp = find_extent_buffer(fs_info, blocknr); 1683 if (tmp) { 1684 if (p->reada == READA_FORWARD_ALWAYS) 1685 reada_for_search(fs_info, p, level, slot, key->objectid); 1686 1687 /* first we do an atomic uptodate check */ 1688 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1689 /* 1690 * Do extra check for first_key, eb can be stale due to 1691 * being cached, read from scrub, or have multiple 1692 * parents (shared tree blocks). 1693 */ 1694 if (btrfs_verify_level_key(tmp, 1695 parent_level - 1, &check.first_key, gen)) { 1696 free_extent_buffer(tmp); 1697 return -EUCLEAN; 1698 } 1699 *eb_ret = tmp; 1700 return 0; 1701 } 1702 1703 if (p->nowait) { 1704 free_extent_buffer(tmp); 1705 return -EAGAIN; 1706 } 1707 1708 if (unlock_up) 1709 btrfs_unlock_up_safe(p, level + 1); 1710 1711 /* now we're allowed to do a blocking uptodate check */ 1712 ret = btrfs_read_extent_buffer(tmp, &check); 1713 if (ret) { 1714 free_extent_buffer(tmp); 1715 btrfs_release_path(p); 1716 return -EIO; 1717 } 1718 if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) { 1719 free_extent_buffer(tmp); 1720 btrfs_release_path(p); 1721 return -EUCLEAN; 1722 } 1723 1724 if (unlock_up) 1725 ret = -EAGAIN; 1726 1727 goto out; 1728 } else if (p->nowait) { 1729 return -EAGAIN; 1730 } 1731 1732 if (unlock_up) { 1733 btrfs_unlock_up_safe(p, level + 1); 1734 ret = -EAGAIN; 1735 } else { 1736 ret = 0; 1737 } 1738 1739 if (p->reada != READA_NONE) 1740 reada_for_search(fs_info, p, level, slot, key->objectid); 1741 1742 tmp = read_tree_block(fs_info, blocknr, &check); 1743 if (IS_ERR(tmp)) { 1744 btrfs_release_path(p); 1745 return PTR_ERR(tmp); 1746 } 1747 /* 1748 * If the read above didn't mark this buffer up to date, 1749 * it will never end up being up to date. Set ret to EIO now 1750 * and give up so that our caller doesn't loop forever 1751 * on our EAGAINs. 1752 */ 1753 if (!extent_buffer_uptodate(tmp)) 1754 ret = -EIO; 1755 1756 out: 1757 if (ret == 0) { 1758 *eb_ret = tmp; 1759 } else { 1760 free_extent_buffer(tmp); 1761 btrfs_release_path(p); 1762 } 1763 1764 return ret; 1765 } 1766 1767 /* 1768 * helper function for btrfs_search_slot. This does all of the checks 1769 * for node-level blocks and does any balancing required based on 1770 * the ins_len. 1771 * 1772 * If no extra work was required, zero is returned. If we had to 1773 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1774 * start over 1775 */ 1776 static int 1777 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1778 struct btrfs_root *root, struct btrfs_path *p, 1779 struct extent_buffer *b, int level, int ins_len, 1780 int *write_lock_level) 1781 { 1782 struct btrfs_fs_info *fs_info = root->fs_info; 1783 int ret = 0; 1784 1785 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1786 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 1787 1788 if (*write_lock_level < level + 1) { 1789 *write_lock_level = level + 1; 1790 btrfs_release_path(p); 1791 return -EAGAIN; 1792 } 1793 1794 reada_for_balance(p, level); 1795 ret = split_node(trans, root, p, level); 1796 1797 b = p->nodes[level]; 1798 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1799 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 1800 1801 if (*write_lock_level < level + 1) { 1802 *write_lock_level = level + 1; 1803 btrfs_release_path(p); 1804 return -EAGAIN; 1805 } 1806 1807 reada_for_balance(p, level); 1808 ret = balance_level(trans, root, p, level); 1809 if (ret) 1810 return ret; 1811 1812 b = p->nodes[level]; 1813 if (!b) { 1814 btrfs_release_path(p); 1815 return -EAGAIN; 1816 } 1817 BUG_ON(btrfs_header_nritems(b) == 1); 1818 } 1819 return ret; 1820 } 1821 1822 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 1823 u64 iobjectid, u64 ioff, u8 key_type, 1824 struct btrfs_key *found_key) 1825 { 1826 int ret; 1827 struct btrfs_key key; 1828 struct extent_buffer *eb; 1829 1830 ASSERT(path); 1831 ASSERT(found_key); 1832 1833 key.type = key_type; 1834 key.objectid = iobjectid; 1835 key.offset = ioff; 1836 1837 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1838 if (ret < 0) 1839 return ret; 1840 1841 eb = path->nodes[0]; 1842 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 1843 ret = btrfs_next_leaf(fs_root, path); 1844 if (ret) 1845 return ret; 1846 eb = path->nodes[0]; 1847 } 1848 1849 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 1850 if (found_key->type != key.type || 1851 found_key->objectid != key.objectid) 1852 return 1; 1853 1854 return 0; 1855 } 1856 1857 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 1858 struct btrfs_path *p, 1859 int write_lock_level) 1860 { 1861 struct extent_buffer *b; 1862 int root_lock = 0; 1863 int level = 0; 1864 1865 if (p->search_commit_root) { 1866 b = root->commit_root; 1867 atomic_inc(&b->refs); 1868 level = btrfs_header_level(b); 1869 /* 1870 * Ensure that all callers have set skip_locking when 1871 * p->search_commit_root = 1. 1872 */ 1873 ASSERT(p->skip_locking == 1); 1874 1875 goto out; 1876 } 1877 1878 if (p->skip_locking) { 1879 b = btrfs_root_node(root); 1880 level = btrfs_header_level(b); 1881 goto out; 1882 } 1883 1884 /* We try very hard to do read locks on the root */ 1885 root_lock = BTRFS_READ_LOCK; 1886 1887 /* 1888 * If the level is set to maximum, we can skip trying to get the read 1889 * lock. 1890 */ 1891 if (write_lock_level < BTRFS_MAX_LEVEL) { 1892 /* 1893 * We don't know the level of the root node until we actually 1894 * have it read locked 1895 */ 1896 if (p->nowait) { 1897 b = btrfs_try_read_lock_root_node(root); 1898 if (IS_ERR(b)) 1899 return b; 1900 } else { 1901 b = btrfs_read_lock_root_node(root); 1902 } 1903 level = btrfs_header_level(b); 1904 if (level > write_lock_level) 1905 goto out; 1906 1907 /* Whoops, must trade for write lock */ 1908 btrfs_tree_read_unlock(b); 1909 free_extent_buffer(b); 1910 } 1911 1912 b = btrfs_lock_root_node(root); 1913 root_lock = BTRFS_WRITE_LOCK; 1914 1915 /* The level might have changed, check again */ 1916 level = btrfs_header_level(b); 1917 1918 out: 1919 /* 1920 * The root may have failed to write out at some point, and thus is no 1921 * longer valid, return an error in this case. 1922 */ 1923 if (!extent_buffer_uptodate(b)) { 1924 if (root_lock) 1925 btrfs_tree_unlock_rw(b, root_lock); 1926 free_extent_buffer(b); 1927 return ERR_PTR(-EIO); 1928 } 1929 1930 p->nodes[level] = b; 1931 if (!p->skip_locking) 1932 p->locks[level] = root_lock; 1933 /* 1934 * Callers are responsible for dropping b's references. 1935 */ 1936 return b; 1937 } 1938 1939 /* 1940 * Replace the extent buffer at the lowest level of the path with a cloned 1941 * version. The purpose is to be able to use it safely, after releasing the 1942 * commit root semaphore, even if relocation is happening in parallel, the 1943 * transaction used for relocation is committed and the extent buffer is 1944 * reallocated in the next transaction. 1945 * 1946 * This is used in a context where the caller does not prevent transaction 1947 * commits from happening, either by holding a transaction handle or holding 1948 * some lock, while it's doing searches through a commit root. 1949 * At the moment it's only used for send operations. 1950 */ 1951 static int finish_need_commit_sem_search(struct btrfs_path *path) 1952 { 1953 const int i = path->lowest_level; 1954 const int slot = path->slots[i]; 1955 struct extent_buffer *lowest = path->nodes[i]; 1956 struct extent_buffer *clone; 1957 1958 ASSERT(path->need_commit_sem); 1959 1960 if (!lowest) 1961 return 0; 1962 1963 lockdep_assert_held_read(&lowest->fs_info->commit_root_sem); 1964 1965 clone = btrfs_clone_extent_buffer(lowest); 1966 if (!clone) 1967 return -ENOMEM; 1968 1969 btrfs_release_path(path); 1970 path->nodes[i] = clone; 1971 path->slots[i] = slot; 1972 1973 return 0; 1974 } 1975 1976 static inline int search_for_key_slot(struct extent_buffer *eb, 1977 int search_low_slot, 1978 const struct btrfs_key *key, 1979 int prev_cmp, 1980 int *slot) 1981 { 1982 /* 1983 * If a previous call to btrfs_bin_search() on a parent node returned an 1984 * exact match (prev_cmp == 0), we can safely assume the target key will 1985 * always be at slot 0 on lower levels, since each key pointer 1986 * (struct btrfs_key_ptr) refers to the lowest key accessible from the 1987 * subtree it points to. Thus we can skip searching lower levels. 1988 */ 1989 if (prev_cmp == 0) { 1990 *slot = 0; 1991 return 0; 1992 } 1993 1994 return btrfs_bin_search(eb, search_low_slot, key, slot); 1995 } 1996 1997 static int search_leaf(struct btrfs_trans_handle *trans, 1998 struct btrfs_root *root, 1999 const struct btrfs_key *key, 2000 struct btrfs_path *path, 2001 int ins_len, 2002 int prev_cmp) 2003 { 2004 struct extent_buffer *leaf = path->nodes[0]; 2005 int leaf_free_space = -1; 2006 int search_low_slot = 0; 2007 int ret; 2008 bool do_bin_search = true; 2009 2010 /* 2011 * If we are doing an insertion, the leaf has enough free space and the 2012 * destination slot for the key is not slot 0, then we can unlock our 2013 * write lock on the parent, and any other upper nodes, before doing the 2014 * binary search on the leaf (with search_for_key_slot()), allowing other 2015 * tasks to lock the parent and any other upper nodes. 2016 */ 2017 if (ins_len > 0) { 2018 /* 2019 * Cache the leaf free space, since we will need it later and it 2020 * will not change until then. 2021 */ 2022 leaf_free_space = btrfs_leaf_free_space(leaf); 2023 2024 /* 2025 * !path->locks[1] means we have a single node tree, the leaf is 2026 * the root of the tree. 2027 */ 2028 if (path->locks[1] && leaf_free_space >= ins_len) { 2029 struct btrfs_disk_key first_key; 2030 2031 ASSERT(btrfs_header_nritems(leaf) > 0); 2032 btrfs_item_key(leaf, &first_key, 0); 2033 2034 /* 2035 * Doing the extra comparison with the first key is cheap, 2036 * taking into account that the first key is very likely 2037 * already in a cache line because it immediately follows 2038 * the extent buffer's header and we have recently accessed 2039 * the header's level field. 2040 */ 2041 ret = comp_keys(&first_key, key); 2042 if (ret < 0) { 2043 /* 2044 * The first key is smaller than the key we want 2045 * to insert, so we are safe to unlock all upper 2046 * nodes and we have to do the binary search. 2047 * 2048 * We do use btrfs_unlock_up_safe() and not 2049 * unlock_up() because the later does not unlock 2050 * nodes with a slot of 0 - we can safely unlock 2051 * any node even if its slot is 0 since in this 2052 * case the key does not end up at slot 0 of the 2053 * leaf and there's no need to split the leaf. 2054 */ 2055 btrfs_unlock_up_safe(path, 1); 2056 search_low_slot = 1; 2057 } else { 2058 /* 2059 * The first key is >= then the key we want to 2060 * insert, so we can skip the binary search as 2061 * the target key will be at slot 0. 2062 * 2063 * We can not unlock upper nodes when the key is 2064 * less than the first key, because we will need 2065 * to update the key at slot 0 of the parent node 2066 * and possibly of other upper nodes too. 2067 * If the key matches the first key, then we can 2068 * unlock all the upper nodes, using 2069 * btrfs_unlock_up_safe() instead of unlock_up() 2070 * as stated above. 2071 */ 2072 if (ret == 0) 2073 btrfs_unlock_up_safe(path, 1); 2074 /* 2075 * ret is already 0 or 1, matching the result of 2076 * a btrfs_bin_search() call, so there is no need 2077 * to adjust it. 2078 */ 2079 do_bin_search = false; 2080 path->slots[0] = 0; 2081 } 2082 } 2083 } 2084 2085 if (do_bin_search) { 2086 ret = search_for_key_slot(leaf, search_low_slot, key, 2087 prev_cmp, &path->slots[0]); 2088 if (ret < 0) 2089 return ret; 2090 } 2091 2092 if (ins_len > 0) { 2093 /* 2094 * Item key already exists. In this case, if we are allowed to 2095 * insert the item (for example, in dir_item case, item key 2096 * collision is allowed), it will be merged with the original 2097 * item. Only the item size grows, no new btrfs item will be 2098 * added. If search_for_extension is not set, ins_len already 2099 * accounts the size btrfs_item, deduct it here so leaf space 2100 * check will be correct. 2101 */ 2102 if (ret == 0 && !path->search_for_extension) { 2103 ASSERT(ins_len >= sizeof(struct btrfs_item)); 2104 ins_len -= sizeof(struct btrfs_item); 2105 } 2106 2107 ASSERT(leaf_free_space >= 0); 2108 2109 if (leaf_free_space < ins_len) { 2110 int err; 2111 2112 err = split_leaf(trans, root, key, path, ins_len, 2113 (ret == 0)); 2114 ASSERT(err <= 0); 2115 if (WARN_ON(err > 0)) 2116 err = -EUCLEAN; 2117 if (err) 2118 ret = err; 2119 } 2120 } 2121 2122 return ret; 2123 } 2124 2125 /* 2126 * btrfs_search_slot - look for a key in a tree and perform necessary 2127 * modifications to preserve tree invariants. 