1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include <linux/mm.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 32 const struct btrfs_key *ins_key, struct btrfs_path *path, 33 int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct btrfs_fs_info *fs_info, 36 struct extent_buffer *dst, 37 struct extent_buffer *src, int empty); 38 static int balance_node_right(struct btrfs_trans_handle *trans, 39 struct btrfs_fs_info *fs_info, 40 struct extent_buffer *dst_buf, 41 struct extent_buffer *src_buf); 42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 43 int level, int slot); 44 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 45 struct extent_buffer *eb); 46 47 struct btrfs_path *btrfs_alloc_path(void) 48 { 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 if (held) { 84 btrfs_set_lock_blocking_rw(held, held_rw); 85 if (held_rw == BTRFS_WRITE_LOCK) 86 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 87 else if (held_rw == BTRFS_READ_LOCK) 88 held_rw = BTRFS_READ_LOCK_BLOCKING; 89 } 90 btrfs_set_path_blocking(p); 91 92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 93 if (p->nodes[i] && p->locks[i]) { 94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 96 p->locks[i] = BTRFS_WRITE_LOCK; 97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 98 p->locks[i] = BTRFS_READ_LOCK; 99 } 100 } 101 102 if (held) 103 btrfs_clear_lock_blocking_rw(held, held_rw); 104 } 105 106 /* this also releases the path */ 107 void btrfs_free_path(struct btrfs_path *p) 108 { 109 if (!p) 110 return; 111 btrfs_release_path(p); 112 kmem_cache_free(btrfs_path_cachep, p); 113 } 114 115 /* 116 * path release drops references on the extent buffers in the path 117 * and it drops any locks held by this path 118 * 119 * It is safe to call this on paths that no locks or extent buffers held. 120 */ 121 noinline void btrfs_release_path(struct btrfs_path *p) 122 { 123 int i; 124 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 126 p->slots[i] = 0; 127 if (!p->nodes[i]) 128 continue; 129 if (p->locks[i]) { 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 131 p->locks[i] = 0; 132 } 133 free_extent_buffer(p->nodes[i]); 134 p->nodes[i] = NULL; 135 } 136 } 137 138 /* 139 * safely gets a reference on the root node of a tree. A lock 140 * is not taken, so a concurrent writer may put a different node 141 * at the root of the tree. See btrfs_lock_root_node for the 142 * looping required. 143 * 144 * The extent buffer returned by this has a reference taken, so 145 * it won't disappear. It may stop being the root of the tree 146 * at any time because there are no locks held. 147 */ 148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 149 { 150 struct extent_buffer *eb; 151 152 while (1) { 153 rcu_read_lock(); 154 eb = rcu_dereference(root->node); 155 156 /* 157 * RCU really hurts here, we could free up the root node because 158 * it was COWed but we may not get the new root node yet so do 159 * the inc_not_zero dance and if it doesn't work then 160 * synchronize_rcu and try again. 161 */ 162 if (atomic_inc_not_zero(&eb->refs)) { 163 rcu_read_unlock(); 164 break; 165 } 166 rcu_read_unlock(); 167 synchronize_rcu(); 168 } 169 return eb; 170 } 171 172 /* loop around taking references on and locking the root node of the 173 * tree until you end up with a lock on the root. A locked buffer 174 * is returned, with a reference held. 175 */ 176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 177 { 178 struct extent_buffer *eb; 179 180 while (1) { 181 eb = btrfs_root_node(root); 182 btrfs_tree_lock(eb); 183 if (eb == root->node) 184 break; 185 btrfs_tree_unlock(eb); 186 free_extent_buffer(eb); 187 } 188 return eb; 189 } 190 191 /* loop around taking references on and locking the root node of the 192 * tree until you end up with a lock on the root. A locked buffer 193 * is returned, with a reference held. 194 */ 195 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 196 { 197 struct extent_buffer *eb; 198 199 while (1) { 200 eb = btrfs_root_node(root); 201 btrfs_tree_read_lock(eb); 202 if (eb == root->node) 203 break; 204 btrfs_tree_read_unlock(eb); 205 free_extent_buffer(eb); 206 } 207 return eb; 208 } 209 210 /* cowonly root (everything not a reference counted cow subvolume), just get 211 * put onto a simple dirty list. transaction.c walks this to make sure they 212 * get properly updated on disk. 213 */ 214 static void add_root_to_dirty_list(struct btrfs_root *root) 215 { 216 struct btrfs_fs_info *fs_info = root->fs_info; 217 218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 220 return; 221 222 spin_lock(&fs_info->trans_lock); 223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 224 /* Want the extent tree to be the last on the list */ 225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 226 list_move_tail(&root->dirty_list, 227 &fs_info->dirty_cowonly_roots); 228 else 229 list_move(&root->dirty_list, 230 &fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct btrfs_fs_info *fs_info = root->fs_info; 246 struct extent_buffer *cow; 247 int ret = 0; 248 int level; 249 struct btrfs_disk_key disk_key; 250 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 252 trans->transid != fs_info->running_transaction->transid); 253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 254 trans->transid != root->last_trans); 255 256 level = btrfs_header_level(buf); 257 if (level == 0) 258 btrfs_item_key(buf, &disk_key, 0); 259 else 260 btrfs_node_key(buf, &disk_key, 0); 261 262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 263 &disk_key, level, buf->start, 0); 264 if (IS_ERR(cow)) 265 return PTR_ERR(cow); 266 267 copy_extent_buffer_full(cow, buf); 268 btrfs_set_header_bytenr(cow, cow->start); 269 btrfs_set_header_generation(cow, trans->transid); 270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 272 BTRFS_HEADER_FLAG_RELOC); 273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 275 else 276 btrfs_set_header_owner(cow, new_root_objectid); 277 278 write_extent_buffer_fsid(cow, fs_info->fsid); 279 280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 282 ret = btrfs_inc_ref(trans, root, cow, 1); 283 else 284 ret = btrfs_inc_ref(trans, root, cow, 0); 285 286 if (ret) 287 return ret; 288 289 btrfs_mark_buffer_dirty(cow); 290 *cow_ret = cow; 291 return 0; 292 } 293 294 enum mod_log_op { 295 MOD_LOG_KEY_REPLACE, 296 MOD_LOG_KEY_ADD, 297 MOD_LOG_KEY_REMOVE, 298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 300 MOD_LOG_MOVE_KEYS, 301 MOD_LOG_ROOT_REPLACE, 302 }; 303 304 struct tree_mod_move { 305 int dst_slot; 306 int nr_items; 307 }; 308 309 struct tree_mod_root { 310 u64 logical; 311 u8 level; 312 }; 313 314 struct tree_mod_elem { 315 struct rb_node node; 316 u64 logical; 317 u64 seq; 318 enum mod_log_op op; 319 320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 321 int slot; 322 323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 324 u64 generation; 325 326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 327 struct btrfs_disk_key key; 328 u64 blockptr; 329 330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 331 struct tree_mod_move move; 332 333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 334 struct tree_mod_root old_root; 335 }; 336 337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 338 { 339 read_lock(&fs_info->tree_mod_log_lock); 340 } 341 342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 343 { 344 read_unlock(&fs_info->tree_mod_log_lock); 345 } 346 347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 348 { 349 write_lock(&fs_info->tree_mod_log_lock); 350 } 351 352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 353 { 354 write_unlock(&fs_info->tree_mod_log_lock); 355 } 356 357 /* 358 * Pull a new tree mod seq number for our operation. 359 */ 360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 361 { 362 return atomic64_inc_return(&fs_info->tree_mod_seq); 363 } 364 365 /* 366 * This adds a new blocker to the tree mod log's blocker list if the @elem 367 * passed does not already have a sequence number set. So when a caller expects 368 * to record tree modifications, it should ensure to set elem->seq to zero 369 * before calling btrfs_get_tree_mod_seq. 370 * Returns a fresh, unused tree log modification sequence number, even if no new 371 * blocker was added. 372 */ 373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 374 struct seq_list *elem) 375 { 376 tree_mod_log_write_lock(fs_info); 377 spin_lock(&fs_info->tree_mod_seq_lock); 378 if (!elem->seq) { 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 381 } 382 spin_unlock(&fs_info->tree_mod_seq_lock); 383 tree_mod_log_write_unlock(fs_info); 384 385 return elem->seq; 386 } 387 388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 389 struct seq_list *elem) 390 { 391 struct rb_root *tm_root; 392 struct rb_node *node; 393 struct rb_node *next; 394 struct seq_list *cur_elem; 395 struct tree_mod_elem *tm; 396 u64 min_seq = (u64)-1; 397 u64 seq_putting = elem->seq; 398 399 if (!seq_putting) 400 return; 401 402 spin_lock(&fs_info->tree_mod_seq_lock); 403 list_del(&elem->list); 404 elem->seq = 0; 405 406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 407 if (cur_elem->seq < min_seq) { 408 if (seq_putting > cur_elem->seq) { 409 /* 410 * blocker with lower sequence number exists, we 411 * cannot remove anything from the log 412 */ 413 spin_unlock(&fs_info->tree_mod_seq_lock); 414 return; 415 } 416 min_seq = cur_elem->seq; 417 } 418 } 419 spin_unlock(&fs_info->tree_mod_seq_lock); 420 421 /* 422 * anything that's lower than the lowest existing (read: blocked) 423 * sequence number can be removed from the tree. 424 */ 425 tree_mod_log_write_lock(fs_info); 426 tm_root = &fs_info->tree_mod_log; 427 for (node = rb_first(tm_root); node; node = next) { 428 next = rb_next(node); 429 tm = rb_entry(node, struct tree_mod_elem, node); 430 if (tm->seq > min_seq) 431 continue; 432 rb_erase(node, tm_root); 433 kfree(tm); 434 } 435 tree_mod_log_write_unlock(fs_info); 436 } 437 438 /* 439 * key order of the log: 440 * node/leaf start address -> sequence 441 * 442 * The 'start address' is the logical address of the *new* root node 443 * for root replace operations, or the logical address of the affected 444 * block for all other operations. 445 * 446 * Note: must be called with write lock (tree_mod_log_write_lock). 447 */ 448 static noinline int 449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 450 { 451 struct rb_root *tm_root; 452 struct rb_node **new; 453 struct rb_node *parent = NULL; 454 struct tree_mod_elem *cur; 455 456 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 457 458 tm_root = &fs_info->tree_mod_log; 459 new = &tm_root->rb_node; 460 while (*new) { 461 cur = rb_entry(*new, struct tree_mod_elem, node); 462 parent = *new; 463 if (cur->logical < tm->logical) 464 new = &((*new)->rb_left); 465 else if (cur->logical > tm->logical) 466 new = &((*new)->rb_right); 467 else if (cur->seq < tm->seq) 468 new = &((*new)->rb_left); 469 else if (cur->seq > tm->seq) 470 new = &((*new)->rb_right); 471 else 472 return -EEXIST; 473 } 474 475 rb_link_node(&tm->node, parent, new); 476 rb_insert_color(&tm->node, tm_root); 477 return 0; 478 } 479 480 /* 481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 482 * returns zero with the tree_mod_log_lock acquired. The caller must hold 483 * this until all tree mod log insertions are recorded in the rb tree and then 484 * call tree_mod_log_write_unlock() to release. 485 */ 486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 487 struct extent_buffer *eb) { 488 smp_mb(); 489 if (list_empty(&(fs_info)->tree_mod_seq_list)) 490 return 1; 491 if (eb && btrfs_header_level(eb) == 0) 492 return 1; 493 494 tree_mod_log_write_lock(fs_info); 495 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 496 tree_mod_log_write_unlock(fs_info); 497 return 1; 498 } 499 500 return 0; 501 } 502 503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 505 struct extent_buffer *eb) 506 { 507 smp_mb(); 508 if (list_empty(&(fs_info)->tree_mod_seq_list)) 509 return 0; 510 if (eb && btrfs_header_level(eb) == 0) 511 return 0; 512 513 return 1; 514 } 515 516 static struct tree_mod_elem * 517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 518 enum mod_log_op op, gfp_t flags) 519 { 520 struct tree_mod_elem *tm; 521 522 tm = kzalloc(sizeof(*tm), flags); 523 if (!tm) 524 return NULL; 525 526 tm->logical = eb->start; 527 if (op != MOD_LOG_KEY_ADD) { 528 btrfs_node_key(eb, &tm->key, slot); 529 tm->blockptr = btrfs_node_blockptr(eb, slot); 530 } 531 tm->op = op; 532 tm->slot = slot; 533 tm->generation = btrfs_node_ptr_generation(eb, slot); 534 RB_CLEAR_NODE(&tm->node); 535 536 return tm; 537 } 538 539 static noinline int 540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 541 struct extent_buffer *eb, int slot, 542 enum mod_log_op op, gfp_t flags) 543 { 544 struct tree_mod_elem *tm; 545 int ret; 546 547 if (!tree_mod_need_log(fs_info, eb)) 548 return 0; 549 550 tm = alloc_tree_mod_elem(eb, slot, op, flags); 551 if (!tm) 552 return -ENOMEM; 553 554 if (tree_mod_dont_log(fs_info, eb)) { 555 kfree(tm); 556 return 0; 557 } 558 559 ret = __tree_mod_log_insert(fs_info, tm); 560 tree_mod_log_write_unlock(fs_info); 561 if (ret) 562 kfree(tm); 563 564 return ret; 565 } 566 567 static noinline int 568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 569 struct extent_buffer *eb, int dst_slot, int src_slot, 570 int nr_items) 571 { 572 struct tree_mod_elem *tm = NULL; 573 struct tree_mod_elem **tm_list = NULL; 574 int ret = 0; 575 int i; 576 int locked = 0; 577 578 if (!tree_mod_need_log(fs_info, eb)) 579 return 0; 580 581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 582 if (!tm_list) 583 return -ENOMEM; 584 585 tm = kzalloc(sizeof(*tm), GFP_NOFS); 586 if (!tm) { 587 ret = -ENOMEM; 588 goto free_tms; 589 } 590 591 tm->logical = eb->start; 592 tm->slot = src_slot; 593 tm->move.dst_slot = dst_slot; 594 tm->move.nr_items = nr_items; 595 tm->op = MOD_LOG_MOVE_KEYS; 596 597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 600 if (!tm_list[i]) { 601 ret = -ENOMEM; 602 goto free_tms; 603 } 604 } 605 606 if (tree_mod_dont_log(fs_info, eb)) 607 goto free_tms; 608 locked = 1; 609 610 /* 611 * When we override something during the move, we log these removals. 