1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include <linux/vmalloc.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 32 *root, struct btrfs_key *ins_key, 33 struct btrfs_path *path, int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct btrfs_fs_info *fs_info, 36 struct extent_buffer *dst, 37 struct extent_buffer *src, int empty); 38 static int balance_node_right(struct btrfs_trans_handle *trans, 39 struct btrfs_fs_info *fs_info, 40 struct extent_buffer *dst_buf, 41 struct extent_buffer *src_buf); 42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 43 int level, int slot); 44 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 45 struct extent_buffer *eb); 46 47 struct btrfs_path *btrfs_alloc_path(void) 48 { 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 if (held) { 84 btrfs_set_lock_blocking_rw(held, held_rw); 85 if (held_rw == BTRFS_WRITE_LOCK) 86 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 87 else if (held_rw == BTRFS_READ_LOCK) 88 held_rw = BTRFS_READ_LOCK_BLOCKING; 89 } 90 btrfs_set_path_blocking(p); 91 92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 93 if (p->nodes[i] && p->locks[i]) { 94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 96 p->locks[i] = BTRFS_WRITE_LOCK; 97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 98 p->locks[i] = BTRFS_READ_LOCK; 99 } 100 } 101 102 if (held) 103 btrfs_clear_lock_blocking_rw(held, held_rw); 104 } 105 106 /* this also releases the path */ 107 void btrfs_free_path(struct btrfs_path *p) 108 { 109 if (!p) 110 return; 111 btrfs_release_path(p); 112 kmem_cache_free(btrfs_path_cachep, p); 113 } 114 115 /* 116 * path release drops references on the extent buffers in the path 117 * and it drops any locks held by this path 118 * 119 * It is safe to call this on paths that no locks or extent buffers held. 120 */ 121 noinline void btrfs_release_path(struct btrfs_path *p) 122 { 123 int i; 124 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 126 p->slots[i] = 0; 127 if (!p->nodes[i]) 128 continue; 129 if (p->locks[i]) { 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 131 p->locks[i] = 0; 132 } 133 free_extent_buffer(p->nodes[i]); 134 p->nodes[i] = NULL; 135 } 136 } 137 138 /* 139 * safely gets a reference on the root node of a tree. A lock 140 * is not taken, so a concurrent writer may put a different node 141 * at the root of the tree. See btrfs_lock_root_node for the 142 * looping required. 143 * 144 * The extent buffer returned by this has a reference taken, so 145 * it won't disappear. It may stop being the root of the tree 146 * at any time because there are no locks held. 147 */ 148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 149 { 150 struct extent_buffer *eb; 151 152 while (1) { 153 rcu_read_lock(); 154 eb = rcu_dereference(root->node); 155 156 /* 157 * RCU really hurts here, we could free up the root node because 158 * it was COWed but we may not get the new root node yet so do 159 * the inc_not_zero dance and if it doesn't work then 160 * synchronize_rcu and try again. 161 */ 162 if (atomic_inc_not_zero(&eb->refs)) { 163 rcu_read_unlock(); 164 break; 165 } 166 rcu_read_unlock(); 167 synchronize_rcu(); 168 } 169 return eb; 170 } 171 172 /* loop around taking references on and locking the root node of the 173 * tree until you end up with a lock on the root. A locked buffer 174 * is returned, with a reference held. 175 */ 176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 177 { 178 struct extent_buffer *eb; 179 180 while (1) { 181 eb = btrfs_root_node(root); 182 btrfs_tree_lock(eb); 183 if (eb == root->node) 184 break; 185 btrfs_tree_unlock(eb); 186 free_extent_buffer(eb); 187 } 188 return eb; 189 } 190 191 /* loop around taking references on and locking the root node of the 192 * tree until you end up with a lock on the root. A locked buffer 193 * is returned, with a reference held. 194 */ 195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 196 { 197 struct extent_buffer *eb; 198 199 while (1) { 200 eb = btrfs_root_node(root); 201 btrfs_tree_read_lock(eb); 202 if (eb == root->node) 203 break; 204 btrfs_tree_read_unlock(eb); 205 free_extent_buffer(eb); 206 } 207 return eb; 208 } 209 210 /* cowonly root (everything not a reference counted cow subvolume), just get 211 * put onto a simple dirty list. transaction.c walks this to make sure they 212 * get properly updated on disk. 213 */ 214 static void add_root_to_dirty_list(struct btrfs_root *root) 215 { 216 struct btrfs_fs_info *fs_info = root->fs_info; 217 218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 220 return; 221 222 spin_lock(&fs_info->trans_lock); 223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 224 /* Want the extent tree to be the last on the list */ 225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 226 list_move_tail(&root->dirty_list, 227 &fs_info->dirty_cowonly_roots); 228 else 229 list_move(&root->dirty_list, 230 &fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct btrfs_fs_info *fs_info = root->fs_info; 246 struct extent_buffer *cow; 247 int ret = 0; 248 int level; 249 struct btrfs_disk_key disk_key; 250 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 252 trans->transid != fs_info->running_transaction->transid); 253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 254 trans->transid != root->last_trans); 255 256 level = btrfs_header_level(buf); 257 if (level == 0) 258 btrfs_item_key(buf, &disk_key, 0); 259 else 260 btrfs_node_key(buf, &disk_key, 0); 261 262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 263 &disk_key, level, buf->start, 0); 264 if (IS_ERR(cow)) 265 return PTR_ERR(cow); 266 267 copy_extent_buffer_full(cow, buf); 268 btrfs_set_header_bytenr(cow, cow->start); 269 btrfs_set_header_generation(cow, trans->transid); 270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 272 BTRFS_HEADER_FLAG_RELOC); 273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 275 else 276 btrfs_set_header_owner(cow, new_root_objectid); 277 278 write_extent_buffer_fsid(cow, fs_info->fsid); 279 280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 282 ret = btrfs_inc_ref(trans, root, cow, 1); 283 else 284 ret = btrfs_inc_ref(trans, root, cow, 0); 285 286 if (ret) 287 return ret; 288 289 btrfs_mark_buffer_dirty(cow); 290 *cow_ret = cow; 291 return 0; 292 } 293 294 enum mod_log_op { 295 MOD_LOG_KEY_REPLACE, 296 MOD_LOG_KEY_ADD, 297 MOD_LOG_KEY_REMOVE, 298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 300 MOD_LOG_MOVE_KEYS, 301 MOD_LOG_ROOT_REPLACE, 302 }; 303 304 struct tree_mod_move { 305 int dst_slot; 306 int nr_items; 307 }; 308 309 struct tree_mod_root { 310 u64 logical; 311 u8 level; 312 }; 313 314 struct tree_mod_elem { 315 struct rb_node node; 316 u64 logical; 317 u64 seq; 318 enum mod_log_op op; 319 320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 321 int slot; 322 323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 324 u64 generation; 325 326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 327 struct btrfs_disk_key key; 328 u64 blockptr; 329 330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 331 struct tree_mod_move move; 332 333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 334 struct tree_mod_root old_root; 335 }; 336 337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 338 { 339 read_lock(&fs_info->tree_mod_log_lock); 340 } 341 342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 343 { 344 read_unlock(&fs_info->tree_mod_log_lock); 345 } 346 347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 348 { 349 write_lock(&fs_info->tree_mod_log_lock); 350 } 351 352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 353 { 354 write_unlock(&fs_info->tree_mod_log_lock); 355 } 356 357 /* 358 * Pull a new tree mod seq number for our operation. 359 */ 360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 361 { 362 return atomic64_inc_return(&fs_info->tree_mod_seq); 363 } 364 365 /* 366 * This adds a new blocker to the tree mod log's blocker list if the @elem 367 * passed does not already have a sequence number set. So when a caller expects 368 * to record tree modifications, it should ensure to set elem->seq to zero 369 * before calling btrfs_get_tree_mod_seq. 370 * Returns a fresh, unused tree log modification sequence number, even if no new 371 * blocker was added. 372 */ 373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 374 struct seq_list *elem) 375 { 376 tree_mod_log_write_lock(fs_info); 377 spin_lock(&fs_info->tree_mod_seq_lock); 378 if (!elem->seq) { 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 381 } 382 spin_unlock(&fs_info->tree_mod_seq_lock); 383 tree_mod_log_write_unlock(fs_info); 384 385 return elem->seq; 386 } 387 388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 389 struct seq_list *elem) 390 { 391 struct rb_root *tm_root; 392 struct rb_node *node; 393 struct rb_node *next; 394 struct seq_list *cur_elem; 395 struct tree_mod_elem *tm; 396 u64 min_seq = (u64)-1; 397 u64 seq_putting = elem->seq; 398 399 if (!seq_putting) 400 return; 401 402 spin_lock(&fs_info->tree_mod_seq_lock); 403 list_del(&elem->list); 404 elem->seq = 0; 405 406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 407 if (cur_elem->seq < min_seq) { 408 if (seq_putting > cur_elem->seq) { 409 /* 410 * blocker with lower sequence number exists, we 411 * cannot remove anything from the log 412 */ 413 spin_unlock(&fs_info->tree_mod_seq_lock); 414 return; 415 } 416 min_seq = cur_elem->seq; 417 } 418 } 419 spin_unlock(&fs_info->tree_mod_seq_lock); 420 421 /* 422 * anything that's lower than the lowest existing (read: blocked) 423 * sequence number can be removed from the tree. 424 */ 425 tree_mod_log_write_lock(fs_info); 426 tm_root = &fs_info->tree_mod_log; 427 for (node = rb_first(tm_root); node; node = next) { 428 next = rb_next(node); 429 tm = container_of(node, struct tree_mod_elem, node); 430 if (tm->seq > min_seq) 431 continue; 432 rb_erase(node, tm_root); 433 kfree(tm); 434 } 435 tree_mod_log_write_unlock(fs_info); 436 } 437 438 /* 439 * key order of the log: 440 * node/leaf start address -> sequence 441 * 442 * The 'start address' is the logical address of the *new* root node 443 * for root replace operations, or the logical address of the affected 444 * block for all other operations. 445 * 446 * Note: must be called with write lock (tree_mod_log_write_lock). 447 */ 448 static noinline int 449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 450 { 451 struct rb_root *tm_root; 452 struct rb_node **new; 453 struct rb_node *parent = NULL; 454 struct tree_mod_elem *cur; 455 456 BUG_ON(!tm); 457 458 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 459 460 tm_root = &fs_info->tree_mod_log; 461 new = &tm_root->rb_node; 462 while (*new) { 463 cur = container_of(*new, struct tree_mod_elem, node); 464 parent = *new; 465 if (cur->logical < tm->logical) 466 new = &((*new)->rb_left); 467 else if (cur->logical > tm->logical) 468 new = &((*new)->rb_right); 469 else if (cur->seq < tm->seq) 470 new = &((*new)->rb_left); 471 else if (cur->seq > tm->seq) 472 new = &((*new)->rb_right); 473 else 474 return -EEXIST; 475 } 476 477 rb_link_node(&tm->node, parent, new); 478 rb_insert_color(&tm->node, tm_root); 479 return 0; 480 } 481 482 /* 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold 485 * this until all tree mod log insertions are recorded in the rb tree and then 486 * call tree_mod_log_write_unlock() to release. 487 */ 488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 489 struct extent_buffer *eb) { 490 smp_mb(); 491 if (list_empty(&(fs_info)->tree_mod_seq_list)) 492 return 1; 493 if (eb && btrfs_header_level(eb) == 0) 494 return 1; 495 496 tree_mod_log_write_lock(fs_info); 497 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 498 tree_mod_log_write_unlock(fs_info); 499 return 1; 500 } 501 502 return 0; 503 } 504 505 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 506 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 507 struct extent_buffer *eb) 508 { 509 smp_mb(); 510 if (list_empty(&(fs_info)->tree_mod_seq_list)) 511 return 0; 512 if (eb && btrfs_header_level(eb) == 0) 513 return 0; 514 515 return 1; 516 } 517 518 static struct tree_mod_elem * 519 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 520 enum mod_log_op op, gfp_t flags) 521 { 522 struct tree_mod_elem *tm; 523 524 tm = kzalloc(sizeof(*tm), flags); 525 if (!tm) 526 return NULL; 527 528 tm->logical = eb->start; 529 if (op != MOD_LOG_KEY_ADD) { 530 btrfs_node_key(eb, &tm->key, slot); 531 tm->blockptr = btrfs_node_blockptr(eb, slot); 532 } 533 tm->op = op; 534 tm->slot = slot; 535 tm->generation = btrfs_node_ptr_generation(eb, slot); 536 RB_CLEAR_NODE(&tm->node); 537 538 return tm; 539 } 540 541 static noinline int 542 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 543 struct extent_buffer *eb, int slot, 544 enum mod_log_op op, gfp_t flags) 545 { 546 struct tree_mod_elem *tm; 547 int ret; 548 549 if (!tree_mod_need_log(fs_info, eb)) 550 return 0; 551 552 tm = alloc_tree_mod_elem(eb, slot, op, flags); 553 if (!tm) 554 return -ENOMEM; 555 556 if (tree_mod_dont_log(fs_info, eb)) { 557 kfree(tm); 558 return 0; 559 } 560 561 ret = __tree_mod_log_insert(fs_info, tm); 562 tree_mod_log_write_unlock(fs_info); 563 if (ret) 564 kfree(tm); 565 566 return ret; 567 } 568 569 static noinline int 570 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 571 struct extent_buffer *eb, int dst_slot, int src_slot, 572 int nr_items, gfp_t flags) 573 { 574 struct tree_mod_elem *tm = NULL; 575 struct tree_mod_elem **tm_list = NULL; 576 int ret = 0; 577 int i; 578 int locked = 0; 579 580 if (!tree_mod_need_log(fs_info, eb)) 581 return 0; 582 583 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 584 if (!tm_list) 585 return -ENOMEM; 586 587 tm = kzalloc(sizeof(*tm), flags); 588 if (!tm) { 589 ret = -ENOMEM; 590 goto free_tms; 591 } 592 593 tm->logical = eb->start; 594 tm->slot = src_slot; 595 tm->move.dst_slot = dst_slot; 596 tm->move.nr_items = nr_items; 597 tm->op = MOD_LOG_MOVE_KEYS; 598 599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 600 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 601 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 602 if (!tm_list[i]) { 603 ret = -ENOMEM; 604 goto free_tms; 605 } 606 } 607 608 if (tree_mod_dont_log(fs_info, eb)) 609 goto free_tms; 610 locked = 1; 611 612 /* 613 * When we override something during the move, we log these removals. 614 * This can only happen when we move towards the beginning of the 615 * buffer, i.e. dst_slot < src_slot. 616 */ 617 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 618 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 619 if (ret) 620 goto free_tms; 621 } 622 623 ret = __tree_mod_log_insert(fs_info, tm); 624 if (ret) 625 goto free_tms; 626 tree_mod_log_write_unlock(fs_info); 627 kfree(tm_list); 628 629 return 0; 630 free_tms: 631 for (i = 0; i < nr_items; i++) { 632 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 633 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 634 kfree(tm_list[i]); 635 } 636 if (locked) 637 tree_mod_log_write_unlock(fs_info); 638 kfree(tm_list); 639 kfree(tm); 640 641 return ret; 642 } 643 644 static inline int 645 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 646 struct tree_mod_elem **tm_list, 647 int nritems) 648 { 649 int i, j; 650 int ret; 651 652 for (i = nritems - 1; i >= 0; i--) { 653 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 654 if (ret) { 655 for (j = nritems - 1; j > i; j--) 656 rb_erase(&tm_list[j]->node, 657 &fs_info->tree_mod_log); 658 return ret; 659 } 660 } 661 662 return 0; 663 } 664 665 static noinline int 666 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 667 struct extent_buffer *old_root, 668 struct extent_buffer *new_root, gfp_t flags, 669 int log_removal) 670 { 671 struct tree_mod_elem *tm = NULL; 672 struct tree_mod_elem **tm_list = NULL; 673 int nritems = 0; 674 int ret = 0; 675 int i; 676 677 if (!tree_mod_need_log(fs_info, NULL)) 678 return 0; 679 680 if (log_removal && btrfs_header_level(old_root) > 0) { 681 nritems = btrfs_header_nritems(old_root); 682 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 683 flags); 684 if (!tm_list) { 685 ret = -ENOMEM; 686 goto free_tms; 687 } 688 for (i = 0; i < nritems; i++) { 689 tm_list[i] = alloc_tree_mod_elem(old_root, i, 690 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 691 if (!tm_list[i]) { 692 ret = -ENOMEM; 693 goto free_tms; 694 } 695 } 696 } 697 698 tm = kzalloc(sizeof(*tm), flags); 699 if (!tm) { 700 ret = -ENOMEM; 701 goto free_tms; 702 } 703 704 tm->logical = new_root->start; 705 tm->old_root.logical = old_root->start; 706 tm->old_root.level = btrfs_header_level(old_root); 707 tm->generation = btrfs_header_generation(old_root); 708 tm->op = MOD_LOG_ROOT_REPLACE; 709 710 if (tree_mod_dont_log(fs_info, NULL)) 711 goto free_tms; 712 713 if (tm_list) 714 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 715 if (!ret) 716 ret = __tree_mod_log_insert(fs_info, tm); 717 718 tree_mod_log_write_unlock(fs_info); 719 if (ret) 720 goto free_tms; 721 kfree(tm_list); 722 723 return ret; 724 725 free_tms: 726 if (tm_list) { 727 for (i = 0; i < nritems; i++) 728 kfree(tm_list[i]); 729 kfree(tm_list); 730 } 731 kfree(tm); 732 733 return ret; 734 } 735 736 static struct tree_mod_elem * 737 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 738 int smallest) 739 { 740 struct rb_root *tm_root; 741 struct rb_node *node; 742 struct tree_mod_elem *cur = NULL; 743 struct tree_mod_elem *found = NULL; 744 745 tree_mod_log_read_lock(fs_info); 746 tm_root = &fs_info->tree_mod_log; 747 node = tm_root->rb_node; 748 while (node) { 749 cur = container_of(node, struct tree_mod_elem, node); 750 if (cur->logical < start) { 751 node = node->rb_left; 752 } else if (cur->logical > start) { 753 node = node->rb_right; 754 } else if (cur->seq < min_seq) { 755 node = node->rb_left; 756 } else if (!smallest) { 757 /* we want the node with the highest seq */ 758 if (found) 759 BUG_ON(found->seq > cur->seq); 760 found = cur; 761 node = node->rb_left; 762 } else if (cur->seq > min_seq) { 763 /* we want the node with the smallest seq */ 764 if (found) 765 BUG_ON(found->seq < cur->seq); 766 found = cur; 767 node = node->rb_right; 768 } else { 769 found = cur; 770 break; 771 } 772 } 773 tree_mod_log_read_unlock(fs_info); 774 775 return found; 776 } 777 778 /* 779 * this returns the element from the log with the smallest time sequence 780 * value that's in the log (the oldest log item). any element with a time 781 * sequence lower than min_seq will be ignored. 782 */ 783 static struct tree_mod_elem * 784 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 785 u64 min_seq) 786 { 787 return __tree_mod_log_search(fs_info, start, min_seq, 1); 788 } 789 790 /* 791 * this returns the element from the log with the largest time sequence 792 * value that's in the log (the most recent log item). any element with 793 * a time sequence lower than min_seq will be ignored. 