1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char *name; 35 } btrfs_csums[] = { 36 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 37 }; 38 39 int btrfs_super_csum_size(const struct btrfs_super_block *s) 40 { 41 u16 t = btrfs_super_csum_type(s); 42 /* 43 * csum type is validated at mount time 44 */ 45 return btrfs_csums[t].size; 46 } 47 48 const char *btrfs_super_csum_name(u16 csum_type) 49 { 50 /* csum type is validated at mount time */ 51 return btrfs_csums[csum_type].name; 52 } 53 54 struct btrfs_path *btrfs_alloc_path(void) 55 { 56 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 57 } 58 59 /* 60 * set all locked nodes in the path to blocking locks. This should 61 * be done before scheduling 62 */ 63 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 64 { 65 int i; 66 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 67 if (!p->nodes[i] || !p->locks[i]) 68 continue; 69 /* 70 * If we currently have a spinning reader or writer lock this 71 * will bump the count of blocking holders and drop the 72 * spinlock. 73 */ 74 if (p->locks[i] == BTRFS_READ_LOCK) { 75 btrfs_set_lock_blocking_read(p->nodes[i]); 76 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 77 } else if (p->locks[i] == BTRFS_WRITE_LOCK) { 78 btrfs_set_lock_blocking_write(p->nodes[i]); 79 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 80 } 81 } 82 } 83 84 /* this also releases the path */ 85 void btrfs_free_path(struct btrfs_path *p) 86 { 87 if (!p) 88 return; 89 btrfs_release_path(p); 90 kmem_cache_free(btrfs_path_cachep, p); 91 } 92 93 /* 94 * path release drops references on the extent buffers in the path 95 * and it drops any locks held by this path 96 * 97 * It is safe to call this on paths that no locks or extent buffers held. 98 */ 99 noinline void btrfs_release_path(struct btrfs_path *p) 100 { 101 int i; 102 103 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 104 p->slots[i] = 0; 105 if (!p->nodes[i]) 106 continue; 107 if (p->locks[i]) { 108 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 109 p->locks[i] = 0; 110 } 111 free_extent_buffer(p->nodes[i]); 112 p->nodes[i] = NULL; 113 } 114 } 115 116 /* 117 * safely gets a reference on the root node of a tree. A lock 118 * is not taken, so a concurrent writer may put a different node 119 * at the root of the tree. See btrfs_lock_root_node for the 120 * looping required. 121 * 122 * The extent buffer returned by this has a reference taken, so 123 * it won't disappear. It may stop being the root of the tree 124 * at any time because there are no locks held. 125 */ 126 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 127 { 128 struct extent_buffer *eb; 129 130 while (1) { 131 rcu_read_lock(); 132 eb = rcu_dereference(root->node); 133 134 /* 135 * RCU really hurts here, we could free up the root node because 136 * it was COWed but we may not get the new root node yet so do 137 * the inc_not_zero dance and if it doesn't work then 138 * synchronize_rcu and try again. 139 */ 140 if (atomic_inc_not_zero(&eb->refs)) { 141 rcu_read_unlock(); 142 break; 143 } 144 rcu_read_unlock(); 145 synchronize_rcu(); 146 } 147 return eb; 148 } 149 150 /* loop around taking references on and locking the root node of the 151 * tree until you end up with a lock on the root. A locked buffer 152 * is returned, with a reference held. 153 */ 154 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 155 { 156 struct extent_buffer *eb; 157 158 while (1) { 159 eb = btrfs_root_node(root); 160 btrfs_tree_lock(eb); 161 if (eb == root->node) 162 break; 163 btrfs_tree_unlock(eb); 164 free_extent_buffer(eb); 165 } 166 return eb; 167 } 168 169 /* loop around taking references on and locking the root node of the 170 * tree until you end up with a lock on the root. A locked buffer 171 * is returned, with a reference held. 172 */ 173 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 174 { 175 struct extent_buffer *eb; 176 177 while (1) { 178 eb = btrfs_root_node(root); 179 btrfs_tree_read_lock(eb); 180 if (eb == root->node) 181 break; 182 btrfs_tree_read_unlock(eb); 183 free_extent_buffer(eb); 184 } 185 return eb; 186 } 187 188 /* cowonly root (everything not a reference counted cow subvolume), just get 189 * put onto a simple dirty list. transaction.c walks this to make sure they 190 * get properly updated on disk. 191 */ 192 static void add_root_to_dirty_list(struct btrfs_root *root) 193 { 194 struct btrfs_fs_info *fs_info = root->fs_info; 195 196 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 197 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 198 return; 199 200 spin_lock(&fs_info->trans_lock); 201 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 202 /* Want the extent tree to be the last on the list */ 203 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 204 list_move_tail(&root->dirty_list, 205 &fs_info->dirty_cowonly_roots); 206 else 207 list_move(&root->dirty_list, 208 &fs_info->dirty_cowonly_roots); 209 } 210 spin_unlock(&fs_info->trans_lock); 211 } 212 213 /* 214 * used by snapshot creation to make a copy of a root for a tree with 215 * a given objectid. The buffer with the new root node is returned in 216 * cow_ret, and this func returns zero on success or a negative error code. 217 */ 218 int btrfs_copy_root(struct btrfs_trans_handle *trans, 219 struct btrfs_root *root, 220 struct extent_buffer *buf, 221 struct extent_buffer **cow_ret, u64 new_root_objectid) 222 { 223 struct btrfs_fs_info *fs_info = root->fs_info; 224 struct extent_buffer *cow; 225 int ret = 0; 226 int level; 227 struct btrfs_disk_key disk_key; 228 229 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 230 trans->transid != fs_info->running_transaction->transid); 231 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 232 trans->transid != root->last_trans); 233 234 level = btrfs_header_level(buf); 235 if (level == 0) 236 btrfs_item_key(buf, &disk_key, 0); 237 else 238 btrfs_node_key(buf, &disk_key, 0); 239 240 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 241 &disk_key, level, buf->start, 0); 242 if (IS_ERR(cow)) 243 return PTR_ERR(cow); 244 245 copy_extent_buffer_full(cow, buf); 246 btrfs_set_header_bytenr(cow, cow->start); 247 btrfs_set_header_generation(cow, trans->transid); 248 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 249 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 250 BTRFS_HEADER_FLAG_RELOC); 251 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 252 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 253 else 254 btrfs_set_header_owner(cow, new_root_objectid); 255 256 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 257 258 WARN_ON(btrfs_header_generation(buf) > trans->transid); 259 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 260 ret = btrfs_inc_ref(trans, root, cow, 1); 261 else 262 ret = btrfs_inc_ref(trans, root, cow, 0); 263 264 if (ret) 265 return ret; 266 267 btrfs_mark_buffer_dirty(cow); 268 *cow_ret = cow; 269 return 0; 270 } 271 272 enum mod_log_op { 273 MOD_LOG_KEY_REPLACE, 274 MOD_LOG_KEY_ADD, 275 MOD_LOG_KEY_REMOVE, 276 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 277 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 278 MOD_LOG_MOVE_KEYS, 279 MOD_LOG_ROOT_REPLACE, 280 }; 281 282 struct tree_mod_root { 283 u64 logical; 284 u8 level; 285 }; 286 287 struct tree_mod_elem { 288 struct rb_node node; 289 u64 logical; 290 u64 seq; 291 enum mod_log_op op; 292 293 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 294 int slot; 295 296 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 297 u64 generation; 298 299 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 300 struct btrfs_disk_key key; 301 u64 blockptr; 302 303 /* this is used for op == MOD_LOG_MOVE_KEYS */ 304 struct { 305 int dst_slot; 306 int nr_items; 307 } move; 308 309 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 310 struct tree_mod_root old_root; 311 }; 312 313 /* 314 * Pull a new tree mod seq number for our operation. 315 */ 316 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 317 { 318 return atomic64_inc_return(&fs_info->tree_mod_seq); 319 } 320 321 /* 322 * This adds a new blocker to the tree mod log's blocker list if the @elem 323 * passed does not already have a sequence number set. So when a caller expects 324 * to record tree modifications, it should ensure to set elem->seq to zero 325 * before calling btrfs_get_tree_mod_seq. 326 * Returns a fresh, unused tree log modification sequence number, even if no new 327 * blocker was added. 328 */ 329 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 330 struct seq_list *elem) 331 { 332 write_lock(&fs_info->tree_mod_log_lock); 333 spin_lock(&fs_info->tree_mod_seq_lock); 334 if (!elem->seq) { 335 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 336 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 337 } 338 spin_unlock(&fs_info->tree_mod_seq_lock); 339 write_unlock(&fs_info->tree_mod_log_lock); 340 341 return elem->seq; 342 } 343 344 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 345 struct seq_list *elem) 346 { 347 struct rb_root *tm_root; 348 struct rb_node *node; 349 struct rb_node *next; 350 struct seq_list *cur_elem; 351 struct tree_mod_elem *tm; 352 u64 min_seq = (u64)-1; 353 u64 seq_putting = elem->seq; 354 355 if (!seq_putting) 356 return; 357 358 spin_lock(&fs_info->tree_mod_seq_lock); 359 list_del(&elem->list); 360 elem->seq = 0; 361 362 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 363 if (cur_elem->seq < min_seq) { 364 if (seq_putting > cur_elem->seq) { 365 /* 366 * blocker with lower sequence number exists, we 367 * cannot remove anything from the log 368 */ 369 spin_unlock(&fs_info->tree_mod_seq_lock); 370 return; 371 } 372 min_seq = cur_elem->seq; 373 } 374 } 375 spin_unlock(&fs_info->tree_mod_seq_lock); 376 377 /* 378 * anything that's lower than the lowest existing (read: blocked) 379 * sequence number can be removed from the tree. 380 */ 381 write_lock(&fs_info->tree_mod_log_lock); 382 tm_root = &fs_info->tree_mod_log; 383 for (node = rb_first(tm_root); node; node = next) { 384 next = rb_next(node); 385 tm = rb_entry(node, struct tree_mod_elem, node); 386 if (tm->seq > min_seq) 387 continue; 388 rb_erase(node, tm_root); 389 kfree(tm); 390 } 391 write_unlock(&fs_info->tree_mod_log_lock); 392 } 393 394 /* 395 * key order of the log: 396 * node/leaf start address -> sequence 397 * 398 * The 'start address' is the logical address of the *new* root node 399 * for root replace operations, or the logical address of the affected 400 * block for all other operations. 401 */ 402 static noinline int 403 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 404 { 405 struct rb_root *tm_root; 406 struct rb_node **new; 407 struct rb_node *parent = NULL; 408 struct tree_mod_elem *cur; 409 410 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 411 412 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 413 414 tm_root = &fs_info->tree_mod_log; 415 new = &tm_root->rb_node; 416 while (*new) { 417 cur = rb_entry(*new, struct tree_mod_elem, node); 418 parent = *new; 419 if (cur->logical < tm->logical) 420 new = &((*new)->rb_left); 421 else if (cur->logical > tm->logical) 422 new = &((*new)->rb_right); 423 else if (cur->seq < tm->seq) 424 new = &((*new)->rb_left); 425 else if (cur->seq > tm->seq) 426 new = &((*new)->rb_right); 427 else 428 return -EEXIST; 429 } 430 431 rb_link_node(&tm->node, parent, new); 432 rb_insert_color(&tm->node, tm_root); 433 return 0; 434 } 435 436 /* 437 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 438 * returns zero with the tree_mod_log_lock acquired. The caller must hold 439 * this until all tree mod log insertions are recorded in the rb tree and then 440 * write unlock fs_info::tree_mod_log_lock. 441 */ 442 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 443 struct extent_buffer *eb) { 444 smp_mb(); 445 if (list_empty(&(fs_info)->tree_mod_seq_list)) 446 return 1; 447 if (eb && btrfs_header_level(eb) == 0) 448 return 1; 449 450 write_lock(&fs_info->tree_mod_log_lock); 451 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 452 write_unlock(&fs_info->tree_mod_log_lock); 453 return 1; 454 } 455 456 return 0; 457 } 458 459 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 460 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 461 struct extent_buffer *eb) 462 { 463 smp_mb(); 464 if (list_empty(&(fs_info)->tree_mod_seq_list)) 465 return 0; 466 if (eb && btrfs_header_level(eb) == 0) 467 return 0; 468 469 return 1; 470 } 471 472 static struct tree_mod_elem * 473 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 474 enum mod_log_op op, gfp_t flags) 475 { 476 struct tree_mod_elem *tm; 477 478 tm = kzalloc(sizeof(*tm), flags); 479 if (!tm) 480 return NULL; 481 482 tm->logical = eb->start; 483 if (op != MOD_LOG_KEY_ADD) { 484 btrfs_node_key(eb, &tm->key, slot); 485 tm->blockptr = btrfs_node_blockptr(eb, slot); 486 } 487 tm->op = op; 488 tm->slot = slot; 489 tm->generation = btrfs_node_ptr_generation(eb, slot); 490 RB_CLEAR_NODE(&tm->node); 491 492 return tm; 493 } 494 495 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 496 enum mod_log_op op, gfp_t flags) 497 { 498 struct tree_mod_elem *tm; 499 int ret; 500 501 if (!tree_mod_need_log(eb->fs_info, eb)) 502 return 0; 503 504 tm = alloc_tree_mod_elem(eb, slot, op, flags); 505 if (!tm) 506 return -ENOMEM; 507 508 if (tree_mod_dont_log(eb->fs_info, eb)) { 509 kfree(tm); 510 return 0; 511 } 512 513 ret = __tree_mod_log_insert(eb->fs_info, tm); 514 write_unlock(&eb->fs_info->tree_mod_log_lock); 515 if (ret) 516 kfree(tm); 517 518 return ret; 519 } 520 521 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 522 int dst_slot, int src_slot, int nr_items) 523 { 524 struct tree_mod_elem *tm = NULL; 525 struct tree_mod_elem **tm_list = NULL; 526 int ret = 0; 527 int i; 528 int locked = 0; 529 530 if (!tree_mod_need_log(eb->fs_info, eb)) 531 return 0; 532 533 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 534 if (!tm_list) 535 return -ENOMEM; 536 537 tm = kzalloc(sizeof(*tm), GFP_NOFS); 538 if (!tm) { 539 ret = -ENOMEM; 540 goto free_tms; 541 } 542 543 tm->logical = eb->start; 544 tm->slot = src_slot; 545 tm->move.dst_slot = dst_slot; 546 tm->move.nr_items = nr_items; 547 tm->op = MOD_LOG_MOVE_KEYS; 548 549 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 550 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 551 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 552 if (!tm_list[i]) { 553 ret = -ENOMEM; 554 goto free_tms; 555 } 556 } 557 558 if (tree_mod_dont_log(eb->fs_info, eb)) 559 goto free_tms; 560 locked = 1; 561 562 /* 563 * When we override something during the move, we log these removals. 564 * This can only happen when we move towards the beginning of the 565 * buffer, i.e. dst_slot < src_slot. 566 */ 567 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 568 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 569 if (ret) 570 goto free_tms; 571 } 572 573 ret = __tree_mod_log_insert(eb->fs_info, tm); 574 if (ret) 575 goto free_tms; 576 write_unlock(&eb->fs_info->tree_mod_log_lock); 577 kfree(tm_list); 578 579 return 0; 580 free_tms: 581 for (i = 0; i < nr_items; i++) { 582 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 583 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 584 kfree(tm_list[i]); 585 } 586 if (locked) 587 write_unlock(&eb->fs_info->tree_mod_log_lock); 588 kfree(tm_list); 589 kfree(tm); 590 591 return ret; 592 } 593 594 static inline int 595 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 596 struct tree_mod_elem **tm_list, 597 int nritems) 598 { 599 int i, j; 600 int ret; 601 602 for (i = nritems - 1; i >= 0; i--) { 603 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 604 if (ret) { 605 for (j = nritems - 1; j > i; j--) 606 rb_erase(&tm_list[j]->node, 607 &fs_info->tree_mod_log); 608 return ret; 609 } 610 } 611 612 return 0; 613 } 614 615 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 616 struct extent_buffer *new_root, int log_removal) 617 { 618 struct btrfs_fs_info *fs_info = old_root->fs_info; 619 struct tree_mod_elem *tm = NULL; 620 struct tree_mod_elem **tm_list = NULL; 621 int nritems = 0; 622 int ret = 0; 623 int i; 624 625 if (!tree_mod_need_log(fs_info, NULL)) 626 return 0; 627 628 if (log_removal && btrfs_header_level(old_root) > 0) { 629 nritems = btrfs_header_nritems(old_root); 630 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 631 GFP_NOFS); 632 if (!tm_list) { 633 ret = -ENOMEM; 634 goto free_tms; 635 } 636 for (i = 0; i < nritems; i++) { 637 tm_list[i] = alloc_tree_mod_elem(old_root, i, 638 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 639 if (!tm_list[i]) { 640 ret = -ENOMEM; 641 goto free_tms; 642 } 643 } 644 } 645 646 tm = kzalloc(sizeof(*tm), GFP_NOFS); 647 if (!tm) { 648 ret = -ENOMEM; 649 goto free_tms; 650 } 651 652 tm->logical = new_root->start; 653 tm->old_root.logical = old_root->start; 654 tm->old_root.level = btrfs_header_level(old_root); 655 tm->generation = btrfs_header_generation(old_root); 656 tm->op = MOD_LOG_ROOT_REPLACE; 657 658 if (tree_mod_dont_log(fs_info, NULL)) 659 goto free_tms; 660 661 if (tm_list) 662 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 663 if (!ret) 664 ret = __tree_mod_log_insert(fs_info, tm); 665 666 write_unlock(&fs_info->tree_mod_log_lock); 667 if (ret) 668 goto free_tms; 669 kfree(tm_list); 670 671 return ret; 672 673 free_tms: 674 if (tm_list) { 675 for (i = 0; i < nritems; i++) 676 kfree(tm_list[i]); 677 kfree(tm_list); 678 } 679 kfree(tm); 680 681 return ret; 682 } 683 684 static struct tree_mod_elem * 685 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 686 int smallest) 687 { 688 struct rb_root *tm_root; 689 struct rb_node *node; 690 struct tree_mod_elem *cur = NULL; 691 struct tree_mod_elem *found = NULL; 692 693 read_lock(&fs_info->tree_mod_log_lock); 694 tm_root = &fs_info->tree_mod_log; 695 node = tm_root->rb_node; 696 while (node) { 697 cur = rb_entry(node, struct tree_mod_elem, node); 698 if (cur->logical < start) { 699 node = node->rb_left; 700 } else if (cur->logical > start) { 701 node = node->rb_right; 702 } else if (cur->seq < min_seq) { 703 node = node->rb_left; 704 } else if (!smallest) { 705 /* we want the node with the highest seq */ 706 if (found) 707 BUG_ON(found->seq > cur->seq); 708 found = cur; 709 node = node->rb_left; 710 } else if (cur->seq > min_seq) { 711 /* we want the node with the smallest seq */ 712 if (found) 713 BUG_ON(found->seq < cur->seq); 714 found = cur; 715 node = node->rb_right; 716 } else { 717 found = cur; 718 break; 719 } 720 } 721 read_unlock(&fs_info->tree_mod_log_lock); 722 723 return found; 724 } 725 726 /* 727 * this returns the element from the log with the smallest time sequence 728 * value that's in the log (the oldest log item). any element with a time 729 * sequence lower than min_seq will be ignored. 730 */ 731 static struct tree_mod_elem * 732 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 733 u64 min_seq) 734 { 735 return __tree_mod_log_search(fs_info, start, min_seq, 1); 736 } 737 738 /* 739 * this returns the element from the log with the largest time sequence 740 * value that's in the log (the most recent log item). any element with 741 * a time sequence lower than min_seq will be ignored. 