xref: /openbmc/linux/fs/btrfs/ctree.c (revision 88a6f899)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 
41 static const struct btrfs_csums {
42 	u16		size;
43 	const char	name[10];
44 	const char	driver[12];
45 } btrfs_csums[] = {
46 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
47 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
48 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
49 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
50 				     .driver = "blake2b-256" },
51 };
52 
53 /*
54  * The leaf data grows from end-to-front in the node.  this returns the address
55  * of the start of the last item, which is the stop of the leaf data stack.
56  */
57 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
58 {
59 	u32 nr = btrfs_header_nritems(leaf);
60 
61 	if (nr == 0)
62 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
63 	return btrfs_item_offset(leaf, nr - 1);
64 }
65 
66 /*
67  * Move data in a @leaf (using memmove, safe for overlapping ranges).
68  *
69  * @leaf:	leaf that we're doing a memmove on
70  * @dst_offset:	item data offset we're moving to
71  * @src_offset:	item data offset were' moving from
72  * @len:	length of the data we're moving
73  *
74  * Wrapper around memmove_extent_buffer() that takes into account the header on
75  * the leaf.  The btrfs_item offset's start directly after the header, so we
76  * have to adjust any offsets to account for the header in the leaf.  This
77  * handles that math to simplify the callers.
78  */
79 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
80 				     unsigned long dst_offset,
81 				     unsigned long src_offset,
82 				     unsigned long len)
83 {
84 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
85 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
86 }
87 
88 /*
89  * Copy item data from @src into @dst at the given @offset.
90  *
91  * @dst:	destination leaf that we're copying into
92  * @src:	source leaf that we're copying from
93  * @dst_offset:	item data offset we're copying to
94  * @src_offset:	item data offset were' copying from
95  * @len:	length of the data we're copying
96  *
97  * Wrapper around copy_extent_buffer() that takes into account the header on
98  * the leaf.  The btrfs_item offset's start directly after the header, so we
99  * have to adjust any offsets to account for the header in the leaf.  This
100  * handles that math to simplify the callers.
101  */
102 static inline void copy_leaf_data(const struct extent_buffer *dst,
103 				  const struct extent_buffer *src,
104 				  unsigned long dst_offset,
105 				  unsigned long src_offset, unsigned long len)
106 {
107 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
108 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
109 }
110 
111 /*
112  * Move items in a @leaf (using memmove).
113  *
114  * @dst:	destination leaf for the items
115  * @dst_item:	the item nr we're copying into
116  * @src_item:	the item nr we're copying from
117  * @nr_items:	the number of items to copy
118  *
119  * Wrapper around memmove_extent_buffer() that does the math to get the
120  * appropriate offsets into the leaf from the item numbers.
121  */
122 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
123 				      int dst_item, int src_item, int nr_items)
124 {
125 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
126 			      btrfs_item_nr_offset(leaf, src_item),
127 			      nr_items * sizeof(struct btrfs_item));
128 }
129 
130 /*
131  * Copy items from @src into @dst at the given @offset.
132  *
133  * @dst:	destination leaf for the items
134  * @src:	source leaf for the items
135  * @dst_item:	the item nr we're copying into
136  * @src_item:	the item nr we're copying from
137  * @nr_items:	the number of items to copy
138  *
139  * Wrapper around copy_extent_buffer() that does the math to get the
140  * appropriate offsets into the leaf from the item numbers.
141  */
142 static inline void copy_leaf_items(const struct extent_buffer *dst,
143 				   const struct extent_buffer *src,
144 				   int dst_item, int src_item, int nr_items)
145 {
146 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
147 			      btrfs_item_nr_offset(src, src_item),
148 			      nr_items * sizeof(struct btrfs_item));
149 }
150 
151 /* This exists for btrfs-progs usages. */
152 u16 btrfs_csum_type_size(u16 type)
153 {
154 	return btrfs_csums[type].size;
155 }
156 
157 int btrfs_super_csum_size(const struct btrfs_super_block *s)
158 {
159 	u16 t = btrfs_super_csum_type(s);
160 	/*
161 	 * csum type is validated at mount time
162 	 */
163 	return btrfs_csum_type_size(t);
164 }
165 
166 const char *btrfs_super_csum_name(u16 csum_type)
167 {
168 	/* csum type is validated at mount time */
169 	return btrfs_csums[csum_type].name;
170 }
171 
172 /*
173  * Return driver name if defined, otherwise the name that's also a valid driver
174  * name
175  */
176 const char *btrfs_super_csum_driver(u16 csum_type)
177 {
178 	/* csum type is validated at mount time */
179 	return btrfs_csums[csum_type].driver[0] ?
180 		btrfs_csums[csum_type].driver :
181 		btrfs_csums[csum_type].name;
182 }
183 
184 size_t __attribute_const__ btrfs_get_num_csums(void)
185 {
186 	return ARRAY_SIZE(btrfs_csums);
187 }
188 
189 struct btrfs_path *btrfs_alloc_path(void)
190 {
191 	might_sleep();
192 
193 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
194 }
195 
196 /* this also releases the path */
197 void btrfs_free_path(struct btrfs_path *p)
198 {
199 	if (!p)
200 		return;
201 	btrfs_release_path(p);
202 	kmem_cache_free(btrfs_path_cachep, p);
203 }
204 
205 /*
206  * path release drops references on the extent buffers in the path
207  * and it drops any locks held by this path
208  *
209  * It is safe to call this on paths that no locks or extent buffers held.
210  */
211 noinline void btrfs_release_path(struct btrfs_path *p)
212 {
213 	int i;
214 
215 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
216 		p->slots[i] = 0;
217 		if (!p->nodes[i])
218 			continue;
219 		if (p->locks[i]) {
220 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
221 			p->locks[i] = 0;
222 		}
223 		free_extent_buffer(p->nodes[i]);
224 		p->nodes[i] = NULL;
225 	}
226 }
227 
228 /*
229  * We want the transaction abort to print stack trace only for errors where the
230  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
231  * caused by external factors.
232  */
233 bool __cold abort_should_print_stack(int errno)
234 {
235 	switch (errno) {
236 	case -EIO:
237 	case -EROFS:
238 	case -ENOMEM:
239 		return false;
240 	}
241 	return true;
242 }
243 
244 /*
245  * safely gets a reference on the root node of a tree.  A lock
246  * is not taken, so a concurrent writer may put a different node
247  * at the root of the tree.  See btrfs_lock_root_node for the
248  * looping required.
249  *
250  * The extent buffer returned by this has a reference taken, so
251  * it won't disappear.  It may stop being the root of the tree
252  * at any time because there are no locks held.
253  */
254 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
255 {
256 	struct extent_buffer *eb;
257 
258 	while (1) {
259 		rcu_read_lock();
260 		eb = rcu_dereference(root->node);
261 
262 		/*
263 		 * RCU really hurts here, we could free up the root node because
264 		 * it was COWed but we may not get the new root node yet so do
265 		 * the inc_not_zero dance and if it doesn't work then
266 		 * synchronize_rcu and try again.
267 		 */
268 		if (atomic_inc_not_zero(&eb->refs)) {
269 			rcu_read_unlock();
270 			break;
271 		}
272 		rcu_read_unlock();
273 		synchronize_rcu();
274 	}
275 	return eb;
276 }
277 
278 /*
279  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
280  * just get put onto a simple dirty list.  Transaction walks this list to make
281  * sure they get properly updated on disk.
282  */
283 static void add_root_to_dirty_list(struct btrfs_root *root)
284 {
285 	struct btrfs_fs_info *fs_info = root->fs_info;
286 
287 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
288 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
289 		return;
290 
291 	spin_lock(&fs_info->trans_lock);
292 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
293 		/* Want the extent tree to be the last on the list */
294 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
295 			list_move_tail(&root->dirty_list,
296 				       &fs_info->dirty_cowonly_roots);
297 		else
298 			list_move(&root->dirty_list,
299 				  &fs_info->dirty_cowonly_roots);
300 	}
301 	spin_unlock(&fs_info->trans_lock);
302 }
303 
304 /*
305  * used by snapshot creation to make a copy of a root for a tree with
306  * a given objectid.  The buffer with the new root node is returned in
307  * cow_ret, and this func returns zero on success or a negative error code.
308  */
309 int btrfs_copy_root(struct btrfs_trans_handle *trans,
310 		      struct btrfs_root *root,
311 		      struct extent_buffer *buf,
312 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
313 {
314 	struct btrfs_fs_info *fs_info = root->fs_info;
315 	struct extent_buffer *cow;
316 	int ret = 0;
317 	int level;
318 	struct btrfs_disk_key disk_key;
319 
320 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
321 		trans->transid != fs_info->running_transaction->transid);
322 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
323 		trans->transid != root->last_trans);
324 
325 	level = btrfs_header_level(buf);
326 	if (level == 0)
327 		btrfs_item_key(buf, &disk_key, 0);
328 	else
329 		btrfs_node_key(buf, &disk_key, 0);
330 
331 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
332 				     &disk_key, level, buf->start, 0,
333 				     BTRFS_NESTING_NEW_ROOT);
334 	if (IS_ERR(cow))
335 		return PTR_ERR(cow);
336 
337 	copy_extent_buffer_full(cow, buf);
338 	btrfs_set_header_bytenr(cow, cow->start);
339 	btrfs_set_header_generation(cow, trans->transid);
340 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
341 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
342 				     BTRFS_HEADER_FLAG_RELOC);
343 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
344 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
345 	else
346 		btrfs_set_header_owner(cow, new_root_objectid);
347 
348 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
349 
350 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
351 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
352 		ret = btrfs_inc_ref(trans, root, cow, 1);
353 	else
354 		ret = btrfs_inc_ref(trans, root, cow, 0);
355 	if (ret) {
356 		btrfs_tree_unlock(cow);
357 		free_extent_buffer(cow);
358 		btrfs_abort_transaction(trans, ret);
359 		return ret;
360 	}
361 
362 	btrfs_mark_buffer_dirty(cow);
363 	*cow_ret = cow;
364 	return 0;
365 }
366 
367 /*
368  * check if the tree block can be shared by multiple trees
369  */
370 int btrfs_block_can_be_shared(struct btrfs_root *root,
371 			      struct extent_buffer *buf)
372 {
373 	/*
374 	 * Tree blocks not in shareable trees and tree roots are never shared.
375 	 * If a block was allocated after the last snapshot and the block was
376 	 * not allocated by tree relocation, we know the block is not shared.
377 	 */
378 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
379 	    buf != root->node && buf != root->commit_root &&
380 	    (btrfs_header_generation(buf) <=
381 	     btrfs_root_last_snapshot(&root->root_item) ||
382 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
383 		return 1;
384 
385 	return 0;
386 }
387 
388 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
389 				       struct btrfs_root *root,
390 				       struct extent_buffer *buf,
391 				       struct extent_buffer *cow,
392 				       int *last_ref)
393 {
394 	struct btrfs_fs_info *fs_info = root->fs_info;
395 	u64 refs;
396 	u64 owner;
397 	u64 flags;
398 	u64 new_flags = 0;
399 	int ret;
400 
401 	/*
402 	 * Backrefs update rules:
403 	 *
404 	 * Always use full backrefs for extent pointers in tree block
405 	 * allocated by tree relocation.
406 	 *
407 	 * If a shared tree block is no longer referenced by its owner
408 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
409 	 * use full backrefs for extent pointers in tree block.
410 	 *
411 	 * If a tree block is been relocating
412 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
413 	 * use full backrefs for extent pointers in tree block.
414 	 * The reason for this is some operations (such as drop tree)
415 	 * are only allowed for blocks use full backrefs.
416 	 */
417 
418 	if (btrfs_block_can_be_shared(root, buf)) {
419 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
420 					       btrfs_header_level(buf), 1,
421 					       &refs, &flags);
422 		if (ret)
423 			return ret;
424 		if (unlikely(refs == 0)) {
425 			btrfs_crit(fs_info,
426 		"found 0 references for tree block at bytenr %llu level %d root %llu",
427 				   buf->start, btrfs_header_level(buf),
428 				   btrfs_root_id(root));
429 			ret = -EUCLEAN;
430 			btrfs_abort_transaction(trans, ret);
431 			return ret;
432 		}
433 	} else {
434 		refs = 1;
435 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
436 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
437 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
438 		else
439 			flags = 0;
440 	}
441 
442 	owner = btrfs_header_owner(buf);
443 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
444 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
445 
446 	if (refs > 1) {
447 		if ((owner == root->root_key.objectid ||
448 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
449 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
450 			ret = btrfs_inc_ref(trans, root, buf, 1);
451 			if (ret)
452 				return ret;
453 
454 			if (root->root_key.objectid ==
455 			    BTRFS_TREE_RELOC_OBJECTID) {
456 				ret = btrfs_dec_ref(trans, root, buf, 0);
457 				if (ret)
458 					return ret;
459 				ret = btrfs_inc_ref(trans, root, cow, 1);
460 				if (ret)
461 					return ret;
462 			}
463 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
464 		} else {
465 
466 			if (root->root_key.objectid ==
467 			    BTRFS_TREE_RELOC_OBJECTID)
468 				ret = btrfs_inc_ref(trans, root, cow, 1);
469 			else
470 				ret = btrfs_inc_ref(trans, root, cow, 0);
471 			if (ret)
472 				return ret;
473 		}
474 		if (new_flags != 0) {
475 			ret = btrfs_set_disk_extent_flags(trans, buf, new_flags);
476 			if (ret)
477 				return ret;
478 		}
479 	} else {
480 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
481 			if (root->root_key.objectid ==
482 			    BTRFS_TREE_RELOC_OBJECTID)
483 				ret = btrfs_inc_ref(trans, root, cow, 1);
484 			else
485 				ret = btrfs_inc_ref(trans, root, cow, 0);
486 			if (ret)
487 				return ret;
488 			ret = btrfs_dec_ref(trans, root, buf, 1);
489 			if (ret)
490 				return ret;
491 		}
492 		btrfs_clear_buffer_dirty(trans, buf);
493 		*last_ref = 1;
494 	}
495 	return 0;
496 }
497 
498 /*
499  * does the dirty work in cow of a single block.  The parent block (if
500  * supplied) is updated to point to the new cow copy.  The new buffer is marked
501  * dirty and returned locked.  If you modify the block it needs to be marked
502  * dirty again.
503  *
504  * search_start -- an allocation hint for the new block
505  *
506  * empty_size -- a hint that you plan on doing more cow.  This is the size in
507  * bytes the allocator should try to find free next to the block it returns.
508  * This is just a hint and may be ignored by the allocator.
509  */
510 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
511 			     struct btrfs_root *root,
512 			     struct extent_buffer *buf,
513 			     struct extent_buffer *parent, int parent_slot,
514 			     struct extent_buffer **cow_ret,
515 			     u64 search_start, u64 empty_size,
516 			     enum btrfs_lock_nesting nest)
517 {
518 	struct btrfs_fs_info *fs_info = root->fs_info;
519 	struct btrfs_disk_key disk_key;
520 	struct extent_buffer *cow;
521 	int level, ret;
522 	int last_ref = 0;
523 	int unlock_orig = 0;
524 	u64 parent_start = 0;
525 
526 	if (*cow_ret == buf)
527 		unlock_orig = 1;
528 
529 	btrfs_assert_tree_write_locked(buf);
530 
531 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
532 		trans->transid != fs_info->running_transaction->transid);
533 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
534 		trans->transid != root->last_trans);
535 
536 	level = btrfs_header_level(buf);
537 
538 	if (level == 0)
539 		btrfs_item_key(buf, &disk_key, 0);
540 	else
541 		btrfs_node_key(buf, &disk_key, 0);
542 
543 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
544 		parent_start = parent->start;
545 
546 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
547 				     root->root_key.objectid, &disk_key, level,
548 				     search_start, empty_size, nest);
549 	if (IS_ERR(cow))
550 		return PTR_ERR(cow);
551 
552 	/* cow is set to blocking by btrfs_init_new_buffer */
553 
554 	copy_extent_buffer_full(cow, buf);
555 	btrfs_set_header_bytenr(cow, cow->start);
556 	btrfs_set_header_generation(cow, trans->transid);
557 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
558 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
559 				     BTRFS_HEADER_FLAG_RELOC);
560 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
561 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
562 	else
563 		btrfs_set_header_owner(cow, root->root_key.objectid);
564 
565 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
566 
567 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
568 	if (ret) {
569 		btrfs_tree_unlock(cow);
570 		free_extent_buffer(cow);
571 		btrfs_abort_transaction(trans, ret);
572 		return ret;
573 	}
574 
575 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
576 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
577 		if (ret) {
578 			btrfs_tree_unlock(cow);
579 			free_extent_buffer(cow);
580 			btrfs_abort_transaction(trans, ret);
581 			return ret;
582 		}
583 	}
584 
585 	if (buf == root->node) {
586 		WARN_ON(parent && parent != buf);
587 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
588 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
589 			parent_start = buf->start;
590 
591 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
592 		if (ret < 0) {
593 			btrfs_tree_unlock(cow);
594 			free_extent_buffer(cow);
595 			btrfs_abort_transaction(trans, ret);
596 			return ret;
597 		}
598 		atomic_inc(&cow->refs);
599 		rcu_assign_pointer(root->node, cow);
600 
601 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
602 				      parent_start, last_ref);
603 		free_extent_buffer(buf);
604 		add_root_to_dirty_list(root);
605 	} else {
606 		WARN_ON(trans->transid != btrfs_header_generation(parent));
607 		ret = btrfs_tree_mod_log_insert_key(parent, parent_slot,
608 						    BTRFS_MOD_LOG_KEY_REPLACE);
609 		if (ret) {
610 			btrfs_tree_unlock(cow);
611 			free_extent_buffer(cow);
612 			btrfs_abort_transaction(trans, ret);
613 			return ret;
614 		}
615 		btrfs_set_node_blockptr(parent, parent_slot,
616 					cow->start);
617 		btrfs_set_node_ptr_generation(parent, parent_slot,
618 					      trans->transid);
619 		btrfs_mark_buffer_dirty(parent);
620 		if (last_ref) {
621 			ret = btrfs_tree_mod_log_free_eb(buf);
622 			if (ret) {
623 				btrfs_tree_unlock(cow);
624 				free_extent_buffer(cow);
625 				btrfs_abort_transaction(trans, ret);
626 				return ret;
627 			}
628 		}
629 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
630 				      parent_start, last_ref);
631 	}
632 	if (unlock_orig)
633 		btrfs_tree_unlock(buf);
634 	free_extent_buffer_stale(buf);
635 	btrfs_mark_buffer_dirty(cow);
636 	*cow_ret = cow;
637 	return 0;
638 }
639 
640 static inline int should_cow_block(struct btrfs_trans_handle *trans,
641 				   struct btrfs_root *root,
642 				   struct extent_buffer *buf)
643 {
644 	if (btrfs_is_testing(root->fs_info))
645 		return 0;
646 
647 	/* Ensure we can see the FORCE_COW bit */
648 	smp_mb__before_atomic();
649 
650 	/*
651 	 * We do not need to cow a block if
652 	 * 1) this block is not created or changed in this transaction;
653 	 * 2) this block does not belong to TREE_RELOC tree;
654 	 * 3) the root is not forced COW.
655 	 *
656 	 * What is forced COW:
657 	 *    when we create snapshot during committing the transaction,
658 	 *    after we've finished copying src root, we must COW the shared
659 	 *    block to ensure the metadata consistency.
660 	 */
661 	if (btrfs_header_generation(buf) == trans->transid &&
662 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
663 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
664 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
665 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
666 		return 0;
667 	return 1;
668 }
669 
670 /*
671  * cows a single block, see __btrfs_cow_block for the real work.
672  * This version of it has extra checks so that a block isn't COWed more than
673  * once per transaction, as long as it hasn't been written yet
674  */
675 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
676 		    struct btrfs_root *root, struct extent_buffer *buf,
677 		    struct extent_buffer *parent, int parent_slot,
678 		    struct extent_buffer **cow_ret,
679 		    enum btrfs_lock_nesting nest)
680 {
681 	struct btrfs_fs_info *fs_info = root->fs_info;
682 	u64 search_start;
683 	int ret;
684 
685 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
686 		btrfs_err(fs_info,
687 			"COW'ing blocks on a fs root that's being dropped");
688 
689 	if (trans->transaction != fs_info->running_transaction)
690 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
691 		       trans->transid,
692 		       fs_info->running_transaction->transid);
693 
694 	if (trans->transid != fs_info->generation)
695 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
696 		       trans->transid, fs_info->generation);
697 
698 	if (!should_cow_block(trans, root, buf)) {
699 		*cow_ret = buf;
700 		return 0;
701 	}
702 
703 	search_start = buf->start & ~((u64)SZ_1G - 1);
704 
705 	/*
706 	 * Before CoWing this block for later modification, check if it's
707 	 * the subtree root and do the delayed subtree trace if needed.