612 * This can only happen when we move towards the beginning of the 613 * buffer, i.e. dst_slot < src_slot. 614 */ 615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 616 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 617 if (ret) 618 goto free_tms; 619 } 620 621 ret = __tree_mod_log_insert(fs_info, tm); 622 if (ret) 623 goto free_tms; 624 tree_mod_log_write_unlock(fs_info); 625 kfree(tm_list); 626 627 return 0; 628 free_tms: 629 for (i = 0; i < nr_items; i++) { 630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 632 kfree(tm_list[i]); 633 } 634 if (locked) 635 tree_mod_log_write_unlock(fs_info); 636 kfree(tm_list); 637 kfree(tm); 638 639 return ret; 640 } 641 642 static inline int 643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 644 struct tree_mod_elem **tm_list, 645 int nritems) 646 { 647 int i, j; 648 int ret; 649 650 for (i = nritems - 1; i >= 0; i--) { 651 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 652 if (ret) { 653 for (j = nritems - 1; j > i; j--) 654 rb_erase(&tm_list[j]->node, 655 &fs_info->tree_mod_log); 656 return ret; 657 } 658 } 659 660 return 0; 661 } 662 663 static noinline int 664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 665 struct extent_buffer *old_root, 666 struct extent_buffer *new_root, 667 int log_removal) 668 { 669 struct tree_mod_elem *tm = NULL; 670 struct tree_mod_elem **tm_list = NULL; 671 int nritems = 0; 672 int ret = 0; 673 int i; 674 675 if (!tree_mod_need_log(fs_info, NULL)) 676 return 0; 677 678 if (log_removal && btrfs_header_level(old_root) > 0) { 679 nritems = btrfs_header_nritems(old_root); 680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 681 GFP_NOFS); 682 if (!tm_list) { 683 ret = -ENOMEM; 684 goto free_tms; 685 } 686 for (i = 0; i < nritems; i++) { 687 tm_list[i] = alloc_tree_mod_elem(old_root, i, 688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 689 if (!tm_list[i]) { 690 ret = -ENOMEM; 691 goto free_tms; 692 } 693 } 694 } 695 696 tm = kzalloc(sizeof(*tm), GFP_NOFS); 697 if (!tm) { 698 ret = -ENOMEM; 699 goto free_tms; 700 } 701 702 tm->logical = new_root->start; 703 tm->old_root.logical = old_root->start; 704 tm->old_root.level = btrfs_header_level(old_root); 705 tm->generation = btrfs_header_generation(old_root); 706 tm->op = MOD_LOG_ROOT_REPLACE; 707 708 if (tree_mod_dont_log(fs_info, NULL)) 709 goto free_tms; 710 711 if (tm_list) 712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 713 if (!ret) 714 ret = __tree_mod_log_insert(fs_info, tm); 715 716 tree_mod_log_write_unlock(fs_info); 717 if (ret) 718 goto free_tms; 719 kfree(tm_list); 720 721 return ret; 722 723 free_tms: 724 if (tm_list) { 725 for (i = 0; i < nritems; i++) 726 kfree(tm_list[i]); 727 kfree(tm_list); 728 } 729 kfree(tm); 730 731 return ret; 732 } 733 734 static struct tree_mod_elem * 735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 736 int smallest) 737 { 738 struct rb_root *tm_root; 739 struct rb_node *node; 740 struct tree_mod_elem *cur = NULL; 741 struct tree_mod_elem *found = NULL; 742 743 tree_mod_log_read_lock(fs_info); 744 tm_root = &fs_info->tree_mod_log; 745 node = tm_root->rb_node; 746 while (node) { 747 cur = rb_entry(node, struct tree_mod_elem, node); 748 if (cur->logical < start) { 749 node = node->rb_left; 750 } else if (cur->logical > start) { 751 node = node->rb_right; 752 } else if (cur->seq < min_seq) { 753 node = node->rb_left; 754 } else if (!smallest) { 755 /* we want the node with the highest seq */ 756 if (found) 757 BUG_ON(found->seq > cur->seq); 758 found = cur; 759 node = node->rb_left; 760 } else if (cur->seq > min_seq) { 761 /* we want the node with the smallest seq */ 762 if (found) 763 BUG_ON(found->seq < cur->seq); 764 found = cur; 765 node = node->rb_right; 766 } else { 767 found = cur; 768 break; 769 } 770 } 771 tree_mod_log_read_unlock(fs_info); 772 773 return found; 774 } 775 776 /* 777 * this returns the element from the log with the smallest time sequence 778 * value that's in the log (the oldest log item). any element with a time 779 * sequence lower than min_seq will be ignored. 780 */ 781 static struct tree_mod_elem * 782 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 783 u64 min_seq) 784 { 785 return __tree_mod_log_search(fs_info, start, min_seq, 1); 786 } 787 788 /* 789 * this returns the element from the log with the largest time sequence 790 * value that's in the log (the most recent log item). any element with 791 * a time sequence lower than min_seq will be ignored. 792 */ 793 static struct tree_mod_elem * 794 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 795 { 796 return __tree_mod_log_search(fs_info, start, min_seq, 0); 797 } 798 799 static noinline int 800 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 801 struct extent_buffer *src, unsigned long dst_offset, 802 unsigned long src_offset, int nr_items) 803 { 804 int ret = 0; 805 struct tree_mod_elem **tm_list = NULL; 806 struct tree_mod_elem **tm_list_add, **tm_list_rem; 807 int i; 808 int locked = 0; 809 810 if (!tree_mod_need_log(fs_info, NULL)) 811 return 0; 812 813 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 814 return 0; 815 816 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 817 GFP_NOFS); 818 if (!tm_list) 819 return -ENOMEM; 820 821 tm_list_add = tm_list; 822 tm_list_rem = tm_list + nr_items; 823 for (i = 0; i < nr_items; i++) { 824 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 825 MOD_LOG_KEY_REMOVE, GFP_NOFS); 826 if (!tm_list_rem[i]) { 827 ret = -ENOMEM; 828 goto free_tms; 829 } 830 831 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 832 MOD_LOG_KEY_ADD, GFP_NOFS); 833 if (!tm_list_add[i]) { 834 ret = -ENOMEM; 835 goto free_tms; 836 } 837 } 838 839 if (tree_mod_dont_log(fs_info, NULL)) 840 goto free_tms; 841 locked = 1; 842 843 for (i = 0; i < nr_items; i++) { 844 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 845 if (ret) 846 goto free_tms; 847 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 848 if (ret) 849 goto free_tms; 850 } 851 852 tree_mod_log_write_unlock(fs_info); 853 kfree(tm_list); 854 855 return 0; 856 857 free_tms: 858 for (i = 0; i < nr_items * 2; i++) { 859 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 860 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 861 kfree(tm_list[i]); 862 } 863 if (locked) 864 tree_mod_log_write_unlock(fs_info); 865 kfree(tm_list); 866 867 return ret; 868 } 869 870 static inline void 871 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 872 int dst_offset, int src_offset, int nr_items) 873 { 874 int ret; 875 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 876 nr_items); 877 BUG_ON(ret < 0); 878 } 879 880 static noinline void 881 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 882 struct extent_buffer *eb, int slot, int atomic) 883 { 884 int ret; 885 886 ret = tree_mod_log_insert_key(fs_info, eb, slot, 887 MOD_LOG_KEY_REPLACE, 888 atomic ? GFP_ATOMIC : GFP_NOFS); 889 BUG_ON(ret < 0); 890 } 891 892 static noinline int 893 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 894 { 895 struct tree_mod_elem **tm_list = NULL; 896 int nritems = 0; 897 int i; 898 int ret = 0; 899 900 if (btrfs_header_level(eb) == 0) 901 return 0; 902 903 if (!tree_mod_need_log(fs_info, NULL)) 904 return 0; 905 906 nritems = btrfs_header_nritems(eb); 907 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 908 if (!tm_list) 909 return -ENOMEM; 910 911 for (i = 0; i < nritems; i++) { 912 tm_list[i] = alloc_tree_mod_elem(eb, i, 913 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 914 if (!tm_list[i]) { 915 ret = -ENOMEM; 916 goto free_tms; 917 } 918 } 919 920 if (tree_mod_dont_log(fs_info, eb)) 921 goto free_tms; 922 923 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 924 tree_mod_log_write_unlock(fs_info); 925 if (ret) 926 goto free_tms; 927 kfree(tm_list); 928 929 return 0; 930 931 free_tms: 932 for (i = 0; i < nritems; i++) 933 kfree(tm_list[i]); 934 kfree(tm_list); 935 936 return ret; 937 } 938 939 static noinline void 940 tree_mod_log_set_root_pointer(struct btrfs_root *root, 941 struct extent_buffer *new_root_node, 942 int log_removal) 943 { 944 int ret; 945 ret = tree_mod_log_insert_root(root->fs_info, root->node, 946 new_root_node, log_removal); 947 BUG_ON(ret < 0); 948 } 949 950 /* 951 * check if the tree block can be shared by multiple trees 952 */ 953 int btrfs_block_can_be_shared(struct btrfs_root *root, 954 struct extent_buffer *buf) 955 { 956 /* 957 * Tree blocks not in reference counted trees and tree roots 958 * are never shared. If a block was allocated after the last 959 * snapshot and the block was not allocated by tree relocation, 960 * we know the block is not shared. 961 */ 962 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 963 buf != root->node && buf != root->commit_root && 964 (btrfs_header_generation(buf) <= 965 btrfs_root_last_snapshot(&root->root_item) || 966 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 967 return 1; 968 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 969 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 970 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 971 return 1; 972 #endif 973 return 0; 974 } 975 976 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 977 struct btrfs_root *root, 978 struct extent_buffer *buf, 979 struct extent_buffer *cow, 980 int *last_ref) 981 { 982 struct btrfs_fs_info *fs_info = root->fs_info; 983 u64 refs; 984 u64 owner; 985 u64 flags; 986 u64 new_flags = 0; 987 int ret; 988 989 /* 990 * Backrefs update rules: 991 * 992 * Always use full backrefs for extent pointers in tree block 993 * allocated by tree relocation. 994 * 995 * If a shared tree block is no longer referenced by its owner 996 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 997 * use full backrefs for extent pointers in tree block. 998 * 999 * If a tree block is been relocating 1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1001 * use full backrefs for extent pointers in tree block. 1002 * The reason for this is some operations (such as drop tree) 1003 * are only allowed for blocks use full backrefs. 1004 */ 1005 1006 if (btrfs_block_can_be_shared(root, buf)) { 1007 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 1008 btrfs_header_level(buf), 1, 1009 &refs, &flags); 1010 if (ret) 1011 return ret; 1012 if (refs == 0) { 1013 ret = -EROFS; 1014 btrfs_handle_fs_error(fs_info, ret, NULL); 1015 return ret; 1016 } 1017 } else { 1018 refs = 1; 1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1022 else 1023 flags = 0; 1024 } 1025 1026 owner = btrfs_header_owner(buf); 1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1029 1030 if (refs > 1) { 1031 if ((owner == root->root_key.objectid || 1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1034 ret = btrfs_inc_ref(trans, root, buf, 1); 1035 if (ret) 1036 return ret; 1037 1038 if (root->root_key.objectid == 1039 BTRFS_TREE_RELOC_OBJECTID) { 1040 ret = btrfs_dec_ref(trans, root, buf, 0); 1041 if (ret) 1042 return ret; 1043 ret = btrfs_inc_ref(trans, root, cow, 1); 1044 if (ret) 1045 return ret; 1046 } 1047 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1048 } else { 1049 1050 if (root->root_key.objectid == 1051 BTRFS_TREE_RELOC_OBJECTID) 1052 ret = btrfs_inc_ref(trans, root, cow, 1); 1053 else 1054 ret = btrfs_inc_ref(trans, root, cow, 0); 1055 if (ret) 1056 return ret; 1057 } 1058 if (new_flags != 0) { 1059 int level = btrfs_header_level(buf); 1060 1061 ret = btrfs_set_disk_extent_flags(trans, fs_info, 1062 buf->start, 1063 buf->len, 1064 new_flags, level, 0); 1065 if (ret) 1066 return ret; 1067 } 1068 } else { 1069 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1070 if (root->root_key.objectid == 1071 BTRFS_TREE_RELOC_OBJECTID) 1072 ret = btrfs_inc_ref(trans, root, cow, 1); 1073 else 1074 ret = btrfs_inc_ref(trans, root, cow, 0); 1075 if (ret) 1076 return ret; 1077 ret = btrfs_dec_ref(trans, root, buf, 1); 1078 if (ret) 1079 return ret; 1080 } 1081 clean_tree_block(fs_info, buf); 1082 *last_ref = 1; 1083 } 1084 return 0; 1085 } 1086 1087 /* 1088 * does the dirty work in cow of a single block. The parent block (if 1089 * supplied) is updated to point to the new cow copy. The new buffer is marked 1090 * dirty and returned locked. If you modify the block it needs to be marked 1091 * dirty again. 1092 * 1093 * search_start -- an allocation hint for the new block 1094 * 1095 * empty_size -- a hint that you plan on doing more cow. This is the size in 1096 * bytes the allocator should try to find free next to the block it returns. 1097 * This is just a hint and may be ignored by the allocator. 