794 */ 795 static struct tree_mod_elem * 796 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 797 { 798 return __tree_mod_log_search(fs_info, start, min_seq, 0); 799 } 800 801 static noinline int 802 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 803 struct extent_buffer *src, unsigned long dst_offset, 804 unsigned long src_offset, int nr_items) 805 { 806 int ret = 0; 807 struct tree_mod_elem **tm_list = NULL; 808 struct tree_mod_elem **tm_list_add, **tm_list_rem; 809 int i; 810 int locked = 0; 811 812 if (!tree_mod_need_log(fs_info, NULL)) 813 return 0; 814 815 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 816 return 0; 817 818 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 819 GFP_NOFS); 820 if (!tm_list) 821 return -ENOMEM; 822 823 tm_list_add = tm_list; 824 tm_list_rem = tm_list + nr_items; 825 for (i = 0; i < nr_items; i++) { 826 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 827 MOD_LOG_KEY_REMOVE, GFP_NOFS); 828 if (!tm_list_rem[i]) { 829 ret = -ENOMEM; 830 goto free_tms; 831 } 832 833 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 834 MOD_LOG_KEY_ADD, GFP_NOFS); 835 if (!tm_list_add[i]) { 836 ret = -ENOMEM; 837 goto free_tms; 838 } 839 } 840 841 if (tree_mod_dont_log(fs_info, NULL)) 842 goto free_tms; 843 locked = 1; 844 845 for (i = 0; i < nr_items; i++) { 846 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 847 if (ret) 848 goto free_tms; 849 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 850 if (ret) 851 goto free_tms; 852 } 853 854 tree_mod_log_write_unlock(fs_info); 855 kfree(tm_list); 856 857 return 0; 858 859 free_tms: 860 for (i = 0; i < nr_items * 2; i++) { 861 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 862 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 863 kfree(tm_list[i]); 864 } 865 if (locked) 866 tree_mod_log_write_unlock(fs_info); 867 kfree(tm_list); 868 869 return ret; 870 } 871 872 static inline void 873 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 874 int dst_offset, int src_offset, int nr_items) 875 { 876 int ret; 877 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 878 nr_items, GFP_NOFS); 879 BUG_ON(ret < 0); 880 } 881 882 static noinline void 883 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 884 struct extent_buffer *eb, int slot, int atomic) 885 { 886 int ret; 887 888 ret = tree_mod_log_insert_key(fs_info, eb, slot, 889 MOD_LOG_KEY_REPLACE, 890 atomic ? GFP_ATOMIC : GFP_NOFS); 891 BUG_ON(ret < 0); 892 } 893 894 static noinline int 895 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 896 { 897 struct tree_mod_elem **tm_list = NULL; 898 int nritems = 0; 899 int i; 900 int ret = 0; 901 902 if (btrfs_header_level(eb) == 0) 903 return 0; 904 905 if (!tree_mod_need_log(fs_info, NULL)) 906 return 0; 907 908 nritems = btrfs_header_nritems(eb); 909 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 910 if (!tm_list) 911 return -ENOMEM; 912 913 for (i = 0; i < nritems; i++) { 914 tm_list[i] = alloc_tree_mod_elem(eb, i, 915 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 916 if (!tm_list[i]) { 917 ret = -ENOMEM; 918 goto free_tms; 919 } 920 } 921 922 if (tree_mod_dont_log(fs_info, eb)) 923 goto free_tms; 924 925 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 926 tree_mod_log_write_unlock(fs_info); 927 if (ret) 928 goto free_tms; 929 kfree(tm_list); 930 931 return 0; 932 933 free_tms: 934 for (i = 0; i < nritems; i++) 935 kfree(tm_list[i]); 936 kfree(tm_list); 937 938 return ret; 939 } 940 941 static noinline void 942 tree_mod_log_set_root_pointer(struct btrfs_root *root, 943 struct extent_buffer *new_root_node, 944 int log_removal) 945 { 946 int ret; 947 ret = tree_mod_log_insert_root(root->fs_info, root->node, 948 new_root_node, GFP_NOFS, log_removal); 949 BUG_ON(ret < 0); 950 } 951 952 /* 953 * check if the tree block can be shared by multiple trees 954 */ 955 int btrfs_block_can_be_shared(struct btrfs_root *root, 956 struct extent_buffer *buf) 957 { 958 /* 959 * Tree blocks not in reference counted trees and tree roots 960 * are never shared. If a block was allocated after the last 961 * snapshot and the block was not allocated by tree relocation, 962 * we know the block is not shared. 963 */ 964 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 965 buf != root->node && buf != root->commit_root && 966 (btrfs_header_generation(buf) <= 967 btrfs_root_last_snapshot(&root->root_item) || 968 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 969 return 1; 970 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 971 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 972 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 973 return 1; 974 #endif 975 return 0; 976 } 977 978 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 979 struct btrfs_root *root, 980 struct extent_buffer *buf, 981 struct extent_buffer *cow, 982 int *last_ref) 983 { 984 struct btrfs_fs_info *fs_info = root->fs_info; 985 u64 refs; 986 u64 owner; 987 u64 flags; 988 u64 new_flags = 0; 989 int ret; 990 991 /* 992 * Backrefs update rules: 993 * 994 * Always use full backrefs for extent pointers in tree block 995 * allocated by tree relocation. 996 * 997 * If a shared tree block is no longer referenced by its owner 998 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 999 * use full backrefs for extent pointers in tree block. 1000 * 1001 * If a tree block is been relocating 1002 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1003 * use full backrefs for extent pointers in tree block. 1004 * The reason for this is some operations (such as drop tree) 1005 * are only allowed for blocks use full backrefs. 1006 */ 1007 1008 if (btrfs_block_can_be_shared(root, buf)) { 1009 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 1010 btrfs_header_level(buf), 1, 1011 &refs, &flags); 1012 if (ret) 1013 return ret; 1014 if (refs == 0) { 1015 ret = -EROFS; 1016 btrfs_handle_fs_error(fs_info, ret, NULL); 1017 return ret; 1018 } 1019 } else { 1020 refs = 1; 1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1023 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1024 else 1025 flags = 0; 1026 } 1027 1028 owner = btrfs_header_owner(buf); 1029 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1030 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1031 1032 if (refs > 1) { 1033 if ((owner == root->root_key.objectid || 1034 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1035 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1036 ret = btrfs_inc_ref(trans, root, buf, 1); 1037 BUG_ON(ret); /* -ENOMEM */ 1038 1039 if (root->root_key.objectid == 1040 BTRFS_TREE_RELOC_OBJECTID) { 1041 ret = btrfs_dec_ref(trans, root, buf, 0); 1042 BUG_ON(ret); /* -ENOMEM */ 1043 ret = btrfs_inc_ref(trans, root, cow, 1); 1044 BUG_ON(ret); /* -ENOMEM */ 1045 } 1046 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1047 } else { 1048 1049 if (root->root_key.objectid == 1050 BTRFS_TREE_RELOC_OBJECTID) 1051 ret = btrfs_inc_ref(trans, root, cow, 1); 1052 else 1053 ret = btrfs_inc_ref(trans, root, cow, 0); 1054 BUG_ON(ret); /* -ENOMEM */ 1055 } 1056 if (new_flags != 0) { 1057 int level = btrfs_header_level(buf); 1058 1059 ret = btrfs_set_disk_extent_flags(trans, fs_info, 1060 buf->start, 1061 buf->len, 1062 new_flags, level, 0); 1063 if (ret) 1064 return ret; 1065 } 1066 } else { 1067 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1068 if (root->root_key.objectid == 1069 BTRFS_TREE_RELOC_OBJECTID) 1070 ret = btrfs_inc_ref(trans, root, cow, 1); 1071 else 1072 ret = btrfs_inc_ref(trans, root, cow, 0); 1073 BUG_ON(ret); /* -ENOMEM */ 1074 ret = btrfs_dec_ref(trans, root, buf, 1); 1075 BUG_ON(ret); /* -ENOMEM */ 1076 } 1077 clean_tree_block(trans, fs_info, buf); 1078 *last_ref = 1; 1079 } 1080 return 0; 1081 } 1082 1083 /* 1084 * does the dirty work in cow of a single block. The parent block (if 1085 * supplied) is updated to point to the new cow copy. The new buffer is marked 1086 * dirty and returned locked. If you modify the block it needs to be marked 1087 * dirty again. 1088 * 1089 * search_start -- an allocation hint for the new block 1090 * 1091 * empty_size -- a hint that you plan on doing more cow. This is the size in 1092 * bytes the allocator should try to find free next to the block it returns. 1093 * This is just a hint and may be ignored by the allocator. 1094 */ 1095 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct extent_buffer *buf, 1098 struct extent_buffer *parent, int parent_slot, 1099 struct extent_buffer **cow_ret, 1100 u64 search_start, u64 empty_size) 1101 { 1102 struct btrfs_fs_info *fs_info = root->fs_info; 1103 struct btrfs_disk_key disk_key; 1104 struct extent_buffer *cow; 1105 int level, ret; 1106 int last_ref = 0; 1107 int unlock_orig = 0; 1108 u64 parent_start = 0; 1109 1110 if (*cow_ret == buf) 1111 unlock_orig = 1; 1112 1113 btrfs_assert_tree_locked(buf); 1114 1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1116 trans->transid != fs_info->running_transaction->transid); 1117 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1118 trans->transid != root->last_trans); 1119 1120 level = btrfs_header_level(buf); 1121 1122 if (level == 0) 1123 btrfs_item_key(buf, &disk_key, 0); 1124 else 1125 btrfs_node_key(buf, &disk_key, 0); 1126 1127 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1128 parent_start = parent->start; 1129 1130 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1131 root->root_key.objectid, &disk_key, level, 1132 search_start, empty_size); 1133 if (IS_ERR(cow)) 1134 return PTR_ERR(cow); 1135 1136 /* cow is set to blocking by btrfs_init_new_buffer */ 1137 1138 copy_extent_buffer_full(cow, buf); 1139 btrfs_set_header_bytenr(cow, cow->start); 1140 btrfs_set_header_generation(cow, trans->transid); 1141 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1142 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1143 BTRFS_HEADER_FLAG_RELOC); 1144 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1145 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1146 else 1147 btrfs_set_header_owner(cow, root->root_key.objectid); 1148 1149 write_extent_buffer_fsid(cow, fs_info->fsid); 1150 1151 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1152 if (ret) { 1153 btrfs_abort_transaction(trans, ret); 1154 return ret; 1155 } 1156 1157 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1158 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1159 if (ret) { 1160 btrfs_abort_transaction(trans, ret); 1161 return ret; 1162 } 1163 } 1164 1165 if (buf == root->node) { 1166 WARN_ON(parent && parent != buf); 1167 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1168 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1169 parent_start = buf->start; 1170 1171 extent_buffer_get(cow); 1172 tree_mod_log_set_root_pointer(root, cow, 1); 1173 rcu_assign_pointer(root->node, cow); 1174 1175 btrfs_free_tree_block(trans, root, buf, parent_start, 1176 last_ref); 1177 free_extent_buffer(buf); 1178 add_root_to_dirty_list(root); 1179 } else { 1180 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1181 tree_mod_log_insert_key(fs_info, parent, parent_slot, 1182 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1183 btrfs_set_node_blockptr(parent, parent_slot, 1184 cow->start); 1185 btrfs_set_node_ptr_generation(parent, parent_slot, 1186 trans->transid); 1187 btrfs_mark_buffer_dirty(parent); 1188 if (last_ref) { 1189 ret = tree_mod_log_free_eb(fs_info, buf); 1190 if (ret) { 1191 btrfs_abort_transaction(trans, ret); 1192 return ret; 1193 } 1194 } 1195 btrfs_free_tree_block(trans, root, buf, parent_start, 1196 last_ref); 1197 } 1198 if (unlock_orig) 1199 btrfs_tree_unlock(buf); 1200 free_extent_buffer_stale(buf); 1201 btrfs_mark_buffer_dirty(cow); 1202 *cow_ret = cow; 1203 return 0; 1204 } 1205 1206 /* 1207 * returns the logical address of the oldest predecessor of the given root. 1208 * entries older than time_seq are ignored. 1209 */ 1210 static struct tree_mod_elem * 1211 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1212 struct extent_buffer *eb_root, u64 time_seq) 1213 { 1214 struct tree_mod_elem *tm; 1215 struct tree_mod_elem *found = NULL; 1216 u64 root_logical = eb_root->start; 1217 int looped = 0; 1218 1219 if (!time_seq) 1220 return NULL; 1221 1222 /* 1223 * the very last operation that's logged for a root is the 1224 * replacement operation (if it is replaced at all). this has 1225 * the logical address of the *new* root, making it the very 1226 * first operation that's logged for this root. 1227 */ 1228 while (1) { 1229 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1230 time_seq); 1231 if (!looped && !tm) 1232 return NULL; 1233 /* 1234 * if there are no tree operation for the oldest root, we simply 1235 * return it. this should only happen if that (old) root is at 1236 * level 0. 1237 */ 1238 if (!tm) 1239 break; 1240 1241 /* 1242 * if there's an operation that's not a root replacement, we 1243 * found the oldest version of our root. normally, we'll find a 1244 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1245 */ 1246 if (tm->op != MOD_LOG_ROOT_REPLACE) 1247 break; 1248 1249 found = tm; 1250 root_logical = tm->old_root.logical; 1251 looped = 1; 1252 } 1253 1254 /* if there's no old root to return, return what we found instead */ 1255 if (!found) 1256 found = tm; 1257 1258 return found; 1259 } 1260 1261 /* 1262 * tm is a pointer to the first operation to rewind within eb. then, all 1263 * previous operations will be rewound (until we reach something older than 1264 * time_seq). 1265 */ 1266 static void 1267 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1268 u64 time_seq, struct tree_mod_elem *first_tm) 1269 { 1270 u32 n; 1271 struct rb_node *next; 1272 struct tree_mod_elem *tm = first_tm; 1273 unsigned long o_dst; 1274 unsigned long o_src; 1275 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1276 1277 n = btrfs_header_nritems(eb); 1278 tree_mod_log_read_lock(fs_info); 1279 while (tm && tm->seq >= time_seq) { 1280 /* 1281 * all the operations are recorded with the operator used for 1282 * the modification. as we're going backwards, we do the 1283 * opposite of each operation here. 1284 */ 1285 switch (tm->op) { 1286 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1287 BUG_ON(tm->slot < n); 1288 /* Fallthrough */ 1289 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1290 case MOD_LOG_KEY_REMOVE: 1291 btrfs_set_node_key(eb, &tm->key, tm->slot); 1292 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1293 btrfs_set_node_ptr_generation(eb, tm->slot, 1294 tm->generation); 1295 n++; 1296 break; 1297 case MOD_LOG_KEY_REPLACE: 1298 BUG_ON(tm->slot >= n); 1299 btrfs_set_node_key(eb, &tm->key, tm->slot); 1300 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1301 btrfs_set_node_ptr_generation(eb, tm->slot, 1302 tm->generation); 1303 break; 1304 case MOD_LOG_KEY_ADD: 1305 /* if a move operation is needed it's in the log */ 1306 n--; 1307 break; 1308 case MOD_LOG_MOVE_KEYS: 1309 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1310 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1311 memmove_extent_buffer(eb, o_dst, o_src, 1312 tm->move.nr_items * p_size); 1313 break; 1314 case MOD_LOG_ROOT_REPLACE: 1315 /* 1316 * this operation is special. for roots, this must be 1317 * handled explicitly before rewinding. 1318 * for non-roots, this operation may exist if the node 1319 * was a root: root A -> child B; then A gets empty and 1320 * B is promoted to the new root. in the mod log, we'll 1321 * have a root-replace operation for B, a tree block 1322 * that is no root. we simply ignore that operation. 1323 */ 1324 break; 1325 } 1326 next = rb_next(&tm->node); 1327 if (!next) 1328 break; 1329 tm = container_of(next, struct tree_mod_elem, node); 1330 if (tm->logical != first_tm->logical) 1331 break; 1332 } 1333 tree_mod_log_read_unlock(fs_info); 1334 btrfs_set_header_nritems(eb, n); 1335 } 1336 1337 /* 1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1339 * is returned. If rewind operations happen, a fresh buffer is returned. The 1340 * returned buffer is always read-locked. If the returned buffer is not the 1341 * input buffer, the lock on the input buffer is released and the input buffer 1342 * is freed (its refcount is decremented). 1343 */ 1344 static struct extent_buffer * 1345 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1346 struct extent_buffer *eb, u64 time_seq) 1347 { 1348 struct extent_buffer *eb_rewin; 1349 struct tree_mod_elem *tm; 1350 1351 if (!time_seq) 1352 return eb; 1353 1354 if (btrfs_header_level(eb) == 0) 1355 return eb; 1356 1357 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1358 if (!tm) 1359 return eb; 1360 1361 btrfs_set_path_blocking(path); 1362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1363 1364 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1365 BUG_ON(tm->slot != 0); 1366 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1367 if (!eb_rewin) { 1368 btrfs_tree_read_unlock_blocking(eb); 1369 free_extent_buffer(eb); 1370 return NULL; 1371 } 1372 btrfs_set_header_bytenr(eb_rewin, eb->start); 1373 btrfs_set_header_backref_rev(eb_rewin, 1374 btrfs_header_backref_rev(eb)); 1375 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1376 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1377 } else { 1378 eb_rewin = btrfs_clone_extent_buffer(eb); 1379 if (!eb_rewin) { 1380 btrfs_tree_read_unlock_blocking(eb); 1381 free_extent_buffer(eb); 1382 return NULL; 1383 } 1384 } 1385 1386 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1387 btrfs_tree_read_unlock_blocking(eb); 1388 free_extent_buffer(eb); 1389 1390 extent_buffer_get(eb_rewin); 1391 btrfs_tree_read_lock(eb_rewin); 1392 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1393 WARN_ON(btrfs_header_nritems(eb_rewin) > 1394 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1395 1396 return eb_rewin; 1397 } 1398 1399 /* 1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1401 * value. If there are no changes, the current root->root_node is returned. If 1402 * anything changed in between, there's a fresh buffer allocated on which the 1403 * rewind operations are done. In any case, the returned buffer is read locked. 1404 * Returns NULL on error (with no locks held). 1405 */ 1406 static inline struct extent_buffer * 1407 get_old_root(struct btrfs_root *root, u64 time_seq) 1408 { 1409 struct btrfs_fs_info *fs_info = root->fs_info; 1410 struct tree_mod_elem *tm; 1411 struct extent_buffer *eb = NULL; 1412 struct extent_buffer *eb_root; 1413 struct extent_buffer *old; 1414 struct tree_mod_root *old_root = NULL; 1415 u64 old_generation = 0; 1416 u64 logical; 1417 1418 eb_root = btrfs_read_lock_root_node(root); 1419 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq); 1420 if (!tm) 1421 return eb_root; 1422 1423 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1424 old_root = &tm->old_root; 1425 old_generation = tm->generation; 1426 logical = old_root->logical; 1427 } else { 1428 logical = eb_root->start; 1429 } 1430 1431 tm = tree_mod_log_search(fs_info, logical, time_seq); 1432 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1433 btrfs_tree_read_unlock(eb_root); 1434 free_extent_buffer(eb_root); 1435 old = read_tree_block(fs_info, logical, 0); 1436 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1437 if (!IS_ERR(old)) 1438 free_extent_buffer(old); 1439 btrfs_warn(fs_info, 1440 "failed to read tree block %llu from get_old_root", 1441 logical); 1442 } else { 1443 eb = btrfs_clone_extent_buffer(old); 1444 free_extent_buffer(old); 1445 } 1446 } else if (old_root) { 1447 btrfs_tree_read_unlock(eb_root); 1448 free_extent_buffer(eb_root); 1449 eb = alloc_dummy_extent_buffer(fs_info, logical); 1450 } else { 1451 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1452 eb = btrfs_clone_extent_buffer(eb_root); 1453 btrfs_tree_read_unlock_blocking(eb_root); 1454 free_extent_buffer(eb_root); 1455 } 1456 1457 if (!eb) 1458 return NULL; 1459 extent_buffer_get(eb); 1460 btrfs_tree_read_lock(eb); 1461 if (old_root) { 1462 btrfs_set_header_bytenr(eb, eb->start); 1463 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1464 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1465 btrfs_set_header_level(eb, old_root->level); 1466 btrfs_set_header_generation(eb, old_generation); 1467 } 1468 if (tm) 1469 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1470 else 1471 WARN_ON(btrfs_header_level(eb) != 0); 1472 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1473 1474 return eb; 1475 } 1476 1477 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1478 { 1479 struct tree_mod_elem *tm; 1480 int level; 1481 struct extent_buffer *eb_root = btrfs_root_node(root); 1482 1483 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1484 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1485 level = tm->old_root.level; 1486 } else { 1487 level = btrfs_header_level(eb_root); 1488 } 1489 free_extent_buffer(eb_root); 1490 1491 return level; 1492 } 1493 1494 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1495 struct btrfs_root *root, 1496 struct extent_buffer *buf) 1497 { 1498 if (btrfs_is_testing(root->fs_info)) 1499 return 0; 1500 1501 /* ensure we can see the force_cow */ 1502 smp_rmb(); 1503 1504 /* 1505 * We do not need to cow a block if 1506 * 1) this block is not created or changed in this transaction; 1507 * 2) this block does not belong to TREE_RELOC tree; 1508 * 3) the root is not forced COW. 1509 * 1510 * What is forced COW: 1511 * when we create snapshot during committing the transaction, 1512 * after we've finished coping src root, we must COW the shared 1513 * block to ensure the metadata consistency. 