708 	 *
709 	 * Also We don't care about the error, as it's handled internally.
710 	 */
711 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
712 	ret = __btrfs_cow_block(trans, root, buf, parent,
713 				 parent_slot, cow_ret, search_start, 0, nest);
714 
715 	trace_btrfs_cow_block(root, buf, *cow_ret);
716 
717 	return ret;
718 }
719 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
720 
721 /*
722  * helper function for defrag to decide if two blocks pointed to by a
723  * node are actually close by
724  */
725 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
726 {
727 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
728 		return 1;
729 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
730 		return 1;
731 	return 0;
732 }
733 
734 #ifdef __LITTLE_ENDIAN
735 
736 /*
737  * Compare two keys, on little-endian the disk order is same as CPU order and
738  * we can avoid the conversion.
739  */
740 static int comp_keys(const struct btrfs_disk_key *disk_key,
741 		     const struct btrfs_key *k2)
742 {
743 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
744 
745 	return btrfs_comp_cpu_keys(k1, k2);
746 }
747 
748 #else
749 
750 /*
751  * compare two keys in a memcmp fashion
752  */
753 static int comp_keys(const struct btrfs_disk_key *disk,
754 		     const struct btrfs_key *k2)
755 {
756 	struct btrfs_key k1;
757 
758 	btrfs_disk_key_to_cpu(&k1, disk);
759 
760 	return btrfs_comp_cpu_keys(&k1, k2);
761 }
762 #endif
763 
764 /*
765  * same as comp_keys only with two btrfs_key's
766  */
767 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
768 {
769 	if (k1->objectid > k2->objectid)
770 		return 1;
771 	if (k1->objectid < k2->objectid)
772 		return -1;
773 	if (k1->type > k2->type)
774 		return 1;
775 	if (k1->type < k2->type)
776 		return -1;
777 	if (k1->offset > k2->offset)
778 		return 1;
779 	if (k1->offset < k2->offset)
780 		return -1;
781 	return 0;
782 }
783 
784 /*
785  * this is used by the defrag code to go through all the
786  * leaves pointed to by a node and reallocate them so that
787  * disk order is close to key order
788  */
789 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
790 		       struct btrfs_root *root, struct extent_buffer *parent,
791 		       int start_slot, u64 *last_ret,
792 		       struct btrfs_key *progress)
793 {
794 	struct btrfs_fs_info *fs_info = root->fs_info;
795 	struct extent_buffer *cur;
796 	u64 blocknr;
797 	u64 search_start = *last_ret;
798 	u64 last_block = 0;
799 	u64 other;
800 	u32 parent_nritems;
801 	int end_slot;
802 	int i;
803 	int err = 0;
804 	u32 blocksize;
805 	int progress_passed = 0;
806 	struct btrfs_disk_key disk_key;
807 
808 	WARN_ON(trans->transaction != fs_info->running_transaction);
809 	WARN_ON(trans->transid != fs_info->generation);
810 
811 	parent_nritems = btrfs_header_nritems(parent);
812 	blocksize = fs_info->nodesize;
813 	end_slot = parent_nritems - 1;
814 
815 	if (parent_nritems <= 1)
816 		return 0;
817 
818 	for (i = start_slot; i <= end_slot; i++) {
819 		int close = 1;
820 
821 		btrfs_node_key(parent, &disk_key, i);
822 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
823 			continue;
824 
825 		progress_passed = 1;
826 		blocknr = btrfs_node_blockptr(parent, i);
827 		if (last_block == 0)
828 			last_block = blocknr;
829 
830 		if (i > 0) {
831 			other = btrfs_node_blockptr(parent, i - 1);
832 			close = close_blocks(blocknr, other, blocksize);
833 		}
834 		if (!close && i < end_slot) {
835 			other = btrfs_node_blockptr(parent, i + 1);
836 			close = close_blocks(blocknr, other, blocksize);
837 		}
838 		if (close) {
839 			last_block = blocknr;
840 			continue;
841 		}
842 
843 		cur = btrfs_read_node_slot(parent, i);
844 		if (IS_ERR(cur))
845 			return PTR_ERR(cur);
846 		if (search_start == 0)
847 			search_start = last_block;
848 
849 		btrfs_tree_lock(cur);
850 		err = __btrfs_cow_block(trans, root, cur, parent, i,
851 					&cur, search_start,
852 					min(16 * blocksize,
853 					    (end_slot - i) * blocksize),
854 					BTRFS_NESTING_COW);
855 		if (err) {
856 			btrfs_tree_unlock(cur);
857 			free_extent_buffer(cur);
858 			break;
859 		}
860 		search_start = cur->start;
861 		last_block = cur->start;
862 		*last_ret = search_start;
863 		btrfs_tree_unlock(cur);
864 		free_extent_buffer(cur);
865 	}
866 	return err;
867 }
868 
869 /*
870  * Search for a key in the given extent_buffer.
871  *
872  * The lower boundary for the search is specified by the slot number @first_slot.
873  * Use a value of 0 to search over the whole extent buffer. Works for both
874  * leaves and nodes.
875  *
876  * The slot in the extent buffer is returned via @slot. If the key exists in the
877  * extent buffer, then @slot will point to the slot where the key is, otherwise
878  * it points to the slot where you would insert the key.
879  *
880  * Slot may point to the total number of items (i.e. one position beyond the last
881  * key) if the key is bigger than the last key in the extent buffer.
882  */
883 int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
884 		     const struct btrfs_key *key, int *slot)
885 {
886 	unsigned long p;
887 	int item_size;
888 	/*
889 	 * Use unsigned types for the low and high slots, so that we get a more
890 	 * efficient division in the search loop below.
891 	 */
892 	u32 low = first_slot;
893 	u32 high = btrfs_header_nritems(eb);
894 	int ret;
895 	const int key_size = sizeof(struct btrfs_disk_key);
896 
897 	if (unlikely(low > high)) {
898 		btrfs_err(eb->fs_info,
899 		 "%s: low (%u) > high (%u) eb %llu owner %llu level %d",
900 			  __func__, low, high, eb->start,
901 			  btrfs_header_owner(eb), btrfs_header_level(eb));
902 		return -EINVAL;
903 	}
904 
905 	if (btrfs_header_level(eb) == 0) {
906 		p = offsetof(struct btrfs_leaf, items);
907 		item_size = sizeof(struct btrfs_item);
908 	} else {
909 		p = offsetof(struct btrfs_node, ptrs);
910 		item_size = sizeof(struct btrfs_key_ptr);
911 	}
912 
913 	while (low < high) {
914 		unsigned long oip;
915 		unsigned long offset;
916 		struct btrfs_disk_key *tmp;
917 		struct btrfs_disk_key unaligned;
918 		int mid;
919 
920 		mid = (low + high) / 2;
921 		offset = p + mid * item_size;
922 		oip = offset_in_page(offset);
923 
924 		if (oip + key_size <= PAGE_SIZE) {
925 			const unsigned long idx = get_eb_page_index(offset);
926 			char *kaddr = page_address(eb->pages[idx]);
927 
928 			oip = get_eb_offset_in_page(eb, offset);
929 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
930 		} else {
931 			read_extent_buffer(eb, &unaligned, offset, key_size);
932 			tmp = &unaligned;
933 		}
934 
935 		ret = comp_keys(tmp, key);
936 
937 		if (ret < 0)
938 			low = mid + 1;
939 		else if (ret > 0)
940 			high = mid;
941 		else {
942 			*slot = mid;
943 			return 0;
944 		}
945 	}
946 	*slot = low;
947 	return 1;
948 }
949 
950 static void root_add_used(struct btrfs_root *root, u32 size)
951 {
952 	spin_lock(&root->accounting_lock);
953 	btrfs_set_root_used(&root->root_item,
954 			    btrfs_root_used(&root->root_item) + size);
955 	spin_unlock(&root->accounting_lock);
956 }
957 
958 static void root_sub_used(struct btrfs_root *root, u32 size)
959 {
960 	spin_lock(&root->accounting_lock);
961 	btrfs_set_root_used(&root->root_item,
962 			    btrfs_root_used(&root->root_item) - size);
963 	spin_unlock(&root->accounting_lock);
964 }
965 
966 /* given a node and slot number, this reads the blocks it points to.  The
967  * extent buffer is returned with a reference taken (but unlocked).
968  */
969 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
970 					   int slot)
971 {
972 	int level = btrfs_header_level(parent);
973 	struct btrfs_tree_parent_check check = { 0 };
974 	struct extent_buffer *eb;
975 
976 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
977 		return ERR_PTR(-ENOENT);
978 
979 	ASSERT(level);
980 
981 	check.level = level - 1;
982 	check.transid = btrfs_node_ptr_generation(parent, slot);
983 	check.owner_root = btrfs_header_owner(parent);
984 	check.has_first_key = true;
985 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
986 
987 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
988 			     &check);
989 	if (IS_ERR(eb))
990 		return eb;
991 	if (!extent_buffer_uptodate(eb)) {
992 		free_extent_buffer(eb);
993 		return ERR_PTR(-EIO);
994 	}
995 
996 	return eb;
997 }
998 
999 /*
1000  * node level balancing, used to make sure nodes are in proper order for
1001  * item deletion.  We balance from the top down, so we have to make sure
1002  * that a deletion won't leave an node completely empty later on.
1003  */
1004 static noinline int balance_level(struct btrfs_trans_handle *trans,
1005 			 struct btrfs_root *root,
1006 			 struct btrfs_path *path, int level)
1007 {
1008 	struct btrfs_fs_info *fs_info = root->fs_info;
1009 	struct extent_buffer *right = NULL;
1010 	struct extent_buffer *mid;
1011 	struct extent_buffer *left = NULL;
1012 	struct extent_buffer *parent = NULL;
1013 	int ret = 0;
1014 	int wret;
1015 	int pslot;
1016 	int orig_slot = path->slots[level];
1017 	u64 orig_ptr;
1018 
1019 	ASSERT(level > 0);
1020 
1021 	mid = path->nodes[level];
1022 
1023 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1024 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1025 
1026 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1027 
1028 	if (level < BTRFS_MAX_LEVEL - 1) {
1029 		parent = path->nodes[level + 1];
1030 		pslot = path->slots[level + 1];
1031 	}
1032 
1033 	/*
1034 	 * deal with the case where there is only one pointer in the root
1035 	 * by promoting the node below to a root
1036 	 */
1037 	if (!parent) {
1038 		struct extent_buffer *child;
1039 
1040 		if (btrfs_header_nritems(mid) != 1)
1041 			return 0;
1042 
1043 		/* promote the child to a root */
1044 		child = btrfs_read_node_slot(mid, 0);
1045 		if (IS_ERR(child)) {
1046 			ret = PTR_ERR(child);
1047 			goto out;
1048 		}
1049 
1050 		btrfs_tree_lock(child);
1051 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1052 				      BTRFS_NESTING_COW);
1053 		if (ret) {
1054 			btrfs_tree_unlock(child);
1055 			free_extent_buffer(child);
1056 			goto out;
1057 		}
1058 
1059 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1060 		if (ret < 0) {
1061 			btrfs_tree_unlock(child);
1062 			free_extent_buffer(child);
1063 			btrfs_abort_transaction(trans, ret);
1064 			goto out;
1065 		}
1066 		rcu_assign_pointer(root->node, child);
1067 
1068 		add_root_to_dirty_list(root);
1069 		btrfs_tree_unlock(child);
1070 
1071 		path->locks[level] = 0;
1072 		path->nodes[level] = NULL;
1073 		btrfs_clear_buffer_dirty(trans, mid);
1074 		btrfs_tree_unlock(mid);
1075 		/* once for the path */
1076 		free_extent_buffer(mid);
1077 
1078 		root_sub_used(root, mid->len);
1079 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1080 		/* once for the root ptr */
1081 		free_extent_buffer_stale(mid);
1082 		return 0;
1083 	}
1084 	if (btrfs_header_nritems(mid) >
1085 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1086 		return 0;
1087 
1088 	if (pslot) {
1089 		left = btrfs_read_node_slot(parent, pslot - 1);
1090 		if (IS_ERR(left)) {
1091 			ret = PTR_ERR(left);
1092 			left = NULL;
1093 			goto out;
1094 		}
1095 
1096 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1097 		wret = btrfs_cow_block(trans, root, left,
1098 				       parent, pslot - 1, &left,
1099 				       BTRFS_NESTING_LEFT_COW);
1100 		if (wret) {
1101 			ret = wret;
1102 			goto out;
1103 		}
1104 	}
1105 
1106 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1107 		right = btrfs_read_node_slot(parent, pslot + 1);
1108 		if (IS_ERR(right)) {
1109 			ret = PTR_ERR(right);
1110 			right = NULL;
1111 			goto out;
1112 		}
1113 
1114 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1115 		wret = btrfs_cow_block(trans, root, right,
1116 				       parent, pslot + 1, &right,
1117 				       BTRFS_NESTING_RIGHT_COW);
1118 		if (wret) {
1119 			ret = wret;
1120 			goto out;
1121 		}
1122 	}
1123 
1124 	/* first, try to make some room in the middle buffer */
1125 	if (left) {
1126 		orig_slot += btrfs_header_nritems(left);
1127 		wret = push_node_left(trans, left, mid, 1);
1128 		if (wret < 0)
1129 			ret = wret;
1130 	}
1131 
1132 	/*
1133 	 * then try to empty the right most buffer into the middle
1134 	 */
1135 	if (right) {
1136 		wret = push_node_left(trans, mid, right, 1);
1137 		if (wret < 0 && wret != -ENOSPC)
1138 			ret = wret;
1139 		if (btrfs_header_nritems(right) == 0) {
1140 			btrfs_clear_buffer_dirty(trans, right);
1141 			btrfs_tree_unlock(right);
1142 			ret = btrfs_del_ptr(trans, root, path, level + 1, pslot + 1);
1143 			if (ret < 0) {
1144 				free_extent_buffer_stale(right);
1145 				right = NULL;
1146 				goto out;
1147 			}
1148 			root_sub_used(root, right->len);
1149 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1150 					      0, 1);
1151 			free_extent_buffer_stale(right);
1152 			right = NULL;
1153 		} else {
1154 			struct btrfs_disk_key right_key;
1155 			btrfs_node_key(right, &right_key, 0);
1156 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1157 					BTRFS_MOD_LOG_KEY_REPLACE);
1158 			if (ret < 0) {
1159 				btrfs_abort_transaction(trans, ret);
1160 				goto out;
1161 			}
1162 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1163 			btrfs_mark_buffer_dirty(parent);
1164 		}
1165 	}
1166 	if (btrfs_header_nritems(mid) == 1) {
1167 		/*
1168 		 * we're not allowed to leave a node with one item in the
1169 		 * tree during a delete.  A deletion from lower in the tree
1170 		 * could try to delete the only pointer in this node.
1171 		 * So, pull some keys from the left.
1172 		 * There has to be a left pointer at this point because
1173 		 * otherwise we would have pulled some pointers from the
1174 		 * right
1175 		 */
1176 		if (unlikely(!left)) {
1177 			btrfs_crit(fs_info,
1178 "missing left child when middle child only has 1 item, parent bytenr %llu level %d mid bytenr %llu root %llu",
1179 				   parent->start, btrfs_header_level(parent),
1180 				   mid->start, btrfs_root_id(root));
1181 			ret = -EUCLEAN;
1182 			btrfs_abort_transaction(trans, ret);
1183 			goto out;
1184 		}
1185 		wret = balance_node_right(trans, mid, left);
1186 		if (wret < 0) {
1187 			ret = wret;
1188 			goto out;
1189 		}
1190 		if (wret == 1) {
1191 			wret = push_node_left(trans, left, mid, 1);
1192 			if (wret < 0)
1193 				ret = wret;
1194 		}
1195 		BUG_ON(wret == 1);
1196 	}
1197 	if (btrfs_header_nritems(mid) == 0) {
1198 		btrfs_clear_buffer_dirty(trans, mid);
1199 		btrfs_tree_unlock(mid);
1200 		ret = btrfs_del_ptr(trans, root, path, level + 1, pslot);
1201 		if (ret < 0) {
1202 			free_extent_buffer_stale(mid);
1203 			mid = NULL;
1204 			goto out;
1205 		}
1206 		root_sub_used(root, mid->len);
1207 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1208 		free_extent_buffer_stale(mid);
1209 		mid = NULL;
1210 	} else {
1211 		/* update the parent key to reflect our changes */
1212 		struct btrfs_disk_key mid_key;
1213 		btrfs_node_key(mid, &mid_key, 0);
1214 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1215 						    BTRFS_MOD_LOG_KEY_REPLACE);
1216 		if (ret < 0) {
1217 			btrfs_abort_transaction(trans, ret);
1218 			goto out;
1219 		}
1220 		btrfs_set_node_key(parent, &mid_key, pslot);
1221 		btrfs_mark_buffer_dirty(parent);
1222 	}
1223 
1224 	/* update the path */
1225 	if (left) {
1226 		if (btrfs_header_nritems(left) > orig_slot) {
1227 			atomic_inc(&left->refs);
1228 			/* left was locked after cow */
1229 			path->nodes[level] = left;
1230 			path->slots[level + 1] -= 1;
1231 			path->slots[level] = orig_slot;
1232 			if (mid) {
1233 				btrfs_tree_unlock(mid);
1234 				free_extent_buffer(mid);
1235 			}
1236 		} else {
1237 			orig_slot -= btrfs_header_nritems(left);
1238 			path->slots[level] = orig_slot;
1239 		}
1240 	}
1241 	/* double check we haven't messed things up */
1242 	if (orig_ptr !=
1243 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1244 		BUG();
1245 out:
1246 	if (right) {
1247 		btrfs_tree_unlock(right);
1248 		free_extent_buffer(right);
1249 	}
1250 	if (left) {
1251 		if (path->nodes[level] != left)
1252 			btrfs_tree_unlock(left);
1253 		free_extent_buffer(left);
1254 	}
1255 	return ret;
1256 }
1257 
1258 /* Node balancing for insertion.  Here we only split or push nodes around
1259  * when they are completely full.  This is also done top down, so we
1260  * have to be pessimistic.