2128 * 2129 * @trans: Handle of transaction, used when modifying the tree 2130 * @p: Holds all btree nodes along the search path 2131 * @root: The root node of the tree 2132 * @key: The key we are looking for 2133 * @ins_len: Indicates purpose of search: 2134 * >0 for inserts it's size of item inserted (*) 2135 * <0 for deletions 2136 * 0 for plain searches, not modifying the tree 2137 * 2138 * (*) If size of item inserted doesn't include 2139 * sizeof(struct btrfs_item), then p->search_for_extension must 2140 * be set. 2141 * @cow: boolean should CoW operations be performed. Must always be 1 2142 * when modifying the tree. 2143 * 2144 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2145 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2146 * 2147 * If @key is found, 0 is returned and you can find the item in the leaf level 2148 * of the path (level 0) 2149 * 2150 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2151 * points to the slot where it should be inserted 2152 * 2153 * If an error is encountered while searching the tree a negative error number 2154 * is returned 2155 */ 2156 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2157 const struct btrfs_key *key, struct btrfs_path *p, 2158 int ins_len, int cow) 2159 { 2160 struct btrfs_fs_info *fs_info; 2161 struct extent_buffer *b; 2162 int slot; 2163 int ret; 2164 int err; 2165 int level; 2166 int lowest_unlock = 1; 2167 /* everything at write_lock_level or lower must be write locked */ 2168 int write_lock_level = 0; 2169 u8 lowest_level = 0; 2170 int min_write_lock_level; 2171 int prev_cmp; 2172 2173 if (!root) 2174 return -EINVAL; 2175 2176 fs_info = root->fs_info; 2177 might_sleep(); 2178 2179 lowest_level = p->lowest_level; 2180 WARN_ON(lowest_level && ins_len > 0); 2181 WARN_ON(p->nodes[0] != NULL); 2182 BUG_ON(!cow && ins_len); 2183 2184 /* 2185 * For now only allow nowait for read only operations. There's no 2186 * strict reason why we can't, we just only need it for reads so it's 2187 * only implemented for reads. 2188 */ 2189 ASSERT(!p->nowait || !cow); 2190 2191 if (ins_len < 0) { 2192 lowest_unlock = 2; 2193 2194 /* when we are removing items, we might have to go up to level 2195 * two as we update tree pointers Make sure we keep write 2196 * for those levels as well 2197 */ 2198 write_lock_level = 2; 2199 } else if (ins_len > 0) { 2200 /* 2201 * for inserting items, make sure we have a write lock on 2202 * level 1 so we can update keys 2203 */ 2204 write_lock_level = 1; 2205 } 2206 2207 if (!cow) 2208 write_lock_level = -1; 2209 2210 if (cow && (p->keep_locks || p->lowest_level)) 2211 write_lock_level = BTRFS_MAX_LEVEL; 2212 2213 min_write_lock_level = write_lock_level; 2214 2215 if (p->need_commit_sem) { 2216 ASSERT(p->search_commit_root); 2217 if (p->nowait) { 2218 if (!down_read_trylock(&fs_info->commit_root_sem)) 2219 return -EAGAIN; 2220 } else { 2221 down_read(&fs_info->commit_root_sem); 2222 } 2223 } 2224 2225 again: 2226 prev_cmp = -1; 2227 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2228 if (IS_ERR(b)) { 2229 ret = PTR_ERR(b); 2230 goto done; 2231 } 2232 2233 while (b) { 2234 int dec = 0; 2235 2236 level = btrfs_header_level(b); 2237 2238 if (cow) { 2239 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2240 2241 /* 2242 * if we don't really need to cow this block 2243 * then we don't want to set the path blocking, 2244 * so we test it here 2245 */ 2246 if (!should_cow_block(trans, root, b)) 2247 goto cow_done; 2248 2249 /* 2250 * must have write locks on this node and the 2251 * parent 2252 */ 2253 if (level > write_lock_level || 2254 (level + 1 > write_lock_level && 2255 level + 1 < BTRFS_MAX_LEVEL && 2256 p->nodes[level + 1])) { 2257 write_lock_level = level + 1; 2258 btrfs_release_path(p); 2259 goto again; 2260 } 2261 2262 if (last_level) 2263 err = btrfs_cow_block(trans, root, b, NULL, 0, 2264 &b, 2265 BTRFS_NESTING_COW); 2266 else 2267 err = btrfs_cow_block(trans, root, b, 2268 p->nodes[level + 1], 2269 p->slots[level + 1], &b, 2270 BTRFS_NESTING_COW); 2271 if (err) { 2272 ret = err; 2273 goto done; 2274 } 2275 } 2276 cow_done: 2277 p->nodes[level] = b; 2278 2279 /* 2280 * we have a lock on b and as long as we aren't changing 2281 * the tree, there is no way to for the items in b to change. 2282 * It is safe to drop the lock on our parent before we 2283 * go through the expensive btree search on b. 2284 * 2285 * If we're inserting or deleting (ins_len != 0), then we might 2286 * be changing slot zero, which may require changing the parent. 2287 * So, we can't drop the lock until after we know which slot 2288 * we're operating on. 2289 */ 2290 if (!ins_len && !p->keep_locks) { 2291 int u = level + 1; 2292 2293 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2294 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2295 p->locks[u] = 0; 2296 } 2297 } 2298 2299 if (level == 0) { 2300 if (ins_len > 0) 2301 ASSERT(write_lock_level >= 1); 2302 2303 ret = search_leaf(trans, root, key, p, ins_len, prev_cmp); 2304 if (!p->search_for_split) 2305 unlock_up(p, level, lowest_unlock, 2306 min_write_lock_level, NULL); 2307 goto done; 2308 } 2309 2310 ret = search_for_key_slot(b, 0, key, prev_cmp, &slot); 2311 if (ret < 0) 2312 goto done; 2313 prev_cmp = ret; 2314 2315 if (ret && slot > 0) { 2316 dec = 1; 2317 slot--; 2318 } 2319 p->slots[level] = slot; 2320 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2321 &write_lock_level); 2322 if (err == -EAGAIN) 2323 goto again; 2324 if (err) { 2325 ret = err; 2326 goto done; 2327 } 2328 b = p->nodes[level]; 2329 slot = p->slots[level]; 2330 2331 /* 2332 * Slot 0 is special, if we change the key we have to update 2333 * the parent pointer which means we must have a write lock on 2334 * the parent 2335 */ 2336 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2337 write_lock_level = level + 1; 2338 btrfs_release_path(p); 2339 goto again; 2340 } 2341 2342 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2343 &write_lock_level); 2344 2345 if (level == lowest_level) { 2346 if (dec) 2347 p->slots[level]++; 2348 goto done; 2349 } 2350 2351 err = read_block_for_search(root, p, &b, level, slot, key); 2352 if (err == -EAGAIN) 2353 goto again; 2354 if (err) { 2355 ret = err; 2356 goto done; 2357 } 2358 2359 if (!p->skip_locking) { 2360 level = btrfs_header_level(b); 2361 2362 btrfs_maybe_reset_lockdep_class(root, b); 2363 2364 if (level <= write_lock_level) { 2365 btrfs_tree_lock(b); 2366 p->locks[level] = BTRFS_WRITE_LOCK; 2367 } else { 2368 if (p->nowait) { 2369 if (!btrfs_try_tree_read_lock(b)) { 2370 free_extent_buffer(b); 2371 ret = -EAGAIN; 2372 goto done; 2373 } 2374 } else { 2375 btrfs_tree_read_lock(b); 2376 } 2377 p->locks[level] = BTRFS_READ_LOCK; 2378 } 2379 p->nodes[level] = b; 2380 } 2381 } 2382 ret = 1; 2383 done: 2384 if (ret < 0 && !p->skip_release_on_error) 2385 btrfs_release_path(p); 2386 2387 if (p->need_commit_sem) { 2388 int ret2; 2389 2390 ret2 = finish_need_commit_sem_search(p); 2391 up_read(&fs_info->commit_root_sem); 2392 if (ret2) 2393 ret = ret2; 2394 } 2395 2396 return ret; 2397 } 2398 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 2399 2400 /* 2401 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2402 * current state of the tree together with the operations recorded in the tree 2403 * modification log to search for the key in a previous version of this tree, as 2404 * denoted by the time_seq parameter. 2405 * 2406 * Naturally, there is no support for insert, delete or cow operations. 2407 * 2408 * The resulting path and return value will be set up as if we called 2409 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2410 */ 2411 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2412 struct btrfs_path *p, u64 time_seq) 2413 { 2414 struct btrfs_fs_info *fs_info = root->fs_info; 2415 struct extent_buffer *b; 2416 int slot; 2417 int ret; 2418 int err; 2419 int level; 2420 int lowest_unlock = 1; 2421 u8 lowest_level = 0; 2422 2423 lowest_level = p->lowest_level; 2424 WARN_ON(p->nodes[0] != NULL); 2425 ASSERT(!p->nowait); 2426 2427 if (p->search_commit_root) { 2428 BUG_ON(time_seq); 2429 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2430 } 2431 2432 again: 2433 b = btrfs_get_old_root(root, time_seq); 2434 if (!b) { 2435 ret = -EIO; 2436 goto done; 2437 } 2438 level = btrfs_header_level(b); 2439 p->locks[level] = BTRFS_READ_LOCK; 2440 2441 while (b) { 2442 int dec = 0; 2443 2444 level = btrfs_header_level(b); 2445 p->nodes[level] = b; 2446 2447 /* 2448 * we have a lock on b and as long as we aren't changing 2449 * the tree, there is no way to for the items in b to change. 2450 * It is safe to drop the lock on our parent before we 2451 * go through the expensive btree search on b. 2452 */ 2453 btrfs_unlock_up_safe(p, level + 1); 2454 2455 ret = btrfs_bin_search(b, 0, key, &slot); 2456 if (ret < 0) 2457 goto done; 2458 2459 if (level == 0) { 2460 p->slots[level] = slot; 2461 unlock_up(p, level, lowest_unlock, 0, NULL); 2462 goto done; 2463 } 2464 2465 if (ret && slot > 0) { 2466 dec = 1; 2467 slot--; 2468 } 2469 p->slots[level] = slot; 2470 unlock_up(p, level, lowest_unlock, 0, NULL); 2471 2472 if (level == lowest_level) { 2473 if (dec) 2474 p->slots[level]++; 2475 goto done; 2476 } 2477 2478 err = read_block_for_search(root, p, &b, level, slot, key); 2479 if (err == -EAGAIN) 2480 goto again; 2481 if (err) { 2482 ret = err; 2483 goto done; 2484 } 2485 2486 level = btrfs_header_level(b); 2487 btrfs_tree_read_lock(b); 2488 b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq); 2489 if (!b) { 2490 ret = -ENOMEM; 2491 goto done; 2492 } 2493 p->locks[level] = BTRFS_READ_LOCK; 2494 p->nodes[level] = b; 2495 } 2496 ret = 1; 2497 done: 2498 if (ret < 0) 2499 btrfs_release_path(p); 2500 2501 return ret; 2502 } 2503 2504 /* 2505 * Search the tree again to find a leaf with smaller keys. 2506 * Returns 0 if it found something. 2507 * Returns 1 if there are no smaller keys. 2508 * Returns < 0 on error. 2509 * 2510 * This may release the path, and so you may lose any locks held at the 2511 * time you call it. 2512 */ 2513 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 2514 { 2515 struct btrfs_key key; 2516 struct btrfs_key orig_key; 2517 struct btrfs_disk_key found_key; 2518 int ret; 2519 2520 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 2521 orig_key = key; 2522 2523 if (key.offset > 0) { 2524 key.offset--; 2525 } else if (key.type > 0) { 2526 key.type--; 2527 key.offset = (u64)-1; 2528 } else if (key.objectid > 0) { 2529 key.objectid--; 2530 key.type = (u8)-1; 2531 key.offset = (u64)-1; 2532 } else { 2533 return 1; 2534 } 2535 2536 btrfs_release_path(path); 2537 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2538 if (ret <= 0) 2539 return ret; 2540 2541 /* 2542 * Previous key not found. Even if we were at slot 0 of the leaf we had 2543 * before releasing the path and calling btrfs_search_slot(), we now may 2544 * be in a slot pointing to the same original key - this can happen if 2545 * after we released the path, one of more items were moved from a 2546 * sibling leaf into the front of the leaf we had due to an insertion 2547 * (see push_leaf_right()). 2548 * If we hit this case and our slot is > 0 and just decrement the slot 2549 * so that the caller does not process the same key again, which may or 2550 * may not break the caller, depending on its logic. 2551 */ 2552 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) { 2553 btrfs_item_key(path->nodes[0], &found_key, path->slots[0]); 2554 ret = comp_keys(&found_key, &orig_key); 2555 if (ret == 0) { 2556 if (path->slots[0] > 0) { 2557 path->slots[0]--; 2558 return 0; 2559 } 2560 /* 2561 * At slot 0, same key as before, it means orig_key is 2562 * the lowest, leftmost, key in the tree. We're done. 2563 */ 2564 return 1; 2565 } 2566 } 2567 2568 btrfs_item_key(path->nodes[0], &found_key, 0); 2569 ret = comp_keys(&found_key, &key); 2570 /* 2571 * We might have had an item with the previous key in the tree right 2572 * before we released our path. And after we released our path, that 2573 * item might have been pushed to the first slot (0) of the leaf we 2574 * were holding due to a tree balance. Alternatively, an item with the 2575 * previous key can exist as the only element of a leaf (big fat item). 2576 * Therefore account for these 2 cases, so that our callers (like 2577 * btrfs_previous_item) don't miss an existing item with a key matching 2578 * the previous key we computed above. 2579 */ 2580 if (ret <= 0) 2581 return 0; 2582 return 1; 2583 } 2584 2585 /* 2586 * helper to use instead of search slot if no exact match is needed but 2587 * instead the next or previous item should be returned. 2588 * When find_higher is true, the next higher item is returned, the next lower 2589 * otherwise. 2590 * When return_any and find_higher are both true, and no higher item is found, 2591 * return the next lower instead. 2592 * When return_any is true and find_higher is false, and no lower item is found, 2593 * return the next higher instead. 