1514 */ 1515 if (btrfs_header_generation(buf) == trans->transid && 1516 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1517 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1518 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1519 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1520 return 0; 1521 return 1; 1522 } 1523 1524 /* 1525 * cows a single block, see __btrfs_cow_block for the real work. 1526 * This version of it has extra checks so that a block isn't COWed more than 1527 * once per transaction, as long as it hasn't been written yet 1528 */ 1529 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *root, struct extent_buffer *buf, 1531 struct extent_buffer *parent, int parent_slot, 1532 struct extent_buffer **cow_ret) 1533 { 1534 struct btrfs_fs_info *fs_info = root->fs_info; 1535 u64 search_start; 1536 int ret; 1537 1538 if (trans->transaction != fs_info->running_transaction) 1539 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1540 trans->transid, 1541 fs_info->running_transaction->transid); 1542 1543 if (trans->transid != fs_info->generation) 1544 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1545 trans->transid, fs_info->generation); 1546 1547 if (!should_cow_block(trans, root, buf)) { 1548 trans->dirty = true; 1549 *cow_ret = buf; 1550 return 0; 1551 } 1552 1553 search_start = buf->start & ~((u64)SZ_1G - 1); 1554 1555 if (parent) 1556 btrfs_set_lock_blocking(parent); 1557 btrfs_set_lock_blocking(buf); 1558 1559 ret = __btrfs_cow_block(trans, root, buf, parent, 1560 parent_slot, cow_ret, search_start, 0); 1561 1562 trace_btrfs_cow_block(root, buf, *cow_ret); 1563 1564 return ret; 1565 } 1566 1567 /* 1568 * helper function for defrag to decide if two blocks pointed to by a 1569 * node are actually close by 1570 */ 1571 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1572 { 1573 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1574 return 1; 1575 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1576 return 1; 1577 return 0; 1578 } 1579 1580 /* 1581 * compare two keys in a memcmp fashion 1582 */ 1583 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1584 { 1585 struct btrfs_key k1; 1586 1587 btrfs_disk_key_to_cpu(&k1, disk); 1588 1589 return btrfs_comp_cpu_keys(&k1, k2); 1590 } 1591 1592 /* 1593 * same as comp_keys only with two btrfs_key's 1594 */ 1595 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1596 { 1597 if (k1->objectid > k2->objectid) 1598 return 1; 1599 if (k1->objectid < k2->objectid) 1600 return -1; 1601 if (k1->type > k2->type) 1602 return 1; 1603 if (k1->type < k2->type) 1604 return -1; 1605 if (k1->offset > k2->offset) 1606 return 1; 1607 if (k1->offset < k2->offset) 1608 return -1; 1609 return 0; 1610 } 1611 1612 /* 1613 * this is used by the defrag code to go through all the 1614 * leaves pointed to by a node and reallocate them so that 1615 * disk order is close to key order 1616 */ 1617 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1618 struct btrfs_root *root, struct extent_buffer *parent, 1619 int start_slot, u64 *last_ret, 1620 struct btrfs_key *progress) 1621 { 1622 struct btrfs_fs_info *fs_info = root->fs_info; 1623 struct extent_buffer *cur; 1624 u64 blocknr; 1625 u64 gen; 1626 u64 search_start = *last_ret; 1627 u64 last_block = 0; 1628 u64 other; 1629 u32 parent_nritems; 1630 int end_slot; 1631 int i; 1632 int err = 0; 1633 int parent_level; 1634 int uptodate; 1635 u32 blocksize; 1636 int progress_passed = 0; 1637 struct btrfs_disk_key disk_key; 1638 1639 parent_level = btrfs_header_level(parent); 1640 1641 WARN_ON(trans->transaction != fs_info->running_transaction); 1642 WARN_ON(trans->transid != fs_info->generation); 1643 1644 parent_nritems = btrfs_header_nritems(parent); 1645 blocksize = fs_info->nodesize; 1646 end_slot = parent_nritems - 1; 1647 1648 if (parent_nritems <= 1) 1649 return 0; 1650 1651 btrfs_set_lock_blocking(parent); 1652 1653 for (i = start_slot; i <= end_slot; i++) { 1654 int close = 1; 1655 1656 btrfs_node_key(parent, &disk_key, i); 1657 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1658 continue; 1659 1660 progress_passed = 1; 1661 blocknr = btrfs_node_blockptr(parent, i); 1662 gen = btrfs_node_ptr_generation(parent, i); 1663 if (last_block == 0) 1664 last_block = blocknr; 1665 1666 if (i > 0) { 1667 other = btrfs_node_blockptr(parent, i - 1); 1668 close = close_blocks(blocknr, other, blocksize); 1669 } 1670 if (!close && i < end_slot) { 1671 other = btrfs_node_blockptr(parent, i + 1); 1672 close = close_blocks(blocknr, other, blocksize); 1673 } 1674 if (close) { 1675 last_block = blocknr; 1676 continue; 1677 } 1678 1679 cur = find_extent_buffer(fs_info, blocknr); 1680 if (cur) 1681 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1682 else 1683 uptodate = 0; 1684 if (!cur || !uptodate) { 1685 if (!cur) { 1686 cur = read_tree_block(fs_info, blocknr, gen); 1687 if (IS_ERR(cur)) { 1688 return PTR_ERR(cur); 1689 } else if (!extent_buffer_uptodate(cur)) { 1690 free_extent_buffer(cur); 1691 return -EIO; 1692 } 1693 } else if (!uptodate) { 1694 err = btrfs_read_buffer(cur, gen); 1695 if (err) { 1696 free_extent_buffer(cur); 1697 return err; 1698 } 1699 } 1700 } 1701 if (search_start == 0) 1702 search_start = last_block; 1703 1704 btrfs_tree_lock(cur); 1705 btrfs_set_lock_blocking(cur); 1706 err = __btrfs_cow_block(trans, root, cur, parent, i, 1707 &cur, search_start, 1708 min(16 * blocksize, 1709 (end_slot - i) * blocksize)); 1710 if (err) { 1711 btrfs_tree_unlock(cur); 1712 free_extent_buffer(cur); 1713 break; 1714 } 1715 search_start = cur->start; 1716 last_block = cur->start; 1717 *last_ret = search_start; 1718 btrfs_tree_unlock(cur); 1719 free_extent_buffer(cur); 1720 } 1721 return err; 1722 } 1723 1724 /* 1725 * search for key in the extent_buffer. The items start at offset p, 1726 * and they are item_size apart. There are 'max' items in p. 1727 * 1728 * the slot in the array is returned via slot, and it points to 1729 * the place where you would insert key if it is not found in 1730 * the array. 1731 * 1732 * slot may point to max if the key is bigger than all of the keys 1733 */ 1734 static noinline int generic_bin_search(struct extent_buffer *eb, 1735 unsigned long p, 1736 int item_size, struct btrfs_key *key, 1737 int max, int *slot) 1738 { 1739 int low = 0; 1740 int high = max; 1741 int mid; 1742 int ret; 1743 struct btrfs_disk_key *tmp = NULL; 1744 struct btrfs_disk_key unaligned; 1745 unsigned long offset; 1746 char *kaddr = NULL; 1747 unsigned long map_start = 0; 1748 unsigned long map_len = 0; 1749 int err; 1750 1751 if (low > high) { 1752 btrfs_err(eb->fs_info, 1753 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1754 __func__, low, high, eb->start, 1755 btrfs_header_owner(eb), btrfs_header_level(eb)); 1756 return -EINVAL; 1757 } 1758 1759 while (low < high) { 1760 mid = (low + high) / 2; 1761 offset = p + mid * item_size; 1762 1763 if (!kaddr || offset < map_start || 1764 (offset + sizeof(struct btrfs_disk_key)) > 1765 map_start + map_len) { 1766 1767 err = map_private_extent_buffer(eb, offset, 1768 sizeof(struct btrfs_disk_key), 1769 &kaddr, &map_start, &map_len); 1770 1771 if (!err) { 1772 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1773 map_start); 1774 } else if (err == 1) { 1775 read_extent_buffer(eb, &unaligned, 1776 offset, sizeof(unaligned)); 1777 tmp = &unaligned; 1778 } else { 1779 return err; 1780 } 1781 1782 } else { 1783 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1784 map_start); 1785 } 1786 ret = comp_keys(tmp, key); 1787 1788 if (ret < 0) 1789 low = mid + 1; 1790 else if (ret > 0) 1791 high = mid; 1792 else { 1793 *slot = mid; 1794 return 0; 1795 } 1796 } 1797 *slot = low; 1798 return 1; 1799 } 1800 1801 /* 1802 * simple bin_search frontend that does the right thing for 1803 * leaves vs nodes 1804 */ 1805 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1806 int level, int *slot) 1807 { 1808 if (level == 0) 1809 return generic_bin_search(eb, 1810 offsetof(struct btrfs_leaf, items), 1811 sizeof(struct btrfs_item), 1812 key, btrfs_header_nritems(eb), 1813 slot); 1814 else 1815 return generic_bin_search(eb, 1816 offsetof(struct btrfs_node, ptrs), 1817 sizeof(struct btrfs_key_ptr), 1818 key, btrfs_header_nritems(eb), 1819 slot); 1820 } 1821 1822 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1823 int level, int *slot) 1824 { 1825 return bin_search(eb, key, level, slot); 1826 } 1827 1828 static void root_add_used(struct btrfs_root *root, u32 size) 1829 { 1830 spin_lock(&root->accounting_lock); 1831 btrfs_set_root_used(&root->root_item, 1832 btrfs_root_used(&root->root_item) + size); 1833 spin_unlock(&root->accounting_lock); 1834 } 1835 1836 static void root_sub_used(struct btrfs_root *root, u32 size) 1837 { 1838 spin_lock(&root->accounting_lock); 1839 btrfs_set_root_used(&root->root_item, 1840 btrfs_root_used(&root->root_item) - size); 1841 spin_unlock(&root->accounting_lock); 1842 } 1843 1844 /* given a node and slot number, this reads the blocks it points to. The 1845 * extent buffer is returned with a reference taken (but unlocked). 1846 */ 1847 static noinline struct extent_buffer * 1848 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1849 int slot) 1850 { 1851 int level = btrfs_header_level(parent); 1852 struct extent_buffer *eb; 1853 1854 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1855 return ERR_PTR(-ENOENT); 1856 1857 BUG_ON(level == 0); 1858 1859 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1860 btrfs_node_ptr_generation(parent, slot)); 1861 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1862 free_extent_buffer(eb); 1863 eb = ERR_PTR(-EIO); 1864 } 1865 1866 return eb; 1867 } 1868 1869 /* 1870 * node level balancing, used to make sure nodes are in proper order for 1871 * item deletion. We balance from the top down, so we have to make sure 1872 * that a deletion won't leave an node completely empty later on. 1873 */ 1874 static noinline int balance_level(struct btrfs_trans_handle *trans, 1875 struct btrfs_root *root, 1876 struct btrfs_path *path, int level) 1877 { 1878 struct btrfs_fs_info *fs_info = root->fs_info; 1879 struct extent_buffer *right = NULL; 1880 struct extent_buffer *mid; 1881 struct extent_buffer *left = NULL; 1882 struct extent_buffer *parent = NULL; 1883 int ret = 0; 1884 int wret; 1885 int pslot; 1886 int orig_slot = path->slots[level]; 1887 u64 orig_ptr; 1888 1889 if (level == 0) 1890 return 0; 1891 1892 mid = path->nodes[level]; 1893 1894 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1895 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1896 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1897 1898 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1899 1900 if (level < BTRFS_MAX_LEVEL - 1) { 1901 parent = path->nodes[level + 1]; 1902 pslot = path->slots[level + 1]; 1903 } 1904 1905 /* 1906 * deal with the case where there is only one pointer in the root 1907 * by promoting the node below to a root 1908 */ 1909 if (!parent) { 1910 struct extent_buffer *child; 1911 1912 if (btrfs_header_nritems(mid) != 1) 1913 return 0; 1914 1915 /* promote the child to a root */ 1916 child = read_node_slot(fs_info, mid, 0); 1917 if (IS_ERR(child)) { 1918 ret = PTR_ERR(child); 1919 btrfs_handle_fs_error(fs_info, ret, NULL); 1920 goto enospc; 1921 } 1922 1923 btrfs_tree_lock(child); 1924 btrfs_set_lock_blocking(child); 1925 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1926 if (ret) { 1927 btrfs_tree_unlock(child); 1928 free_extent_buffer(child); 1929 goto enospc; 1930 } 1931 1932 tree_mod_log_set_root_pointer(root, child, 1); 1933 rcu_assign_pointer(root->node, child); 1934 1935 add_root_to_dirty_list(root); 1936 btrfs_tree_unlock(child); 1937 1938 path->locks[level] = 0; 1939 path->nodes[level] = NULL; 1940 clean_tree_block(trans, fs_info, mid); 1941 btrfs_tree_unlock(mid); 1942 /* once for the path */ 1943 free_extent_buffer(mid); 1944 1945 root_sub_used(root, mid->len); 1946 btrfs_free_tree_block(trans, root, mid, 0, 1); 1947 /* once for the root ptr */ 1948 free_extent_buffer_stale(mid); 1949 return 0; 1950 } 1951 if (btrfs_header_nritems(mid) > 1952 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1953 return 0; 1954 1955 left = read_node_slot(fs_info, parent, pslot - 1); 1956 if (IS_ERR(left)) 1957 left = NULL; 1958 1959 if (left) { 1960 btrfs_tree_lock(left); 1961 btrfs_set_lock_blocking(left); 1962 wret = btrfs_cow_block(trans, root, left, 1963 parent, pslot - 1, &left); 1964 if (wret) { 1965 ret = wret; 1966 goto enospc; 1967 } 1968 } 1969 1970 right = read_node_slot(fs_info, parent, pslot + 1); 1971 if (IS_ERR(right)) 1972 right = NULL; 1973 1974 if (right) { 1975 btrfs_tree_lock(right); 1976 btrfs_set_lock_blocking(right); 1977 wret = btrfs_cow_block(trans, root, right, 1978 parent, pslot + 1, &right); 1979 if (wret) { 1980 ret = wret; 1981 goto enospc; 1982 } 1983 } 1984 1985 /* first, try to make some room in the middle buffer */ 1986 if (left) { 1987 orig_slot += btrfs_header_nritems(left); 1988 wret = push_node_left(trans, fs_info, left, mid, 1); 1989 if (wret < 0) 1990 ret = wret; 1991 } 1992 1993 /* 1994 * then try to empty the right most buffer into the middle 1995 */ 1996 if (right) { 1997 wret = push_node_left(trans, fs_info, mid, right, 1); 1998 if (wret < 0 && wret != -ENOSPC) 1999 ret = wret; 2000 if (btrfs_header_nritems(right) == 0) { 2001 clean_tree_block(trans, fs_info, right); 2002 btrfs_tree_unlock(right); 2003 del_ptr(root, path, level + 1, pslot + 1); 2004 root_sub_used(root, right->len); 2005 btrfs_free_tree_block(trans, root, right, 0, 1); 2006 free_extent_buffer_stale(right); 2007 right = NULL; 2008 } else { 2009 struct btrfs_disk_key right_key; 2010 btrfs_node_key(right, &right_key, 0); 2011 tree_mod_log_set_node_key(fs_info, parent, 2012 pslot + 1, 0); 2013 btrfs_set_node_key(parent, &right_key, pslot + 1); 2014 btrfs_mark_buffer_dirty(parent); 2015 } 2016 } 2017 if (btrfs_header_nritems(mid) == 1) { 2018 /* 2019 * we're not allowed to leave a node with one item in the 2020 * tree during a delete. A deletion from lower in the tree 2021 * could try to delete the only pointer in this node. 2022 * So, pull some keys from the left. 2023 * There has to be a left pointer at this point because 2024 * otherwise we would have pulled some pointers from the 2025 * right 2026 */ 2027 if (!left) { 2028 ret = -EROFS; 2029 btrfs_handle_fs_error(fs_info, ret, NULL); 2030 goto enospc; 2031 } 2032 wret = balance_node_right(trans, fs_info, mid, left); 2033 if (wret < 0) { 2034 ret = wret; 2035 goto enospc; 2036 } 2037 if (wret == 1) { 2038 wret = push_node_left(trans, fs_info, left, mid, 1); 2039 if (wret < 0) 2040 ret = wret; 2041 } 2042 BUG_ON(wret == 1); 2043 } 2044 if (btrfs_header_nritems(mid) == 0) { 2045 clean_tree_block(trans, fs_info, mid); 2046 btrfs_tree_unlock(mid); 2047 del_ptr(root, path, level + 1, pslot); 2048 root_sub_used(root, mid->len); 2049 btrfs_free_tree_block(trans, root, mid, 0, 1); 2050 free_extent_buffer_stale(mid); 2051 mid = NULL; 2052 } else { 2053 /* update the parent key to reflect our changes */ 2054 struct btrfs_disk_key mid_key; 2055 btrfs_node_key(mid, &mid_key, 0); 2056 tree_mod_log_set_node_key(fs_info, parent, pslot, 0); 2057 btrfs_set_node_key(parent, &mid_key, pslot); 2058 btrfs_mark_buffer_dirty(parent); 2059 } 2060 2061 /* update the path */ 2062 if (left) { 2063 if (btrfs_header_nritems(left) > orig_slot) { 2064 extent_buffer_get(left); 2065 /* left was locked after cow */ 2066 path->nodes[level] = left; 2067 path->slots[level + 1] -= 1; 2068 path->slots[level] = orig_slot; 2069 if (mid) { 2070 btrfs_tree_unlock(mid); 2071 free_extent_buffer(mid); 2072 } 2073 } else { 2074 orig_slot -= btrfs_header_nritems(left); 2075 path->slots[level] = orig_slot; 2076 } 2077 } 2078 /* double check we haven't messed things up */ 2079 if (orig_ptr != 2080 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2081 BUG(); 2082 enospc: 2083 if (right) { 2084 btrfs_tree_unlock(right); 2085 free_extent_buffer(right); 2086 } 2087 if (left) { 2088 if (path->nodes[level] != left) 2089 btrfs_tree_unlock(left); 2090 free_extent_buffer(left); 2091 } 2092 return ret; 2093 } 2094 2095 /* Node balancing for insertion. Here we only split or push nodes around 2096 * when they are completely full. This is also done top down, so we 2097 * have to be pessimistic. 2098 */ 2099 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2100 struct btrfs_root *root, 2101 struct btrfs_path *path, int level) 2102 { 2103 struct btrfs_fs_info *fs_info = root->fs_info; 2104 struct extent_buffer *right = NULL; 2105 struct extent_buffer *mid; 2106 struct extent_buffer *left = NULL; 2107 struct extent_buffer *parent = NULL; 2108 int ret = 0; 2109 int wret; 2110 int pslot; 2111 int orig_slot = path->slots[level]; 2112 2113 if (level == 0) 2114 return 1; 2115 2116 mid = path->nodes[level]; 2117 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2118 2119 if (level < BTRFS_MAX_LEVEL - 1) { 2120 parent = path->nodes[level + 1]; 2121 pslot = path->slots[level + 1]; 2122 } 2123 2124 if (!parent) 2125 return 1; 2126 2127 left = read_node_slot(fs_info, parent, pslot - 1); 2128 if (IS_ERR(left)) 2129 left = NULL; 2130 2131 /* first, try to make some room in the middle buffer */ 2132 if (left) { 2133 u32 left_nr; 2134 2135 btrfs_tree_lock(left); 2136 btrfs_set_lock_blocking(left); 2137 2138 left_nr = btrfs_header_nritems(left); 2139 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2140 wret = 1; 2141 } else { 2142 ret = btrfs_cow_block(trans, root, left, parent, 2143 pslot - 1, &left); 2144 if (ret) 2145 wret = 1; 2146 else { 2147 wret = push_node_left(trans, fs_info, 2148 left, mid, 0); 2149 } 2150 } 2151 if (wret < 0) 2152 ret = wret; 2153 if (wret == 0) { 2154 struct btrfs_disk_key disk_key; 2155 orig_slot += left_nr; 2156 btrfs_node_key(mid, &disk_key, 0); 2157 tree_mod_log_set_node_key(fs_info, parent, pslot, 0); 2158 btrfs_set_node_key(parent, &disk_key, pslot); 2159 btrfs_mark_buffer_dirty(parent); 2160 if (btrfs_header_nritems(left) > orig_slot) { 2161 path->nodes[level] = left; 2162 path->slots[level + 1] -= 1; 2163 path->slots[level] = orig_slot; 2164 btrfs_tree_unlock(mid); 2165 free_extent_buffer(mid); 2166 } else { 2167 orig_slot -= 2168 btrfs_header_nritems(left); 2169 path->slots[level] = orig_slot; 2170 btrfs_tree_unlock(left); 2171 free_extent_buffer(left); 2172 } 2173 return 0; 2174 } 2175 btrfs_tree_unlock(left); 2176 free_extent_buffer(left); 2177 } 2178 right = read_node_slot(fs_info, parent, pslot + 1); 2179 if (IS_ERR(right)) 2180 right = NULL; 2181 2182 /* 2183 * then try to empty the right most buffer into the middle 2184 */ 2185 if (right) { 2186 u32 right_nr; 2187 2188 btrfs_tree_lock(right); 2189 btrfs_set_lock_blocking(right); 2190 2191 right_nr = btrfs_header_nritems(right); 2192 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2193 wret = 1; 2194 } else { 2195 ret = btrfs_cow_block(trans, root, right, 2196 parent, pslot + 1, 2197 &right); 2198 if (ret) 2199 wret = 1; 2200 else { 2201 wret = balance_node_right(trans, fs_info, 2202 right, mid); 2203 } 2204 } 2205 if (wret < 0) 2206 ret = wret; 2207 if (wret == 0) { 2208 struct btrfs_disk_key disk_key; 2209 2210 btrfs_node_key(right, &disk_key, 0); 2211 tree_mod_log_set_node_key(fs_info, parent, 2212 pslot + 1, 0); 2213 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2214 btrfs_mark_buffer_dirty(parent); 2215 2216 if (btrfs_header_nritems(mid) <= orig_slot) { 2217 path->nodes[level] = right; 2218 path->slots[level + 1] += 1; 2219 path->slots[level] = orig_slot - 2220 btrfs_header_nritems(mid); 2221 btrfs_tree_unlock(mid); 2222 free_extent_buffer(mid); 2223 } else { 2224 btrfs_tree_unlock(right); 2225 free_extent_buffer(right); 2226 } 2227 return 0; 2228 } 2229 btrfs_tree_unlock(right); 2230 free_extent_buffer(right); 2231 } 2232 return 1; 2233 } 2234 2235 /* 2236 * readahead one full node of leaves, finding things that are close 2237 * to the block in 'slot', and triggering ra on them. 2238 */ 2239 static void reada_for_search(struct btrfs_fs_info *fs_info, 2240 struct btrfs_path *path, 2241 int level, int slot, u64 objectid) 2242 { 2243 struct extent_buffer *node; 2244 struct btrfs_disk_key disk_key; 2245 u32 nritems; 2246 u64 search; 2247 u64 target; 2248 u64 nread = 0; 2249 struct extent_buffer *eb; 2250 u32 nr; 2251 u32 blocksize; 2252 u32 nscan = 0; 2253 2254 if (level != 1) 2255 return; 2256 2257 if (!path->nodes[level]) 2258 return; 2259 2260 node = path->nodes[level]; 2261 2262 search = btrfs_node_blockptr(node, slot); 2263 blocksize = fs_info->nodesize; 2264 eb = find_extent_buffer(fs_info, search); 2265 if (eb) { 2266 free_extent_buffer(eb); 2267 return; 2268 } 2269 2270 target = search; 2271 2272 nritems = btrfs_header_nritems(node); 2273 nr = slot; 2274 2275 while (1) { 2276 if (path->reada == READA_BACK) { 2277 if (nr == 0) 2278 break; 2279 nr--; 2280 } else if (path->reada == READA_FORWARD) { 2281 nr++; 2282 if (nr >= nritems) 2283 break; 2284 } 2285 if (path->reada == READA_BACK && objectid) { 2286 btrfs_node_key(node, &disk_key, nr); 2287 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2288 break; 2289 } 2290 search = btrfs_node_blockptr(node, nr); 2291 if ((search <= target && target - search <= 65536) || 2292 (search > target && search - target <= 65536)) { 2293 readahead_tree_block(fs_info, search); 2294 nread += blocksize; 2295 } 2296 nscan++; 2297 if ((nread > 65536 || nscan > 32)) 2298 break; 2299 } 2300 } 2301 2302 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2303 struct btrfs_path *path, int level) 2304 { 2305 int slot; 2306 int nritems; 2307 struct extent_buffer *parent; 2308 struct extent_buffer *eb; 2309 u64 gen; 2310 u64 block1 = 0; 2311 u64 block2 = 0; 2312 2313 parent = path->nodes[level + 1]; 2314 if (!parent) 2315 return; 2316 2317 nritems = btrfs_header_nritems(parent); 2318 slot = path->slots[level + 1]; 2319 2320 if (slot > 0) { 2321 block1 = btrfs_node_blockptr(parent, slot - 1); 2322 gen = btrfs_node_ptr_generation(parent, slot - 1); 2323 eb = find_extent_buffer(fs_info, block1); 2324 /* 2325 * if we get -eagain from btrfs_buffer_uptodate, we 2326 * don't want to return eagain here. That will loop 2327 * forever 2328 */ 2329 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2330 block1 = 0; 2331 free_extent_buffer(eb); 2332 } 2333 if (slot + 1 < nritems) { 2334 block2 = btrfs_node_blockptr(parent, slot + 1); 2335 gen = btrfs_node_ptr_generation(parent, slot + 1); 2336 eb = find_extent_buffer(fs_info, block2); 2337 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2338 block2 = 0; 2339 free_extent_buffer(eb); 2340 } 2341 2342 if (block1) 2343 readahead_tree_block(fs_info, block1); 2344 if (block2) 2345 readahead_tree_block(fs_info, block2); 2346 } 2347 2348 2349 /* 2350 * when we walk down the tree, it is usually safe to unlock the higher layers 2351 * in the tree. The exceptions are when our path goes through slot 0, because 2352 * operations on the tree might require changing key pointers higher up in the 2353 * tree. 2354 * 2355 * callers might also have set path->keep_locks, which tells this code to keep 2356 * the lock if the path points to the last slot in the block. This is part of 2357 * walking through the tree, and selecting the next slot in the higher block. 