1261  */
1262 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1263 					  struct btrfs_root *root,
1264 					  struct btrfs_path *path, int level)
1265 {
1266 	struct btrfs_fs_info *fs_info = root->fs_info;
1267 	struct extent_buffer *right = NULL;
1268 	struct extent_buffer *mid;
1269 	struct extent_buffer *left = NULL;
1270 	struct extent_buffer *parent = NULL;
1271 	int ret = 0;
1272 	int wret;
1273 	int pslot;
1274 	int orig_slot = path->slots[level];
1275 
1276 	if (level == 0)
1277 		return 1;
1278 
1279 	mid = path->nodes[level];
1280 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1281 
1282 	if (level < BTRFS_MAX_LEVEL - 1) {
1283 		parent = path->nodes[level + 1];
1284 		pslot = path->slots[level + 1];
1285 	}
1286 
1287 	if (!parent)
1288 		return 1;
1289 
1290 	/* first, try to make some room in the middle buffer */
1291 	if (pslot) {
1292 		u32 left_nr;
1293 
1294 		left = btrfs_read_node_slot(parent, pslot - 1);
1295 		if (IS_ERR(left))
1296 			return PTR_ERR(left);
1297 
1298 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1299 
1300 		left_nr = btrfs_header_nritems(left);
1301 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1302 			wret = 1;
1303 		} else {
1304 			ret = btrfs_cow_block(trans, root, left, parent,
1305 					      pslot - 1, &left,
1306 					      BTRFS_NESTING_LEFT_COW);
1307 			if (ret)
1308 				wret = 1;
1309 			else {
1310 				wret = push_node_left(trans, left, mid, 0);
1311 			}
1312 		}
1313 		if (wret < 0)
1314 			ret = wret;
1315 		if (wret == 0) {
1316 			struct btrfs_disk_key disk_key;
1317 			orig_slot += left_nr;
1318 			btrfs_node_key(mid, &disk_key, 0);
1319 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1320 					BTRFS_MOD_LOG_KEY_REPLACE);
1321 			if (ret < 0) {
1322 				btrfs_tree_unlock(left);
1323 				free_extent_buffer(left);
1324 				btrfs_abort_transaction(trans, ret);
1325 				return ret;
1326 			}
1327 			btrfs_set_node_key(parent, &disk_key, pslot);
1328 			btrfs_mark_buffer_dirty(parent);
1329 			if (btrfs_header_nritems(left) > orig_slot) {
1330 				path->nodes[level] = left;
1331 				path->slots[level + 1] -= 1;
1332 				path->slots[level] = orig_slot;
1333 				btrfs_tree_unlock(mid);
1334 				free_extent_buffer(mid);
1335 			} else {
1336 				orig_slot -=
1337 					btrfs_header_nritems(left);
1338 				path->slots[level] = orig_slot;
1339 				btrfs_tree_unlock(left);
1340 				free_extent_buffer(left);
1341 			}
1342 			return 0;
1343 		}
1344 		btrfs_tree_unlock(left);
1345 		free_extent_buffer(left);
1346 	}
1347 
1348 	/*
1349 	 * then try to empty the right most buffer into the middle
1350 	 */
1351 	if (pslot + 1 < btrfs_header_nritems(parent)) {
1352 		u32 right_nr;
1353 
1354 		right = btrfs_read_node_slot(parent, pslot + 1);
1355 		if (IS_ERR(right))
1356 			return PTR_ERR(right);
1357 
1358 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1359 
1360 		right_nr = btrfs_header_nritems(right);
1361 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1362 			wret = 1;
1363 		} else {
1364 			ret = btrfs_cow_block(trans, root, right,
1365 					      parent, pslot + 1,
1366 					      &right, BTRFS_NESTING_RIGHT_COW);
1367 			if (ret)
1368 				wret = 1;
1369 			else {
1370 				wret = balance_node_right(trans, right, mid);
1371 			}
1372 		}
1373 		if (wret < 0)
1374 			ret = wret;
1375 		if (wret == 0) {
1376 			struct btrfs_disk_key disk_key;
1377 
1378 			btrfs_node_key(right, &disk_key, 0);
1379 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1380 					BTRFS_MOD_LOG_KEY_REPLACE);
1381 			if (ret < 0) {
1382 				btrfs_tree_unlock(right);
1383 				free_extent_buffer(right);
1384 				btrfs_abort_transaction(trans, ret);
1385 				return ret;
1386 			}
1387 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1388 			btrfs_mark_buffer_dirty(parent);
1389 
1390 			if (btrfs_header_nritems(mid) <= orig_slot) {
1391 				path->nodes[level] = right;
1392 				path->slots[level + 1] += 1;
1393 				path->slots[level] = orig_slot -
1394 					btrfs_header_nritems(mid);
1395 				btrfs_tree_unlock(mid);
1396 				free_extent_buffer(mid);
1397 			} else {
1398 				btrfs_tree_unlock(right);
1399 				free_extent_buffer(right);
1400 			}
1401 			return 0;
1402 		}
1403 		btrfs_tree_unlock(right);
1404 		free_extent_buffer(right);
1405 	}
1406 	return 1;
1407 }
1408 
1409 /*
1410  * readahead one full node of leaves, finding things that are close
1411  * to the block in 'slot', and triggering ra on them.
1412  */
1413 static void reada_for_search(struct btrfs_fs_info *fs_info,
1414 			     struct btrfs_path *path,
1415 			     int level, int slot, u64 objectid)
1416 {
1417 	struct extent_buffer *node;
1418 	struct btrfs_disk_key disk_key;
1419 	u32 nritems;
1420 	u64 search;
1421 	u64 target;
1422 	u64 nread = 0;
1423 	u64 nread_max;
1424 	u32 nr;
1425 	u32 blocksize;
1426 	u32 nscan = 0;
1427 
1428 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1429 		return;
1430 
1431 	if (!path->nodes[level])
1432 		return;
1433 
1434 	node = path->nodes[level];
1435 
1436 	/*
1437 	 * Since the time between visiting leaves is much shorter than the time
1438 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1439 	 * much IO at once (possibly random).
1440 	 */
1441 	if (path->reada == READA_FORWARD_ALWAYS) {
1442 		if (level > 1)
1443 			nread_max = node->fs_info->nodesize;
1444 		else
1445 			nread_max = SZ_128K;
1446 	} else {
1447 		nread_max = SZ_64K;
1448 	}
1449 
1450 	search = btrfs_node_blockptr(node, slot);
1451 	blocksize = fs_info->nodesize;
1452 	if (path->reada != READA_FORWARD_ALWAYS) {
1453 		struct extent_buffer *eb;
1454 
1455 		eb = find_extent_buffer(fs_info, search);
1456 		if (eb) {
1457 			free_extent_buffer(eb);
1458 			return;
1459 		}
1460 	}
1461 
1462 	target = search;
1463 
1464 	nritems = btrfs_header_nritems(node);
1465 	nr = slot;
1466 
1467 	while (1) {
1468 		if (path->reada == READA_BACK) {
1469 			if (nr == 0)
1470 				break;
1471 			nr--;
1472 		} else if (path->reada == READA_FORWARD ||
1473 			   path->reada == READA_FORWARD_ALWAYS) {
1474 			nr++;
1475 			if (nr >= nritems)
1476 				break;
1477 		}
1478 		if (path->reada == READA_BACK && objectid) {
1479 			btrfs_node_key(node, &disk_key, nr);
1480 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1481 				break;
1482 		}
1483 		search = btrfs_node_blockptr(node, nr);
1484 		if (path->reada == READA_FORWARD_ALWAYS ||
1485 		    (search <= target && target - search <= 65536) ||
1486 		    (search > target && search - target <= 65536)) {
1487 			btrfs_readahead_node_child(node, nr);
1488 			nread += blocksize;
1489 		}
1490 		nscan++;
1491 		if (nread > nread_max || nscan > 32)
1492 			break;
1493 	}
1494 }
1495 
1496 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1497 {
1498 	struct extent_buffer *parent;
1499 	int slot;
1500 	int nritems;
1501 
1502 	parent = path->nodes[level + 1];
1503 	if (!parent)
1504 		return;
1505 
1506 	nritems = btrfs_header_nritems(parent);
1507 	slot = path->slots[level + 1];
1508 
1509 	if (slot > 0)
1510 		btrfs_readahead_node_child(parent, slot - 1);
1511 	if (slot + 1 < nritems)
1512 		btrfs_readahead_node_child(parent, slot + 1);
1513 }
1514 
1515 
1516 /*
1517  * when we walk down the tree, it is usually safe to unlock the higher layers
1518  * in the tree.  The exceptions are when our path goes through slot 0, because
1519  * operations on the tree might require changing key pointers higher up in the
1520  * tree.
1521  *
1522  * callers might also have set path->keep_locks, which tells this code to keep
1523  * the lock if the path points to the last slot in the block.  This is part of
1524  * walking through the tree, and selecting the next slot in the higher block.
1525  *
1526  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1527  * if lowest_unlock is 1, level 0 won't be unlocked
1528  */
1529 static noinline void unlock_up(struct btrfs_path *path, int level,
1530 			       int lowest_unlock, int min_write_lock_level,
1531 			       int *write_lock_level)
1532 {
1533 	int i;
1534 	int skip_level = level;
1535 	bool check_skip = true;
1536 
1537 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1538 		if (!path->nodes[i])
1539 			break;
1540 		if (!path->locks[i])
1541 			break;
1542 
1543 		if (check_skip) {
1544 			if (path->slots[i] == 0) {
1545 				skip_level = i + 1;
1546 				continue;
1547 			}
1548 
1549 			if (path->keep_locks) {
1550 				u32 nritems;
1551 
1552 				nritems = btrfs_header_nritems(path->nodes[i]);
1553 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1554 					skip_level = i + 1;
1555 					continue;
1556 				}
1557 			}
1558 		}
1559 
1560 		if (i >= lowest_unlock && i > skip_level) {
1561 			check_skip = false;
1562 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1563 			path->locks[i] = 0;
1564 			if (write_lock_level &&
1565 			    i > min_write_lock_level &&
1566 			    i <= *write_lock_level) {
1567 				*write_lock_level = i - 1;
1568 			}
1569 		}
1570 	}
1571 }
1572 
1573 /*
1574  * Helper function for btrfs_search_slot() and other functions that do a search
1575  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1576  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1577  * its pages from disk.
1578  *
1579  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1580  * whole btree search, starting again from the current root node.
1581  */
1582 static int
1583 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1584 		      struct extent_buffer **eb_ret, int level, int slot,
1585 		      const struct btrfs_key *key)
1586 {
1587 	struct btrfs_fs_info *fs_info = root->fs_info;
1588 	struct btrfs_tree_parent_check check = { 0 };
1589 	u64 blocknr;
1590 	u64 gen;
1591 	struct extent_buffer *tmp;
1592 	int ret;
1593 	int parent_level;
1594 	bool unlock_up;
1595 
1596 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1597 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1598 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1599 	parent_level = btrfs_header_level(*eb_ret);
1600 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1601 	check.has_first_key = true;
1602 	check.level = parent_level - 1;
1603 	check.transid = gen;
1604 	check.owner_root = root->root_key.objectid;
1605 
1606 	/*
1607 	 * If we need to read an extent buffer from disk and we are holding locks
1608 	 * on upper level nodes, we unlock all the upper nodes before reading the
1609 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1610 	 * restart the search. We don't release the lock on the current level
1611 	 * because we need to walk this node to figure out which blocks to read.
1612 	 */
1613 	tmp = find_extent_buffer(fs_info, blocknr);
1614 	if (tmp) {
1615 		if (p->reada == READA_FORWARD_ALWAYS)
1616 			reada_for_search(fs_info, p, level, slot, key->objectid);
1617 
1618 		/* first we do an atomic uptodate check */
1619 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1620 			/*
1621 			 * Do extra check for first_key, eb can be stale due to
1622 			 * being cached, read from scrub, or have multiple
1623 			 * parents (shared tree blocks).
1624 			 */
1625 			if (btrfs_verify_level_key(tmp,
1626 					parent_level - 1, &check.first_key, gen)) {
1627 				free_extent_buffer(tmp);
1628 				return -EUCLEAN;
1629 			}
1630 			*eb_ret = tmp;
1631 			return 0;
1632 		}
1633 
1634 		if (p->nowait) {
1635 			free_extent_buffer(tmp);
1636 			return -EAGAIN;
1637 		}
1638 
1639 		if (unlock_up)
1640 			btrfs_unlock_up_safe(p, level + 1);
1641 
1642 		/* now we're allowed to do a blocking uptodate check */
1643 		ret = btrfs_read_extent_buffer(tmp, &check);
1644 		if (ret) {
1645 			free_extent_buffer(tmp);
1646 			btrfs_release_path(p);
1647 			return -EIO;
1648 		}
1649 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1650 			free_extent_buffer(tmp);
1651 			btrfs_release_path(p);
1652 			return -EUCLEAN;
1653 		}
1654 
1655 		if (unlock_up)
1656 			ret = -EAGAIN;
1657 
1658 		goto out;
1659 	} else if (p->nowait) {
1660 		return -EAGAIN;
1661 	}
1662 
1663 	if (unlock_up) {
1664 		btrfs_unlock_up_safe(p, level + 1);
1665 		ret = -EAGAIN;
1666 	} else {
1667 		ret = 0;
1668 	}
1669 
1670 	if (p->reada != READA_NONE)
1671 		reada_for_search(fs_info, p, level, slot, key->objectid);
1672 
1673 	tmp = read_tree_block(fs_info, blocknr, &check);
1674 	if (IS_ERR(tmp)) {
1675 		btrfs_release_path(p);
1676 		return PTR_ERR(tmp);
1677 	}
1678 	/*
1679 	 * If the read above didn't mark this buffer up to date,
1680 	 * it will never end up being up to date.  Set ret to EIO now
1681 	 * and give up so that our caller doesn't loop forever
1682 	 * on our EAGAINs.
1683 	 */
1684 	if (!extent_buffer_uptodate(tmp))
1685 		ret = -EIO;
1686 
1687 out:
1688 	if (ret == 0) {
1689 		*eb_ret = tmp;
1690 	} else {
1691 		free_extent_buffer(tmp);
1692 		btrfs_release_path(p);
1693 	}
1694 
1695 	return ret;
1696 }
1697 
1698 /*
1699  * helper function for btrfs_search_slot.  This does all of the checks
1700  * for node-level blocks and does any balancing required based on
1701  * the ins_len.
1702  *
1703  * If no extra work was required, zero is returned.  If we had to
1704  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1705  * start over
1706  */
1707 static int
1708 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1709 		       struct btrfs_root *root, struct btrfs_path *p,
1710 		       struct extent_buffer *b, int level, int ins_len,
1711 		       int *write_lock_level)
1712 {
1713 	struct btrfs_fs_info *fs_info = root->fs_info;
1714 	int ret = 0;
1715 
1716 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1717 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1718 
1719 		if (*write_lock_level < level + 1) {
1720 			*write_lock_level = level + 1;
1721 			btrfs_release_path(p);
1722 			return -EAGAIN;
1723 		}
1724 
1725 		reada_for_balance(p, level);
1726 		ret = split_node(trans, root, p, level);
1727 
1728 		b = p->nodes[level];
1729 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1730 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1731 
1732 		if (*write_lock_level < level + 1) {
1733 			*write_lock_level = level + 1;
1734 			btrfs_release_path(p);
1735 			return -EAGAIN;
1736 		}
1737 
1738 		reada_for_balance(p, level);
1739 		ret = balance_level(trans, root, p, level);
1740 		if (ret)
1741 			return ret;
1742 
1743 		b = p->nodes[level];
1744 		if (!b) {
1745 			btrfs_release_path(p);
1746 			return -EAGAIN;
1747 		}
1748 		BUG_ON(btrfs_header_nritems(b) == 1);
1749 	}
1750 	return ret;
1751 }
1752 
1753 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1754 		u64 iobjectid, u64 ioff, u8 key_type,
1755 		struct btrfs_key *found_key)
1756 {
1757 	int ret;
1758 	struct btrfs_key key;
1759 	struct extent_buffer *eb;
1760 
1761 	ASSERT(path);
1762 	ASSERT(found_key);
1763 
1764 	key.type = key_type;
1765 	key.objectid = iobjectid;
1766 	key.offset = ioff;
1767 
1768 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1769 	if (ret < 0)
1770 		return ret;
1771 
1772 	eb = path->nodes[0];
1773 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1774 		ret = btrfs_next_leaf(fs_root, path);
1775 		if (ret)
1776 			return ret;
1777 		eb = path->nodes[0];
1778 	}
1779 
1780 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1781 	if (found_key->type != key.type ||
1782 			found_key->objectid != key.objectid)
1783 		return 1;
1784 
1785 	return 0;
1786 }
1787 
1788 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1789 							struct btrfs_path *p,
1790 							int write_lock_level)
1791 {
1792 	struct extent_buffer *b;
1793 	int root_lock = 0;
1794 	int level = 0;
1795 
1796 	if (p->search_commit_root) {
1797 		b = root->commit_root;
1798 		atomic_inc(&b->refs);
1799 		level = btrfs_header_level(b);
1800 		/*
1801 		 * Ensure that all callers have set skip_locking when
1802 		 * p->search_commit_root = 1.
1803 		 */
1804 		ASSERT(p->skip_locking == 1);
1805 
1806 		goto out;
1807 	}
1808 
1809 	if (p->skip_locking) {
1810 		b = btrfs_root_node(root);
1811 		level = btrfs_header_level(b);
1812 		goto out;
1813 	}
1814 
1815 	/* We try very hard to do read locks on the root */
1816 	root_lock = BTRFS_READ_LOCK;
1817 
1818 	/*
1819 	 * If the level is set to maximum, we can skip trying to get the read
1820 	 * lock.
1821 	 */
1822 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1823 		/*
1824 		 * We don't know the level of the root node until we actually
1825 		 * have it read locked
1826 		 */
1827 		if (p->nowait) {
1828 			b = btrfs_try_read_lock_root_node(root);
1829 			if (IS_ERR(b))
1830 				return b;
1831 		} else {
1832 			b = btrfs_read_lock_root_node(root);
1833 		}
1834 		level = btrfs_header_level(b);
1835 		if (level > write_lock_level)
1836 			goto out;
1837 
1838 		/* Whoops, must trade for write lock */
1839 		btrfs_tree_read_unlock(b);
1840 		free_extent_buffer(b);
1841 	}
1842 
1843 	b = btrfs_lock_root_node(root);
1844 	root_lock = BTRFS_WRITE_LOCK;
1845 
1846 	/* The level might have changed, check again */
1847 	level = btrfs_header_level(b);
1848 
1849 out:
1850 	/*
1851 	 * The root may have failed to write out at some point, and thus is no
1852 	 * longer valid, return an error in this case.
1853 	 */
1854 	if (!extent_buffer_uptodate(b)) {
1855 		if (root_lock)
1856 			btrfs_tree_unlock_rw(b, root_lock);
1857 		free_extent_buffer(b);
1858 		return ERR_PTR(-EIO);
1859 	}
1860 
1861 	p->nodes[level] = b;
1862 	if (!p->skip_locking)
1863 		p->locks[level] = root_lock;
1864 	/*
1865 	 * Callers are responsible for dropping b's references.
1866 	 */
1867 	return b;
1868 }
1869 
1870 /*
1871  * Replace the extent buffer at the lowest level of the path with a cloned
1872  * version. The purpose is to be able to use it safely, after releasing the
1873  * commit root semaphore, even if relocation is happening in parallel, the
1874  * transaction used for relocation is committed and the extent buffer is
1875  * reallocated in the next transaction.
1876  *
1877  * This is used in a context where the caller does not prevent transaction
1878  * commits from happening, either by holding a transaction handle or holding
1879  * some lock, while it's doing searches through a commit root.
1880  * At the moment it's only used for send operations.
1881  */
1882 static int finish_need_commit_sem_search(struct btrfs_path *path)
1883 {
1884 	const int i = path->lowest_level;
1885 	const int slot = path->slots[i];
1886 	struct extent_buffer *lowest = path->nodes[i];
1887 	struct extent_buffer *clone;
1888 
1889 	ASSERT(path->need_commit_sem);
1890 
1891 	if (!lowest)
1892 		return 0;
1893 
1894 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1895 
1896 	clone = btrfs_clone_extent_buffer(lowest);
1897 	if (!clone)
1898 		return -ENOMEM;
1899 
1900 	btrfs_release_path(path);
1901 	path->nodes[i] = clone;
1902 	path->slots[i] = slot;
1903 
1904 	return 0;
1905 }
1906 
1907 static inline int search_for_key_slot(struct extent_buffer *eb,
1908 				      int search_low_slot,
1909 				      const struct btrfs_key *key,
1910 				      int prev_cmp,
1911 				      int *slot)
1912 {
1913 	/*
1914 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1915 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1916 	 * always be at slot 0 on lower levels, since each key pointer
1917 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1918 	 * subtree it points to. Thus we can skip searching lower levels.
1919 	 */
1920 	if (prev_cmp == 0) {
1921 		*slot = 0;
1922 		return 0;
1923 	}
1924 
1925 	return btrfs_bin_search(eb, search_low_slot, key, slot);
1926 }
1927 
1928 static int search_leaf(struct btrfs_trans_handle *trans,
1929 		       struct btrfs_root *root,
1930 		       const struct btrfs_key *key,
1931 		       struct btrfs_path *path,
1932 		       int ins_len,
1933 		       int prev_cmp)
1934 {
1935 	struct extent_buffer *leaf = path->nodes[0];
1936 	int leaf_free_space = -1;
1937 	int search_low_slot = 0;
1938 	int ret;
1939 	bool do_bin_search = true;
1940 
1941 	/*
1942 	 * If we are doing an insertion, the leaf has enough free space and the
1943 	 * destination slot for the key is not slot 0, then we can unlock our
1944 	 * write lock on the parent, and any other upper nodes, before doing the
1945 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1946 	 * tasks to lock the parent and any other upper nodes.
1947 	 */
1948 	if (ins_len > 0) {
1949 		/*
1950 		 * Cache the leaf free space, since we will need it later and it
1951 		 * will not change until then.
1952 		 */
1953 		leaf_free_space = btrfs_leaf_free_space(leaf);
1954 
1955 		/*
1956 		 * !path->locks[1] means we have a single node tree, the leaf is
1957 		 * the root of the tree.
1958 		 */
1959 		if (path->locks[1] && leaf_free_space >= ins_len) {
1960 			struct btrfs_disk_key first_key;
1961 
1962 			ASSERT(btrfs_header_nritems(leaf) > 0);
1963 			btrfs_item_key(leaf, &first_key, 0);
1964 
1965 			/*
1966 			 * Doing the extra comparison with the first key is cheap,
1967 			 * taking into account that the first key is very likely
1968 			 * already in a cache line because it immediately follows
1969 			 * the extent buffer's header and we have recently accessed
1970 			 * the header's level field.
1971 			 */
1972 			ret = comp_keys(&first_key, key);
1973 			if (ret < 0) {
1974 				/*
1975 				 * The first key is smaller than the key we want
1976 				 * to insert, so we are safe to unlock all upper
1977 				 * nodes and we have to do the binary search.