2594 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2595 * < 0 on error 2596 */ 2597 int btrfs_search_slot_for_read(struct btrfs_root *root, 2598 const struct btrfs_key *key, 2599 struct btrfs_path *p, int find_higher, 2600 int return_any) 2601 { 2602 int ret; 2603 struct extent_buffer *leaf; 2604 2605 again: 2606 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2607 if (ret <= 0) 2608 return ret; 2609 /* 2610 * a return value of 1 means the path is at the position where the 2611 * item should be inserted. Normally this is the next bigger item, 2612 * but in case the previous item is the last in a leaf, path points 2613 * to the first free slot in the previous leaf, i.e. at an invalid 2614 * item. 2615 */ 2616 leaf = p->nodes[0]; 2617 2618 if (find_higher) { 2619 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2620 ret = btrfs_next_leaf(root, p); 2621 if (ret <= 0) 2622 return ret; 2623 if (!return_any) 2624 return 1; 2625 /* 2626 * no higher item found, return the next 2627 * lower instead 2628 */ 2629 return_any = 0; 2630 find_higher = 0; 2631 btrfs_release_path(p); 2632 goto again; 2633 } 2634 } else { 2635 if (p->slots[0] == 0) { 2636 ret = btrfs_prev_leaf(root, p); 2637 if (ret < 0) 2638 return ret; 2639 if (!ret) { 2640 leaf = p->nodes[0]; 2641 if (p->slots[0] == btrfs_header_nritems(leaf)) 2642 p->slots[0]--; 2643 return 0; 2644 } 2645 if (!return_any) 2646 return 1; 2647 /* 2648 * no lower item found, return the next 2649 * higher instead 2650 */ 2651 return_any = 0; 2652 find_higher = 1; 2653 btrfs_release_path(p); 2654 goto again; 2655 } else { 2656 --p->slots[0]; 2657 } 2658 } 2659 return 0; 2660 } 2661 2662 /* 2663 * Execute search and call btrfs_previous_item to traverse backwards if the item 2664 * was not found. 2665 * 2666 * Return 0 if found, 1 if not found and < 0 if error. 2667 */ 2668 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key, 2669 struct btrfs_path *path) 2670 { 2671 int ret; 2672 2673 ret = btrfs_search_slot(NULL, root, key, path, 0, 0); 2674 if (ret > 0) 2675 ret = btrfs_previous_item(root, path, key->objectid, key->type); 2676 2677 if (ret == 0) 2678 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2679 2680 return ret; 2681 } 2682 2683 /* 2684 * Search for a valid slot for the given path. 2685 * 2686 * @root: The root node of the tree. 2687 * @key: Will contain a valid item if found. 2688 * @path: The starting point to validate the slot. 2689 * 2690 * Return: 0 if the item is valid 2691 * 1 if not found 2692 * <0 if error. 2693 */ 2694 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key, 2695 struct btrfs_path *path) 2696 { 2697 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 2698 int ret; 2699 2700 ret = btrfs_next_leaf(root, path); 2701 if (ret) 2702 return ret; 2703 } 2704 2705 btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]); 2706 return 0; 2707 } 2708 2709 /* 2710 * adjust the pointers going up the tree, starting at level 2711 * making sure the right key of each node is points to 'key'. 2712 * This is used after shifting pointers to the left, so it stops 2713 * fixing up pointers when a given leaf/node is not in slot 0 of the 2714 * higher levels 2715 * 2716 */ 2717 static void fixup_low_keys(struct btrfs_trans_handle *trans, 2718 struct btrfs_path *path, 2719 struct btrfs_disk_key *key, int level) 2720 { 2721 int i; 2722 struct extent_buffer *t; 2723 int ret; 2724 2725 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2726 int tslot = path->slots[i]; 2727 2728 if (!path->nodes[i]) 2729 break; 2730 t = path->nodes[i]; 2731 ret = btrfs_tree_mod_log_insert_key(t, tslot, 2732 BTRFS_MOD_LOG_KEY_REPLACE); 2733 BUG_ON(ret < 0); 2734 btrfs_set_node_key(t, key, tslot); 2735 btrfs_mark_buffer_dirty(trans, path->nodes[i]); 2736 if (tslot != 0) 2737 break; 2738 } 2739 } 2740 2741 /* 2742 * update item key. 2743 * 2744 * This function isn't completely safe. It's the caller's responsibility 2745 * that the new key won't break the order 2746 */ 2747 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 2748 struct btrfs_path *path, 2749 const struct btrfs_key *new_key) 2750 { 2751 struct btrfs_fs_info *fs_info = trans->fs_info; 2752 struct btrfs_disk_key disk_key; 2753 struct extent_buffer *eb; 2754 int slot; 2755 2756 eb = path->nodes[0]; 2757 slot = path->slots[0]; 2758 if (slot > 0) { 2759 btrfs_item_key(eb, &disk_key, slot - 1); 2760 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 2761 btrfs_print_leaf(eb); 2762 btrfs_crit(fs_info, 2763 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2764 slot, btrfs_disk_key_objectid(&disk_key), 2765 btrfs_disk_key_type(&disk_key), 2766 btrfs_disk_key_offset(&disk_key), 2767 new_key->objectid, new_key->type, 2768 new_key->offset); 2769 BUG(); 2770 } 2771 } 2772 if (slot < btrfs_header_nritems(eb) - 1) { 2773 btrfs_item_key(eb, &disk_key, slot + 1); 2774 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 2775 btrfs_print_leaf(eb); 2776 btrfs_crit(fs_info, 2777 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 2778 slot, btrfs_disk_key_objectid(&disk_key), 2779 btrfs_disk_key_type(&disk_key), 2780 btrfs_disk_key_offset(&disk_key), 2781 new_key->objectid, new_key->type, 2782 new_key->offset); 2783 BUG(); 2784 } 2785 } 2786 2787 btrfs_cpu_key_to_disk(&disk_key, new_key); 2788 btrfs_set_item_key(eb, &disk_key, slot); 2789 btrfs_mark_buffer_dirty(trans, eb); 2790 if (slot == 0) 2791 fixup_low_keys(trans, path, &disk_key, 1); 2792 } 2793 2794 /* 2795 * Check key order of two sibling extent buffers. 2796 * 2797 * Return true if something is wrong. 2798 * Return false if everything is fine. 2799 * 2800 * Tree-checker only works inside one tree block, thus the following 2801 * corruption can not be detected by tree-checker: 2802 * 2803 * Leaf @left | Leaf @right 2804 * -------------------------------------------------------------- 2805 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 2806 * 2807 * Key f6 in leaf @left itself is valid, but not valid when the next 2808 * key in leaf @right is 7. 2809 * This can only be checked at tree block merge time. 2810 * And since tree checker has ensured all key order in each tree block 2811 * is correct, we only need to bother the last key of @left and the first 2812 * key of @right. 2813 */ 2814 static bool check_sibling_keys(struct extent_buffer *left, 2815 struct extent_buffer *right) 2816 { 2817 struct btrfs_key left_last; 2818 struct btrfs_key right_first; 2819 int level = btrfs_header_level(left); 2820 int nr_left = btrfs_header_nritems(left); 2821 int nr_right = btrfs_header_nritems(right); 2822 2823 /* No key to check in one of the tree blocks */ 2824 if (!nr_left || !nr_right) 2825 return false; 2826 2827 if (level) { 2828 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 2829 btrfs_node_key_to_cpu(right, &right_first, 0); 2830 } else { 2831 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 2832 btrfs_item_key_to_cpu(right, &right_first, 0); 2833 } 2834 2835 if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) { 2836 btrfs_crit(left->fs_info, "left extent buffer:"); 2837 btrfs_print_tree(left, false); 2838 btrfs_crit(left->fs_info, "right extent buffer:"); 2839 btrfs_print_tree(right, false); 2840 btrfs_crit(left->fs_info, 2841 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 2842 left_last.objectid, left_last.type, 2843 left_last.offset, right_first.objectid, 2844 right_first.type, right_first.offset); 2845 return true; 2846 } 2847 return false; 2848 } 2849 2850 /* 2851 * try to push data from one node into the next node left in the 2852 * tree. 2853 * 2854 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 2855 * error, and > 0 if there was no room in the left hand block. 2856 */ 2857 static int push_node_left(struct btrfs_trans_handle *trans, 2858 struct extent_buffer *dst, 2859 struct extent_buffer *src, int empty) 2860 { 2861 struct btrfs_fs_info *fs_info = trans->fs_info; 2862 int push_items = 0; 2863 int src_nritems; 2864 int dst_nritems; 2865 int ret = 0; 2866 2867 src_nritems = btrfs_header_nritems(src); 2868 dst_nritems = btrfs_header_nritems(dst); 2869 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2870 WARN_ON(btrfs_header_generation(src) != trans->transid); 2871 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2872 2873 if (!empty && src_nritems <= 8) 2874 return 1; 2875 2876 if (push_items <= 0) 2877 return 1; 2878 2879 if (empty) { 2880 push_items = min(src_nritems, push_items); 2881 if (push_items < src_nritems) { 2882 /* leave at least 8 pointers in the node if 2883 * we aren't going to empty it 2884 */ 2885 if (src_nritems - push_items < 8) { 2886 if (push_items <= 8) 2887 return 1; 2888 push_items -= 8; 2889 } 2890 } 2891 } else 2892 push_items = min(src_nritems - 8, push_items); 2893 2894 /* dst is the left eb, src is the middle eb */ 2895 if (check_sibling_keys(dst, src)) { 2896 ret = -EUCLEAN; 2897 btrfs_abort_transaction(trans, ret); 2898 return ret; 2899 } 2900 ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 2901 if (ret) { 2902 btrfs_abort_transaction(trans, ret); 2903 return ret; 2904 } 2905 copy_extent_buffer(dst, src, 2906 btrfs_node_key_ptr_offset(dst, dst_nritems), 2907 btrfs_node_key_ptr_offset(src, 0), 2908 push_items * sizeof(struct btrfs_key_ptr)); 2909 2910 if (push_items < src_nritems) { 2911 /* 2912 * btrfs_tree_mod_log_eb_copy handles logging the move, so we 2913 * don't need to do an explicit tree mod log operation for it. 2914 */ 2915 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0), 2916 btrfs_node_key_ptr_offset(src, push_items), 2917 (src_nritems - push_items) * 2918 sizeof(struct btrfs_key_ptr)); 2919 } 2920 btrfs_set_header_nritems(src, src_nritems - push_items); 2921 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2922 btrfs_mark_buffer_dirty(trans, src); 2923 btrfs_mark_buffer_dirty(trans, dst); 2924 2925 return ret; 2926 } 2927 2928 /* 2929 * try to push data from one node into the next node right in the 2930 * tree. 2931 * 2932 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2933 * error, and > 0 if there was no room in the right hand block. 2934 * 2935 * this will only push up to 1/2 the contents of the left node over 2936 */ 2937 static int balance_node_right(struct btrfs_trans_handle *trans, 2938 struct extent_buffer *dst, 2939 struct extent_buffer *src) 2940 { 2941 struct btrfs_fs_info *fs_info = trans->fs_info; 2942 int push_items = 0; 2943 int max_push; 2944 int src_nritems; 2945 int dst_nritems; 2946 int ret = 0; 2947 2948 WARN_ON(btrfs_header_generation(src) != trans->transid); 2949 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2950 2951 src_nritems = btrfs_header_nritems(src); 2952 dst_nritems = btrfs_header_nritems(dst); 2953 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 2954 if (push_items <= 0) 2955 return 1; 2956 2957 if (src_nritems < 4) 2958 return 1; 2959 2960 max_push = src_nritems / 2 + 1; 2961 /* don't try to empty the node */ 2962 if (max_push >= src_nritems) 2963 return 1; 2964 2965 if (max_push < push_items) 2966 push_items = max_push; 2967 2968 /* dst is the right eb, src is the middle eb */ 2969 if (check_sibling_keys(src, dst)) { 2970 ret = -EUCLEAN; 2971 btrfs_abort_transaction(trans, ret); 2972 return ret; 2973 } 2974 2975 /* 2976 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't 2977 * need to do an explicit tree mod log operation for it. 2978 */ 2979 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items), 2980 btrfs_node_key_ptr_offset(dst, 0), 2981 (dst_nritems) * 2982 sizeof(struct btrfs_key_ptr)); 2983 2984 ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 2985 push_items); 2986 if (ret) { 2987 btrfs_abort_transaction(trans, ret); 2988 return ret; 2989 } 2990 copy_extent_buffer(dst, src, 2991 btrfs_node_key_ptr_offset(dst, 0), 2992 btrfs_node_key_ptr_offset(src, src_nritems - push_items), 2993 push_items * sizeof(struct btrfs_key_ptr)); 2994 2995 btrfs_set_header_nritems(src, src_nritems - push_items); 2996 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2997 2998 btrfs_mark_buffer_dirty(trans, src); 2999 btrfs_mark_buffer_dirty(trans, dst); 3000 3001 return ret; 3002 } 3003 3004 /* 3005 * helper function to insert a new root level in the tree. 3006 * A new node is allocated, and a single item is inserted to 3007 * point to the existing root 3008 * 3009 * returns zero on success or < 0 on failure. 