2358 * 2359 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2360 * if lowest_unlock is 1, level 0 won't be unlocked 2361 */ 2362 static noinline void unlock_up(struct btrfs_path *path, int level, 2363 int lowest_unlock, int min_write_lock_level, 2364 int *write_lock_level) 2365 { 2366 int i; 2367 int skip_level = level; 2368 int no_skips = 0; 2369 struct extent_buffer *t; 2370 2371 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2372 if (!path->nodes[i]) 2373 break; 2374 if (!path->locks[i]) 2375 break; 2376 if (!no_skips && path->slots[i] == 0) { 2377 skip_level = i + 1; 2378 continue; 2379 } 2380 if (!no_skips && path->keep_locks) { 2381 u32 nritems; 2382 t = path->nodes[i]; 2383 nritems = btrfs_header_nritems(t); 2384 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2385 skip_level = i + 1; 2386 continue; 2387 } 2388 } 2389 if (skip_level < i && i >= lowest_unlock) 2390 no_skips = 1; 2391 2392 t = path->nodes[i]; 2393 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2394 btrfs_tree_unlock_rw(t, path->locks[i]); 2395 path->locks[i] = 0; 2396 if (write_lock_level && 2397 i > min_write_lock_level && 2398 i <= *write_lock_level) { 2399 *write_lock_level = i - 1; 2400 } 2401 } 2402 } 2403 } 2404 2405 /* 2406 * This releases any locks held in the path starting at level and 2407 * going all the way up to the root. 2408 * 2409 * btrfs_search_slot will keep the lock held on higher nodes in a few 2410 * corner cases, such as COW of the block at slot zero in the node. This 2411 * ignores those rules, and it should only be called when there are no 2412 * more updates to be done higher up in the tree. 2413 */ 2414 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2415 { 2416 int i; 2417 2418 if (path->keep_locks) 2419 return; 2420 2421 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2422 if (!path->nodes[i]) 2423 continue; 2424 if (!path->locks[i]) 2425 continue; 2426 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2427 path->locks[i] = 0; 2428 } 2429 } 2430 2431 /* 2432 * helper function for btrfs_search_slot. The goal is to find a block 2433 * in cache without setting the path to blocking. If we find the block 2434 * we return zero and the path is unchanged. 2435 * 2436 * If we can't find the block, we set the path blocking and do some 2437 * reada. -EAGAIN is returned and the search must be repeated. 2438 */ 2439 static int 2440 read_block_for_search(struct btrfs_trans_handle *trans, 2441 struct btrfs_root *root, struct btrfs_path *p, 2442 struct extent_buffer **eb_ret, int level, int slot, 2443 struct btrfs_key *key, u64 time_seq) 2444 { 2445 struct btrfs_fs_info *fs_info = root->fs_info; 2446 u64 blocknr; 2447 u64 gen; 2448 struct extent_buffer *b = *eb_ret; 2449 struct extent_buffer *tmp; 2450 int ret; 2451 2452 blocknr = btrfs_node_blockptr(b, slot); 2453 gen = btrfs_node_ptr_generation(b, slot); 2454 2455 tmp = find_extent_buffer(fs_info, blocknr); 2456 if (tmp) { 2457 /* first we do an atomic uptodate check */ 2458 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2459 *eb_ret = tmp; 2460 return 0; 2461 } 2462 2463 /* the pages were up to date, but we failed 2464 * the generation number check. Do a full 2465 * read for the generation number that is correct. 2466 * We must do this without dropping locks so 2467 * we can trust our generation number 2468 */ 2469 btrfs_set_path_blocking(p); 2470 2471 /* now we're allowed to do a blocking uptodate check */ 2472 ret = btrfs_read_buffer(tmp, gen); 2473 if (!ret) { 2474 *eb_ret = tmp; 2475 return 0; 2476 } 2477 free_extent_buffer(tmp); 2478 btrfs_release_path(p); 2479 return -EIO; 2480 } 2481 2482 /* 2483 * reduce lock contention at high levels 2484 * of the btree by dropping locks before 2485 * we read. Don't release the lock on the current 2486 * level because we need to walk this node to figure 2487 * out which blocks to read. 2488 */ 2489 btrfs_unlock_up_safe(p, level + 1); 2490 btrfs_set_path_blocking(p); 2491 2492 free_extent_buffer(tmp); 2493 if (p->reada != READA_NONE) 2494 reada_for_search(fs_info, p, level, slot, key->objectid); 2495 2496 btrfs_release_path(p); 2497 2498 ret = -EAGAIN; 2499 tmp = read_tree_block(fs_info, blocknr, 0); 2500 if (!IS_ERR(tmp)) { 2501 /* 2502 * If the read above didn't mark this buffer up to date, 2503 * it will never end up being up to date. Set ret to EIO now 2504 * and give up so that our caller doesn't loop forever 2505 * on our EAGAINs. 2506 */ 2507 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2508 ret = -EIO; 2509 free_extent_buffer(tmp); 2510 } else { 2511 ret = PTR_ERR(tmp); 2512 } 2513 return ret; 2514 } 2515 2516 /* 2517 * helper function for btrfs_search_slot. This does all of the checks 2518 * for node-level blocks and does any balancing required based on 2519 * the ins_len. 2520 * 2521 * If no extra work was required, zero is returned. If we had to 2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2523 * start over 2524 */ 2525 static int 2526 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2527 struct btrfs_root *root, struct btrfs_path *p, 2528 struct extent_buffer *b, int level, int ins_len, 2529 int *write_lock_level) 2530 { 2531 struct btrfs_fs_info *fs_info = root->fs_info; 2532 int ret; 2533 2534 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2535 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2536 int sret; 2537 2538 if (*write_lock_level < level + 1) { 2539 *write_lock_level = level + 1; 2540 btrfs_release_path(p); 2541 goto again; 2542 } 2543 2544 btrfs_set_path_blocking(p); 2545 reada_for_balance(fs_info, p, level); 2546 sret = split_node(trans, root, p, level); 2547 btrfs_clear_path_blocking(p, NULL, 0); 2548 2549 BUG_ON(sret > 0); 2550 if (sret) { 2551 ret = sret; 2552 goto done; 2553 } 2554 b = p->nodes[level]; 2555 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2556 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2557 int sret; 2558 2559 if (*write_lock_level < level + 1) { 2560 *write_lock_level = level + 1; 2561 btrfs_release_path(p); 2562 goto again; 2563 } 2564 2565 btrfs_set_path_blocking(p); 2566 reada_for_balance(fs_info, p, level); 2567 sret = balance_level(trans, root, p, level); 2568 btrfs_clear_path_blocking(p, NULL, 0); 2569 2570 if (sret) { 2571 ret = sret; 2572 goto done; 2573 } 2574 b = p->nodes[level]; 2575 if (!b) { 2576 btrfs_release_path(p); 2577 goto again; 2578 } 2579 BUG_ON(btrfs_header_nritems(b) == 1); 2580 } 2581 return 0; 2582 2583 again: 2584 ret = -EAGAIN; 2585 done: 2586 return ret; 2587 } 2588 2589 static void key_search_validate(struct extent_buffer *b, 2590 struct btrfs_key *key, 2591 int level) 2592 { 2593 #ifdef CONFIG_BTRFS_ASSERT 2594 struct btrfs_disk_key disk_key; 2595 2596 btrfs_cpu_key_to_disk(&disk_key, key); 2597 2598 if (level == 0) 2599 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2600 offsetof(struct btrfs_leaf, items[0].key), 2601 sizeof(disk_key))); 2602 else 2603 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2604 offsetof(struct btrfs_node, ptrs[0].key), 2605 sizeof(disk_key))); 2606 #endif 2607 } 2608 2609 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2610 int level, int *prev_cmp, int *slot) 2611 { 2612 if (*prev_cmp != 0) { 2613 *prev_cmp = bin_search(b, key, level, slot); 2614 return *prev_cmp; 2615 } 2616 2617 key_search_validate(b, key, level); 2618 *slot = 0; 2619 2620 return 0; 2621 } 2622 2623 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2624 u64 iobjectid, u64 ioff, u8 key_type, 2625 struct btrfs_key *found_key) 2626 { 2627 int ret; 2628 struct btrfs_key key; 2629 struct extent_buffer *eb; 2630 2631 ASSERT(path); 2632 ASSERT(found_key); 2633 2634 key.type = key_type; 2635 key.objectid = iobjectid; 2636 key.offset = ioff; 2637 2638 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2639 if (ret < 0) 2640 return ret; 2641 2642 eb = path->nodes[0]; 2643 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2644 ret = btrfs_next_leaf(fs_root, path); 2645 if (ret) 2646 return ret; 2647 eb = path->nodes[0]; 2648 } 2649 2650 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2651 if (found_key->type != key.type || 2652 found_key->objectid != key.objectid) 2653 return 1; 2654 2655 return 0; 2656 } 2657 2658 /* 2659 * look for key in the tree. path is filled in with nodes along the way 2660 * if key is found, we return zero and you can find the item in the leaf 2661 * level of the path (level 0) 2662 * 2663 * If the key isn't found, the path points to the slot where it should 2664 * be inserted, and 1 is returned. If there are other errors during the 2665 * search a negative error number is returned. 2666 * 2667 * if ins_len > 0, nodes and leaves will be split as we walk down the 2668 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2669 * possible) 2670 */ 2671 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2672 *root, struct btrfs_key *key, struct btrfs_path *p, int 2673 ins_len, int cow) 2674 { 2675 struct btrfs_fs_info *fs_info = root->fs_info; 2676 struct extent_buffer *b; 2677 int slot; 2678 int ret; 2679 int err; 2680 int level; 2681 int lowest_unlock = 1; 2682 int root_lock; 2683 /* everything at write_lock_level or lower must be write locked */ 2684 int write_lock_level = 0; 2685 u8 lowest_level = 0; 2686 int min_write_lock_level; 2687 int prev_cmp; 2688 2689 lowest_level = p->lowest_level; 2690 WARN_ON(lowest_level && ins_len > 0); 2691 WARN_ON(p->nodes[0] != NULL); 2692 BUG_ON(!cow && ins_len); 2693 2694 if (ins_len < 0) { 2695 lowest_unlock = 2; 2696 2697 /* when we are removing items, we might have to go up to level 2698 * two as we update tree pointers Make sure we keep write 2699 * for those levels as well 2700 */ 2701 write_lock_level = 2; 2702 } else if (ins_len > 0) { 2703 /* 2704 * for inserting items, make sure we have a write lock on 2705 * level 1 so we can update keys 2706 */ 2707 write_lock_level = 1; 2708 } 2709 2710 if (!cow) 2711 write_lock_level = -1; 2712 2713 if (cow && (p->keep_locks || p->lowest_level)) 2714 write_lock_level = BTRFS_MAX_LEVEL; 2715 2716 min_write_lock_level = write_lock_level; 2717 2718 again: 2719 prev_cmp = -1; 2720 /* 2721 * we try very hard to do read locks on the root 2722 */ 2723 root_lock = BTRFS_READ_LOCK; 2724 level = 0; 2725 if (p->search_commit_root) { 2726 /* 2727 * the commit roots are read only 2728 * so we always do read locks 2729 */ 2730 if (p->need_commit_sem) 2731 down_read(&fs_info->commit_root_sem); 2732 b = root->commit_root; 2733 extent_buffer_get(b); 2734 level = btrfs_header_level(b); 2735 if (p->need_commit_sem) 2736 up_read(&fs_info->commit_root_sem); 2737 if (!p->skip_locking) 2738 btrfs_tree_read_lock(b); 2739 } else { 2740 if (p->skip_locking) { 2741 b = btrfs_root_node(root); 2742 level = btrfs_header_level(b); 2743 } else { 2744 /* we don't know the level of the root node 2745 * until we actually have it read locked 2746 */ 2747 b = btrfs_read_lock_root_node(root); 2748 level = btrfs_header_level(b); 2749 if (level <= write_lock_level) { 2750 /* whoops, must trade for write lock */ 2751 btrfs_tree_read_unlock(b); 2752 free_extent_buffer(b); 2753 b = btrfs_lock_root_node(root); 2754 root_lock = BTRFS_WRITE_LOCK; 2755 2756 /* the level might have changed, check again */ 2757 level = btrfs_header_level(b); 2758 } 2759 } 2760 } 2761 p->nodes[level] = b; 2762 if (!p->skip_locking) 2763 p->locks[level] = root_lock; 2764 2765 while (b) { 2766 level = btrfs_header_level(b); 2767 2768 /* 2769 * setup the path here so we can release it under lock 2770 * contention with the cow code 2771 */ 2772 if (cow) { 2773 /* 2774 * if we don't really need to cow this block 2775 * then we don't want to set the path blocking, 2776 * so we test it here 2777 */ 2778 if (!should_cow_block(trans, root, b)) { 2779 trans->dirty = true; 2780 goto cow_done; 2781 } 2782 2783 /* 2784 * must have write locks on this node and the 2785 * parent 2786 */ 2787 if (level > write_lock_level || 2788 (level + 1 > write_lock_level && 2789 level + 1 < BTRFS_MAX_LEVEL && 2790 p->nodes[level + 1])) { 2791 write_lock_level = level + 1; 2792 btrfs_release_path(p); 2793 goto again; 2794 } 2795 2796 btrfs_set_path_blocking(p); 2797 err = btrfs_cow_block(trans, root, b, 2798 p->nodes[level + 1], 2799 p->slots[level + 1], &b); 2800 if (err) { 2801 ret = err; 2802 goto done; 2803 } 2804 } 2805 cow_done: 2806 p->nodes[level] = b; 2807 btrfs_clear_path_blocking(p, NULL, 0); 2808 2809 /* 2810 * we have a lock on b and as long as we aren't changing 2811 * the tree, there is no way to for the items in b to change. 2812 * It is safe to drop the lock on our parent before we 2813 * go through the expensive btree search on b. 2814 * 2815 * If we're inserting or deleting (ins_len != 0), then we might 2816 * be changing slot zero, which may require changing the parent. 2817 * So, we can't drop the lock until after we know which slot 2818 * we're operating on. 2819 */ 2820 if (!ins_len && !p->keep_locks) { 2821 int u = level + 1; 2822 2823 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2824 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2825 p->locks[u] = 0; 2826 } 2827 } 2828 2829 ret = key_search(b, key, level, &prev_cmp, &slot); 2830 if (ret < 0) 2831 goto done; 2832 2833 if (level != 0) { 2834 int dec = 0; 2835 if (ret && slot > 0) { 2836 dec = 1; 2837 slot -= 1; 2838 } 2839 p->slots[level] = slot; 2840 err = setup_nodes_for_search(trans, root, p, b, level, 2841 ins_len, &write_lock_level); 2842 if (err == -EAGAIN) 2843 goto again; 2844 if (err) { 2845 ret = err; 2846 goto done; 2847 } 2848 b = p->nodes[level]; 2849 slot = p->slots[level]; 2850 2851 /* 2852 * slot 0 is special, if we change the key 2853 * we have to update the parent pointer 2854 * which means we must have a write lock 2855 * on the parent 2856 */ 2857 if (slot == 0 && ins_len && 2858 write_lock_level < level + 1) { 2859 write_lock_level = level + 1; 2860 btrfs_release_path(p); 2861 goto again; 2862 } 2863 2864 unlock_up(p, level, lowest_unlock, 2865 min_write_lock_level, &write_lock_level); 2866 2867 if (level == lowest_level) { 2868 if (dec) 2869 p->slots[level]++; 2870 goto done; 2871 } 2872 2873 err = read_block_for_search(trans, root, p, 2874 &b, level, slot, key, 0); 2875 if (err == -EAGAIN) 2876 goto again; 2877 if (err) { 2878 ret = err; 2879 goto done; 2880 } 2881 2882 if (!p->skip_locking) { 2883 level = btrfs_header_level(b); 2884 if (level <= write_lock_level) { 2885 err = btrfs_try_tree_write_lock(b); 2886 if (!err) { 2887 btrfs_set_path_blocking(p); 2888 btrfs_tree_lock(b); 2889 btrfs_clear_path_blocking(p, b, 2890 BTRFS_WRITE_LOCK); 2891 } 2892 p->locks[level] = BTRFS_WRITE_LOCK; 2893 } else { 2894 err = btrfs_tree_read_lock_atomic(b); 2895 if (!err) { 2896 btrfs_set_path_blocking(p); 2897 btrfs_tree_read_lock(b); 2898 btrfs_clear_path_blocking(p, b, 2899 BTRFS_READ_LOCK); 2900 } 2901 p->locks[level] = BTRFS_READ_LOCK; 2902 } 2903 p->nodes[level] = b; 2904 } 2905 } else { 2906 p->slots[level] = slot; 2907 if (ins_len > 0 && 2908 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2909 if (write_lock_level < 1) { 2910 write_lock_level = 1; 2911 btrfs_release_path(p); 2912 goto again; 2913 } 2914 2915 btrfs_set_path_blocking(p); 2916 err = split_leaf(trans, root, key, 2917 p, ins_len, ret == 0); 2918 btrfs_clear_path_blocking(p, NULL, 0); 2919 2920 BUG_ON(err > 0); 2921 if (err) { 2922 ret = err; 2923 goto done; 2924 } 2925 } 2926 if (!p->search_for_split) 2927 unlock_up(p, level, lowest_unlock, 2928 min_write_lock_level, &write_lock_level); 2929 goto done; 2930 } 2931 } 2932 ret = 1; 2933 done: 2934 /* 2935 * we don't really know what they plan on doing with the path 2936 * from here on, so for now just mark it as blocking 2937 */ 2938 if (!p->leave_spinning) 2939 btrfs_set_path_blocking(p); 2940 if (ret < 0 && !p->skip_release_on_error) 2941 btrfs_release_path(p); 2942 return ret; 2943 } 2944 2945 /* 2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2947 * current state of the tree together with the operations recorded in the tree 2948 * modification log to search for the key in a previous version of this tree, as 2949 * denoted by the time_seq parameter. 2950 * 2951 * Naturally, there is no support for insert, delete or cow operations. 2952 * 2953 * The resulting path and return value will be set up as if we called 2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2955 */ 2956 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2957 struct btrfs_path *p, u64 time_seq) 2958 { 2959 struct btrfs_fs_info *fs_info = root->fs_info; 2960 struct extent_buffer *b; 2961 int slot; 2962 int ret; 2963 int err; 2964 int level; 2965 int lowest_unlock = 1; 2966 u8 lowest_level = 0; 2967 int prev_cmp = -1; 2968 2969 lowest_level = p->lowest_level; 2970 WARN_ON(p->nodes[0] != NULL); 2971 2972 if (p->search_commit_root) { 2973 BUG_ON(time_seq); 2974 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2975 } 2976 2977 again: 2978 b = get_old_root(root, time_seq); 2979 level = btrfs_header_level(b); 2980 p->locks[level] = BTRFS_READ_LOCK; 2981 2982 while (b) { 2983 level = btrfs_header_level(b); 2984 p->nodes[level] = b; 2985 btrfs_clear_path_blocking(p, NULL, 0); 2986 2987 /* 2988 * we have a lock on b and as long as we aren't changing 2989 * the tree, there is no way to for the items in b to change. 2990 * It is safe to drop the lock on our parent before we 2991 * go through the expensive btree search on b. 2992 */ 2993 btrfs_unlock_up_safe(p, level + 1); 2994 2995 /* 2996 * Since we can unwind ebs we want to do a real search every 2997 * time. 2998 */ 2999 prev_cmp = -1; 3000 ret = key_search(b, key, level, &prev_cmp, &slot); 3001 3002 if (level != 0) { 3003 int dec = 0; 3004 if (ret && slot > 0) { 3005 dec = 1; 3006 slot -= 1; 3007 } 3008 p->slots[level] = slot; 3009 unlock_up(p, level, lowest_unlock, 0, NULL); 3010 3011 if (level == lowest_level) { 3012 if (dec) 3013 p->slots[level]++; 3014 goto done; 3015 } 3016 3017 err = read_block_for_search(NULL, root, p, &b, level, 3018 slot, key, time_seq); 3019 if (err == -EAGAIN) 3020 goto again; 3021 if (err) { 3022 ret = err; 3023 goto done; 3024 } 3025 3026 level = btrfs_header_level(b); 3027 err = btrfs_tree_read_lock_atomic(b); 3028 if (!err) { 3029 btrfs_set_path_blocking(p); 3030 btrfs_tree_read_lock(b); 3031 btrfs_clear_path_blocking(p, b, 3032 BTRFS_READ_LOCK); 3033 } 3034 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3035 if (!b) { 3036 ret = -ENOMEM; 3037 goto done; 3038 } 3039 p->locks[level] = BTRFS_READ_LOCK; 3040 p->nodes[level] = b; 3041 } else { 3042 p->slots[level] = slot; 3043 unlock_up(p, level, lowest_unlock, 0, NULL); 3044 goto done; 3045 } 3046 } 3047 ret = 1; 3048 done: 3049 if (!p->leave_spinning) 3050 btrfs_set_path_blocking(p); 3051 if (ret < 0) 3052 btrfs_release_path(p); 3053 3054 return ret; 3055 } 3056 3057 /* 3058 * helper to use instead of search slot if no exact match is needed but 3059 * instead the next or previous item should be returned. 3060 * When find_higher is true, the next higher item is returned, the next lower 3061 * otherwise. 3062 * When return_any and find_higher are both true, and no higher item is found, 3063 * return the next lower instead. 3064 * When return_any is true and find_higher is false, and no lower item is found, 3065 * return the next higher instead. 