1978 				 *
1979 				 * We do use btrfs_unlock_up_safe() and not
1980 				 * unlock_up() because the later does not unlock
1981 				 * nodes with a slot of 0 - we can safely unlock
1982 				 * any node even if its slot is 0 since in this
1983 				 * case the key does not end up at slot 0 of the
1984 				 * leaf and there's no need to split the leaf.
1985 				 */
1986 				btrfs_unlock_up_safe(path, 1);
1987 				search_low_slot = 1;
1988 			} else {
1989 				/*
1990 				 * The first key is >= then the key we want to
1991 				 * insert, so we can skip the binary search as
1992 				 * the target key will be at slot 0.
1993 				 *
1994 				 * We can not unlock upper nodes when the key is
1995 				 * less than the first key, because we will need
1996 				 * to update the key at slot 0 of the parent node
1997 				 * and possibly of other upper nodes too.
1998 				 * If the key matches the first key, then we can
1999 				 * unlock all the upper nodes, using
2000 				 * btrfs_unlock_up_safe() instead of unlock_up()
2001 				 * as stated above.
2002 				 */
2003 				if (ret == 0)
2004 					btrfs_unlock_up_safe(path, 1);
2005 				/*
2006 				 * ret is already 0 or 1, matching the result of
2007 				 * a btrfs_bin_search() call, so there is no need
2008 				 * to adjust it.
2009 				 */
2010 				do_bin_search = false;
2011 				path->slots[0] = 0;
2012 			}
2013 		}
2014 	}
2015 
2016 	if (do_bin_search) {
2017 		ret = search_for_key_slot(leaf, search_low_slot, key,
2018 					  prev_cmp, &path->slots[0]);
2019 		if (ret < 0)
2020 			return ret;
2021 	}
2022 
2023 	if (ins_len > 0) {
2024 		/*
2025 		 * Item key already exists. In this case, if we are allowed to
2026 		 * insert the item (for example, in dir_item case, item key
2027 		 * collision is allowed), it will be merged with the original
2028 		 * item. Only the item size grows, no new btrfs item will be
2029 		 * added. If search_for_extension is not set, ins_len already
2030 		 * accounts the size btrfs_item, deduct it here so leaf space
2031 		 * check will be correct.
2032 		 */
2033 		if (ret == 0 && !path->search_for_extension) {
2034 			ASSERT(ins_len >= sizeof(struct btrfs_item));
2035 			ins_len -= sizeof(struct btrfs_item);
2036 		}
2037 
2038 		ASSERT(leaf_free_space >= 0);
2039 
2040 		if (leaf_free_space < ins_len) {
2041 			int err;
2042 
2043 			err = split_leaf(trans, root, key, path, ins_len,
2044 					 (ret == 0));
2045 			ASSERT(err <= 0);
2046 			if (WARN_ON(err > 0))
2047 				err = -EUCLEAN;
2048 			if (err)
2049 				ret = err;
2050 		}
2051 	}
2052 
2053 	return ret;
2054 }
2055 
2056 /*
2057  * btrfs_search_slot - look for a key in a tree and perform necessary
2058  * modifications to preserve tree invariants.
2059  *
2060  * @trans:	Handle of transaction, used when modifying the tree
2061  * @p:		Holds all btree nodes along the search path
2062  * @root:	The root node of the tree
2063  * @key:	The key we are looking for
2064  * @ins_len:	Indicates purpose of search:
2065  *              >0  for inserts it's size of item inserted (*)
2066  *              <0  for deletions
2067  *               0  for plain searches, not modifying the tree
2068  *
2069  *              (*) If size of item inserted doesn't include
2070  *              sizeof(struct btrfs_item), then p->search_for_extension must
2071  *              be set.
2072  * @cow:	boolean should CoW operations be performed. Must always be 1
2073  *		when modifying the tree.
2074  *
2075  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2076  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2077  *
2078  * If @key is found, 0 is returned and you can find the item in the leaf level
2079  * of the path (level 0)
2080  *
2081  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2082  * points to the slot where it should be inserted
2083  *
2084  * If an error is encountered while searching the tree a negative error number
2085  * is returned
2086  */
2087 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2088 		      const struct btrfs_key *key, struct btrfs_path *p,
2089 		      int ins_len, int cow)
2090 {
2091 	struct btrfs_fs_info *fs_info = root->fs_info;
2092 	struct extent_buffer *b;
2093 	int slot;
2094 	int ret;
2095 	int err;
2096 	int level;
2097 	int lowest_unlock = 1;
2098 	/* everything at write_lock_level or lower must be write locked */
2099 	int write_lock_level = 0;
2100 	u8 lowest_level = 0;
2101 	int min_write_lock_level;
2102 	int prev_cmp;
2103 
2104 	might_sleep();
2105 
2106 	lowest_level = p->lowest_level;
2107 	WARN_ON(lowest_level && ins_len > 0);
2108 	WARN_ON(p->nodes[0] != NULL);
2109 	BUG_ON(!cow && ins_len);
2110 
2111 	/*
2112 	 * For now only allow nowait for read only operations.  There's no
2113 	 * strict reason why we can't, we just only need it for reads so it's
2114 	 * only implemented for reads.
2115 	 */
2116 	ASSERT(!p->nowait || !cow);
2117 
2118 	if (ins_len < 0) {
2119 		lowest_unlock = 2;
2120 
2121 		/* when we are removing items, we might have to go up to level
2122 		 * two as we update tree pointers  Make sure we keep write
2123 		 * for those levels as well
2124 		 */
2125 		write_lock_level = 2;
2126 	} else if (ins_len > 0) {
2127 		/*
2128 		 * for inserting items, make sure we have a write lock on
2129 		 * level 1 so we can update keys
2130 		 */
2131 		write_lock_level = 1;
2132 	}
2133 
2134 	if (!cow)
2135 		write_lock_level = -1;
2136 
2137 	if (cow && (p->keep_locks || p->lowest_level))
2138 		write_lock_level = BTRFS_MAX_LEVEL;
2139 
2140 	min_write_lock_level = write_lock_level;
2141 
2142 	if (p->need_commit_sem) {
2143 		ASSERT(p->search_commit_root);
2144 		if (p->nowait) {
2145 			if (!down_read_trylock(&fs_info->commit_root_sem))
2146 				return -EAGAIN;
2147 		} else {
2148 			down_read(&fs_info->commit_root_sem);
2149 		}
2150 	}
2151 
2152 again:
2153 	prev_cmp = -1;
2154 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2155 	if (IS_ERR(b)) {
2156 		ret = PTR_ERR(b);
2157 		goto done;
2158 	}
2159 
2160 	while (b) {
2161 		int dec = 0;
2162 
2163 		level = btrfs_header_level(b);
2164 
2165 		if (cow) {
2166 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2167 
2168 			/*
2169 			 * if we don't really need to cow this block
2170 			 * then we don't want to set the path blocking,
2171 			 * so we test it here
2172 			 */
2173 			if (!should_cow_block(trans, root, b))
2174 				goto cow_done;
2175 
2176 			/*
2177 			 * must have write locks on this node and the
2178 			 * parent
2179 			 */
2180 			if (level > write_lock_level ||
2181 			    (level + 1 > write_lock_level &&
2182 			    level + 1 < BTRFS_MAX_LEVEL &&
2183 			    p->nodes[level + 1])) {
2184 				write_lock_level = level + 1;
2185 				btrfs_release_path(p);
2186 				goto again;
2187 			}
2188 
2189 			if (last_level)
2190 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2191 						      &b,
2192 						      BTRFS_NESTING_COW);
2193 			else
2194 				err = btrfs_cow_block(trans, root, b,
2195 						      p->nodes[level + 1],
2196 						      p->slots[level + 1], &b,
2197 						      BTRFS_NESTING_COW);
2198 			if (err) {
2199 				ret = err;
2200 				goto done;
2201 			}
2202 		}
2203 cow_done:
2204 		p->nodes[level] = b;
2205 
2206 		/*
2207 		 * we have a lock on b and as long as we aren't changing
2208 		 * the tree, there is no way to for the items in b to change.
2209 		 * It is safe to drop the lock on our parent before we
2210 		 * go through the expensive btree search on b.
2211 		 *
2212 		 * If we're inserting or deleting (ins_len != 0), then we might
2213 		 * be changing slot zero, which may require changing the parent.
2214 		 * So, we can't drop the lock until after we know which slot
2215 		 * we're operating on.
2216 		 */
2217 		if (!ins_len && !p->keep_locks) {
2218 			int u = level + 1;
2219 
2220 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2221 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2222 				p->locks[u] = 0;
2223 			}
2224 		}
2225 
2226 		if (level == 0) {
2227 			if (ins_len > 0)
2228 				ASSERT(write_lock_level >= 1);
2229 
2230 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2231 			if (!p->search_for_split)
2232 				unlock_up(p, level, lowest_unlock,
2233 					  min_write_lock_level, NULL);
2234 			goto done;
2235 		}
2236 
2237 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2238 		if (ret < 0)
2239 			goto done;
2240 		prev_cmp = ret;
2241 
2242 		if (ret && slot > 0) {
2243 			dec = 1;
2244 			slot--;
2245 		}
2246 		p->slots[level] = slot;
2247 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2248 					     &write_lock_level);
2249 		if (err == -EAGAIN)
2250 			goto again;
2251 		if (err) {
2252 			ret = err;
2253 			goto done;
2254 		}
2255 		b = p->nodes[level];
2256 		slot = p->slots[level];
2257 
2258 		/*
2259 		 * Slot 0 is special, if we change the key we have to update
2260 		 * the parent pointer which means we must have a write lock on
2261 		 * the parent
2262 		 */
2263 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2264 			write_lock_level = level + 1;
2265 			btrfs_release_path(p);
2266 			goto again;
2267 		}
2268 
2269 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2270 			  &write_lock_level);
2271 
2272 		if (level == lowest_level) {
2273 			if (dec)
2274 				p->slots[level]++;
2275 			goto done;
2276 		}
2277 
2278 		err = read_block_for_search(root, p, &b, level, slot, key);
2279 		if (err == -EAGAIN)
2280 			goto again;
2281 		if (err) {
2282 			ret = err;
2283 			goto done;
2284 		}
2285 
2286 		if (!p->skip_locking) {
2287 			level = btrfs_header_level(b);
2288 
2289 			btrfs_maybe_reset_lockdep_class(root, b);
2290 
2291 			if (level <= write_lock_level) {
2292 				btrfs_tree_lock(b);
2293 				p->locks[level] = BTRFS_WRITE_LOCK;
2294 			} else {
2295 				if (p->nowait) {
2296 					if (!btrfs_try_tree_read_lock(b)) {
2297 						free_extent_buffer(b);
2298 						ret = -EAGAIN;
2299 						goto done;
2300 					}
2301 				} else {
2302 					btrfs_tree_read_lock(b);
2303 				}
2304 				p->locks[level] = BTRFS_READ_LOCK;
2305 			}
2306 			p->nodes[level] = b;
2307 		}
2308 	}
2309 	ret = 1;
2310 done:
2311 	if (ret < 0 && !p->skip_release_on_error)
2312 		btrfs_release_path(p);
2313 
2314 	if (p->need_commit_sem) {
2315 		int ret2;
2316 
2317 		ret2 = finish_need_commit_sem_search(p);
2318 		up_read(&fs_info->commit_root_sem);
2319 		if (ret2)
2320 			ret = ret2;
2321 	}
2322 
2323 	return ret;
2324 }
2325 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2326 
2327 /*
2328  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2329  * current state of the tree together with the operations recorded in the tree
2330  * modification log to search for the key in a previous version of this tree, as
2331  * denoted by the time_seq parameter.
2332  *
2333  * Naturally, there is no support for insert, delete or cow operations.
2334  *
2335  * The resulting path and return value will be set up as if we called
2336  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2337  */
2338 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2339 			  struct btrfs_path *p, u64 time_seq)
2340 {
2341 	struct btrfs_fs_info *fs_info = root->fs_info;
2342 	struct extent_buffer *b;
2343 	int slot;
2344 	int ret;
2345 	int err;
2346 	int level;
2347 	int lowest_unlock = 1;
2348 	u8 lowest_level = 0;
2349 
2350 	lowest_level = p->lowest_level;
2351 	WARN_ON(p->nodes[0] != NULL);
2352 	ASSERT(!p->nowait);
2353 
2354 	if (p->search_commit_root) {
2355 		BUG_ON(time_seq);
2356 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2357 	}
2358 
2359 again:
2360 	b = btrfs_get_old_root(root, time_seq);
2361 	if (!b) {
2362 		ret = -EIO;
2363 		goto done;
2364 	}
2365 	level = btrfs_header_level(b);
2366 	p->locks[level] = BTRFS_READ_LOCK;
2367 
2368 	while (b) {
2369 		int dec = 0;
2370 
2371 		level = btrfs_header_level(b);
2372 		p->nodes[level] = b;
2373 
2374 		/*
2375 		 * we have a lock on b and as long as we aren't changing
2376 		 * the tree, there is no way to for the items in b to change.
2377 		 * It is safe to drop the lock on our parent before we
2378 		 * go through the expensive btree search on b.
2379 		 */
2380 		btrfs_unlock_up_safe(p, level + 1);
2381 
2382 		ret = btrfs_bin_search(b, 0, key, &slot);
2383 		if (ret < 0)
2384 			goto done;
2385 
2386 		if (level == 0) {
2387 			p->slots[level] = slot;
2388 			unlock_up(p, level, lowest_unlock, 0, NULL);
2389 			goto done;
2390 		}
2391 
2392 		if (ret && slot > 0) {
2393 			dec = 1;
2394 			slot--;
2395 		}
2396 		p->slots[level] = slot;
2397 		unlock_up(p, level, lowest_unlock, 0, NULL);
2398 
2399 		if (level == lowest_level) {
2400 			if (dec)
2401 				p->slots[level]++;
2402 			goto done;
2403 		}
2404 
2405 		err = read_block_for_search(root, p, &b, level, slot, key);
2406 		if (err == -EAGAIN)
2407 			goto again;
2408 		if (err) {
2409 			ret = err;
2410 			goto done;
2411 		}
2412 
2413 		level = btrfs_header_level(b);
2414 		btrfs_tree_read_lock(b);
2415 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2416 		if (!b) {
2417 			ret = -ENOMEM;
2418 			goto done;
2419 		}
2420 		p->locks[level] = BTRFS_READ_LOCK;
2421 		p->nodes[level] = b;
2422 	}
2423 	ret = 1;
2424 done:
2425 	if (ret < 0)
2426 		btrfs_release_path(p);
2427 
2428 	return ret;
2429 }
2430 
2431 /*
2432  * Search the tree again to find a leaf with smaller keys.
2433  * Returns 0 if it found something.
2434  * Returns 1 if there are no smaller keys.
2435  * Returns < 0 on error.
2436  *
2437  * This may release the path, and so you may lose any locks held at the
2438  * time you call it.
2439  */
2440 static int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
2441 {
2442 	struct btrfs_key key;
2443 	struct btrfs_key orig_key;
2444 	struct btrfs_disk_key found_key;
2445 	int ret;
2446 
2447 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
2448 	orig_key = key;
2449 
2450 	if (key.offset > 0) {
2451 		key.offset--;
2452 	} else if (key.type > 0) {
2453 		key.type--;
2454 		key.offset = (u64)-1;
2455 	} else if (key.objectid > 0) {
2456 		key.objectid--;
2457 		key.type = (u8)-1;
2458 		key.offset = (u64)-1;
2459 	} else {
2460 		return 1;
2461 	}
2462 
2463 	btrfs_release_path(path);
2464 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2465 	if (ret <= 0)
2466 		return ret;
2467 
2468 	/*
2469 	 * Previous key not found. Even if we were at slot 0 of the leaf we had
2470 	 * before releasing the path and calling btrfs_search_slot(), we now may
2471 	 * be in a slot pointing to the same original key - this can happen if
2472 	 * after we released the path, one of more items were moved from a
2473 	 * sibling leaf into the front of the leaf we had due to an insertion
2474 	 * (see push_leaf_right()).
2475 	 * If we hit this case and our slot is > 0 and just decrement the slot
2476 	 * so that the caller does not process the same key again, which may or
2477 	 * may not break the caller, depending on its logic.
2478 	 */
2479 	if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
2480 		btrfs_item_key(path->nodes[0], &found_key, path->slots[0]);
2481 		ret = comp_keys(&found_key, &orig_key);
2482 		if (ret == 0) {
2483 			if (path->slots[0] > 0) {
2484 				path->slots[0]--;
2485 				return 0;
2486 			}
2487 			/*
2488 			 * At slot 0, same key as before, it means orig_key is
2489 			 * the lowest, leftmost, key in the tree. We're done.
2490 			 */
2491 			return 1;
2492 		}
2493 	}
2494 
2495 	btrfs_item_key(path->nodes[0], &found_key, 0);
2496 	ret = comp_keys(&found_key, &key);
2497 	/*
2498 	 * We might have had an item with the previous key in the tree right
2499 	 * before we released our path. And after we released our path, that
2500 	 * item might have been pushed to the first slot (0) of the leaf we
2501 	 * were holding due to a tree balance. Alternatively, an item with the
2502 	 * previous key can exist as the only element of a leaf (big fat item).
2503 	 * Therefore account for these 2 cases, so that our callers (like
2504 	 * btrfs_previous_item) don't miss an existing item with a key matching
2505 	 * the previous key we computed above.
2506 	 */
2507 	if (ret <= 0)
2508 		return 0;
2509 	return 1;
2510 }
2511 
2512 /*
2513  * helper to use instead of search slot if no exact match is needed but
2514  * instead the next or previous item should be returned.
2515  * When find_higher is true, the next higher item is returned, the next lower
2516  * otherwise.
2517  * When return_any and find_higher are both true, and no higher item is found,
2518  * return the next lower instead.
2519  * When return_any is true and find_higher is false, and no lower item is found,
2520  * return the next higher instead.
2521  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2522  * < 0 on error
2523  */
2524 int btrfs_search_slot_for_read(struct btrfs_root *root,
2525 			       const struct btrfs_key *key,
2526 			       struct btrfs_path *p, int find_higher,
2527 			       int return_any)
2528 {
2529 	int ret;
2530 	struct extent_buffer *leaf;
2531 
2532 again:
2533 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2534 	if (ret <= 0)
2535 		return ret;
2536 	/*
2537 	 * a return value of 1 means the path is at the position where the
2538 	 * item should be inserted. Normally this is the next bigger item,
2539 	 * but in case the previous item is the last in a leaf, path points
2540 	 * to the first free slot in the previous leaf, i.e. at an invalid
2541 	 * item.
2542 	 */
2543 	leaf = p->nodes[0];
2544 
2545 	if (find_higher) {
2546 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2547 			ret = btrfs_next_leaf(root, p);
2548 			if (ret <= 0)
2549 				return ret;
2550 			if (!return_any)
2551 				return 1;
2552 			/*
2553 			 * no higher item found, return the next
2554 			 * lower instead
2555 			 */
2556 			return_any = 0;
2557 			find_higher = 0;
2558 			btrfs_release_path(p);
2559 			goto again;
2560 		}
2561 	} else {
2562 		if (p->slots[0] == 0) {
2563 			ret = btrfs_prev_leaf(root, p);
2564 			if (ret < 0)
2565 				return ret;
2566 			if (!ret) {
2567 				leaf = p->nodes[0];
2568 				if (p->slots[0] == btrfs_header_nritems(leaf))
2569 					p->slots[0]--;
2570 				return 0;
2571 			}
2572 			if (!return_any)
2573 				return 1;
2574 			/*
2575 			 * no lower item found, return the next
2576 			 * higher instead
2577 			 */
2578 			return_any = 0;
2579 			find_higher = 1;
2580 			btrfs_release_path(p);
2581 			goto again;
2582 		} else {
2583 			--p->slots[0];
2584 		}
2585 	}
2586 	return 0;
2587 }
2588 
2589 /*
2590  * Execute search and call btrfs_previous_item to traverse backwards if the item
2591  * was not found.
2592  *
2593  * Return 0 if found, 1 if not found and < 0 if error.
2594  */
2595 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2596 			   struct btrfs_path *path)
2597 {
2598 	int ret;
2599 
2600 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2601 	if (ret > 0)
2602 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2603 
2604 	if (ret == 0)
2605 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2606 
2607 	return ret;
2608 }
2609 
2610 /*
2611  * Search for a valid slot for the given path.
2612  *
2613  * @root:	The root node of the tree.
2614  * @key:	Will contain a valid item if found.
2615  * @path:	The starting point to validate the slot.
2616  *
2617  * Return: 0  if the item is valid
2618  *         1  if not found
2619  *         <0 if error.