1098 */ 1099 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1100 struct btrfs_root *root, 1101 struct extent_buffer *buf, 1102 struct extent_buffer *parent, int parent_slot, 1103 struct extent_buffer **cow_ret, 1104 u64 search_start, u64 empty_size) 1105 { 1106 struct btrfs_fs_info *fs_info = root->fs_info; 1107 struct btrfs_disk_key disk_key; 1108 struct extent_buffer *cow; 1109 int level, ret; 1110 int last_ref = 0; 1111 int unlock_orig = 0; 1112 u64 parent_start = 0; 1113 1114 if (*cow_ret == buf) 1115 unlock_orig = 1; 1116 1117 btrfs_assert_tree_locked(buf); 1118 1119 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1120 trans->transid != fs_info->running_transaction->transid); 1121 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1122 trans->transid != root->last_trans); 1123 1124 level = btrfs_header_level(buf); 1125 1126 if (level == 0) 1127 btrfs_item_key(buf, &disk_key, 0); 1128 else 1129 btrfs_node_key(buf, &disk_key, 0); 1130 1131 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1132 parent_start = parent->start; 1133 1134 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1135 root->root_key.objectid, &disk_key, level, 1136 search_start, empty_size); 1137 if (IS_ERR(cow)) 1138 return PTR_ERR(cow); 1139 1140 /* cow is set to blocking by btrfs_init_new_buffer */ 1141 1142 copy_extent_buffer_full(cow, buf); 1143 btrfs_set_header_bytenr(cow, cow->start); 1144 btrfs_set_header_generation(cow, trans->transid); 1145 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1146 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1147 BTRFS_HEADER_FLAG_RELOC); 1148 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1149 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1150 else 1151 btrfs_set_header_owner(cow, root->root_key.objectid); 1152 1153 write_extent_buffer_fsid(cow, fs_info->fsid); 1154 1155 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1156 if (ret) { 1157 btrfs_abort_transaction(trans, ret); 1158 return ret; 1159 } 1160 1161 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1162 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1163 if (ret) { 1164 btrfs_abort_transaction(trans, ret); 1165 return ret; 1166 } 1167 } 1168 1169 if (buf == root->node) { 1170 WARN_ON(parent && parent != buf); 1171 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1172 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1173 parent_start = buf->start; 1174 1175 extent_buffer_get(cow); 1176 tree_mod_log_set_root_pointer(root, cow, 1); 1177 rcu_assign_pointer(root->node, cow); 1178 1179 btrfs_free_tree_block(trans, root, buf, parent_start, 1180 last_ref); 1181 free_extent_buffer(buf); 1182 add_root_to_dirty_list(root); 1183 } else { 1184 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1185 tree_mod_log_insert_key(fs_info, parent, parent_slot, 1186 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1187 btrfs_set_node_blockptr(parent, parent_slot, 1188 cow->start); 1189 btrfs_set_node_ptr_generation(parent, parent_slot, 1190 trans->transid); 1191 btrfs_mark_buffer_dirty(parent); 1192 if (last_ref) { 1193 ret = tree_mod_log_free_eb(fs_info, buf); 1194 if (ret) { 1195 btrfs_abort_transaction(trans, ret); 1196 return ret; 1197 } 1198 } 1199 btrfs_free_tree_block(trans, root, buf, parent_start, 1200 last_ref); 1201 } 1202 if (unlock_orig) 1203 btrfs_tree_unlock(buf); 1204 free_extent_buffer_stale(buf); 1205 btrfs_mark_buffer_dirty(cow); 1206 *cow_ret = cow; 1207 return 0; 1208 } 1209 1210 /* 1211 * returns the logical address of the oldest predecessor of the given root. 1212 * entries older than time_seq are ignored. 1213 */ 1214 static struct tree_mod_elem * 1215 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1216 struct extent_buffer *eb_root, u64 time_seq) 1217 { 1218 struct tree_mod_elem *tm; 1219 struct tree_mod_elem *found = NULL; 1220 u64 root_logical = eb_root->start; 1221 int looped = 0; 1222 1223 if (!time_seq) 1224 return NULL; 1225 1226 /* 1227 * the very last operation that's logged for a root is the 1228 * replacement operation (if it is replaced at all). this has 1229 * the logical address of the *new* root, making it the very 1230 * first operation that's logged for this root. 1231 */ 1232 while (1) { 1233 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1234 time_seq); 1235 if (!looped && !tm) 1236 return NULL; 1237 /* 1238 * if there are no tree operation for the oldest root, we simply 1239 * return it. this should only happen if that (old) root is at 1240 * level 0. 1241 */ 1242 if (!tm) 1243 break; 1244 1245 /* 1246 * if there's an operation that's not a root replacement, we 1247 * found the oldest version of our root. normally, we'll find a 1248 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1249 */ 1250 if (tm->op != MOD_LOG_ROOT_REPLACE) 1251 break; 1252 1253 found = tm; 1254 root_logical = tm->old_root.logical; 1255 looped = 1; 1256 } 1257 1258 /* if there's no old root to return, return what we found instead */ 1259 if (!found) 1260 found = tm; 1261 1262 return found; 1263 } 1264 1265 /* 1266 * tm is a pointer to the first operation to rewind within eb. then, all 1267 * previous operations will be rewound (until we reach something older than 1268 * time_seq). 1269 */ 1270 static void 1271 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1272 u64 time_seq, struct tree_mod_elem *first_tm) 1273 { 1274 u32 n; 1275 struct rb_node *next; 1276 struct tree_mod_elem *tm = first_tm; 1277 unsigned long o_dst; 1278 unsigned long o_src; 1279 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1280 1281 n = btrfs_header_nritems(eb); 1282 tree_mod_log_read_lock(fs_info); 1283 while (tm && tm->seq >= time_seq) { 1284 /* 1285 * all the operations are recorded with the operator used for 1286 * the modification. as we're going backwards, we do the 1287 * opposite of each operation here. 1288 */ 1289 switch (tm->op) { 1290 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1291 BUG_ON(tm->slot < n); 1292 /* Fallthrough */ 1293 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1294 case MOD_LOG_KEY_REMOVE: 1295 btrfs_set_node_key(eb, &tm->key, tm->slot); 1296 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1297 btrfs_set_node_ptr_generation(eb, tm->slot, 1298 tm->generation); 1299 n++; 1300 break; 1301 case MOD_LOG_KEY_REPLACE: 1302 BUG_ON(tm->slot >= n); 1303 btrfs_set_node_key(eb, &tm->key, tm->slot); 1304 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1305 btrfs_set_node_ptr_generation(eb, tm->slot, 1306 tm->generation); 1307 break; 1308 case MOD_LOG_KEY_ADD: 1309 /* if a move operation is needed it's in the log */ 1310 n--; 1311 break; 1312 case MOD_LOG_MOVE_KEYS: 1313 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1314 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1315 memmove_extent_buffer(eb, o_dst, o_src, 1316 tm->move.nr_items * p_size); 1317 break; 1318 case MOD_LOG_ROOT_REPLACE: 1319 /* 1320 * this operation is special. for roots, this must be 1321 * handled explicitly before rewinding. 1322 * for non-roots, this operation may exist if the node 1323 * was a root: root A -> child B; then A gets empty and 1324 * B is promoted to the new root. in the mod log, we'll 1325 * have a root-replace operation for B, a tree block 1326 * that is no root. we simply ignore that operation. 1327 */ 1328 break; 1329 } 1330 next = rb_next(&tm->node); 1331 if (!next) 1332 break; 1333 tm = rb_entry(next, struct tree_mod_elem, node); 1334 if (tm->logical != first_tm->logical) 1335 break; 1336 } 1337 tree_mod_log_read_unlock(fs_info); 1338 btrfs_set_header_nritems(eb, n); 1339 } 1340 1341 /* 1342 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1343 * is returned. If rewind operations happen, a fresh buffer is returned. The 1344 * returned buffer is always read-locked. If the returned buffer is not the 1345 * input buffer, the lock on the input buffer is released and the input buffer 1346 * is freed (its refcount is decremented). 1347 */ 1348 static struct extent_buffer * 1349 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1350 struct extent_buffer *eb, u64 time_seq) 1351 { 1352 struct extent_buffer *eb_rewin; 1353 struct tree_mod_elem *tm; 1354 1355 if (!time_seq) 1356 return eb; 1357 1358 if (btrfs_header_level(eb) == 0) 1359 return eb; 1360 1361 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1362 if (!tm) 1363 return eb; 1364 1365 btrfs_set_path_blocking(path); 1366 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1367 1368 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1369 BUG_ON(tm->slot != 0); 1370 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1371 if (!eb_rewin) { 1372 btrfs_tree_read_unlock_blocking(eb); 1373 free_extent_buffer(eb); 1374 return NULL; 1375 } 1376 btrfs_set_header_bytenr(eb_rewin, eb->start); 1377 btrfs_set_header_backref_rev(eb_rewin, 1378 btrfs_header_backref_rev(eb)); 1379 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1380 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1381 } else { 1382 eb_rewin = btrfs_clone_extent_buffer(eb); 1383 if (!eb_rewin) { 1384 btrfs_tree_read_unlock_blocking(eb); 1385 free_extent_buffer(eb); 1386 return NULL; 1387 } 1388 } 1389 1390 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1391 btrfs_tree_read_unlock_blocking(eb); 1392 free_extent_buffer(eb); 1393 1394 extent_buffer_get(eb_rewin); 1395 btrfs_tree_read_lock(eb_rewin); 1396 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1397 WARN_ON(btrfs_header_nritems(eb_rewin) > 1398 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1399 1400 return eb_rewin; 1401 } 1402 1403 /* 1404 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1405 * value. If there are no changes, the current root->root_node is returned. If 1406 * anything changed in between, there's a fresh buffer allocated on which the 1407 * rewind operations are done. In any case, the returned buffer is read locked. 1408 * Returns NULL on error (with no locks held). 1409 */ 1410 static inline struct extent_buffer * 1411 get_old_root(struct btrfs_root *root, u64 time_seq) 1412 { 1413 struct btrfs_fs_info *fs_info = root->fs_info; 1414 struct tree_mod_elem *tm; 1415 struct extent_buffer *eb = NULL; 1416 struct extent_buffer *eb_root; 1417 struct extent_buffer *old; 1418 struct tree_mod_root *old_root = NULL; 1419 u64 old_generation = 0; 1420 u64 logical; 1421 1422 eb_root = btrfs_read_lock_root_node(root); 1423 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq); 1424 if (!tm) 1425 return eb_root; 1426 1427 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1428 old_root = &tm->old_root; 1429 old_generation = tm->generation; 1430 logical = old_root->logical; 1431 } else { 1432 logical = eb_root->start; 1433 } 1434 1435 tm = tree_mod_log_search(fs_info, logical, time_seq); 1436 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1437 btrfs_tree_read_unlock(eb_root); 1438 free_extent_buffer(eb_root); 1439 old = read_tree_block(fs_info, logical, 0); 1440 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1441 if (!IS_ERR(old)) 1442 free_extent_buffer(old); 1443 btrfs_warn(fs_info, 1444 "failed to read tree block %llu from get_old_root", 1445 logical); 1446 } else { 1447 eb = btrfs_clone_extent_buffer(old); 1448 free_extent_buffer(old); 1449 } 1450 } else if (old_root) { 1451 btrfs_tree_read_unlock(eb_root); 1452 free_extent_buffer(eb_root); 1453 eb = alloc_dummy_extent_buffer(fs_info, logical); 1454 } else { 1455 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1456 eb = btrfs_clone_extent_buffer(eb_root); 1457 btrfs_tree_read_unlock_blocking(eb_root); 1458 free_extent_buffer(eb_root); 1459 } 1460 1461 if (!eb) 1462 return NULL; 1463 extent_buffer_get(eb); 1464 btrfs_tree_read_lock(eb); 1465 if (old_root) { 1466 btrfs_set_header_bytenr(eb, eb->start); 1467 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1468 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1469 btrfs_set_header_level(eb, old_root->level); 1470 btrfs_set_header_generation(eb, old_generation); 1471 } 1472 if (tm) 1473 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1474 else 1475 WARN_ON(btrfs_header_level(eb) != 0); 1476 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1477 1478 return eb; 1479 } 1480 1481 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1482 { 1483 struct tree_mod_elem *tm; 1484 int level; 1485 struct extent_buffer *eb_root = btrfs_root_node(root); 1486 1487 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1488 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1489 level = tm->old_root.level; 1490 } else { 1491 level = btrfs_header_level(eb_root); 1492 } 1493 free_extent_buffer(eb_root); 1494 1495 return level; 1496 } 1497 1498 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1499 struct btrfs_root *root, 1500 struct extent_buffer *buf) 1501 { 1502 if (btrfs_is_testing(root->fs_info)) 1503 return 0; 1504 1505 /* ensure we can see the force_cow */ 1506 smp_rmb(); 1507 1508 /* 1509 * We do not need to cow a block if 1510 * 1) this block is not created or changed in this transaction; 1511 * 2) this block does not belong to TREE_RELOC tree; 1512 * 3) the root is not forced COW. 1513 * 1514 * What is forced COW: 1515 * when we create snapshot during committing the transaction, 1516 * after we've finished coping src root, we must COW the shared 1517 * block to ensure the metadata consistency. 1518 */ 1519 if (btrfs_header_generation(buf) == trans->transid && 1520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1524 return 0; 1525 return 1; 1526 } 1527 1528 /* 1529 * cows a single block, see __btrfs_cow_block for the real work. 1530 * This version of it has extra checks so that a block isn't COWed more than 1531 * once per transaction, as long as it hasn't been written yet 1532 */ 1533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1534 struct btrfs_root *root, struct extent_buffer *buf, 1535 struct extent_buffer *parent, int parent_slot, 1536 struct extent_buffer **cow_ret) 1537 { 1538 struct btrfs_fs_info *fs_info = root->fs_info; 1539 u64 search_start; 1540 int ret; 1541 1542 if (trans->transaction != fs_info->running_transaction) 1543 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1544 trans->transid, 1545 fs_info->running_transaction->transid); 1546 1547 if (trans->transid != fs_info->generation) 1548 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1549 trans->transid, fs_info->generation); 1550 1551 if (!should_cow_block(trans, root, buf)) { 1552 trans->dirty = true; 1553 *cow_ret = buf; 1554 return 0; 1555 } 1556 1557 search_start = buf->start & ~((u64)SZ_1G - 1); 1558 1559 if (parent) 1560 btrfs_set_lock_blocking(parent); 1561 btrfs_set_lock_blocking(buf); 1562 1563 ret = __btrfs_cow_block(trans, root, buf, parent, 1564 parent_slot, cow_ret, search_start, 0); 1565 1566 trace_btrfs_cow_block(root, buf, *cow_ret); 1567 1568 return ret; 1569 } 1570 1571 /* 1572 * helper function for defrag to decide if two blocks pointed to by a 1573 * node are actually close by 1574 */ 1575 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1576 { 1577 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1578 return 1; 1579 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1580 return 1; 1581 return 0; 1582 } 1583 1584 /* 1585 * compare two keys in a memcmp fashion 1586 */ 1587 static int comp_keys(const struct btrfs_disk_key *disk, 1588 const struct btrfs_key *k2) 1589 { 1590 struct btrfs_key k1; 1591 1592 btrfs_disk_key_to_cpu(&k1, disk); 1593 1594 return btrfs_comp_cpu_keys(&k1, k2); 1595 } 1596 1597 /* 1598 * same as comp_keys only with two btrfs_key's 1599 */ 1600 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1601 { 1602 if (k1->objectid > k2->objectid) 1603 return 1; 1604 if (k1->objectid < k2->objectid) 1605 return -1; 1606 if (k1->type > k2->type) 1607 return 1; 1608 if (k1->type < k2->type) 1609 return -1; 1610 if (k1->offset > k2->offset) 1611 return 1; 1612 if (k1->offset < k2->offset) 1613 return -1; 1614 return 0; 1615 } 1616 1617 /* 1618 * this is used by the defrag code to go through all the 1619 * leaves pointed to by a node and reallocate them so that 1620 * disk order is close to key order 1621 */ 1622 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1623 struct btrfs_root *root, struct extent_buffer *parent, 1624 int start_slot, u64 *last_ret, 1625 struct btrfs_key *progress) 1626 { 1627 struct btrfs_fs_info *fs_info = root->fs_info; 1628 struct extent_buffer *cur; 1629 u64 blocknr; 1630 u64 gen; 1631 u64 search_start = *last_ret; 1632 u64 last_block = 0; 1633 u64 other; 1634 u32 parent_nritems; 1635 int end_slot; 1636 int i; 1637 int err = 0; 1638 int parent_level; 1639 int uptodate; 1640 u32 blocksize; 1641 int progress_passed = 0; 1642 struct btrfs_disk_key disk_key; 1643 1644 parent_level = btrfs_header_level(parent); 1645 1646 WARN_ON(trans->transaction != fs_info->running_transaction); 1647 WARN_ON(trans->transid != fs_info->generation); 1648 1649 parent_nritems = btrfs_header_nritems(parent); 1650 blocksize = fs_info->nodesize; 1651 end_slot = parent_nritems - 1; 1652 1653 if (parent_nritems <= 1) 1654 return 0; 1655 1656 btrfs_set_lock_blocking(parent); 1657 1658 for (i = start_slot; i <= end_slot; i++) { 1659 int close = 1; 1660 1661 btrfs_node_key(parent, &disk_key, i); 1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1663 continue; 1664 1665 progress_passed = 1; 1666 blocknr = btrfs_node_blockptr(parent, i); 1667 gen = btrfs_node_ptr_generation(parent, i); 1668 if (last_block == 0) 1669 last_block = blocknr; 1670 1671 if (i > 0) { 1672 other = btrfs_node_blockptr(parent, i - 1); 1673 close = close_blocks(blocknr, other, blocksize); 1674 } 1675 if (!close && i < end_slot) { 1676 other = btrfs_node_blockptr(parent, i + 1); 1677 close = close_blocks(blocknr, other, blocksize); 1678 } 1679 if (close) { 1680 last_block = blocknr; 1681 continue; 1682 } 1683 1684 cur = find_extent_buffer(fs_info, blocknr); 1685 if (cur) 1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1687 else 1688 uptodate = 0; 1689 if (!cur || !uptodate) { 1690 if (!cur) { 1691 cur = read_tree_block(fs_info, blocknr, gen); 1692 if (IS_ERR(cur)) { 1693 return PTR_ERR(cur); 1694 } else if (!extent_buffer_uptodate(cur)) { 1695 free_extent_buffer(cur); 1696 return -EIO; 1697 } 1698 } else if (!uptodate) { 1699 err = btrfs_read_buffer(cur, gen); 1700 if (err) { 1701 free_extent_buffer(cur); 1702 return err; 1703 } 1704 } 1705 } 1706 if (search_start == 0) 1707 search_start = last_block; 1708 1709 btrfs_tree_lock(cur); 1710 btrfs_set_lock_blocking(cur); 1711 err = __btrfs_cow_block(trans, root, cur, parent, i, 1712 &cur, search_start, 1713 min(16 * blocksize, 1714 (end_slot - i) * blocksize)); 1715 if (err) { 1716 btrfs_tree_unlock(cur); 1717 free_extent_buffer(cur); 1718 break; 1719 } 1720 search_start = cur->start; 1721 last_block = cur->start; 1722 *last_ret = search_start; 1723 btrfs_tree_unlock(cur); 1724 free_extent_buffer(cur); 1725 } 1726 return err; 1727 } 1728 1729 /* 1730 * search for key in the extent_buffer. The items start at offset p, 1731 * and they are item_size apart. There are 'max' items in p. 1732 * 1733 * the slot in the array is returned via slot, and it points to 1734 * the place where you would insert key if it is not found in 1735 * the array. 1736 * 1737 * slot may point to max if the key is bigger than all of the keys 1738 */ 1739 static noinline int generic_bin_search(struct extent_buffer *eb, 1740 unsigned long p, int item_size, 1741 const struct btrfs_key *key, 1742 int max, int *slot) 1743 { 1744 int low = 0; 1745 int high = max; 1746 int mid; 1747 int ret; 1748 struct btrfs_disk_key *tmp = NULL; 1749 struct btrfs_disk_key unaligned; 1750 unsigned long offset; 1751 char *kaddr = NULL; 1752 unsigned long map_start = 0; 1753 unsigned long map_len = 0; 1754 int err; 1755 1756 if (low > high) { 1757 btrfs_err(eb->fs_info, 1758 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1759 __func__, low, high, eb->start, 1760 btrfs_header_owner(eb), btrfs_header_level(eb)); 1761 return -EINVAL; 1762 } 1763 1764 while (low < high) { 1765 mid = (low + high) / 2; 1766 offset = p + mid * item_size; 1767 1768 if (!kaddr || offset < map_start || 1769 (offset + sizeof(struct btrfs_disk_key)) > 1770 map_start + map_len) { 1771 1772 err = map_private_extent_buffer(eb, offset, 1773 sizeof(struct btrfs_disk_key), 1774 &kaddr, &map_start, &map_len); 1775 1776 if (!err) { 1777 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1778 map_start); 1779 } else if (err == 1) { 1780 read_extent_buffer(eb, &unaligned, 1781 offset, sizeof(unaligned)); 1782 tmp = &unaligned; 1783 } else { 1784 return err; 1785 } 1786 1787 } else { 1788 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1789 map_start); 1790 } 1791 ret = comp_keys(tmp, key); 1792 1793 if (ret < 0) 1794 low = mid + 1; 1795 else if (ret > 0) 1796 high = mid; 1797 else { 1798 *slot = mid; 1799 return 0; 1800 } 1801 } 1802 *slot = low; 1803 return 1; 1804 } 1805 1806 /* 1807 * simple bin_search frontend that does the right thing for 1808 * leaves vs nodes 1809 */ 1810 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1811 int level, int *slot) 1812 { 1813 if (level == 0) 1814 return generic_bin_search(eb, 1815 offsetof(struct btrfs_leaf, items), 1816 sizeof(struct btrfs_item), 1817 key, btrfs_header_nritems(eb), 1818 slot); 1819 else 1820 return generic_bin_search(eb, 1821 offsetof(struct btrfs_node, ptrs), 1822 sizeof(struct btrfs_key_ptr), 1823 key, btrfs_header_nritems(eb), 1824 slot); 1825 } 1826 1827 static void root_add_used(struct btrfs_root *root, u32 size) 1828 { 1829 spin_lock(&root->accounting_lock); 1830 btrfs_set_root_used(&root->root_item, 1831 btrfs_root_used(&root->root_item) + size); 1832 spin_unlock(&root->accounting_lock); 1833 } 1834 1835 static void root_sub_used(struct btrfs_root *root, u32 size) 1836 { 1837 spin_lock(&root->accounting_lock); 1838 btrfs_set_root_used(&root->root_item, 1839 btrfs_root_used(&root->root_item) - size); 1840 spin_unlock(&root->accounting_lock); 1841 } 1842 1843 /* given a node and slot number, this reads the blocks it points to. The 1844 * extent buffer is returned with a reference taken (but unlocked). 1845 */ 1846 static noinline struct extent_buffer * 1847 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1848 int slot) 1849 { 1850 int level = btrfs_header_level(parent); 1851 struct extent_buffer *eb; 1852 1853 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1854 return ERR_PTR(-ENOENT); 1855 1856 BUG_ON(level == 0); 1857 1858 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1859 btrfs_node_ptr_generation(parent, slot)); 1860 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1861 free_extent_buffer(eb); 1862 eb = ERR_PTR(-EIO); 1863 } 1864 1865 return eb; 1866 } 1867 1868 /* 1869 * node level balancing, used to make sure nodes are in proper order for 1870 * item deletion. We balance from the top down, so we have to make sure 1871 * that a deletion won't leave an node completely empty later on. 1872 */ 1873 static noinline int balance_level(struct btrfs_trans_handle *trans, 1874 struct btrfs_root *root, 1875 struct btrfs_path *path, int level) 1876 { 1877 struct btrfs_fs_info *fs_info = root->fs_info; 1878 struct extent_buffer *right = NULL; 1879 struct extent_buffer *mid; 1880 struct extent_buffer *left = NULL; 1881 struct extent_buffer *parent = NULL; 1882 int ret = 0; 1883 int wret; 1884 int pslot; 1885 int orig_slot = path->slots[level]; 1886 u64 orig_ptr; 1887 1888 if (level == 0) 1889 return 0; 1890 1891 mid = path->nodes[level]; 1892 1893 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1894 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1895 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1896 1897 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1898 1899 if (level < BTRFS_MAX_LEVEL - 1) { 1900 parent = path->nodes[level + 1]; 1901 pslot = path->slots[level + 1]; 1902 } 1903 1904 /* 1905 * deal with the case where there is only one pointer in the root 1906 * by promoting the node below to a root 1907 */ 1908 if (!parent) { 1909 struct extent_buffer *child; 1910 1911 if (btrfs_header_nritems(mid) != 1) 1912 return 0; 1913 1914 /* promote the child to a root */ 1915 child = read_node_slot(fs_info, mid, 0); 1916 if (IS_ERR(child)) { 1917 ret = PTR_ERR(child); 1918 btrfs_handle_fs_error(fs_info, ret, NULL); 1919 goto enospc; 1920 } 1921 1922 btrfs_tree_lock(child); 1923 btrfs_set_lock_blocking(child); 1924 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1925 if (ret) { 1926 btrfs_tree_unlock(child); 1927 free_extent_buffer(child); 1928 goto enospc; 1929 } 1930 1931 tree_mod_log_set_root_pointer(root, child, 1); 1932 rcu_assign_pointer(root->node, child); 1933 1934 add_root_to_dirty_list(root); 1935 btrfs_tree_unlock(child); 1936 1937 path->locks[level] = 0; 1938 path->nodes[level] = NULL; 1939 clean_tree_block(fs_info, mid); 1940 btrfs_tree_unlock(mid); 1941 /* once for the path */ 1942 free_extent_buffer(mid); 1943 1944 root_sub_used(root, mid->len); 1945 btrfs_free_tree_block(trans, root, mid, 0, 1); 1946 /* once for the root ptr */ 1947 free_extent_buffer_stale(mid); 1948 return 0; 1949 } 1950 if (btrfs_header_nritems(mid) > 1951 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1952 return 0; 1953 1954 left = read_node_slot(fs_info, parent, pslot - 1); 1955 if (IS_ERR(left)) 1956 left = NULL; 1957 1958 if (left) { 1959 btrfs_tree_lock(left); 1960 btrfs_set_lock_blocking(left); 1961 wret = btrfs_cow_block(trans, root, left, 1962 parent, pslot - 1, &left); 1963 if (wret) { 1964 ret = wret; 1965 goto enospc; 1966 } 1967 } 1968 1969 right = read_node_slot(fs_info, parent, pslot + 1); 1970 if (IS_ERR(right)) 1971 right = NULL; 1972 1973 if (right) { 1974 btrfs_tree_lock(right); 1975 btrfs_set_lock_blocking(right); 1976 wret = btrfs_cow_block(trans, root, right, 1977 parent, pslot + 1, &right); 1978 if (wret) { 1979 ret = wret; 1980 goto enospc; 1981 } 1982 } 1983 1984 /* first, try to make some room in the middle buffer */ 1985 if (left) { 1986 orig_slot += btrfs_header_nritems(left); 1987 wret = push_node_left(trans, fs_info, left, mid, 1); 1988 if (wret < 0) 1989 ret = wret; 1990 } 1991 1992 /* 1993 * then try to empty the right most buffer into the middle 1994 */ 1995 if (right) { 1996 wret = push_node_left(trans, fs_info, mid, right, 1); 1997 if (wret < 0 && wret != -ENOSPC) 1998 ret = wret; 1999 if (btrfs_header_nritems(right) == 0) { 2000 clean_tree_block(fs_info, right); 2001 btrfs_tree_unlock(right); 2002 del_ptr(root, path, level + 1, pslot + 1); 2003 root_sub_used(root, right->len); 2004 btrfs_free_tree_block(trans, root, right, 0, 1); 2005 free_extent_buffer_stale(right); 2006 right = NULL; 2007 } else { 2008 struct btrfs_disk_key right_key; 2009 btrfs_node_key(right, &right_key, 0); 2010 tree_mod_log_set_node_key(fs_info, parent, 2011 pslot + 1, 0); 2012 btrfs_set_node_key(parent, &right_key, pslot + 1); 2013 btrfs_mark_buffer_dirty(parent); 2014 } 2015 } 2016 if (btrfs_header_nritems(mid) == 1) { 2017 /* 2018 * we're not allowed to leave a node with one item in the 2019 * tree during a delete. A deletion from lower in the tree 2020 * could try to delete the only pointer in this node. 2021 * So, pull some keys from the left. 2022 * There has to be a left pointer at this point because 2023 * otherwise we would have pulled some pointers from the 2024 * right 2025 */ 2026 if (!left) { 2027 ret = -EROFS; 2028 btrfs_handle_fs_error(fs_info, ret, NULL); 2029 goto enospc; 2030 } 2031 wret = balance_node_right(trans, fs_info, mid, left); 2032 if (wret < 0) { 2033 ret = wret; 2034 goto enospc; 2035 } 2036 if (wret == 1) { 2037 wret = push_node_left(trans, fs_info, left, mid, 1); 2038 if (wret < 0) 2039 ret = wret; 2040 } 2041 BUG_ON(wret == 1); 2042 } 2043 if (btrfs_header_nritems(mid) == 0) { 2044 clean_tree_block(fs_info, mid); 2045 btrfs_tree_unlock(mid); 2046 del_ptr(root, path, level + 1, pslot); 2047 root_sub_used(root, mid->len); 2048 btrfs_free_tree_block(trans, root, mid, 0, 1); 2049 free_extent_buffer_stale(mid); 2050 mid = NULL; 2051 } else { 2052 /* update the parent key to reflect our changes */ 2053 struct btrfs_disk_key mid_key; 2054 btrfs_node_key(mid, &mid_key, 0); 2055 tree_mod_log_set_node_key(fs_info, parent, pslot, 0); 2056 btrfs_set_node_key(parent, &mid_key, pslot); 2057 btrfs_mark_buffer_dirty(parent); 2058 } 2059 2060 /* update the path */ 2061 if (left) { 2062 if (btrfs_header_nritems(left) > orig_slot) { 2063 extent_buffer_get(left); 2064 /* left was locked after cow */ 2065 path->nodes[level] = left; 2066 path->slots[level + 1] -= 1; 2067 path->slots[level] = orig_slot; 2068 if (mid) { 2069 btrfs_tree_unlock(mid); 2070 free_extent_buffer(mid); 2071 } 2072 } else { 2073 orig_slot -= btrfs_header_nritems(left); 2074 path->slots[level] = orig_slot; 2075 } 2076 } 2077 /* double check we haven't messed things up */ 2078 if (orig_ptr != 2079 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2080 BUG(); 2081 enospc: 2082 if (right) { 2083 btrfs_tree_unlock(right); 2084 free_extent_buffer(right); 2085 } 2086 if (left) { 2087 if (path->nodes[level] != left) 2088 btrfs_tree_unlock(left); 2089 free_extent_buffer(left); 2090 } 2091 return ret; 2092 } 2093 2094 /* Node balancing for insertion. Here we only split or push nodes around 2095 * when they are completely full. This is also done top down, so we 2096 * have to be pessimistic. 