3010 */ 3011 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3012 struct btrfs_root *root, 3013 struct btrfs_path *path, int level) 3014 { 3015 struct btrfs_fs_info *fs_info = root->fs_info; 3016 u64 lower_gen; 3017 struct extent_buffer *lower; 3018 struct extent_buffer *c; 3019 struct extent_buffer *old; 3020 struct btrfs_disk_key lower_key; 3021 int ret; 3022 3023 BUG_ON(path->nodes[level]); 3024 BUG_ON(path->nodes[level-1] != root->node); 3025 3026 lower = path->nodes[level-1]; 3027 if (level == 1) 3028 btrfs_item_key(lower, &lower_key, 0); 3029 else 3030 btrfs_node_key(lower, &lower_key, 0); 3031 3032 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3033 &lower_key, level, root->node->start, 0, 3034 BTRFS_NESTING_NEW_ROOT); 3035 if (IS_ERR(c)) 3036 return PTR_ERR(c); 3037 3038 root_add_used(root, fs_info->nodesize); 3039 3040 btrfs_set_header_nritems(c, 1); 3041 btrfs_set_node_key(c, &lower_key, 0); 3042 btrfs_set_node_blockptr(c, 0, lower->start); 3043 lower_gen = btrfs_header_generation(lower); 3044 WARN_ON(lower_gen != trans->transid); 3045 3046 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3047 3048 btrfs_mark_buffer_dirty(trans, c); 3049 3050 old = root->node; 3051 ret = btrfs_tree_mod_log_insert_root(root->node, c, false); 3052 if (ret < 0) { 3053 int ret2; 3054 3055 ret2 = btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1); 3056 if (ret2 < 0) 3057 btrfs_abort_transaction(trans, ret2); 3058 btrfs_tree_unlock(c); 3059 free_extent_buffer(c); 3060 return ret; 3061 } 3062 rcu_assign_pointer(root->node, c); 3063 3064 /* the super has an extra ref to root->node */ 3065 free_extent_buffer(old); 3066 3067 add_root_to_dirty_list(root); 3068 atomic_inc(&c->refs); 3069 path->nodes[level] = c; 3070 path->locks[level] = BTRFS_WRITE_LOCK; 3071 path->slots[level] = 0; 3072 return 0; 3073 } 3074 3075 /* 3076 * worker function to insert a single pointer in a node. 3077 * the node should have enough room for the pointer already 3078 * 3079 * slot and level indicate where you want the key to go, and 3080 * blocknr is the block the key points to. 3081 */ 3082 static int insert_ptr(struct btrfs_trans_handle *trans, 3083 struct btrfs_path *path, 3084 struct btrfs_disk_key *key, u64 bytenr, 3085 int slot, int level) 3086 { 3087 struct extent_buffer *lower; 3088 int nritems; 3089 int ret; 3090 3091 BUG_ON(!path->nodes[level]); 3092 btrfs_assert_tree_write_locked(path->nodes[level]); 3093 lower = path->nodes[level]; 3094 nritems = btrfs_header_nritems(lower); 3095 BUG_ON(slot > nritems); 3096 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3097 if (slot != nritems) { 3098 if (level) { 3099 ret = btrfs_tree_mod_log_insert_move(lower, slot + 1, 3100 slot, nritems - slot); 3101 if (ret < 0) { 3102 btrfs_abort_transaction(trans, ret); 3103 return ret; 3104 } 3105 } 3106 memmove_extent_buffer(lower, 3107 btrfs_node_key_ptr_offset(lower, slot + 1), 3108 btrfs_node_key_ptr_offset(lower, slot), 3109 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3110 } 3111 if (level) { 3112 ret = btrfs_tree_mod_log_insert_key(lower, slot, 3113 BTRFS_MOD_LOG_KEY_ADD); 3114 if (ret < 0) { 3115 btrfs_abort_transaction(trans, ret); 3116 return ret; 3117 } 3118 } 3119 btrfs_set_node_key(lower, key, slot); 3120 btrfs_set_node_blockptr(lower, slot, bytenr); 3121 WARN_ON(trans->transid == 0); 3122 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3123 btrfs_set_header_nritems(lower, nritems + 1); 3124 btrfs_mark_buffer_dirty(trans, lower); 3125 3126 return 0; 3127 } 3128 3129 /* 3130 * split the node at the specified level in path in two. 3131 * The path is corrected to point to the appropriate node after the split 3132 * 3133 * Before splitting this tries to make some room in the node by pushing 3134 * left and right, if either one works, it returns right away. 3135 * 3136 * returns 0 on success and < 0 on failure 3137 */ 3138 static noinline int split_node(struct btrfs_trans_handle *trans, 3139 struct btrfs_root *root, 3140 struct btrfs_path *path, int level) 3141 { 3142 struct btrfs_fs_info *fs_info = root->fs_info; 3143 struct extent_buffer *c; 3144 struct extent_buffer *split; 3145 struct btrfs_disk_key disk_key; 3146 int mid; 3147 int ret; 3148 u32 c_nritems; 3149 3150 c = path->nodes[level]; 3151 WARN_ON(btrfs_header_generation(c) != trans->transid); 3152 if (c == root->node) { 3153 /* 3154 * trying to split the root, lets make a new one 3155 * 3156 * tree mod log: We don't log_removal old root in 3157 * insert_new_root, because that root buffer will be kept as a 3158 * normal node. We are going to log removal of half of the 3159 * elements below with btrfs_tree_mod_log_eb_copy(). We're 3160 * holding a tree lock on the buffer, which is why we cannot 3161 * race with other tree_mod_log users. 3162 */ 3163 ret = insert_new_root(trans, root, path, level + 1); 3164 if (ret) 3165 return ret; 3166 } else { 3167 ret = push_nodes_for_insert(trans, root, path, level); 3168 c = path->nodes[level]; 3169 if (!ret && btrfs_header_nritems(c) < 3170 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3171 return 0; 3172 if (ret < 0) 3173 return ret; 3174 } 3175 3176 c_nritems = btrfs_header_nritems(c); 3177 mid = (c_nritems + 1) / 2; 3178 btrfs_node_key(c, &disk_key, mid); 3179 3180 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3181 &disk_key, level, c->start, 0, 3182 BTRFS_NESTING_SPLIT); 3183 if (IS_ERR(split)) 3184 return PTR_ERR(split); 3185 3186 root_add_used(root, fs_info->nodesize); 3187 ASSERT(btrfs_header_level(c) == level); 3188 3189 ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3190 if (ret) { 3191 btrfs_tree_unlock(split); 3192 free_extent_buffer(split); 3193 btrfs_abort_transaction(trans, ret); 3194 return ret; 3195 } 3196 copy_extent_buffer(split, c, 3197 btrfs_node_key_ptr_offset(split, 0), 3198 btrfs_node_key_ptr_offset(c, mid), 3199 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3200 btrfs_set_header_nritems(split, c_nritems - mid); 3201 btrfs_set_header_nritems(c, mid); 3202 3203 btrfs_mark_buffer_dirty(trans, c); 3204 btrfs_mark_buffer_dirty(trans, split); 3205 3206 ret = insert_ptr(trans, path, &disk_key, split->start, 3207 path->slots[level + 1] + 1, level + 1); 3208 if (ret < 0) { 3209 btrfs_tree_unlock(split); 3210 free_extent_buffer(split); 3211 return ret; 3212 } 3213 3214 if (path->slots[level] >= mid) { 3215 path->slots[level] -= mid; 3216 btrfs_tree_unlock(c); 3217 free_extent_buffer(c); 3218 path->nodes[level] = split; 3219 path->slots[level + 1] += 1; 3220 } else { 3221 btrfs_tree_unlock(split); 3222 free_extent_buffer(split); 3223 } 3224 return 0; 3225 } 3226 3227 /* 3228 * how many bytes are required to store the items in a leaf. start 3229 * and nr indicate which items in the leaf to check. This totals up the 3230 * space used both by the item structs and the item data 3231 */ 3232 static int leaf_space_used(const struct extent_buffer *l, int start, int nr) 3233 { 3234 int data_len; 3235 int nritems = btrfs_header_nritems(l); 3236 int end = min(nritems, start + nr) - 1; 3237 3238 if (!nr) 3239 return 0; 3240 data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start); 3241 data_len = data_len - btrfs_item_offset(l, end); 3242 data_len += sizeof(struct btrfs_item) * nr; 3243 WARN_ON(data_len < 0); 3244 return data_len; 3245 } 3246 3247 /* 3248 * The space between the end of the leaf items and 3249 * the start of the leaf data. IOW, how much room 3250 * the leaf has left for both items and data 3251 */ 3252 int btrfs_leaf_free_space(const struct extent_buffer *leaf) 3253 { 3254 struct btrfs_fs_info *fs_info = leaf->fs_info; 3255 int nritems = btrfs_header_nritems(leaf); 3256 int ret; 3257 3258 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3259 if (ret < 0) { 3260 btrfs_crit(fs_info, 3261 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3262 ret, 3263 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3264 leaf_space_used(leaf, 0, nritems), nritems); 3265 } 3266 return ret; 3267 } 3268 3269 /* 3270 * min slot controls the lowest index we're willing to push to the 3271 * right. We'll push up to and including min_slot, but no lower 3272 */ 3273 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3274 struct btrfs_path *path, 3275 int data_size, int empty, 3276 struct extent_buffer *right, 3277 int free_space, u32 left_nritems, 3278 u32 min_slot) 3279 { 3280 struct btrfs_fs_info *fs_info = right->fs_info; 3281 struct extent_buffer *left = path->nodes[0]; 3282 struct extent_buffer *upper = path->nodes[1]; 3283 struct btrfs_map_token token; 3284 struct btrfs_disk_key disk_key; 3285 int slot; 3286 u32 i; 3287 int push_space = 0; 3288 int push_items = 0; 3289 u32 nr; 3290 u32 right_nritems; 3291 u32 data_end; 3292 u32 this_item_size; 3293 3294 if (empty) 3295 nr = 0; 3296 else 3297 nr = max_t(u32, 1, min_slot); 3298 3299 if (path->slots[0] >= left_nritems) 3300 push_space += data_size; 3301 3302 slot = path->slots[1]; 3303 i = left_nritems - 1; 3304 while (i >= nr) { 3305 if (!empty && push_items > 0) { 3306 if (path->slots[0] > i) 3307 break; 3308 if (path->slots[0] == i) { 3309 int space = btrfs_leaf_free_space(left); 3310 3311 if (space + push_space * 2 > free_space) 3312 break; 3313 } 3314 } 3315 3316 if (path->slots[0] == i) 3317 push_space += data_size; 3318 3319 this_item_size = btrfs_item_size(left, i); 3320 if (this_item_size + sizeof(struct btrfs_item) + 3321 push_space > free_space) 3322 break; 3323 3324 push_items++; 3325 push_space += this_item_size + sizeof(struct btrfs_item); 3326 if (i == 0) 3327 break; 3328 i--; 3329 } 3330 3331 if (push_items == 0) 3332 goto out_unlock; 3333 3334 WARN_ON(!empty && push_items == left_nritems); 3335 3336 /* push left to right */ 3337 right_nritems = btrfs_header_nritems(right); 3338 3339 push_space = btrfs_item_data_end(left, left_nritems - push_items); 3340 push_space -= leaf_data_end(left); 3341 3342 /* make room in the right data area */ 3343 data_end = leaf_data_end(right); 3344 memmove_leaf_data(right, data_end - push_space, data_end, 3345 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3346 3347 /* copy from the left data area */ 3348 copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3349 leaf_data_end(left), push_space); 3350 3351 memmove_leaf_items(right, push_items, 0, right_nritems); 3352 3353 /* copy the items from left to right */ 3354 copy_leaf_items(right, left, 0, left_nritems - push_items, push_items); 3355 3356 /* update the item pointers */ 3357 btrfs_init_map_token(&token, right); 3358 right_nritems += push_items; 3359 btrfs_set_header_nritems(right, right_nritems); 3360 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3361 for (i = 0; i < right_nritems; i++) { 3362 push_space -= btrfs_token_item_size(&token, i); 3363 btrfs_set_token_item_offset(&token, i, push_space); 3364 } 3365 3366 left_nritems -= push_items; 3367 btrfs_set_header_nritems(left, left_nritems); 3368 3369 if (left_nritems) 3370 btrfs_mark_buffer_dirty(trans, left); 3371 else 3372 btrfs_clear_buffer_dirty(trans, left); 3373 3374 btrfs_mark_buffer_dirty(trans, right); 3375 3376 btrfs_item_key(right, &disk_key, 0); 3377 btrfs_set_node_key(upper, &disk_key, slot + 1); 3378 btrfs_mark_buffer_dirty(trans, upper); 3379 3380 /* then fixup the leaf pointer in the path */ 3381 if (path->slots[0] >= left_nritems) { 3382 path->slots[0] -= left_nritems; 3383 if (btrfs_header_nritems(path->nodes[0]) == 0) 3384 btrfs_clear_buffer_dirty(trans, path->nodes[0]); 3385 btrfs_tree_unlock(path->nodes[0]); 3386 free_extent_buffer(path->nodes[0]); 3387 path->nodes[0] = right; 3388 path->slots[1] += 1; 3389 } else { 3390 btrfs_tree_unlock(right); 3391 free_extent_buffer(right); 3392 } 3393 return 0; 3394 3395 out_unlock: 3396 btrfs_tree_unlock(right); 3397 free_extent_buffer(right); 3398 return 1; 3399 } 3400 3401 /* 3402 * push some data in the path leaf to the right, trying to free up at 3403 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3404 * 3405 * returns 1 if the push failed because the other node didn't have enough 3406 * room, 0 if everything worked out and < 0 if there were major errors. 