742 */ 743 static struct tree_mod_elem * 744 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 745 { 746 return __tree_mod_log_search(fs_info, start, min_seq, 0); 747 } 748 749 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 750 struct extent_buffer *src, unsigned long dst_offset, 751 unsigned long src_offset, int nr_items) 752 { 753 struct btrfs_fs_info *fs_info = dst->fs_info; 754 int ret = 0; 755 struct tree_mod_elem **tm_list = NULL; 756 struct tree_mod_elem **tm_list_add, **tm_list_rem; 757 int i; 758 int locked = 0; 759 760 if (!tree_mod_need_log(fs_info, NULL)) 761 return 0; 762 763 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 764 return 0; 765 766 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 767 GFP_NOFS); 768 if (!tm_list) 769 return -ENOMEM; 770 771 tm_list_add = tm_list; 772 tm_list_rem = tm_list + nr_items; 773 for (i = 0; i < nr_items; i++) { 774 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 775 MOD_LOG_KEY_REMOVE, GFP_NOFS); 776 if (!tm_list_rem[i]) { 777 ret = -ENOMEM; 778 goto free_tms; 779 } 780 781 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 782 MOD_LOG_KEY_ADD, GFP_NOFS); 783 if (!tm_list_add[i]) { 784 ret = -ENOMEM; 785 goto free_tms; 786 } 787 } 788 789 if (tree_mod_dont_log(fs_info, NULL)) 790 goto free_tms; 791 locked = 1; 792 793 for (i = 0; i < nr_items; i++) { 794 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 795 if (ret) 796 goto free_tms; 797 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 798 if (ret) 799 goto free_tms; 800 } 801 802 write_unlock(&fs_info->tree_mod_log_lock); 803 kfree(tm_list); 804 805 return 0; 806 807 free_tms: 808 for (i = 0; i < nr_items * 2; i++) { 809 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 810 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 811 kfree(tm_list[i]); 812 } 813 if (locked) 814 write_unlock(&fs_info->tree_mod_log_lock); 815 kfree(tm_list); 816 817 return ret; 818 } 819 820 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 821 { 822 struct tree_mod_elem **tm_list = NULL; 823 int nritems = 0; 824 int i; 825 int ret = 0; 826 827 if (btrfs_header_level(eb) == 0) 828 return 0; 829 830 if (!tree_mod_need_log(eb->fs_info, NULL)) 831 return 0; 832 833 nritems = btrfs_header_nritems(eb); 834 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 835 if (!tm_list) 836 return -ENOMEM; 837 838 for (i = 0; i < nritems; i++) { 839 tm_list[i] = alloc_tree_mod_elem(eb, i, 840 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 841 if (!tm_list[i]) { 842 ret = -ENOMEM; 843 goto free_tms; 844 } 845 } 846 847 if (tree_mod_dont_log(eb->fs_info, eb)) 848 goto free_tms; 849 850 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 851 write_unlock(&eb->fs_info->tree_mod_log_lock); 852 if (ret) 853 goto free_tms; 854 kfree(tm_list); 855 856 return 0; 857 858 free_tms: 859 for (i = 0; i < nritems; i++) 860 kfree(tm_list[i]); 861 kfree(tm_list); 862 863 return ret; 864 } 865 866 /* 867 * check if the tree block can be shared by multiple trees 868 */ 869 int btrfs_block_can_be_shared(struct btrfs_root *root, 870 struct extent_buffer *buf) 871 { 872 /* 873 * Tree blocks not in reference counted trees and tree roots 874 * are never shared. If a block was allocated after the last 875 * snapshot and the block was not allocated by tree relocation, 876 * we know the block is not shared. 877 */ 878 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 879 buf != root->node && buf != root->commit_root && 880 (btrfs_header_generation(buf) <= 881 btrfs_root_last_snapshot(&root->root_item) || 882 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 883 return 1; 884 885 return 0; 886 } 887 888 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 889 struct btrfs_root *root, 890 struct extent_buffer *buf, 891 struct extent_buffer *cow, 892 int *last_ref) 893 { 894 struct btrfs_fs_info *fs_info = root->fs_info; 895 u64 refs; 896 u64 owner; 897 u64 flags; 898 u64 new_flags = 0; 899 int ret; 900 901 /* 902 * Backrefs update rules: 903 * 904 * Always use full backrefs for extent pointers in tree block 905 * allocated by tree relocation. 906 * 907 * If a shared tree block is no longer referenced by its owner 908 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 909 * use full backrefs for extent pointers in tree block. 910 * 911 * If a tree block is been relocating 912 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 913 * use full backrefs for extent pointers in tree block. 914 * The reason for this is some operations (such as drop tree) 915 * are only allowed for blocks use full backrefs. 916 */ 917 918 if (btrfs_block_can_be_shared(root, buf)) { 919 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 920 btrfs_header_level(buf), 1, 921 &refs, &flags); 922 if (ret) 923 return ret; 924 if (refs == 0) { 925 ret = -EROFS; 926 btrfs_handle_fs_error(fs_info, ret, NULL); 927 return ret; 928 } 929 } else { 930 refs = 1; 931 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 932 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 933 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 934 else 935 flags = 0; 936 } 937 938 owner = btrfs_header_owner(buf); 939 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 940 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 941 942 if (refs > 1) { 943 if ((owner == root->root_key.objectid || 944 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 945 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 946 ret = btrfs_inc_ref(trans, root, buf, 1); 947 if (ret) 948 return ret; 949 950 if (root->root_key.objectid == 951 BTRFS_TREE_RELOC_OBJECTID) { 952 ret = btrfs_dec_ref(trans, root, buf, 0); 953 if (ret) 954 return ret; 955 ret = btrfs_inc_ref(trans, root, cow, 1); 956 if (ret) 957 return ret; 958 } 959 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 960 } else { 961 962 if (root->root_key.objectid == 963 BTRFS_TREE_RELOC_OBJECTID) 964 ret = btrfs_inc_ref(trans, root, cow, 1); 965 else 966 ret = btrfs_inc_ref(trans, root, cow, 0); 967 if (ret) 968 return ret; 969 } 970 if (new_flags != 0) { 971 int level = btrfs_header_level(buf); 972 973 ret = btrfs_set_disk_extent_flags(trans, 974 buf->start, 975 buf->len, 976 new_flags, level, 0); 977 if (ret) 978 return ret; 979 } 980 } else { 981 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 982 if (root->root_key.objectid == 983 BTRFS_TREE_RELOC_OBJECTID) 984 ret = btrfs_inc_ref(trans, root, cow, 1); 985 else 986 ret = btrfs_inc_ref(trans, root, cow, 0); 987 if (ret) 988 return ret; 989 ret = btrfs_dec_ref(trans, root, buf, 1); 990 if (ret) 991 return ret; 992 } 993 btrfs_clean_tree_block(buf); 994 *last_ref = 1; 995 } 996 return 0; 997 } 998 999 static struct extent_buffer *alloc_tree_block_no_bg_flush( 1000 struct btrfs_trans_handle *trans, 1001 struct btrfs_root *root, 1002 u64 parent_start, 1003 const struct btrfs_disk_key *disk_key, 1004 int level, 1005 u64 hint, 1006 u64 empty_size) 1007 { 1008 struct btrfs_fs_info *fs_info = root->fs_info; 1009 struct extent_buffer *ret; 1010 1011 /* 1012 * If we are COWing a node/leaf from the extent, chunk, device or free 1013 * space trees, make sure that we do not finish block group creation of 1014 * pending block groups. We do this to avoid a deadlock. 1015 * COWing can result in allocation of a new chunk, and flushing pending 1016 * block groups (btrfs_create_pending_block_groups()) can be triggered 1017 * when finishing allocation of a new chunk. Creation of a pending block 1018 * group modifies the extent, chunk, device and free space trees, 1019 * therefore we could deadlock with ourselves since we are holding a 1020 * lock on an extent buffer that btrfs_create_pending_block_groups() may 1021 * try to COW later. 1022 * For similar reasons, we also need to delay flushing pending block 1023 * groups when splitting a leaf or node, from one of those trees, since 1024 * we are holding a write lock on it and its parent or when inserting a 1025 * new root node for one of those trees. 1026 */ 1027 if (root == fs_info->extent_root || 1028 root == fs_info->chunk_root || 1029 root == fs_info->dev_root || 1030 root == fs_info->free_space_root) 1031 trans->can_flush_pending_bgs = false; 1032 1033 ret = btrfs_alloc_tree_block(trans, root, parent_start, 1034 root->root_key.objectid, disk_key, level, 1035 hint, empty_size); 1036 trans->can_flush_pending_bgs = true; 1037 1038 return ret; 1039 } 1040 1041 /* 1042 * does the dirty work in cow of a single block. The parent block (if 1043 * supplied) is updated to point to the new cow copy. The new buffer is marked 1044 * dirty and returned locked. If you modify the block it needs to be marked 1045 * dirty again. 1046 * 1047 * search_start -- an allocation hint for the new block 1048 * 1049 * empty_size -- a hint that you plan on doing more cow. This is the size in 1050 * bytes the allocator should try to find free next to the block it returns. 1051 * This is just a hint and may be ignored by the allocator. 1052 */ 1053 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1054 struct btrfs_root *root, 1055 struct extent_buffer *buf, 1056 struct extent_buffer *parent, int parent_slot, 1057 struct extent_buffer **cow_ret, 1058 u64 search_start, u64 empty_size) 1059 { 1060 struct btrfs_fs_info *fs_info = root->fs_info; 1061 struct btrfs_disk_key disk_key; 1062 struct extent_buffer *cow; 1063 int level, ret; 1064 int last_ref = 0; 1065 int unlock_orig = 0; 1066 u64 parent_start = 0; 1067 1068 if (*cow_ret == buf) 1069 unlock_orig = 1; 1070 1071 btrfs_assert_tree_locked(buf); 1072 1073 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1074 trans->transid != fs_info->running_transaction->transid); 1075 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1076 trans->transid != root->last_trans); 1077 1078 level = btrfs_header_level(buf); 1079 1080 if (level == 0) 1081 btrfs_item_key(buf, &disk_key, 0); 1082 else 1083 btrfs_node_key(buf, &disk_key, 0); 1084 1085 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1086 parent_start = parent->start; 1087 1088 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1089 level, search_start, empty_size); 1090 if (IS_ERR(cow)) 1091 return PTR_ERR(cow); 1092 1093 /* cow is set to blocking by btrfs_init_new_buffer */ 1094 1095 copy_extent_buffer_full(cow, buf); 1096 btrfs_set_header_bytenr(cow, cow->start); 1097 btrfs_set_header_generation(cow, trans->transid); 1098 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1099 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1100 BTRFS_HEADER_FLAG_RELOC); 1101 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1102 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1103 else 1104 btrfs_set_header_owner(cow, root->root_key.objectid); 1105 1106 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1107 1108 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1109 if (ret) { 1110 btrfs_abort_transaction(trans, ret); 1111 return ret; 1112 } 1113 1114 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1115 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1116 if (ret) { 1117 btrfs_abort_transaction(trans, ret); 1118 return ret; 1119 } 1120 } 1121 1122 if (buf == root->node) { 1123 WARN_ON(parent && parent != buf); 1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1125 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1126 parent_start = buf->start; 1127 1128 extent_buffer_get(cow); 1129 ret = tree_mod_log_insert_root(root->node, cow, 1); 1130 BUG_ON(ret < 0); 1131 rcu_assign_pointer(root->node, cow); 1132 1133 btrfs_free_tree_block(trans, root, buf, parent_start, 1134 last_ref); 1135 free_extent_buffer(buf); 1136 add_root_to_dirty_list(root); 1137 } else { 1138 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1139 tree_mod_log_insert_key(parent, parent_slot, 1140 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1141 btrfs_set_node_blockptr(parent, parent_slot, 1142 cow->start); 1143 btrfs_set_node_ptr_generation(parent, parent_slot, 1144 trans->transid); 1145 btrfs_mark_buffer_dirty(parent); 1146 if (last_ref) { 1147 ret = tree_mod_log_free_eb(buf); 1148 if (ret) { 1149 btrfs_abort_transaction(trans, ret); 1150 return ret; 1151 } 1152 } 1153 btrfs_free_tree_block(trans, root, buf, parent_start, 1154 last_ref); 1155 } 1156 if (unlock_orig) 1157 btrfs_tree_unlock(buf); 1158 free_extent_buffer_stale(buf); 1159 btrfs_mark_buffer_dirty(cow); 1160 *cow_ret = cow; 1161 return 0; 1162 } 1163 1164 /* 1165 * returns the logical address of the oldest predecessor of the given root. 1166 * entries older than time_seq are ignored. 1167 */ 1168 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1169 struct extent_buffer *eb_root, u64 time_seq) 1170 { 1171 struct tree_mod_elem *tm; 1172 struct tree_mod_elem *found = NULL; 1173 u64 root_logical = eb_root->start; 1174 int looped = 0; 1175 1176 if (!time_seq) 1177 return NULL; 1178 1179 /* 1180 * the very last operation that's logged for a root is the 1181 * replacement operation (if it is replaced at all). this has 1182 * the logical address of the *new* root, making it the very 1183 * first operation that's logged for this root. 1184 */ 1185 while (1) { 1186 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1187 time_seq); 1188 if (!looped && !tm) 1189 return NULL; 1190 /* 1191 * if there are no tree operation for the oldest root, we simply 1192 * return it. this should only happen if that (old) root is at 1193 * level 0. 1194 */ 1195 if (!tm) 1196 break; 1197 1198 /* 1199 * if there's an operation that's not a root replacement, we 1200 * found the oldest version of our root. normally, we'll find a 1201 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1202 */ 1203 if (tm->op != MOD_LOG_ROOT_REPLACE) 1204 break; 1205 1206 found = tm; 1207 root_logical = tm->old_root.logical; 1208 looped = 1; 1209 } 1210 1211 /* if there's no old root to return, return what we found instead */ 1212 if (!found) 1213 found = tm; 1214 1215 return found; 1216 } 1217 1218 /* 1219 * tm is a pointer to the first operation to rewind within eb. then, all 1220 * previous operations will be rewound (until we reach something older than 1221 * time_seq). 1222 */ 1223 static void 1224 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1225 u64 time_seq, struct tree_mod_elem *first_tm) 1226 { 1227 u32 n; 1228 struct rb_node *next; 1229 struct tree_mod_elem *tm = first_tm; 1230 unsigned long o_dst; 1231 unsigned long o_src; 1232 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1233 1234 n = btrfs_header_nritems(eb); 1235 read_lock(&fs_info->tree_mod_log_lock); 1236 while (tm && tm->seq >= time_seq) { 1237 /* 1238 * all the operations are recorded with the operator used for 1239 * the modification. as we're going backwards, we do the 1240 * opposite of each operation here. 1241 */ 1242 switch (tm->op) { 1243 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1244 BUG_ON(tm->slot < n); 1245 /* Fallthrough */ 1246 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1247 case MOD_LOG_KEY_REMOVE: 1248 btrfs_set_node_key(eb, &tm->key, tm->slot); 1249 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1250 btrfs_set_node_ptr_generation(eb, tm->slot, 1251 tm->generation); 1252 n++; 1253 break; 1254 case MOD_LOG_KEY_REPLACE: 1255 BUG_ON(tm->slot >= n); 1256 btrfs_set_node_key(eb, &tm->key, tm->slot); 1257 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1258 btrfs_set_node_ptr_generation(eb, tm->slot, 1259 tm->generation); 1260 break; 1261 case MOD_LOG_KEY_ADD: 1262 /* if a move operation is needed it's in the log */ 1263 n--; 1264 break; 1265 case MOD_LOG_MOVE_KEYS: 1266 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1267 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1268 memmove_extent_buffer(eb, o_dst, o_src, 1269 tm->move.nr_items * p_size); 1270 break; 1271 case MOD_LOG_ROOT_REPLACE: 1272 /* 1273 * this operation is special. for roots, this must be 1274 * handled explicitly before rewinding. 1275 * for non-roots, this operation may exist if the node 1276 * was a root: root A -> child B; then A gets empty and 1277 * B is promoted to the new root. in the mod log, we'll 1278 * have a root-replace operation for B, a tree block 1279 * that is no root. we simply ignore that operation. 1280 */ 1281 break; 1282 } 1283 next = rb_next(&tm->node); 1284 if (!next) 1285 break; 1286 tm = rb_entry(next, struct tree_mod_elem, node); 1287 if (tm->logical != first_tm->logical) 1288 break; 1289 } 1290 read_unlock(&fs_info->tree_mod_log_lock); 1291 btrfs_set_header_nritems(eb, n); 1292 } 1293 1294 /* 1295 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1296 * is returned. If rewind operations happen, a fresh buffer is returned. The 1297 * returned buffer is always read-locked. If the returned buffer is not the 1298 * input buffer, the lock on the input buffer is released and the input buffer 1299 * is freed (its refcount is decremented). 1300 */ 1301 static struct extent_buffer * 1302 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1303 struct extent_buffer *eb, u64 time_seq) 1304 { 1305 struct extent_buffer *eb_rewin; 1306 struct tree_mod_elem *tm; 1307 1308 if (!time_seq) 1309 return eb; 1310 1311 if (btrfs_header_level(eb) == 0) 1312 return eb; 1313 1314 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1315 if (!tm) 1316 return eb; 1317 1318 btrfs_set_path_blocking(path); 1319 btrfs_set_lock_blocking_read(eb); 1320 1321 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1322 BUG_ON(tm->slot != 0); 1323 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1324 if (!eb_rewin) { 1325 btrfs_tree_read_unlock_blocking(eb); 1326 free_extent_buffer(eb); 1327 return NULL; 1328 } 1329 btrfs_set_header_bytenr(eb_rewin, eb->start); 1330 btrfs_set_header_backref_rev(eb_rewin, 1331 btrfs_header_backref_rev(eb)); 1332 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1333 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1334 } else { 1335 eb_rewin = btrfs_clone_extent_buffer(eb); 1336 if (!eb_rewin) { 1337 btrfs_tree_read_unlock_blocking(eb); 1338 free_extent_buffer(eb); 1339 return NULL; 1340 } 1341 } 1342 1343 btrfs_tree_read_unlock_blocking(eb); 1344 free_extent_buffer(eb); 1345 1346 btrfs_tree_read_lock(eb_rewin); 1347 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1348 WARN_ON(btrfs_header_nritems(eb_rewin) > 1349 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1350 1351 return eb_rewin; 1352 } 1353 1354 /* 1355 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1356 * value. If there are no changes, the current root->root_node is returned. If 1357 * anything changed in between, there's a fresh buffer allocated on which the 1358 * rewind operations are done. In any case, the returned buffer is read locked. 1359 * Returns NULL on error (with no locks held). 