2097 */ 2098 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2099 struct btrfs_root *root, 2100 struct btrfs_path *path, int level) 2101 { 2102 struct btrfs_fs_info *fs_info = root->fs_info; 2103 struct extent_buffer *right = NULL; 2104 struct extent_buffer *mid; 2105 struct extent_buffer *left = NULL; 2106 struct extent_buffer *parent = NULL; 2107 int ret = 0; 2108 int wret; 2109 int pslot; 2110 int orig_slot = path->slots[level]; 2111 2112 if (level == 0) 2113 return 1; 2114 2115 mid = path->nodes[level]; 2116 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2117 2118 if (level < BTRFS_MAX_LEVEL - 1) { 2119 parent = path->nodes[level + 1]; 2120 pslot = path->slots[level + 1]; 2121 } 2122 2123 if (!parent) 2124 return 1; 2125 2126 left = read_node_slot(fs_info, parent, pslot - 1); 2127 if (IS_ERR(left)) 2128 left = NULL; 2129 2130 /* first, try to make some room in the middle buffer */ 2131 if (left) { 2132 u32 left_nr; 2133 2134 btrfs_tree_lock(left); 2135 btrfs_set_lock_blocking(left); 2136 2137 left_nr = btrfs_header_nritems(left); 2138 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2139 wret = 1; 2140 } else { 2141 ret = btrfs_cow_block(trans, root, left, parent, 2142 pslot - 1, &left); 2143 if (ret) 2144 wret = 1; 2145 else { 2146 wret = push_node_left(trans, fs_info, 2147 left, mid, 0); 2148 } 2149 } 2150 if (wret < 0) 2151 ret = wret; 2152 if (wret == 0) { 2153 struct btrfs_disk_key disk_key; 2154 orig_slot += left_nr; 2155 btrfs_node_key(mid, &disk_key, 0); 2156 tree_mod_log_set_node_key(fs_info, parent, pslot, 0); 2157 btrfs_set_node_key(parent, &disk_key, pslot); 2158 btrfs_mark_buffer_dirty(parent); 2159 if (btrfs_header_nritems(left) > orig_slot) { 2160 path->nodes[level] = left; 2161 path->slots[level + 1] -= 1; 2162 path->slots[level] = orig_slot; 2163 btrfs_tree_unlock(mid); 2164 free_extent_buffer(mid); 2165 } else { 2166 orig_slot -= 2167 btrfs_header_nritems(left); 2168 path->slots[level] = orig_slot; 2169 btrfs_tree_unlock(left); 2170 free_extent_buffer(left); 2171 } 2172 return 0; 2173 } 2174 btrfs_tree_unlock(left); 2175 free_extent_buffer(left); 2176 } 2177 right = read_node_slot(fs_info, parent, pslot + 1); 2178 if (IS_ERR(right)) 2179 right = NULL; 2180 2181 /* 2182 * then try to empty the right most buffer into the middle 2183 */ 2184 if (right) { 2185 u32 right_nr; 2186 2187 btrfs_tree_lock(right); 2188 btrfs_set_lock_blocking(right); 2189 2190 right_nr = btrfs_header_nritems(right); 2191 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2192 wret = 1; 2193 } else { 2194 ret = btrfs_cow_block(trans, root, right, 2195 parent, pslot + 1, 2196 &right); 2197 if (ret) 2198 wret = 1; 2199 else { 2200 wret = balance_node_right(trans, fs_info, 2201 right, mid); 2202 } 2203 } 2204 if (wret < 0) 2205 ret = wret; 2206 if (wret == 0) { 2207 struct btrfs_disk_key disk_key; 2208 2209 btrfs_node_key(right, &disk_key, 0); 2210 tree_mod_log_set_node_key(fs_info, parent, 2211 pslot + 1, 0); 2212 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2213 btrfs_mark_buffer_dirty(parent); 2214 2215 if (btrfs_header_nritems(mid) <= orig_slot) { 2216 path->nodes[level] = right; 2217 path->slots[level + 1] += 1; 2218 path->slots[level] = orig_slot - 2219 btrfs_header_nritems(mid); 2220 btrfs_tree_unlock(mid); 2221 free_extent_buffer(mid); 2222 } else { 2223 btrfs_tree_unlock(right); 2224 free_extent_buffer(right); 2225 } 2226 return 0; 2227 } 2228 btrfs_tree_unlock(right); 2229 free_extent_buffer(right); 2230 } 2231 return 1; 2232 } 2233 2234 /* 2235 * readahead one full node of leaves, finding things that are close 2236 * to the block in 'slot', and triggering ra on them. 2237 */ 2238 static void reada_for_search(struct btrfs_fs_info *fs_info, 2239 struct btrfs_path *path, 2240 int level, int slot, u64 objectid) 2241 { 2242 struct extent_buffer *node; 2243 struct btrfs_disk_key disk_key; 2244 u32 nritems; 2245 u64 search; 2246 u64 target; 2247 u64 nread = 0; 2248 struct extent_buffer *eb; 2249 u32 nr; 2250 u32 blocksize; 2251 u32 nscan = 0; 2252 2253 if (level != 1) 2254 return; 2255 2256 if (!path->nodes[level]) 2257 return; 2258 2259 node = path->nodes[level]; 2260 2261 search = btrfs_node_blockptr(node, slot); 2262 blocksize = fs_info->nodesize; 2263 eb = find_extent_buffer(fs_info, search); 2264 if (eb) { 2265 free_extent_buffer(eb); 2266 return; 2267 } 2268 2269 target = search; 2270 2271 nritems = btrfs_header_nritems(node); 2272 nr = slot; 2273 2274 while (1) { 2275 if (path->reada == READA_BACK) { 2276 if (nr == 0) 2277 break; 2278 nr--; 2279 } else if (path->reada == READA_FORWARD) { 2280 nr++; 2281 if (nr >= nritems) 2282 break; 2283 } 2284 if (path->reada == READA_BACK && objectid) { 2285 btrfs_node_key(node, &disk_key, nr); 2286 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2287 break; 2288 } 2289 search = btrfs_node_blockptr(node, nr); 2290 if ((search <= target && target - search <= 65536) || 2291 (search > target && search - target <= 65536)) { 2292 readahead_tree_block(fs_info, search); 2293 nread += blocksize; 2294 } 2295 nscan++; 2296 if ((nread > 65536 || nscan > 32)) 2297 break; 2298 } 2299 } 2300 2301 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2302 struct btrfs_path *path, int level) 2303 { 2304 int slot; 2305 int nritems; 2306 struct extent_buffer *parent; 2307 struct extent_buffer *eb; 2308 u64 gen; 2309 u64 block1 = 0; 2310 u64 block2 = 0; 2311 2312 parent = path->nodes[level + 1]; 2313 if (!parent) 2314 return; 2315 2316 nritems = btrfs_header_nritems(parent); 2317 slot = path->slots[level + 1]; 2318 2319 if (slot > 0) { 2320 block1 = btrfs_node_blockptr(parent, slot - 1); 2321 gen = btrfs_node_ptr_generation(parent, slot - 1); 2322 eb = find_extent_buffer(fs_info, block1); 2323 /* 2324 * if we get -eagain from btrfs_buffer_uptodate, we 2325 * don't want to return eagain here. That will loop 2326 * forever 2327 */ 2328 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2329 block1 = 0; 2330 free_extent_buffer(eb); 2331 } 2332 if (slot + 1 < nritems) { 2333 block2 = btrfs_node_blockptr(parent, slot + 1); 2334 gen = btrfs_node_ptr_generation(parent, slot + 1); 2335 eb = find_extent_buffer(fs_info, block2); 2336 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2337 block2 = 0; 2338 free_extent_buffer(eb); 2339 } 2340 2341 if (block1) 2342 readahead_tree_block(fs_info, block1); 2343 if (block2) 2344 readahead_tree_block(fs_info, block2); 2345 } 2346 2347 2348 /* 2349 * when we walk down the tree, it is usually safe to unlock the higher layers 2350 * in the tree. The exceptions are when our path goes through slot 0, because 2351 * operations on the tree might require changing key pointers higher up in the 2352 * tree. 2353 * 2354 * callers might also have set path->keep_locks, which tells this code to keep 2355 * the lock if the path points to the last slot in the block. This is part of 2356 * walking through the tree, and selecting the next slot in the higher block. 2357 * 2358 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2359 * if lowest_unlock is 1, level 0 won't be unlocked 2360 */ 2361 static noinline void unlock_up(struct btrfs_path *path, int level, 2362 int lowest_unlock, int min_write_lock_level, 2363 int *write_lock_level) 2364 { 2365 int i; 2366 int skip_level = level; 2367 int no_skips = 0; 2368 struct extent_buffer *t; 2369 2370 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2371 if (!path->nodes[i]) 2372 break; 2373 if (!path->locks[i]) 2374 break; 2375 if (!no_skips && path->slots[i] == 0) { 2376 skip_level = i + 1; 2377 continue; 2378 } 2379 if (!no_skips && path->keep_locks) { 2380 u32 nritems; 2381 t = path->nodes[i]; 2382 nritems = btrfs_header_nritems(t); 2383 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2384 skip_level = i + 1; 2385 continue; 2386 } 2387 } 2388 if (skip_level < i && i >= lowest_unlock) 2389 no_skips = 1; 2390 2391 t = path->nodes[i]; 2392 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2393 btrfs_tree_unlock_rw(t, path->locks[i]); 2394 path->locks[i] = 0; 2395 if (write_lock_level && 2396 i > min_write_lock_level && 2397 i <= *write_lock_level) { 2398 *write_lock_level = i - 1; 2399 } 2400 } 2401 } 2402 } 2403 2404 /* 2405 * This releases any locks held in the path starting at level and 2406 * going all the way up to the root. 2407 * 2408 * btrfs_search_slot will keep the lock held on higher nodes in a few 2409 * corner cases, such as COW of the block at slot zero in the node. This 2410 * ignores those rules, and it should only be called when there are no 2411 * more updates to be done higher up in the tree. 2412 */ 2413 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2414 { 2415 int i; 2416 2417 if (path->keep_locks) 2418 return; 2419 2420 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2421 if (!path->nodes[i]) 2422 continue; 2423 if (!path->locks[i]) 2424 continue; 2425 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2426 path->locks[i] = 0; 2427 } 2428 } 2429 2430 /* 2431 * helper function for btrfs_search_slot. The goal is to find a block 2432 * in cache without setting the path to blocking. If we find the block 2433 * we return zero and the path is unchanged. 2434 * 2435 * If we can't find the block, we set the path blocking and do some 2436 * reada. -EAGAIN is returned and the search must be repeated. 2437 */ 2438 static int 2439 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2440 struct extent_buffer **eb_ret, int level, int slot, 2441 const struct btrfs_key *key) 2442 { 2443 struct btrfs_fs_info *fs_info = root->fs_info; 2444 u64 blocknr; 2445 u64 gen; 2446 struct extent_buffer *b = *eb_ret; 2447 struct extent_buffer *tmp; 2448 int ret; 2449 2450 blocknr = btrfs_node_blockptr(b, slot); 2451 gen = btrfs_node_ptr_generation(b, slot); 2452 2453 tmp = find_extent_buffer(fs_info, blocknr); 2454 if (tmp) { 2455 /* first we do an atomic uptodate check */ 2456 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2457 *eb_ret = tmp; 2458 return 0; 2459 } 2460 2461 /* the pages were up to date, but we failed 2462 * the generation number check. Do a full 2463 * read for the generation number that is correct. 2464 * We must do this without dropping locks so 2465 * we can trust our generation number 2466 */ 2467 btrfs_set_path_blocking(p); 2468 2469 /* now we're allowed to do a blocking uptodate check */ 2470 ret = btrfs_read_buffer(tmp, gen); 2471 if (!ret) { 2472 *eb_ret = tmp; 2473 return 0; 2474 } 2475 free_extent_buffer(tmp); 2476 btrfs_release_path(p); 2477 return -EIO; 2478 } 2479 2480 /* 2481 * reduce lock contention at high levels 2482 * of the btree by dropping locks before 2483 * we read. Don't release the lock on the current 2484 * level because we need to walk this node to figure 2485 * out which blocks to read. 2486 */ 2487 btrfs_unlock_up_safe(p, level + 1); 2488 btrfs_set_path_blocking(p); 2489 2490 free_extent_buffer(tmp); 2491 if (p->reada != READA_NONE) 2492 reada_for_search(fs_info, p, level, slot, key->objectid); 2493 2494 btrfs_release_path(p); 2495 2496 ret = -EAGAIN; 2497 tmp = read_tree_block(fs_info, blocknr, 0); 2498 if (!IS_ERR(tmp)) { 2499 /* 2500 * If the read above didn't mark this buffer up to date, 2501 * it will never end up being up to date. Set ret to EIO now 2502 * and give up so that our caller doesn't loop forever 2503 * on our EAGAINs. 2504 */ 2505 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2506 ret = -EIO; 2507 free_extent_buffer(tmp); 2508 } else { 2509 ret = PTR_ERR(tmp); 2510 } 2511 return ret; 2512 } 2513 2514 /* 2515 * helper function for btrfs_search_slot. This does all of the checks 2516 * for node-level blocks and does any balancing required based on 2517 * the ins_len. 2518 * 2519 * If no extra work was required, zero is returned. If we had to 2520 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2521 * start over 2522 */ 2523 static int 2524 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2525 struct btrfs_root *root, struct btrfs_path *p, 2526 struct extent_buffer *b, int level, int ins_len, 2527 int *write_lock_level) 2528 { 2529 struct btrfs_fs_info *fs_info = root->fs_info; 2530 int ret; 2531 2532 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2533 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2534 int sret; 2535 2536 if (*write_lock_level < level + 1) { 2537 *write_lock_level = level + 1; 2538 btrfs_release_path(p); 2539 goto again; 2540 } 2541 2542 btrfs_set_path_blocking(p); 2543 reada_for_balance(fs_info, p, level); 2544 sret = split_node(trans, root, p, level); 2545 btrfs_clear_path_blocking(p, NULL, 0); 2546 2547 BUG_ON(sret > 0); 2548 if (sret) { 2549 ret = sret; 2550 goto done; 2551 } 2552 b = p->nodes[level]; 2553 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2554 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2555 int sret; 2556 2557 if (*write_lock_level < level + 1) { 2558 *write_lock_level = level + 1; 2559 btrfs_release_path(p); 2560 goto again; 2561 } 2562 2563 btrfs_set_path_blocking(p); 2564 reada_for_balance(fs_info, p, level); 2565 sret = balance_level(trans, root, p, level); 2566 btrfs_clear_path_blocking(p, NULL, 0); 2567 2568 if (sret) { 2569 ret = sret; 2570 goto done; 2571 } 2572 b = p->nodes[level]; 2573 if (!b) { 2574 btrfs_release_path(p); 2575 goto again; 2576 } 2577 BUG_ON(btrfs_header_nritems(b) == 1); 2578 } 2579 return 0; 2580 2581 again: 2582 ret = -EAGAIN; 2583 done: 2584 return ret; 2585 } 2586 2587 static void key_search_validate(struct extent_buffer *b, 2588 const struct btrfs_key *key, 2589 int level) 2590 { 2591 #ifdef CONFIG_BTRFS_ASSERT 2592 struct btrfs_disk_key disk_key; 2593 2594 btrfs_cpu_key_to_disk(&disk_key, key); 2595 2596 if (level == 0) 2597 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2598 offsetof(struct btrfs_leaf, items[0].key), 2599 sizeof(disk_key))); 2600 else 2601 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2602 offsetof(struct btrfs_node, ptrs[0].key), 2603 sizeof(disk_key))); 2604 #endif 2605 } 2606 2607 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2608 int level, int *prev_cmp, int *slot) 2609 { 2610 if (*prev_cmp != 0) { 2611 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2612 return *prev_cmp; 2613 } 2614 2615 key_search_validate(b, key, level); 2616 *slot = 0; 2617 2618 return 0; 2619 } 2620 2621 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2622 u64 iobjectid, u64 ioff, u8 key_type, 2623 struct btrfs_key *found_key) 2624 { 2625 int ret; 2626 struct btrfs_key key; 2627 struct extent_buffer *eb; 2628 2629 ASSERT(path); 2630 ASSERT(found_key); 2631 2632 key.type = key_type; 2633 key.objectid = iobjectid; 2634 key.offset = ioff; 2635 2636 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2637 if (ret < 0) 2638 return ret; 2639 2640 eb = path->nodes[0]; 2641 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2642 ret = btrfs_next_leaf(fs_root, path); 2643 if (ret) 2644 return ret; 2645 eb = path->nodes[0]; 2646 } 2647 2648 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2649 if (found_key->type != key.type || 2650 found_key->objectid != key.objectid) 2651 return 1; 2652 2653 return 0; 2654 } 2655 2656 /* 2657 * btrfs_search_slot - look for a key in a tree and perform necessary 2658 * modifications to preserve tree invariants. 