2620  */
2621 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2622 			      struct btrfs_path *path)
2623 {
2624 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2625 		int ret;
2626 
2627 		ret = btrfs_next_leaf(root, path);
2628 		if (ret)
2629 			return ret;
2630 	}
2631 
2632 	btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2633 	return 0;
2634 }
2635 
2636 /*
2637  * adjust the pointers going up the tree, starting at level
2638  * making sure the right key of each node is points to 'key'.
2639  * This is used after shifting pointers to the left, so it stops
2640  * fixing up pointers when a given leaf/node is not in slot 0 of the
2641  * higher levels
2642  *
2643  */
2644 static void fixup_low_keys(struct btrfs_path *path,
2645 			   struct btrfs_disk_key *key, int level)
2646 {
2647 	int i;
2648 	struct extent_buffer *t;
2649 	int ret;
2650 
2651 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2652 		int tslot = path->slots[i];
2653 
2654 		if (!path->nodes[i])
2655 			break;
2656 		t = path->nodes[i];
2657 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2658 						    BTRFS_MOD_LOG_KEY_REPLACE);
2659 		BUG_ON(ret < 0);
2660 		btrfs_set_node_key(t, key, tslot);
2661 		btrfs_mark_buffer_dirty(path->nodes[i]);
2662 		if (tslot != 0)
2663 			break;
2664 	}
2665 }
2666 
2667 /*
2668  * update item key.
2669  *
2670  * This function isn't completely safe. It's the caller's responsibility
2671  * that the new key won't break the order
2672  */
2673 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2674 			     struct btrfs_path *path,
2675 			     const struct btrfs_key *new_key)
2676 {
2677 	struct btrfs_disk_key disk_key;
2678 	struct extent_buffer *eb;
2679 	int slot;
2680 
2681 	eb = path->nodes[0];
2682 	slot = path->slots[0];
2683 	if (slot > 0) {
2684 		btrfs_item_key(eb, &disk_key, slot - 1);
2685 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2686 			btrfs_print_leaf(eb);
2687 			btrfs_crit(fs_info,
2688 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2689 				   slot, btrfs_disk_key_objectid(&disk_key),
2690 				   btrfs_disk_key_type(&disk_key),
2691 				   btrfs_disk_key_offset(&disk_key),
2692 				   new_key->objectid, new_key->type,
2693 				   new_key->offset);
2694 			BUG();
2695 		}
2696 	}
2697 	if (slot < btrfs_header_nritems(eb) - 1) {
2698 		btrfs_item_key(eb, &disk_key, slot + 1);
2699 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2700 			btrfs_print_leaf(eb);
2701 			btrfs_crit(fs_info,
2702 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2703 				   slot, btrfs_disk_key_objectid(&disk_key),
2704 				   btrfs_disk_key_type(&disk_key),
2705 				   btrfs_disk_key_offset(&disk_key),
2706 				   new_key->objectid, new_key->type,
2707 				   new_key->offset);
2708 			BUG();
2709 		}
2710 	}
2711 
2712 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2713 	btrfs_set_item_key(eb, &disk_key, slot);
2714 	btrfs_mark_buffer_dirty(eb);
2715 	if (slot == 0)
2716 		fixup_low_keys(path, &disk_key, 1);
2717 }
2718 
2719 /*
2720  * Check key order of two sibling extent buffers.
2721  *
2722  * Return true if something is wrong.
2723  * Return false if everything is fine.
2724  *
2725  * Tree-checker only works inside one tree block, thus the following
2726  * corruption can not be detected by tree-checker:
2727  *
2728  * Leaf @left			| Leaf @right
2729  * --------------------------------------------------------------
2730  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2731  *
2732  * Key f6 in leaf @left itself is valid, but not valid when the next
2733  * key in leaf @right is 7.
2734  * This can only be checked at tree block merge time.
2735  * And since tree checker has ensured all key order in each tree block
2736  * is correct, we only need to bother the last key of @left and the first
2737  * key of @right.
2738  */
2739 static bool check_sibling_keys(struct extent_buffer *left,
2740 			       struct extent_buffer *right)
2741 {
2742 	struct btrfs_key left_last;
2743 	struct btrfs_key right_first;
2744 	int level = btrfs_header_level(left);
2745 	int nr_left = btrfs_header_nritems(left);
2746 	int nr_right = btrfs_header_nritems(right);
2747 
2748 	/* No key to check in one of the tree blocks */
2749 	if (!nr_left || !nr_right)
2750 		return false;
2751 
2752 	if (level) {
2753 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2754 		btrfs_node_key_to_cpu(right, &right_first, 0);
2755 	} else {
2756 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2757 		btrfs_item_key_to_cpu(right, &right_first, 0);
2758 	}
2759 
2760 	if (unlikely(btrfs_comp_cpu_keys(&left_last, &right_first) >= 0)) {
2761 		btrfs_crit(left->fs_info, "left extent buffer:");
2762 		btrfs_print_tree(left, false);
2763 		btrfs_crit(left->fs_info, "right extent buffer:");
2764 		btrfs_print_tree(right, false);
2765 		btrfs_crit(left->fs_info,
2766 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2767 			   left_last.objectid, left_last.type,
2768 			   left_last.offset, right_first.objectid,
2769 			   right_first.type, right_first.offset);
2770 		return true;
2771 	}
2772 	return false;
2773 }
2774 
2775 /*
2776  * try to push data from one node into the next node left in the
2777  * tree.
2778  *
2779  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2780  * error, and > 0 if there was no room in the left hand block.
2781  */
2782 static int push_node_left(struct btrfs_trans_handle *trans,
2783 			  struct extent_buffer *dst,
2784 			  struct extent_buffer *src, int empty)
2785 {
2786 	struct btrfs_fs_info *fs_info = trans->fs_info;
2787 	int push_items = 0;
2788 	int src_nritems;
2789 	int dst_nritems;
2790 	int ret = 0;
2791 
2792 	src_nritems = btrfs_header_nritems(src);
2793 	dst_nritems = btrfs_header_nritems(dst);
2794 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2795 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2796 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2797 
2798 	if (!empty && src_nritems <= 8)
2799 		return 1;
2800 
2801 	if (push_items <= 0)
2802 		return 1;
2803 
2804 	if (empty) {
2805 		push_items = min(src_nritems, push_items);
2806 		if (push_items < src_nritems) {
2807 			/* leave at least 8 pointers in the node if
2808 			 * we aren't going to empty it
2809 			 */
2810 			if (src_nritems - push_items < 8) {
2811 				if (push_items <= 8)
2812 					return 1;
2813 				push_items -= 8;
2814 			}
2815 		}
2816 	} else
2817 		push_items = min(src_nritems - 8, push_items);
2818 
2819 	/* dst is the left eb, src is the middle eb */
2820 	if (check_sibling_keys(dst, src)) {
2821 		ret = -EUCLEAN;
2822 		btrfs_abort_transaction(trans, ret);
2823 		return ret;
2824 	}
2825 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2826 	if (ret) {
2827 		btrfs_abort_transaction(trans, ret);
2828 		return ret;
2829 	}
2830 	copy_extent_buffer(dst, src,
2831 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2832 			   btrfs_node_key_ptr_offset(src, 0),
2833 			   push_items * sizeof(struct btrfs_key_ptr));
2834 
2835 	if (push_items < src_nritems) {
2836 		/*
2837 		 * btrfs_tree_mod_log_eb_copy handles logging the move, so we
2838 		 * don't need to do an explicit tree mod log operation for it.
2839 		 */
2840 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2841 				      btrfs_node_key_ptr_offset(src, push_items),
2842 				      (src_nritems - push_items) *
2843 				      sizeof(struct btrfs_key_ptr));
2844 	}
2845 	btrfs_set_header_nritems(src, src_nritems - push_items);
2846 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2847 	btrfs_mark_buffer_dirty(src);
2848 	btrfs_mark_buffer_dirty(dst);
2849 
2850 	return ret;
2851 }
2852 
2853 /*
2854  * try to push data from one node into the next node right in the
2855  * tree.
2856  *
2857  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2858  * error, and > 0 if there was no room in the right hand block.
2859  *
2860  * this will  only push up to 1/2 the contents of the left node over
2861  */
2862 static int balance_node_right(struct btrfs_trans_handle *trans,
2863 			      struct extent_buffer *dst,
2864 			      struct extent_buffer *src)
2865 {
2866 	struct btrfs_fs_info *fs_info = trans->fs_info;
2867 	int push_items = 0;
2868 	int max_push;
2869 	int src_nritems;
2870 	int dst_nritems;
2871 	int ret = 0;
2872 
2873 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2874 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2875 
2876 	src_nritems = btrfs_header_nritems(src);
2877 	dst_nritems = btrfs_header_nritems(dst);
2878 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2879 	if (push_items <= 0)
2880 		return 1;
2881 
2882 	if (src_nritems < 4)
2883 		return 1;
2884 
2885 	max_push = src_nritems / 2 + 1;
2886 	/* don't try to empty the node */
2887 	if (max_push >= src_nritems)
2888 		return 1;
2889 
2890 	if (max_push < push_items)
2891 		push_items = max_push;
2892 
2893 	/* dst is the right eb, src is the middle eb */
2894 	if (check_sibling_keys(src, dst)) {
2895 		ret = -EUCLEAN;
2896 		btrfs_abort_transaction(trans, ret);
2897 		return ret;
2898 	}
2899 
2900 	/*
2901 	 * btrfs_tree_mod_log_eb_copy handles logging the move, so we don't
2902 	 * need to do an explicit tree mod log operation for it.
2903 	 */
2904 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2905 				      btrfs_node_key_ptr_offset(dst, 0),
2906 				      (dst_nritems) *
2907 				      sizeof(struct btrfs_key_ptr));
2908 
2909 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2910 					 push_items);
2911 	if (ret) {
2912 		btrfs_abort_transaction(trans, ret);
2913 		return ret;
2914 	}
2915 	copy_extent_buffer(dst, src,
2916 			   btrfs_node_key_ptr_offset(dst, 0),
2917 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2918 			   push_items * sizeof(struct btrfs_key_ptr));
2919 
2920 	btrfs_set_header_nritems(src, src_nritems - push_items);
2921 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2922 
2923 	btrfs_mark_buffer_dirty(src);
2924 	btrfs_mark_buffer_dirty(dst);
2925 
2926 	return ret;
2927 }
2928 
2929 /*
2930  * helper function to insert a new root level in the tree.
2931  * A new node is allocated, and a single item is inserted to
2932  * point to the existing root
2933  *
2934  * returns zero on success or < 0 on failure.
2935  */
2936 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2937 			   struct btrfs_root *root,
2938 			   struct btrfs_path *path, int level)
2939 {
2940 	struct btrfs_fs_info *fs_info = root->fs_info;
2941 	u64 lower_gen;
2942 	struct extent_buffer *lower;
2943 	struct extent_buffer *c;
2944 	struct extent_buffer *old;
2945 	struct btrfs_disk_key lower_key;
2946 	int ret;
2947 
2948 	BUG_ON(path->nodes[level]);
2949 	BUG_ON(path->nodes[level-1] != root->node);
2950 
2951 	lower = path->nodes[level-1];
2952 	if (level == 1)
2953 		btrfs_item_key(lower, &lower_key, 0);
2954 	else
2955 		btrfs_node_key(lower, &lower_key, 0);
2956 
2957 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2958 				   &lower_key, level, root->node->start, 0,
2959 				   BTRFS_NESTING_NEW_ROOT);
2960 	if (IS_ERR(c))
2961 		return PTR_ERR(c);
2962 
2963 	root_add_used(root, fs_info->nodesize);
2964 
2965 	btrfs_set_header_nritems(c, 1);
2966 	btrfs_set_node_key(c, &lower_key, 0);
2967 	btrfs_set_node_blockptr(c, 0, lower->start);
2968 	lower_gen = btrfs_header_generation(lower);
2969 	WARN_ON(lower_gen != trans->transid);
2970 
2971 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2972 
2973 	btrfs_mark_buffer_dirty(c);
2974 
2975 	old = root->node;
2976 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2977 	if (ret < 0) {
2978 		btrfs_free_tree_block(trans, btrfs_root_id(root), c, 0, 1);
2979 		btrfs_tree_unlock(c);
2980 		free_extent_buffer(c);
2981 		return ret;
2982 	}
2983 	rcu_assign_pointer(root->node, c);
2984 
2985 	/* the super has an extra ref to root->node */
2986 	free_extent_buffer(old);
2987 
2988 	add_root_to_dirty_list(root);
2989 	atomic_inc(&c->refs);
2990 	path->nodes[level] = c;
2991 	path->locks[level] = BTRFS_WRITE_LOCK;
2992 	path->slots[level] = 0;
2993 	return 0;
2994 }
2995 
2996 /*
2997  * worker function to insert a single pointer in a node.
2998  * the node should have enough room for the pointer already
2999  *
3000  * slot and level indicate where you want the key to go, and
3001  * blocknr is the block the key points to.
3002  */
3003 static int insert_ptr(struct btrfs_trans_handle *trans,
3004 		      struct btrfs_path *path,
3005 		      struct btrfs_disk_key *key, u64 bytenr,
3006 		      int slot, int level)
3007 {
3008 	struct extent_buffer *lower;
3009 	int nritems;
3010 	int ret;
3011 
3012 	BUG_ON(!path->nodes[level]);
3013 	btrfs_assert_tree_write_locked(path->nodes[level]);
3014 	lower = path->nodes[level];
3015 	nritems = btrfs_header_nritems(lower);
3016 	BUG_ON(slot > nritems);
3017 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3018 	if (slot != nritems) {
3019 		if (level) {
3020 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
3021 					slot, nritems - slot);
3022 			if (ret < 0) {
3023 				btrfs_abort_transaction(trans, ret);
3024 				return ret;
3025 			}
3026 		}
3027 		memmove_extent_buffer(lower,
3028 			      btrfs_node_key_ptr_offset(lower, slot + 1),
3029 			      btrfs_node_key_ptr_offset(lower, slot),
3030 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3031 	}
3032 	if (level) {
3033 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
3034 						    BTRFS_MOD_LOG_KEY_ADD);
3035 		if (ret < 0) {
3036 			btrfs_abort_transaction(trans, ret);
3037 			return ret;
3038 		}
3039 	}
3040 	btrfs_set_node_key(lower, key, slot);
3041 	btrfs_set_node_blockptr(lower, slot, bytenr);
3042 	WARN_ON(trans->transid == 0);
3043 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3044 	btrfs_set_header_nritems(lower, nritems + 1);
3045 	btrfs_mark_buffer_dirty(lower);
3046 
3047 	return 0;
3048 }
3049 
3050 /*
3051  * split the node at the specified level in path in two.
3052  * The path is corrected to point to the appropriate node after the split
3053  *
3054  * Before splitting this tries to make some room in the node by pushing
3055  * left and right, if either one works, it returns right away.
3056  *
3057  * returns 0 on success and < 0 on failure
3058  */
3059 static noinline int split_node(struct btrfs_trans_handle *trans,
3060 			       struct btrfs_root *root,
3061 			       struct btrfs_path *path, int level)
3062 {
3063 	struct btrfs_fs_info *fs_info = root->fs_info;
3064 	struct extent_buffer *c;
3065 	struct extent_buffer *split;
3066 	struct btrfs_disk_key disk_key;
3067 	int mid;
3068 	int ret;
3069 	u32 c_nritems;
3070 
3071 	c = path->nodes[level];
3072 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3073 	if (c == root->node) {
3074 		/*
3075 		 * trying to split the root, lets make a new one
3076 		 *
3077 		 * tree mod log: We don't log_removal old root in
3078 		 * insert_new_root, because that root buffer will be kept as a
3079 		 * normal node. We are going to log removal of half of the
3080 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
3081 		 * holding a tree lock on the buffer, which is why we cannot
3082 		 * race with other tree_mod_log users.
3083 		 */
3084 		ret = insert_new_root(trans, root, path, level + 1);
3085 		if (ret)
3086 			return ret;
3087 	} else {
3088 		ret = push_nodes_for_insert(trans, root, path, level);
3089 		c = path->nodes[level];
3090 		if (!ret && btrfs_header_nritems(c) <
3091 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3092 			return 0;
3093 		if (ret < 0)
3094 			return ret;
3095 	}
3096 
3097 	c_nritems = btrfs_header_nritems(c);
3098 	mid = (c_nritems + 1) / 2;
3099 	btrfs_node_key(c, &disk_key, mid);
3100 
3101 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3102 				       &disk_key, level, c->start, 0,
3103 				       BTRFS_NESTING_SPLIT);
3104 	if (IS_ERR(split))
3105 		return PTR_ERR(split);
3106 
3107 	root_add_used(root, fs_info->nodesize);
3108 	ASSERT(btrfs_header_level(c) == level);
3109 
3110 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3111 	if (ret) {
3112 		btrfs_tree_unlock(split);
3113 		free_extent_buffer(split);
3114 		btrfs_abort_transaction(trans, ret);
3115 		return ret;
3116 	}
3117 	copy_extent_buffer(split, c,
3118 			   btrfs_node_key_ptr_offset(split, 0),
3119 			   btrfs_node_key_ptr_offset(c, mid),
3120 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3121 	btrfs_set_header_nritems(split, c_nritems - mid);
3122 	btrfs_set_header_nritems(c, mid);
3123 
3124 	btrfs_mark_buffer_dirty(c);
3125 	btrfs_mark_buffer_dirty(split);
3126 
3127 	ret = insert_ptr(trans, path, &disk_key, split->start,
3128 			 path->slots[level + 1] + 1, level + 1);
3129 	if (ret < 0) {
3130 		btrfs_tree_unlock(split);
3131 		free_extent_buffer(split);
3132 		return ret;
3133 	}
3134 
3135 	if (path->slots[level] >= mid) {
3136 		path->slots[level] -= mid;
3137 		btrfs_tree_unlock(c);
3138 		free_extent_buffer(c);
3139 		path->nodes[level] = split;
3140 		path->slots[level + 1] += 1;
3141 	} else {
3142 		btrfs_tree_unlock(split);
3143 		free_extent_buffer(split);
3144 	}
3145 	return 0;
3146 }
3147 
3148 /*
3149  * how many bytes are required to store the items in a leaf.  start
3150  * and nr indicate which items in the leaf to check.  This totals up the
3151  * space used both by the item structs and the item data
3152  */
3153 static int leaf_space_used(const struct extent_buffer *l, int start, int nr)
3154 {
3155 	int data_len;
3156 	int nritems = btrfs_header_nritems(l);
3157 	int end = min(nritems, start + nr) - 1;
3158 
3159 	if (!nr)
3160 		return 0;
3161 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3162 	data_len = data_len - btrfs_item_offset(l, end);
3163 	data_len += sizeof(struct btrfs_item) * nr;
3164 	WARN_ON(data_len < 0);
3165 	return data_len;
3166 }
3167 
3168 /*
3169  * The space between the end of the leaf items and
3170  * the start of the leaf data.  IOW, how much room
3171  * the leaf has left for both items and data
3172  */
3173 int btrfs_leaf_free_space(const struct extent_buffer *leaf)
3174 {
3175 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3176 	int nritems = btrfs_header_nritems(leaf);
3177 	int ret;
3178 
3179 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3180 	if (ret < 0) {
3181 		btrfs_crit(fs_info,
3182 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3183 			   ret,
3184 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3185 			   leaf_space_used(leaf, 0, nritems), nritems);
3186 	}
3187 	return ret;
3188 }
3189 
3190 /*
3191  * min slot controls the lowest index we're willing to push to the
3192  * right.  We'll push up to and including min_slot, but no lower
3193  */
3194 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3195 				      struct btrfs_path *path,
3196 				      int data_size, int empty,
3197 				      struct extent_buffer *right,
3198 				      int free_space, u32 left_nritems,
3199 				      u32 min_slot)
3200 {
3201 	struct btrfs_fs_info *fs_info = right->fs_info;
3202 	struct extent_buffer *left = path->nodes[0];
3203 	struct extent_buffer *upper = path->nodes[1];
3204 	struct btrfs_map_token token;
3205 	struct btrfs_disk_key disk_key;
3206 	int slot;
3207 	u32 i;
3208 	int push_space = 0;
3209 	int push_items = 0;
3210 	u32 nr;
3211 	u32 right_nritems;
3212 	u32 data_end;
3213 	u32 this_item_size;
3214 
3215 	if (empty)
3216 		nr = 0;
3217 	else
3218 		nr = max_t(u32, 1, min_slot);
3219 
3220 	if (path->slots[0] >= left_nritems)
3221 		push_space += data_size;
3222 
3223 	slot = path->slots[1];
3224 	i = left_nritems - 1;
3225 	while (i >= nr) {
3226 		if (!empty && push_items > 0) {
3227 			if (path->slots[0] > i)
3228 				break;
3229 			if (path->slots[0] == i) {
3230 				int space = btrfs_leaf_free_space(left);
3231 
3232 				if (space + push_space * 2 > free_space)
3233 					break;
3234 			}
3235 		}
3236 
3237 		if (path->slots[0] == i)
3238 			push_space += data_size;
3239 
3240 		this_item_size = btrfs_item_size(left, i);
3241 		if (this_item_size + sizeof(struct btrfs_item) +
3242 		    push_space > free_space)
3243 			break;
3244 
3245 		push_items++;
3246 		push_space += this_item_size + sizeof(struct btrfs_item);
3247 		if (i == 0)
3248 			break;
3249 		i--;
3250 	}
3251 
3252 	if (push_items == 0)
3253 		goto out_unlock;
3254 
3255 	WARN_ON(!empty && push_items == left_nritems);
3256 
3257 	/* push left to right */
3258 	right_nritems = btrfs_header_nritems(right);
3259 
3260 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3261 	push_space -= leaf_data_end(left);
3262 
3263 	/* make room in the right data area */
3264 	data_end = leaf_data_end(right);
3265 	memmove_leaf_data(right, data_end - push_space, data_end,
3266 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3267 
3268 	/* copy from the left data area */
3269 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3270 		       leaf_data_end(left), push_space);
3271 
3272 	memmove_leaf_items(right, push_items, 0, right_nritems);
3273 
3274 	/* copy the items from left to right */
3275 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3276 
3277 	/* update the item pointers */
3278 	btrfs_init_map_token(&token, right);
3279 	right_nritems += push_items;
3280 	btrfs_set_header_nritems(right, right_nritems);
3281 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3282 	for (i = 0; i < right_nritems; i++) {
3283 		push_space -= btrfs_token_item_size(&token, i);
3284 		btrfs_set_token_item_offset(&token, i, push_space);
3285 	}
3286 
3287 	left_nritems -= push_items;
3288 	btrfs_set_header_nritems(left, left_nritems);
3289 
3290 	if (left_nritems)
3291 		btrfs_mark_buffer_dirty(left);
3292 	else
3293 		btrfs_clear_buffer_dirty(trans, left);
3294 
3295 	btrfs_mark_buffer_dirty(right);
3296 
3297 	btrfs_item_key(right, &disk_key, 0);
3298 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3299 	btrfs_mark_buffer_dirty(upper);
3300 
3301 	/* then fixup the leaf pointer in the path */
3302 	if (path->slots[0] >= left_nritems) {
3303 		path->slots[0] -= left_nritems;
3304 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3305 			btrfs_clear_buffer_dirty(trans, path->nodes[0]);
3306 		btrfs_tree_unlock(path->nodes[0]);
3307 		free_extent_buffer(path->nodes[0]);
3308 		path->nodes[0] = right;
3309 		path->slots[1] += 1;
3310 	} else {
3311 		btrfs_tree_unlock(right);
3312 		free_extent_buffer(right);
3313 	}
3314 	return 0;
3315 
3316 out_unlock:
3317 	btrfs_tree_unlock(right);
3318 	free_extent_buffer(right);
3319 	return 1;
3320 }
3321 
3322 /*
3323  * push some data in the path leaf to the right, trying to free up at
3324  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3325  *
3326  * returns 1 if the push failed because the other node didn't have enough
3327  * room, 0 if everything worked out and < 0 if there were major errors.