1360 */ 1361 static inline struct extent_buffer * 1362 get_old_root(struct btrfs_root *root, u64 time_seq) 1363 { 1364 struct btrfs_fs_info *fs_info = root->fs_info; 1365 struct tree_mod_elem *tm; 1366 struct extent_buffer *eb = NULL; 1367 struct extent_buffer *eb_root; 1368 u64 eb_root_owner = 0; 1369 struct extent_buffer *old; 1370 struct tree_mod_root *old_root = NULL; 1371 u64 old_generation = 0; 1372 u64 logical; 1373 int level; 1374 1375 eb_root = btrfs_read_lock_root_node(root); 1376 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1377 if (!tm) 1378 return eb_root; 1379 1380 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1381 old_root = &tm->old_root; 1382 old_generation = tm->generation; 1383 logical = old_root->logical; 1384 level = old_root->level; 1385 } else { 1386 logical = eb_root->start; 1387 level = btrfs_header_level(eb_root); 1388 } 1389 1390 tm = tree_mod_log_search(fs_info, logical, time_seq); 1391 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1392 btrfs_tree_read_unlock(eb_root); 1393 free_extent_buffer(eb_root); 1394 old = read_tree_block(fs_info, logical, 0, level, NULL); 1395 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1396 if (!IS_ERR(old)) 1397 free_extent_buffer(old); 1398 btrfs_warn(fs_info, 1399 "failed to read tree block %llu from get_old_root", 1400 logical); 1401 } else { 1402 eb = btrfs_clone_extent_buffer(old); 1403 free_extent_buffer(old); 1404 } 1405 } else if (old_root) { 1406 eb_root_owner = btrfs_header_owner(eb_root); 1407 btrfs_tree_read_unlock(eb_root); 1408 free_extent_buffer(eb_root); 1409 eb = alloc_dummy_extent_buffer(fs_info, logical); 1410 } else { 1411 btrfs_set_lock_blocking_read(eb_root); 1412 eb = btrfs_clone_extent_buffer(eb_root); 1413 btrfs_tree_read_unlock_blocking(eb_root); 1414 free_extent_buffer(eb_root); 1415 } 1416 1417 if (!eb) 1418 return NULL; 1419 btrfs_tree_read_lock(eb); 1420 if (old_root) { 1421 btrfs_set_header_bytenr(eb, eb->start); 1422 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1423 btrfs_set_header_owner(eb, eb_root_owner); 1424 btrfs_set_header_level(eb, old_root->level); 1425 btrfs_set_header_generation(eb, old_generation); 1426 } 1427 if (tm) 1428 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1429 else 1430 WARN_ON(btrfs_header_level(eb) != 0); 1431 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1432 1433 return eb; 1434 } 1435 1436 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1437 { 1438 struct tree_mod_elem *tm; 1439 int level; 1440 struct extent_buffer *eb_root = btrfs_root_node(root); 1441 1442 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1443 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1444 level = tm->old_root.level; 1445 } else { 1446 level = btrfs_header_level(eb_root); 1447 } 1448 free_extent_buffer(eb_root); 1449 1450 return level; 1451 } 1452 1453 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1454 struct btrfs_root *root, 1455 struct extent_buffer *buf) 1456 { 1457 if (btrfs_is_testing(root->fs_info)) 1458 return 0; 1459 1460 /* Ensure we can see the FORCE_COW bit */ 1461 smp_mb__before_atomic(); 1462 1463 /* 1464 * We do not need to cow a block if 1465 * 1) this block is not created or changed in this transaction; 1466 * 2) this block does not belong to TREE_RELOC tree; 1467 * 3) the root is not forced COW. 1468 * 1469 * What is forced COW: 1470 * when we create snapshot during committing the transaction, 1471 * after we've finished copying src root, we must COW the shared 1472 * block to ensure the metadata consistency. 1473 */ 1474 if (btrfs_header_generation(buf) == trans->transid && 1475 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1476 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1477 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1478 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1479 return 0; 1480 return 1; 1481 } 1482 1483 /* 1484 * cows a single block, see __btrfs_cow_block for the real work. 1485 * This version of it has extra checks so that a block isn't COWed more than 1486 * once per transaction, as long as it hasn't been written yet 1487 */ 1488 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1489 struct btrfs_root *root, struct extent_buffer *buf, 1490 struct extent_buffer *parent, int parent_slot, 1491 struct extent_buffer **cow_ret) 1492 { 1493 struct btrfs_fs_info *fs_info = root->fs_info; 1494 u64 search_start; 1495 int ret; 1496 1497 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1498 btrfs_err(fs_info, 1499 "COW'ing blocks on a fs root that's being dropped"); 1500 1501 if (trans->transaction != fs_info->running_transaction) 1502 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1503 trans->transid, 1504 fs_info->running_transaction->transid); 1505 1506 if (trans->transid != fs_info->generation) 1507 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1508 trans->transid, fs_info->generation); 1509 1510 if (!should_cow_block(trans, root, buf)) { 1511 trans->dirty = true; 1512 *cow_ret = buf; 1513 return 0; 1514 } 1515 1516 search_start = buf->start & ~((u64)SZ_1G - 1); 1517 1518 if (parent) 1519 btrfs_set_lock_blocking_write(parent); 1520 btrfs_set_lock_blocking_write(buf); 1521 1522 /* 1523 * Before CoWing this block for later modification, check if it's 1524 * the subtree root and do the delayed subtree trace if needed. 1525 * 1526 * Also We don't care about the error, as it's handled internally. 1527 */ 1528 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1529 ret = __btrfs_cow_block(trans, root, buf, parent, 1530 parent_slot, cow_ret, search_start, 0); 1531 1532 trace_btrfs_cow_block(root, buf, *cow_ret); 1533 1534 return ret; 1535 } 1536 1537 /* 1538 * helper function for defrag to decide if two blocks pointed to by a 1539 * node are actually close by 1540 */ 1541 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1542 { 1543 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1544 return 1; 1545 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1546 return 1; 1547 return 0; 1548 } 1549 1550 /* 1551 * compare two keys in a memcmp fashion 1552 */ 1553 static int comp_keys(const struct btrfs_disk_key *disk, 1554 const struct btrfs_key *k2) 1555 { 1556 struct btrfs_key k1; 1557 1558 btrfs_disk_key_to_cpu(&k1, disk); 1559 1560 return btrfs_comp_cpu_keys(&k1, k2); 1561 } 1562 1563 /* 1564 * same as comp_keys only with two btrfs_key's 1565 */ 1566 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1567 { 1568 if (k1->objectid > k2->objectid) 1569 return 1; 1570 if (k1->objectid < k2->objectid) 1571 return -1; 1572 if (k1->type > k2->type) 1573 return 1; 1574 if (k1->type < k2->type) 1575 return -1; 1576 if (k1->offset > k2->offset) 1577 return 1; 1578 if (k1->offset < k2->offset) 1579 return -1; 1580 return 0; 1581 } 1582 1583 /* 1584 * this is used by the defrag code to go through all the 1585 * leaves pointed to by a node and reallocate them so that 1586 * disk order is close to key order 1587 */ 1588 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1589 struct btrfs_root *root, struct extent_buffer *parent, 1590 int start_slot, u64 *last_ret, 1591 struct btrfs_key *progress) 1592 { 1593 struct btrfs_fs_info *fs_info = root->fs_info; 1594 struct extent_buffer *cur; 1595 u64 blocknr; 1596 u64 gen; 1597 u64 search_start = *last_ret; 1598 u64 last_block = 0; 1599 u64 other; 1600 u32 parent_nritems; 1601 int end_slot; 1602 int i; 1603 int err = 0; 1604 int parent_level; 1605 int uptodate; 1606 u32 blocksize; 1607 int progress_passed = 0; 1608 struct btrfs_disk_key disk_key; 1609 1610 parent_level = btrfs_header_level(parent); 1611 1612 WARN_ON(trans->transaction != fs_info->running_transaction); 1613 WARN_ON(trans->transid != fs_info->generation); 1614 1615 parent_nritems = btrfs_header_nritems(parent); 1616 blocksize = fs_info->nodesize; 1617 end_slot = parent_nritems - 1; 1618 1619 if (parent_nritems <= 1) 1620 return 0; 1621 1622 btrfs_set_lock_blocking_write(parent); 1623 1624 for (i = start_slot; i <= end_slot; i++) { 1625 struct btrfs_key first_key; 1626 int close = 1; 1627 1628 btrfs_node_key(parent, &disk_key, i); 1629 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1630 continue; 1631 1632 progress_passed = 1; 1633 blocknr = btrfs_node_blockptr(parent, i); 1634 gen = btrfs_node_ptr_generation(parent, i); 1635 btrfs_node_key_to_cpu(parent, &first_key, i); 1636 if (last_block == 0) 1637 last_block = blocknr; 1638 1639 if (i > 0) { 1640 other = btrfs_node_blockptr(parent, i - 1); 1641 close = close_blocks(blocknr, other, blocksize); 1642 } 1643 if (!close && i < end_slot) { 1644 other = btrfs_node_blockptr(parent, i + 1); 1645 close = close_blocks(blocknr, other, blocksize); 1646 } 1647 if (close) { 1648 last_block = blocknr; 1649 continue; 1650 } 1651 1652 cur = find_extent_buffer(fs_info, blocknr); 1653 if (cur) 1654 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1655 else 1656 uptodate = 0; 1657 if (!cur || !uptodate) { 1658 if (!cur) { 1659 cur = read_tree_block(fs_info, blocknr, gen, 1660 parent_level - 1, 1661 &first_key); 1662 if (IS_ERR(cur)) { 1663 return PTR_ERR(cur); 1664 } else if (!extent_buffer_uptodate(cur)) { 1665 free_extent_buffer(cur); 1666 return -EIO; 1667 } 1668 } else if (!uptodate) { 1669 err = btrfs_read_buffer(cur, gen, 1670 parent_level - 1,&first_key); 1671 if (err) { 1672 free_extent_buffer(cur); 1673 return err; 1674 } 1675 } 1676 } 1677 if (search_start == 0) 1678 search_start = last_block; 1679 1680 btrfs_tree_lock(cur); 1681 btrfs_set_lock_blocking_write(cur); 1682 err = __btrfs_cow_block(trans, root, cur, parent, i, 1683 &cur, search_start, 1684 min(16 * blocksize, 1685 (end_slot - i) * blocksize)); 1686 if (err) { 1687 btrfs_tree_unlock(cur); 1688 free_extent_buffer(cur); 1689 break; 1690 } 1691 search_start = cur->start; 1692 last_block = cur->start; 1693 *last_ret = search_start; 1694 btrfs_tree_unlock(cur); 1695 free_extent_buffer(cur); 1696 } 1697 return err; 1698 } 1699 1700 /* 1701 * search for key in the extent_buffer. The items start at offset p, 1702 * and they are item_size apart. There are 'max' items in p. 1703 * 1704 * the slot in the array is returned via slot, and it points to 1705 * the place where you would insert key if it is not found in 1706 * the array. 1707 * 1708 * slot may point to max if the key is bigger than all of the keys 1709 */ 1710 static noinline int generic_bin_search(struct extent_buffer *eb, 1711 unsigned long p, int item_size, 1712 const struct btrfs_key *key, 1713 int max, int *slot) 1714 { 1715 int low = 0; 1716 int high = max; 1717 int mid; 1718 int ret; 1719 struct btrfs_disk_key *tmp = NULL; 1720 struct btrfs_disk_key unaligned; 1721 unsigned long offset; 1722 char *kaddr = NULL; 1723 unsigned long map_start = 0; 1724 unsigned long map_len = 0; 1725 int err; 1726 1727 if (low > high) { 1728 btrfs_err(eb->fs_info, 1729 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1730 __func__, low, high, eb->start, 1731 btrfs_header_owner(eb), btrfs_header_level(eb)); 1732 return -EINVAL; 1733 } 1734 1735 while (low < high) { 1736 mid = (low + high) / 2; 1737 offset = p + mid * item_size; 1738 1739 if (!kaddr || offset < map_start || 1740 (offset + sizeof(struct btrfs_disk_key)) > 1741 map_start + map_len) { 1742 1743 err = map_private_extent_buffer(eb, offset, 1744 sizeof(struct btrfs_disk_key), 1745 &kaddr, &map_start, &map_len); 1746 1747 if (!err) { 1748 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1749 map_start); 1750 } else if (err == 1) { 1751 read_extent_buffer(eb, &unaligned, 1752 offset, sizeof(unaligned)); 1753 tmp = &unaligned; 1754 } else { 1755 return err; 1756 } 1757 1758 } else { 1759 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1760 map_start); 1761 } 1762 ret = comp_keys(tmp, key); 1763 1764 if (ret < 0) 1765 low = mid + 1; 1766 else if (ret > 0) 1767 high = mid; 1768 else { 1769 *slot = mid; 1770 return 0; 1771 } 1772 } 1773 *slot = low; 1774 return 1; 1775 } 1776 1777 /* 1778 * simple bin_search frontend that does the right thing for 1779 * leaves vs nodes 1780 */ 1781 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1782 int level, int *slot) 1783 { 1784 if (level == 0) 1785 return generic_bin_search(eb, 1786 offsetof(struct btrfs_leaf, items), 1787 sizeof(struct btrfs_item), 1788 key, btrfs_header_nritems(eb), 1789 slot); 1790 else 1791 return generic_bin_search(eb, 1792 offsetof(struct btrfs_node, ptrs), 1793 sizeof(struct btrfs_key_ptr), 1794 key, btrfs_header_nritems(eb), 1795 slot); 1796 } 1797 1798 static void root_add_used(struct btrfs_root *root, u32 size) 1799 { 1800 spin_lock(&root->accounting_lock); 1801 btrfs_set_root_used(&root->root_item, 1802 btrfs_root_used(&root->root_item) + size); 1803 spin_unlock(&root->accounting_lock); 1804 } 1805 1806 static void root_sub_used(struct btrfs_root *root, u32 size) 1807 { 1808 spin_lock(&root->accounting_lock); 1809 btrfs_set_root_used(&root->root_item, 1810 btrfs_root_used(&root->root_item) - size); 1811 spin_unlock(&root->accounting_lock); 1812 } 1813 1814 /* given a node and slot number, this reads the blocks it points to. The 1815 * extent buffer is returned with a reference taken (but unlocked). 1816 */ 1817 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1818 int slot) 1819 { 1820 int level = btrfs_header_level(parent); 1821 struct extent_buffer *eb; 1822 struct btrfs_key first_key; 1823 1824 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1825 return ERR_PTR(-ENOENT); 1826 1827 BUG_ON(level == 0); 1828 1829 btrfs_node_key_to_cpu(parent, &first_key, slot); 1830 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1831 btrfs_node_ptr_generation(parent, slot), 1832 level - 1, &first_key); 1833 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1834 free_extent_buffer(eb); 1835 eb = ERR_PTR(-EIO); 1836 } 1837 1838 return eb; 1839 } 1840 1841 /* 1842 * node level balancing, used to make sure nodes are in proper order for 1843 * item deletion. We balance from the top down, so we have to make sure 1844 * that a deletion won't leave an node completely empty later on. 1845 */ 1846 static noinline int balance_level(struct btrfs_trans_handle *trans, 1847 struct btrfs_root *root, 1848 struct btrfs_path *path, int level) 1849 { 1850 struct btrfs_fs_info *fs_info = root->fs_info; 1851 struct extent_buffer *right = NULL; 1852 struct extent_buffer *mid; 1853 struct extent_buffer *left = NULL; 1854 struct extent_buffer *parent = NULL; 1855 int ret = 0; 1856 int wret; 1857 int pslot; 1858 int orig_slot = path->slots[level]; 1859 u64 orig_ptr; 1860 1861 ASSERT(level > 0); 1862 1863 mid = path->nodes[level]; 1864 1865 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1866 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1867 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1868 1869 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1870 1871 if (level < BTRFS_MAX_LEVEL - 1) { 1872 parent = path->nodes[level + 1]; 1873 pslot = path->slots[level + 1]; 1874 } 1875 1876 /* 1877 * deal with the case where there is only one pointer in the root 1878 * by promoting the node below to a root 1879 */ 1880 if (!parent) { 1881 struct extent_buffer *child; 1882 1883 if (btrfs_header_nritems(mid) != 1) 1884 return 0; 1885 1886 /* promote the child to a root */ 1887 child = btrfs_read_node_slot(mid, 0); 1888 if (IS_ERR(child)) { 1889 ret = PTR_ERR(child); 1890 btrfs_handle_fs_error(fs_info, ret, NULL); 1891 goto enospc; 1892 } 1893 1894 btrfs_tree_lock(child); 1895 btrfs_set_lock_blocking_write(child); 1896 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1897 if (ret) { 1898 btrfs_tree_unlock(child); 1899 free_extent_buffer(child); 1900 goto enospc; 1901 } 1902 1903 ret = tree_mod_log_insert_root(root->node, child, 1); 1904 BUG_ON(ret < 0); 1905 rcu_assign_pointer(root->node, child); 1906 1907 add_root_to_dirty_list(root); 1908 btrfs_tree_unlock(child); 1909 1910 path->locks[level] = 0; 1911 path->nodes[level] = NULL; 1912 btrfs_clean_tree_block(mid); 1913 btrfs_tree_unlock(mid); 1914 /* once for the path */ 1915 free_extent_buffer(mid); 1916 1917 root_sub_used(root, mid->len); 1918 btrfs_free_tree_block(trans, root, mid, 0, 1); 1919 /* once for the root ptr */ 1920 free_extent_buffer_stale(mid); 1921 return 0; 1922 } 1923 if (btrfs_header_nritems(mid) > 1924 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1925 return 0; 1926 1927 left = btrfs_read_node_slot(parent, pslot - 1); 1928 if (IS_ERR(left)) 1929 left = NULL; 1930 1931 if (left) { 1932 btrfs_tree_lock(left); 1933 btrfs_set_lock_blocking_write(left); 1934 wret = btrfs_cow_block(trans, root, left, 1935 parent, pslot - 1, &left); 1936 if (wret) { 1937 ret = wret; 1938 goto enospc; 1939 } 1940 } 1941 1942 right = btrfs_read_node_slot(parent, pslot + 1); 1943 if (IS_ERR(right)) 1944 right = NULL; 1945 1946 if (right) { 1947 btrfs_tree_lock(right); 1948 btrfs_set_lock_blocking_write(right); 1949 wret = btrfs_cow_block(trans, root, right, 1950 parent, pslot + 1, &right); 1951 if (wret) { 1952 ret = wret; 1953 goto enospc; 1954 } 1955 } 1956 1957 /* first, try to make some room in the middle buffer */ 1958 if (left) { 1959 orig_slot += btrfs_header_nritems(left); 1960 wret = push_node_left(trans, left, mid, 1); 1961 if (wret < 0) 1962 ret = wret; 1963 } 1964 1965 /* 1966 * then try to empty the right most buffer into the middle 1967 */ 1968 if (right) { 1969 wret = push_node_left(trans, mid, right, 1); 1970 if (wret < 0 && wret != -ENOSPC) 1971 ret = wret; 1972 if (btrfs_header_nritems(right) == 0) { 1973 btrfs_clean_tree_block(right); 1974 btrfs_tree_unlock(right); 1975 del_ptr(root, path, level + 1, pslot + 1); 1976 root_sub_used(root, right->len); 1977 btrfs_free_tree_block(trans, root, right, 0, 1); 1978 free_extent_buffer_stale(right); 1979 right = NULL; 1980 } else { 1981 struct btrfs_disk_key right_key; 1982 btrfs_node_key(right, &right_key, 0); 1983 ret = tree_mod_log_insert_key(parent, pslot + 1, 1984 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1985 BUG_ON(ret < 0); 1986 btrfs_set_node_key(parent, &right_key, pslot + 1); 1987 btrfs_mark_buffer_dirty(parent); 1988 } 1989 } 1990 if (btrfs_header_nritems(mid) == 1) { 1991 /* 1992 * we're not allowed to leave a node with one item in the 1993 * tree during a delete. A deletion from lower in the tree 1994 * could try to delete the only pointer in this node. 1995 * So, pull some keys from the left. 1996 * There has to be a left pointer at this point because 1997 * otherwise we would have pulled some pointers from the 1998 * right 1999 */ 2000 if (!left) { 2001 ret = -EROFS; 2002 btrfs_handle_fs_error(fs_info, ret, NULL); 2003 goto enospc; 2004 } 2005 wret = balance_node_right(trans, mid, left); 2006 if (wret < 0) { 2007 ret = wret; 2008 goto enospc; 2009 } 2010 if (wret == 1) { 2011 wret = push_node_left(trans, left, mid, 1); 2012 if (wret < 0) 2013 ret = wret; 2014 } 2015 BUG_ON(wret == 1); 2016 } 2017 if (btrfs_header_nritems(mid) == 0) { 2018 btrfs_clean_tree_block(mid); 2019 btrfs_tree_unlock(mid); 2020 del_ptr(root, path, level + 1, pslot); 2021 root_sub_used(root, mid->len); 2022 btrfs_free_tree_block(trans, root, mid, 0, 1); 2023 free_extent_buffer_stale(mid); 2024 mid = NULL; 2025 } else { 2026 /* update the parent key to reflect our changes */ 2027 struct btrfs_disk_key mid_key; 2028 btrfs_node_key(mid, &mid_key, 0); 2029 ret = tree_mod_log_insert_key(parent, pslot, 2030 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2031 BUG_ON(ret < 0); 2032 btrfs_set_node_key(parent, &mid_key, pslot); 2033 btrfs_mark_buffer_dirty(parent); 2034 } 2035 2036 /* update the path */ 2037 if (left) { 2038 if (btrfs_header_nritems(left) > orig_slot) { 2039 extent_buffer_get(left); 2040 /* left was locked after cow */ 2041 path->nodes[level] = left; 2042 path->slots[level + 1] -= 1; 2043 path->slots[level] = orig_slot; 2044 if (mid) { 2045 btrfs_tree_unlock(mid); 2046 free_extent_buffer(mid); 2047 } 2048 } else { 2049 orig_slot -= btrfs_header_nritems(left); 2050 path->slots[level] = orig_slot; 2051 } 2052 } 2053 /* double check we haven't messed things up */ 2054 if (orig_ptr != 2055 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2056 BUG(); 2057 enospc: 2058 if (right) { 2059 btrfs_tree_unlock(right); 2060 free_extent_buffer(right); 2061 } 2062 if (left) { 2063 if (path->nodes[level] != left) 2064 btrfs_tree_unlock(left); 2065 free_extent_buffer(left); 2066 } 2067 return ret; 2068 } 2069 2070 /* Node balancing for insertion. Here we only split or push nodes around 2071 * when they are completely full. This is also done top down, so we 2072 * have to be pessimistic. 