3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3067 * < 0 on error 3068 */ 3069 int btrfs_search_slot_for_read(struct btrfs_root *root, 3070 struct btrfs_key *key, struct btrfs_path *p, 3071 int find_higher, int return_any) 3072 { 3073 int ret; 3074 struct extent_buffer *leaf; 3075 3076 again: 3077 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3078 if (ret <= 0) 3079 return ret; 3080 /* 3081 * a return value of 1 means the path is at the position where the 3082 * item should be inserted. Normally this is the next bigger item, 3083 * but in case the previous item is the last in a leaf, path points 3084 * to the first free slot in the previous leaf, i.e. at an invalid 3085 * item. 3086 */ 3087 leaf = p->nodes[0]; 3088 3089 if (find_higher) { 3090 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3091 ret = btrfs_next_leaf(root, p); 3092 if (ret <= 0) 3093 return ret; 3094 if (!return_any) 3095 return 1; 3096 /* 3097 * no higher item found, return the next 3098 * lower instead 3099 */ 3100 return_any = 0; 3101 find_higher = 0; 3102 btrfs_release_path(p); 3103 goto again; 3104 } 3105 } else { 3106 if (p->slots[0] == 0) { 3107 ret = btrfs_prev_leaf(root, p); 3108 if (ret < 0) 3109 return ret; 3110 if (!ret) { 3111 leaf = p->nodes[0]; 3112 if (p->slots[0] == btrfs_header_nritems(leaf)) 3113 p->slots[0]--; 3114 return 0; 3115 } 3116 if (!return_any) 3117 return 1; 3118 /* 3119 * no lower item found, return the next 3120 * higher instead 3121 */ 3122 return_any = 0; 3123 find_higher = 1; 3124 btrfs_release_path(p); 3125 goto again; 3126 } else { 3127 --p->slots[0]; 3128 } 3129 } 3130 return 0; 3131 } 3132 3133 /* 3134 * adjust the pointers going up the tree, starting at level 3135 * making sure the right key of each node is points to 'key'. 3136 * This is used after shifting pointers to the left, so it stops 3137 * fixing up pointers when a given leaf/node is not in slot 0 of the 3138 * higher levels 3139 * 3140 */ 3141 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3142 struct btrfs_path *path, 3143 struct btrfs_disk_key *key, int level) 3144 { 3145 int i; 3146 struct extent_buffer *t; 3147 3148 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3149 int tslot = path->slots[i]; 3150 if (!path->nodes[i]) 3151 break; 3152 t = path->nodes[i]; 3153 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3154 btrfs_set_node_key(t, key, tslot); 3155 btrfs_mark_buffer_dirty(path->nodes[i]); 3156 if (tslot != 0) 3157 break; 3158 } 3159 } 3160 3161 /* 3162 * update item key. 3163 * 3164 * This function isn't completely safe. It's the caller's responsibility 3165 * that the new key won't break the order 3166 */ 3167 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3168 struct btrfs_path *path, 3169 struct btrfs_key *new_key) 3170 { 3171 struct btrfs_disk_key disk_key; 3172 struct extent_buffer *eb; 3173 int slot; 3174 3175 eb = path->nodes[0]; 3176 slot = path->slots[0]; 3177 if (slot > 0) { 3178 btrfs_item_key(eb, &disk_key, slot - 1); 3179 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3180 } 3181 if (slot < btrfs_header_nritems(eb) - 1) { 3182 btrfs_item_key(eb, &disk_key, slot + 1); 3183 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3184 } 3185 3186 btrfs_cpu_key_to_disk(&disk_key, new_key); 3187 btrfs_set_item_key(eb, &disk_key, slot); 3188 btrfs_mark_buffer_dirty(eb); 3189 if (slot == 0) 3190 fixup_low_keys(fs_info, path, &disk_key, 1); 3191 } 3192 3193 /* 3194 * try to push data from one node into the next node left in the 3195 * tree. 3196 * 3197 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3198 * error, and > 0 if there was no room in the left hand block. 3199 */ 3200 static int push_node_left(struct btrfs_trans_handle *trans, 3201 struct btrfs_fs_info *fs_info, 3202 struct extent_buffer *dst, 3203 struct extent_buffer *src, int empty) 3204 { 3205 int push_items = 0; 3206 int src_nritems; 3207 int dst_nritems; 3208 int ret = 0; 3209 3210 src_nritems = btrfs_header_nritems(src); 3211 dst_nritems = btrfs_header_nritems(dst); 3212 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3213 WARN_ON(btrfs_header_generation(src) != trans->transid); 3214 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3215 3216 if (!empty && src_nritems <= 8) 3217 return 1; 3218 3219 if (push_items <= 0) 3220 return 1; 3221 3222 if (empty) { 3223 push_items = min(src_nritems, push_items); 3224 if (push_items < src_nritems) { 3225 /* leave at least 8 pointers in the node if 3226 * we aren't going to empty it 3227 */ 3228 if (src_nritems - push_items < 8) { 3229 if (push_items <= 8) 3230 return 1; 3231 push_items -= 8; 3232 } 3233 } 3234 } else 3235 push_items = min(src_nritems - 8, push_items); 3236 3237 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3238 push_items); 3239 if (ret) { 3240 btrfs_abort_transaction(trans, ret); 3241 return ret; 3242 } 3243 copy_extent_buffer(dst, src, 3244 btrfs_node_key_ptr_offset(dst_nritems), 3245 btrfs_node_key_ptr_offset(0), 3246 push_items * sizeof(struct btrfs_key_ptr)); 3247 3248 if (push_items < src_nritems) { 3249 /* 3250 * don't call tree_mod_log_eb_move here, key removal was already 3251 * fully logged by tree_mod_log_eb_copy above. 3252 */ 3253 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3254 btrfs_node_key_ptr_offset(push_items), 3255 (src_nritems - push_items) * 3256 sizeof(struct btrfs_key_ptr)); 3257 } 3258 btrfs_set_header_nritems(src, src_nritems - push_items); 3259 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3260 btrfs_mark_buffer_dirty(src); 3261 btrfs_mark_buffer_dirty(dst); 3262 3263 return ret; 3264 } 3265 3266 /* 3267 * try to push data from one node into the next node right in the 3268 * tree. 3269 * 3270 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3271 * error, and > 0 if there was no room in the right hand block. 3272 * 3273 * this will only push up to 1/2 the contents of the left node over 3274 */ 3275 static int balance_node_right(struct btrfs_trans_handle *trans, 3276 struct btrfs_fs_info *fs_info, 3277 struct extent_buffer *dst, 3278 struct extent_buffer *src) 3279 { 3280 int push_items = 0; 3281 int max_push; 3282 int src_nritems; 3283 int dst_nritems; 3284 int ret = 0; 3285 3286 WARN_ON(btrfs_header_generation(src) != trans->transid); 3287 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3288 3289 src_nritems = btrfs_header_nritems(src); 3290 dst_nritems = btrfs_header_nritems(dst); 3291 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3292 if (push_items <= 0) 3293 return 1; 3294 3295 if (src_nritems < 4) 3296 return 1; 3297 3298 max_push = src_nritems / 2 + 1; 3299 /* don't try to empty the node */ 3300 if (max_push >= src_nritems) 3301 return 1; 3302 3303 if (max_push < push_items) 3304 push_items = max_push; 3305 3306 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems); 3307 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3308 btrfs_node_key_ptr_offset(0), 3309 (dst_nritems) * 3310 sizeof(struct btrfs_key_ptr)); 3311 3312 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3313 src_nritems - push_items, push_items); 3314 if (ret) { 3315 btrfs_abort_transaction(trans, ret); 3316 return ret; 3317 } 3318 copy_extent_buffer(dst, src, 3319 btrfs_node_key_ptr_offset(0), 3320 btrfs_node_key_ptr_offset(src_nritems - push_items), 3321 push_items * sizeof(struct btrfs_key_ptr)); 3322 3323 btrfs_set_header_nritems(src, src_nritems - push_items); 3324 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3325 3326 btrfs_mark_buffer_dirty(src); 3327 btrfs_mark_buffer_dirty(dst); 3328 3329 return ret; 3330 } 3331 3332 /* 3333 * helper function to insert a new root level in the tree. 3334 * A new node is allocated, and a single item is inserted to 3335 * point to the existing root 3336 * 3337 * returns zero on success or < 0 on failure. 3338 */ 3339 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3340 struct btrfs_root *root, 3341 struct btrfs_path *path, int level) 3342 { 3343 struct btrfs_fs_info *fs_info = root->fs_info; 3344 u64 lower_gen; 3345 struct extent_buffer *lower; 3346 struct extent_buffer *c; 3347 struct extent_buffer *old; 3348 struct btrfs_disk_key lower_key; 3349 3350 BUG_ON(path->nodes[level]); 3351 BUG_ON(path->nodes[level-1] != root->node); 3352 3353 lower = path->nodes[level-1]; 3354 if (level == 1) 3355 btrfs_item_key(lower, &lower_key, 0); 3356 else 3357 btrfs_node_key(lower, &lower_key, 0); 3358 3359 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3360 &lower_key, level, root->node->start, 0); 3361 if (IS_ERR(c)) 3362 return PTR_ERR(c); 3363 3364 root_add_used(root, fs_info->nodesize); 3365 3366 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header)); 3367 btrfs_set_header_nritems(c, 1); 3368 btrfs_set_header_level(c, level); 3369 btrfs_set_header_bytenr(c, c->start); 3370 btrfs_set_header_generation(c, trans->transid); 3371 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3372 btrfs_set_header_owner(c, root->root_key.objectid); 3373 3374 write_extent_buffer_fsid(c, fs_info->fsid); 3375 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid); 3376 3377 btrfs_set_node_key(c, &lower_key, 0); 3378 btrfs_set_node_blockptr(c, 0, lower->start); 3379 lower_gen = btrfs_header_generation(lower); 3380 WARN_ON(lower_gen != trans->transid); 3381 3382 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3383 3384 btrfs_mark_buffer_dirty(c); 3385 3386 old = root->node; 3387 tree_mod_log_set_root_pointer(root, c, 0); 3388 rcu_assign_pointer(root->node, c); 3389 3390 /* the super has an extra ref to root->node */ 3391 free_extent_buffer(old); 3392 3393 add_root_to_dirty_list(root); 3394 extent_buffer_get(c); 3395 path->nodes[level] = c; 3396 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3397 path->slots[level] = 0; 3398 return 0; 3399 } 3400 3401 /* 3402 * worker function to insert a single pointer in a node. 3403 * the node should have enough room for the pointer already 3404 * 3405 * slot and level indicate where you want the key to go, and 3406 * blocknr is the block the key points to. 3407 */ 3408 static void insert_ptr(struct btrfs_trans_handle *trans, 3409 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3410 struct btrfs_disk_key *key, u64 bytenr, 3411 int slot, int level) 3412 { 3413 struct extent_buffer *lower; 3414 int nritems; 3415 int ret; 3416 3417 BUG_ON(!path->nodes[level]); 3418 btrfs_assert_tree_locked(path->nodes[level]); 3419 lower = path->nodes[level]; 3420 nritems = btrfs_header_nritems(lower); 3421 BUG_ON(slot > nritems); 3422 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3423 if (slot != nritems) { 3424 if (level) 3425 tree_mod_log_eb_move(fs_info, lower, slot + 1, 3426 slot, nritems - slot); 3427 memmove_extent_buffer(lower, 3428 btrfs_node_key_ptr_offset(slot + 1), 3429 btrfs_node_key_ptr_offset(slot), 3430 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3431 } 3432 if (level) { 3433 ret = tree_mod_log_insert_key(fs_info, lower, slot, 3434 MOD_LOG_KEY_ADD, GFP_NOFS); 3435 BUG_ON(ret < 0); 3436 } 3437 btrfs_set_node_key(lower, key, slot); 3438 btrfs_set_node_blockptr(lower, slot, bytenr); 3439 WARN_ON(trans->transid == 0); 3440 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3441 btrfs_set_header_nritems(lower, nritems + 1); 3442 btrfs_mark_buffer_dirty(lower); 3443 } 3444 3445 /* 3446 * split the node at the specified level in path in two. 3447 * The path is corrected to point to the appropriate node after the split 3448 * 3449 * Before splitting this tries to make some room in the node by pushing 3450 * left and right, if either one works, it returns right away. 3451 * 3452 * returns 0 on success and < 0 on failure 3453 */ 3454 static noinline int split_node(struct btrfs_trans_handle *trans, 3455 struct btrfs_root *root, 3456 struct btrfs_path *path, int level) 3457 { 3458 struct btrfs_fs_info *fs_info = root->fs_info; 3459 struct extent_buffer *c; 3460 struct extent_buffer *split; 3461 struct btrfs_disk_key disk_key; 3462 int mid; 3463 int ret; 3464 u32 c_nritems; 3465 3466 c = path->nodes[level]; 3467 WARN_ON(btrfs_header_generation(c) != trans->transid); 3468 if (c == root->node) { 3469 /* 3470 * trying to split the root, lets make a new one 3471 * 3472 * tree mod log: We don't log_removal old root in 3473 * insert_new_root, because that root buffer will be kept as a 3474 * normal node. We are going to log removal of half of the 3475 * elements below with tree_mod_log_eb_copy. We're holding a 3476 * tree lock on the buffer, which is why we cannot race with 3477 * other tree_mod_log users. 3478 */ 3479 ret = insert_new_root(trans, root, path, level + 1); 3480 if (ret) 3481 return ret; 3482 } else { 3483 ret = push_nodes_for_insert(trans, root, path, level); 3484 c = path->nodes[level]; 3485 if (!ret && btrfs_header_nritems(c) < 3486 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3487 return 0; 3488 if (ret < 0) 3489 return ret; 3490 } 3491 3492 c_nritems = btrfs_header_nritems(c); 3493 mid = (c_nritems + 1) / 2; 3494 btrfs_node_key(c, &disk_key, mid); 3495 3496 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3497 &disk_key, level, c->start, 0); 3498 if (IS_ERR(split)) 3499 return PTR_ERR(split); 3500 3501 root_add_used(root, fs_info->nodesize); 3502 3503 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header)); 3504 btrfs_set_header_level(split, btrfs_header_level(c)); 3505 btrfs_set_header_bytenr(split, split->start); 3506 btrfs_set_header_generation(split, trans->transid); 3507 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3508 btrfs_set_header_owner(split, root->root_key.objectid); 3509 write_extent_buffer_fsid(split, fs_info->fsid); 3510 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid); 3511 3512 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3513 if (ret) { 3514 btrfs_abort_transaction(trans, ret); 3515 return ret; 3516 } 3517 copy_extent_buffer(split, c, 3518 btrfs_node_key_ptr_offset(0), 3519 btrfs_node_key_ptr_offset(mid), 3520 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3521 btrfs_set_header_nritems(split, c_nritems - mid); 3522 btrfs_set_header_nritems(c, mid); 3523 ret = 0; 3524 3525 btrfs_mark_buffer_dirty(c); 3526 btrfs_mark_buffer_dirty(split); 3527 3528 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3529 path->slots[level + 1] + 1, level + 1); 3530 3531 if (path->slots[level] >= mid) { 3532 path->slots[level] -= mid; 3533 btrfs_tree_unlock(c); 3534 free_extent_buffer(c); 3535 path->nodes[level] = split; 3536 path->slots[level + 1] += 1; 3537 } else { 3538 btrfs_tree_unlock(split); 3539 free_extent_buffer(split); 3540 } 3541 return ret; 3542 } 3543 3544 /* 3545 * how many bytes are required to store the items in a leaf. start 3546 * and nr indicate which items in the leaf to check. This totals up the 3547 * space used both by the item structs and the item data 3548 */ 3549 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3550 { 3551 struct btrfs_item *start_item; 3552 struct btrfs_item *end_item; 3553 struct btrfs_map_token token; 3554 int data_len; 3555 int nritems = btrfs_header_nritems(l); 3556 int end = min(nritems, start + nr) - 1; 3557 3558 if (!nr) 3559 return 0; 3560 btrfs_init_map_token(&token); 3561 start_item = btrfs_item_nr(start); 3562 end_item = btrfs_item_nr(end); 3563 data_len = btrfs_token_item_offset(l, start_item, &token) + 3564 btrfs_token_item_size(l, start_item, &token); 3565 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3566 data_len += sizeof(struct btrfs_item) * nr; 3567 WARN_ON(data_len < 0); 3568 return data_len; 3569 } 3570 3571 /* 3572 * The space between the end of the leaf items and 3573 * the start of the leaf data. IOW, how much room 3574 * the leaf has left for both items and data 3575 */ 3576 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3577 struct extent_buffer *leaf) 3578 { 3579 int nritems = btrfs_header_nritems(leaf); 3580 int ret; 3581 3582 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3583 if (ret < 0) { 3584 btrfs_crit(fs_info, 3585 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3586 ret, 3587 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3588 leaf_space_used(leaf, 0, nritems), nritems); 3589 } 3590 return ret; 3591 } 3592 3593 /* 3594 * min slot controls the lowest index we're willing to push to the 3595 * right. We'll push up to and including min_slot, but no lower 3596 */ 3597 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3598 struct btrfs_fs_info *fs_info, 3599 struct btrfs_path *path, 3600 int data_size, int empty, 3601 struct extent_buffer *right, 3602 int free_space, u32 left_nritems, 3603 u32 min_slot) 3604 { 3605 struct extent_buffer *left = path->nodes[0]; 3606 struct extent_buffer *upper = path->nodes[1]; 3607 struct btrfs_map_token token; 3608 struct btrfs_disk_key disk_key; 3609 int slot; 3610 u32 i; 3611 int push_space = 0; 3612 int push_items = 0; 3613 struct btrfs_item *item; 3614 u32 nr; 3615 u32 right_nritems; 3616 u32 data_end; 3617 u32 this_item_size; 3618 3619 btrfs_init_map_token(&token); 3620 3621 if (empty) 3622 nr = 0; 3623 else 3624 nr = max_t(u32, 1, min_slot); 3625 3626 if (path->slots[0] >= left_nritems) 3627 push_space += data_size; 3628 3629 slot = path->slots[1]; 3630 i = left_nritems - 1; 3631 while (i >= nr) { 3632 item = btrfs_item_nr(i); 3633 3634 if (!empty && push_items > 0) { 3635 if (path->slots[0] > i) 3636 break; 3637 if (path->slots[0] == i) { 3638 int space = btrfs_leaf_free_space(fs_info, left); 3639 if (space + push_space * 2 > free_space) 3640 break; 3641 } 3642 } 3643 3644 if (path->slots[0] == i) 3645 push_space += data_size; 3646 3647 this_item_size = btrfs_item_size(left, item); 3648 if (this_item_size + sizeof(*item) + push_space > free_space) 3649 break; 3650 3651 push_items++; 3652 push_space += this_item_size + sizeof(*item); 3653 if (i == 0) 3654 break; 3655 i--; 3656 } 3657 3658 if (push_items == 0) 3659 goto out_unlock; 3660 3661 WARN_ON(!empty && push_items == left_nritems); 3662 3663 /* push left to right */ 3664 right_nritems = btrfs_header_nritems(right); 3665 3666 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3667 push_space -= leaf_data_end(fs_info, left); 3668 3669 /* make room in the right data area */ 3670 data_end = leaf_data_end(fs_info, right); 3671 memmove_extent_buffer(right, 3672 btrfs_leaf_data(right) + data_end - push_space, 3673 btrfs_leaf_data(right) + data_end, 3674 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3675 3676 /* copy from the left data area */ 3677 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3678 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3679 btrfs_leaf_data(left) + leaf_data_end(fs_info, left), 3680 push_space); 3681 3682 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3683 btrfs_item_nr_offset(0), 3684 right_nritems * sizeof(struct btrfs_item)); 3685 3686 /* copy the items from left to right */ 3687 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3688 btrfs_item_nr_offset(left_nritems - push_items), 3689 push_items * sizeof(struct btrfs_item)); 3690 3691 /* update the item pointers */ 3692 right_nritems += push_items; 3693 btrfs_set_header_nritems(right, right_nritems); 3694 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3695 for (i = 0; i < right_nritems; i++) { 3696 item = btrfs_item_nr(i); 3697 push_space -= btrfs_token_item_size(right, item, &token); 3698 btrfs_set_token_item_offset(right, item, push_space, &token); 3699 } 3700 3701 left_nritems -= push_items; 3702 btrfs_set_header_nritems(left, left_nritems); 3703 3704 if (left_nritems) 3705 btrfs_mark_buffer_dirty(left); 3706 else 3707 clean_tree_block(trans, fs_info, left); 3708 3709 btrfs_mark_buffer_dirty(right); 3710 3711 btrfs_item_key(right, &disk_key, 0); 3712 btrfs_set_node_key(upper, &disk_key, slot + 1); 3713 btrfs_mark_buffer_dirty(upper); 3714 3715 /* then fixup the leaf pointer in the path */ 3716 if (path->slots[0] >= left_nritems) { 3717 path->slots[0] -= left_nritems; 3718 if (btrfs_header_nritems(path->nodes[0]) == 0) 3719 clean_tree_block(trans, fs_info, path->nodes[0]); 3720 btrfs_tree_unlock(path->nodes[0]); 3721 free_extent_buffer(path->nodes[0]); 3722 path->nodes[0] = right; 3723 path->slots[1] += 1; 3724 } else { 3725 btrfs_tree_unlock(right); 3726 free_extent_buffer(right); 3727 } 3728 return 0; 3729 3730 out_unlock: 3731 btrfs_tree_unlock(right); 3732 free_extent_buffer(right); 3733 return 1; 3734 } 3735 3736 /* 3737 * push some data in the path leaf to the right, trying to free up at 3738 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3739 * 3740 * returns 1 if the push failed because the other node didn't have enough 3741 * room, 0 if everything worked out and < 0 if there were major errors. 3742 * 3743 * this will push starting from min_slot to the end of the leaf. It won't 3744 * push any slot lower than min_slot 3745 */ 3746 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3747 *root, struct btrfs_path *path, 3748 int min_data_size, int data_size, 3749 int empty, u32 min_slot) 3750 { 3751 struct btrfs_fs_info *fs_info = root->fs_info; 3752 struct extent_buffer *left = path->nodes[0]; 3753 struct extent_buffer *right; 3754 struct extent_buffer *upper; 3755 int slot; 3756 int free_space; 3757 u32 left_nritems; 3758 int ret; 3759 3760 if (!path->nodes[1]) 3761 return 1; 3762 3763 slot = path->slots[1]; 3764 upper = path->nodes[1]; 3765 if (slot >= btrfs_header_nritems(upper) - 1) 3766 return 1; 3767 3768 btrfs_assert_tree_locked(path->nodes[1]); 3769 3770 right = read_node_slot(fs_info, upper, slot + 1); 3771 /* 3772 * slot + 1 is not valid or we fail to read the right node, 3773 * no big deal, just return. 