3328  *
3329  * this will push starting from min_slot to the end of the leaf.  It won't
3330  * push any slot lower than min_slot
3331  */
3332 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3333 			   *root, struct btrfs_path *path,
3334 			   int min_data_size, int data_size,
3335 			   int empty, u32 min_slot)
3336 {
3337 	struct extent_buffer *left = path->nodes[0];
3338 	struct extent_buffer *right;
3339 	struct extent_buffer *upper;
3340 	int slot;
3341 	int free_space;
3342 	u32 left_nritems;
3343 	int ret;
3344 
3345 	if (!path->nodes[1])
3346 		return 1;
3347 
3348 	slot = path->slots[1];
3349 	upper = path->nodes[1];
3350 	if (slot >= btrfs_header_nritems(upper) - 1)
3351 		return 1;
3352 
3353 	btrfs_assert_tree_write_locked(path->nodes[1]);
3354 
3355 	right = btrfs_read_node_slot(upper, slot + 1);
3356 	if (IS_ERR(right))
3357 		return PTR_ERR(right);
3358 
3359 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3360 
3361 	free_space = btrfs_leaf_free_space(right);
3362 	if (free_space < data_size)
3363 		goto out_unlock;
3364 
3365 	ret = btrfs_cow_block(trans, root, right, upper,
3366 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3367 	if (ret)
3368 		goto out_unlock;
3369 
3370 	left_nritems = btrfs_header_nritems(left);
3371 	if (left_nritems == 0)
3372 		goto out_unlock;
3373 
3374 	if (check_sibling_keys(left, right)) {
3375 		ret = -EUCLEAN;
3376 		btrfs_abort_transaction(trans, ret);
3377 		btrfs_tree_unlock(right);
3378 		free_extent_buffer(right);
3379 		return ret;
3380 	}
3381 	if (path->slots[0] == left_nritems && !empty) {
3382 		/* Key greater than all keys in the leaf, right neighbor has
3383 		 * enough room for it and we're not emptying our leaf to delete
3384 		 * it, therefore use right neighbor to insert the new item and
3385 		 * no need to touch/dirty our left leaf. */
3386 		btrfs_tree_unlock(left);
3387 		free_extent_buffer(left);
3388 		path->nodes[0] = right;
3389 		path->slots[0] = 0;
3390 		path->slots[1]++;
3391 		return 0;
3392 	}
3393 
3394 	return __push_leaf_right(trans, path, min_data_size, empty, right,
3395 				 free_space, left_nritems, min_slot);
3396 out_unlock:
3397 	btrfs_tree_unlock(right);
3398 	free_extent_buffer(right);
3399 	return 1;
3400 }
3401 
3402 /*
3403  * push some data in the path leaf to the left, trying to free up at
3404  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3405  *
3406  * max_slot can put a limit on how far into the leaf we'll push items.  The
3407  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3408  * items
3409  */
3410 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3411 				     struct btrfs_path *path, int data_size,
3412 				     int empty, struct extent_buffer *left,
3413 				     int free_space, u32 right_nritems,
3414 				     u32 max_slot)
3415 {
3416 	struct btrfs_fs_info *fs_info = left->fs_info;
3417 	struct btrfs_disk_key disk_key;
3418 	struct extent_buffer *right = path->nodes[0];
3419 	int i;
3420 	int push_space = 0;
3421 	int push_items = 0;
3422 	u32 old_left_nritems;
3423 	u32 nr;
3424 	int ret = 0;
3425 	u32 this_item_size;
3426 	u32 old_left_item_size;
3427 	struct btrfs_map_token token;
3428 
3429 	if (empty)
3430 		nr = min(right_nritems, max_slot);
3431 	else
3432 		nr = min(right_nritems - 1, max_slot);
3433 
3434 	for (i = 0; i < nr; i++) {
3435 		if (!empty && push_items > 0) {
3436 			if (path->slots[0] < i)
3437 				break;
3438 			if (path->slots[0] == i) {
3439 				int space = btrfs_leaf_free_space(right);
3440 
3441 				if (space + push_space * 2 > free_space)
3442 					break;
3443 			}
3444 		}
3445 
3446 		if (path->slots[0] == i)
3447 			push_space += data_size;
3448 
3449 		this_item_size = btrfs_item_size(right, i);
3450 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3451 		    free_space)
3452 			break;
3453 
3454 		push_items++;
3455 		push_space += this_item_size + sizeof(struct btrfs_item);
3456 	}
3457 
3458 	if (push_items == 0) {
3459 		ret = 1;
3460 		goto out;
3461 	}
3462 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3463 
3464 	/* push data from right to left */
3465 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3466 
3467 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3468 		     btrfs_item_offset(right, push_items - 1);
3469 
3470 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3471 		       btrfs_item_offset(right, push_items - 1), push_space);
3472 	old_left_nritems = btrfs_header_nritems(left);
3473 	BUG_ON(old_left_nritems <= 0);
3474 
3475 	btrfs_init_map_token(&token, left);
3476 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3477 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3478 		u32 ioff;
3479 
3480 		ioff = btrfs_token_item_offset(&token, i);
3481 		btrfs_set_token_item_offset(&token, i,
3482 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3483 	}
3484 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3485 
3486 	/* fixup right node */
3487 	if (push_items > right_nritems)
3488 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3489 		       right_nritems);
3490 
3491 	if (push_items < right_nritems) {
3492 		push_space = btrfs_item_offset(right, push_items - 1) -
3493 						  leaf_data_end(right);
3494 		memmove_leaf_data(right,
3495 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3496 				  leaf_data_end(right), push_space);
3497 
3498 		memmove_leaf_items(right, 0, push_items,
3499 				   btrfs_header_nritems(right) - push_items);
3500 	}
3501 
3502 	btrfs_init_map_token(&token, right);
3503 	right_nritems -= push_items;
3504 	btrfs_set_header_nritems(right, right_nritems);
3505 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3506 	for (i = 0; i < right_nritems; i++) {
3507 		push_space = push_space - btrfs_token_item_size(&token, i);
3508 		btrfs_set_token_item_offset(&token, i, push_space);
3509 	}
3510 
3511 	btrfs_mark_buffer_dirty(left);
3512 	if (right_nritems)
3513 		btrfs_mark_buffer_dirty(right);
3514 	else
3515 		btrfs_clear_buffer_dirty(trans, right);
3516 
3517 	btrfs_item_key(right, &disk_key, 0);
3518 	fixup_low_keys(path, &disk_key, 1);
3519 
3520 	/* then fixup the leaf pointer in the path */
3521 	if (path->slots[0] < push_items) {
3522 		path->slots[0] += old_left_nritems;
3523 		btrfs_tree_unlock(path->nodes[0]);
3524 		free_extent_buffer(path->nodes[0]);
3525 		path->nodes[0] = left;
3526 		path->slots[1] -= 1;
3527 	} else {
3528 		btrfs_tree_unlock(left);
3529 		free_extent_buffer(left);
3530 		path->slots[0] -= push_items;
3531 	}
3532 	BUG_ON(path->slots[0] < 0);
3533 	return ret;
3534 out:
3535 	btrfs_tree_unlock(left);
3536 	free_extent_buffer(left);
3537 	return ret;
3538 }
3539 
3540 /*
3541  * push some data in the path leaf to the left, trying to free up at
3542  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3543  *
3544  * max_slot can put a limit on how far into the leaf we'll push items.  The
3545  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3546  * items
3547  */
3548 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3549 			  *root, struct btrfs_path *path, int min_data_size,
3550 			  int data_size, int empty, u32 max_slot)
3551 {
3552 	struct extent_buffer *right = path->nodes[0];
3553 	struct extent_buffer *left;
3554 	int slot;
3555 	int free_space;
3556 	u32 right_nritems;
3557 	int ret = 0;
3558 
3559 	slot = path->slots[1];
3560 	if (slot == 0)
3561 		return 1;
3562 	if (!path->nodes[1])
3563 		return 1;
3564 
3565 	right_nritems = btrfs_header_nritems(right);
3566 	if (right_nritems == 0)
3567 		return 1;
3568 
3569 	btrfs_assert_tree_write_locked(path->nodes[1]);
3570 
3571 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3572 	if (IS_ERR(left))
3573 		return PTR_ERR(left);
3574 
3575 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3576 
3577 	free_space = btrfs_leaf_free_space(left);
3578 	if (free_space < data_size) {
3579 		ret = 1;
3580 		goto out;
3581 	}
3582 
3583 	ret = btrfs_cow_block(trans, root, left,
3584 			      path->nodes[1], slot - 1, &left,
3585 			      BTRFS_NESTING_LEFT_COW);
3586 	if (ret) {
3587 		/* we hit -ENOSPC, but it isn't fatal here */
3588 		if (ret == -ENOSPC)
3589 			ret = 1;
3590 		goto out;
3591 	}
3592 
3593 	if (check_sibling_keys(left, right)) {
3594 		ret = -EUCLEAN;
3595 		btrfs_abort_transaction(trans, ret);
3596 		goto out;
3597 	}
3598 	return __push_leaf_left(trans, path, min_data_size, empty, left,
3599 				free_space, right_nritems, max_slot);
3600 out:
3601 	btrfs_tree_unlock(left);
3602 	free_extent_buffer(left);
3603 	return ret;
3604 }
3605 
3606 /*
3607  * split the path's leaf in two, making sure there is at least data_size
3608  * available for the resulting leaf level of the path.
3609  */
3610 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
3611 				   struct btrfs_path *path,
3612 				   struct extent_buffer *l,
3613 				   struct extent_buffer *right,
3614 				   int slot, int mid, int nritems)
3615 {
3616 	struct btrfs_fs_info *fs_info = trans->fs_info;
3617 	int data_copy_size;
3618 	int rt_data_off;
3619 	int i;
3620 	int ret;
3621 	struct btrfs_disk_key disk_key;
3622 	struct btrfs_map_token token;
3623 
3624 	nritems = nritems - mid;
3625 	btrfs_set_header_nritems(right, nritems);
3626 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3627 
3628 	copy_leaf_items(right, l, 0, mid, nritems);
3629 
3630 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3631 		       leaf_data_end(l), data_copy_size);
3632 
3633 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3634 
3635 	btrfs_init_map_token(&token, right);
3636 	for (i = 0; i < nritems; i++) {
3637 		u32 ioff;
3638 
3639 		ioff = btrfs_token_item_offset(&token, i);
3640 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3641 	}
3642 
3643 	btrfs_set_header_nritems(l, mid);
3644 	btrfs_item_key(right, &disk_key, 0);
3645 	ret = insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3646 	if (ret < 0)
3647 		return ret;
3648 
3649 	btrfs_mark_buffer_dirty(right);
3650 	btrfs_mark_buffer_dirty(l);
3651 	BUG_ON(path->slots[0] != slot);
3652 
3653 	if (mid <= slot) {
3654 		btrfs_tree_unlock(path->nodes[0]);
3655 		free_extent_buffer(path->nodes[0]);
3656 		path->nodes[0] = right;
3657 		path->slots[0] -= mid;
3658 		path->slots[1] += 1;
3659 	} else {
3660 		btrfs_tree_unlock(right);
3661 		free_extent_buffer(right);
3662 	}
3663 
3664 	BUG_ON(path->slots[0] < 0);
3665 
3666 	return 0;
3667 }
3668 
3669 /*
3670  * double splits happen when we need to insert a big item in the middle
3671  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3672  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3673  *          A                 B                 C
3674  *
3675  * We avoid this by trying to push the items on either side of our target
3676  * into the adjacent leaves.  If all goes well we can avoid the double split
3677  * completely.
3678  */
3679 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3680 					  struct btrfs_root *root,
3681 					  struct btrfs_path *path,
3682 					  int data_size)
3683 {
3684 	int ret;
3685 	int progress = 0;
3686 	int slot;
3687 	u32 nritems;
3688 	int space_needed = data_size;
3689 
3690 	slot = path->slots[0];
3691 	if (slot < btrfs_header_nritems(path->nodes[0]))
3692 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3693 
3694 	/*
3695 	 * try to push all the items after our slot into the
3696 	 * right leaf
3697 	 */
3698 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3699 	if (ret < 0)
3700 		return ret;
3701 
3702 	if (ret == 0)
3703 		progress++;
3704 
3705 	nritems = btrfs_header_nritems(path->nodes[0]);
3706 	/*
3707 	 * our goal is to get our slot at the start or end of a leaf.  If
3708 	 * we've done so we're done
3709 	 */
3710 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3711 		return 0;
3712 
3713 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3714 		return 0;
3715 
3716 	/* try to push all the items before our slot into the next leaf */
3717 	slot = path->slots[0];
3718 	space_needed = data_size;
3719 	if (slot > 0)
3720 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3721 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3722 	if (ret < 0)
3723 		return ret;
3724 
3725 	if (ret == 0)
3726 		progress++;
3727 
3728 	if (progress)
3729 		return 0;
3730 	return 1;
3731 }
3732 
3733 /*
3734  * split the path's leaf in two, making sure there is at least data_size
3735  * available for the resulting leaf level of the path.
3736  *
3737  * returns 0 if all went well and < 0 on failure.
3738  */
3739 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3740 			       struct btrfs_root *root,
3741 			       const struct btrfs_key *ins_key,
3742 			       struct btrfs_path *path, int data_size,
3743 			       int extend)
3744 {
3745 	struct btrfs_disk_key disk_key;
3746 	struct extent_buffer *l;
3747 	u32 nritems;
3748 	int mid;
3749 	int slot;
3750 	struct extent_buffer *right;
3751 	struct btrfs_fs_info *fs_info = root->fs_info;
3752 	int ret = 0;
3753 	int wret;
3754 	int split;
3755 	int num_doubles = 0;
3756 	int tried_avoid_double = 0;
3757 
3758 	l = path->nodes[0];
3759 	slot = path->slots[0];
3760 	if (extend && data_size + btrfs_item_size(l, slot) +
3761 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3762 		return -EOVERFLOW;
3763 
3764 	/* first try to make some room by pushing left and right */
3765 	if (data_size && path->nodes[1]) {
3766 		int space_needed = data_size;
3767 
3768 		if (slot < btrfs_header_nritems(l))
3769 			space_needed -= btrfs_leaf_free_space(l);
3770 
3771 		wret = push_leaf_right(trans, root, path, space_needed,
3772 				       space_needed, 0, 0);
3773 		if (wret < 0)
3774 			return wret;
3775 		if (wret) {
3776 			space_needed = data_size;
3777 			if (slot > 0)
3778 				space_needed -= btrfs_leaf_free_space(l);
3779 			wret = push_leaf_left(trans, root, path, space_needed,
3780 					      space_needed, 0, (u32)-1);
3781 			if (wret < 0)
3782 				return wret;
3783 		}
3784 		l = path->nodes[0];
3785 
3786 		/* did the pushes work? */
3787 		if (btrfs_leaf_free_space(l) >= data_size)
3788 			return 0;
3789 	}
3790 
3791 	if (!path->nodes[1]) {
3792 		ret = insert_new_root(trans, root, path, 1);
3793 		if (ret)
3794 			return ret;
3795 	}
3796 again:
3797 	split = 1;
3798 	l = path->nodes[0];
3799 	slot = path->slots[0];
3800 	nritems = btrfs_header_nritems(l);
3801 	mid = (nritems + 1) / 2;
3802 
3803 	if (mid <= slot) {
3804 		if (nritems == 1 ||
3805 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3806 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3807 			if (slot >= nritems) {
3808 				split = 0;
3809 			} else {
3810 				mid = slot;
3811 				if (mid != nritems &&
3812 				    leaf_space_used(l, mid, nritems - mid) +
3813 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3814 					if (data_size && !tried_avoid_double)
3815 						goto push_for_double;
3816 					split = 2;
3817 				}
3818 			}
3819 		}
3820 	} else {
3821 		if (leaf_space_used(l, 0, mid) + data_size >
3822 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3823 			if (!extend && data_size && slot == 0) {
3824 				split = 0;
3825 			} else if ((extend || !data_size) && slot == 0) {
3826 				mid = 1;
3827 			} else {
3828 				mid = slot;
3829 				if (mid != nritems &&
3830 				    leaf_space_used(l, mid, nritems - mid) +
3831 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3832 					if (data_size && !tried_avoid_double)
3833 						goto push_for_double;
3834 					split = 2;
3835 				}
3836 			}
3837 		}
3838 	}
3839 
3840 	if (split == 0)
3841 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3842 	else
3843 		btrfs_item_key(l, &disk_key, mid);
3844 
3845 	/*
3846 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3847 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3848 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3849 	 * out.  In the future we could add a
3850 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3851 	 * use BTRFS_NESTING_NEW_ROOT.
3852 	 */
3853 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3854 				       &disk_key, 0, l->start, 0,
3855 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3856 				       BTRFS_NESTING_SPLIT);
3857 	if (IS_ERR(right))
3858 		return PTR_ERR(right);
3859 
3860 	root_add_used(root, fs_info->nodesize);
3861 
3862 	if (split == 0) {
3863 		if (mid <= slot) {
3864 			btrfs_set_header_nritems(right, 0);
3865 			ret = insert_ptr(trans, path, &disk_key,
3866 					 right->start, path->slots[1] + 1, 1);
3867 			if (ret < 0) {
3868 				btrfs_tree_unlock(right);
3869 				free_extent_buffer(right);
3870 				return ret;
3871 			}
3872 			btrfs_tree_unlock(path->nodes[0]);
3873 			free_extent_buffer(path->nodes[0]);
3874 			path->nodes[0] = right;
3875 			path->slots[0] = 0;
3876 			path->slots[1] += 1;
3877 		} else {
3878 			btrfs_set_header_nritems(right, 0);
3879 			ret = insert_ptr(trans, path, &disk_key,
3880 					 right->start, path->slots[1], 1);
3881 			if (ret < 0) {
3882 				btrfs_tree_unlock(right);
3883 				free_extent_buffer(right);
3884 				return ret;
3885 			}
3886 			btrfs_tree_unlock(path->nodes[0]);
3887 			free_extent_buffer(path->nodes[0]);
3888 			path->nodes[0] = right;
3889 			path->slots[0] = 0;
3890 			if (path->slots[1] == 0)
3891 				fixup_low_keys(path, &disk_key, 1);
3892 		}
3893 		/*
3894 		 * We create a new leaf 'right' for the required ins_len and
3895 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3896 		 * the content of ins_len to 'right'.