2073 */ 2074 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2075 struct btrfs_root *root, 2076 struct btrfs_path *path, int level) 2077 { 2078 struct btrfs_fs_info *fs_info = root->fs_info; 2079 struct extent_buffer *right = NULL; 2080 struct extent_buffer *mid; 2081 struct extent_buffer *left = NULL; 2082 struct extent_buffer *parent = NULL; 2083 int ret = 0; 2084 int wret; 2085 int pslot; 2086 int orig_slot = path->slots[level]; 2087 2088 if (level == 0) 2089 return 1; 2090 2091 mid = path->nodes[level]; 2092 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2093 2094 if (level < BTRFS_MAX_LEVEL - 1) { 2095 parent = path->nodes[level + 1]; 2096 pslot = path->slots[level + 1]; 2097 } 2098 2099 if (!parent) 2100 return 1; 2101 2102 left = btrfs_read_node_slot(parent, pslot - 1); 2103 if (IS_ERR(left)) 2104 left = NULL; 2105 2106 /* first, try to make some room in the middle buffer */ 2107 if (left) { 2108 u32 left_nr; 2109 2110 btrfs_tree_lock(left); 2111 btrfs_set_lock_blocking_write(left); 2112 2113 left_nr = btrfs_header_nritems(left); 2114 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2115 wret = 1; 2116 } else { 2117 ret = btrfs_cow_block(trans, root, left, parent, 2118 pslot - 1, &left); 2119 if (ret) 2120 wret = 1; 2121 else { 2122 wret = push_node_left(trans, left, mid, 0); 2123 } 2124 } 2125 if (wret < 0) 2126 ret = wret; 2127 if (wret == 0) { 2128 struct btrfs_disk_key disk_key; 2129 orig_slot += left_nr; 2130 btrfs_node_key(mid, &disk_key, 0); 2131 ret = tree_mod_log_insert_key(parent, pslot, 2132 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2133 BUG_ON(ret < 0); 2134 btrfs_set_node_key(parent, &disk_key, pslot); 2135 btrfs_mark_buffer_dirty(parent); 2136 if (btrfs_header_nritems(left) > orig_slot) { 2137 path->nodes[level] = left; 2138 path->slots[level + 1] -= 1; 2139 path->slots[level] = orig_slot; 2140 btrfs_tree_unlock(mid); 2141 free_extent_buffer(mid); 2142 } else { 2143 orig_slot -= 2144 btrfs_header_nritems(left); 2145 path->slots[level] = orig_slot; 2146 btrfs_tree_unlock(left); 2147 free_extent_buffer(left); 2148 } 2149 return 0; 2150 } 2151 btrfs_tree_unlock(left); 2152 free_extent_buffer(left); 2153 } 2154 right = btrfs_read_node_slot(parent, pslot + 1); 2155 if (IS_ERR(right)) 2156 right = NULL; 2157 2158 /* 2159 * then try to empty the right most buffer into the middle 2160 */ 2161 if (right) { 2162 u32 right_nr; 2163 2164 btrfs_tree_lock(right); 2165 btrfs_set_lock_blocking_write(right); 2166 2167 right_nr = btrfs_header_nritems(right); 2168 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2169 wret = 1; 2170 } else { 2171 ret = btrfs_cow_block(trans, root, right, 2172 parent, pslot + 1, 2173 &right); 2174 if (ret) 2175 wret = 1; 2176 else { 2177 wret = balance_node_right(trans, right, mid); 2178 } 2179 } 2180 if (wret < 0) 2181 ret = wret; 2182 if (wret == 0) { 2183 struct btrfs_disk_key disk_key; 2184 2185 btrfs_node_key(right, &disk_key, 0); 2186 ret = tree_mod_log_insert_key(parent, pslot + 1, 2187 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2188 BUG_ON(ret < 0); 2189 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2190 btrfs_mark_buffer_dirty(parent); 2191 2192 if (btrfs_header_nritems(mid) <= orig_slot) { 2193 path->nodes[level] = right; 2194 path->slots[level + 1] += 1; 2195 path->slots[level] = orig_slot - 2196 btrfs_header_nritems(mid); 2197 btrfs_tree_unlock(mid); 2198 free_extent_buffer(mid); 2199 } else { 2200 btrfs_tree_unlock(right); 2201 free_extent_buffer(right); 2202 } 2203 return 0; 2204 } 2205 btrfs_tree_unlock(right); 2206 free_extent_buffer(right); 2207 } 2208 return 1; 2209 } 2210 2211 /* 2212 * readahead one full node of leaves, finding things that are close 2213 * to the block in 'slot', and triggering ra on them. 2214 */ 2215 static void reada_for_search(struct btrfs_fs_info *fs_info, 2216 struct btrfs_path *path, 2217 int level, int slot, u64 objectid) 2218 { 2219 struct extent_buffer *node; 2220 struct btrfs_disk_key disk_key; 2221 u32 nritems; 2222 u64 search; 2223 u64 target; 2224 u64 nread = 0; 2225 struct extent_buffer *eb; 2226 u32 nr; 2227 u32 blocksize; 2228 u32 nscan = 0; 2229 2230 if (level != 1) 2231 return; 2232 2233 if (!path->nodes[level]) 2234 return; 2235 2236 node = path->nodes[level]; 2237 2238 search = btrfs_node_blockptr(node, slot); 2239 blocksize = fs_info->nodesize; 2240 eb = find_extent_buffer(fs_info, search); 2241 if (eb) { 2242 free_extent_buffer(eb); 2243 return; 2244 } 2245 2246 target = search; 2247 2248 nritems = btrfs_header_nritems(node); 2249 nr = slot; 2250 2251 while (1) { 2252 if (path->reada == READA_BACK) { 2253 if (nr == 0) 2254 break; 2255 nr--; 2256 } else if (path->reada == READA_FORWARD) { 2257 nr++; 2258 if (nr >= nritems) 2259 break; 2260 } 2261 if (path->reada == READA_BACK && objectid) { 2262 btrfs_node_key(node, &disk_key, nr); 2263 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2264 break; 2265 } 2266 search = btrfs_node_blockptr(node, nr); 2267 if ((search <= target && target - search <= 65536) || 2268 (search > target && search - target <= 65536)) { 2269 readahead_tree_block(fs_info, search); 2270 nread += blocksize; 2271 } 2272 nscan++; 2273 if ((nread > 65536 || nscan > 32)) 2274 break; 2275 } 2276 } 2277 2278 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2279 struct btrfs_path *path, int level) 2280 { 2281 int slot; 2282 int nritems; 2283 struct extent_buffer *parent; 2284 struct extent_buffer *eb; 2285 u64 gen; 2286 u64 block1 = 0; 2287 u64 block2 = 0; 2288 2289 parent = path->nodes[level + 1]; 2290 if (!parent) 2291 return; 2292 2293 nritems = btrfs_header_nritems(parent); 2294 slot = path->slots[level + 1]; 2295 2296 if (slot > 0) { 2297 block1 = btrfs_node_blockptr(parent, slot - 1); 2298 gen = btrfs_node_ptr_generation(parent, slot - 1); 2299 eb = find_extent_buffer(fs_info, block1); 2300 /* 2301 * if we get -eagain from btrfs_buffer_uptodate, we 2302 * don't want to return eagain here. That will loop 2303 * forever 2304 */ 2305 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2306 block1 = 0; 2307 free_extent_buffer(eb); 2308 } 2309 if (slot + 1 < nritems) { 2310 block2 = btrfs_node_blockptr(parent, slot + 1); 2311 gen = btrfs_node_ptr_generation(parent, slot + 1); 2312 eb = find_extent_buffer(fs_info, block2); 2313 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2314 block2 = 0; 2315 free_extent_buffer(eb); 2316 } 2317 2318 if (block1) 2319 readahead_tree_block(fs_info, block1); 2320 if (block2) 2321 readahead_tree_block(fs_info, block2); 2322 } 2323 2324 2325 /* 2326 * when we walk down the tree, it is usually safe to unlock the higher layers 2327 * in the tree. The exceptions are when our path goes through slot 0, because 2328 * operations on the tree might require changing key pointers higher up in the 2329 * tree. 2330 * 2331 * callers might also have set path->keep_locks, which tells this code to keep 2332 * the lock if the path points to the last slot in the block. This is part of 2333 * walking through the tree, and selecting the next slot in the higher block. 2334 * 2335 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2336 * if lowest_unlock is 1, level 0 won't be unlocked 2337 */ 2338 static noinline void unlock_up(struct btrfs_path *path, int level, 2339 int lowest_unlock, int min_write_lock_level, 2340 int *write_lock_level) 2341 { 2342 int i; 2343 int skip_level = level; 2344 int no_skips = 0; 2345 struct extent_buffer *t; 2346 2347 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2348 if (!path->nodes[i]) 2349 break; 2350 if (!path->locks[i]) 2351 break; 2352 if (!no_skips && path->slots[i] == 0) { 2353 skip_level = i + 1; 2354 continue; 2355 } 2356 if (!no_skips && path->keep_locks) { 2357 u32 nritems; 2358 t = path->nodes[i]; 2359 nritems = btrfs_header_nritems(t); 2360 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2361 skip_level = i + 1; 2362 continue; 2363 } 2364 } 2365 if (skip_level < i && i >= lowest_unlock) 2366 no_skips = 1; 2367 2368 t = path->nodes[i]; 2369 if (i >= lowest_unlock && i > skip_level) { 2370 btrfs_tree_unlock_rw(t, path->locks[i]); 2371 path->locks[i] = 0; 2372 if (write_lock_level && 2373 i > min_write_lock_level && 2374 i <= *write_lock_level) { 2375 *write_lock_level = i - 1; 2376 } 2377 } 2378 } 2379 } 2380 2381 /* 2382 * This releases any locks held in the path starting at level and 2383 * going all the way up to the root. 2384 * 2385 * btrfs_search_slot will keep the lock held on higher nodes in a few 2386 * corner cases, such as COW of the block at slot zero in the node. This 2387 * ignores those rules, and it should only be called when there are no 2388 * more updates to be done higher up in the tree. 2389 */ 2390 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2391 { 2392 int i; 2393 2394 if (path->keep_locks) 2395 return; 2396 2397 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2398 if (!path->nodes[i]) 2399 continue; 2400 if (!path->locks[i]) 2401 continue; 2402 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2403 path->locks[i] = 0; 2404 } 2405 } 2406 2407 /* 2408 * helper function for btrfs_search_slot. The goal is to find a block 2409 * in cache without setting the path to blocking. If we find the block 2410 * we return zero and the path is unchanged. 2411 * 2412 * If we can't find the block, we set the path blocking and do some 2413 * reada. -EAGAIN is returned and the search must be repeated. 2414 */ 2415 static int 2416 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2417 struct extent_buffer **eb_ret, int level, int slot, 2418 const struct btrfs_key *key) 2419 { 2420 struct btrfs_fs_info *fs_info = root->fs_info; 2421 u64 blocknr; 2422 u64 gen; 2423 struct extent_buffer *b = *eb_ret; 2424 struct extent_buffer *tmp; 2425 struct btrfs_key first_key; 2426 int ret; 2427 int parent_level; 2428 2429 blocknr = btrfs_node_blockptr(b, slot); 2430 gen = btrfs_node_ptr_generation(b, slot); 2431 parent_level = btrfs_header_level(b); 2432 btrfs_node_key_to_cpu(b, &first_key, slot); 2433 2434 tmp = find_extent_buffer(fs_info, blocknr); 2435 if (tmp) { 2436 /* first we do an atomic uptodate check */ 2437 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2438 /* 2439 * Do extra check for first_key, eb can be stale due to 2440 * being cached, read from scrub, or have multiple 2441 * parents (shared tree blocks). 2442 */ 2443 if (btrfs_verify_level_key(tmp, 2444 parent_level - 1, &first_key, gen)) { 2445 free_extent_buffer(tmp); 2446 return -EUCLEAN; 2447 } 2448 *eb_ret = tmp; 2449 return 0; 2450 } 2451 2452 /* the pages were up to date, but we failed 2453 * the generation number check. Do a full 2454 * read for the generation number that is correct. 2455 * We must do this without dropping locks so 2456 * we can trust our generation number 2457 */ 2458 btrfs_set_path_blocking(p); 2459 2460 /* now we're allowed to do a blocking uptodate check */ 2461 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2462 if (!ret) { 2463 *eb_ret = tmp; 2464 return 0; 2465 } 2466 free_extent_buffer(tmp); 2467 btrfs_release_path(p); 2468 return -EIO; 2469 } 2470 2471 /* 2472 * reduce lock contention at high levels 2473 * of the btree by dropping locks before 2474 * we read. Don't release the lock on the current 2475 * level because we need to walk this node to figure 2476 * out which blocks to read. 2477 */ 2478 btrfs_unlock_up_safe(p, level + 1); 2479 btrfs_set_path_blocking(p); 2480 2481 if (p->reada != READA_NONE) 2482 reada_for_search(fs_info, p, level, slot, key->objectid); 2483 2484 ret = -EAGAIN; 2485 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2486 &first_key); 2487 if (!IS_ERR(tmp)) { 2488 /* 2489 * If the read above didn't mark this buffer up to date, 2490 * it will never end up being up to date. Set ret to EIO now 2491 * and give up so that our caller doesn't loop forever 2492 * on our EAGAINs. 2493 */ 2494 if (!extent_buffer_uptodate(tmp)) 2495 ret = -EIO; 2496 free_extent_buffer(tmp); 2497 } else { 2498 ret = PTR_ERR(tmp); 2499 } 2500 2501 btrfs_release_path(p); 2502 return ret; 2503 } 2504 2505 /* 2506 * helper function for btrfs_search_slot. This does all of the checks 2507 * for node-level blocks and does any balancing required based on 2508 * the ins_len. 2509 * 2510 * If no extra work was required, zero is returned. If we had to 2511 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2512 * start over 2513 */ 2514 static int 2515 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2516 struct btrfs_root *root, struct btrfs_path *p, 2517 struct extent_buffer *b, int level, int ins_len, 2518 int *write_lock_level) 2519 { 2520 struct btrfs_fs_info *fs_info = root->fs_info; 2521 int ret; 2522 2523 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2524 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2525 int sret; 2526 2527 if (*write_lock_level < level + 1) { 2528 *write_lock_level = level + 1; 2529 btrfs_release_path(p); 2530 goto again; 2531 } 2532 2533 btrfs_set_path_blocking(p); 2534 reada_for_balance(fs_info, p, level); 2535 sret = split_node(trans, root, p, level); 2536 2537 BUG_ON(sret > 0); 2538 if (sret) { 2539 ret = sret; 2540 goto done; 2541 } 2542 b = p->nodes[level]; 2543 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2544 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2545 int sret; 2546 2547 if (*write_lock_level < level + 1) { 2548 *write_lock_level = level + 1; 2549 btrfs_release_path(p); 2550 goto again; 2551 } 2552 2553 btrfs_set_path_blocking(p); 2554 reada_for_balance(fs_info, p, level); 2555 sret = balance_level(trans, root, p, level); 2556 2557 if (sret) { 2558 ret = sret; 2559 goto done; 2560 } 2561 b = p->nodes[level]; 2562 if (!b) { 2563 btrfs_release_path(p); 2564 goto again; 2565 } 2566 BUG_ON(btrfs_header_nritems(b) == 1); 2567 } 2568 return 0; 2569 2570 again: 2571 ret = -EAGAIN; 2572 done: 2573 return ret; 2574 } 2575 2576 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2577 int level, int *prev_cmp, int *slot) 2578 { 2579 if (*prev_cmp != 0) { 2580 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2581 return *prev_cmp; 2582 } 2583 2584 *slot = 0; 2585 2586 return 0; 2587 } 2588 2589 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2590 u64 iobjectid, u64 ioff, u8 key_type, 2591 struct btrfs_key *found_key) 2592 { 2593 int ret; 2594 struct btrfs_key key; 2595 struct extent_buffer *eb; 2596 2597 ASSERT(path); 2598 ASSERT(found_key); 2599 2600 key.type = key_type; 2601 key.objectid = iobjectid; 2602 key.offset = ioff; 2603 2604 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2605 if (ret < 0) 2606 return ret; 2607 2608 eb = path->nodes[0]; 2609 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2610 ret = btrfs_next_leaf(fs_root, path); 2611 if (ret) 2612 return ret; 2613 eb = path->nodes[0]; 2614 } 2615 2616 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2617 if (found_key->type != key.type || 2618 found_key->objectid != key.objectid) 2619 return 1; 2620 2621 return 0; 2622 } 2623 2624 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2625 struct btrfs_path *p, 2626 int write_lock_level) 2627 { 2628 struct btrfs_fs_info *fs_info = root->fs_info; 2629 struct extent_buffer *b; 2630 int root_lock; 2631 int level = 0; 2632 2633 /* We try very hard to do read locks on the root */ 2634 root_lock = BTRFS_READ_LOCK; 2635 2636 if (p->search_commit_root) { 2637 /* 2638 * The commit roots are read only so we always do read locks, 2639 * and we always must hold the commit_root_sem when doing 2640 * searches on them, the only exception is send where we don't 2641 * want to block transaction commits for a long time, so 2642 * we need to clone the commit root in order to avoid races 2643 * with transaction commits that create a snapshot of one of 2644 * the roots used by a send operation. 2645 */ 2646 if (p->need_commit_sem) { 2647 down_read(&fs_info->commit_root_sem); 2648 b = btrfs_clone_extent_buffer(root->commit_root); 2649 up_read(&fs_info->commit_root_sem); 2650 if (!b) 2651 return ERR_PTR(-ENOMEM); 2652 2653 } else { 2654 b = root->commit_root; 2655 extent_buffer_get(b); 2656 } 2657 level = btrfs_header_level(b); 2658 /* 2659 * Ensure that all callers have set skip_locking when 2660 * p->search_commit_root = 1. 2661 */ 2662 ASSERT(p->skip_locking == 1); 2663 2664 goto out; 2665 } 2666 2667 if (p->skip_locking) { 2668 b = btrfs_root_node(root); 2669 level = btrfs_header_level(b); 2670 goto out; 2671 } 2672 2673 /* 2674 * If the level is set to maximum, we can skip trying to get the read 2675 * lock. 2676 */ 2677 if (write_lock_level < BTRFS_MAX_LEVEL) { 2678 /* 2679 * We don't know the level of the root node until we actually 2680 * have it read locked 2681 */ 2682 b = btrfs_read_lock_root_node(root); 2683 level = btrfs_header_level(b); 2684 if (level > write_lock_level) 2685 goto out; 2686 2687 /* Whoops, must trade for write lock */ 2688 btrfs_tree_read_unlock(b); 2689 free_extent_buffer(b); 2690 } 2691 2692 b = btrfs_lock_root_node(root); 2693 root_lock = BTRFS_WRITE_LOCK; 2694 2695 /* The level might have changed, check again */ 2696 level = btrfs_header_level(b); 2697 2698 out: 2699 p->nodes[level] = b; 2700 if (!p->skip_locking) 2701 p->locks[level] = root_lock; 2702 /* 2703 * Callers are responsible for dropping b's references. 2704 */ 2705 return b; 2706 } 2707 2708 2709 /* 2710 * btrfs_search_slot - look for a key in a tree and perform necessary 2711 * modifications to preserve tree invariants. 2712 * 2713 * @trans: Handle of transaction, used when modifying the tree 2714 * @p: Holds all btree nodes along the search path 2715 * @root: The root node of the tree 2716 * @key: The key we are looking for 2717 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2718 * deletions it's -1. 0 for plain searches 2719 * @cow: boolean should CoW operations be performed. Must always be 1 2720 * when modifying the tree. 2721 * 2722 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2723 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2724 * 2725 * If @key is found, 0 is returned and you can find the item in the leaf level 2726 * of the path (level 0) 2727 * 2728 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2729 * points to the slot where it should be inserted 2730 * 2731 * If an error is encountered while searching the tree a negative error number 2732 * is returned 2733 */ 2734 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2735 const struct btrfs_key *key, struct btrfs_path *p, 2736 int ins_len, int cow) 2737 { 2738 struct extent_buffer *b; 2739 int slot; 2740 int ret; 2741 int err; 2742 int level; 2743 int lowest_unlock = 1; 2744 /* everything at write_lock_level or lower must be write locked */ 2745 int write_lock_level = 0; 2746 u8 lowest_level = 0; 2747 int min_write_lock_level; 2748 int prev_cmp; 2749 2750 lowest_level = p->lowest_level; 2751 WARN_ON(lowest_level && ins_len > 0); 2752 WARN_ON(p->nodes[0] != NULL); 2753 BUG_ON(!cow && ins_len); 2754 2755 if (ins_len < 0) { 2756 lowest_unlock = 2; 2757 2758 /* when we are removing items, we might have to go up to level 2759 * two as we update tree pointers Make sure we keep write 2760 * for those levels as well 2761 */ 2762 write_lock_level = 2; 2763 } else if (ins_len > 0) { 2764 /* 2765 * for inserting items, make sure we have a write lock on 2766 * level 1 so we can update keys 2767 */ 2768 write_lock_level = 1; 2769 } 2770 2771 if (!cow) 2772 write_lock_level = -1; 2773 2774 if (cow && (p->keep_locks || p->lowest_level)) 2775 write_lock_level = BTRFS_MAX_LEVEL; 2776 2777 min_write_lock_level = write_lock_level; 2778 2779 again: 2780 prev_cmp = -1; 2781 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2782 if (IS_ERR(b)) { 2783 ret = PTR_ERR(b); 2784 goto done; 2785 } 2786 2787 while (b) { 2788 level = btrfs_header_level(b); 2789 2790 /* 2791 * setup the path here so we can release it under lock 2792 * contention with the cow code 2793 */ 2794 if (cow) { 2795 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2796 2797 /* 2798 * if we don't really need to cow this block 2799 * then we don't want to set the path blocking, 2800 * so we test it here 2801 */ 2802 if (!should_cow_block(trans, root, b)) { 2803 trans->dirty = true; 2804 goto cow_done; 2805 } 2806 2807 /* 2808 * must have write locks on this node and the 2809 * parent 2810 */ 2811 if (level > write_lock_level || 2812 (level + 1 > write_lock_level && 2813 level + 1 < BTRFS_MAX_LEVEL && 2814 p->nodes[level + 1])) { 2815 write_lock_level = level + 1; 2816 btrfs_release_path(p); 2817 goto again; 2818 } 2819 2820 btrfs_set_path_blocking(p); 2821 if (last_level) 2822 err = btrfs_cow_block(trans, root, b, NULL, 0, 2823 &b); 2824 else 2825 err = btrfs_cow_block(trans, root, b, 2826 p->nodes[level + 1], 2827 p->slots[level + 1], &b); 2828 if (err) { 2829 ret = err; 2830 goto done; 2831 } 2832 } 2833 cow_done: 2834 p->nodes[level] = b; 2835 /* 2836 * Leave path with blocking locks to avoid massive 2837 * lock context switch, this is made on purpose. 