3774 */ 3775 if (IS_ERR(right)) 3776 return 1; 3777 3778 btrfs_tree_lock(right); 3779 btrfs_set_lock_blocking(right); 3780 3781 free_space = btrfs_leaf_free_space(fs_info, right); 3782 if (free_space < data_size) 3783 goto out_unlock; 3784 3785 /* cow and double check */ 3786 ret = btrfs_cow_block(trans, root, right, upper, 3787 slot + 1, &right); 3788 if (ret) 3789 goto out_unlock; 3790 3791 free_space = btrfs_leaf_free_space(fs_info, right); 3792 if (free_space < data_size) 3793 goto out_unlock; 3794 3795 left_nritems = btrfs_header_nritems(left); 3796 if (left_nritems == 0) 3797 goto out_unlock; 3798 3799 if (path->slots[0] == left_nritems && !empty) { 3800 /* Key greater than all keys in the leaf, right neighbor has 3801 * enough room for it and we're not emptying our leaf to delete 3802 * it, therefore use right neighbor to insert the new item and 3803 * no need to touch/dirty our left leaft. */ 3804 btrfs_tree_unlock(left); 3805 free_extent_buffer(left); 3806 path->nodes[0] = right; 3807 path->slots[0] = 0; 3808 path->slots[1]++; 3809 return 0; 3810 } 3811 3812 return __push_leaf_right(trans, fs_info, path, min_data_size, empty, 3813 right, free_space, left_nritems, min_slot); 3814 out_unlock: 3815 btrfs_tree_unlock(right); 3816 free_extent_buffer(right); 3817 return 1; 3818 } 3819 3820 /* 3821 * push some data in the path leaf to the left, trying to free up at 3822 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3823 * 3824 * max_slot can put a limit on how far into the leaf we'll push items. The 3825 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3826 * items 3827 */ 3828 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3829 struct btrfs_fs_info *fs_info, 3830 struct btrfs_path *path, int data_size, 3831 int empty, struct extent_buffer *left, 3832 int free_space, u32 right_nritems, 3833 u32 max_slot) 3834 { 3835 struct btrfs_disk_key disk_key; 3836 struct extent_buffer *right = path->nodes[0]; 3837 int i; 3838 int push_space = 0; 3839 int push_items = 0; 3840 struct btrfs_item *item; 3841 u32 old_left_nritems; 3842 u32 nr; 3843 int ret = 0; 3844 u32 this_item_size; 3845 u32 old_left_item_size; 3846 struct btrfs_map_token token; 3847 3848 btrfs_init_map_token(&token); 3849 3850 if (empty) 3851 nr = min(right_nritems, max_slot); 3852 else 3853 nr = min(right_nritems - 1, max_slot); 3854 3855 for (i = 0; i < nr; i++) { 3856 item = btrfs_item_nr(i); 3857 3858 if (!empty && push_items > 0) { 3859 if (path->slots[0] < i) 3860 break; 3861 if (path->slots[0] == i) { 3862 int space = btrfs_leaf_free_space(fs_info, right); 3863 if (space + push_space * 2 > free_space) 3864 break; 3865 } 3866 } 3867 3868 if (path->slots[0] == i) 3869 push_space += data_size; 3870 3871 this_item_size = btrfs_item_size(right, item); 3872 if (this_item_size + sizeof(*item) + push_space > free_space) 3873 break; 3874 3875 push_items++; 3876 push_space += this_item_size + sizeof(*item); 3877 } 3878 3879 if (push_items == 0) { 3880 ret = 1; 3881 goto out; 3882 } 3883 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3884 3885 /* push data from right to left */ 3886 copy_extent_buffer(left, right, 3887 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3888 btrfs_item_nr_offset(0), 3889 push_items * sizeof(struct btrfs_item)); 3890 3891 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3892 btrfs_item_offset_nr(right, push_items - 1); 3893 3894 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3895 leaf_data_end(fs_info, left) - push_space, 3896 btrfs_leaf_data(right) + 3897 btrfs_item_offset_nr(right, push_items - 1), 3898 push_space); 3899 old_left_nritems = btrfs_header_nritems(left); 3900 BUG_ON(old_left_nritems <= 0); 3901 3902 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3903 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3904 u32 ioff; 3905 3906 item = btrfs_item_nr(i); 3907 3908 ioff = btrfs_token_item_offset(left, item, &token); 3909 btrfs_set_token_item_offset(left, item, 3910 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3911 &token); 3912 } 3913 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3914 3915 /* fixup right node */ 3916 if (push_items > right_nritems) 3917 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3918 right_nritems); 3919 3920 if (push_items < right_nritems) { 3921 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3922 leaf_data_end(fs_info, right); 3923 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3924 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3925 btrfs_leaf_data(right) + 3926 leaf_data_end(fs_info, right), push_space); 3927 3928 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3929 btrfs_item_nr_offset(push_items), 3930 (btrfs_header_nritems(right) - push_items) * 3931 sizeof(struct btrfs_item)); 3932 } 3933 right_nritems -= push_items; 3934 btrfs_set_header_nritems(right, right_nritems); 3935 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3936 for (i = 0; i < right_nritems; i++) { 3937 item = btrfs_item_nr(i); 3938 3939 push_space = push_space - btrfs_token_item_size(right, 3940 item, &token); 3941 btrfs_set_token_item_offset(right, item, push_space, &token); 3942 } 3943 3944 btrfs_mark_buffer_dirty(left); 3945 if (right_nritems) 3946 btrfs_mark_buffer_dirty(right); 3947 else 3948 clean_tree_block(trans, fs_info, right); 3949 3950 btrfs_item_key(right, &disk_key, 0); 3951 fixup_low_keys(fs_info, path, &disk_key, 1); 3952 3953 /* then fixup the leaf pointer in the path */ 3954 if (path->slots[0] < push_items) { 3955 path->slots[0] += old_left_nritems; 3956 btrfs_tree_unlock(path->nodes[0]); 3957 free_extent_buffer(path->nodes[0]); 3958 path->nodes[0] = left; 3959 path->slots[1] -= 1; 3960 } else { 3961 btrfs_tree_unlock(left); 3962 free_extent_buffer(left); 3963 path->slots[0] -= push_items; 3964 } 3965 BUG_ON(path->slots[0] < 0); 3966 return ret; 3967 out: 3968 btrfs_tree_unlock(left); 3969 free_extent_buffer(left); 3970 return ret; 3971 } 3972 3973 /* 3974 * push some data in the path leaf to the left, trying to free up at 3975 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3976 * 3977 * max_slot can put a limit on how far into the leaf we'll push items. The 3978 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3979 * items 3980 */ 3981 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3982 *root, struct btrfs_path *path, int min_data_size, 3983 int data_size, int empty, u32 max_slot) 3984 { 3985 struct btrfs_fs_info *fs_info = root->fs_info; 3986 struct extent_buffer *right = path->nodes[0]; 3987 struct extent_buffer *left; 3988 int slot; 3989 int free_space; 3990 u32 right_nritems; 3991 int ret = 0; 3992 3993 slot = path->slots[1]; 3994 if (slot == 0) 3995 return 1; 3996 if (!path->nodes[1]) 3997 return 1; 3998 3999 right_nritems = btrfs_header_nritems(right); 4000 if (right_nritems == 0) 4001 return 1; 4002 4003 btrfs_assert_tree_locked(path->nodes[1]); 4004 4005 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 4006 /* 4007 * slot - 1 is not valid or we fail to read the left node, 4008 * no big deal, just return. 4009 */ 4010 if (IS_ERR(left)) 4011 return 1; 4012 4013 btrfs_tree_lock(left); 4014 btrfs_set_lock_blocking(left); 4015 4016 free_space = btrfs_leaf_free_space(fs_info, left); 4017 if (free_space < data_size) { 4018 ret = 1; 4019 goto out; 4020 } 4021 4022 /* cow and double check */ 4023 ret = btrfs_cow_block(trans, root, left, 4024 path->nodes[1], slot - 1, &left); 4025 if (ret) { 4026 /* we hit -ENOSPC, but it isn't fatal here */ 4027 if (ret == -ENOSPC) 4028 ret = 1; 4029 goto out; 4030 } 4031 4032 free_space = btrfs_leaf_free_space(fs_info, left); 4033 if (free_space < data_size) { 4034 ret = 1; 4035 goto out; 4036 } 4037 4038 return __push_leaf_left(trans, fs_info, path, min_data_size, 4039 empty, left, free_space, right_nritems, 4040 max_slot); 4041 out: 4042 btrfs_tree_unlock(left); 4043 free_extent_buffer(left); 4044 return ret; 4045 } 4046 4047 /* 4048 * split the path's leaf in two, making sure there is at least data_size 4049 * available for the resulting leaf level of the path. 4050 */ 4051 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4052 struct btrfs_fs_info *fs_info, 4053 struct btrfs_path *path, 4054 struct extent_buffer *l, 4055 struct extent_buffer *right, 4056 int slot, int mid, int nritems) 4057 { 4058 int data_copy_size; 4059 int rt_data_off; 4060 int i; 4061 struct btrfs_disk_key disk_key; 4062 struct btrfs_map_token token; 4063 4064 btrfs_init_map_token(&token); 4065 4066 nritems = nritems - mid; 4067 btrfs_set_header_nritems(right, nritems); 4068 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4069 4070 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4071 btrfs_item_nr_offset(mid), 4072 nritems * sizeof(struct btrfs_item)); 4073 4074 copy_extent_buffer(right, l, 4075 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) - 4076 data_copy_size, btrfs_leaf_data(l) + 4077 leaf_data_end(fs_info, l), data_copy_size); 4078 4079 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4080 4081 for (i = 0; i < nritems; i++) { 4082 struct btrfs_item *item = btrfs_item_nr(i); 4083 u32 ioff; 4084 4085 ioff = btrfs_token_item_offset(right, item, &token); 4086 btrfs_set_token_item_offset(right, item, 4087 ioff + rt_data_off, &token); 4088 } 4089 4090 btrfs_set_header_nritems(l, mid); 4091 btrfs_item_key(right, &disk_key, 0); 4092 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4093 path->slots[1] + 1, 1); 4094 4095 btrfs_mark_buffer_dirty(right); 4096 btrfs_mark_buffer_dirty(l); 4097 BUG_ON(path->slots[0] != slot); 4098 4099 if (mid <= slot) { 4100 btrfs_tree_unlock(path->nodes[0]); 4101 free_extent_buffer(path->nodes[0]); 4102 path->nodes[0] = right; 4103 path->slots[0] -= mid; 4104 path->slots[1] += 1; 4105 } else { 4106 btrfs_tree_unlock(right); 4107 free_extent_buffer(right); 4108 } 4109 4110 BUG_ON(path->slots[0] < 0); 4111 } 4112 4113 /* 4114 * double splits happen when we need to insert a big item in the middle 4115 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4116 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4117 * A B C 4118 * 4119 * We avoid this by trying to push the items on either side of our target 4120 * into the adjacent leaves. If all goes well we can avoid the double split 4121 * completely. 4122 */ 4123 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4124 struct btrfs_root *root, 4125 struct btrfs_path *path, 4126 int data_size) 4127 { 4128 struct btrfs_fs_info *fs_info = root->fs_info; 4129 int ret; 4130 int progress = 0; 4131 int slot; 4132 u32 nritems; 4133 int space_needed = data_size; 4134 4135 slot = path->slots[0]; 4136 if (slot < btrfs_header_nritems(path->nodes[0])) 4137 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4138 4139 /* 4140 * try to push all the items after our slot into the 4141 * right leaf 4142 */ 4143 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4144 if (ret < 0) 4145 return ret; 4146 4147 if (ret == 0) 4148 progress++; 4149 4150 nritems = btrfs_header_nritems(path->nodes[0]); 4151 /* 4152 * our goal is to get our slot at the start or end of a leaf. If 4153 * we've done so we're done 4154 */ 4155 if (path->slots[0] == 0 || path->slots[0] == nritems) 4156 return 0; 4157 4158 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4159 return 0; 4160 4161 /* try to push all the items before our slot into the next leaf */ 4162 slot = path->slots[0]; 4163 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4164 if (ret < 0) 4165 return ret; 4166 4167 if (ret == 0) 4168 progress++; 4169 4170 if (progress) 4171 return 0; 4172 return 1; 4173 } 4174 4175 /* 4176 * split the path's leaf in two, making sure there is at least data_size 4177 * available for the resulting leaf level of the path. 4178 * 4179 * returns 0 if all went well and < 0 on failure. 4180 */ 4181 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4182 struct btrfs_root *root, 4183 struct btrfs_key *ins_key, 4184 struct btrfs_path *path, int data_size, 4185 int extend) 4186 { 4187 struct btrfs_disk_key disk_key; 4188 struct extent_buffer *l; 4189 u32 nritems; 4190 int mid; 4191 int slot; 4192 struct extent_buffer *right; 4193 struct btrfs_fs_info *fs_info = root->fs_info; 4194 int ret = 0; 4195 int wret; 4196 int split; 4197 int num_doubles = 0; 4198 int tried_avoid_double = 0; 4199 4200 l = path->nodes[0]; 4201 slot = path->slots[0]; 4202 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4203 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4204 return -EOVERFLOW; 4205 4206 /* first try to make some room by pushing left and right */ 4207 if (data_size && path->nodes[1]) { 4208 int space_needed = data_size; 4209 4210 if (slot < btrfs_header_nritems(l)) 4211 space_needed -= btrfs_leaf_free_space(fs_info, l); 4212 4213 wret = push_leaf_right(trans, root, path, space_needed, 4214 space_needed, 0, 0); 4215 if (wret < 0) 4216 return wret; 4217 if (wret) { 4218 wret = push_leaf_left(trans, root, path, space_needed, 4219 space_needed, 0, (u32)-1); 4220 if (wret < 0) 4221 return wret; 4222 } 4223 l = path->nodes[0]; 4224 4225 /* did the pushes work? */ 4226 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4227 return 0; 4228 } 4229 4230 if (!path->nodes[1]) { 4231 ret = insert_new_root(trans, root, path, 1); 4232 if (ret) 4233 return ret; 4234 } 4235 again: 4236 split = 1; 4237 l = path->nodes[0]; 4238 slot = path->slots[0]; 4239 nritems = btrfs_header_nritems(l); 4240 mid = (nritems + 1) / 2; 4241 4242 if (mid <= slot) { 4243 if (nritems == 1 || 4244 leaf_space_used(l, mid, nritems - mid) + data_size > 4245 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4246 if (slot >= nritems) { 4247 split = 0; 4248 } else { 4249 mid = slot; 4250 if (mid != nritems && 4251 leaf_space_used(l, mid, nritems - mid) + 4252 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4253 if (data_size && !tried_avoid_double) 4254 goto push_for_double; 4255 split = 2; 4256 } 4257 } 4258 } 4259 } else { 4260 if (leaf_space_used(l, 0, mid) + data_size > 4261 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4262 if (!extend && data_size && slot == 0) { 4263 split = 0; 4264 } else if ((extend || !data_size) && slot == 0) { 4265 mid = 1; 4266 } else { 4267 mid = slot; 4268 if (mid != nritems && 4269 leaf_space_used(l, mid, nritems - mid) + 4270 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4271 if (data_size && !tried_avoid_double) 4272 goto push_for_double; 4273 split = 2; 4274 } 4275 } 4276 } 4277 } 4278 4279 if (split == 0) 4280 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4281 else 4282 btrfs_item_key(l, &disk_key, mid); 4283 4284 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4285 &disk_key, 0, l->start, 0); 4286 if (IS_ERR(right)) 4287 return PTR_ERR(right); 4288 4289 root_add_used(root, fs_info->nodesize); 4290 4291 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header)); 4292 btrfs_set_header_bytenr(right, right->start); 4293 btrfs_set_header_generation(right, trans->transid); 4294 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4295 btrfs_set_header_owner(right, root->root_key.objectid); 4296 btrfs_set_header_level(right, 0); 4297 write_extent_buffer_fsid(right, fs_info->fsid); 4298 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid); 4299 4300 if (split == 0) { 4301 if (mid <= slot) { 4302 btrfs_set_header_nritems(right, 0); 4303 insert_ptr(trans, fs_info, path, &disk_key, 4304 right->start, path->slots[1] + 1, 1); 4305 btrfs_tree_unlock(path->nodes[0]); 4306 free_extent_buffer(path->nodes[0]); 4307 path->nodes[0] = right; 4308 path->slots[0] = 0; 4309 path->slots[1] += 1; 4310 } else { 4311 btrfs_set_header_nritems(right, 0); 4312 insert_ptr(trans, fs_info, path, &disk_key, 4313 right->start, path->slots[1], 1); 4314 btrfs_tree_unlock(path->nodes[0]); 4315 free_extent_buffer(path->nodes[0]); 4316 path->nodes[0] = right; 4317 path->slots[0] = 0; 4318 if (path->slots[1] == 0) 4319 fixup_low_keys(fs_info, path, &disk_key, 1); 4320 } 4321 /* 4322 * We create a new leaf 'right' for the required ins_len and 4323 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4324 * the content of ins_len to 'right'. 4325 */ 4326 return ret; 4327 } 4328 4329 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4330 4331 if (split == 2) { 4332 BUG_ON(num_doubles != 0); 4333 num_doubles++; 4334 goto again; 4335 } 4336 4337 return 0; 4338 4339 push_for_double: 4340 push_for_double_split(trans, root, path, data_size); 4341 tried_avoid_double = 1; 4342 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4343 return 0; 4344 goto again; 4345 } 4346 4347 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4348 struct btrfs_root *root, 4349 struct btrfs_path *path, int ins_len) 4350 { 4351 struct btrfs_fs_info *fs_info = root->fs_info; 4352 struct btrfs_key key; 4353 struct extent_buffer *leaf; 4354 struct btrfs_file_extent_item *fi; 4355 u64 extent_len = 0; 4356 u32 item_size; 4357 int ret; 4358 4359 leaf = path->nodes[0]; 4360 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4361 4362 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4363 key.type != BTRFS_EXTENT_CSUM_KEY); 4364 4365 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4366 return 0; 4367 4368 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4369 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4370 fi = btrfs_item_ptr(leaf, path->slots[0], 4371 struct btrfs_file_extent_item); 4372 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4373 } 4374 btrfs_release_path(path); 4375 4376 path->keep_locks = 1; 4377 path->search_for_split = 1; 4378 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4379 path->search_for_split = 0; 4380 if (ret > 0) 4381 ret = -EAGAIN; 4382 if (ret < 0) 4383 goto err; 4384 4385 ret = -EAGAIN; 4386 leaf = path->nodes[0]; 4387 /* if our item isn't there, return now */ 4388 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4389 goto err; 4390 4391 /* the leaf has changed, it now has room. return now */ 4392 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4393 goto err; 4394 4395 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4396 fi = btrfs_item_ptr(leaf, path->slots[0], 4397 struct btrfs_file_extent_item); 4398 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4399 goto err; 4400 } 4401 4402 btrfs_set_path_blocking(path); 4403 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4404 if (ret) 4405 goto err; 4406 4407 path->keep_locks = 0; 4408 btrfs_unlock_up_safe(path, 1); 4409 return 0; 4410 err: 4411 path->keep_locks = 0; 4412 return ret; 4413 } 4414 4415 static noinline int split_item(struct btrfs_trans_handle *trans, 4416 struct btrfs_fs_info *fs_info, 4417 struct btrfs_path *path, 4418 struct btrfs_key *new_key, 4419 unsigned long split_offset) 4420 { 4421 struct extent_buffer *leaf; 4422 struct btrfs_item *item; 4423 struct btrfs_item *new_item; 4424 int slot; 4425 char *buf; 4426 u32 nritems; 4427 u32 item_size; 4428 u32 orig_offset; 4429 struct btrfs_disk_key disk_key; 4430 4431 leaf = path->nodes[0]; 4432 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4433 4434 btrfs_set_path_blocking(path); 4435 4436 item = btrfs_item_nr(path->slots[0]); 4437 orig_offset = btrfs_item_offset(leaf, item); 4438 item_size = btrfs_item_size(leaf, item); 4439 4440 buf = kmalloc(item_size, GFP_NOFS); 4441 if (!buf) 4442 return -ENOMEM; 4443 4444 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4445 path->slots[0]), item_size); 4446 4447 slot = path->slots[0] + 1; 4448 nritems = btrfs_header_nritems(leaf); 4449 if (slot != nritems) { 4450 /* shift the items */ 4451 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4452 btrfs_item_nr_offset(slot), 4453 (nritems - slot) * sizeof(struct btrfs_item)); 4454 } 4455 4456 btrfs_cpu_key_to_disk(&disk_key, new_key); 4457 btrfs_set_item_key(leaf, &disk_key, slot); 4458 4459 new_item = btrfs_item_nr(slot); 4460 4461 btrfs_set_item_offset(leaf, new_item, orig_offset); 4462 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4463 4464 btrfs_set_item_offset(leaf, item, 4465 orig_offset + item_size - split_offset); 4466 btrfs_set_item_size(leaf, item, split_offset); 4467 4468 btrfs_set_header_nritems(leaf, nritems + 1); 4469 4470 /* write the data for the start of the original item */ 4471 write_extent_buffer(leaf, buf, 4472 btrfs_item_ptr_offset(leaf, path->slots[0]), 4473 split_offset); 4474 4475 /* write the data for the new item */ 4476 write_extent_buffer(leaf, buf + split_offset, 4477 btrfs_item_ptr_offset(leaf, slot), 4478 item_size - split_offset); 4479 btrfs_mark_buffer_dirty(leaf); 4480 4481 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4482 kfree(buf); 4483 return 0; 4484 } 4485 4486 /* 4487 * This function splits a single item into two items, 4488 * giving 'new_key' to the new item and splitting the 4489 * old one at split_offset (from the start of the item). 