2659 * 2660 * @trans: Handle of transaction, used when modifying the tree 2661 * @p: Holds all btree nodes along the search path 2662 * @root: The root node of the tree 2663 * @key: The key we are looking for 2664 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2665 * deletions it's -1. 0 for plain searches 2666 * @cow: boolean should CoW operations be performed. Must always be 1 2667 * when modifying the tree. 2668 * 2669 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2670 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2671 * 2672 * If @key is found, 0 is returned and you can find the item in the leaf level 2673 * of the path (level 0) 2674 * 2675 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2676 * points to the slot where it should be inserted 2677 * 2678 * If an error is encountered while searching the tree a negative error number 2679 * is returned 2680 */ 2681 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2682 const struct btrfs_key *key, struct btrfs_path *p, 2683 int ins_len, int cow) 2684 { 2685 struct btrfs_fs_info *fs_info = root->fs_info; 2686 struct extent_buffer *b; 2687 int slot; 2688 int ret; 2689 int err; 2690 int level; 2691 int lowest_unlock = 1; 2692 int root_lock; 2693 /* everything at write_lock_level or lower must be write locked */ 2694 int write_lock_level = 0; 2695 u8 lowest_level = 0; 2696 int min_write_lock_level; 2697 int prev_cmp; 2698 2699 lowest_level = p->lowest_level; 2700 WARN_ON(lowest_level && ins_len > 0); 2701 WARN_ON(p->nodes[0] != NULL); 2702 BUG_ON(!cow && ins_len); 2703 2704 if (ins_len < 0) { 2705 lowest_unlock = 2; 2706 2707 /* when we are removing items, we might have to go up to level 2708 * two as we update tree pointers Make sure we keep write 2709 * for those levels as well 2710 */ 2711 write_lock_level = 2; 2712 } else if (ins_len > 0) { 2713 /* 2714 * for inserting items, make sure we have a write lock on 2715 * level 1 so we can update keys 2716 */ 2717 write_lock_level = 1; 2718 } 2719 2720 if (!cow) 2721 write_lock_level = -1; 2722 2723 if (cow && (p->keep_locks || p->lowest_level)) 2724 write_lock_level = BTRFS_MAX_LEVEL; 2725 2726 min_write_lock_level = write_lock_level; 2727 2728 again: 2729 prev_cmp = -1; 2730 /* 2731 * we try very hard to do read locks on the root 2732 */ 2733 root_lock = BTRFS_READ_LOCK; 2734 level = 0; 2735 if (p->search_commit_root) { 2736 /* 2737 * the commit roots are read only 2738 * so we always do read locks 2739 */ 2740 if (p->need_commit_sem) 2741 down_read(&fs_info->commit_root_sem); 2742 b = root->commit_root; 2743 extent_buffer_get(b); 2744 level = btrfs_header_level(b); 2745 if (p->need_commit_sem) 2746 up_read(&fs_info->commit_root_sem); 2747 if (!p->skip_locking) 2748 btrfs_tree_read_lock(b); 2749 } else { 2750 if (p->skip_locking) { 2751 b = btrfs_root_node(root); 2752 level = btrfs_header_level(b); 2753 } else { 2754 /* we don't know the level of the root node 2755 * until we actually have it read locked 2756 */ 2757 b = btrfs_read_lock_root_node(root); 2758 level = btrfs_header_level(b); 2759 if (level <= write_lock_level) { 2760 /* whoops, must trade for write lock */ 2761 btrfs_tree_read_unlock(b); 2762 free_extent_buffer(b); 2763 b = btrfs_lock_root_node(root); 2764 root_lock = BTRFS_WRITE_LOCK; 2765 2766 /* the level might have changed, check again */ 2767 level = btrfs_header_level(b); 2768 } 2769 } 2770 } 2771 p->nodes[level] = b; 2772 if (!p->skip_locking) 2773 p->locks[level] = root_lock; 2774 2775 while (b) { 2776 level = btrfs_header_level(b); 2777 2778 /* 2779 * setup the path here so we can release it under lock 2780 * contention with the cow code 2781 */ 2782 if (cow) { 2783 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2784 2785 /* 2786 * if we don't really need to cow this block 2787 * then we don't want to set the path blocking, 2788 * so we test it here 2789 */ 2790 if (!should_cow_block(trans, root, b)) { 2791 trans->dirty = true; 2792 goto cow_done; 2793 } 2794 2795 /* 2796 * must have write locks on this node and the 2797 * parent 2798 */ 2799 if (level > write_lock_level || 2800 (level + 1 > write_lock_level && 2801 level + 1 < BTRFS_MAX_LEVEL && 2802 p->nodes[level + 1])) { 2803 write_lock_level = level + 1; 2804 btrfs_release_path(p); 2805 goto again; 2806 } 2807 2808 btrfs_set_path_blocking(p); 2809 if (last_level) 2810 err = btrfs_cow_block(trans, root, b, NULL, 0, 2811 &b); 2812 else 2813 err = btrfs_cow_block(trans, root, b, 2814 p->nodes[level + 1], 2815 p->slots[level + 1], &b); 2816 if (err) { 2817 ret = err; 2818 goto done; 2819 } 2820 } 2821 cow_done: 2822 p->nodes[level] = b; 2823 btrfs_clear_path_blocking(p, NULL, 0); 2824 2825 /* 2826 * we have a lock on b and as long as we aren't changing 2827 * the tree, there is no way to for the items in b to change. 2828 * It is safe to drop the lock on our parent before we 2829 * go through the expensive btree search on b. 2830 * 2831 * If we're inserting or deleting (ins_len != 0), then we might 2832 * be changing slot zero, which may require changing the parent. 2833 * So, we can't drop the lock until after we know which slot 2834 * we're operating on. 2835 */ 2836 if (!ins_len && !p->keep_locks) { 2837 int u = level + 1; 2838 2839 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2840 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2841 p->locks[u] = 0; 2842 } 2843 } 2844 2845 ret = key_search(b, key, level, &prev_cmp, &slot); 2846 if (ret < 0) 2847 goto done; 2848 2849 if (level != 0) { 2850 int dec = 0; 2851 if (ret && slot > 0) { 2852 dec = 1; 2853 slot -= 1; 2854 } 2855 p->slots[level] = slot; 2856 err = setup_nodes_for_search(trans, root, p, b, level, 2857 ins_len, &write_lock_level); 2858 if (err == -EAGAIN) 2859 goto again; 2860 if (err) { 2861 ret = err; 2862 goto done; 2863 } 2864 b = p->nodes[level]; 2865 slot = p->slots[level]; 2866 2867 /* 2868 * slot 0 is special, if we change the key 2869 * we have to update the parent pointer 2870 * which means we must have a write lock 2871 * on the parent 2872 */ 2873 if (slot == 0 && ins_len && 2874 write_lock_level < level + 1) { 2875 write_lock_level = level + 1; 2876 btrfs_release_path(p); 2877 goto again; 2878 } 2879 2880 unlock_up(p, level, lowest_unlock, 2881 min_write_lock_level, &write_lock_level); 2882 2883 if (level == lowest_level) { 2884 if (dec) 2885 p->slots[level]++; 2886 goto done; 2887 } 2888 2889 err = read_block_for_search(root, p, &b, level, 2890 slot, key); 2891 if (err == -EAGAIN) 2892 goto again; 2893 if (err) { 2894 ret = err; 2895 goto done; 2896 } 2897 2898 if (!p->skip_locking) { 2899 level = btrfs_header_level(b); 2900 if (level <= write_lock_level) { 2901 err = btrfs_try_tree_write_lock(b); 2902 if (!err) { 2903 btrfs_set_path_blocking(p); 2904 btrfs_tree_lock(b); 2905 btrfs_clear_path_blocking(p, b, 2906 BTRFS_WRITE_LOCK); 2907 } 2908 p->locks[level] = BTRFS_WRITE_LOCK; 2909 } else { 2910 err = btrfs_tree_read_lock_atomic(b); 2911 if (!err) { 2912 btrfs_set_path_blocking(p); 2913 btrfs_tree_read_lock(b); 2914 btrfs_clear_path_blocking(p, b, 2915 BTRFS_READ_LOCK); 2916 } 2917 p->locks[level] = BTRFS_READ_LOCK; 2918 } 2919 p->nodes[level] = b; 2920 } 2921 } else { 2922 p->slots[level] = slot; 2923 if (ins_len > 0 && 2924 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2925 if (write_lock_level < 1) { 2926 write_lock_level = 1; 2927 btrfs_release_path(p); 2928 goto again; 2929 } 2930 2931 btrfs_set_path_blocking(p); 2932 err = split_leaf(trans, root, key, 2933 p, ins_len, ret == 0); 2934 btrfs_clear_path_blocking(p, NULL, 0); 2935 2936 BUG_ON(err > 0); 2937 if (err) { 2938 ret = err; 2939 goto done; 2940 } 2941 } 2942 if (!p->search_for_split) 2943 unlock_up(p, level, lowest_unlock, 2944 min_write_lock_level, &write_lock_level); 2945 goto done; 2946 } 2947 } 2948 ret = 1; 2949 done: 2950 /* 2951 * we don't really know what they plan on doing with the path 2952 * from here on, so for now just mark it as blocking 2953 */ 2954 if (!p->leave_spinning) 2955 btrfs_set_path_blocking(p); 2956 if (ret < 0 && !p->skip_release_on_error) 2957 btrfs_release_path(p); 2958 return ret; 2959 } 2960 2961 /* 2962 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2963 * current state of the tree together with the operations recorded in the tree 2964 * modification log to search for the key in a previous version of this tree, as 2965 * denoted by the time_seq parameter. 2966 * 2967 * Naturally, there is no support for insert, delete or cow operations. 2968 * 2969 * The resulting path and return value will be set up as if we called 2970 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2971 */ 2972 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2973 struct btrfs_path *p, u64 time_seq) 2974 { 2975 struct btrfs_fs_info *fs_info = root->fs_info; 2976 struct extent_buffer *b; 2977 int slot; 2978 int ret; 2979 int err; 2980 int level; 2981 int lowest_unlock = 1; 2982 u8 lowest_level = 0; 2983 int prev_cmp = -1; 2984 2985 lowest_level = p->lowest_level; 2986 WARN_ON(p->nodes[0] != NULL); 2987 2988 if (p->search_commit_root) { 2989 BUG_ON(time_seq); 2990 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2991 } 2992 2993 again: 2994 b = get_old_root(root, time_seq); 2995 level = btrfs_header_level(b); 2996 p->locks[level] = BTRFS_READ_LOCK; 2997 2998 while (b) { 2999 level = btrfs_header_level(b); 3000 p->nodes[level] = b; 3001 btrfs_clear_path_blocking(p, NULL, 0); 3002 3003 /* 3004 * we have a lock on b and as long as we aren't changing 3005 * the tree, there is no way to for the items in b to change. 3006 * It is safe to drop the lock on our parent before we 3007 * go through the expensive btree search on b. 3008 */ 3009 btrfs_unlock_up_safe(p, level + 1); 3010 3011 /* 3012 * Since we can unwind ebs we want to do a real search every 3013 * time. 3014 */ 3015 prev_cmp = -1; 3016 ret = key_search(b, key, level, &prev_cmp, &slot); 3017 3018 if (level != 0) { 3019 int dec = 0; 3020 if (ret && slot > 0) { 3021 dec = 1; 3022 slot -= 1; 3023 } 3024 p->slots[level] = slot; 3025 unlock_up(p, level, lowest_unlock, 0, NULL); 3026 3027 if (level == lowest_level) { 3028 if (dec) 3029 p->slots[level]++; 3030 goto done; 3031 } 3032 3033 err = read_block_for_search(root, p, &b, level, 3034 slot, key); 3035 if (err == -EAGAIN) 3036 goto again; 3037 if (err) { 3038 ret = err; 3039 goto done; 3040 } 3041 3042 level = btrfs_header_level(b); 3043 err = btrfs_tree_read_lock_atomic(b); 3044 if (!err) { 3045 btrfs_set_path_blocking(p); 3046 btrfs_tree_read_lock(b); 3047 btrfs_clear_path_blocking(p, b, 3048 BTRFS_READ_LOCK); 3049 } 3050 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3051 if (!b) { 3052 ret = -ENOMEM; 3053 goto done; 3054 } 3055 p->locks[level] = BTRFS_READ_LOCK; 3056 p->nodes[level] = b; 3057 } else { 3058 p->slots[level] = slot; 3059 unlock_up(p, level, lowest_unlock, 0, NULL); 3060 goto done; 3061 } 3062 } 3063 ret = 1; 3064 done: 3065 if (!p->leave_spinning) 3066 btrfs_set_path_blocking(p); 3067 if (ret < 0) 3068 btrfs_release_path(p); 3069 3070 return ret; 3071 } 3072 3073 /* 3074 * helper to use instead of search slot if no exact match is needed but 3075 * instead the next or previous item should be returned. 3076 * When find_higher is true, the next higher item is returned, the next lower 3077 * otherwise. 3078 * When return_any and find_higher are both true, and no higher item is found, 3079 * return the next lower instead. 3080 * When return_any is true and find_higher is false, and no lower item is found, 3081 * return the next higher instead. 3082 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3083 * < 0 on error 3084 */ 3085 int btrfs_search_slot_for_read(struct btrfs_root *root, 3086 const struct btrfs_key *key, 3087 struct btrfs_path *p, int find_higher, 3088 int return_any) 3089 { 3090 int ret; 3091 struct extent_buffer *leaf; 3092 3093 again: 3094 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3095 if (ret <= 0) 3096 return ret; 3097 /* 3098 * a return value of 1 means the path is at the position where the 3099 * item should be inserted. Normally this is the next bigger item, 3100 * but in case the previous item is the last in a leaf, path points 3101 * to the first free slot in the previous leaf, i.e. at an invalid 3102 * item. 3103 */ 3104 leaf = p->nodes[0]; 3105 3106 if (find_higher) { 3107 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3108 ret = btrfs_next_leaf(root, p); 3109 if (ret <= 0) 3110 return ret; 3111 if (!return_any) 3112 return 1; 3113 /* 3114 * no higher item found, return the next 3115 * lower instead 3116 */ 3117 return_any = 0; 3118 find_higher = 0; 3119 btrfs_release_path(p); 3120 goto again; 3121 } 3122 } else { 3123 if (p->slots[0] == 0) { 3124 ret = btrfs_prev_leaf(root, p); 3125 if (ret < 0) 3126 return ret; 3127 if (!ret) { 3128 leaf = p->nodes[0]; 3129 if (p->slots[0] == btrfs_header_nritems(leaf)) 3130 p->slots[0]--; 3131 return 0; 3132 } 3133 if (!return_any) 3134 return 1; 3135 /* 3136 * no lower item found, return the next 3137 * higher instead 3138 */ 3139 return_any = 0; 3140 find_higher = 1; 3141 btrfs_release_path(p); 3142 goto again; 3143 } else { 3144 --p->slots[0]; 3145 } 3146 } 3147 return 0; 3148 } 3149 3150 /* 3151 * adjust the pointers going up the tree, starting at level 3152 * making sure the right key of each node is points to 'key'. 