2838 */ 2839 2840 /* 2841 * we have a lock on b and as long as we aren't changing 2842 * the tree, there is no way to for the items in b to change. 2843 * It is safe to drop the lock on our parent before we 2844 * go through the expensive btree search on b. 2845 * 2846 * If we're inserting or deleting (ins_len != 0), then we might 2847 * be changing slot zero, which may require changing the parent. 2848 * So, we can't drop the lock until after we know which slot 2849 * we're operating on. 2850 */ 2851 if (!ins_len && !p->keep_locks) { 2852 int u = level + 1; 2853 2854 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2855 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2856 p->locks[u] = 0; 2857 } 2858 } 2859 2860 ret = key_search(b, key, level, &prev_cmp, &slot); 2861 if (ret < 0) 2862 goto done; 2863 2864 if (level != 0) { 2865 int dec = 0; 2866 if (ret && slot > 0) { 2867 dec = 1; 2868 slot -= 1; 2869 } 2870 p->slots[level] = slot; 2871 err = setup_nodes_for_search(trans, root, p, b, level, 2872 ins_len, &write_lock_level); 2873 if (err == -EAGAIN) 2874 goto again; 2875 if (err) { 2876 ret = err; 2877 goto done; 2878 } 2879 b = p->nodes[level]; 2880 slot = p->slots[level]; 2881 2882 /* 2883 * slot 0 is special, if we change the key 2884 * we have to update the parent pointer 2885 * which means we must have a write lock 2886 * on the parent 2887 */ 2888 if (slot == 0 && ins_len && 2889 write_lock_level < level + 1) { 2890 write_lock_level = level + 1; 2891 btrfs_release_path(p); 2892 goto again; 2893 } 2894 2895 unlock_up(p, level, lowest_unlock, 2896 min_write_lock_level, &write_lock_level); 2897 2898 if (level == lowest_level) { 2899 if (dec) 2900 p->slots[level]++; 2901 goto done; 2902 } 2903 2904 err = read_block_for_search(root, p, &b, level, 2905 slot, key); 2906 if (err == -EAGAIN) 2907 goto again; 2908 if (err) { 2909 ret = err; 2910 goto done; 2911 } 2912 2913 if (!p->skip_locking) { 2914 level = btrfs_header_level(b); 2915 if (level <= write_lock_level) { 2916 if (!btrfs_try_tree_write_lock(b)) { 2917 btrfs_set_path_blocking(p); 2918 btrfs_tree_lock(b); 2919 } 2920 p->locks[level] = BTRFS_WRITE_LOCK; 2921 } else { 2922 if (!btrfs_tree_read_lock_atomic(b)) { 2923 btrfs_set_path_blocking(p); 2924 btrfs_tree_read_lock(b); 2925 } 2926 p->locks[level] = BTRFS_READ_LOCK; 2927 } 2928 p->nodes[level] = b; 2929 } 2930 } else { 2931 p->slots[level] = slot; 2932 if (ins_len > 0 && 2933 btrfs_leaf_free_space(b) < ins_len) { 2934 if (write_lock_level < 1) { 2935 write_lock_level = 1; 2936 btrfs_release_path(p); 2937 goto again; 2938 } 2939 2940 btrfs_set_path_blocking(p); 2941 err = split_leaf(trans, root, key, 2942 p, ins_len, ret == 0); 2943 2944 BUG_ON(err > 0); 2945 if (err) { 2946 ret = err; 2947 goto done; 2948 } 2949 } 2950 if (!p->search_for_split) 2951 unlock_up(p, level, lowest_unlock, 2952 min_write_lock_level, NULL); 2953 goto done; 2954 } 2955 } 2956 ret = 1; 2957 done: 2958 /* 2959 * we don't really know what they plan on doing with the path 2960 * from here on, so for now just mark it as blocking 2961 */ 2962 if (!p->leave_spinning) 2963 btrfs_set_path_blocking(p); 2964 if (ret < 0 && !p->skip_release_on_error) 2965 btrfs_release_path(p); 2966 return ret; 2967 } 2968 2969 /* 2970 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2971 * current state of the tree together with the operations recorded in the tree 2972 * modification log to search for the key in a previous version of this tree, as 2973 * denoted by the time_seq parameter. 2974 * 2975 * Naturally, there is no support for insert, delete or cow operations. 2976 * 2977 * The resulting path and return value will be set up as if we called 2978 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2979 */ 2980 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2981 struct btrfs_path *p, u64 time_seq) 2982 { 2983 struct btrfs_fs_info *fs_info = root->fs_info; 2984 struct extent_buffer *b; 2985 int slot; 2986 int ret; 2987 int err; 2988 int level; 2989 int lowest_unlock = 1; 2990 u8 lowest_level = 0; 2991 int prev_cmp = -1; 2992 2993 lowest_level = p->lowest_level; 2994 WARN_ON(p->nodes[0] != NULL); 2995 2996 if (p->search_commit_root) { 2997 BUG_ON(time_seq); 2998 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2999 } 3000 3001 again: 3002 b = get_old_root(root, time_seq); 3003 if (!b) { 3004 ret = -EIO; 3005 goto done; 3006 } 3007 level = btrfs_header_level(b); 3008 p->locks[level] = BTRFS_READ_LOCK; 3009 3010 while (b) { 3011 level = btrfs_header_level(b); 3012 p->nodes[level] = b; 3013 3014 /* 3015 * we have a lock on b and as long as we aren't changing 3016 * the tree, there is no way to for the items in b to change. 3017 * It is safe to drop the lock on our parent before we 3018 * go through the expensive btree search on b. 3019 */ 3020 btrfs_unlock_up_safe(p, level + 1); 3021 3022 /* 3023 * Since we can unwind ebs we want to do a real search every 3024 * time. 3025 */ 3026 prev_cmp = -1; 3027 ret = key_search(b, key, level, &prev_cmp, &slot); 3028 if (ret < 0) 3029 goto done; 3030 3031 if (level != 0) { 3032 int dec = 0; 3033 if (ret && slot > 0) { 3034 dec = 1; 3035 slot -= 1; 3036 } 3037 p->slots[level] = slot; 3038 unlock_up(p, level, lowest_unlock, 0, NULL); 3039 3040 if (level == lowest_level) { 3041 if (dec) 3042 p->slots[level]++; 3043 goto done; 3044 } 3045 3046 err = read_block_for_search(root, p, &b, level, 3047 slot, key); 3048 if (err == -EAGAIN) 3049 goto again; 3050 if (err) { 3051 ret = err; 3052 goto done; 3053 } 3054 3055 level = btrfs_header_level(b); 3056 if (!btrfs_tree_read_lock_atomic(b)) { 3057 btrfs_set_path_blocking(p); 3058 btrfs_tree_read_lock(b); 3059 } 3060 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3061 if (!b) { 3062 ret = -ENOMEM; 3063 goto done; 3064 } 3065 p->locks[level] = BTRFS_READ_LOCK; 3066 p->nodes[level] = b; 3067 } else { 3068 p->slots[level] = slot; 3069 unlock_up(p, level, lowest_unlock, 0, NULL); 3070 goto done; 3071 } 3072 } 3073 ret = 1; 3074 done: 3075 if (!p->leave_spinning) 3076 btrfs_set_path_blocking(p); 3077 if (ret < 0) 3078 btrfs_release_path(p); 3079 3080 return ret; 3081 } 3082 3083 /* 3084 * helper to use instead of search slot if no exact match is needed but 3085 * instead the next or previous item should be returned. 3086 * When find_higher is true, the next higher item is returned, the next lower 3087 * otherwise. 3088 * When return_any and find_higher are both true, and no higher item is found, 3089 * return the next lower instead. 3090 * When return_any is true and find_higher is false, and no lower item is found, 3091 * return the next higher instead. 3092 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3093 * < 0 on error 3094 */ 3095 int btrfs_search_slot_for_read(struct btrfs_root *root, 3096 const struct btrfs_key *key, 3097 struct btrfs_path *p, int find_higher, 3098 int return_any) 3099 { 3100 int ret; 3101 struct extent_buffer *leaf; 3102 3103 again: 3104 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3105 if (ret <= 0) 3106 return ret; 3107 /* 3108 * a return value of 1 means the path is at the position where the 3109 * item should be inserted. Normally this is the next bigger item, 3110 * but in case the previous item is the last in a leaf, path points 3111 * to the first free slot in the previous leaf, i.e. at an invalid 3112 * item. 3113 */ 3114 leaf = p->nodes[0]; 3115 3116 if (find_higher) { 3117 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3118 ret = btrfs_next_leaf(root, p); 3119 if (ret <= 0) 3120 return ret; 3121 if (!return_any) 3122 return 1; 3123 /* 3124 * no higher item found, return the next 3125 * lower instead 3126 */ 3127 return_any = 0; 3128 find_higher = 0; 3129 btrfs_release_path(p); 3130 goto again; 3131 } 3132 } else { 3133 if (p->slots[0] == 0) { 3134 ret = btrfs_prev_leaf(root, p); 3135 if (ret < 0) 3136 return ret; 3137 if (!ret) { 3138 leaf = p->nodes[0]; 3139 if (p->slots[0] == btrfs_header_nritems(leaf)) 3140 p->slots[0]--; 3141 return 0; 3142 } 3143 if (!return_any) 3144 return 1; 3145 /* 3146 * no lower item found, return the next 3147 * higher instead 3148 */ 3149 return_any = 0; 3150 find_higher = 1; 3151 btrfs_release_path(p); 3152 goto again; 3153 } else { 3154 --p->slots[0]; 3155 } 3156 } 3157 return 0; 3158 } 3159 3160 /* 3161 * adjust the pointers going up the tree, starting at level 3162 * making sure the right key of each node is points to 'key'. 3163 * This is used after shifting pointers to the left, so it stops 3164 * fixing up pointers when a given leaf/node is not in slot 0 of the 3165 * higher levels 3166 * 3167 */ 3168 static void fixup_low_keys(struct btrfs_path *path, 3169 struct btrfs_disk_key *key, int level) 3170 { 3171 int i; 3172 struct extent_buffer *t; 3173 int ret; 3174 3175 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3176 int tslot = path->slots[i]; 3177 3178 if (!path->nodes[i]) 3179 break; 3180 t = path->nodes[i]; 3181 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3182 GFP_ATOMIC); 3183 BUG_ON(ret < 0); 3184 btrfs_set_node_key(t, key, tslot); 3185 btrfs_mark_buffer_dirty(path->nodes[i]); 3186 if (tslot != 0) 3187 break; 3188 } 3189 } 3190 3191 /* 3192 * update item key. 3193 * 3194 * This function isn't completely safe. It's the caller's responsibility 3195 * that the new key won't break the order 3196 */ 3197 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3198 struct btrfs_path *path, 3199 const struct btrfs_key *new_key) 3200 { 3201 struct btrfs_disk_key disk_key; 3202 struct extent_buffer *eb; 3203 int slot; 3204 3205 eb = path->nodes[0]; 3206 slot = path->slots[0]; 3207 if (slot > 0) { 3208 btrfs_item_key(eb, &disk_key, slot - 1); 3209 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3210 btrfs_crit(fs_info, 3211 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3212 slot, btrfs_disk_key_objectid(&disk_key), 3213 btrfs_disk_key_type(&disk_key), 3214 btrfs_disk_key_offset(&disk_key), 3215 new_key->objectid, new_key->type, 3216 new_key->offset); 3217 btrfs_print_leaf(eb); 3218 BUG(); 3219 } 3220 } 3221 if (slot < btrfs_header_nritems(eb) - 1) { 3222 btrfs_item_key(eb, &disk_key, slot + 1); 3223 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3224 btrfs_crit(fs_info, 3225 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3226 slot, btrfs_disk_key_objectid(&disk_key), 3227 btrfs_disk_key_type(&disk_key), 3228 btrfs_disk_key_offset(&disk_key), 3229 new_key->objectid, new_key->type, 3230 new_key->offset); 3231 btrfs_print_leaf(eb); 3232 BUG(); 3233 } 3234 } 3235 3236 btrfs_cpu_key_to_disk(&disk_key, new_key); 3237 btrfs_set_item_key(eb, &disk_key, slot); 3238 btrfs_mark_buffer_dirty(eb); 3239 if (slot == 0) 3240 fixup_low_keys(path, &disk_key, 1); 3241 } 3242 3243 /* 3244 * try to push data from one node into the next node left in the 3245 * tree. 3246 * 3247 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3248 * error, and > 0 if there was no room in the left hand block. 3249 */ 3250 static int push_node_left(struct btrfs_trans_handle *trans, 3251 struct extent_buffer *dst, 3252 struct extent_buffer *src, int empty) 3253 { 3254 struct btrfs_fs_info *fs_info = trans->fs_info; 3255 int push_items = 0; 3256 int src_nritems; 3257 int dst_nritems; 3258 int ret = 0; 3259 3260 src_nritems = btrfs_header_nritems(src); 3261 dst_nritems = btrfs_header_nritems(dst); 3262 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3263 WARN_ON(btrfs_header_generation(src) != trans->transid); 3264 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3265 3266 if (!empty && src_nritems <= 8) 3267 return 1; 3268 3269 if (push_items <= 0) 3270 return 1; 3271 3272 if (empty) { 3273 push_items = min(src_nritems, push_items); 3274 if (push_items < src_nritems) { 3275 /* leave at least 8 pointers in the node if 3276 * we aren't going to empty it 3277 */ 3278 if (src_nritems - push_items < 8) { 3279 if (push_items <= 8) 3280 return 1; 3281 push_items -= 8; 3282 } 3283 } 3284 } else 3285 push_items = min(src_nritems - 8, push_items); 3286 3287 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3288 if (ret) { 3289 btrfs_abort_transaction(trans, ret); 3290 return ret; 3291 } 3292 copy_extent_buffer(dst, src, 3293 btrfs_node_key_ptr_offset(dst_nritems), 3294 btrfs_node_key_ptr_offset(0), 3295 push_items * sizeof(struct btrfs_key_ptr)); 3296 3297 if (push_items < src_nritems) { 3298 /* 3299 * Don't call tree_mod_log_insert_move here, key removal was 3300 * already fully logged by tree_mod_log_eb_copy above. 3301 */ 3302 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3303 btrfs_node_key_ptr_offset(push_items), 3304 (src_nritems - push_items) * 3305 sizeof(struct btrfs_key_ptr)); 3306 } 3307 btrfs_set_header_nritems(src, src_nritems - push_items); 3308 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3309 btrfs_mark_buffer_dirty(src); 3310 btrfs_mark_buffer_dirty(dst); 3311 3312 return ret; 3313 } 3314 3315 /* 3316 * try to push data from one node into the next node right in the 3317 * tree. 3318 * 3319 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3320 * error, and > 0 if there was no room in the right hand block. 3321 * 3322 * this will only push up to 1/2 the contents of the left node over 3323 */ 3324 static int balance_node_right(struct btrfs_trans_handle *trans, 3325 struct extent_buffer *dst, 3326 struct extent_buffer *src) 3327 { 3328 struct btrfs_fs_info *fs_info = trans->fs_info; 3329 int push_items = 0; 3330 int max_push; 3331 int src_nritems; 3332 int dst_nritems; 3333 int ret = 0; 3334 3335 WARN_ON(btrfs_header_generation(src) != trans->transid); 3336 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3337 3338 src_nritems = btrfs_header_nritems(src); 3339 dst_nritems = btrfs_header_nritems(dst); 3340 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3341 if (push_items <= 0) 3342 return 1; 3343 3344 if (src_nritems < 4) 3345 return 1; 3346 3347 max_push = src_nritems / 2 + 1; 3348 /* don't try to empty the node */ 3349 if (max_push >= src_nritems) 3350 return 1; 3351 3352 if (max_push < push_items) 3353 push_items = max_push; 3354 3355 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3356 BUG_ON(ret < 0); 3357 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3358 btrfs_node_key_ptr_offset(0), 3359 (dst_nritems) * 3360 sizeof(struct btrfs_key_ptr)); 3361 3362 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3363 push_items); 3364 if (ret) { 3365 btrfs_abort_transaction(trans, ret); 3366 return ret; 3367 } 3368 copy_extent_buffer(dst, src, 3369 btrfs_node_key_ptr_offset(0), 3370 btrfs_node_key_ptr_offset(src_nritems - push_items), 3371 push_items * sizeof(struct btrfs_key_ptr)); 3372 3373 btrfs_set_header_nritems(src, src_nritems - push_items); 3374 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3375 3376 btrfs_mark_buffer_dirty(src); 3377 btrfs_mark_buffer_dirty(dst); 3378 3379 return ret; 3380 } 3381 3382 /* 3383 * helper function to insert a new root level in the tree. 3384 * A new node is allocated, and a single item is inserted to 3385 * point to the existing root 3386 * 3387 * returns zero on success or < 0 on failure. 3388 */ 3389 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3390 struct btrfs_root *root, 3391 struct btrfs_path *path, int level) 3392 { 3393 struct btrfs_fs_info *fs_info = root->fs_info; 3394 u64 lower_gen; 3395 struct extent_buffer *lower; 3396 struct extent_buffer *c; 3397 struct extent_buffer *old; 3398 struct btrfs_disk_key lower_key; 3399 int ret; 3400 3401 BUG_ON(path->nodes[level]); 3402 BUG_ON(path->nodes[level-1] != root->node); 3403 3404 lower = path->nodes[level-1]; 3405 if (level == 1) 3406 btrfs_item_key(lower, &lower_key, 0); 3407 else 3408 btrfs_node_key(lower, &lower_key, 0); 3409 3410 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3411 root->node->start, 0); 3412 if (IS_ERR(c)) 3413 return PTR_ERR(c); 3414 3415 root_add_used(root, fs_info->nodesize); 3416 3417 btrfs_set_header_nritems(c, 1); 3418 btrfs_set_node_key(c, &lower_key, 0); 3419 btrfs_set_node_blockptr(c, 0, lower->start); 3420 lower_gen = btrfs_header_generation(lower); 3421 WARN_ON(lower_gen != trans->transid); 3422 3423 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3424 3425 btrfs_mark_buffer_dirty(c); 3426 3427 old = root->node; 3428 ret = tree_mod_log_insert_root(root->node, c, 0); 3429 BUG_ON(ret < 0); 3430 rcu_assign_pointer(root->node, c); 3431 3432 /* the super has an extra ref to root->node */ 3433 free_extent_buffer(old); 3434 3435 add_root_to_dirty_list(root); 3436 extent_buffer_get(c); 3437 path->nodes[level] = c; 3438 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3439 path->slots[level] = 0; 3440 return 0; 3441 } 3442 3443 /* 3444 * worker function to insert a single pointer in a node. 3445 * the node should have enough room for the pointer already 3446 * 3447 * slot and level indicate where you want the key to go, and 3448 * blocknr is the block the key points to. 3449 */ 3450 static void insert_ptr(struct btrfs_trans_handle *trans, 3451 struct btrfs_path *path, 3452 struct btrfs_disk_key *key, u64 bytenr, 3453 int slot, int level) 3454 { 3455 struct extent_buffer *lower; 3456 int nritems; 3457 int ret; 3458 3459 BUG_ON(!path->nodes[level]); 3460 btrfs_assert_tree_locked(path->nodes[level]); 3461 lower = path->nodes[level]; 3462 nritems = btrfs_header_nritems(lower); 3463 BUG_ON(slot > nritems); 3464 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3465 if (slot != nritems) { 3466 if (level) { 3467 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3468 nritems - slot); 3469 BUG_ON(ret < 0); 3470 } 3471 memmove_extent_buffer(lower, 3472 btrfs_node_key_ptr_offset(slot + 1), 3473 btrfs_node_key_ptr_offset(slot), 3474 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3475 } 3476 if (level) { 3477 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3478 GFP_NOFS); 3479 BUG_ON(ret < 0); 3480 } 3481 btrfs_set_node_key(lower, key, slot); 3482 btrfs_set_node_blockptr(lower, slot, bytenr); 3483 WARN_ON(trans->transid == 0); 3484 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3485 btrfs_set_header_nritems(lower, nritems + 1); 3486 btrfs_mark_buffer_dirty(lower); 3487 } 3488 3489 /* 3490 * split the node at the specified level in path in two. 3491 * The path is corrected to point to the appropriate node after the split 3492 * 3493 * Before splitting this tries to make some room in the node by pushing 3494 * left and right, if either one works, it returns right away. 3495 * 3496 * returns 0 on success and < 0 on failure 3497 */ 3498 static noinline int split_node(struct btrfs_trans_handle *trans, 3499 struct btrfs_root *root, 3500 struct btrfs_path *path, int level) 3501 { 3502 struct btrfs_fs_info *fs_info = root->fs_info; 3503 struct extent_buffer *c; 3504 struct extent_buffer *split; 3505 struct btrfs_disk_key disk_key; 3506 int mid; 3507 int ret; 3508 u32 c_nritems; 3509 3510 c = path->nodes[level]; 3511 WARN_ON(btrfs_header_generation(c) != trans->transid); 3512 if (c == root->node) { 3513 /* 3514 * trying to split the root, lets make a new one 3515 * 3516 * tree mod log: We don't log_removal old root in 3517 * insert_new_root, because that root buffer will be kept as a 3518 * normal node. We are going to log removal of half of the 3519 * elements below with tree_mod_log_eb_copy. We're holding a 3520 * tree lock on the buffer, which is why we cannot race with 3521 * other tree_mod_log users. 