3407 * 3408 * this will push starting from min_slot to the end of the leaf. It won't 3409 * push any slot lower than min_slot 3410 */ 3411 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3412 *root, struct btrfs_path *path, 3413 int min_data_size, int data_size, 3414 int empty, u32 min_slot) 3415 { 3416 struct extent_buffer *left = path->nodes[0]; 3417 struct extent_buffer *right; 3418 struct extent_buffer *upper; 3419 int slot; 3420 int free_space; 3421 u32 left_nritems; 3422 int ret; 3423 3424 if (!path->nodes[1]) 3425 return 1; 3426 3427 slot = path->slots[1]; 3428 upper = path->nodes[1]; 3429 if (slot >= btrfs_header_nritems(upper) - 1) 3430 return 1; 3431 3432 btrfs_assert_tree_write_locked(path->nodes[1]); 3433 3434 right = btrfs_read_node_slot(upper, slot + 1); 3435 if (IS_ERR(right)) 3436 return PTR_ERR(right); 3437 3438 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 3439 3440 free_space = btrfs_leaf_free_space(right); 3441 if (free_space < data_size) 3442 goto out_unlock; 3443 3444 ret = btrfs_cow_block(trans, root, right, upper, 3445 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3446 if (ret) 3447 goto out_unlock; 3448 3449 left_nritems = btrfs_header_nritems(left); 3450 if (left_nritems == 0) 3451 goto out_unlock; 3452 3453 if (check_sibling_keys(left, right)) { 3454 ret = -EUCLEAN; 3455 btrfs_abort_transaction(trans, ret); 3456 btrfs_tree_unlock(right); 3457 free_extent_buffer(right); 3458 return ret; 3459 } 3460 if (path->slots[0] == left_nritems && !empty) { 3461 /* Key greater than all keys in the leaf, right neighbor has 3462 * enough room for it and we're not emptying our leaf to delete 3463 * it, therefore use right neighbor to insert the new item and 3464 * no need to touch/dirty our left leaf. */ 3465 btrfs_tree_unlock(left); 3466 free_extent_buffer(left); 3467 path->nodes[0] = right; 3468 path->slots[0] = 0; 3469 path->slots[1]++; 3470 return 0; 3471 } 3472 3473 return __push_leaf_right(trans, path, min_data_size, empty, right, 3474 free_space, left_nritems, min_slot); 3475 out_unlock: 3476 btrfs_tree_unlock(right); 3477 free_extent_buffer(right); 3478 return 1; 3479 } 3480 3481 /* 3482 * push some data in the path leaf to the left, trying to free up at 3483 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3484 * 3485 * max_slot can put a limit on how far into the leaf we'll push items. The 3486 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3487 * items 3488 */ 3489 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3490 struct btrfs_path *path, int data_size, 3491 int empty, struct extent_buffer *left, 3492 int free_space, u32 right_nritems, 3493 u32 max_slot) 3494 { 3495 struct btrfs_fs_info *fs_info = left->fs_info; 3496 struct btrfs_disk_key disk_key; 3497 struct extent_buffer *right = path->nodes[0]; 3498 int i; 3499 int push_space = 0; 3500 int push_items = 0; 3501 u32 old_left_nritems; 3502 u32 nr; 3503 int ret = 0; 3504 u32 this_item_size; 3505 u32 old_left_item_size; 3506 struct btrfs_map_token token; 3507 3508 if (empty) 3509 nr = min(right_nritems, max_slot); 3510 else 3511 nr = min(right_nritems - 1, max_slot); 3512 3513 for (i = 0; i < nr; i++) { 3514 if (!empty && push_items > 0) { 3515 if (path->slots[0] < i) 3516 break; 3517 if (path->slots[0] == i) { 3518 int space = btrfs_leaf_free_space(right); 3519 3520 if (space + push_space * 2 > free_space) 3521 break; 3522 } 3523 } 3524 3525 if (path->slots[0] == i) 3526 push_space += data_size; 3527 3528 this_item_size = btrfs_item_size(right, i); 3529 if (this_item_size + sizeof(struct btrfs_item) + push_space > 3530 free_space) 3531 break; 3532 3533 push_items++; 3534 push_space += this_item_size + sizeof(struct btrfs_item); 3535 } 3536 3537 if (push_items == 0) { 3538 ret = 1; 3539 goto out; 3540 } 3541 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3542 3543 /* push data from right to left */ 3544 copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items); 3545 3546 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3547 btrfs_item_offset(right, push_items - 1); 3548 3549 copy_leaf_data(left, right, leaf_data_end(left) - push_space, 3550 btrfs_item_offset(right, push_items - 1), push_space); 3551 old_left_nritems = btrfs_header_nritems(left); 3552 BUG_ON(old_left_nritems <= 0); 3553 3554 btrfs_init_map_token(&token, left); 3555 old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1); 3556 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3557 u32 ioff; 3558 3559 ioff = btrfs_token_item_offset(&token, i); 3560 btrfs_set_token_item_offset(&token, i, 3561 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3562 } 3563 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3564 3565 /* fixup right node */ 3566 if (push_items > right_nritems) 3567 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3568 right_nritems); 3569 3570 if (push_items < right_nritems) { 3571 push_space = btrfs_item_offset(right, push_items - 1) - 3572 leaf_data_end(right); 3573 memmove_leaf_data(right, 3574 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3575 leaf_data_end(right), push_space); 3576 3577 memmove_leaf_items(right, 0, push_items, 3578 btrfs_header_nritems(right) - push_items); 3579 } 3580 3581 btrfs_init_map_token(&token, right); 3582 right_nritems -= push_items; 3583 btrfs_set_header_nritems(right, right_nritems); 3584 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3585 for (i = 0; i < right_nritems; i++) { 3586 push_space = push_space - btrfs_token_item_size(&token, i); 3587 btrfs_set_token_item_offset(&token, i, push_space); 3588 } 3589 3590 btrfs_mark_buffer_dirty(trans, left); 3591 if (right_nritems) 3592 btrfs_mark_buffer_dirty(trans, right); 3593 else 3594 btrfs_clear_buffer_dirty(trans, right); 3595 3596 btrfs_item_key(right, &disk_key, 0); 3597 fixup_low_keys(trans, path, &disk_key, 1); 3598 3599 /* then fixup the leaf pointer in the path */ 3600 if (path->slots[0] < push_items) { 3601 path->slots[0] += old_left_nritems; 3602 btrfs_tree_unlock(path->nodes[0]); 3603 free_extent_buffer(path->nodes[0]); 3604 path->nodes[0] = left; 3605 path->slots[1] -= 1; 3606 } else { 3607 btrfs_tree_unlock(left); 3608 free_extent_buffer(left); 3609 path->slots[0] -= push_items; 3610 } 3611 BUG_ON(path->slots[0] < 0); 3612 return ret; 3613 out: 3614 btrfs_tree_unlock(left); 3615 free_extent_buffer(left); 3616 return ret; 3617 } 3618 3619 /* 3620 * push some data in the path leaf to the left, trying to free up at 3621 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3622 * 3623 * max_slot can put a limit on how far into the leaf we'll push items. The 3624 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3625 * items 3626 */ 3627 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3628 *root, struct btrfs_path *path, int min_data_size, 3629 int data_size, int empty, u32 max_slot) 3630 { 3631 struct extent_buffer *right = path->nodes[0]; 3632 struct extent_buffer *left; 3633 int slot; 3634 int free_space; 3635 u32 right_nritems; 3636 int ret = 0; 3637 3638 slot = path->slots[1]; 3639 if (slot == 0) 3640 return 1; 3641 if (!path->nodes[1]) 3642 return 1; 3643 3644 right_nritems = btrfs_header_nritems(right); 3645 if (right_nritems == 0) 3646 return 1; 3647 3648 btrfs_assert_tree_write_locked(path->nodes[1]); 3649 3650 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3651 if (IS_ERR(left)) 3652 return PTR_ERR(left); 3653 3654 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3655 3656 free_space = btrfs_leaf_free_space(left); 3657 if (free_space < data_size) { 3658 ret = 1; 3659 goto out; 3660 } 3661 3662 ret = btrfs_cow_block(trans, root, left, 3663 path->nodes[1], slot - 1, &left, 3664 BTRFS_NESTING_LEFT_COW); 3665 if (ret) { 3666 /* we hit -ENOSPC, but it isn't fatal here */ 3667 if (ret == -ENOSPC) 3668 ret = 1; 3669 goto out; 3670 } 3671 3672 if (check_sibling_keys(left, right)) { 3673 ret = -EUCLEAN; 3674 btrfs_abort_transaction(trans, ret); 3675 goto out; 3676 } 3677 return __push_leaf_left(trans, path, min_data_size, empty, left, 3678 free_space, right_nritems, max_slot); 3679 out: 3680 btrfs_tree_unlock(left); 3681 free_extent_buffer(left); 3682 return ret; 3683 } 3684 3685 /* 3686 * split the path's leaf in two, making sure there is at least data_size 3687 * available for the resulting leaf level of the path. 3688 */ 3689 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 3690 struct btrfs_path *path, 3691 struct extent_buffer *l, 3692 struct extent_buffer *right, 3693 int slot, int mid, int nritems) 3694 { 3695 struct btrfs_fs_info *fs_info = trans->fs_info; 3696 int data_copy_size; 3697 int rt_data_off; 3698 int i; 3699 int ret; 3700 struct btrfs_disk_key disk_key; 3701 struct btrfs_map_token token; 3702 3703 nritems = nritems - mid; 3704 btrfs_set_header_nritems(right, nritems); 3705 data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l); 3706 3707 copy_leaf_items(right, l, 0, mid, nritems); 3708 3709 copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size, 3710 leaf_data_end(l), data_copy_size); 3711 3712 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid); 3713 3714 btrfs_init_map_token(&token, right); 3715 for (i = 0; i < nritems; i++) { 3716 u32 ioff; 3717 3718 ioff = btrfs_token_item_offset(&token, i); 3719 btrfs_set_token_item_offset(&token, i, ioff + rt_data_off); 3720 } 3721 3722 btrfs_set_header_nritems(l, mid); 3723 btrfs_item_key(right, &disk_key, 0); 3724 ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 3725 if (ret < 0) 3726 return ret; 3727 3728 btrfs_mark_buffer_dirty(trans, right); 3729 btrfs_mark_buffer_dirty(trans, l); 3730 BUG_ON(path->slots[0] != slot); 3731 3732 if (mid <= slot) { 3733 btrfs_tree_unlock(path->nodes[0]); 3734 free_extent_buffer(path->nodes[0]); 3735 path->nodes[0] = right; 3736 path->slots[0] -= mid; 3737 path->slots[1] += 1; 3738 } else { 3739 btrfs_tree_unlock(right); 3740 free_extent_buffer(right); 3741 } 3742 3743 BUG_ON(path->slots[0] < 0); 3744 3745 return 0; 3746 } 3747 3748 /* 3749 * double splits happen when we need to insert a big item in the middle 3750 * of a leaf. A double split can leave us with 3 mostly empty leaves: 3751 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 3752 * A B C 3753 * 3754 * We avoid this by trying to push the items on either side of our target 3755 * into the adjacent leaves. If all goes well we can avoid the double split 3756 * completely. 3757 */ 3758 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 3759 struct btrfs_root *root, 3760 struct btrfs_path *path, 3761 int data_size) 3762 { 3763 int ret; 3764 int progress = 0; 3765 int slot; 3766 u32 nritems; 3767 int space_needed = data_size; 3768 3769 slot = path->slots[0]; 3770 if (slot < btrfs_header_nritems(path->nodes[0])) 3771 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3772 3773 /* 3774 * try to push all the items after our slot into the 3775 * right leaf 3776 */ 3777 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 3778 if (ret < 0) 3779 return ret; 3780 3781 if (ret == 0) 3782 progress++; 3783 3784 nritems = btrfs_header_nritems(path->nodes[0]); 3785 /* 3786 * our goal is to get our slot at the start or end of a leaf. If 3787 * we've done so we're done 3788 */ 3789 if (path->slots[0] == 0 || path->slots[0] == nritems) 3790 return 0; 3791 3792 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3793 return 0; 3794 3795 /* try to push all the items before our slot into the next leaf */ 3796 slot = path->slots[0]; 3797 space_needed = data_size; 3798 if (slot > 0) 3799 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 3800 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 3801 if (ret < 0) 3802 return ret; 3803 3804 if (ret == 0) 3805 progress++; 3806 3807 if (progress) 3808 return 0; 3809 return 1; 3810 } 3811 3812 /* 3813 * split the path's leaf in two, making sure there is at least data_size 3814 * available for the resulting leaf level of the path. 3815 * 3816 * returns 0 if all went well and < 0 on failure. 3817 */ 3818 static noinline int split_leaf(struct btrfs_trans_handle *trans, 3819 struct btrfs_root *root, 3820 const struct btrfs_key *ins_key, 3821 struct btrfs_path *path, int data_size, 3822 int extend) 3823 { 3824 struct btrfs_disk_key disk_key; 3825 struct extent_buffer *l; 3826 u32 nritems; 3827 int mid; 3828 int slot; 3829 struct extent_buffer *right; 3830 struct btrfs_fs_info *fs_info = root->fs_info; 3831 int ret = 0; 3832 int wret; 3833 int split; 3834 int num_doubles = 0; 3835 int tried_avoid_double = 0; 3836 3837 l = path->nodes[0]; 3838 slot = path->slots[0]; 3839 if (extend && data_size + btrfs_item_size(l, slot) + 3840 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 3841 return -EOVERFLOW; 3842 3843 /* first try to make some room by pushing left and right */ 3844 if (data_size && path->nodes[1]) { 3845 int space_needed = data_size; 3846 3847 if (slot < btrfs_header_nritems(l)) 3848 space_needed -= btrfs_leaf_free_space(l); 3849 3850 wret = push_leaf_right(trans, root, path, space_needed, 3851 space_needed, 0, 0); 3852 if (wret < 0) 3853 return wret; 3854 if (wret) { 3855 space_needed = data_size; 3856 if (slot > 0) 3857 space_needed -= btrfs_leaf_free_space(l); 3858 wret = push_leaf_left(trans, root, path, space_needed, 3859 space_needed, 0, (u32)-1); 3860 if (wret < 0) 3861 return wret; 3862 } 3863 l = path->nodes[0]; 3864 3865 /* did the pushes work? */ 3866 if (btrfs_leaf_free_space(l) >= data_size) 3867 return 0; 3868 } 3869 3870 if (!path->nodes[1]) { 3871 ret = insert_new_root(trans, root, path, 1); 3872 if (ret) 3873 return ret; 3874 } 3875 again: 3876 split = 1; 3877 l = path->nodes[0]; 3878 slot = path->slots[0]; 3879 nritems = btrfs_header_nritems(l); 3880 mid = (nritems + 1) / 2; 3881 3882 if (mid <= slot) { 3883 if (nritems == 1 || 3884 leaf_space_used(l, mid, nritems - mid) + data_size > 3885 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3886 if (slot >= nritems) { 3887 split = 0; 3888 } else { 3889 mid = slot; 3890 if (mid != nritems && 3891 leaf_space_used(l, mid, nritems - mid) + 3892 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3893 if (data_size && !tried_avoid_double) 3894 goto push_for_double; 3895 split = 2; 3896 } 3897 } 3898 } 3899 } else { 3900 if (leaf_space_used(l, 0, mid) + data_size > 3901 BTRFS_LEAF_DATA_SIZE(fs_info)) { 3902 if (!extend && data_size && slot == 0) { 3903 split = 0; 3904 } else if ((extend || !data_size) && slot == 0) { 3905 mid = 1; 3906 } else { 3907 mid = slot; 