3153 * This is used after shifting pointers to the left, so it stops 3154 * fixing up pointers when a given leaf/node is not in slot 0 of the 3155 * higher levels 3156 * 3157 */ 3158 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3159 struct btrfs_path *path, 3160 struct btrfs_disk_key *key, int level) 3161 { 3162 int i; 3163 struct extent_buffer *t; 3164 3165 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3166 int tslot = path->slots[i]; 3167 if (!path->nodes[i]) 3168 break; 3169 t = path->nodes[i]; 3170 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3171 btrfs_set_node_key(t, key, tslot); 3172 btrfs_mark_buffer_dirty(path->nodes[i]); 3173 if (tslot != 0) 3174 break; 3175 } 3176 } 3177 3178 /* 3179 * update item key. 3180 * 3181 * This function isn't completely safe. It's the caller's responsibility 3182 * that the new key won't break the order 3183 */ 3184 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3185 struct btrfs_path *path, 3186 const struct btrfs_key *new_key) 3187 { 3188 struct btrfs_disk_key disk_key; 3189 struct extent_buffer *eb; 3190 int slot; 3191 3192 eb = path->nodes[0]; 3193 slot = path->slots[0]; 3194 if (slot > 0) { 3195 btrfs_item_key(eb, &disk_key, slot - 1); 3196 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3197 } 3198 if (slot < btrfs_header_nritems(eb) - 1) { 3199 btrfs_item_key(eb, &disk_key, slot + 1); 3200 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3201 } 3202 3203 btrfs_cpu_key_to_disk(&disk_key, new_key); 3204 btrfs_set_item_key(eb, &disk_key, slot); 3205 btrfs_mark_buffer_dirty(eb); 3206 if (slot == 0) 3207 fixup_low_keys(fs_info, path, &disk_key, 1); 3208 } 3209 3210 /* 3211 * try to push data from one node into the next node left in the 3212 * tree. 3213 * 3214 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3215 * error, and > 0 if there was no room in the left hand block. 3216 */ 3217 static int push_node_left(struct btrfs_trans_handle *trans, 3218 struct btrfs_fs_info *fs_info, 3219 struct extent_buffer *dst, 3220 struct extent_buffer *src, int empty) 3221 { 3222 int push_items = 0; 3223 int src_nritems; 3224 int dst_nritems; 3225 int ret = 0; 3226 3227 src_nritems = btrfs_header_nritems(src); 3228 dst_nritems = btrfs_header_nritems(dst); 3229 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3230 WARN_ON(btrfs_header_generation(src) != trans->transid); 3231 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3232 3233 if (!empty && src_nritems <= 8) 3234 return 1; 3235 3236 if (push_items <= 0) 3237 return 1; 3238 3239 if (empty) { 3240 push_items = min(src_nritems, push_items); 3241 if (push_items < src_nritems) { 3242 /* leave at least 8 pointers in the node if 3243 * we aren't going to empty it 3244 */ 3245 if (src_nritems - push_items < 8) { 3246 if (push_items <= 8) 3247 return 1; 3248 push_items -= 8; 3249 } 3250 } 3251 } else 3252 push_items = min(src_nritems - 8, push_items); 3253 3254 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3255 push_items); 3256 if (ret) { 3257 btrfs_abort_transaction(trans, ret); 3258 return ret; 3259 } 3260 copy_extent_buffer(dst, src, 3261 btrfs_node_key_ptr_offset(dst_nritems), 3262 btrfs_node_key_ptr_offset(0), 3263 push_items * sizeof(struct btrfs_key_ptr)); 3264 3265 if (push_items < src_nritems) { 3266 /* 3267 * don't call tree_mod_log_eb_move here, key removal was already 3268 * fully logged by tree_mod_log_eb_copy above. 3269 */ 3270 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3271 btrfs_node_key_ptr_offset(push_items), 3272 (src_nritems - push_items) * 3273 sizeof(struct btrfs_key_ptr)); 3274 } 3275 btrfs_set_header_nritems(src, src_nritems - push_items); 3276 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3277 btrfs_mark_buffer_dirty(src); 3278 btrfs_mark_buffer_dirty(dst); 3279 3280 return ret; 3281 } 3282 3283 /* 3284 * try to push data from one node into the next node right in the 3285 * tree. 3286 * 3287 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3288 * error, and > 0 if there was no room in the right hand block. 3289 * 3290 * this will only push up to 1/2 the contents of the left node over 3291 */ 3292 static int balance_node_right(struct btrfs_trans_handle *trans, 3293 struct btrfs_fs_info *fs_info, 3294 struct extent_buffer *dst, 3295 struct extent_buffer *src) 3296 { 3297 int push_items = 0; 3298 int max_push; 3299 int src_nritems; 3300 int dst_nritems; 3301 int ret = 0; 3302 3303 WARN_ON(btrfs_header_generation(src) != trans->transid); 3304 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3305 3306 src_nritems = btrfs_header_nritems(src); 3307 dst_nritems = btrfs_header_nritems(dst); 3308 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3309 if (push_items <= 0) 3310 return 1; 3311 3312 if (src_nritems < 4) 3313 return 1; 3314 3315 max_push = src_nritems / 2 + 1; 3316 /* don't try to empty the node */ 3317 if (max_push >= src_nritems) 3318 return 1; 3319 3320 if (max_push < push_items) 3321 push_items = max_push; 3322 3323 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems); 3324 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3325 btrfs_node_key_ptr_offset(0), 3326 (dst_nritems) * 3327 sizeof(struct btrfs_key_ptr)); 3328 3329 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3330 src_nritems - push_items, push_items); 3331 if (ret) { 3332 btrfs_abort_transaction(trans, ret); 3333 return ret; 3334 } 3335 copy_extent_buffer(dst, src, 3336 btrfs_node_key_ptr_offset(0), 3337 btrfs_node_key_ptr_offset(src_nritems - push_items), 3338 push_items * sizeof(struct btrfs_key_ptr)); 3339 3340 btrfs_set_header_nritems(src, src_nritems - push_items); 3341 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3342 3343 btrfs_mark_buffer_dirty(src); 3344 btrfs_mark_buffer_dirty(dst); 3345 3346 return ret; 3347 } 3348 3349 /* 3350 * helper function to insert a new root level in the tree. 3351 * A new node is allocated, and a single item is inserted to 3352 * point to the existing root 3353 * 3354 * returns zero on success or < 0 on failure. 3355 */ 3356 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3357 struct btrfs_root *root, 3358 struct btrfs_path *path, int level) 3359 { 3360 struct btrfs_fs_info *fs_info = root->fs_info; 3361 u64 lower_gen; 3362 struct extent_buffer *lower; 3363 struct extent_buffer *c; 3364 struct extent_buffer *old; 3365 struct btrfs_disk_key lower_key; 3366 3367 BUG_ON(path->nodes[level]); 3368 BUG_ON(path->nodes[level-1] != root->node); 3369 3370 lower = path->nodes[level-1]; 3371 if (level == 1) 3372 btrfs_item_key(lower, &lower_key, 0); 3373 else 3374 btrfs_node_key(lower, &lower_key, 0); 3375 3376 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3377 &lower_key, level, root->node->start, 0); 3378 if (IS_ERR(c)) 3379 return PTR_ERR(c); 3380 3381 root_add_used(root, fs_info->nodesize); 3382 3383 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header)); 3384 btrfs_set_header_nritems(c, 1); 3385 btrfs_set_header_level(c, level); 3386 btrfs_set_header_bytenr(c, c->start); 3387 btrfs_set_header_generation(c, trans->transid); 3388 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3389 btrfs_set_header_owner(c, root->root_key.objectid); 3390 3391 write_extent_buffer_fsid(c, fs_info->fsid); 3392 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid); 3393 3394 btrfs_set_node_key(c, &lower_key, 0); 3395 btrfs_set_node_blockptr(c, 0, lower->start); 3396 lower_gen = btrfs_header_generation(lower); 3397 WARN_ON(lower_gen != trans->transid); 3398 3399 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3400 3401 btrfs_mark_buffer_dirty(c); 3402 3403 old = root->node; 3404 tree_mod_log_set_root_pointer(root, c, 0); 3405 rcu_assign_pointer(root->node, c); 3406 3407 /* the super has an extra ref to root->node */ 3408 free_extent_buffer(old); 3409 3410 add_root_to_dirty_list(root); 3411 extent_buffer_get(c); 3412 path->nodes[level] = c; 3413 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3414 path->slots[level] = 0; 3415 return 0; 3416 } 3417 3418 /* 3419 * worker function to insert a single pointer in a node. 3420 * the node should have enough room for the pointer already 3421 * 3422 * slot and level indicate where you want the key to go, and 3423 * blocknr is the block the key points to. 3424 */ 3425 static void insert_ptr(struct btrfs_trans_handle *trans, 3426 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3427 struct btrfs_disk_key *key, u64 bytenr, 3428 int slot, int level) 3429 { 3430 struct extent_buffer *lower; 3431 int nritems; 3432 int ret; 3433 3434 BUG_ON(!path->nodes[level]); 3435 btrfs_assert_tree_locked(path->nodes[level]); 3436 lower = path->nodes[level]; 3437 nritems = btrfs_header_nritems(lower); 3438 BUG_ON(slot > nritems); 3439 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3440 if (slot != nritems) { 3441 if (level) 3442 tree_mod_log_eb_move(fs_info, lower, slot + 1, 3443 slot, nritems - slot); 3444 memmove_extent_buffer(lower, 3445 btrfs_node_key_ptr_offset(slot + 1), 3446 btrfs_node_key_ptr_offset(slot), 3447 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3448 } 3449 if (level) { 3450 ret = tree_mod_log_insert_key(fs_info, lower, slot, 3451 MOD_LOG_KEY_ADD, GFP_NOFS); 3452 BUG_ON(ret < 0); 3453 } 3454 btrfs_set_node_key(lower, key, slot); 3455 btrfs_set_node_blockptr(lower, slot, bytenr); 3456 WARN_ON(trans->transid == 0); 3457 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3458 btrfs_set_header_nritems(lower, nritems + 1); 3459 btrfs_mark_buffer_dirty(lower); 3460 } 3461 3462 /* 3463 * split the node at the specified level in path in two. 3464 * The path is corrected to point to the appropriate node after the split 3465 * 3466 * Before splitting this tries to make some room in the node by pushing 3467 * left and right, if either one works, it returns right away. 3468 * 3469 * returns 0 on success and < 0 on failure 3470 */ 3471 static noinline int split_node(struct btrfs_trans_handle *trans, 3472 struct btrfs_root *root, 3473 struct btrfs_path *path, int level) 3474 { 3475 struct btrfs_fs_info *fs_info = root->fs_info; 3476 struct extent_buffer *c; 3477 struct extent_buffer *split; 3478 struct btrfs_disk_key disk_key; 3479 int mid; 3480 int ret; 3481 u32 c_nritems; 3482 3483 c = path->nodes[level]; 3484 WARN_ON(btrfs_header_generation(c) != trans->transid); 3485 if (c == root->node) { 3486 /* 3487 * trying to split the root, lets make a new one 3488 * 3489 * tree mod log: We don't log_removal old root in 3490 * insert_new_root, because that root buffer will be kept as a 3491 * normal node. We are going to log removal of half of the 3492 * elements below with tree_mod_log_eb_copy. We're holding a 3493 * tree lock on the buffer, which is why we cannot race with 3494 * other tree_mod_log users. 3495 */ 3496 ret = insert_new_root(trans, root, path, level + 1); 3497 if (ret) 3498 return ret; 3499 } else { 3500 ret = push_nodes_for_insert(trans, root, path, level); 3501 c = path->nodes[level]; 3502 if (!ret && btrfs_header_nritems(c) < 3503 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3504 return 0; 3505 if (ret < 0) 3506 return ret; 3507 } 3508 3509 c_nritems = btrfs_header_nritems(c); 3510 mid = (c_nritems + 1) / 2; 3511 btrfs_node_key(c, &disk_key, mid); 3512 3513 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3514 &disk_key, level, c->start, 0); 3515 if (IS_ERR(split)) 3516 return PTR_ERR(split); 3517 3518 root_add_used(root, fs_info->nodesize); 3519 3520 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header)); 3521 btrfs_set_header_level(split, btrfs_header_level(c)); 3522 btrfs_set_header_bytenr(split, split->start); 3523 btrfs_set_header_generation(split, trans->transid); 3524 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3525 btrfs_set_header_owner(split, root->root_key.objectid); 3526 write_extent_buffer_fsid(split, fs_info->fsid); 3527 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid); 3528 3529 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3530 if (ret) { 3531 btrfs_abort_transaction(trans, ret); 3532 return ret; 3533 } 3534 copy_extent_buffer(split, c, 3535 btrfs_node_key_ptr_offset(0), 3536 btrfs_node_key_ptr_offset(mid), 3537 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3538 btrfs_set_header_nritems(split, c_nritems - mid); 3539 btrfs_set_header_nritems(c, mid); 3540 ret = 0; 3541 3542 btrfs_mark_buffer_dirty(c); 3543 btrfs_mark_buffer_dirty(split); 3544 3545 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3546 path->slots[level + 1] + 1, level + 1); 3547 3548 if (path->slots[level] >= mid) { 3549 path->slots[level] -= mid; 3550 btrfs_tree_unlock(c); 3551 free_extent_buffer(c); 3552 path->nodes[level] = split; 3553 path->slots[level + 1] += 1; 3554 } else { 3555 btrfs_tree_unlock(split); 3556 free_extent_buffer(split); 3557 } 3558 return ret; 3559 } 3560 3561 /* 3562 * how many bytes are required to store the items in a leaf. start 3563 * and nr indicate which items in the leaf to check. This totals up the 3564 * space used both by the item structs and the item data 3565 */ 3566 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3567 { 3568 struct btrfs_item *start_item; 3569 struct btrfs_item *end_item; 3570 struct btrfs_map_token token; 3571 int data_len; 3572 int nritems = btrfs_header_nritems(l); 3573 int end = min(nritems, start + nr) - 1; 3574 3575 if (!nr) 3576 return 0; 3577 btrfs_init_map_token(&token); 3578 start_item = btrfs_item_nr(start); 3579 end_item = btrfs_item_nr(end); 3580 data_len = btrfs_token_item_offset(l, start_item, &token) + 3581 btrfs_token_item_size(l, start_item, &token); 3582 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3583 data_len += sizeof(struct btrfs_item) * nr; 3584 WARN_ON(data_len < 0); 3585 return data_len; 3586 } 3587 3588 /* 3589 * The space between the end of the leaf items and 3590 * the start of the leaf data. IOW, how much room 3591 * the leaf has left for both items and data 3592 */ 3593 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3594 struct extent_buffer *leaf) 3595 { 3596 int nritems = btrfs_header_nritems(leaf); 3597 int ret; 3598 3599 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3600 if (ret < 0) { 3601 btrfs_crit(fs_info, 3602 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3603 ret, 3604 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3605 leaf_space_used(leaf, 0, nritems), nritems); 3606 } 3607 return ret; 3608 } 3609 3610 /* 3611 * min slot controls the lowest index we're willing to push to the 3612 * right. We'll push up to and including min_slot, but no lower 3613 */ 3614 