3522 */ 3523 ret = insert_new_root(trans, root, path, level + 1); 3524 if (ret) 3525 return ret; 3526 } else { 3527 ret = push_nodes_for_insert(trans, root, path, level); 3528 c = path->nodes[level]; 3529 if (!ret && btrfs_header_nritems(c) < 3530 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3531 return 0; 3532 if (ret < 0) 3533 return ret; 3534 } 3535 3536 c_nritems = btrfs_header_nritems(c); 3537 mid = (c_nritems + 1) / 2; 3538 btrfs_node_key(c, &disk_key, mid); 3539 3540 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3541 c->start, 0); 3542 if (IS_ERR(split)) 3543 return PTR_ERR(split); 3544 3545 root_add_used(root, fs_info->nodesize); 3546 ASSERT(btrfs_header_level(c) == level); 3547 3548 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3549 if (ret) { 3550 btrfs_abort_transaction(trans, ret); 3551 return ret; 3552 } 3553 copy_extent_buffer(split, c, 3554 btrfs_node_key_ptr_offset(0), 3555 btrfs_node_key_ptr_offset(mid), 3556 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3557 btrfs_set_header_nritems(split, c_nritems - mid); 3558 btrfs_set_header_nritems(c, mid); 3559 ret = 0; 3560 3561 btrfs_mark_buffer_dirty(c); 3562 btrfs_mark_buffer_dirty(split); 3563 3564 insert_ptr(trans, path, &disk_key, split->start, 3565 path->slots[level + 1] + 1, level + 1); 3566 3567 if (path->slots[level] >= mid) { 3568 path->slots[level] -= mid; 3569 btrfs_tree_unlock(c); 3570 free_extent_buffer(c); 3571 path->nodes[level] = split; 3572 path->slots[level + 1] += 1; 3573 } else { 3574 btrfs_tree_unlock(split); 3575 free_extent_buffer(split); 3576 } 3577 return ret; 3578 } 3579 3580 /* 3581 * how many bytes are required to store the items in a leaf. start 3582 * and nr indicate which items in the leaf to check. This totals up the 3583 * space used both by the item structs and the item data 3584 */ 3585 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3586 { 3587 struct btrfs_item *start_item; 3588 struct btrfs_item *end_item; 3589 struct btrfs_map_token token; 3590 int data_len; 3591 int nritems = btrfs_header_nritems(l); 3592 int end = min(nritems, start + nr) - 1; 3593 3594 if (!nr) 3595 return 0; 3596 btrfs_init_map_token(&token, l); 3597 start_item = btrfs_item_nr(start); 3598 end_item = btrfs_item_nr(end); 3599 data_len = btrfs_token_item_offset(l, start_item, &token) + 3600 btrfs_token_item_size(l, start_item, &token); 3601 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3602 data_len += sizeof(struct btrfs_item) * nr; 3603 WARN_ON(data_len < 0); 3604 return data_len; 3605 } 3606 3607 /* 3608 * The space between the end of the leaf items and 3609 * the start of the leaf data. IOW, how much room 3610 * the leaf has left for both items and data 3611 */ 3612 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3613 { 3614 struct btrfs_fs_info *fs_info = leaf->fs_info; 3615 int nritems = btrfs_header_nritems(leaf); 3616 int ret; 3617 3618 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3619 if (ret < 0) { 3620 btrfs_crit(fs_info, 3621 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3622 ret, 3623 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3624 leaf_space_used(leaf, 0, nritems), nritems); 3625 } 3626 return ret; 3627 } 3628 3629 /* 3630 * min slot controls the lowest index we're willing to push to the 3631 * right. We'll push up to and including min_slot, but no lower 3632 */ 3633 static noinline int __push_leaf_right(struct btrfs_path *path, 3634 int data_size, int empty, 3635 struct extent_buffer *right, 3636 int free_space, u32 left_nritems, 3637 u32 min_slot) 3638 { 3639 struct btrfs_fs_info *fs_info = right->fs_info; 3640 struct extent_buffer *left = path->nodes[0]; 3641 struct extent_buffer *upper = path->nodes[1]; 3642 struct btrfs_map_token token; 3643 struct btrfs_disk_key disk_key; 3644 int slot; 3645 u32 i; 3646 int push_space = 0; 3647 int push_items = 0; 3648 struct btrfs_item *item; 3649 u32 nr; 3650 u32 right_nritems; 3651 u32 data_end; 3652 u32 this_item_size; 3653 3654 if (empty) 3655 nr = 0; 3656 else 3657 nr = max_t(u32, 1, min_slot); 3658 3659 if (path->slots[0] >= left_nritems) 3660 push_space += data_size; 3661 3662 slot = path->slots[1]; 3663 i = left_nritems - 1; 3664 while (i >= nr) { 3665 item = btrfs_item_nr(i); 3666 3667 if (!empty && push_items > 0) { 3668 if (path->slots[0] > i) 3669 break; 3670 if (path->slots[0] == i) { 3671 int space = btrfs_leaf_free_space(left); 3672 3673 if (space + push_space * 2 > free_space) 3674 break; 3675 } 3676 } 3677 3678 if (path->slots[0] == i) 3679 push_space += data_size; 3680 3681 this_item_size = btrfs_item_size(left, item); 3682 if (this_item_size + sizeof(*item) + push_space > free_space) 3683 break; 3684 3685 push_items++; 3686 push_space += this_item_size + sizeof(*item); 3687 if (i == 0) 3688 break; 3689 i--; 3690 } 3691 3692 if (push_items == 0) 3693 goto out_unlock; 3694 3695 WARN_ON(!empty && push_items == left_nritems); 3696 3697 /* push left to right */ 3698 right_nritems = btrfs_header_nritems(right); 3699 3700 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3701 push_space -= leaf_data_end(left); 3702 3703 /* make room in the right data area */ 3704 data_end = leaf_data_end(right); 3705 memmove_extent_buffer(right, 3706 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3707 BTRFS_LEAF_DATA_OFFSET + data_end, 3708 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3709 3710 /* copy from the left data area */ 3711 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3712 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3713 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3714 push_space); 3715 3716 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3717 btrfs_item_nr_offset(0), 3718 right_nritems * sizeof(struct btrfs_item)); 3719 3720 /* copy the items from left to right */ 3721 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3722 btrfs_item_nr_offset(left_nritems - push_items), 3723 push_items * sizeof(struct btrfs_item)); 3724 3725 /* update the item pointers */ 3726 btrfs_init_map_token(&token, right); 3727 right_nritems += push_items; 3728 btrfs_set_header_nritems(right, right_nritems); 3729 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3730 for (i = 0; i < right_nritems; i++) { 3731 item = btrfs_item_nr(i); 3732 push_space -= btrfs_token_item_size(right, item, &token); 3733 btrfs_set_token_item_offset(right, item, push_space, &token); 3734 } 3735 3736 left_nritems -= push_items; 3737 btrfs_set_header_nritems(left, left_nritems); 3738 3739 if (left_nritems) 3740 btrfs_mark_buffer_dirty(left); 3741 else 3742 btrfs_clean_tree_block(left); 3743 3744 btrfs_mark_buffer_dirty(right); 3745 3746 btrfs_item_key(right, &disk_key, 0); 3747 btrfs_set_node_key(upper, &disk_key, slot + 1); 3748 btrfs_mark_buffer_dirty(upper); 3749 3750 /* then fixup the leaf pointer in the path */ 3751 if (path->slots[0] >= left_nritems) { 3752 path->slots[0] -= left_nritems; 3753 if (btrfs_header_nritems(path->nodes[0]) == 0) 3754 btrfs_clean_tree_block(path->nodes[0]); 3755 btrfs_tree_unlock(path->nodes[0]); 3756 free_extent_buffer(path->nodes[0]); 3757 path->nodes[0] = right; 3758 path->slots[1] += 1; 3759 } else { 3760 btrfs_tree_unlock(right); 3761 free_extent_buffer(right); 3762 } 3763 return 0; 3764 3765 out_unlock: 3766 btrfs_tree_unlock(right); 3767 free_extent_buffer(right); 3768 return 1; 3769 } 3770 3771 /* 3772 * push some data in the path leaf to the right, trying to free up at 3773 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3774 * 3775 * returns 1 if the push failed because the other node didn't have enough 3776 * room, 0 if everything worked out and < 0 if there were major errors. 3777 * 3778 * this will push starting from min_slot to the end of the leaf. It won't 3779 * push any slot lower than min_slot 3780 */ 3781 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3782 *root, struct btrfs_path *path, 3783 int min_data_size, int data_size, 3784 int empty, u32 min_slot) 3785 { 3786 struct extent_buffer *left = path->nodes[0]; 3787 struct extent_buffer *right; 3788 struct extent_buffer *upper; 3789 int slot; 3790 int free_space; 3791 u32 left_nritems; 3792 int ret; 3793 3794 if (!path->nodes[1]) 3795 return 1; 3796 3797 slot = path->slots[1]; 3798 upper = path->nodes[1]; 3799 if (slot >= btrfs_header_nritems(upper) - 1) 3800 return 1; 3801 3802 btrfs_assert_tree_locked(path->nodes[1]); 3803 3804 right = btrfs_read_node_slot(upper, slot + 1); 3805 /* 3806 * slot + 1 is not valid or we fail to read the right node, 3807 * no big deal, just return. 3808 */ 3809 if (IS_ERR(right)) 3810 return 1; 3811 3812 btrfs_tree_lock(right); 3813 btrfs_set_lock_blocking_write(right); 3814 3815 free_space = btrfs_leaf_free_space(right); 3816 if (free_space < data_size) 3817 goto out_unlock; 3818 3819 /* cow and double check */ 3820 ret = btrfs_cow_block(trans, root, right, upper, 3821 slot + 1, &right); 3822 if (ret) 3823 goto out_unlock; 3824 3825 free_space = btrfs_leaf_free_space(right); 3826 if (free_space < data_size) 3827 goto out_unlock; 3828 3829 left_nritems = btrfs_header_nritems(left); 3830 if (left_nritems == 0) 3831 goto out_unlock; 3832 3833 if (path->slots[0] == left_nritems && !empty) { 3834 /* Key greater than all keys in the leaf, right neighbor has 3835 * enough room for it and we're not emptying our leaf to delete 3836 * it, therefore use right neighbor to insert the new item and 3837 * no need to touch/dirty our left leaf. */ 3838 btrfs_tree_unlock(left); 3839 free_extent_buffer(left); 3840 path->nodes[0] = right; 3841 path->slots[0] = 0; 3842 path->slots[1]++; 3843 return 0; 3844 } 3845 3846 return __push_leaf_right(path, min_data_size, empty, 3847 right, free_space, left_nritems, min_slot); 3848 out_unlock: 3849 btrfs_tree_unlock(right); 3850 free_extent_buffer(right); 3851 return 1; 3852 } 3853 3854 /* 3855 * push some data in the path leaf to the left, trying to free up at 3856 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3857 * 3858 * max_slot can put a limit on how far into the leaf we'll push items. The 3859 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3860 * items 3861 */ 3862 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3863 int empty, struct extent_buffer *left, 3864 int free_space, u32 right_nritems, 3865 u32 max_slot) 3866 { 3867 struct btrfs_fs_info *fs_info = left->fs_info; 3868 struct btrfs_disk_key disk_key; 3869 struct extent_buffer *right = path->nodes[0]; 3870 int i; 3871 int push_space = 0; 3872 int push_items = 0; 3873 struct btrfs_item *item; 3874 u32 old_left_nritems; 3875 u32 nr; 3876 int ret = 0; 3877 u32 this_item_size; 3878 u32 old_left_item_size; 3879 struct btrfs_map_token token; 3880 3881 if (empty) 3882 nr = min(right_nritems, max_slot); 3883 else 3884 nr = min(right_nritems - 1, max_slot); 3885 3886 for (i = 0; i < nr; i++) { 3887 item = btrfs_item_nr(i); 3888 3889 if (!empty && push_items > 0) { 3890 if (path->slots[0] < i) 3891 break; 3892 if (path->slots[0] == i) { 3893 int space = btrfs_leaf_free_space(right); 3894 3895 if (space + push_space * 2 > free_space) 3896 break; 3897 } 3898 } 3899 3900 if (path->slots[0] == i) 3901 push_space += data_size; 3902 3903 this_item_size = btrfs_item_size(right, item); 3904 if (this_item_size + sizeof(*item) + push_space > free_space) 3905 break; 3906 3907 push_items++; 3908 push_space += this_item_size + sizeof(*item); 3909 } 3910 3911 if (push_items == 0) { 3912 ret = 1; 3913 goto out; 3914 } 3915 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3916 3917 /* push data from right to left */ 3918 copy_extent_buffer(left, right, 3919 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3920 btrfs_item_nr_offset(0), 3921 push_items * sizeof(struct btrfs_item)); 3922 3923 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3924 btrfs_item_offset_nr(right, push_items - 1); 3925 3926 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3927 leaf_data_end(left) - push_space, 3928 BTRFS_LEAF_DATA_OFFSET + 3929 btrfs_item_offset_nr(right, push_items - 1), 3930 push_space); 3931 old_left_nritems = btrfs_header_nritems(left); 3932 BUG_ON(old_left_nritems <= 0); 3933 3934 btrfs_init_map_token(&token, left); 3935 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3936 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3937 u32 ioff; 3938 3939 item = btrfs_item_nr(i); 3940 3941 ioff = btrfs_token_item_offset(left, item, &token); 3942 btrfs_set_token_item_offset(left, item, 3943 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3944 &token); 3945 } 3946 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3947 3948 /* fixup right node */ 3949 if (push_items > right_nritems) 3950 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3951 right_nritems); 3952 3953 if (push_items < right_nritems) { 3954 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3955 leaf_data_end(right); 3956 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3957 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3958 BTRFS_LEAF_DATA_OFFSET + 3959 leaf_data_end(right), push_space); 3960 3961 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3962 btrfs_item_nr_offset(push_items), 3963 (btrfs_header_nritems(right) - push_items) * 3964 sizeof(struct btrfs_item)); 3965 } 3966 3967 btrfs_init_map_token(&token, right); 3968 right_nritems -= push_items; 3969 btrfs_set_header_nritems(right, right_nritems); 3970 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3971 for (i = 0; i < right_nritems; i++) { 3972 item = btrfs_item_nr(i); 3973 3974 push_space = push_space - btrfs_token_item_size(right, 3975 item, &token); 3976 btrfs_set_token_item_offset(right, item, push_space, &token); 3977 } 3978 3979 btrfs_mark_buffer_dirty(left); 3980 if (right_nritems) 3981 btrfs_mark_buffer_dirty(right); 3982 else 3983 btrfs_clean_tree_block(right); 3984 3985 btrfs_item_key(right, &disk_key, 0); 3986 fixup_low_keys(path, &disk_key, 1); 3987 3988 /* then fixup the leaf pointer in the path */ 3989 if (path->slots[0] < push_items) { 3990 path->slots[0] += old_left_nritems; 3991 btrfs_tree_unlock(path->nodes[0]); 3992 free_extent_buffer(path->nodes[0]); 3993 path->nodes[0] = left; 3994 path->slots[1] -= 1; 3995 } else { 3996 btrfs_tree_unlock(left); 3997 free_extent_buffer(left); 3998 path->slots[0] -= push_items; 3999 } 4000 BUG_ON(path->slots[0] < 0); 4001 return ret; 4002 out: 4003 btrfs_tree_unlock(left); 4004 free_extent_buffer(left); 4005 return ret; 4006 } 4007 4008 /* 4009 * push some data in the path leaf to the left, trying to free up at 4010 * least data_size bytes. returns zero if the push worked, nonzero otherwise 4011 * 4012 * max_slot can put a limit on how far into the leaf we'll push items. The 4013 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 4014 * items 4015 */ 4016 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 4017 *root, struct btrfs_path *path, int min_data_size, 4018 int data_size, int empty, u32 max_slot) 4019 { 4020 struct extent_buffer *right = path->nodes[0]; 4021 struct extent_buffer *left; 4022 int slot; 4023 int free_space; 4024 u32 right_nritems; 4025 int ret = 0; 4026 4027 slot = path->slots[1]; 4028 if (slot == 0) 4029 return 1; 4030 if (!path->nodes[1]) 4031 return 1; 4032 4033 right_nritems = btrfs_header_nritems(right); 4034 if (right_nritems == 0) 4035 return 1; 4036 4037 btrfs_assert_tree_locked(path->nodes[1]); 4038 4039 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 4040 /* 4041 * slot - 1 is not valid or we fail to read the left node, 4042 * no big deal, just return. 4043 */ 4044 if (IS_ERR(left)) 4045 return 1; 4046 4047 btrfs_tree_lock(left); 4048 btrfs_set_lock_blocking_write(left); 4049 4050 free_space = btrfs_leaf_free_space(left); 4051 if (free_space < data_size) { 4052 ret = 1; 4053 goto out; 4054 } 4055 4056 /* cow and double check */ 4057 ret = btrfs_cow_block(trans, root, left, 4058 path->nodes[1], slot - 1, &left); 4059 if (ret) { 4060 /* we hit -ENOSPC, but it isn't fatal here */ 4061 if (ret == -ENOSPC) 4062 ret = 1; 4063 goto out; 4064 } 4065 4066 free_space = btrfs_leaf_free_space(left); 4067 if (free_space < data_size) { 4068 ret = 1; 4069 goto out; 4070 } 4071 4072 return __push_leaf_left(path, min_data_size, 4073 empty, left, free_space, right_nritems, 4074 max_slot); 4075 out: 4076 btrfs_tree_unlock(left); 4077 free_extent_buffer(left); 4078 return ret; 4079 } 4080 4081 /* 4082 * split the path's leaf in two, making sure there is at least data_size 4083 * available for the resulting leaf level of the path. 4084 */ 4085 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4086 struct btrfs_path *path, 4087 struct extent_buffer *l, 4088 struct extent_buffer *right, 4089 int slot, int mid, int nritems) 4090 { 4091 struct btrfs_fs_info *fs_info = trans->fs_info; 4092 int data_copy_size; 4093 int rt_data_off; 4094 int i; 4095 struct btrfs_disk_key disk_key; 4096 struct btrfs_map_token token; 4097 4098 nritems = nritems - mid; 4099 btrfs_set_header_nritems(right, nritems); 4100 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4101 4102 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4103 btrfs_item_nr_offset(mid), 4104 nritems * sizeof(struct btrfs_item)); 4105 4106 copy_extent_buffer(right, l, 4107 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4108 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4109 leaf_data_end(l), data_copy_size); 4110 4111 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4112 4113 btrfs_init_map_token(&token, right); 4114 for (i = 0; i < nritems; i++) { 4115 struct btrfs_item *item = btrfs_item_nr(i); 4116 u32 ioff; 4117 4118 ioff = btrfs_token_item_offset(right, item, &token); 4119 btrfs_set_token_item_offset(right, item, 4120 ioff + rt_data_off, &token); 4121 } 4122 4123 btrfs_set_header_nritems(l, mid); 4124 btrfs_item_key(right, &disk_key, 0); 4125 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4126 4127 btrfs_mark_buffer_dirty(right); 4128 btrfs_mark_buffer_dirty(l); 4129 BUG_ON(path->slots[0] != slot); 4130 4131 if (mid <= slot) { 4132 btrfs_tree_unlock(path->nodes[0]); 4133 free_extent_buffer(path->nodes[0]); 4134 path->nodes[0] = right; 4135 path->slots[0] -= mid; 4136 path->slots[1] += 1; 4137 } else { 4138 btrfs_tree_unlock(right); 4139 free_extent_buffer(right); 4140 } 4141 4142 BUG_ON(path->slots[0] < 0); 4143 } 4144 4145 /* 4146 * double splits happen when we need to insert a big item in the middle 4147 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4148 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4149 * A B C 4150 * 4151 * We avoid this by trying to push the items on either side of our target 4152 * into the adjacent leaves. If all goes well we can avoid the double split 4153 * completely. 4154 */ 4155 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4156 struct btrfs_root *root, 4157 struct btrfs_path *path, 4158 int data_size) 4159 { 4160 int ret; 4161 int progress = 0; 4162 int slot; 4163 u32 nritems; 4164 int space_needed = data_size; 4165 4166 slot = path->slots[0]; 4167 if (slot < btrfs_header_nritems(path->nodes[0])) 4168 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4169 4170 /* 4171 * try to push all the items after our slot into the 4172 * right leaf 4173 */ 4174 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4175 if (ret < 0) 4176 return ret; 4177 4178 if (ret == 0) 4179 progress++; 4180 4181 nritems = btrfs_header_nritems(path->nodes[0]); 4182 /* 4183 * our goal is to get our slot at the start or end of a leaf. If 4184 * we've done so we're done 4185 */ 4186 if (path->slots[0] == 0 || path->slots[0] == nritems) 4187 return 0; 4188 4189 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4190 return 0; 4191 4192 /* try to push all the items before our slot into the next leaf */ 4193 slot = path->slots[0]; 4194 space_needed = data_size; 4195 if (slot > 0) 4196 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4197 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4198 if (ret < 0) 4199 return ret; 4200 4201 if (ret == 0) 4202 progress++; 4203 4204 if (progress) 4205 return 0; 4206 return 1; 4207 } 4208 4209 /* 4210 * split the path's leaf in two, making sure there is at least data_size 4211 * available for the resulting leaf level of the path. 4212 * 4213 * returns 0 if all went well and < 0 on failure. 