4490 * 4491 * The path may be released by this operation. After 4492 * the split, the path is pointing to the old item. The 4493 * new item is going to be in the same node as the old one. 4494 * 4495 * Note, the item being split must be smaller enough to live alone on 4496 * a tree block with room for one extra struct btrfs_item 4497 * 4498 * This allows us to split the item in place, keeping a lock on the 4499 * leaf the entire time. 4500 */ 4501 int btrfs_split_item(struct btrfs_trans_handle *trans, 4502 struct btrfs_root *root, 4503 struct btrfs_path *path, 4504 struct btrfs_key *new_key, 4505 unsigned long split_offset) 4506 { 4507 int ret; 4508 ret = setup_leaf_for_split(trans, root, path, 4509 sizeof(struct btrfs_item)); 4510 if (ret) 4511 return ret; 4512 4513 ret = split_item(trans, root->fs_info, path, new_key, split_offset); 4514 return ret; 4515 } 4516 4517 /* 4518 * This function duplicate a item, giving 'new_key' to the new item. 4519 * It guarantees both items live in the same tree leaf and the new item 4520 * is contiguous with the original item. 4521 * 4522 * This allows us to split file extent in place, keeping a lock on the 4523 * leaf the entire time. 4524 */ 4525 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4526 struct btrfs_root *root, 4527 struct btrfs_path *path, 4528 struct btrfs_key *new_key) 4529 { 4530 struct extent_buffer *leaf; 4531 int ret; 4532 u32 item_size; 4533 4534 leaf = path->nodes[0]; 4535 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4536 ret = setup_leaf_for_split(trans, root, path, 4537 item_size + sizeof(struct btrfs_item)); 4538 if (ret) 4539 return ret; 4540 4541 path->slots[0]++; 4542 setup_items_for_insert(root, path, new_key, &item_size, 4543 item_size, item_size + 4544 sizeof(struct btrfs_item), 1); 4545 leaf = path->nodes[0]; 4546 memcpy_extent_buffer(leaf, 4547 btrfs_item_ptr_offset(leaf, path->slots[0]), 4548 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4549 item_size); 4550 return 0; 4551 } 4552 4553 /* 4554 * make the item pointed to by the path smaller. new_size indicates 4555 * how small to make it, and from_end tells us if we just chop bytes 4556 * off the end of the item or if we shift the item to chop bytes off 4557 * the front. 4558 */ 4559 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4560 struct btrfs_path *path, u32 new_size, int from_end) 4561 { 4562 int slot; 4563 struct extent_buffer *leaf; 4564 struct btrfs_item *item; 4565 u32 nritems; 4566 unsigned int data_end; 4567 unsigned int old_data_start; 4568 unsigned int old_size; 4569 unsigned int size_diff; 4570 int i; 4571 struct btrfs_map_token token; 4572 4573 btrfs_init_map_token(&token); 4574 4575 leaf = path->nodes[0]; 4576 slot = path->slots[0]; 4577 4578 old_size = btrfs_item_size_nr(leaf, slot); 4579 if (old_size == new_size) 4580 return; 4581 4582 nritems = btrfs_header_nritems(leaf); 4583 data_end = leaf_data_end(fs_info, leaf); 4584 4585 old_data_start = btrfs_item_offset_nr(leaf, slot); 4586 4587 size_diff = old_size - new_size; 4588 4589 BUG_ON(slot < 0); 4590 BUG_ON(slot >= nritems); 4591 4592 /* 4593 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4594 */ 4595 /* first correct the data pointers */ 4596 for (i = slot; i < nritems; i++) { 4597 u32 ioff; 4598 item = btrfs_item_nr(i); 4599 4600 ioff = btrfs_token_item_offset(leaf, item, &token); 4601 btrfs_set_token_item_offset(leaf, item, 4602 ioff + size_diff, &token); 4603 } 4604 4605 /* shift the data */ 4606 if (from_end) { 4607 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4608 data_end + size_diff, btrfs_leaf_data(leaf) + 4609 data_end, old_data_start + new_size - data_end); 4610 } else { 4611 struct btrfs_disk_key disk_key; 4612 u64 offset; 4613 4614 btrfs_item_key(leaf, &disk_key, slot); 4615 4616 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4617 unsigned long ptr; 4618 struct btrfs_file_extent_item *fi; 4619 4620 fi = btrfs_item_ptr(leaf, slot, 4621 struct btrfs_file_extent_item); 4622 fi = (struct btrfs_file_extent_item *)( 4623 (unsigned long)fi - size_diff); 4624 4625 if (btrfs_file_extent_type(leaf, fi) == 4626 BTRFS_FILE_EXTENT_INLINE) { 4627 ptr = btrfs_item_ptr_offset(leaf, slot); 4628 memmove_extent_buffer(leaf, ptr, 4629 (unsigned long)fi, 4630 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4631 } 4632 } 4633 4634 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4635 data_end + size_diff, btrfs_leaf_data(leaf) + 4636 data_end, old_data_start - data_end); 4637 4638 offset = btrfs_disk_key_offset(&disk_key); 4639 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4640 btrfs_set_item_key(leaf, &disk_key, slot); 4641 if (slot == 0) 4642 fixup_low_keys(fs_info, path, &disk_key, 1); 4643 } 4644 4645 item = btrfs_item_nr(slot); 4646 btrfs_set_item_size(leaf, item, new_size); 4647 btrfs_mark_buffer_dirty(leaf); 4648 4649 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4650 btrfs_print_leaf(fs_info, leaf); 4651 BUG(); 4652 } 4653 } 4654 4655 /* 4656 * make the item pointed to by the path bigger, data_size is the added size. 4657 */ 4658 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4659 u32 data_size) 4660 { 4661 int slot; 4662 struct extent_buffer *leaf; 4663 struct btrfs_item *item; 4664 u32 nritems; 4665 unsigned int data_end; 4666 unsigned int old_data; 4667 unsigned int old_size; 4668 int i; 4669 struct btrfs_map_token token; 4670 4671 btrfs_init_map_token(&token); 4672 4673 leaf = path->nodes[0]; 4674 4675 nritems = btrfs_header_nritems(leaf); 4676 data_end = leaf_data_end(fs_info, leaf); 4677 4678 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4679 btrfs_print_leaf(fs_info, leaf); 4680 BUG(); 4681 } 4682 slot = path->slots[0]; 4683 old_data = btrfs_item_end_nr(leaf, slot); 4684 4685 BUG_ON(slot < 0); 4686 if (slot >= nritems) { 4687 btrfs_print_leaf(fs_info, leaf); 4688 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4689 slot, nritems); 4690 BUG_ON(1); 4691 } 4692 4693 /* 4694 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4695 */ 4696 /* first correct the data pointers */ 4697 for (i = slot; i < nritems; i++) { 4698 u32 ioff; 4699 item = btrfs_item_nr(i); 4700 4701 ioff = btrfs_token_item_offset(leaf, item, &token); 4702 btrfs_set_token_item_offset(leaf, item, 4703 ioff - data_size, &token); 4704 } 4705 4706 /* shift the data */ 4707 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4708 data_end - data_size, btrfs_leaf_data(leaf) + 4709 data_end, old_data - data_end); 4710 4711 data_end = old_data; 4712 old_size = btrfs_item_size_nr(leaf, slot); 4713 item = btrfs_item_nr(slot); 4714 btrfs_set_item_size(leaf, item, old_size + data_size); 4715 btrfs_mark_buffer_dirty(leaf); 4716 4717 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4718 btrfs_print_leaf(fs_info, leaf); 4719 BUG(); 4720 } 4721 } 4722 4723 /* 4724 * this is a helper for btrfs_insert_empty_items, the main goal here is 4725 * to save stack depth by doing the bulk of the work in a function 4726 * that doesn't call btrfs_search_slot 4727 */ 4728 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4729 struct btrfs_key *cpu_key, u32 *data_size, 4730 u32 total_data, u32 total_size, int nr) 4731 { 4732 struct btrfs_fs_info *fs_info = root->fs_info; 4733 struct btrfs_item *item; 4734 int i; 4735 u32 nritems; 4736 unsigned int data_end; 4737 struct btrfs_disk_key disk_key; 4738 struct extent_buffer *leaf; 4739 int slot; 4740 struct btrfs_map_token token; 4741 4742 if (path->slots[0] == 0) { 4743 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4744 fixup_low_keys(fs_info, path, &disk_key, 1); 4745 } 4746 btrfs_unlock_up_safe(path, 1); 4747 4748 btrfs_init_map_token(&token); 4749 4750 leaf = path->nodes[0]; 4751 slot = path->slots[0]; 4752 4753 nritems = btrfs_header_nritems(leaf); 4754 data_end = leaf_data_end(fs_info, leaf); 4755 4756 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4757 btrfs_print_leaf(fs_info, leaf); 4758 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4759 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4760 BUG(); 4761 } 4762 4763 if (slot != nritems) { 4764 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4765 4766 if (old_data < data_end) { 4767 btrfs_print_leaf(fs_info, leaf); 4768 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4769 slot, old_data, data_end); 4770 BUG_ON(1); 4771 } 4772 /* 4773 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4774 */ 4775 /* first correct the data pointers */ 4776 for (i = slot; i < nritems; i++) { 4777 u32 ioff; 4778 4779 item = btrfs_item_nr(i); 4780 ioff = btrfs_token_item_offset(leaf, item, &token); 4781 btrfs_set_token_item_offset(leaf, item, 4782 ioff - total_data, &token); 4783 } 4784 /* shift the items */ 4785 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4786 btrfs_item_nr_offset(slot), 4787 (nritems - slot) * sizeof(struct btrfs_item)); 4788 4789 /* shift the data */ 4790 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4791 data_end - total_data, btrfs_leaf_data(leaf) + 4792 data_end, old_data - data_end); 4793 data_end = old_data; 4794 } 4795 4796 /* setup the item for the new data */ 4797 for (i = 0; i < nr; i++) { 4798 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4799 btrfs_set_item_key(leaf, &disk_key, slot + i); 4800 item = btrfs_item_nr(slot + i); 4801 btrfs_set_token_item_offset(leaf, item, 4802 data_end - data_size[i], &token); 4803 data_end -= data_size[i]; 4804 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4805 } 4806 4807 btrfs_set_header_nritems(leaf, nritems + nr); 4808 btrfs_mark_buffer_dirty(leaf); 4809 4810 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4811 btrfs_print_leaf(fs_info, leaf); 4812 BUG(); 4813 } 4814 } 4815 4816 /* 4817 * Given a key and some data, insert items into the tree. 4818 * This does all the path init required, making room in the tree if needed. 4819 */ 4820 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4821 struct btrfs_root *root, 4822 struct btrfs_path *path, 4823 struct btrfs_key *cpu_key, u32 *data_size, 4824 int nr) 4825 { 4826 int ret = 0; 4827 int slot; 4828 int i; 4829 u32 total_size = 0; 4830 u32 total_data = 0; 4831 4832 for (i = 0; i < nr; i++) 4833 total_data += data_size[i]; 4834 4835 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4836 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4837 if (ret == 0) 4838 return -EEXIST; 4839 if (ret < 0) 4840 return ret; 4841 4842 slot = path->slots[0]; 4843 BUG_ON(slot < 0); 4844 4845 setup_items_for_insert(root, path, cpu_key, data_size, 4846 total_data, total_size, nr); 4847 return 0; 4848 } 4849 4850 /* 4851 * Given a key and some data, insert an item into the tree. 4852 * This does all the path init required, making room in the tree if needed. 4853 */ 4854 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4855 *root, struct btrfs_key *cpu_key, void *data, u32 4856 data_size) 4857 { 4858 int ret = 0; 4859 struct btrfs_path *path; 4860 struct extent_buffer *leaf; 4861 unsigned long ptr; 4862 4863 path = btrfs_alloc_path(); 4864 if (!path) 4865 return -ENOMEM; 4866 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4867 if (!ret) { 4868 leaf = path->nodes[0]; 4869 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4870 write_extent_buffer(leaf, data, ptr, data_size); 4871 btrfs_mark_buffer_dirty(leaf); 4872 } 4873 btrfs_free_path(path); 4874 return ret; 4875 } 4876 4877 /* 4878 * delete the pointer from a given node. 4879 * 4880 * the tree should have been previously balanced so the deletion does not 4881 * empty a node. 4882 */ 4883 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4884 int level, int slot) 4885 { 4886 struct btrfs_fs_info *fs_info = root->fs_info; 4887 struct extent_buffer *parent = path->nodes[level]; 4888 u32 nritems; 4889 int ret; 4890 4891 nritems = btrfs_header_nritems(parent); 4892 if (slot != nritems - 1) { 4893 if (level) 4894 tree_mod_log_eb_move(fs_info, parent, slot, 4895 slot + 1, nritems - slot - 1); 4896 memmove_extent_buffer(parent, 4897 btrfs_node_key_ptr_offset(slot), 4898 btrfs_node_key_ptr_offset(slot + 1), 4899 sizeof(struct btrfs_key_ptr) * 4900 (nritems - slot - 1)); 4901 } else if (level) { 4902 ret = tree_mod_log_insert_key(fs_info, parent, slot, 4903 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4904 BUG_ON(ret < 0); 4905 } 4906 4907 nritems--; 4908 btrfs_set_header_nritems(parent, nritems); 4909 if (nritems == 0 && parent == root->node) { 4910 BUG_ON(btrfs_header_level(root->node) != 1); 4911 /* just turn the root into a leaf and break */ 4912 btrfs_set_header_level(root->node, 0); 4913 } else if (slot == 0) { 4914 struct btrfs_disk_key disk_key; 4915 4916 btrfs_node_key(parent, &disk_key, 0); 4917 fixup_low_keys(fs_info, path, &disk_key, level + 1); 4918 } 4919 btrfs_mark_buffer_dirty(parent); 4920 } 4921 4922 /* 4923 * a helper function to delete the leaf pointed to by path->slots[1] and 4924 * path->nodes[1]. 4925 * 4926 * This deletes the pointer in path->nodes[1] and frees the leaf 4927 * block extent. zero is returned if it all worked out, < 0 otherwise. 4928 * 4929 * The path must have already been setup for deleting the leaf, including 4930 * all the proper balancing. path->nodes[1] must be locked. 4931 */ 4932 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4933 struct btrfs_root *root, 4934 struct btrfs_path *path, 4935 struct extent_buffer *leaf) 4936 { 4937 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4938 del_ptr(root, path, 1, path->slots[1]); 4939 4940 /* 4941 * btrfs_free_extent is expensive, we want to make sure we 4942 * aren't holding any locks when we call it 4943 */ 4944 btrfs_unlock_up_safe(path, 0); 4945 4946 root_sub_used(root, leaf->len); 4947 4948 extent_buffer_get(leaf); 4949 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4950 free_extent_buffer_stale(leaf); 4951 } 4952 /* 4953 * delete the item at the leaf level in path. If that empties 4954 * the leaf, remove it from the tree 4955 */ 4956 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4957 struct btrfs_path *path, int slot, int nr) 4958 { 4959 struct btrfs_fs_info *fs_info = root->fs_info; 4960 struct extent_buffer *leaf; 4961 struct btrfs_item *item; 4962 u32 last_off; 4963 u32 dsize = 0; 4964 int ret = 0; 4965 int wret; 4966 int i; 4967 u32 nritems; 4968 struct btrfs_map_token token; 4969 4970 btrfs_init_map_token(&token); 4971 4972 leaf = path->nodes[0]; 4973 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4974 4975 for (i = 0; i < nr; i++) 4976 dsize += btrfs_item_size_nr(leaf, slot + i); 4977 4978 nritems = btrfs_header_nritems(leaf); 4979 4980 if (slot + nr != nritems) { 4981 int data_end = leaf_data_end(fs_info, leaf); 4982 4983 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4984 data_end + dsize, 4985 btrfs_leaf_data(leaf) + data_end, 4986 last_off - data_end); 4987 4988 for (i = slot + nr; i < nritems; i++) { 4989 u32 ioff; 4990 4991 item = btrfs_item_nr(i); 4992 ioff = btrfs_token_item_offset(leaf, item, &token); 4993 btrfs_set_token_item_offset(leaf, item, 4994 ioff + dsize, &token); 4995 } 4996 4997 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4998 btrfs_item_nr_offset(slot + nr), 4999 sizeof(struct btrfs_item) * 5000 (nritems - slot - nr)); 5001 } 5002 btrfs_set_header_nritems(leaf, nritems - nr); 5003 nritems -= nr; 5004 5005 /* delete the leaf if we've emptied it */ 5006 if (nritems == 0) { 5007 if (leaf == root->node) { 5008 btrfs_set_header_level(leaf, 0); 5009 } else { 5010 btrfs_set_path_blocking(path); 5011 clean_tree_block(trans, fs_info, leaf); 5012 btrfs_del_leaf(trans, root, path, leaf); 5013 } 5014 } else { 5015 int used = leaf_space_used(leaf, 0, nritems); 5016 if (slot == 0) { 5017 struct btrfs_disk_key disk_key; 5018 5019 btrfs_item_key(leaf, &disk_key, 0); 5020 fixup_low_keys(fs_info, path, &disk_key, 1); 5021 } 5022 5023 /* delete the leaf if it is mostly empty */ 5024 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5025 /* push_leaf_left fixes the path. 5026 * make sure the path still points to our leaf 5027 * for possible call to del_ptr below 5028 */ 5029 slot = path->slots[1]; 5030 extent_buffer_get(leaf); 5031 5032 btrfs_set_path_blocking(path); 5033 wret = push_leaf_left(trans, root, path, 1, 1, 5034 1, (u32)-1); 5035 if (wret < 0 && wret != -ENOSPC) 5036 ret = wret; 5037 5038 if (path->nodes[0] == leaf && 5039 btrfs_header_nritems(leaf)) { 5040 wret = push_leaf_right(trans, root, path, 1, 5041 1, 1, 0); 5042 if (wret < 0 && wret != -ENOSPC) 5043 ret = wret; 5044 } 5045 5046 if (btrfs_header_nritems(leaf) == 0) { 5047 path->slots[1] = slot; 5048 btrfs_del_leaf(trans, root, path, leaf); 5049 free_extent_buffer(leaf); 5050 ret = 0; 5051 } else { 5052 /* if we're still in the path, make sure 5053 * we're dirty. Otherwise, one of the 5054 * push_leaf functions must have already 5055 * dirtied this buffer 5056 */ 5057 if (path->nodes[0] == leaf) 5058 btrfs_mark_buffer_dirty(leaf); 5059 free_extent_buffer(leaf); 5060 } 5061 } else { 5062 btrfs_mark_buffer_dirty(leaf); 5063 } 5064 } 5065 return ret; 5066 } 5067 5068 /* 5069 * search the tree again to find a leaf with lesser keys 5070 * returns 0 if it found something or 1 if there are no lesser leaves. 5071 * returns < 0 on io errors. 5072 * 5073 * This may release the path, and so you may lose any locks held at the 5074 * time you call it. 5075 */ 5076 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5077 { 5078 struct btrfs_key key; 5079 struct btrfs_disk_key found_key; 5080 int ret; 5081 5082 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5083 5084 if (key.offset > 0) { 5085 key.offset--; 5086 } else if (key.type > 0) { 5087 key.type--; 5088 key.offset = (u64)-1; 5089 } else if (key.objectid > 0) { 5090 key.objectid--; 5091 key.type = (u8)-1; 5092 key.offset = (u64)-1; 5093 } else { 5094 return 1; 5095 } 5096 5097 btrfs_release_path(path); 5098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5099 if (ret < 0) 5100 return ret; 5101 btrfs_item_key(path->nodes[0], &found_key, 0); 5102 ret = comp_keys(&found_key, &key); 5103 /* 5104 * We might have had an item with the previous key in the tree right 5105 * before we released our path. And after we released our path, that 5106 * item might have been pushed to the first slot (0) of the leaf we 5107 * were holding due to a tree balance. Alternatively, an item with the 5108 * previous key can exist as the only element of a leaf (big fat item). 5109 * Therefore account for these 2 cases, so that our callers (like 5110 * btrfs_previous_item) don't miss an existing item with a key matching 5111 * the previous key we computed above. 5112 */ 5113 if (ret <= 0) 5114 return 0; 5115 return 1; 5116 } 5117 5118 /* 5119 * A helper function to walk down the tree starting at min_key, and looking 5120 * for nodes or leaves that are have a minimum transaction id. 5121 * This is used by the btree defrag code, and tree logging 5122 * 5123 * This does not cow, but it does stuff the starting key it finds back 5124 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5125 * key and get a writable path. 5126 * 5127 * This does lock as it descends, and path->keep_locks should be set 5128 * to 1 by the caller. 5129 * 5130 * This honors path->lowest_level to prevent descent past a given level 5131 * of the tree. 5132 * 5133 * min_trans indicates the oldest transaction that you are interested 5134 * in walking through. Any nodes or leaves older than min_trans are 5135 * skipped over (without reading them). 5136 * 5137 * returns zero if something useful was found, < 0 on error and 1 if there 5138 * was nothing in the tree that matched the search criteria. 5139 */ 5140 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5141 struct btrfs_path *path, 5142 u64 min_trans) 5143 { 5144 struct btrfs_fs_info *fs_info = root->fs_info; 5145 struct extent_buffer *cur; 5146 struct btrfs_key found_key; 5147 int slot; 5148 int sret; 5149 u32 nritems; 5150 int level; 5151 int ret = 1; 5152 int keep_locks = path->keep_locks; 5153 5154 path->keep_locks = 1; 5155 again: 5156 cur = btrfs_read_lock_root_node(root); 5157 level = btrfs_header_level(cur); 5158 WARN_ON(path->nodes[level]); 5159 path->nodes[level] = cur; 5160 path->locks[level] = BTRFS_READ_LOCK; 5161 5162 if (btrfs_header_generation(cur) < min_trans) { 5163 ret = 1; 5164 goto out; 5165 } 5166 while (1) { 5167 nritems = btrfs_header_nritems(cur); 5168 level = btrfs_header_level(cur); 5169 sret = bin_search(cur, min_key, level, &slot); 5170 5171 /* at the lowest level, we're done, setup the path and exit */ 5172 if (level == path->lowest_level) { 5173 if (slot >= nritems) 5174 goto find_next_key; 5175 ret = 0; 5176 path->slots[level] = slot; 5177 btrfs_item_key_to_cpu(cur, &found_key, slot); 5178 goto out; 5179 } 5180 if (sret && slot > 0) 5181 slot--; 5182 /* 5183 * check this node pointer against the min_trans parameters. 