3897 		 */
3898 		return ret;
3899 	}
3900 
3901 	ret = copy_for_split(trans, path, l, right, slot, mid, nritems);
3902 	if (ret < 0) {
3903 		btrfs_tree_unlock(right);
3904 		free_extent_buffer(right);
3905 		return ret;
3906 	}
3907 
3908 	if (split == 2) {
3909 		BUG_ON(num_doubles != 0);
3910 		num_doubles++;
3911 		goto again;
3912 	}
3913 
3914 	return 0;
3915 
3916 push_for_double:
3917 	push_for_double_split(trans, root, path, data_size);
3918 	tried_avoid_double = 1;
3919 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3920 		return 0;
3921 	goto again;
3922 }
3923 
3924 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3925 					 struct btrfs_root *root,
3926 					 struct btrfs_path *path, int ins_len)
3927 {
3928 	struct btrfs_key key;
3929 	struct extent_buffer *leaf;
3930 	struct btrfs_file_extent_item *fi;
3931 	u64 extent_len = 0;
3932 	u32 item_size;
3933 	int ret;
3934 
3935 	leaf = path->nodes[0];
3936 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3937 
3938 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3939 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3940 
3941 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3942 		return 0;
3943 
3944 	item_size = btrfs_item_size(leaf, path->slots[0]);
3945 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3946 		fi = btrfs_item_ptr(leaf, path->slots[0],
3947 				    struct btrfs_file_extent_item);
3948 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3949 	}
3950 	btrfs_release_path(path);
3951 
3952 	path->keep_locks = 1;
3953 	path->search_for_split = 1;
3954 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3955 	path->search_for_split = 0;
3956 	if (ret > 0)
3957 		ret = -EAGAIN;
3958 	if (ret < 0)
3959 		goto err;
3960 
3961 	ret = -EAGAIN;
3962 	leaf = path->nodes[0];
3963 	/* if our item isn't there, return now */
3964 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3965 		goto err;
3966 
3967 	/* the leaf has  changed, it now has room.  return now */
3968 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3969 		goto err;
3970 
3971 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3972 		fi = btrfs_item_ptr(leaf, path->slots[0],
3973 				    struct btrfs_file_extent_item);
3974 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3975 			goto err;
3976 	}
3977 
3978 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3979 	if (ret)
3980 		goto err;
3981 
3982 	path->keep_locks = 0;
3983 	btrfs_unlock_up_safe(path, 1);
3984 	return 0;
3985 err:
3986 	path->keep_locks = 0;
3987 	return ret;
3988 }
3989 
3990 static noinline int split_item(struct btrfs_path *path,
3991 			       const struct btrfs_key *new_key,
3992 			       unsigned long split_offset)
3993 {
3994 	struct extent_buffer *leaf;
3995 	int orig_slot, slot;
3996 	char *buf;
3997 	u32 nritems;
3998 	u32 item_size;
3999 	u32 orig_offset;
4000 	struct btrfs_disk_key disk_key;
4001 
4002 	leaf = path->nodes[0];
4003 	/*
4004 	 * Shouldn't happen because the caller must have previously called
4005 	 * setup_leaf_for_split() to make room for the new item in the leaf.
4006 	 */
4007 	if (WARN_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)))
4008 		return -ENOSPC;
4009 
4010 	orig_slot = path->slots[0];
4011 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
4012 	item_size = btrfs_item_size(leaf, path->slots[0]);
4013 
4014 	buf = kmalloc(item_size, GFP_NOFS);
4015 	if (!buf)
4016 		return -ENOMEM;
4017 
4018 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4019 			    path->slots[0]), item_size);
4020 
4021 	slot = path->slots[0] + 1;
4022 	nritems = btrfs_header_nritems(leaf);
4023 	if (slot != nritems) {
4024 		/* shift the items */
4025 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
4026 	}
4027 
4028 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4029 	btrfs_set_item_key(leaf, &disk_key, slot);
4030 
4031 	btrfs_set_item_offset(leaf, slot, orig_offset);
4032 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
4033 
4034 	btrfs_set_item_offset(leaf, orig_slot,
4035 				 orig_offset + item_size - split_offset);
4036 	btrfs_set_item_size(leaf, orig_slot, split_offset);
4037 
4038 	btrfs_set_header_nritems(leaf, nritems + 1);
4039 
4040 	/* write the data for the start of the original item */
4041 	write_extent_buffer(leaf, buf,
4042 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4043 			    split_offset);
4044 
4045 	/* write the data for the new item */
4046 	write_extent_buffer(leaf, buf + split_offset,
4047 			    btrfs_item_ptr_offset(leaf, slot),
4048 			    item_size - split_offset);
4049 	btrfs_mark_buffer_dirty(leaf);
4050 
4051 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4052 	kfree(buf);
4053 	return 0;
4054 }
4055 
4056 /*
4057  * This function splits a single item into two items,
4058  * giving 'new_key' to the new item and splitting the
4059  * old one at split_offset (from the start of the item).
4060  *
4061  * The path may be released by this operation.  After
4062  * the split, the path is pointing to the old item.  The
4063  * new item is going to be in the same node as the old one.
4064  *
4065  * Note, the item being split must be smaller enough to live alone on
4066  * a tree block with room for one extra struct btrfs_item
4067  *
4068  * This allows us to split the item in place, keeping a lock on the
4069  * leaf the entire time.
4070  */
4071 int btrfs_split_item(struct btrfs_trans_handle *trans,
4072 		     struct btrfs_root *root,
4073 		     struct btrfs_path *path,
4074 		     const struct btrfs_key *new_key,
4075 		     unsigned long split_offset)
4076 {
4077 	int ret;
4078 	ret = setup_leaf_for_split(trans, root, path,
4079 				   sizeof(struct btrfs_item));
4080 	if (ret)
4081 		return ret;
4082 
4083 	ret = split_item(path, new_key, split_offset);
4084 	return ret;
4085 }
4086 
4087 /*
4088  * make the item pointed to by the path smaller.  new_size indicates
4089  * how small to make it, and from_end tells us if we just chop bytes
4090  * off the end of the item or if we shift the item to chop bytes off
4091  * the front.
4092  */
4093 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4094 {
4095 	int slot;
4096 	struct extent_buffer *leaf;
4097 	u32 nritems;
4098 	unsigned int data_end;
4099 	unsigned int old_data_start;
4100 	unsigned int old_size;
4101 	unsigned int size_diff;
4102 	int i;
4103 	struct btrfs_map_token token;
4104 
4105 	leaf = path->nodes[0];
4106 	slot = path->slots[0];
4107 
4108 	old_size = btrfs_item_size(leaf, slot);
4109 	if (old_size == new_size)
4110 		return;
4111 
4112 	nritems = btrfs_header_nritems(leaf);
4113 	data_end = leaf_data_end(leaf);
4114 
4115 	old_data_start = btrfs_item_offset(leaf, slot);
4116 
4117 	size_diff = old_size - new_size;
4118 
4119 	BUG_ON(slot < 0);
4120 	BUG_ON(slot >= nritems);
4121 
4122 	/*
4123 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4124 	 */
4125 	/* first correct the data pointers */
4126 	btrfs_init_map_token(&token, leaf);
4127 	for (i = slot; i < nritems; i++) {
4128 		u32 ioff;
4129 
4130 		ioff = btrfs_token_item_offset(&token, i);
4131 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
4132 	}
4133 
4134 	/* shift the data */
4135 	if (from_end) {
4136 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4137 				  old_data_start + new_size - data_end);
4138 	} else {
4139 		struct btrfs_disk_key disk_key;
4140 		u64 offset;
4141 
4142 		btrfs_item_key(leaf, &disk_key, slot);
4143 
4144 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4145 			unsigned long ptr;
4146 			struct btrfs_file_extent_item *fi;
4147 
4148 			fi = btrfs_item_ptr(leaf, slot,
4149 					    struct btrfs_file_extent_item);
4150 			fi = (struct btrfs_file_extent_item *)(
4151 			     (unsigned long)fi - size_diff);
4152 
4153 			if (btrfs_file_extent_type(leaf, fi) ==
4154 			    BTRFS_FILE_EXTENT_INLINE) {
4155 				ptr = btrfs_item_ptr_offset(leaf, slot);
4156 				memmove_extent_buffer(leaf, ptr,
4157 				      (unsigned long)fi,
4158 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4159 			}
4160 		}
4161 
4162 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
4163 				  old_data_start - data_end);
4164 
4165 		offset = btrfs_disk_key_offset(&disk_key);
4166 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4167 		btrfs_set_item_key(leaf, &disk_key, slot);
4168 		if (slot == 0)
4169 			fixup_low_keys(path, &disk_key, 1);
4170 	}
4171 
4172 	btrfs_set_item_size(leaf, slot, new_size);
4173 	btrfs_mark_buffer_dirty(leaf);
4174 
4175 	if (btrfs_leaf_free_space(leaf) < 0) {
4176 		btrfs_print_leaf(leaf);
4177 		BUG();
4178 	}
4179 }
4180 
4181 /*
4182  * make the item pointed to by the path bigger, data_size is the added size.
4183  */
4184 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4185 {
4186 	int slot;
4187 	struct extent_buffer *leaf;
4188 	u32 nritems;
4189 	unsigned int data_end;
4190 	unsigned int old_data;
4191 	unsigned int old_size;
4192 	int i;
4193 	struct btrfs_map_token token;
4194 
4195 	leaf = path->nodes[0];
4196 
4197 	nritems = btrfs_header_nritems(leaf);
4198 	data_end = leaf_data_end(leaf);
4199 
4200 	if (btrfs_leaf_free_space(leaf) < data_size) {
4201 		btrfs_print_leaf(leaf);
4202 		BUG();
4203 	}
4204 	slot = path->slots[0];
4205 	old_data = btrfs_item_data_end(leaf, slot);
4206 
4207 	BUG_ON(slot < 0);
4208 	if (slot >= nritems) {
4209 		btrfs_print_leaf(leaf);
4210 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4211 			   slot, nritems);
4212 		BUG();
4213 	}
4214 
4215 	/*
4216 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4217 	 */
4218 	/* first correct the data pointers */
4219 	btrfs_init_map_token(&token, leaf);
4220 	for (i = slot; i < nritems; i++) {
4221 		u32 ioff;
4222 
4223 		ioff = btrfs_token_item_offset(&token, i);
4224 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4225 	}
4226 
4227 	/* shift the data */
4228 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4229 			  old_data - data_end);
4230 
4231 	data_end = old_data;
4232 	old_size = btrfs_item_size(leaf, slot);
4233 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4234 	btrfs_mark_buffer_dirty(leaf);
4235 
4236 	if (btrfs_leaf_free_space(leaf) < 0) {
4237 		btrfs_print_leaf(leaf);
4238 		BUG();
4239 	}
4240 }
4241 
4242 /*
4243  * Make space in the node before inserting one or more items.
4244  *
4245  * @root:	root we are inserting items to
4246  * @path:	points to the leaf/slot where we are going to insert new items
4247  * @batch:      information about the batch of items to insert
4248  *
4249  * Main purpose is to save stack depth by doing the bulk of the work in a
4250  * function that doesn't call btrfs_search_slot
4251  */
4252 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4253 				   const struct btrfs_item_batch *batch)
4254 {
4255 	struct btrfs_fs_info *fs_info = root->fs_info;
4256 	int i;
4257 	u32 nritems;
4258 	unsigned int data_end;
4259 	struct btrfs_disk_key disk_key;
4260 	struct extent_buffer *leaf;
4261 	int slot;
4262 	struct btrfs_map_token token;
4263 	u32 total_size;
4264 
4265 	/*
4266 	 * Before anything else, update keys in the parent and other ancestors
4267 	 * if needed, then release the write locks on them, so that other tasks
4268 	 * can use them while we modify the leaf.
4269 	 */
4270 	if (path->slots[0] == 0) {
4271 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4272 		fixup_low_keys(path, &disk_key, 1);
4273 	}
4274 	btrfs_unlock_up_safe(path, 1);
4275 
4276 	leaf = path->nodes[0];
4277 	slot = path->slots[0];
4278 
4279 	nritems = btrfs_header_nritems(leaf);
4280 	data_end = leaf_data_end(leaf);
4281 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4282 
4283 	if (btrfs_leaf_free_space(leaf) < total_size) {
4284 		btrfs_print_leaf(leaf);
4285 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4286 			   total_size, btrfs_leaf_free_space(leaf));
4287 		BUG();
4288 	}
4289 
4290 	btrfs_init_map_token(&token, leaf);
4291 	if (slot != nritems) {
4292 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4293 
4294 		if (old_data < data_end) {
4295 			btrfs_print_leaf(leaf);
4296 			btrfs_crit(fs_info,
4297 		"item at slot %d with data offset %u beyond data end of leaf %u",
4298 				   slot, old_data, data_end);
4299 			BUG();
4300 		}
4301 		/*
4302 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4303 		 */
4304 		/* first correct the data pointers */
4305 		for (i = slot; i < nritems; i++) {
4306 			u32 ioff;
4307 
4308 			ioff = btrfs_token_item_offset(&token, i);
4309 			btrfs_set_token_item_offset(&token, i,
4310 						       ioff - batch->total_data_size);
4311 		}
4312 		/* shift the items */
4313 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4314 
4315 		/* shift the data */
4316 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4317 				  data_end, old_data - data_end);
4318 		data_end = old_data;
4319 	}
4320 
4321 	/* setup the item for the new data */
4322 	for (i = 0; i < batch->nr; i++) {
4323 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4324 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4325 		data_end -= batch->data_sizes[i];
4326 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4327 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4328 	}
4329 
4330 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4331 	btrfs_mark_buffer_dirty(leaf);
4332 
4333 	if (btrfs_leaf_free_space(leaf) < 0) {
4334 		btrfs_print_leaf(leaf);
4335 		BUG();
4336 	}
4337 }
4338 
4339 /*
4340  * Insert a new item into a leaf.
4341  *
4342  * @root:      The root of the btree.
4343  * @path:      A path pointing to the target leaf and slot.
4344  * @key:       The key of the new item.
4345  * @data_size: The size of the data associated with the new key.
4346  */
4347 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4348 				 struct btrfs_path *path,
4349 				 const struct btrfs_key *key,
4350 				 u32 data_size)
4351 {
4352 	struct btrfs_item_batch batch;
4353 
4354 	batch.keys = key;
4355 	batch.data_sizes = &data_size;
4356 	batch.total_data_size = data_size;
4357 	batch.nr = 1;
4358 
4359 	setup_items_for_insert(root, path, &batch);
4360 }
4361 
4362 /*
4363  * Given a key and some data, insert items into the tree.
4364  * This does all the path init required, making room in the tree if needed.
4365  */
4366 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4367 			    struct btrfs_root *root,
4368 			    struct btrfs_path *path,
4369 			    const struct btrfs_item_batch *batch)
4370 {
4371 	int ret = 0;
4372 	int slot;
4373 	u32 total_size;
4374 
4375 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4376 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4377 	if (ret == 0)
4378 		return -EEXIST;
4379 	if (ret < 0)
4380 		return ret;
4381 
4382 	slot = path->slots[0];
4383 	BUG_ON(slot < 0);
4384 
4385 	setup_items_for_insert(root, path, batch);
4386 	return 0;
4387 }
4388 
4389 /*
4390  * Given a key and some data, insert an item into the tree.
4391  * This does all the path init required, making room in the tree if needed.
4392  */
4393 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4394 		      const struct btrfs_key *cpu_key, void *data,
4395 		      u32 data_size)
4396 {
4397 	int ret = 0;
4398 	struct btrfs_path *path;
4399 	struct extent_buffer *leaf;
4400 	unsigned long ptr;
4401 
4402 	path = btrfs_alloc_path();
4403 	if (!path)
4404 		return -ENOMEM;
4405 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4406 	if (!ret) {
4407 		leaf = path->nodes[0];
4408 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4409 		write_extent_buffer(leaf, data, ptr, data_size);
4410 		btrfs_mark_buffer_dirty(leaf);
4411 	}
4412 	btrfs_free_path(path);
4413 	return ret;
4414 }
4415 
4416 /*
4417  * This function duplicates an item, giving 'new_key' to the new item.
4418  * It guarantees both items live in the same tree leaf and the new item is
4419  * contiguous with the original item.
4420  *
4421  * This allows us to split a file extent in place, keeping a lock on the leaf
4422  * the entire time.
4423  */
4424 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4425 			 struct btrfs_root *root,
4426 			 struct btrfs_path *path,
4427 			 const struct btrfs_key *new_key)
4428 {
4429 	struct extent_buffer *leaf;
4430 	int ret;
4431 	u32 item_size;
4432 
4433 	leaf = path->nodes[0];
4434 	item_size = btrfs_item_size(leaf, path->slots[0]);
4435 	ret = setup_leaf_for_split(trans, root, path,
4436 				   item_size + sizeof(struct btrfs_item));
4437 	if (ret)
4438 		return ret;
4439 
4440 	path->slots[0]++;
4441 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4442 	leaf = path->nodes[0];
4443 	memcpy_extent_buffer(leaf,
4444 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4445 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4446 			     item_size);
4447 	return 0;
4448 }
4449 
4450 /*
4451  * delete the pointer from a given node.
4452  *
4453  * the tree should have been previously balanced so the deletion does not
4454  * empty a node.
4455  *
4456  * This is exported for use inside btrfs-progs, don't un-export it.
4457  */
4458 int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4459 		  struct btrfs_path *path, int level, int slot)
4460 {
4461 	struct extent_buffer *parent = path->nodes[level];
4462 	u32 nritems;
4463 	int ret;
4464 
4465 	nritems = btrfs_header_nritems(parent);
4466 	if (slot != nritems - 1) {
4467 		if (level) {
4468 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4469 					slot + 1, nritems - slot - 1);
4470 			if (ret < 0) {
4471 				btrfs_abort_transaction(trans, ret);
4472 				return ret;
4473 			}
4474 		}
4475 		memmove_extent_buffer(parent,
4476 			      btrfs_node_key_ptr_offset(parent, slot),
4477 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4478 			      sizeof(struct btrfs_key_ptr) *
4479 			      (nritems - slot - 1));
4480 	} else if (level) {
4481 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4482 						    BTRFS_MOD_LOG_KEY_REMOVE);
4483 		if (ret < 0) {
4484 			btrfs_abort_transaction(trans, ret);
4485 			return ret;
4486 		}
4487 	}
4488 
4489 	nritems--;
4490 	btrfs_set_header_nritems(parent, nritems);
4491 	if (nritems == 0 && parent == root->node) {
4492 		BUG_ON(btrfs_header_level(root->node) != 1);
4493 		/* just turn the root into a leaf and break */
4494 		btrfs_set_header_level(root->node, 0);
4495 	} else if (slot == 0) {
4496 		struct btrfs_disk_key disk_key;
4497 
4498 		btrfs_node_key(parent, &disk_key, 0);
4499 		fixup_low_keys(path, &disk_key, level + 1);
4500 	}
4501 	btrfs_mark_buffer_dirty(parent);
4502 	return 0;
4503 }
4504 
4505 /*
4506  * a helper function to delete the leaf pointed to by path->slots[1] and
4507  * path->nodes[1].
4508  *
4509  * This deletes the pointer in path->nodes[1] and frees the leaf
4510  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4511  *
4512  * The path must have already been setup for deleting the leaf, including
4513  * all the proper balancing.  path->nodes[1] must be locked.