4214 */ 4215 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4216 struct btrfs_root *root, 4217 const struct btrfs_key *ins_key, 4218 struct btrfs_path *path, int data_size, 4219 int extend) 4220 { 4221 struct btrfs_disk_key disk_key; 4222 struct extent_buffer *l; 4223 u32 nritems; 4224 int mid; 4225 int slot; 4226 struct extent_buffer *right; 4227 struct btrfs_fs_info *fs_info = root->fs_info; 4228 int ret = 0; 4229 int wret; 4230 int split; 4231 int num_doubles = 0; 4232 int tried_avoid_double = 0; 4233 4234 l = path->nodes[0]; 4235 slot = path->slots[0]; 4236 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4237 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4238 return -EOVERFLOW; 4239 4240 /* first try to make some room by pushing left and right */ 4241 if (data_size && path->nodes[1]) { 4242 int space_needed = data_size; 4243 4244 if (slot < btrfs_header_nritems(l)) 4245 space_needed -= btrfs_leaf_free_space(l); 4246 4247 wret = push_leaf_right(trans, root, path, space_needed, 4248 space_needed, 0, 0); 4249 if (wret < 0) 4250 return wret; 4251 if (wret) { 4252 space_needed = data_size; 4253 if (slot > 0) 4254 space_needed -= btrfs_leaf_free_space(l); 4255 wret = push_leaf_left(trans, root, path, space_needed, 4256 space_needed, 0, (u32)-1); 4257 if (wret < 0) 4258 return wret; 4259 } 4260 l = path->nodes[0]; 4261 4262 /* did the pushes work? */ 4263 if (btrfs_leaf_free_space(l) >= data_size) 4264 return 0; 4265 } 4266 4267 if (!path->nodes[1]) { 4268 ret = insert_new_root(trans, root, path, 1); 4269 if (ret) 4270 return ret; 4271 } 4272 again: 4273 split = 1; 4274 l = path->nodes[0]; 4275 slot = path->slots[0]; 4276 nritems = btrfs_header_nritems(l); 4277 mid = (nritems + 1) / 2; 4278 4279 if (mid <= slot) { 4280 if (nritems == 1 || 4281 leaf_space_used(l, mid, nritems - mid) + data_size > 4282 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4283 if (slot >= nritems) { 4284 split = 0; 4285 } else { 4286 mid = slot; 4287 if (mid != nritems && 4288 leaf_space_used(l, mid, nritems - mid) + 4289 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4290 if (data_size && !tried_avoid_double) 4291 goto push_for_double; 4292 split = 2; 4293 } 4294 } 4295 } 4296 } else { 4297 if (leaf_space_used(l, 0, mid) + data_size > 4298 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4299 if (!extend && data_size && slot == 0) { 4300 split = 0; 4301 } else if ((extend || !data_size) && slot == 0) { 4302 mid = 1; 4303 } else { 4304 mid = slot; 4305 if (mid != nritems && 4306 leaf_space_used(l, mid, nritems - mid) + 4307 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4308 if (data_size && !tried_avoid_double) 4309 goto push_for_double; 4310 split = 2; 4311 } 4312 } 4313 } 4314 } 4315 4316 if (split == 0) 4317 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4318 else 4319 btrfs_item_key(l, &disk_key, mid); 4320 4321 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4322 l->start, 0); 4323 if (IS_ERR(right)) 4324 return PTR_ERR(right); 4325 4326 root_add_used(root, fs_info->nodesize); 4327 4328 if (split == 0) { 4329 if (mid <= slot) { 4330 btrfs_set_header_nritems(right, 0); 4331 insert_ptr(trans, path, &disk_key, 4332 right->start, path->slots[1] + 1, 1); 4333 btrfs_tree_unlock(path->nodes[0]); 4334 free_extent_buffer(path->nodes[0]); 4335 path->nodes[0] = right; 4336 path->slots[0] = 0; 4337 path->slots[1] += 1; 4338 } else { 4339 btrfs_set_header_nritems(right, 0); 4340 insert_ptr(trans, path, &disk_key, 4341 right->start, path->slots[1], 1); 4342 btrfs_tree_unlock(path->nodes[0]); 4343 free_extent_buffer(path->nodes[0]); 4344 path->nodes[0] = right; 4345 path->slots[0] = 0; 4346 if (path->slots[1] == 0) 4347 fixup_low_keys(path, &disk_key, 1); 4348 } 4349 /* 4350 * We create a new leaf 'right' for the required ins_len and 4351 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4352 * the content of ins_len to 'right'. 4353 */ 4354 return ret; 4355 } 4356 4357 copy_for_split(trans, path, l, right, slot, mid, nritems); 4358 4359 if (split == 2) { 4360 BUG_ON(num_doubles != 0); 4361 num_doubles++; 4362 goto again; 4363 } 4364 4365 return 0; 4366 4367 push_for_double: 4368 push_for_double_split(trans, root, path, data_size); 4369 tried_avoid_double = 1; 4370 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4371 return 0; 4372 goto again; 4373 } 4374 4375 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4376 struct btrfs_root *root, 4377 struct btrfs_path *path, int ins_len) 4378 { 4379 struct btrfs_key key; 4380 struct extent_buffer *leaf; 4381 struct btrfs_file_extent_item *fi; 4382 u64 extent_len = 0; 4383 u32 item_size; 4384 int ret; 4385 4386 leaf = path->nodes[0]; 4387 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4388 4389 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4390 key.type != BTRFS_EXTENT_CSUM_KEY); 4391 4392 if (btrfs_leaf_free_space(leaf) >= ins_len) 4393 return 0; 4394 4395 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4396 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4397 fi = btrfs_item_ptr(leaf, path->slots[0], 4398 struct btrfs_file_extent_item); 4399 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4400 } 4401 btrfs_release_path(path); 4402 4403 path->keep_locks = 1; 4404 path->search_for_split = 1; 4405 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4406 path->search_for_split = 0; 4407 if (ret > 0) 4408 ret = -EAGAIN; 4409 if (ret < 0) 4410 goto err; 4411 4412 ret = -EAGAIN; 4413 leaf = path->nodes[0]; 4414 /* if our item isn't there, return now */ 4415 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4416 goto err; 4417 4418 /* the leaf has changed, it now has room. return now */ 4419 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4420 goto err; 4421 4422 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4423 fi = btrfs_item_ptr(leaf, path->slots[0], 4424 struct btrfs_file_extent_item); 4425 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4426 goto err; 4427 } 4428 4429 btrfs_set_path_blocking(path); 4430 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4431 if (ret) 4432 goto err; 4433 4434 path->keep_locks = 0; 4435 btrfs_unlock_up_safe(path, 1); 4436 return 0; 4437 err: 4438 path->keep_locks = 0; 4439 return ret; 4440 } 4441 4442 static noinline int split_item(struct btrfs_path *path, 4443 const struct btrfs_key *new_key, 4444 unsigned long split_offset) 4445 { 4446 struct extent_buffer *leaf; 4447 struct btrfs_item *item; 4448 struct btrfs_item *new_item; 4449 int slot; 4450 char *buf; 4451 u32 nritems; 4452 u32 item_size; 4453 u32 orig_offset; 4454 struct btrfs_disk_key disk_key; 4455 4456 leaf = path->nodes[0]; 4457 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4458 4459 btrfs_set_path_blocking(path); 4460 4461 item = btrfs_item_nr(path->slots[0]); 4462 orig_offset = btrfs_item_offset(leaf, item); 4463 item_size = btrfs_item_size(leaf, item); 4464 4465 buf = kmalloc(item_size, GFP_NOFS); 4466 if (!buf) 4467 return -ENOMEM; 4468 4469 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4470 path->slots[0]), item_size); 4471 4472 slot = path->slots[0] + 1; 4473 nritems = btrfs_header_nritems(leaf); 4474 if (slot != nritems) { 4475 /* shift the items */ 4476 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4477 btrfs_item_nr_offset(slot), 4478 (nritems - slot) * sizeof(struct btrfs_item)); 4479 } 4480 4481 btrfs_cpu_key_to_disk(&disk_key, new_key); 4482 btrfs_set_item_key(leaf, &disk_key, slot); 4483 4484 new_item = btrfs_item_nr(slot); 4485 4486 btrfs_set_item_offset(leaf, new_item, orig_offset); 4487 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4488 4489 btrfs_set_item_offset(leaf, item, 4490 orig_offset + item_size - split_offset); 4491 btrfs_set_item_size(leaf, item, split_offset); 4492 4493 btrfs_set_header_nritems(leaf, nritems + 1); 4494 4495 /* write the data for the start of the original item */ 4496 write_extent_buffer(leaf, buf, 4497 btrfs_item_ptr_offset(leaf, path->slots[0]), 4498 split_offset); 4499 4500 /* write the data for the new item */ 4501 write_extent_buffer(leaf, buf + split_offset, 4502 btrfs_item_ptr_offset(leaf, slot), 4503 item_size - split_offset); 4504 btrfs_mark_buffer_dirty(leaf); 4505 4506 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4507 kfree(buf); 4508 return 0; 4509 } 4510 4511 /* 4512 * This function splits a single item into two items, 4513 * giving 'new_key' to the new item and splitting the 4514 * old one at split_offset (from the start of the item). 4515 * 4516 * The path may be released by this operation. After 4517 * the split, the path is pointing to the old item. The 4518 * new item is going to be in the same node as the old one. 4519 * 4520 * Note, the item being split must be smaller enough to live alone on 4521 * a tree block with room for one extra struct btrfs_item 4522 * 4523 * This allows us to split the item in place, keeping a lock on the 4524 * leaf the entire time. 4525 */ 4526 int btrfs_split_item(struct btrfs_trans_handle *trans, 4527 struct btrfs_root *root, 4528 struct btrfs_path *path, 4529 const struct btrfs_key *new_key, 4530 unsigned long split_offset) 4531 { 4532 int ret; 4533 ret = setup_leaf_for_split(trans, root, path, 4534 sizeof(struct btrfs_item)); 4535 if (ret) 4536 return ret; 4537 4538 ret = split_item(path, new_key, split_offset); 4539 return ret; 4540 } 4541 4542 /* 4543 * This function duplicate a item, giving 'new_key' to the new item. 4544 * It guarantees both items live in the same tree leaf and the new item 4545 * is contiguous with the original item. 4546 * 4547 * This allows us to split file extent in place, keeping a lock on the 4548 * leaf the entire time. 4549 */ 4550 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4551 struct btrfs_root *root, 4552 struct btrfs_path *path, 4553 const struct btrfs_key *new_key) 4554 { 4555 struct extent_buffer *leaf; 4556 int ret; 4557 u32 item_size; 4558 4559 leaf = path->nodes[0]; 4560 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4561 ret = setup_leaf_for_split(trans, root, path, 4562 item_size + sizeof(struct btrfs_item)); 4563 if (ret) 4564 return ret; 4565 4566 path->slots[0]++; 4567 setup_items_for_insert(root, path, new_key, &item_size, 4568 item_size, item_size + 4569 sizeof(struct btrfs_item), 1); 4570 leaf = path->nodes[0]; 4571 memcpy_extent_buffer(leaf, 4572 btrfs_item_ptr_offset(leaf, path->slots[0]), 4573 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4574 item_size); 4575 return 0; 4576 } 4577 4578 /* 4579 * make the item pointed to by the path smaller. new_size indicates 4580 * how small to make it, and from_end tells us if we just chop bytes 4581 * off the end of the item or if we shift the item to chop bytes off 4582 * the front. 4583 */ 4584 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4585 { 4586 int slot; 4587 struct extent_buffer *leaf; 4588 struct btrfs_item *item; 4589 u32 nritems; 4590 unsigned int data_end; 4591 unsigned int old_data_start; 4592 unsigned int old_size; 4593 unsigned int size_diff; 4594 int i; 4595 struct btrfs_map_token token; 4596 4597 leaf = path->nodes[0]; 4598 slot = path->slots[0]; 4599 4600 old_size = btrfs_item_size_nr(leaf, slot); 4601 if (old_size == new_size) 4602 return; 4603 4604 nritems = btrfs_header_nritems(leaf); 4605 data_end = leaf_data_end(leaf); 4606 4607 old_data_start = btrfs_item_offset_nr(leaf, slot); 4608 4609 size_diff = old_size - new_size; 4610 4611 BUG_ON(slot < 0); 4612 BUG_ON(slot >= nritems); 4613 4614 /* 4615 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4616 */ 4617 /* first correct the data pointers */ 4618 btrfs_init_map_token(&token, leaf); 4619 for (i = slot; i < nritems; i++) { 4620 u32 ioff; 4621 item = btrfs_item_nr(i); 4622 4623 ioff = btrfs_token_item_offset(leaf, item, &token); 4624 btrfs_set_token_item_offset(leaf, item, 4625 ioff + size_diff, &token); 4626 } 4627 4628 /* shift the data */ 4629 if (from_end) { 4630 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4631 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4632 data_end, old_data_start + new_size - data_end); 4633 } else { 4634 struct btrfs_disk_key disk_key; 4635 u64 offset; 4636 4637 btrfs_item_key(leaf, &disk_key, slot); 4638 4639 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4640 unsigned long ptr; 4641 struct btrfs_file_extent_item *fi; 4642 4643 fi = btrfs_item_ptr(leaf, slot, 4644 struct btrfs_file_extent_item); 4645 fi = (struct btrfs_file_extent_item *)( 4646 (unsigned long)fi - size_diff); 4647 4648 if (btrfs_file_extent_type(leaf, fi) == 4649 BTRFS_FILE_EXTENT_INLINE) { 4650 ptr = btrfs_item_ptr_offset(leaf, slot); 4651 memmove_extent_buffer(leaf, ptr, 4652 (unsigned long)fi, 4653 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4654 } 4655 } 4656 4657 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4658 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4659 data_end, old_data_start - data_end); 4660 4661 offset = btrfs_disk_key_offset(&disk_key); 4662 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4663 btrfs_set_item_key(leaf, &disk_key, slot); 4664 if (slot == 0) 4665 fixup_low_keys(path, &disk_key, 1); 4666 } 4667 4668 item = btrfs_item_nr(slot); 4669 btrfs_set_item_size(leaf, item, new_size); 4670 btrfs_mark_buffer_dirty(leaf); 4671 4672 if (btrfs_leaf_free_space(leaf) < 0) { 4673 btrfs_print_leaf(leaf); 4674 BUG(); 4675 } 4676 } 4677 4678 /* 4679 * make the item pointed to by the path bigger, data_size is the added size. 4680 */ 4681 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4682 { 4683 int slot; 4684 struct extent_buffer *leaf; 4685 struct btrfs_item *item; 4686 u32 nritems; 4687 unsigned int data_end; 4688 unsigned int old_data; 4689 unsigned int old_size; 4690 int i; 4691 struct btrfs_map_token token; 4692 4693 leaf = path->nodes[0]; 4694 4695 nritems = btrfs_header_nritems(leaf); 4696 data_end = leaf_data_end(leaf); 4697 4698 if (btrfs_leaf_free_space(leaf) < data_size) { 4699 btrfs_print_leaf(leaf); 4700 BUG(); 4701 } 4702 slot = path->slots[0]; 4703 old_data = btrfs_item_end_nr(leaf, slot); 4704 4705 BUG_ON(slot < 0); 4706 if (slot >= nritems) { 4707 btrfs_print_leaf(leaf); 4708 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4709 slot, nritems); 4710 BUG(); 4711 } 4712 4713 /* 4714 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4715 */ 4716 /* first correct the data pointers */ 4717 btrfs_init_map_token(&token, leaf); 4718 for (i = slot; i < nritems; i++) { 4719 u32 ioff; 4720 item = btrfs_item_nr(i); 4721 4722 ioff = btrfs_token_item_offset(leaf, item, &token); 4723 btrfs_set_token_item_offset(leaf, item, 4724 ioff - data_size, &token); 4725 } 4726 4727 /* shift the data */ 4728 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4729 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4730 data_end, old_data - data_end); 4731 4732 data_end = old_data; 4733 old_size = btrfs_item_size_nr(leaf, slot); 4734 item = btrfs_item_nr(slot); 4735 btrfs_set_item_size(leaf, item, old_size + data_size); 4736 btrfs_mark_buffer_dirty(leaf); 4737 4738 if (btrfs_leaf_free_space(leaf) < 0) { 4739 btrfs_print_leaf(leaf); 4740 BUG(); 4741 } 4742 } 4743 4744 /* 4745 * this is a helper for btrfs_insert_empty_items, the main goal here is 4746 * to save stack depth by doing the bulk of the work in a function 4747 * that doesn't call btrfs_search_slot 4748 */ 4749 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4750 const struct btrfs_key *cpu_key, u32 *data_size, 4751 u32 total_data, u32 total_size, int nr) 4752 { 4753 struct btrfs_fs_info *fs_info = root->fs_info; 4754 struct btrfs_item *item; 4755 int i; 4756 u32 nritems; 4757 unsigned int data_end; 4758 struct btrfs_disk_key disk_key; 4759 struct extent_buffer *leaf; 4760 int slot; 4761 struct btrfs_map_token token; 4762 4763 if (path->slots[0] == 0) { 4764 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4765 fixup_low_keys(path, &disk_key, 1); 4766 } 4767 btrfs_unlock_up_safe(path, 1); 4768 4769 leaf = path->nodes[0]; 4770 slot = path->slots[0]; 4771 4772 nritems = btrfs_header_nritems(leaf); 4773 data_end = leaf_data_end(leaf); 4774 4775 if (btrfs_leaf_free_space(leaf) < total_size) { 4776 btrfs_print_leaf(leaf); 4777 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4778 total_size, btrfs_leaf_free_space(leaf)); 4779 BUG(); 4780 } 4781 4782 btrfs_init_map_token(&token, leaf); 4783 if (slot != nritems) { 4784 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4785 4786 if (old_data < data_end) { 4787 btrfs_print_leaf(leaf); 4788 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4789 slot, old_data, data_end); 4790 BUG(); 4791 } 4792 /* 4793 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4794 */ 4795 /* first correct the data pointers */ 4796 for (i = slot; i < nritems; i++) { 4797 u32 ioff; 4798 4799 item = btrfs_item_nr(i); 4800 ioff = btrfs_token_item_offset(leaf, item, &token); 4801 btrfs_set_token_item_offset(leaf, item, 4802 ioff - total_data, &token); 4803 } 4804 /* shift the items */ 4805 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4806 btrfs_item_nr_offset(slot), 4807 (nritems - slot) * sizeof(struct btrfs_item)); 4808 4809 /* shift the data */ 4810 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4811 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4812 data_end, old_data - data_end); 4813 data_end = old_data; 4814 } 4815 4816 /* setup the item for the new data */ 4817 for (i = 0; i < nr; i++) { 4818 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4819 btrfs_set_item_key(leaf, &disk_key, slot + i); 4820 item = btrfs_item_nr(slot + i); 4821 btrfs_set_token_item_offset(leaf, item, 4822 data_end - data_size[i], &token); 4823 data_end -= data_size[i]; 4824 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4825 } 4826 4827 btrfs_set_header_nritems(leaf, nritems + nr); 4828 btrfs_mark_buffer_dirty(leaf); 4829 4830 if (btrfs_leaf_free_space(leaf) < 0) { 4831 btrfs_print_leaf(leaf); 4832 BUG(); 4833 } 4834 } 4835 4836 /* 4837 * Given a key and some data, insert items into the tree. 4838 * This does all the path init required, making room in the tree if needed. 4839 */ 4840 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4841 struct btrfs_root *root, 4842 struct btrfs_path *path, 4843 const struct btrfs_key *cpu_key, u32 *data_size, 4844 int nr) 4845 { 4846 int ret = 0; 4847 int slot; 4848 int i; 4849 u32 total_size = 0; 4850 u32 total_data = 0; 4851 4852 for (i = 0; i < nr; i++) 4853 total_data += data_size[i]; 4854 4855 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4856 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4857 if (ret == 0) 4858 return -EEXIST; 4859 if (ret < 0) 4860 return ret; 4861 4862 slot = path->slots[0]; 4863 BUG_ON(slot < 0); 4864 4865 setup_items_for_insert(root, path, cpu_key, data_size, 4866 total_data, total_size, nr); 4867 return 0; 4868 } 4869 4870 /* 4871 * Given a key and some data, insert an item into the tree. 4872 * This does all the path init required, making room in the tree if needed. 