3908 if (mid != nritems && 3909 leaf_space_used(l, mid, nritems - mid) + 3910 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 3911 if (data_size && !tried_avoid_double) 3912 goto push_for_double; 3913 split = 2; 3914 } 3915 } 3916 } 3917 } 3918 3919 if (split == 0) 3920 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3921 else 3922 btrfs_item_key(l, &disk_key, mid); 3923 3924 /* 3925 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 3926 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 3927 * subclasses, which is 8 at the time of this patch, and we've maxed it 3928 * out. In the future we could add a 3929 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 3930 * use BTRFS_NESTING_NEW_ROOT. 3931 */ 3932 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3933 &disk_key, 0, l->start, 0, 3934 num_doubles ? BTRFS_NESTING_NEW_ROOT : 3935 BTRFS_NESTING_SPLIT); 3936 if (IS_ERR(right)) 3937 return PTR_ERR(right); 3938 3939 root_add_used(root, fs_info->nodesize); 3940 3941 if (split == 0) { 3942 if (mid <= slot) { 3943 btrfs_set_header_nritems(right, 0); 3944 ret = insert_ptr(trans, path, &disk_key, 3945 right->start, path->slots[1] + 1, 1); 3946 if (ret < 0) { 3947 btrfs_tree_unlock(right); 3948 free_extent_buffer(right); 3949 return ret; 3950 } 3951 btrfs_tree_unlock(path->nodes[0]); 3952 free_extent_buffer(path->nodes[0]); 3953 path->nodes[0] = right; 3954 path->slots[0] = 0; 3955 path->slots[1] += 1; 3956 } else { 3957 btrfs_set_header_nritems(right, 0); 3958 ret = insert_ptr(trans, path, &disk_key, 3959 right->start, path->slots[1], 1); 3960 if (ret < 0) { 3961 btrfs_tree_unlock(right); 3962 free_extent_buffer(right); 3963 return ret; 3964 } 3965 btrfs_tree_unlock(path->nodes[0]); 3966 free_extent_buffer(path->nodes[0]); 3967 path->nodes[0] = right; 3968 path->slots[0] = 0; 3969 if (path->slots[1] == 0) 3970 fixup_low_keys(trans, path, &disk_key, 1); 3971 } 3972 /* 3973 * We create a new leaf 'right' for the required ins_len and 3974 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 3975 * the content of ins_len to 'right'. 3976 */ 3977 return ret; 3978 } 3979 3980 ret = copy_for_split(trans, path, l, right, slot, mid, nritems); 3981 if (ret < 0) { 3982 btrfs_tree_unlock(right); 3983 free_extent_buffer(right); 3984 return ret; 3985 } 3986 3987 if (split == 2) { 3988 BUG_ON(num_doubles != 0); 3989 num_doubles++; 3990 goto again; 3991 } 3992 3993 return 0; 3994 3995 push_for_double: 3996 push_for_double_split(trans, root, path, data_size); 3997 tried_avoid_double = 1; 3998 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 3999 return 0; 4000 goto again; 4001 } 4002 4003 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4004 struct btrfs_root *root, 4005 struct btrfs_path *path, int ins_len) 4006 { 4007 struct btrfs_key key; 4008 struct extent_buffer *leaf; 4009 struct btrfs_file_extent_item *fi; 4010 u64 extent_len = 0; 4011 u32 item_size; 4012 int ret; 4013 4014 leaf = path->nodes[0]; 4015 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4016 4017 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4018 key.type != BTRFS_EXTENT_CSUM_KEY); 4019 4020 if (btrfs_leaf_free_space(leaf) >= ins_len) 4021 return 0; 4022 4023 item_size = btrfs_item_size(leaf, path->slots[0]); 4024 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4025 fi = btrfs_item_ptr(leaf, path->slots[0], 4026 struct btrfs_file_extent_item); 4027 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4028 } 4029 btrfs_release_path(path); 4030 4031 path->keep_locks = 1; 4032 path->search_for_split = 1; 4033 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4034 path->search_for_split = 0; 4035 if (ret > 0) 4036 ret = -EAGAIN; 4037 if (ret < 0) 4038 goto err; 4039 4040 ret = -EAGAIN; 4041 leaf = path->nodes[0]; 4042 /* if our item isn't there, return now */ 4043 if (item_size != btrfs_item_size(leaf, path->slots[0])) 4044 goto err; 4045 4046 /* the leaf has changed, it now has room. return now */ 4047 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4048 goto err; 4049 4050 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4051 fi = btrfs_item_ptr(leaf, path->slots[0], 4052 struct btrfs_file_extent_item); 4053 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4054 goto err; 4055 } 4056 4057 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4058 if (ret) 4059 goto err; 4060 4061 path->keep_locks = 0; 4062 btrfs_unlock_up_safe(path, 1); 4063 return 0; 4064 err: 4065 path->keep_locks = 0; 4066 return ret; 4067 } 4068 4069 static noinline int split_item(struct btrfs_trans_handle *trans, 4070 struct btrfs_path *path, 4071 const struct btrfs_key *new_key, 4072 unsigned long split_offset) 4073 { 4074 struct extent_buffer *leaf; 4075 int orig_slot, slot; 4076 char *buf; 4077 u32 nritems; 4078 u32 item_size; 4079 u32 orig_offset; 4080 struct btrfs_disk_key disk_key; 4081 4082 leaf = path->nodes[0]; 4083 /* 4084 * Shouldn't happen because the caller must have previously called 4085 * setup_leaf_for_split() to make room for the new item in the leaf. 4086 */ 4087 if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item))) 4088 return -ENOSPC; 4089 4090 orig_slot = path->slots[0]; 4091 orig_offset = btrfs_item_offset(leaf, path->slots[0]); 4092 item_size = btrfs_item_size(leaf, path->slots[0]); 4093 4094 buf = kmalloc(item_size, GFP_NOFS); 4095 if (!buf) 4096 return -ENOMEM; 4097 4098 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4099 path->slots[0]), item_size); 4100 4101 slot = path->slots[0] + 1; 4102 nritems = btrfs_header_nritems(leaf); 4103 if (slot != nritems) { 4104 /* shift the items */ 4105 memmove_leaf_items(leaf, slot + 1, slot, nritems - slot); 4106 } 4107 4108 btrfs_cpu_key_to_disk(&disk_key, new_key); 4109 btrfs_set_item_key(leaf, &disk_key, slot); 4110 4111 btrfs_set_item_offset(leaf, slot, orig_offset); 4112 btrfs_set_item_size(leaf, slot, item_size - split_offset); 4113 4114 btrfs_set_item_offset(leaf, orig_slot, 4115 orig_offset + item_size - split_offset); 4116 btrfs_set_item_size(leaf, orig_slot, split_offset); 4117 4118 btrfs_set_header_nritems(leaf, nritems + 1); 4119 4120 /* write the data for the start of the original item */ 4121 write_extent_buffer(leaf, buf, 4122 btrfs_item_ptr_offset(leaf, path->slots[0]), 4123 split_offset); 4124 4125 /* write the data for the new item */ 4126 write_extent_buffer(leaf, buf + split_offset, 4127 btrfs_item_ptr_offset(leaf, slot), 4128 item_size - split_offset); 4129 btrfs_mark_buffer_dirty(trans, leaf); 4130 4131 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4132 kfree(buf); 4133 return 0; 4134 } 4135 4136 /* 4137 * This function splits a single item into two items, 4138 * giving 'new_key' to the new item and splitting the 4139 * old one at split_offset (from the start of the item). 4140 * 4141 * The path may be released by this operation. After 4142 * the split, the path is pointing to the old item. The 4143 * new item is going to be in the same node as the old one. 4144 * 4145 * Note, the item being split must be smaller enough to live alone on 4146 * a tree block with room for one extra struct btrfs_item 4147 * 4148 * This allows us to split the item in place, keeping a lock on the 4149 * leaf the entire time. 4150 */ 4151 int btrfs_split_item(struct btrfs_trans_handle *trans, 4152 struct btrfs_root *root, 4153 struct btrfs_path *path, 4154 const struct btrfs_key *new_key, 4155 unsigned long split_offset) 4156 { 4157 int ret; 4158 ret = setup_leaf_for_split(trans, root, path, 4159 sizeof(struct btrfs_item)); 4160 if (ret) 4161 return ret; 4162 4163 ret = split_item(trans, path, new_key, split_offset); 4164 return ret; 4165 } 4166 4167 /* 4168 * make the item pointed to by the path smaller. new_size indicates 4169 * how small to make it, and from_end tells us if we just chop bytes 4170 * off the end of the item or if we shift the item to chop bytes off 4171 * the front. 4172 */ 4173 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 4174 struct btrfs_path *path, u32 new_size, int from_end) 4175 { 4176 int slot; 4177 struct extent_buffer *leaf; 4178 u32 nritems; 4179 unsigned int data_end; 4180 unsigned int old_data_start; 4181 unsigned int old_size; 4182 unsigned int size_diff; 4183 int i; 4184 struct btrfs_map_token token; 4185 4186 leaf = path->nodes[0]; 4187 slot = path->slots[0]; 4188 4189 old_size = btrfs_item_size(leaf, slot); 4190 if (old_size == new_size) 4191 return; 4192 4193 nritems = btrfs_header_nritems(leaf); 4194 data_end = leaf_data_end(leaf); 4195 4196 old_data_start = btrfs_item_offset(leaf, slot); 4197 4198 size_diff = old_size - new_size; 4199 4200 BUG_ON(slot < 0); 4201 BUG_ON(slot >= nritems); 4202 4203 /* 4204 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4205 */ 4206 /* first correct the data pointers */ 4207 btrfs_init_map_token(&token, leaf); 4208 for (i = slot; i < nritems; i++) { 4209 u32 ioff; 4210 4211 ioff = btrfs_token_item_offset(&token, i); 4212 btrfs_set_token_item_offset(&token, i, ioff + size_diff); 4213 } 4214 4215 /* shift the data */ 4216 if (from_end) { 4217 memmove_leaf_data(leaf, data_end + size_diff, data_end, 4218 old_data_start + new_size - data_end); 4219 } else { 4220 struct btrfs_disk_key disk_key; 4221 u64 offset; 4222 4223 btrfs_item_key(leaf, &disk_key, slot); 4224 4225 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4226 unsigned long ptr; 4227 struct btrfs_file_extent_item *fi; 4228 4229 fi = btrfs_item_ptr(leaf, slot, 4230 struct btrfs_file_extent_item); 4231 fi = (struct btrfs_file_extent_item *)( 4232 (unsigned long)fi - size_diff); 4233 4234 if (btrfs_file_extent_type(leaf, fi) == 4235 BTRFS_FILE_EXTENT_INLINE) { 4236 ptr = btrfs_item_ptr_offset(leaf, slot); 4237 memmove_extent_buffer(leaf, ptr, 4238 (unsigned long)fi, 4239 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4240 } 4241 } 4242 4243 memmove_leaf_data(leaf, data_end + size_diff, data_end, 4244 old_data_start - data_end); 4245 4246 offset = btrfs_disk_key_offset(&disk_key); 4247 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4248 btrfs_set_item_key(leaf, &disk_key, slot); 4249 if (slot == 0) 4250 fixup_low_keys(trans, path, &disk_key, 1); 4251 } 4252 4253 btrfs_set_item_size(leaf, slot, new_size); 4254 btrfs_mark_buffer_dirty(trans, leaf); 4255 4256 if (btrfs_leaf_free_space(leaf) < 0) { 4257 btrfs_print_leaf(leaf); 4258 BUG(); 4259 } 4260 } 4261 4262 /* 4263 * make the item pointed to by the path bigger, data_size is the added size. 4264 */ 4265 void btrfs_extend_item(struct btrfs_trans_handle *trans, 4266 struct btrfs_path *path, u32 data_size) 4267 { 4268 int slot; 4269 struct extent_buffer *leaf; 4270 u32 nritems; 4271 unsigned int data_end; 4272 unsigned int old_data; 4273 unsigned int old_size; 4274 int i; 4275 struct btrfs_map_token token; 4276 4277 leaf = path->nodes[0]; 4278 4279 nritems = btrfs_header_nritems(leaf); 4280 data_end = leaf_data_end(leaf); 4281 4282 if (btrfs_leaf_free_space(leaf) < data_size) { 4283 btrfs_print_leaf(leaf); 4284 BUG(); 4285 } 4286 slot = path->slots[0]; 4287 old_data = btrfs_item_data_end(leaf, slot); 4288 4289 BUG_ON(slot < 0); 4290 if (slot >= nritems) { 4291 btrfs_print_leaf(leaf); 4292 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4293 slot, nritems); 4294 BUG(); 4295 } 4296 4297 /* 4298 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4299 */ 4300 /* first correct the data pointers */ 4301 btrfs_init_map_token(&token, leaf); 4302 for (i = slot; i < nritems; i++) { 4303 u32 ioff; 4304 4305 ioff = btrfs_token_item_offset(&token, i); 4306 btrfs_set_token_item_offset(&token, i, ioff - data_size); 4307 } 4308 4309 /* shift the data */ 4310 memmove_leaf_data(leaf, data_end - data_size, data_end, 4311 old_data - data_end); 4312 4313 data_end = old_data; 4314 old_size = btrfs_item_size(leaf, slot); 4315 btrfs_set_item_size(leaf, slot, old_size + data_size); 4316 btrfs_mark_buffer_dirty(trans, leaf); 4317 4318 if (btrfs_leaf_free_space(leaf) < 0) { 4319 btrfs_print_leaf(leaf); 4320 BUG(); 4321 } 4322 } 4323 4324 /* 4325 * Make space in the node before inserting one or more items. 