5184 * If it is too old, old, skip to the next one. 5185 */ 5186 while (slot < nritems) { 5187 u64 gen; 5188 5189 gen = btrfs_node_ptr_generation(cur, slot); 5190 if (gen < min_trans) { 5191 slot++; 5192 continue; 5193 } 5194 break; 5195 } 5196 find_next_key: 5197 /* 5198 * we didn't find a candidate key in this node, walk forward 5199 * and find another one 5200 */ 5201 if (slot >= nritems) { 5202 path->slots[level] = slot; 5203 btrfs_set_path_blocking(path); 5204 sret = btrfs_find_next_key(root, path, min_key, level, 5205 min_trans); 5206 if (sret == 0) { 5207 btrfs_release_path(path); 5208 goto again; 5209 } else { 5210 goto out; 5211 } 5212 } 5213 /* save our key for returning back */ 5214 btrfs_node_key_to_cpu(cur, &found_key, slot); 5215 path->slots[level] = slot; 5216 if (level == path->lowest_level) { 5217 ret = 0; 5218 goto out; 5219 } 5220 btrfs_set_path_blocking(path); 5221 cur = read_node_slot(fs_info, cur, slot); 5222 if (IS_ERR(cur)) { 5223 ret = PTR_ERR(cur); 5224 goto out; 5225 } 5226 5227 btrfs_tree_read_lock(cur); 5228 5229 path->locks[level - 1] = BTRFS_READ_LOCK; 5230 path->nodes[level - 1] = cur; 5231 unlock_up(path, level, 1, 0, NULL); 5232 btrfs_clear_path_blocking(path, NULL, 0); 5233 } 5234 out: 5235 path->keep_locks = keep_locks; 5236 if (ret == 0) { 5237 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5238 btrfs_set_path_blocking(path); 5239 memcpy(min_key, &found_key, sizeof(found_key)); 5240 } 5241 return ret; 5242 } 5243 5244 static int tree_move_down(struct btrfs_fs_info *fs_info, 5245 struct btrfs_path *path, 5246 int *level, int root_level) 5247 { 5248 struct extent_buffer *eb; 5249 5250 BUG_ON(*level == 0); 5251 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5252 if (IS_ERR(eb)) 5253 return PTR_ERR(eb); 5254 5255 path->nodes[*level - 1] = eb; 5256 path->slots[*level - 1] = 0; 5257 (*level)--; 5258 return 0; 5259 } 5260 5261 static int tree_move_next_or_upnext(struct btrfs_fs_info *fs_info, 5262 struct btrfs_path *path, 5263 int *level, int root_level) 5264 { 5265 int ret = 0; 5266 int nritems; 5267 nritems = btrfs_header_nritems(path->nodes[*level]); 5268 5269 path->slots[*level]++; 5270 5271 while (path->slots[*level] >= nritems) { 5272 if (*level == root_level) 5273 return -1; 5274 5275 /* move upnext */ 5276 path->slots[*level] = 0; 5277 free_extent_buffer(path->nodes[*level]); 5278 path->nodes[*level] = NULL; 5279 (*level)++; 5280 path->slots[*level]++; 5281 5282 nritems = btrfs_header_nritems(path->nodes[*level]); 5283 ret = 1; 5284 } 5285 return ret; 5286 } 5287 5288 /* 5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5290 * or down. 5291 */ 5292 static int tree_advance(struct btrfs_fs_info *fs_info, 5293 struct btrfs_path *path, 5294 int *level, int root_level, 5295 int allow_down, 5296 struct btrfs_key *key) 5297 { 5298 int ret; 5299 5300 if (*level == 0 || !allow_down) { 5301 ret = tree_move_next_or_upnext(fs_info, path, level, 5302 root_level); 5303 } else { 5304 ret = tree_move_down(fs_info, path, level, root_level); 5305 } 5306 if (ret >= 0) { 5307 if (*level == 0) 5308 btrfs_item_key_to_cpu(path->nodes[*level], key, 5309 path->slots[*level]); 5310 else 5311 btrfs_node_key_to_cpu(path->nodes[*level], key, 5312 path->slots[*level]); 5313 } 5314 return ret; 5315 } 5316 5317 static int tree_compare_item(struct btrfs_path *left_path, 5318 struct btrfs_path *right_path, 5319 char *tmp_buf) 5320 { 5321 int cmp; 5322 int len1, len2; 5323 unsigned long off1, off2; 5324 5325 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5326 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5327 if (len1 != len2) 5328 return 1; 5329 5330 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5331 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5332 right_path->slots[0]); 5333 5334 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5335 5336 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5337 if (cmp) 5338 return 1; 5339 return 0; 5340 } 5341 5342 #define ADVANCE 1 5343 #define ADVANCE_ONLY_NEXT -1 5344 5345 /* 5346 * This function compares two trees and calls the provided callback for 5347 * every changed/new/deleted item it finds. 5348 * If shared tree blocks are encountered, whole subtrees are skipped, making 5349 * the compare pretty fast on snapshotted subvolumes. 5350 * 5351 * This currently works on commit roots only. As commit roots are read only, 5352 * we don't do any locking. The commit roots are protected with transactions. 5353 * Transactions are ended and rejoined when a commit is tried in between. 5354 * 5355 * This function checks for modifications done to the trees while comparing. 5356 * If it detects a change, it aborts immediately. 5357 */ 5358 int btrfs_compare_trees(struct btrfs_root *left_root, 5359 struct btrfs_root *right_root, 5360 btrfs_changed_cb_t changed_cb, void *ctx) 5361 { 5362 struct btrfs_fs_info *fs_info = left_root->fs_info; 5363 int ret; 5364 int cmp; 5365 struct btrfs_path *left_path = NULL; 5366 struct btrfs_path *right_path = NULL; 5367 struct btrfs_key left_key; 5368 struct btrfs_key right_key; 5369 char *tmp_buf = NULL; 5370 int left_root_level; 5371 int right_root_level; 5372 int left_level; 5373 int right_level; 5374 int left_end_reached; 5375 int right_end_reached; 5376 int advance_left; 5377 int advance_right; 5378 u64 left_blockptr; 5379 u64 right_blockptr; 5380 u64 left_gen; 5381 u64 right_gen; 5382 5383 left_path = btrfs_alloc_path(); 5384 if (!left_path) { 5385 ret = -ENOMEM; 5386 goto out; 5387 } 5388 right_path = btrfs_alloc_path(); 5389 if (!right_path) { 5390 ret = -ENOMEM; 5391 goto out; 5392 } 5393 5394 tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN); 5395 if (!tmp_buf) { 5396 tmp_buf = vmalloc(fs_info->nodesize); 5397 if (!tmp_buf) { 5398 ret = -ENOMEM; 5399 goto out; 5400 } 5401 } 5402 5403 left_path->search_commit_root = 1; 5404 left_path->skip_locking = 1; 5405 right_path->search_commit_root = 1; 5406 right_path->skip_locking = 1; 5407 5408 /* 5409 * Strategy: Go to the first items of both trees. Then do 5410 * 5411 * If both trees are at level 0 5412 * Compare keys of current items 5413 * If left < right treat left item as new, advance left tree 5414 * and repeat 5415 * If left > right treat right item as deleted, advance right tree 5416 * and repeat 5417 * If left == right do deep compare of items, treat as changed if 5418 * needed, advance both trees and repeat 5419 * If both trees are at the same level but not at level 0 5420 * Compare keys of current nodes/leafs 5421 * If left < right advance left tree and repeat 5422 * If left > right advance right tree and repeat 5423 * If left == right compare blockptrs of the next nodes/leafs 5424 * If they match advance both trees but stay at the same level 5425 * and repeat 5426 * If they don't match advance both trees while allowing to go 5427 * deeper and repeat 5428 * If tree levels are different 5429 * Advance the tree that needs it and repeat 5430 * 5431 * Advancing a tree means: 5432 * If we are at level 0, try to go to the next slot. If that's not 5433 * possible, go one level up and repeat. Stop when we found a level 5434 * where we could go to the next slot. We may at this point be on a 5435 * node or a leaf. 5436 * 5437 * If we are not at level 0 and not on shared tree blocks, go one 5438 * level deeper. 5439 * 5440 * If we are not at level 0 and on shared tree blocks, go one slot to 5441 * the right if possible or go up and right. 5442 */ 5443 5444 down_read(&fs_info->commit_root_sem); 5445 left_level = btrfs_header_level(left_root->commit_root); 5446 left_root_level = left_level; 5447 left_path->nodes[left_level] = left_root->commit_root; 5448 extent_buffer_get(left_path->nodes[left_level]); 5449 5450 right_level = btrfs_header_level(right_root->commit_root); 5451 right_root_level = right_level; 5452 right_path->nodes[right_level] = right_root->commit_root; 5453 extent_buffer_get(right_path->nodes[right_level]); 5454 up_read(&fs_info->commit_root_sem); 5455 5456 if (left_level == 0) 5457 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5458 &left_key, left_path->slots[left_level]); 5459 else 5460 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5461 &left_key, left_path->slots[left_level]); 5462 if (right_level == 0) 5463 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5464 &right_key, right_path->slots[right_level]); 5465 else 5466 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5467 &right_key, right_path->slots[right_level]); 5468 5469 left_end_reached = right_end_reached = 0; 5470 advance_left = advance_right = 0; 5471 5472 while (1) { 5473 if (advance_left && !left_end_reached) { 5474 ret = tree_advance(fs_info, left_path, &left_level, 5475 left_root_level, 5476 advance_left != ADVANCE_ONLY_NEXT, 5477 &left_key); 5478 if (ret == -1) 5479 left_end_reached = ADVANCE; 5480 else if (ret < 0) 5481 goto out; 5482 advance_left = 0; 5483 } 5484 if (advance_right && !right_end_reached) { 5485 ret = tree_advance(fs_info, right_path, &right_level, 5486 right_root_level, 5487 advance_right != ADVANCE_ONLY_NEXT, 5488 &right_key); 5489 if (ret == -1) 5490 right_end_reached = ADVANCE; 5491 else if (ret < 0) 5492 goto out; 5493 advance_right = 0; 5494 } 5495 5496 if (left_end_reached && right_end_reached) { 5497 ret = 0; 5498 goto out; 5499 } else if (left_end_reached) { 5500 if (right_level == 0) { 5501 ret = changed_cb(left_root, right_root, 5502 left_path, right_path, 5503 &right_key, 5504 BTRFS_COMPARE_TREE_DELETED, 5505 ctx); 5506 if (ret < 0) 5507 goto out; 5508 } 5509 advance_right = ADVANCE; 5510 continue; 5511 } else if (right_end_reached) { 5512 if (left_level == 0) { 5513 ret = changed_cb(left_root, right_root, 5514 left_path, right_path, 5515 &left_key, 5516 BTRFS_COMPARE_TREE_NEW, 5517 ctx); 5518 if (ret < 0) 5519 goto out; 5520 } 5521 advance_left = ADVANCE; 5522 continue; 5523 } 5524 5525 if (left_level == 0 && right_level == 0) { 5526 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5527 if (cmp < 0) { 5528 ret = changed_cb(left_root, right_root, 5529 left_path, right_path, 5530 &left_key, 5531 BTRFS_COMPARE_TREE_NEW, 5532 ctx); 5533 if (ret < 0) 5534 goto out; 5535 advance_left = ADVANCE; 5536 } else if (cmp > 0) { 5537 ret = changed_cb(left_root, right_root, 5538 left_path, right_path, 5539 &right_key, 5540 BTRFS_COMPARE_TREE_DELETED, 5541 ctx); 5542 if (ret < 0) 5543 goto out; 5544 advance_right = ADVANCE; 5545 } else { 5546 enum btrfs_compare_tree_result result; 5547 5548 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5549 ret = tree_compare_item(left_path, right_path, 5550 tmp_buf); 5551 if (ret) 5552 result = BTRFS_COMPARE_TREE_CHANGED; 5553 else 5554 result = BTRFS_COMPARE_TREE_SAME; 5555 ret = changed_cb(left_root, right_root, 5556 left_path, right_path, 5557 &left_key, result, ctx); 5558 if (ret < 0) 5559 goto out; 5560 advance_left = ADVANCE; 5561 advance_right = ADVANCE; 5562 } 5563 } else if (left_level == right_level) { 5564 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5565 if (cmp < 0) { 5566 advance_left = ADVANCE; 5567 } else if (cmp > 0) { 5568 advance_right = ADVANCE; 5569 } else { 5570 left_blockptr = btrfs_node_blockptr( 5571 left_path->nodes[left_level], 5572 left_path->slots[left_level]); 5573 right_blockptr = btrfs_node_blockptr( 5574 right_path->nodes[right_level], 5575 right_path->slots[right_level]); 5576 left_gen = btrfs_node_ptr_generation( 5577 left_path->nodes[left_level], 5578 left_path->slots[left_level]); 5579 right_gen = btrfs_node_ptr_generation( 5580 right_path->nodes[right_level], 5581 right_path->slots[right_level]); 5582 if (left_blockptr == right_blockptr && 5583 left_gen == right_gen) { 5584 /* 5585 * As we're on a shared block, don't 5586 * allow to go deeper. 5587 */ 5588 advance_left = ADVANCE_ONLY_NEXT; 5589 advance_right = ADVANCE_ONLY_NEXT; 5590 } else { 5591 advance_left = ADVANCE; 5592 advance_right = ADVANCE; 5593 } 5594 } 5595 } else if (left_level < right_level) { 5596 advance_right = ADVANCE; 5597 } else { 5598 advance_left = ADVANCE; 5599 } 5600 } 5601 5602 out: 5603 btrfs_free_path(left_path); 5604 btrfs_free_path(right_path); 5605 kvfree(tmp_buf); 5606 return ret; 5607 } 5608 5609 /* 5610 * this is similar to btrfs_next_leaf, but does not try to preserve 5611 * and fixup the path. It looks for and returns the next key in the 5612 * tree based on the current path and the min_trans parameters. 5613 * 5614 * 0 is returned if another key is found, < 0 if there are any errors 5615 * and 1 is returned if there are no higher keys in the tree 5616 * 5617 * path->keep_locks should be set to 1 on the search made before 5618 * calling this function. 5619 */ 5620 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5621 struct btrfs_key *key, int level, u64 min_trans) 5622 { 5623 int slot; 5624 struct extent_buffer *c; 5625 5626 WARN_ON(!path->keep_locks); 5627 while (level < BTRFS_MAX_LEVEL) { 5628 if (!path->nodes[level]) 5629 return 1; 5630 5631 slot = path->slots[level] + 1; 5632 c = path->nodes[level]; 5633 next: 5634 if (slot >= btrfs_header_nritems(c)) { 5635 int ret; 5636 int orig_lowest; 5637 struct btrfs_key cur_key; 5638 if (level + 1 >= BTRFS_MAX_LEVEL || 5639 !path->nodes[level + 1]) 5640 return 1; 5641 5642 if (path->locks[level + 1]) { 5643 level++; 5644 continue; 5645 } 5646 5647 slot = btrfs_header_nritems(c) - 1; 5648 if (level == 0) 5649 btrfs_item_key_to_cpu(c, &cur_key, slot); 5650 else 5651 btrfs_node_key_to_cpu(c, &cur_key, slot); 5652 5653 orig_lowest = path->lowest_level; 5654 btrfs_release_path(path); 5655 path->lowest_level = level; 5656 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5657 0, 0); 5658 path->lowest_level = orig_lowest; 5659 if (ret < 0) 5660 return ret; 5661 5662 c = path->nodes[level]; 5663 slot = path->slots[level]; 5664 if (ret == 0) 5665 slot++; 5666 goto next; 5667 } 5668 5669 if (level == 0) 5670 btrfs_item_key_to_cpu(c, key, slot); 5671 else { 5672 u64 gen = btrfs_node_ptr_generation(c, slot); 5673 5674 if (gen < min_trans) { 5675 slot++; 5676 goto next; 5677 } 5678 btrfs_node_key_to_cpu(c, key, slot); 5679 } 5680 return 0; 5681 } 5682 return 1; 5683 } 5684 5685 /* 5686 * search the tree again to find a leaf with greater keys 5687 * returns 0 if it found something or 1 if there are no greater leaves. 5688 * returns < 0 on io errors. 5689 */ 5690 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5691 { 5692 return btrfs_next_old_leaf(root, path, 0); 5693 } 5694 5695 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5696 u64 time_seq) 5697 { 5698 int slot; 5699 int level; 5700 struct extent_buffer *c; 5701 struct extent_buffer *next; 5702 struct btrfs_key key; 5703 u32 nritems; 5704 int ret; 5705 int old_spinning = path->leave_spinning; 5706 int next_rw_lock = 0; 5707 5708 nritems = btrfs_header_nritems(path->nodes[0]); 5709 if (nritems == 0) 5710 return 1; 5711 5712 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5713 again: 5714 level = 1; 5715 next = NULL; 5716 next_rw_lock = 0; 5717 btrfs_release_path(path); 5718 5719 path->keep_locks = 1; 5720 path->leave_spinning = 1; 5721 5722 if (time_seq) 5723 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5724 else 5725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5726 path->keep_locks = 0; 5727 5728 if (ret < 0) 5729 return ret; 5730 5731 nritems = btrfs_header_nritems(path->nodes[0]); 5732 /* 5733 * by releasing the path above we dropped all our locks. A balance 5734 * could have added more items next to the key that used to be 5735 * at the very end of the block. So, check again here and 5736 * advance the path if there are now more items available. 5737 */ 5738 if (nritems > 0 && path->slots[0] < nritems - 1) { 5739 if (ret == 0) 5740 path->slots[0]++; 5741 ret = 0; 5742 goto done; 5743 } 5744 /* 5745 * So the above check misses one case: 5746 * - after releasing the path above, someone has removed the item that 5747 * used to be at the very end of the block, and balance between leafs 5748 * gets another one with bigger key.offset to replace it. 5749 * 5750 * This one should be returned as well, or we can get leaf corruption 5751 * later(esp. in __btrfs_drop_extents()). 5752 * 5753 * And a bit more explanation about this check, 5754 * with ret > 0, the key isn't found, the path points to the slot 5755 * where it should be inserted, so the path->slots[0] item must be the 5756 * bigger one. 5757 */ 5758 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5759 ret = 0; 5760 goto done; 5761 } 5762 5763 while (level < BTRFS_MAX_LEVEL) { 5764 if (!path->nodes[level]) { 5765 ret = 1; 5766 goto done; 5767 } 5768 5769 slot = path->slots[level] + 1; 5770 c = path->nodes[level]; 5771 if (slot >= btrfs_header_nritems(c)) { 5772 level++; 5773 if (level == BTRFS_MAX_LEVEL) { 5774 ret = 1; 5775 goto done; 5776 } 5777 continue; 5778 } 5779 5780 if (next) { 5781 btrfs_tree_unlock_rw(next, next_rw_lock); 5782 free_extent_buffer(next); 5783 } 5784 5785 next = c; 5786 next_rw_lock = path->locks[level]; 5787 ret = read_block_for_search(NULL, root, path, &next, level, 5788 slot, &key, 0); 5789 if (ret == -EAGAIN) 5790 goto again; 5791 5792 if (ret < 0) { 5793 btrfs_release_path(path); 5794 goto done; 5795 } 5796 5797 if (!path->skip_locking) { 5798 ret = btrfs_try_tree_read_lock(next); 5799 if (!ret && time_seq) { 5800 /* 5801 * If we don't get the lock, we may be racing 5802 * with push_leaf_left, holding that lock while 5803 * itself waiting for the leaf we've currently 5804 * locked. To solve this situation, we give up 5805 * on our lock and cycle. 5806 */ 5807 free_extent_buffer(next); 5808 btrfs_release_path(path); 5809 cond_resched(); 5810 goto again; 5811 } 5812 if (!ret) { 5813 btrfs_set_path_blocking(path); 5814 btrfs_tree_read_lock(next); 5815 btrfs_clear_path_blocking(path, next, 5816 BTRFS_READ_LOCK); 5817 } 5818 next_rw_lock = BTRFS_READ_LOCK; 5819 } 5820 break; 5821 } 5822 path->slots[level] = slot; 5823 while (1) { 5824 level--; 5825 c = path->nodes[level]; 5826 if (path->locks[level]) 5827 btrfs_tree_unlock_rw(c, path->locks[level]); 5828 5829 free_extent_buffer(c); 5830 path->nodes[level] = next; 5831 path->slots[level] = 0; 5832 if (!path->skip_locking) 5833 path->locks[level] = next_rw_lock; 5834 if (!level) 5835 break; 5836 5837 ret = read_block_for_search(NULL, root, path, &next, level, 5838 0, &key, 0); 5839 if (ret == -EAGAIN) 5840 goto again; 5841 5842 if (ret < 0) { 5843 btrfs_release_path(path); 5844 goto done; 5845 } 5846 5847 if (!path->skip_locking) { 5848 ret = btrfs_try_tree_read_lock(next); 5849 if (!ret) { 5850 btrfs_set_path_blocking(path); 5851 btrfs_tree_read_lock(next); 5852 btrfs_clear_path_blocking(path, next, 5853 BTRFS_READ_LOCK); 5854 } 5855 next_rw_lock = BTRFS_READ_LOCK; 5856 } 5857 } 5858 ret = 0; 5859 done: 5860 unlock_up(path, 0, 1, 0, NULL); 5861 path->leave_spinning = old_spinning; 5862 if (!old_spinning) 5863 btrfs_set_path_blocking(path); 5864 5865 return ret; 5866 } 5867 5868 /* 5869 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5870 * searching until it gets past min_objectid or finds an item of 'type' 5871 * 5872 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5873 */ 5874 int btrfs_previous_item(struct btrfs_root *root, 5875 struct btrfs_path *path, u64 min_objectid, 5876 int type) 5877 { 5878 struct btrfs_key found_key; 5879 struct extent_buffer *leaf; 5880 u32 nritems; 5881 int ret; 5882 5883 while (1) { 5884 if (path->slots[0] == 0) { 5885 btrfs_set_path_blocking(path); 5886 ret = btrfs_prev_leaf(root, path); 5887 if (ret != 0) 5888 return ret; 5889 } else { 5890 path->slots[0]--; 5891 } 5892 leaf = path->nodes[0]; 5893 nritems = btrfs_header_nritems(leaf); 5894 if (nritems == 0) 5895 return 1; 5896 if (path->slots[0] == nritems) 5897 path->slots[0]--; 5898 5899 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5900 if (found_key.objectid < min_objectid) 5901 break; 5902 if (found_key.type == type) 5903 return 0; 5904 if (found_key.objectid == min_objectid && 5905 found_key.type < type) 5906 break; 5907 } 5908 return 1; 5909 } 5910 5911 /* 5912 * search in extent tree to find a previous Metadata/Data extent item with 5913 * min objecitd. 5914 * 5915 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5916 */ 5917 int btrfs_previous_extent_item(struct btrfs_root *root, 5918 struct btrfs_path *path, u64 min_objectid) 5919 { 5920 struct btrfs_key found_key; 5921 struct extent_buffer *leaf; 5922 u32 nritems; 5923 int ret; 5924 5925 while (1) { 5926 if (path->slots[0] == 0) { 5927 btrfs_set_path_blocking(path); 5928 ret = btrfs_prev_leaf(root, path); 5929 if (ret != 0) 5930 return ret; 5931 } else { 5932 path->slots[0]--; 5933 } 5934 leaf = path->nodes[0]; 5935 nritems = btrfs_header_nritems(leaf); 5936 if (nritems == 0) 5937 return 1; 5938 if (path->slots[0] == nritems) 5939 path->slots[0]--; 5940 5941 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5942 if (found_key.objectid < min_objectid) 5943 break; 5944 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5945 found_key.type == BTRFS_METADATA_ITEM_KEY) 5946 return 0; 5947 if (found_key.objectid == min_objectid && 5948 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5949 break; 5950 } 5951 return 1; 5952 } 5953