4873 */ 4874 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4875 const struct btrfs_key *cpu_key, void *data, 4876 u32 data_size) 4877 { 4878 int ret = 0; 4879 struct btrfs_path *path; 4880 struct extent_buffer *leaf; 4881 unsigned long ptr; 4882 4883 path = btrfs_alloc_path(); 4884 if (!path) 4885 return -ENOMEM; 4886 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4887 if (!ret) { 4888 leaf = path->nodes[0]; 4889 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4890 write_extent_buffer(leaf, data, ptr, data_size); 4891 btrfs_mark_buffer_dirty(leaf); 4892 } 4893 btrfs_free_path(path); 4894 return ret; 4895 } 4896 4897 /* 4898 * delete the pointer from a given node. 4899 * 4900 * the tree should have been previously balanced so the deletion does not 4901 * empty a node. 4902 */ 4903 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4904 int level, int slot) 4905 { 4906 struct extent_buffer *parent = path->nodes[level]; 4907 u32 nritems; 4908 int ret; 4909 4910 nritems = btrfs_header_nritems(parent); 4911 if (slot != nritems - 1) { 4912 if (level) { 4913 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4914 nritems - slot - 1); 4915 BUG_ON(ret < 0); 4916 } 4917 memmove_extent_buffer(parent, 4918 btrfs_node_key_ptr_offset(slot), 4919 btrfs_node_key_ptr_offset(slot + 1), 4920 sizeof(struct btrfs_key_ptr) * 4921 (nritems - slot - 1)); 4922 } else if (level) { 4923 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4924 GFP_NOFS); 4925 BUG_ON(ret < 0); 4926 } 4927 4928 nritems--; 4929 btrfs_set_header_nritems(parent, nritems); 4930 if (nritems == 0 && parent == root->node) { 4931 BUG_ON(btrfs_header_level(root->node) != 1); 4932 /* just turn the root into a leaf and break */ 4933 btrfs_set_header_level(root->node, 0); 4934 } else if (slot == 0) { 4935 struct btrfs_disk_key disk_key; 4936 4937 btrfs_node_key(parent, &disk_key, 0); 4938 fixup_low_keys(path, &disk_key, level + 1); 4939 } 4940 btrfs_mark_buffer_dirty(parent); 4941 } 4942 4943 /* 4944 * a helper function to delete the leaf pointed to by path->slots[1] and 4945 * path->nodes[1]. 4946 * 4947 * This deletes the pointer in path->nodes[1] and frees the leaf 4948 * block extent. zero is returned if it all worked out, < 0 otherwise. 4949 * 4950 * The path must have already been setup for deleting the leaf, including 4951 * all the proper balancing. path->nodes[1] must be locked. 4952 */ 4953 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4954 struct btrfs_root *root, 4955 struct btrfs_path *path, 4956 struct extent_buffer *leaf) 4957 { 4958 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4959 del_ptr(root, path, 1, path->slots[1]); 4960 4961 /* 4962 * btrfs_free_extent is expensive, we want to make sure we 4963 * aren't holding any locks when we call it 4964 */ 4965 btrfs_unlock_up_safe(path, 0); 4966 4967 root_sub_used(root, leaf->len); 4968 4969 extent_buffer_get(leaf); 4970 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4971 free_extent_buffer_stale(leaf); 4972 } 4973 /* 4974 * delete the item at the leaf level in path. If that empties 4975 * the leaf, remove it from the tree 4976 */ 4977 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4978 struct btrfs_path *path, int slot, int nr) 4979 { 4980 struct btrfs_fs_info *fs_info = root->fs_info; 4981 struct extent_buffer *leaf; 4982 struct btrfs_item *item; 4983 u32 last_off; 4984 u32 dsize = 0; 4985 int ret = 0; 4986 int wret; 4987 int i; 4988 u32 nritems; 4989 4990 leaf = path->nodes[0]; 4991 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4992 4993 for (i = 0; i < nr; i++) 4994 dsize += btrfs_item_size_nr(leaf, slot + i); 4995 4996 nritems = btrfs_header_nritems(leaf); 4997 4998 if (slot + nr != nritems) { 4999 int data_end = leaf_data_end(leaf); 5000 struct btrfs_map_token token; 5001 5002 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 5003 data_end + dsize, 5004 BTRFS_LEAF_DATA_OFFSET + data_end, 5005 last_off - data_end); 5006 5007 btrfs_init_map_token(&token, leaf); 5008 for (i = slot + nr; i < nritems; i++) { 5009 u32 ioff; 5010 5011 item = btrfs_item_nr(i); 5012 ioff = btrfs_token_item_offset(leaf, item, &token); 5013 btrfs_set_token_item_offset(leaf, item, 5014 ioff + dsize, &token); 5015 } 5016 5017 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 5018 btrfs_item_nr_offset(slot + nr), 5019 sizeof(struct btrfs_item) * 5020 (nritems - slot - nr)); 5021 } 5022 btrfs_set_header_nritems(leaf, nritems - nr); 5023 nritems -= nr; 5024 5025 /* delete the leaf if we've emptied it */ 5026 if (nritems == 0) { 5027 if (leaf == root->node) { 5028 btrfs_set_header_level(leaf, 0); 5029 } else { 5030 btrfs_set_path_blocking(path); 5031 btrfs_clean_tree_block(leaf); 5032 btrfs_del_leaf(trans, root, path, leaf); 5033 } 5034 } else { 5035 int used = leaf_space_used(leaf, 0, nritems); 5036 if (slot == 0) { 5037 struct btrfs_disk_key disk_key; 5038 5039 btrfs_item_key(leaf, &disk_key, 0); 5040 fixup_low_keys(path, &disk_key, 1); 5041 } 5042 5043 /* delete the leaf if it is mostly empty */ 5044 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5045 /* push_leaf_left fixes the path. 5046 * make sure the path still points to our leaf 5047 * for possible call to del_ptr below 5048 */ 5049 slot = path->slots[1]; 5050 extent_buffer_get(leaf); 5051 5052 btrfs_set_path_blocking(path); 5053 wret = push_leaf_left(trans, root, path, 1, 1, 5054 1, (u32)-1); 5055 if (wret < 0 && wret != -ENOSPC) 5056 ret = wret; 5057 5058 if (path->nodes[0] == leaf && 5059 btrfs_header_nritems(leaf)) { 5060 wret = push_leaf_right(trans, root, path, 1, 5061 1, 1, 0); 5062 if (wret < 0 && wret != -ENOSPC) 5063 ret = wret; 5064 } 5065 5066 if (btrfs_header_nritems(leaf) == 0) { 5067 path->slots[1] = slot; 5068 btrfs_del_leaf(trans, root, path, leaf); 5069 free_extent_buffer(leaf); 5070 ret = 0; 5071 } else { 5072 /* if we're still in the path, make sure 5073 * we're dirty. Otherwise, one of the 5074 * push_leaf functions must have already 5075 * dirtied this buffer 5076 */ 5077 if (path->nodes[0] == leaf) 5078 btrfs_mark_buffer_dirty(leaf); 5079 free_extent_buffer(leaf); 5080 } 5081 } else { 5082 btrfs_mark_buffer_dirty(leaf); 5083 } 5084 } 5085 return ret; 5086 } 5087 5088 /* 5089 * search the tree again to find a leaf with lesser keys 5090 * returns 0 if it found something or 1 if there are no lesser leaves. 5091 * returns < 0 on io errors. 5092 * 5093 * This may release the path, and so you may lose any locks held at the 5094 * time you call it. 5095 */ 5096 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5097 { 5098 struct btrfs_key key; 5099 struct btrfs_disk_key found_key; 5100 int ret; 5101 5102 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5103 5104 if (key.offset > 0) { 5105 key.offset--; 5106 } else if (key.type > 0) { 5107 key.type--; 5108 key.offset = (u64)-1; 5109 } else if (key.objectid > 0) { 5110 key.objectid--; 5111 key.type = (u8)-1; 5112 key.offset = (u64)-1; 5113 } else { 5114 return 1; 5115 } 5116 5117 btrfs_release_path(path); 5118 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5119 if (ret < 0) 5120 return ret; 5121 btrfs_item_key(path->nodes[0], &found_key, 0); 5122 ret = comp_keys(&found_key, &key); 5123 /* 5124 * We might have had an item with the previous key in the tree right 5125 * before we released our path. And after we released our path, that 5126 * item might have been pushed to the first slot (0) of the leaf we 5127 * were holding due to a tree balance. Alternatively, an item with the 5128 * previous key can exist as the only element of a leaf (big fat item). 5129 * Therefore account for these 2 cases, so that our callers (like 5130 * btrfs_previous_item) don't miss an existing item with a key matching 5131 * the previous key we computed above. 5132 */ 5133 if (ret <= 0) 5134 return 0; 5135 return 1; 5136 } 5137 5138 /* 5139 * A helper function to walk down the tree starting at min_key, and looking 5140 * for nodes or leaves that are have a minimum transaction id. 5141 * This is used by the btree defrag code, and tree logging 5142 * 5143 * This does not cow, but it does stuff the starting key it finds back 5144 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5145 * key and get a writable path. 5146 * 5147 * This honors path->lowest_level to prevent descent past a given level 5148 * of the tree. 5149 * 5150 * min_trans indicates the oldest transaction that you are interested 5151 * in walking through. Any nodes or leaves older than min_trans are 5152 * skipped over (without reading them). 5153 * 5154 * returns zero if something useful was found, < 0 on error and 1 if there 5155 * was nothing in the tree that matched the search criteria. 5156 */ 5157 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5158 struct btrfs_path *path, 5159 u64 min_trans) 5160 { 5161 struct extent_buffer *cur; 5162 struct btrfs_key found_key; 5163 int slot; 5164 int sret; 5165 u32 nritems; 5166 int level; 5167 int ret = 1; 5168 int keep_locks = path->keep_locks; 5169 5170 path->keep_locks = 1; 5171 again: 5172 cur = btrfs_read_lock_root_node(root); 5173 level = btrfs_header_level(cur); 5174 WARN_ON(path->nodes[level]); 5175 path->nodes[level] = cur; 5176 path->locks[level] = BTRFS_READ_LOCK; 5177 5178 if (btrfs_header_generation(cur) < min_trans) { 5179 ret = 1; 5180 goto out; 5181 } 5182 while (1) { 5183 nritems = btrfs_header_nritems(cur); 5184 level = btrfs_header_level(cur); 5185 sret = btrfs_bin_search(cur, min_key, level, &slot); 5186 if (sret < 0) { 5187 ret = sret; 5188 goto out; 5189 } 5190 5191 /* at the lowest level, we're done, setup the path and exit */ 5192 if (level == path->lowest_level) { 5193 if (slot >= nritems) 5194 goto find_next_key; 5195 ret = 0; 5196 path->slots[level] = slot; 5197 btrfs_item_key_to_cpu(cur, &found_key, slot); 5198 goto out; 5199 } 5200 if (sret && slot > 0) 5201 slot--; 5202 /* 5203 * check this node pointer against the min_trans parameters. 5204 * If it is too old, old, skip to the next one. 5205 */ 5206 while (slot < nritems) { 5207 u64 gen; 5208 5209 gen = btrfs_node_ptr_generation(cur, slot); 5210 if (gen < min_trans) { 5211 slot++; 5212 continue; 5213 } 5214 break; 5215 } 5216 find_next_key: 5217 /* 5218 * we didn't find a candidate key in this node, walk forward 5219 * and find another one 5220 */ 5221 if (slot >= nritems) { 5222 path->slots[level] = slot; 5223 btrfs_set_path_blocking(path); 5224 sret = btrfs_find_next_key(root, path, min_key, level, 5225 min_trans); 5226 if (sret == 0) { 5227 btrfs_release_path(path); 5228 goto again; 5229 } else { 5230 goto out; 5231 } 5232 } 5233 /* save our key for returning back */ 5234 btrfs_node_key_to_cpu(cur, &found_key, slot); 5235 path->slots[level] = slot; 5236 if (level == path->lowest_level) { 5237 ret = 0; 5238 goto out; 5239 } 5240 btrfs_set_path_blocking(path); 5241 cur = btrfs_read_node_slot(cur, slot); 5242 if (IS_ERR(cur)) { 5243 ret = PTR_ERR(cur); 5244 goto out; 5245 } 5246 5247 btrfs_tree_read_lock(cur); 5248 5249 path->locks[level - 1] = BTRFS_READ_LOCK; 5250 path->nodes[level - 1] = cur; 5251 unlock_up(path, level, 1, 0, NULL); 5252 } 5253 out: 5254 path->keep_locks = keep_locks; 5255 if (ret == 0) { 5256 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5257 btrfs_set_path_blocking(path); 5258 memcpy(min_key, &found_key, sizeof(found_key)); 5259 } 5260 return ret; 5261 } 5262 5263 /* 5264 * this is similar to btrfs_next_leaf, but does not try to preserve 5265 * and fixup the path. It looks for and returns the next key in the 5266 * tree based on the current path and the min_trans parameters. 5267 * 5268 * 0 is returned if another key is found, < 0 if there are any errors 5269 * and 1 is returned if there are no higher keys in the tree 5270 * 5271 * path->keep_locks should be set to 1 on the search made before 5272 * calling this function. 5273 */ 5274 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5275 struct btrfs_key *key, int level, u64 min_trans) 5276 { 5277 int slot; 5278 struct extent_buffer *c; 5279 5280 WARN_ON(!path->keep_locks && !path->skip_locking); 5281 while (level < BTRFS_MAX_LEVEL) { 5282 if (!path->nodes[level]) 5283 return 1; 5284 5285 slot = path->slots[level] + 1; 5286 c = path->nodes[level]; 5287 next: 5288 if (slot >= btrfs_header_nritems(c)) { 5289 int ret; 5290 int orig_lowest; 5291 struct btrfs_key cur_key; 5292 if (level + 1 >= BTRFS_MAX_LEVEL || 5293 !path->nodes[level + 1]) 5294 return 1; 5295 5296 if (path->locks[level + 1] || path->skip_locking) { 5297 level++; 5298 continue; 5299 } 5300 5301 slot = btrfs_header_nritems(c) - 1; 5302 if (level == 0) 5303 btrfs_item_key_to_cpu(c, &cur_key, slot); 5304 else 5305 btrfs_node_key_to_cpu(c, &cur_key, slot); 5306 5307 orig_lowest = path->lowest_level; 5308 btrfs_release_path(path); 5309 path->lowest_level = level; 5310 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5311 0, 0); 5312 path->lowest_level = orig_lowest; 5313 if (ret < 0) 5314 return ret; 5315 5316 c = path->nodes[level]; 5317 slot = path->slots[level]; 5318 if (ret == 0) 5319 slot++; 5320 goto next; 5321 } 5322 5323 if (level == 0) 5324 btrfs_item_key_to_cpu(c, key, slot); 5325 else { 5326 u64 gen = btrfs_node_ptr_generation(c, slot); 5327 5328 if (gen < min_trans) { 5329 slot++; 5330 goto next; 5331 } 5332 btrfs_node_key_to_cpu(c, key, slot); 5333 } 5334 return 0; 5335 } 5336 return 1; 5337 } 5338 5339 /* 5340 * search the tree again to find a leaf with greater keys 5341 * returns 0 if it found something or 1 if there are no greater leaves. 5342 * returns < 0 on io errors. 5343 */ 5344 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5345 { 5346 return btrfs_next_old_leaf(root, path, 0); 5347 } 5348 5349 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5350 u64 time_seq) 5351 { 5352 int slot; 5353 int level; 5354 struct extent_buffer *c; 5355 struct extent_buffer *next; 5356 struct btrfs_key key; 5357 u32 nritems; 5358 int ret; 5359 int old_spinning = path->leave_spinning; 5360 int next_rw_lock = 0; 5361 5362 nritems = btrfs_header_nritems(path->nodes[0]); 5363 if (nritems == 0) 5364 return 1; 5365 5366 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5367 again: 5368 level = 1; 5369 next = NULL; 5370 next_rw_lock = 0; 5371 btrfs_release_path(path); 5372 5373 path->keep_locks = 1; 5374 path->leave_spinning = 1; 5375 5376 if (time_seq) 5377 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5378 else 5379 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5380 path->keep_locks = 0; 5381 5382 if (ret < 0) 5383 return ret; 5384 5385 nritems = btrfs_header_nritems(path->nodes[0]); 5386 /* 5387 * by releasing the path above we dropped all our locks. A balance 5388 * could have added more items next to the key that used to be 5389 * at the very end of the block. So, check again here and 5390 * advance the path if there are now more items available. 5391 */ 5392 if (nritems > 0 && path->slots[0] < nritems - 1) { 5393 if (ret == 0) 5394 path->slots[0]++; 5395 ret = 0; 5396 goto done; 5397 } 5398 /* 5399 * So the above check misses one case: 5400 * - after releasing the path above, someone has removed the item that 5401 * used to be at the very end of the block, and balance between leafs 5402 * gets another one with bigger key.offset to replace it. 5403 * 5404 * This one should be returned as well, or we can get leaf corruption 5405 * later(esp. in __btrfs_drop_extents()). 5406 * 5407 * And a bit more explanation about this check, 5408 * with ret > 0, the key isn't found, the path points to the slot 5409 * where it should be inserted, so the path->slots[0] item must be the 5410 * bigger one. 5411 */ 5412 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5413 ret = 0; 5414 goto done; 5415 } 5416 5417 while (level < BTRFS_MAX_LEVEL) { 5418 if (!path->nodes[level]) { 5419 ret = 1; 5420 goto done; 5421 } 5422 5423 slot = path->slots[level] + 1; 5424 c = path->nodes[level]; 5425 if (slot >= btrfs_header_nritems(c)) { 5426 level++; 5427 if (level == BTRFS_MAX_LEVEL) { 5428 ret = 1; 5429 goto done; 5430 } 5431 continue; 5432 } 5433 5434 if (next) { 5435 btrfs_tree_unlock_rw(next, next_rw_lock); 5436 free_extent_buffer(next); 5437 } 5438 5439 next = c; 5440 next_rw_lock = path->locks[level]; 5441 ret = read_block_for_search(root, path, &next, level, 5442 slot, &key); 5443 if (ret == -EAGAIN) 5444 goto again; 5445 5446 if (ret < 0) { 5447 btrfs_release_path(path); 5448 goto done; 5449 } 5450 5451 if (!path->skip_locking) { 5452 ret = btrfs_try_tree_read_lock(next); 5453 if (!ret && time_seq) { 5454 /* 5455 * If we don't get the lock, we may be racing 5456 * with push_leaf_left, holding that lock while 5457 * itself waiting for the leaf we've currently 5458 * locked. To solve this situation, we give up 5459 * on our lock and cycle. 5460 */ 5461 free_extent_buffer(next); 5462 btrfs_release_path(path); 5463 cond_resched(); 5464 goto again; 5465 } 5466 if (!ret) { 5467 btrfs_set_path_blocking(path); 5468 btrfs_tree_read_lock(next); 5469 } 5470 next_rw_lock = BTRFS_READ_LOCK; 5471 } 5472 break; 5473 } 5474 path->slots[level] = slot; 5475 while (1) { 5476 level--; 5477 c = path->nodes[level]; 5478 if (path->locks[level]) 5479 btrfs_tree_unlock_rw(c, path->locks[level]); 5480 5481 free_extent_buffer(c); 5482 path->nodes[level] = next; 5483 path->slots[level] = 0; 5484 if (!path->skip_locking) 5485 path->locks[level] = next_rw_lock; 5486 if (!level) 5487 break; 5488 5489 ret = read_block_for_search(root, path, &next, level, 5490 0, &key); 5491 if (ret == -EAGAIN) 5492 goto again; 5493 5494 if (ret < 0) { 5495 btrfs_release_path(path); 5496 goto done; 5497 } 5498 5499 if (!path->skip_locking) { 5500 ret = btrfs_try_tree_read_lock(next); 5501 if (!ret) { 5502 btrfs_set_path_blocking(path); 5503 btrfs_tree_read_lock(next); 5504 } 5505 next_rw_lock = BTRFS_READ_LOCK; 5506 } 5507 } 5508 ret = 0; 5509 done: 5510 unlock_up(path, 0, 1, 0, NULL); 5511 path->leave_spinning = old_spinning; 5512 if (!old_spinning) 5513 btrfs_set_path_blocking(path); 5514 5515 return ret; 5516 } 5517 5518 /* 5519 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5520 * searching until it gets past min_objectid or finds an item of 'type' 5521 * 5522 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5523 */ 5524 int btrfs_previous_item(struct btrfs_root *root, 5525 struct btrfs_path *path, u64 min_objectid, 5526 int type) 5527 { 5528 struct btrfs_key found_key; 5529 struct extent_buffer *leaf; 5530 u32 nritems; 5531 int ret; 5532 5533 while (1) { 5534 if (path->slots[0] == 0) { 5535 btrfs_set_path_blocking(path); 5536 ret = btrfs_prev_leaf(root, path); 5537 if (ret != 0) 5538 return ret; 5539 } else { 5540 path->slots[0]--; 5541 } 5542 leaf = path->nodes[0]; 5543 nritems = btrfs_header_nritems(leaf); 5544 if (nritems == 0) 5545 return 1; 5546 if (path->slots[0] == nritems) 5547 path->slots[0]--; 5548 5549 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5550 if (found_key.objectid < min_objectid) 5551 break; 5552 if (found_key.type == type) 5553 return 0; 5554 if (found_key.objectid == min_objectid && 5555 found_key.type < type) 5556 break; 5557 } 5558 return 1; 5559 } 5560 5561 /* 5562 * search in extent tree to find a previous Metadata/Data extent item with 5563 * min objecitd. 5564 * 5565 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5566 */ 5567 int btrfs_previous_extent_item(struct btrfs_root *root, 5568 struct btrfs_path *path, u64 min_objectid) 5569 { 5570 struct btrfs_key found_key; 5571 struct extent_buffer *leaf; 5572 u32 nritems; 5573 int ret; 5574 5575 while (1) { 5576 if (path->slots[0] == 0) { 5577 btrfs_set_path_blocking(path); 5578 ret = btrfs_prev_leaf(root, path); 5579 if (ret != 0) 5580 return ret; 5581 } else { 5582 path->slots[0]--; 5583 } 5584 leaf = path->nodes[0]; 5585 nritems = btrfs_header_nritems(leaf); 5586 if (nritems == 0) 5587 return 1; 5588 if (path->slots[0] == nritems) 5589 path->slots[0]--; 5590 5591 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5592 if (found_key.objectid < min_objectid) 5593 break; 5594 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5595 found_key.type == BTRFS_METADATA_ITEM_KEY) 5596 return 0; 5597 if (found_key.objectid == min_objectid && 5598 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5599 break; 5600 } 5601 return 1; 5602 } 5603