4326 * 4327 * @trans: transaction handle 4328 * @root: root we are inserting items to 4329 * @path: points to the leaf/slot where we are going to insert new items 4330 * @batch: information about the batch of items to insert 4331 * 4332 * Main purpose is to save stack depth by doing the bulk of the work in a 4333 * function that doesn't call btrfs_search_slot 4334 */ 4335 static void setup_items_for_insert(struct btrfs_trans_handle *trans, 4336 struct btrfs_root *root, struct btrfs_path *path, 4337 const struct btrfs_item_batch *batch) 4338 { 4339 struct btrfs_fs_info *fs_info = root->fs_info; 4340 int i; 4341 u32 nritems; 4342 unsigned int data_end; 4343 struct btrfs_disk_key disk_key; 4344 struct extent_buffer *leaf; 4345 int slot; 4346 struct btrfs_map_token token; 4347 u32 total_size; 4348 4349 /* 4350 * Before anything else, update keys in the parent and other ancestors 4351 * if needed, then release the write locks on them, so that other tasks 4352 * can use them while we modify the leaf. 4353 */ 4354 if (path->slots[0] == 0) { 4355 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]); 4356 fixup_low_keys(trans, path, &disk_key, 1); 4357 } 4358 btrfs_unlock_up_safe(path, 1); 4359 4360 leaf = path->nodes[0]; 4361 slot = path->slots[0]; 4362 4363 nritems = btrfs_header_nritems(leaf); 4364 data_end = leaf_data_end(leaf); 4365 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4366 4367 if (btrfs_leaf_free_space(leaf) < total_size) { 4368 btrfs_print_leaf(leaf); 4369 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4370 total_size, btrfs_leaf_free_space(leaf)); 4371 BUG(); 4372 } 4373 4374 btrfs_init_map_token(&token, leaf); 4375 if (slot != nritems) { 4376 unsigned int old_data = btrfs_item_data_end(leaf, slot); 4377 4378 if (old_data < data_end) { 4379 btrfs_print_leaf(leaf); 4380 btrfs_crit(fs_info, 4381 "item at slot %d with data offset %u beyond data end of leaf %u", 4382 slot, old_data, data_end); 4383 BUG(); 4384 } 4385 /* 4386 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4387 */ 4388 /* first correct the data pointers */ 4389 for (i = slot; i < nritems; i++) { 4390 u32 ioff; 4391 4392 ioff = btrfs_token_item_offset(&token, i); 4393 btrfs_set_token_item_offset(&token, i, 4394 ioff - batch->total_data_size); 4395 } 4396 /* shift the items */ 4397 memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot); 4398 4399 /* shift the data */ 4400 memmove_leaf_data(leaf, data_end - batch->total_data_size, 4401 data_end, old_data - data_end); 4402 data_end = old_data; 4403 } 4404 4405 /* setup the item for the new data */ 4406 for (i = 0; i < batch->nr; i++) { 4407 btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]); 4408 btrfs_set_item_key(leaf, &disk_key, slot + i); 4409 data_end -= batch->data_sizes[i]; 4410 btrfs_set_token_item_offset(&token, slot + i, data_end); 4411 btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]); 4412 } 4413 4414 btrfs_set_header_nritems(leaf, nritems + batch->nr); 4415 btrfs_mark_buffer_dirty(trans, leaf); 4416 4417 if (btrfs_leaf_free_space(leaf) < 0) { 4418 btrfs_print_leaf(leaf); 4419 BUG(); 4420 } 4421 } 4422 4423 /* 4424 * Insert a new item into a leaf. 4425 * 4426 * @trans: Transaction handle. 4427 * @root: The root of the btree. 4428 * @path: A path pointing to the target leaf and slot. 4429 * @key: The key of the new item. 4430 * @data_size: The size of the data associated with the new key. 4431 */ 4432 void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans, 4433 struct btrfs_root *root, 4434 struct btrfs_path *path, 4435 const struct btrfs_key *key, 4436 u32 data_size) 4437 { 4438 struct btrfs_item_batch batch; 4439 4440 batch.keys = key; 4441 batch.data_sizes = &data_size; 4442 batch.total_data_size = data_size; 4443 batch.nr = 1; 4444 4445 setup_items_for_insert(trans, root, path, &batch); 4446 } 4447 4448 /* 4449 * Given a key and some data, insert items into the tree. 4450 * This does all the path init required, making room in the tree if needed. 4451 */ 4452 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4453 struct btrfs_root *root, 4454 struct btrfs_path *path, 4455 const struct btrfs_item_batch *batch) 4456 { 4457 int ret = 0; 4458 int slot; 4459 u32 total_size; 4460 4461 total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item)); 4462 ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1); 4463 if (ret == 0) 4464 return -EEXIST; 4465 if (ret < 0) 4466 return ret; 4467 4468 slot = path->slots[0]; 4469 BUG_ON(slot < 0); 4470 4471 setup_items_for_insert(trans, root, path, batch); 4472 return 0; 4473 } 4474 4475 /* 4476 * Given a key and some data, insert an item into the tree. 4477 * This does all the path init required, making room in the tree if needed. 4478 */ 4479 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4480 const struct btrfs_key *cpu_key, void *data, 4481 u32 data_size) 4482 { 4483 int ret = 0; 4484 struct btrfs_path *path; 4485 struct extent_buffer *leaf; 4486 unsigned long ptr; 4487 4488 path = btrfs_alloc_path(); 4489 if (!path) 4490 return -ENOMEM; 4491 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4492 if (!ret) { 4493 leaf = path->nodes[0]; 4494 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4495 write_extent_buffer(leaf, data, ptr, data_size); 4496 btrfs_mark_buffer_dirty(trans, leaf); 4497 } 4498 btrfs_free_path(path); 4499 return ret; 4500 } 4501 4502 /* 4503 * This function duplicates an item, giving 'new_key' to the new item. 4504 * It guarantees both items live in the same tree leaf and the new item is 4505 * contiguous with the original item. 4506 * 4507 * This allows us to split a file extent in place, keeping a lock on the leaf 4508 * the entire time. 4509 */ 4510 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4511 struct btrfs_root *root, 4512 struct btrfs_path *path, 4513 const struct btrfs_key *new_key) 4514 { 4515 struct extent_buffer *leaf; 4516 int ret; 4517 u32 item_size; 4518 4519 leaf = path->nodes[0]; 4520 item_size = btrfs_item_size(leaf, path->slots[0]); 4521 ret = setup_leaf_for_split(trans, root, path, 4522 item_size + sizeof(struct btrfs_item)); 4523 if (ret) 4524 return ret; 4525 4526 path->slots[0]++; 4527 btrfs_setup_item_for_insert(trans, root, path, new_key, item_size); 4528 leaf = path->nodes[0]; 4529 memcpy_extent_buffer(leaf, 4530 btrfs_item_ptr_offset(leaf, path->slots[0]), 4531 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4532 item_size); 4533 return 0; 4534 } 4535 4536 /* 4537 * delete the pointer from a given node. 4538 * 4539 * the tree should have been previously balanced so the deletion does not 4540 * empty a node. 4541 * 4542 * This is exported for use inside btrfs-progs, don't un-export it. 4543 */ 4544 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4545 struct btrfs_path *path, int level, int slot) 4546 { 4547 struct extent_buffer *parent = path->nodes[level]; 4548 u32 nritems; 4549 int ret; 4550 4551 nritems = btrfs_header_nritems(parent); 4552 if (slot != nritems - 1) { 4553 if (level) { 4554 ret = btrfs_tree_mod_log_insert_move(parent, slot, 4555 slot + 1, nritems - slot - 1); 4556 if (ret < 0) { 4557 btrfs_abort_transaction(trans, ret); 4558 return ret; 4559 } 4560 } 4561 memmove_extent_buffer(parent, 4562 btrfs_node_key_ptr_offset(parent, slot), 4563 btrfs_node_key_ptr_offset(parent, slot + 1), 4564 sizeof(struct btrfs_key_ptr) * 4565 (nritems - slot - 1)); 4566 } else if (level) { 4567 ret = btrfs_tree_mod_log_insert_key(parent, slot, 4568 BTRFS_MOD_LOG_KEY_REMOVE); 4569 if (ret < 0) { 4570 btrfs_abort_transaction(trans, ret); 4571 return ret; 4572 } 4573 } 4574 4575 nritems--; 4576 btrfs_set_header_nritems(parent, nritems); 4577 if (nritems == 0 && parent == root->node) { 4578 BUG_ON(btrfs_header_level(root->node) != 1); 4579 /* just turn the root into a leaf and break */ 4580 btrfs_set_header_level(root->node, 0); 4581 } else if (slot == 0) { 4582 struct btrfs_disk_key disk_key; 4583 4584 btrfs_node_key(parent, &disk_key, 0); 4585 fixup_low_keys(trans, path, &disk_key, level + 1); 4586 } 4587 btrfs_mark_buffer_dirty(trans, parent); 4588 return 0; 4589 } 4590 4591 /* 4592 * a helper function to delete the leaf pointed to by path->slots[1] and 4593 * path->nodes[1]. 4594 * 4595 * This deletes the pointer in path->nodes[1] and frees the leaf 4596 * block extent. zero is returned if it all worked out, < 0 otherwise. 4597 * 4598 * The path must have already been setup for deleting the leaf, including 4599 * all the proper balancing. path->nodes[1] must be locked. 4600 */ 4601 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 4602 struct btrfs_root *root, 4603 struct btrfs_path *path, 4604 struct extent_buffer *leaf) 4605 { 4606 int ret; 4607 4608 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4609 ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]); 4610 if (ret < 0) 4611 return ret; 4612 4613 /* 4614 * btrfs_free_extent is expensive, we want to make sure we 4615 * aren't holding any locks when we call it 4616 */ 4617 btrfs_unlock_up_safe(path, 0); 4618 4619 root_sub_used(root, leaf->len); 4620 4621 atomic_inc(&leaf->refs); 4622 ret = btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1); 4623 free_extent_buffer_stale(leaf); 4624 if (ret < 0) 4625 btrfs_abort_transaction(trans, ret); 4626 4627 return ret; 4628 } 4629 /* 4630 * delete the item at the leaf level in path. If that empties 4631 * the leaf, remove it from the tree 4632 */ 4633 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4634 struct btrfs_path *path, int slot, int nr) 4635 { 4636 struct btrfs_fs_info *fs_info = root->fs_info; 4637 struct extent_buffer *leaf; 4638 int ret = 0; 4639 int wret; 4640 u32 nritems; 4641 4642 leaf = path->nodes[0]; 4643 nritems = btrfs_header_nritems(leaf); 4644 4645 if (slot + nr != nritems) { 4646 const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1); 4647 const int data_end = leaf_data_end(leaf); 4648 struct btrfs_map_token token; 4649 u32 dsize = 0; 4650 int i; 4651 4652 for (i = 0; i < nr; i++) 4653 dsize += btrfs_item_size(leaf, slot + i); 4654 4655 memmove_leaf_data(leaf, data_end + dsize, data_end, 4656 last_off - data_end); 4657 4658 btrfs_init_map_token(&token, leaf); 4659 for (i = slot + nr; i < nritems; i++) { 4660 u32 ioff; 4661 4662 ioff = btrfs_token_item_offset(&token, i); 4663 btrfs_set_token_item_offset(&token, i, ioff + dsize); 4664 } 4665 4666 memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr); 4667 } 4668 btrfs_set_header_nritems(leaf, nritems - nr); 4669 nritems -= nr; 4670 4671 /* delete the leaf if we've emptied it */ 4672 if (nritems == 0) { 4673 if (leaf == root->node) { 4674 btrfs_set_header_level(leaf, 0); 4675 } else { 4676 btrfs_clear_buffer_dirty(trans, leaf); 4677 ret = btrfs_del_leaf(trans, root, path, leaf); 4678 if (ret < 0) 4679 return ret; 4680 } 4681 } else { 4682 int used = leaf_space_used(leaf, 0, nritems); 4683 if (slot == 0) { 4684 struct btrfs_disk_key disk_key; 4685 4686 btrfs_item_key(leaf, &disk_key, 0); 4687 fixup_low_keys(trans, path, &disk_key, 1); 4688 } 4689 4690 /* 4691 * Try to delete the leaf if it is mostly empty. We do this by 4692 * trying to move all its items into its left and right neighbours. 4693 * If we can't move all the items, then we don't delete it - it's 4694 * not ideal, but future insertions might fill the leaf with more 4695 * items, or items from other leaves might be moved later into our 4696 * leaf due to deletions on those leaves. 4697 */ 4698 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4699 u32 min_push_space; 4700 4701 /* push_leaf_left fixes the path. 4702 * make sure the path still points to our leaf 4703 * for possible call to btrfs_del_ptr below 4704 */ 4705 slot = path->slots[1]; 4706 atomic_inc(&leaf->refs); 4707 /* 4708 * We want to be able to at least push one item to the 4709 * left neighbour leaf, and that's the first item. 4710 */ 4711 min_push_space = sizeof(struct btrfs_item) + 4712 btrfs_item_size(leaf, 0); 4713 wret = push_leaf_left(trans, root, path, 0, 4714 min_push_space, 1, (u32)-1); 4715 if (wret < 0 && wret != -ENOSPC) 4716 ret = wret; 4717 4718 if (path->nodes[0] == leaf && 4719 btrfs_header_nritems(leaf)) { 4720 /* 4721 * If we were not able to push all items from our 4722 * leaf to its left neighbour, then attempt to 4723 * either push all the remaining items to the 4724 * right neighbour or none. There's no advantage 4725 * in pushing only some items, instead of all, as 4726 * it's pointless to end up with a leaf having 4727 * too few items while the neighbours can be full 4728 * or nearly full. 4729 */ 4730 nritems = btrfs_header_nritems(leaf); 4731 min_push_space = leaf_space_used(leaf, 0, nritems); 4732 wret = push_leaf_right(trans, root, path, 0, 4733 min_push_space, 1, 0); 4734 if (wret < 0 && wret != -ENOSPC) 4735 ret = wret; 4736 } 4737 4738 if (btrfs_header_nritems(leaf) == 0) { 4739 path->slots[1] = slot; 4740 ret = btrfs_del_leaf(trans, root, path, leaf); 4741 if (ret < 0) 4742 return ret; 4743 free_extent_buffer(leaf); 4744 ret = 0; 4745 } else { 4746 /* if we're still in the path, make sure 4747 * we're dirty. Otherwise, one of the 4748 * push_leaf functions must have already 4749 * dirtied this buffer 4750 */ 4751 if (path->nodes[0] == leaf) 4752 btrfs_mark_buffer_dirty(trans, leaf); 4753 free_extent_buffer(leaf); 4754 } 4755 } else { 4756 btrfs_mark_buffer_dirty(trans, leaf); 4757 } 4758 } 4759 return ret; 4760 } 4761 4762 /* 4763 * A helper function to walk down the tree starting at min_key, and looking 4764 * for nodes or leaves that are have a minimum transaction id. 4765 * This is used by the btree defrag code, and tree logging 4766 * 4767 * This does not cow, but it does stuff the starting key it finds back 4768 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4769 * key and get a writable path. 4770 * 4771 * This honors path->lowest_level to prevent descent past a given level 4772 * of the tree. 4773 * 4774 * min_trans indicates the oldest transaction that you are interested 4775 * in walking through. Any nodes or leaves older than min_trans are 4776 * skipped over (without reading them). 