4514  */
4515 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
4516 				   struct btrfs_root *root,
4517 				   struct btrfs_path *path,
4518 				   struct extent_buffer *leaf)
4519 {
4520 	int ret;
4521 
4522 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4523 	ret = btrfs_del_ptr(trans, root, path, 1, path->slots[1]);
4524 	if (ret < 0)
4525 		return ret;
4526 
4527 	/*
4528 	 * btrfs_free_extent is expensive, we want to make sure we
4529 	 * aren't holding any locks when we call it
4530 	 */
4531 	btrfs_unlock_up_safe(path, 0);
4532 
4533 	root_sub_used(root, leaf->len);
4534 
4535 	atomic_inc(&leaf->refs);
4536 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4537 	free_extent_buffer_stale(leaf);
4538 	return 0;
4539 }
4540 /*
4541  * delete the item at the leaf level in path.  If that empties
4542  * the leaf, remove it from the tree
4543  */
4544 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4545 		    struct btrfs_path *path, int slot, int nr)
4546 {
4547 	struct btrfs_fs_info *fs_info = root->fs_info;
4548 	struct extent_buffer *leaf;
4549 	int ret = 0;
4550 	int wret;
4551 	u32 nritems;
4552 
4553 	leaf = path->nodes[0];
4554 	nritems = btrfs_header_nritems(leaf);
4555 
4556 	if (slot + nr != nritems) {
4557 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4558 		const int data_end = leaf_data_end(leaf);
4559 		struct btrfs_map_token token;
4560 		u32 dsize = 0;
4561 		int i;
4562 
4563 		for (i = 0; i < nr; i++)
4564 			dsize += btrfs_item_size(leaf, slot + i);
4565 
4566 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4567 				  last_off - data_end);
4568 
4569 		btrfs_init_map_token(&token, leaf);
4570 		for (i = slot + nr; i < nritems; i++) {
4571 			u32 ioff;
4572 
4573 			ioff = btrfs_token_item_offset(&token, i);
4574 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4575 		}
4576 
4577 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4578 	}
4579 	btrfs_set_header_nritems(leaf, nritems - nr);
4580 	nritems -= nr;
4581 
4582 	/* delete the leaf if we've emptied it */
4583 	if (nritems == 0) {
4584 		if (leaf == root->node) {
4585 			btrfs_set_header_level(leaf, 0);
4586 		} else {
4587 			btrfs_clear_buffer_dirty(trans, leaf);
4588 			ret = btrfs_del_leaf(trans, root, path, leaf);
4589 			if (ret < 0)
4590 				return ret;
4591 		}
4592 	} else {
4593 		int used = leaf_space_used(leaf, 0, nritems);
4594 		if (slot == 0) {
4595 			struct btrfs_disk_key disk_key;
4596 
4597 			btrfs_item_key(leaf, &disk_key, 0);
4598 			fixup_low_keys(path, &disk_key, 1);
4599 		}
4600 
4601 		/*
4602 		 * Try to delete the leaf if it is mostly empty. We do this by
4603 		 * trying to move all its items into its left and right neighbours.
4604 		 * If we can't move all the items, then we don't delete it - it's
4605 		 * not ideal, but future insertions might fill the leaf with more
4606 		 * items, or items from other leaves might be moved later into our
4607 		 * leaf due to deletions on those leaves.
4608 		 */
4609 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4610 			u32 min_push_space;
4611 
4612 			/* push_leaf_left fixes the path.
4613 			 * make sure the path still points to our leaf
4614 			 * for possible call to btrfs_del_ptr below
4615 			 */
4616 			slot = path->slots[1];
4617 			atomic_inc(&leaf->refs);
4618 			/*
4619 			 * We want to be able to at least push one item to the
4620 			 * left neighbour leaf, and that's the first item.
4621 			 */
4622 			min_push_space = sizeof(struct btrfs_item) +
4623 				btrfs_item_size(leaf, 0);
4624 			wret = push_leaf_left(trans, root, path, 0,
4625 					      min_push_space, 1, (u32)-1);
4626 			if (wret < 0 && wret != -ENOSPC)
4627 				ret = wret;
4628 
4629 			if (path->nodes[0] == leaf &&
4630 			    btrfs_header_nritems(leaf)) {
4631 				/*
4632 				 * If we were not able to push all items from our
4633 				 * leaf to its left neighbour, then attempt to
4634 				 * either push all the remaining items to the
4635 				 * right neighbour or none. There's no advantage
4636 				 * in pushing only some items, instead of all, as
4637 				 * it's pointless to end up with a leaf having
4638 				 * too few items while the neighbours can be full
4639 				 * or nearly full.
4640 				 */
4641 				nritems = btrfs_header_nritems(leaf);
4642 				min_push_space = leaf_space_used(leaf, 0, nritems);
4643 				wret = push_leaf_right(trans, root, path, 0,
4644 						       min_push_space, 1, 0);
4645 				if (wret < 0 && wret != -ENOSPC)
4646 					ret = wret;
4647 			}
4648 
4649 			if (btrfs_header_nritems(leaf) == 0) {
4650 				path->slots[1] = slot;
4651 				ret = btrfs_del_leaf(trans, root, path, leaf);
4652 				if (ret < 0)
4653 					return ret;
4654 				free_extent_buffer(leaf);
4655 				ret = 0;
4656 			} else {
4657 				/* if we're still in the path, make sure
4658 				 * we're dirty.  Otherwise, one of the
4659 				 * push_leaf functions must have already
4660 				 * dirtied this buffer
4661 				 */
4662 				if (path->nodes[0] == leaf)
4663 					btrfs_mark_buffer_dirty(leaf);
4664 				free_extent_buffer(leaf);
4665 			}
4666 		} else {
4667 			btrfs_mark_buffer_dirty(leaf);
4668 		}
4669 	}
4670 	return ret;
4671 }
4672 
4673 /*
4674  * A helper function to walk down the tree starting at min_key, and looking
4675  * for nodes or leaves that are have a minimum transaction id.
4676  * This is used by the btree defrag code, and tree logging
4677  *
4678  * This does not cow, but it does stuff the starting key it finds back
4679  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4680  * key and get a writable path.
4681  *
4682  * This honors path->lowest_level to prevent descent past a given level
4683  * of the tree.
4684  *
4685  * min_trans indicates the oldest transaction that you are interested
4686  * in walking through.  Any nodes or leaves older than min_trans are
4687  * skipped over (without reading them).
4688  *
4689  * returns zero if something useful was found, < 0 on error and 1 if there
4690  * was nothing in the tree that matched the search criteria.
4691  */
4692 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4693 			 struct btrfs_path *path,
4694 			 u64 min_trans)
4695 {
4696 	struct extent_buffer *cur;
4697 	struct btrfs_key found_key;
4698 	int slot;
4699 	int sret;
4700 	u32 nritems;
4701 	int level;
4702 	int ret = 1;
4703 	int keep_locks = path->keep_locks;
4704 
4705 	ASSERT(!path->nowait);
4706 	path->keep_locks = 1;
4707 again:
4708 	cur = btrfs_read_lock_root_node(root);
4709 	level = btrfs_header_level(cur);
4710 	WARN_ON(path->nodes[level]);
4711 	path->nodes[level] = cur;
4712 	path->locks[level] = BTRFS_READ_LOCK;
4713 
4714 	if (btrfs_header_generation(cur) < min_trans) {
4715 		ret = 1;
4716 		goto out;
4717 	}
4718 	while (1) {
4719 		nritems = btrfs_header_nritems(cur);
4720 		level = btrfs_header_level(cur);
4721 		sret = btrfs_bin_search(cur, 0, min_key, &slot);
4722 		if (sret < 0) {
4723 			ret = sret;
4724 			goto out;
4725 		}
4726 
4727 		/* at the lowest level, we're done, setup the path and exit */
4728 		if (level == path->lowest_level) {
4729 			if (slot >= nritems)
4730 				goto find_next_key;
4731 			ret = 0;
4732 			path->slots[level] = slot;
4733 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4734 			goto out;
4735 		}
4736 		if (sret && slot > 0)
4737 			slot--;
4738 		/*
4739 		 * check this node pointer against the min_trans parameters.
4740 		 * If it is too old, skip to the next one.
4741 		 */
4742 		while (slot < nritems) {
4743 			u64 gen;
4744 
4745 			gen = btrfs_node_ptr_generation(cur, slot);
4746 			if (gen < min_trans) {
4747 				slot++;
4748 				continue;
4749 			}
4750 			break;
4751 		}
4752 find_next_key:
4753 		/*
4754 		 * we didn't find a candidate key in this node, walk forward
4755 		 * and find another one
4756 		 */
4757 		if (slot >= nritems) {
4758 			path->slots[level] = slot;
4759 			sret = btrfs_find_next_key(root, path, min_key, level,
4760 						  min_trans);
4761 			if (sret == 0) {
4762 				btrfs_release_path(path);
4763 				goto again;
4764 			} else {
4765 				goto out;
4766 			}
4767 		}
4768 		/* save our key for returning back */
4769 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4770 		path->slots[level] = slot;
4771 		if (level == path->lowest_level) {
4772 			ret = 0;
4773 			goto out;
4774 		}
4775 		cur = btrfs_read_node_slot(cur, slot);
4776 		if (IS_ERR(cur)) {
4777 			ret = PTR_ERR(cur);
4778 			goto out;
4779 		}
4780 
4781 		btrfs_tree_read_lock(cur);
4782 
4783 		path->locks[level - 1] = BTRFS_READ_LOCK;
4784 		path->nodes[level - 1] = cur;
4785 		unlock_up(path, level, 1, 0, NULL);
4786 	}
4787 out:
4788 	path->keep_locks = keep_locks;
4789 	if (ret == 0) {
4790 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4791 		memcpy(min_key, &found_key, sizeof(found_key));
4792 	}
4793 	return ret;
4794 }
4795 
4796 /*
4797  * this is similar to btrfs_next_leaf, but does not try to preserve
4798  * and fixup the path.  It looks for and returns the next key in the
4799  * tree based on the current path and the min_trans parameters.
4800  *
4801  * 0 is returned if another key is found, < 0 if there are any errors
4802  * and 1 is returned if there are no higher keys in the tree
4803  *
4804  * path->keep_locks should be set to 1 on the search made before
4805  * calling this function.
4806  */
4807 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4808 			struct btrfs_key *key, int level, u64 min_trans)
4809 {
4810 	int slot;
4811 	struct extent_buffer *c;
4812 
4813 	WARN_ON(!path->keep_locks && !path->skip_locking);
4814 	while (level < BTRFS_MAX_LEVEL) {
4815 		if (!path->nodes[level])
4816 			return 1;
4817 
4818 		slot = path->slots[level] + 1;
4819 		c = path->nodes[level];
4820 next:
4821 		if (slot >= btrfs_header_nritems(c)) {
4822 			int ret;
4823 			int orig_lowest;
4824 			struct btrfs_key cur_key;
4825 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4826 			    !path->nodes[level + 1])
4827 				return 1;
4828 
4829 			if (path->locks[level + 1] || path->skip_locking) {
4830 				level++;
4831 				continue;
4832 			}
4833 
4834 			slot = btrfs_header_nritems(c) - 1;
4835 			if (level == 0)
4836 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4837 			else
4838 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4839 
4840 			orig_lowest = path->lowest_level;
4841 			btrfs_release_path(path);
4842 			path->lowest_level = level;
4843 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4844 						0, 0);
4845 			path->lowest_level = orig_lowest;
4846 			if (ret < 0)
4847 				return ret;
4848 
4849 			c = path->nodes[level];
4850 			slot = path->slots[level];
4851 			if (ret == 0)
4852 				slot++;
4853 			goto next;
4854 		}
4855 
4856 		if (level == 0)
4857 			btrfs_item_key_to_cpu(c, key, slot);
4858 		else {
4859 			u64 gen = btrfs_node_ptr_generation(c, slot);
4860 
4861 			if (gen < min_trans) {
4862 				slot++;
4863 				goto next;
4864 			}
4865 			btrfs_node_key_to_cpu(c, key, slot);
4866 		}
4867 		return 0;
4868 	}
4869 	return 1;
4870 }
4871 
4872 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4873 			u64 time_seq)
4874 {
4875 	int slot;
4876 	int level;
4877 	struct extent_buffer *c;
4878 	struct extent_buffer *next;
4879 	struct btrfs_fs_info *fs_info = root->fs_info;
4880 	struct btrfs_key key;
4881 	bool need_commit_sem = false;
4882 	u32 nritems;
4883 	int ret;
4884 	int i;
4885 
4886 	/*
4887 	 * The nowait semantics are used only for write paths, where we don't
4888 	 * use the tree mod log and sequence numbers.
4889 	 */
4890 	if (time_seq)
4891 		ASSERT(!path->nowait);
4892 
4893 	nritems = btrfs_header_nritems(path->nodes[0]);
4894 	if (nritems == 0)
4895 		return 1;
4896 
4897 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4898 again:
4899 	level = 1;
4900 	next = NULL;
4901 	btrfs_release_path(path);
4902 
4903 	path->keep_locks = 1;
4904 
4905 	if (time_seq) {
4906 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4907 	} else {
4908 		if (path->need_commit_sem) {
4909 			path->need_commit_sem = 0;
4910 			need_commit_sem = true;
4911 			if (path->nowait) {
4912 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4913 					ret = -EAGAIN;
4914 					goto done;
4915 				}
4916 			} else {
4917 				down_read(&fs_info->commit_root_sem);
4918 			}
4919 		}
4920 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4921 	}
4922 	path->keep_locks = 0;
4923 
4924 	if (ret < 0)
4925 		goto done;
4926 
4927 	nritems = btrfs_header_nritems(path->nodes[0]);
4928 	/*
4929 	 * by releasing the path above we dropped all our locks.  A balance
4930 	 * could have added more items next to the key that used to be
4931 	 * at the very end of the block.  So, check again here and
4932 	 * advance the path if there are now more items available.
4933 	 */
4934 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4935 		if (ret == 0)
4936 			path->slots[0]++;
4937 		ret = 0;
4938 		goto done;
4939 	}
4940 	/*
4941 	 * So the above check misses one case:
4942 	 * - after releasing the path above, someone has removed the item that
4943 	 *   used to be at the very end of the block, and balance between leafs
4944 	 *   gets another one with bigger key.offset to replace it.
4945 	 *
4946 	 * This one should be returned as well, or we can get leaf corruption
4947 	 * later(esp. in __btrfs_drop_extents()).
4948 	 *
4949 	 * And a bit more explanation about this check,
4950 	 * with ret > 0, the key isn't found, the path points to the slot
4951 	 * where it should be inserted, so the path->slots[0] item must be the
4952 	 * bigger one.
4953 	 */
4954 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4955 		ret = 0;
4956 		goto done;
4957 	}
4958 
4959 	while (level < BTRFS_MAX_LEVEL) {
4960 		if (!path->nodes[level]) {
4961 			ret = 1;
4962 			goto done;
4963 		}
4964 
4965 		slot = path->slots[level] + 1;
4966 		c = path->nodes[level];
4967 		if (slot >= btrfs_header_nritems(c)) {
4968 			level++;
4969 			if (level == BTRFS_MAX_LEVEL) {
4970 				ret = 1;
4971 				goto done;
4972 			}
4973 			continue;
4974 		}
4975 
4976 
4977 		/*
4978 		 * Our current level is where we're going to start from, and to
4979 		 * make sure lockdep doesn't complain we need to drop our locks
4980 		 * and nodes from 0 to our current level.
4981 		 */
4982 		for (i = 0; i < level; i++) {
4983 			if (path->locks[level]) {
4984 				btrfs_tree_read_unlock(path->nodes[i]);
4985 				path->locks[i] = 0;
4986 			}
4987 			free_extent_buffer(path->nodes[i]);
4988 			path->nodes[i] = NULL;
4989 		}
4990 
4991 		next = c;
4992 		ret = read_block_for_search(root, path, &next, level,
4993 					    slot, &key);
4994 		if (ret == -EAGAIN && !path->nowait)
4995 			goto again;
4996 
4997 		if (ret < 0) {
4998 			btrfs_release_path(path);
4999 			goto done;
5000 		}
5001 
5002 		if (!path->skip_locking) {
5003 			ret = btrfs_try_tree_read_lock(next);
5004 			if (!ret && path->nowait) {
5005 				ret = -EAGAIN;
5006 				goto done;
5007 			}
5008 			if (!ret && time_seq) {
5009 				/*
5010 				 * If we don't get the lock, we may be racing
5011 				 * with push_leaf_left, holding that lock while
5012 				 * itself waiting for the leaf we've currently
5013 				 * locked. To solve this situation, we give up
5014 				 * on our lock and cycle.
5015 				 */
5016 				free_extent_buffer(next);
5017 				btrfs_release_path(path);
5018 				cond_resched();
5019 				goto again;
5020 			}
5021 			if (!ret)
5022 				btrfs_tree_read_lock(next);
5023 		}
5024 		break;
5025 	}
5026 	path->slots[level] = slot;
5027 	while (1) {
5028 		level--;
5029 		path->nodes[level] = next;
5030 		path->slots[level] = 0;
5031 		if (!path->skip_locking)
5032 			path->locks[level] = BTRFS_READ_LOCK;
5033 		if (!level)
5034 			break;
5035 
5036 		ret = read_block_for_search(root, path, &next, level,
5037 					    0, &key);
5038 		if (ret == -EAGAIN && !path->nowait)
5039 			goto again;
5040 
5041 		if (ret < 0) {
5042 			btrfs_release_path(path);
5043 			goto done;
5044 		}
5045 
5046 		if (!path->skip_locking) {
5047 			if (path->nowait) {
5048 				if (!btrfs_try_tree_read_lock(next)) {
5049 					ret = -EAGAIN;
5050 					goto done;
5051 				}
5052 			} else {
5053 				btrfs_tree_read_lock(next);
5054 			}
5055 		}
5056 	}
5057 	ret = 0;
5058 done:
5059 	unlock_up(path, 0, 1, 0, NULL);
5060 	if (need_commit_sem) {
5061 		int ret2;
5062 
5063 		path->need_commit_sem = 1;
5064 		ret2 = finish_need_commit_sem_search(path);
5065 		up_read(&fs_info->commit_root_sem);
5066 		if (ret2)
5067 			ret = ret2;
5068 	}
5069 
5070 	return ret;
5071 }
5072 
5073 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
5074 {
5075 	path->slots[0]++;
5076 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
5077 		return btrfs_next_old_leaf(root, path, time_seq);
5078 	return 0;
5079 }
5080 
5081 /*
5082  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5083  * searching until it gets past min_objectid or finds an item of 'type'
5084  *
5085  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5086  */
5087 int btrfs_previous_item(struct btrfs_root *root,
5088 			struct btrfs_path *path, u64 min_objectid,
5089 			int type)
5090 {
5091 	struct btrfs_key found_key;
5092 	struct extent_buffer *leaf;
5093 	u32 nritems;
5094 	int ret;
5095 
5096 	while (1) {
5097 		if (path->slots[0] == 0) {
5098 			ret = btrfs_prev_leaf(root, path);
5099 			if (ret != 0)
5100 				return ret;
5101 		} else {
5102 			path->slots[0]--;
5103 		}
5104 		leaf = path->nodes[0];
5105 		nritems = btrfs_header_nritems(leaf);
5106 		if (nritems == 0)
5107 			return 1;
5108 		if (path->slots[0] == nritems)
5109 			path->slots[0]--;
5110 
5111 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5112 		if (found_key.objectid < min_objectid)
5113 			break;
5114 		if (found_key.type == type)
5115 			return 0;
5116 		if (found_key.objectid == min_objectid &&
5117 		    found_key.type < type)
5118 			break;
5119 	}
5120 	return 1;
5121 }
5122 
5123 /*
5124  * search in extent tree to find a previous Metadata/Data extent item with
5125  * min objecitd.
5126  *
5127  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5128  */
5129 int btrfs_previous_extent_item(struct btrfs_root *root,
5130 			struct btrfs_path *path, u64 min_objectid)
5131 {
5132 	struct btrfs_key found_key;
5133 	struct extent_buffer *leaf;
5134 	u32 nritems;
5135 	int ret;
5136 
5137 	while (1) {
5138 		if (path->slots[0] == 0) {
5139 			ret = btrfs_prev_leaf(root, path);
5140 			if (ret != 0)
5141 				return ret;
5142 		} else {
5143 			path->slots[0]--;
5144 		}
5145 		leaf = path->nodes[0];
5146 		nritems = btrfs_header_nritems(leaf);
5147 		if (nritems == 0)
5148 			return 1;
5149 		if (path->slots[0] == nritems)
5150 			path->slots[0]--;
5151 
5152 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5153 		if (found_key.objectid < min_objectid)
5154 			break;
5155 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5156 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5157 			return 0;
5158 		if (found_key.objectid == min_objectid &&
5159 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5160 			break;
5161 	}
5162 	return 1;
5163 }
5164 
5165 int __init btrfs_ctree_init(void)
5166 {
5167 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5168 			sizeof(struct btrfs_path), 0,
5169 			SLAB_MEM_SPREAD, NULL);
5170 	if (!btrfs_path_cachep)
5171 		return -ENOMEM;
5172 	return 0;
5173 }
5174 
5175 void __cold btrfs_ctree_exit(void)
5176 {
5177 	kmem_cache_destroy(btrfs_path_cachep);
5178 }
5179