4777 * 4778 * returns zero if something useful was found, < 0 on error and 1 if there 4779 * was nothing in the tree that matched the search criteria. 4780 */ 4781 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4782 struct btrfs_path *path, 4783 u64 min_trans) 4784 { 4785 struct extent_buffer *cur; 4786 struct btrfs_key found_key; 4787 int slot; 4788 int sret; 4789 u32 nritems; 4790 int level; 4791 int ret = 1; 4792 int keep_locks = path->keep_locks; 4793 4794 ASSERT(!path->nowait); 4795 path->keep_locks = 1; 4796 again: 4797 cur = btrfs_read_lock_root_node(root); 4798 level = btrfs_header_level(cur); 4799 WARN_ON(path->nodes[level]); 4800 path->nodes[level] = cur; 4801 path->locks[level] = BTRFS_READ_LOCK; 4802 4803 if (btrfs_header_generation(cur) < min_trans) { 4804 ret = 1; 4805 goto out; 4806 } 4807 while (1) { 4808 nritems = btrfs_header_nritems(cur); 4809 level = btrfs_header_level(cur); 4810 sret = btrfs_bin_search(cur, 0, min_key, &slot); 4811 if (sret < 0) { 4812 ret = sret; 4813 goto out; 4814 } 4815 4816 /* at the lowest level, we're done, setup the path and exit */ 4817 if (level == path->lowest_level) { 4818 if (slot >= nritems) 4819 goto find_next_key; 4820 ret = 0; 4821 path->slots[level] = slot; 4822 btrfs_item_key_to_cpu(cur, &found_key, slot); 4823 goto out; 4824 } 4825 if (sret && slot > 0) 4826 slot--; 4827 /* 4828 * check this node pointer against the min_trans parameters. 4829 * If it is too old, skip to the next one. 4830 */ 4831 while (slot < nritems) { 4832 u64 gen; 4833 4834 gen = btrfs_node_ptr_generation(cur, slot); 4835 if (gen < min_trans) { 4836 slot++; 4837 continue; 4838 } 4839 break; 4840 } 4841 find_next_key: 4842 /* 4843 * we didn't find a candidate key in this node, walk forward 4844 * and find another one 4845 */ 4846 if (slot >= nritems) { 4847 path->slots[level] = slot; 4848 sret = btrfs_find_next_key(root, path, min_key, level, 4849 min_trans); 4850 if (sret == 0) { 4851 btrfs_release_path(path); 4852 goto again; 4853 } else { 4854 goto out; 4855 } 4856 } 4857 /* save our key for returning back */ 4858 btrfs_node_key_to_cpu(cur, &found_key, slot); 4859 path->slots[level] = slot; 4860 if (level == path->lowest_level) { 4861 ret = 0; 4862 goto out; 4863 } 4864 cur = btrfs_read_node_slot(cur, slot); 4865 if (IS_ERR(cur)) { 4866 ret = PTR_ERR(cur); 4867 goto out; 4868 } 4869 4870 btrfs_tree_read_lock(cur); 4871 4872 path->locks[level - 1] = BTRFS_READ_LOCK; 4873 path->nodes[level - 1] = cur; 4874 unlock_up(path, level, 1, 0, NULL); 4875 } 4876 out: 4877 path->keep_locks = keep_locks; 4878 if (ret == 0) { 4879 btrfs_unlock_up_safe(path, path->lowest_level + 1); 4880 memcpy(min_key, &found_key, sizeof(found_key)); 4881 } 4882 return ret; 4883 } 4884 4885 /* 4886 * this is similar to btrfs_next_leaf, but does not try to preserve 4887 * and fixup the path. It looks for and returns the next key in the 4888 * tree based on the current path and the min_trans parameters. 4889 * 4890 * 0 is returned if another key is found, < 0 if there are any errors 4891 * and 1 is returned if there are no higher keys in the tree 4892 * 4893 * path->keep_locks should be set to 1 on the search made before 4894 * calling this function. 4895 */ 4896 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4897 struct btrfs_key *key, int level, u64 min_trans) 4898 { 4899 int slot; 4900 struct extent_buffer *c; 4901 4902 WARN_ON(!path->keep_locks && !path->skip_locking); 4903 while (level < BTRFS_MAX_LEVEL) { 4904 if (!path->nodes[level]) 4905 return 1; 4906 4907 slot = path->slots[level] + 1; 4908 c = path->nodes[level]; 4909 next: 4910 if (slot >= btrfs_header_nritems(c)) { 4911 int ret; 4912 int orig_lowest; 4913 struct btrfs_key cur_key; 4914 if (level + 1 >= BTRFS_MAX_LEVEL || 4915 !path->nodes[level + 1]) 4916 return 1; 4917 4918 if (path->locks[level + 1] || path->skip_locking) { 4919 level++; 4920 continue; 4921 } 4922 4923 slot = btrfs_header_nritems(c) - 1; 4924 if (level == 0) 4925 btrfs_item_key_to_cpu(c, &cur_key, slot); 4926 else 4927 btrfs_node_key_to_cpu(c, &cur_key, slot); 4928 4929 orig_lowest = path->lowest_level; 4930 btrfs_release_path(path); 4931 path->lowest_level = level; 4932 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4933 0, 0); 4934 path->lowest_level = orig_lowest; 4935 if (ret < 0) 4936 return ret; 4937 4938 c = path->nodes[level]; 4939 slot = path->slots[level]; 4940 if (ret == 0) 4941 slot++; 4942 goto next; 4943 } 4944 4945 if (level == 0) 4946 btrfs_item_key_to_cpu(c, key, slot); 4947 else { 4948 u64 gen = btrfs_node_ptr_generation(c, slot); 4949 4950 if (gen < min_trans) { 4951 slot++; 4952 goto next; 4953 } 4954 btrfs_node_key_to_cpu(c, key, slot); 4955 } 4956 return 0; 4957 } 4958 return 1; 4959 } 4960 4961 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 4962 u64 time_seq) 4963 { 4964 int slot; 4965 int level; 4966 struct extent_buffer *c; 4967 struct extent_buffer *next; 4968 struct btrfs_fs_info *fs_info = root->fs_info; 4969 struct btrfs_key key; 4970 bool need_commit_sem = false; 4971 u32 nritems; 4972 int ret; 4973 int i; 4974 4975 /* 4976 * The nowait semantics are used only for write paths, where we don't 4977 * use the tree mod log and sequence numbers. 4978 */ 4979 if (time_seq) 4980 ASSERT(!path->nowait); 4981 4982 nritems = btrfs_header_nritems(path->nodes[0]); 4983 if (nritems == 0) 4984 return 1; 4985 4986 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4987 again: 4988 level = 1; 4989 next = NULL; 4990 btrfs_release_path(path); 4991 4992 path->keep_locks = 1; 4993 4994 if (time_seq) { 4995 ret = btrfs_search_old_slot(root, &key, path, time_seq); 4996 } else { 4997 if (path->need_commit_sem) { 4998 path->need_commit_sem = 0; 4999 need_commit_sem = true; 5000 if (path->nowait) { 5001 if (!down_read_trylock(&fs_info->commit_root_sem)) { 5002 ret = -EAGAIN; 5003 goto done; 5004 } 5005 } else { 5006 down_read(&fs_info->commit_root_sem); 5007 } 5008 } 5009 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5010 } 5011 path->keep_locks = 0; 5012 5013 if (ret < 0) 5014 goto done; 5015 5016 nritems = btrfs_header_nritems(path->nodes[0]); 5017 /* 5018 * by releasing the path above we dropped all our locks. A balance 5019 * could have added more items next to the key that used to be 5020 * at the very end of the block. So, check again here and 5021 * advance the path if there are now more items available. 5022 */ 5023 if (nritems > 0 && path->slots[0] < nritems - 1) { 5024 if (ret == 0) 5025 path->slots[0]++; 5026 ret = 0; 5027 goto done; 5028 } 5029 /* 5030 * So the above check misses one case: 5031 * - after releasing the path above, someone has removed the item that 5032 * used to be at the very end of the block, and balance between leafs 5033 * gets another one with bigger key.offset to replace it. 5034 * 5035 * This one should be returned as well, or we can get leaf corruption 5036 * later(esp. in __btrfs_drop_extents()). 5037 * 5038 * And a bit more explanation about this check, 5039 * with ret > 0, the key isn't found, the path points to the slot 5040 * where it should be inserted, so the path->slots[0] item must be the 5041 * bigger one. 5042 */ 5043 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5044 ret = 0; 5045 goto done; 5046 } 5047 5048 while (level < BTRFS_MAX_LEVEL) { 5049 if (!path->nodes[level]) { 5050 ret = 1; 5051 goto done; 5052 } 5053 5054 slot = path->slots[level] + 1; 5055 c = path->nodes[level]; 5056 if (slot >= btrfs_header_nritems(c)) { 5057 level++; 5058 if (level == BTRFS_MAX_LEVEL) { 5059 ret = 1; 5060 goto done; 5061 } 5062 continue; 5063 } 5064 5065 5066 /* 5067 * Our current level is where we're going to start from, and to 5068 * make sure lockdep doesn't complain we need to drop our locks 5069 * and nodes from 0 to our current level. 5070 */ 5071 for (i = 0; i < level; i++) { 5072 if (path->locks[level]) { 5073 btrfs_tree_read_unlock(path->nodes[i]); 5074 path->locks[i] = 0; 5075 } 5076 free_extent_buffer(path->nodes[i]); 5077 path->nodes[i] = NULL; 5078 } 5079 5080 next = c; 5081 ret = read_block_for_search(root, path, &next, level, 5082 slot, &key); 5083 if (ret == -EAGAIN && !path->nowait) 5084 goto again; 5085 5086 if (ret < 0) { 5087 btrfs_release_path(path); 5088 goto done; 5089 } 5090 5091 if (!path->skip_locking) { 5092 ret = btrfs_try_tree_read_lock(next); 5093 if (!ret && path->nowait) { 5094 ret = -EAGAIN; 5095 goto done; 5096 } 5097 if (!ret && time_seq) { 5098 /* 5099 * If we don't get the lock, we may be racing 5100 * with push_leaf_left, holding that lock while 5101 * itself waiting for the leaf we've currently 5102 * locked. To solve this situation, we give up 5103 * on our lock and cycle. 5104 */ 5105 free_extent_buffer(next); 5106 btrfs_release_path(path); 5107 cond_resched(); 5108 goto again; 5109 } 5110 if (!ret) 5111 btrfs_tree_read_lock(next); 5112 } 5113 break; 5114 } 5115 path->slots[level] = slot; 5116 while (1) { 5117 level--; 5118 path->nodes[level] = next; 5119 path->slots[level] = 0; 5120 if (!path->skip_locking) 5121 path->locks[level] = BTRFS_READ_LOCK; 5122 if (!level) 5123 break; 5124 5125 ret = read_block_for_search(root, path, &next, level, 5126 0, &key); 5127 if (ret == -EAGAIN && !path->nowait) 5128 goto again; 5129 5130 if (ret < 0) { 5131 btrfs_release_path(path); 5132 goto done; 5133 } 5134 5135 if (!path->skip_locking) { 5136 if (path->nowait) { 5137 if (!btrfs_try_tree_read_lock(next)) { 5138 ret = -EAGAIN; 5139 goto done; 5140 } 5141 } else { 5142 btrfs_tree_read_lock(next); 5143 } 5144 } 5145 } 5146 ret = 0; 5147 done: 5148 unlock_up(path, 0, 1, 0, NULL); 5149 if (need_commit_sem) { 5150 int ret2; 5151 5152 path->need_commit_sem = 1; 5153 ret2 = finish_need_commit_sem_search(path); 5154 up_read(&fs_info->commit_root_sem); 5155 if (ret2) 5156 ret = ret2; 5157 } 5158 5159 return ret; 5160 } 5161 5162 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq) 5163 { 5164 path->slots[0]++; 5165 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) 5166 return btrfs_next_old_leaf(root, path, time_seq); 5167 return 0; 5168 } 5169 5170 /* 5171 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5172 * searching until it gets past min_objectid or finds an item of 'type' 5173 * 5174 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5175 */ 5176 int btrfs_previous_item(struct btrfs_root *root, 5177 struct btrfs_path *path, u64 min_objectid, 5178 int type) 5179 { 5180 struct btrfs_key found_key; 5181 struct extent_buffer *leaf; 5182 u32 nritems; 5183 int ret; 5184 5185 while (1) { 5186 if (path->slots[0] == 0) { 5187 ret = btrfs_prev_leaf(root, path); 5188 if (ret != 0) 5189 return ret; 5190 } else { 5191 path->slots[0]--; 5192 } 5193 leaf = path->nodes[0]; 5194 nritems = btrfs_header_nritems(leaf); 5195 if (nritems == 0) 5196 return 1; 5197 if (path->slots[0] == nritems) 5198 path->slots[0]--; 5199 5200 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5201 if (found_key.objectid < min_objectid) 5202 break; 5203 if (found_key.type == type) 5204 return 0; 5205 if (found_key.objectid == min_objectid && 5206 found_key.type < type) 5207 break; 5208 } 5209 return 1; 5210 } 5211 5212 /* 5213 * search in extent tree to find a previous Metadata/Data extent item with 5214 * min objecitd. 5215 * 5216 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5217 */ 5218 int btrfs_previous_extent_item(struct btrfs_root *root, 5219 struct btrfs_path *path, u64 min_objectid) 5220 { 5221 struct btrfs_key found_key; 5222 struct extent_buffer *leaf; 5223 u32 nritems; 5224 int ret; 5225 5226 while (1) { 5227 if (path->slots[0] == 0) { 5228 ret = btrfs_prev_leaf(root, path); 5229 if (ret != 0) 5230 return ret; 5231 } else { 5232 path->slots[0]--; 5233 } 5234 leaf = path->nodes[0]; 5235 nritems = btrfs_header_nritems(leaf); 5236 if (nritems == 0) 5237 return 1; 5238 if (path->slots[0] == nritems) 5239 path->slots[0]--; 5240 5241 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5242 if (found_key.objectid < min_objectid) 5243 break; 5244 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5245 found_key.type == BTRFS_METADATA_ITEM_KEY) 5246 return 0; 5247 if (found_key.objectid == min_objectid && 5248 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5249 break; 5250 } 5251 return 1; 5252 } 5253 5254 int __init btrfs_ctree_init(void) 5255 { 5256 btrfs_path_cachep = kmem_cache_create("btrfs_path", 5257 sizeof(struct btrfs_path), 0, 5258 SLAB_MEM_SPREAD, NULL); 5259 if (!btrfs_path_cachep) 5260 return -ENOMEM; 5261 return 0; 5262 } 5263 5264 void __cold btrfs_ctree_exit(void) 5265 { 5266 kmem_cache_destroy(btrfs_path_cachep); 5267 } 5268