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3615 struct btrfs_path *path, 3616 int data_size, int empty, 3617 struct extent_buffer *right, 3618 int free_space, u32 left_nritems, 3619 u32 min_slot) 3620 { 3621 struct extent_buffer *left = path->nodes[0]; 3622 struct extent_buffer *upper = path->nodes[1]; 3623 struct btrfs_map_token token; 3624 struct btrfs_disk_key disk_key; 3625 int slot; 3626 u32 i; 3627 int push_space = 0; 3628 int push_items = 0; 3629 struct btrfs_item *item; 3630 u32 nr; 3631 u32 right_nritems; 3632 u32 data_end; 3633 u32 this_item_size; 3634 3635 btrfs_init_map_token(&token); 3636 3637 if (empty) 3638 nr = 0; 3639 else 3640 nr = max_t(u32, 1, min_slot); 3641 3642 if (path->slots[0] >= left_nritems) 3643 push_space += data_size; 3644 3645 slot = path->slots[1]; 3646 i = left_nritems - 1; 3647 while (i >= nr) { 3648 item = btrfs_item_nr(i); 3649 3650 if (!empty && push_items > 0) { 3651 if (path->slots[0] > i) 3652 break; 3653 if (path->slots[0] == i) { 3654 int space = btrfs_leaf_free_space(fs_info, left); 3655 if (space + push_space * 2 > free_space) 3656 break; 3657 } 3658 } 3659 3660 if (path->slots[0] == i) 3661 push_space += data_size; 3662 3663 this_item_size = btrfs_item_size(left, item); 3664 if (this_item_size + sizeof(*item) + push_space > free_space) 3665 break; 3666 3667 push_items++; 3668 push_space += this_item_size + sizeof(*item); 3669 if (i == 0) 3670 break; 3671 i--; 3672 } 3673 3674 if (push_items == 0) 3675 goto out_unlock; 3676 3677 WARN_ON(!empty && push_items == left_nritems); 3678 3679 /* push left to right */ 3680 right_nritems = btrfs_header_nritems(right); 3681 3682 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3683 push_space -= leaf_data_end(fs_info, left); 3684 3685 /* make room in the right data area */ 3686 data_end = leaf_data_end(fs_info, right); 3687 memmove_extent_buffer(right, 3688 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3689 BTRFS_LEAF_DATA_OFFSET + data_end, 3690 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3691 3692 /* copy from the left data area */ 3693 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3694 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3695 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), 3696 push_space); 3697 3698 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3699 btrfs_item_nr_offset(0), 3700 right_nritems * sizeof(struct btrfs_item)); 3701 3702 /* copy the items from left to right */ 3703 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3704 btrfs_item_nr_offset(left_nritems - push_items), 3705 push_items * sizeof(struct btrfs_item)); 3706 3707 /* update the item pointers */ 3708 right_nritems += push_items; 3709 btrfs_set_header_nritems(right, right_nritems); 3710 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3711 for (i = 0; i < right_nritems; i++) { 3712 item = btrfs_item_nr(i); 3713 push_space -= btrfs_token_item_size(right, item, &token); 3714 btrfs_set_token_item_offset(right, item, push_space, &token); 3715 } 3716 3717 left_nritems -= push_items; 3718 btrfs_set_header_nritems(left, left_nritems); 3719 3720 if (left_nritems) 3721 btrfs_mark_buffer_dirty(left); 3722 else 3723 clean_tree_block(fs_info, left); 3724 3725 btrfs_mark_buffer_dirty(right); 3726 3727 btrfs_item_key(right, &disk_key, 0); 3728 btrfs_set_node_key(upper, &disk_key, slot + 1); 3729 btrfs_mark_buffer_dirty(upper); 3730 3731 /* then fixup the leaf pointer in the path */ 3732 if (path->slots[0] >= left_nritems) { 3733 path->slots[0] -= left_nritems; 3734 if (btrfs_header_nritems(path->nodes[0]) == 0) 3735 clean_tree_block(fs_info, path->nodes[0]); 3736 btrfs_tree_unlock(path->nodes[0]); 3737 free_extent_buffer(path->nodes[0]); 3738 path->nodes[0] = right; 3739 path->slots[1] += 1; 3740 } else { 3741 btrfs_tree_unlock(right); 3742 free_extent_buffer(right); 3743 } 3744 return 0; 3745 3746 out_unlock: 3747 btrfs_tree_unlock(right); 3748 free_extent_buffer(right); 3749 return 1; 3750 } 3751 3752 /* 3753 * push some data in the path leaf to the right, trying to free up at 3754 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3755 * 3756 * returns 1 if the push failed because the other node didn't have enough 3757 * room, 0 if everything worked out and < 0 if there were major errors. 3758 * 3759 * this will push starting from min_slot to the end of the leaf. It won't 3760 * push any slot lower than min_slot 3761 */ 3762 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3763 *root, struct btrfs_path *path, 3764 int min_data_size, int data_size, 3765 int empty, u32 min_slot) 3766 { 3767 struct btrfs_fs_info *fs_info = root->fs_info; 3768 struct extent_buffer *left = path->nodes[0]; 3769 struct extent_buffer *right; 3770 struct extent_buffer *upper; 3771 int slot; 3772 int free_space; 3773 u32 left_nritems; 3774 int ret; 3775 3776 if (!path->nodes[1]) 3777 return 1; 3778 3779 slot = path->slots[1]; 3780 upper = path->nodes[1]; 3781 if (slot >= btrfs_header_nritems(upper) - 1) 3782 return 1; 3783 3784 btrfs_assert_tree_locked(path->nodes[1]); 3785 3786 right = read_node_slot(fs_info, upper, slot + 1); 3787 /* 3788 * slot + 1 is not valid or we fail to read the right node, 3789 * no big deal, just return. 3790 */ 3791 if (IS_ERR(right)) 3792 return 1; 3793 3794 btrfs_tree_lock(right); 3795 btrfs_set_lock_blocking(right); 3796 3797 free_space = btrfs_leaf_free_space(fs_info, right); 3798 if (free_space < data_size) 3799 goto out_unlock; 3800 3801 /* cow and double check */ 3802 ret = btrfs_cow_block(trans, root, right, upper, 3803 slot + 1, &right); 3804 if (ret) 3805 goto out_unlock; 3806 3807 free_space = btrfs_leaf_free_space(fs_info, right); 3808 if (free_space < data_size) 3809 goto out_unlock; 3810 3811 left_nritems = btrfs_header_nritems(left); 3812 if (left_nritems == 0) 3813 goto out_unlock; 3814 3815 if (path->slots[0] == left_nritems && !empty) { 3816 /* Key greater than all keys in the leaf, right neighbor has 3817 * enough room for it and we're not emptying our leaf to delete 3818 * it, therefore use right neighbor to insert the new item and 3819 * no need to touch/dirty our left leaft. */ 3820 btrfs_tree_unlock(left); 3821 free_extent_buffer(left); 3822 path->nodes[0] = right; 3823 path->slots[0] = 0; 3824 path->slots[1]++; 3825 return 0; 3826 } 3827 3828 return __push_leaf_right(fs_info, path, min_data_size, empty, 3829 right, free_space, left_nritems, min_slot); 3830 out_unlock: 3831 btrfs_tree_unlock(right); 3832 free_extent_buffer(right); 3833 return 1; 3834 } 3835 3836 /* 3837 * push some data in the path leaf to the left, trying to free up at 3838 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3839 * 3840 * max_slot can put a limit on how far into the leaf we'll push items. The 3841 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3842 * items 3843 */ 3844 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3845 struct btrfs_path *path, int data_size, 3846 int empty, struct extent_buffer *left, 3847 int free_space, u32 right_nritems, 3848 u32 max_slot) 3849 { 3850 struct btrfs_disk_key disk_key; 3851 struct extent_buffer *right = path->nodes[0]; 3852 int i; 3853 int push_space = 0; 3854 int push_items = 0; 3855 struct btrfs_item *item; 3856 u32 old_left_nritems; 3857 u32 nr; 3858 int ret = 0; 3859 u32 this_item_size; 3860 u32 old_left_item_size; 3861 struct btrfs_map_token token; 3862 3863 btrfs_init_map_token(&token); 3864 3865 if (empty) 3866 nr = min(right_nritems, max_slot); 3867 else 3868 nr = min(right_nritems - 1, max_slot); 3869 3870 for (i = 0; i < nr; i++) { 3871 item = btrfs_item_nr(i); 3872 3873 if (!empty && push_items > 0) { 3874 if (path->slots[0] < i) 3875 break; 3876 if (path->slots[0] == i) { 3877 int space = btrfs_leaf_free_space(fs_info, right); 3878 if (space + push_space * 2 > free_space) 3879 break; 3880 } 3881 } 3882 3883 if (path->slots[0] == i) 3884 push_space += data_size; 3885 3886 this_item_size = btrfs_item_size(right, item); 3887 if (this_item_size + sizeof(*item) + push_space > free_space) 3888 break; 3889 3890 push_items++; 3891 push_space += this_item_size + sizeof(*item); 3892 } 3893 3894 if (push_items == 0) { 3895 ret = 1; 3896 goto out; 3897 } 3898 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3899 3900 /* push data from right to left */ 3901 copy_extent_buffer(left, right, 3902 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3903 btrfs_item_nr_offset(0), 3904 push_items * sizeof(struct btrfs_item)); 3905 3906 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3907 btrfs_item_offset_nr(right, push_items - 1); 3908 3909 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3910 leaf_data_end(fs_info, left) - push_space, 3911 BTRFS_LEAF_DATA_OFFSET + 3912 btrfs_item_offset_nr(right, push_items - 1), 3913 push_space); 3914 old_left_nritems = btrfs_header_nritems(left); 3915 BUG_ON(old_left_nritems <= 0); 3916 3917 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3918 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3919 u32 ioff; 3920 3921 item = btrfs_item_nr(i); 3922 3923 ioff = btrfs_token_item_offset(left, item, &token); 3924 btrfs_set_token_item_offset(left, item, 3925 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3926 &token); 3927 } 3928 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3929 3930 /* fixup right node */ 3931 if (push_items > right_nritems) 3932 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3933 right_nritems); 3934 3935 if (push_items < right_nritems) { 3936 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3937 leaf_data_end(fs_info, right); 3938 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3939 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3940 BTRFS_LEAF_DATA_OFFSET + 3941 leaf_data_end(fs_info, right), push_space); 3942 3943 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3944 btrfs_item_nr_offset(push_items), 3945 (btrfs_header_nritems(right) - push_items) * 3946 sizeof(struct btrfs_item)); 3947 } 3948 right_nritems -= push_items; 3949 btrfs_set_header_nritems(right, right_nritems); 3950 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3951 for (i = 0; i < right_nritems; i++) { 3952 item = btrfs_item_nr(i); 3953 3954 push_space = push_space - btrfs_token_item_size(right, 3955 item, &token); 3956 btrfs_set_token_item_offset(right, item, push_space, &token); 3957 } 3958 3959 btrfs_mark_buffer_dirty(left); 3960 if (right_nritems) 3961 btrfs_mark_buffer_dirty(right); 3962 else 3963 clean_tree_block(fs_info, right); 3964 3965 btrfs_item_key(right, &disk_key, 0); 3966 fixup_low_keys(fs_info, path, &disk_key, 1); 3967 3968 /* then fixup the leaf pointer in the path */ 3969 if (path->slots[0] < push_items) { 3970 path->slots[0] += old_left_nritems; 3971 btrfs_tree_unlock(path->nodes[0]); 3972 free_extent_buffer(path->nodes[0]); 3973 path->nodes[0] = left; 3974 path->slots[1] -= 1; 3975 } else { 3976 btrfs_tree_unlock(left); 3977 free_extent_buffer(left); 3978 path->slots[0] -= push_items; 3979 } 3980 BUG_ON(path->slots[0] < 0); 3981 return ret; 3982 out: 3983 btrfs_tree_unlock(left); 3984 free_extent_buffer(left); 3985 return ret; 3986 } 3987 3988 /* 3989 * push some data in the path leaf to the left, trying to free up at 3990 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3991 * 3992 * max_slot can put a limit on how far into the leaf we'll push items. The 3993 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3994 * items 3995 */ 3996 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3997 *root, struct btrfs_path *path, int min_data_size, 3998 int data_size, int empty, u32 max_slot) 3999 { 4000 struct btrfs_fs_info *fs_info = root->fs_info; 4001 struct extent_buffer *right = path->nodes[0]; 4002 struct extent_buffer *left; 4003 int slot; 4004 int free_space; 4005 u32 right_nritems; 4006 int ret = 0; 4007 4008 slot = path->slots[1]; 4009 if (slot == 0) 4010 return 1; 4011 if (!path->nodes[1]) 4012 return 1; 4013 4014 right_nritems = btrfs_header_nritems(right); 4015 if (right_nritems == 0) 4016 return 1; 4017 4018 btrfs_assert_tree_locked(path->nodes[1]); 4019 4020 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 4021 /* 4022 * slot - 1 is not valid or we fail to read the left node, 4023 * no big deal, just return. 4024 */ 4025 if (IS_ERR(left)) 4026 return 1; 4027 4028 btrfs_tree_lock(left); 4029 btrfs_set_lock_blocking(left); 4030 4031 free_space = btrfs_leaf_free_space(fs_info, left); 4032 if (free_space < data_size) { 4033 ret = 1; 4034 goto out; 4035 } 4036 4037 /* cow and double check */ 4038 ret = btrfs_cow_block(trans, root, left, 4039 path->nodes[1], slot - 1, &left); 4040 if (ret) { 4041 /* we hit -ENOSPC, but it isn't fatal here */ 4042 if (ret == -ENOSPC) 4043 ret = 1; 4044 goto out; 4045 } 4046 4047 free_space = btrfs_leaf_free_space(fs_info, left); 4048 if (free_space < data_size) { 4049 ret = 1; 4050 goto out; 4051 } 4052 4053 return __push_leaf_left(fs_info, path, min_data_size, 4054 empty, left, free_space, right_nritems, 4055 max_slot); 4056 out: 4057 btrfs_tree_unlock(left); 4058 free_extent_buffer(left); 4059 return ret; 4060 } 4061 4062 /* 4063 * split the path's leaf in two, making sure there is at least data_size 4064 * available for the resulting leaf level of the path. 4065 */ 4066 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4067 struct btrfs_fs_info *fs_info, 4068 struct btrfs_path *path, 4069 struct extent_buffer *l, 4070 struct extent_buffer *right, 4071 int slot, int mid, int nritems) 4072 { 4073 int data_copy_size; 4074 int rt_data_off; 4075 int i; 4076 struct btrfs_disk_key disk_key; 4077 struct btrfs_map_token token; 4078 4079 btrfs_init_map_token(&token); 4080 4081 nritems = nritems - mid; 4082 btrfs_set_header_nritems(right, nritems); 4083 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4084 4085 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4086 btrfs_item_nr_offset(mid), 4087 nritems * sizeof(struct btrfs_item)); 4088 4089 copy_extent_buffer(right, l, 4090 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4091 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4092 leaf_data_end(fs_info, l), data_copy_size); 4093 4094 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4095 4096 for (i = 0; i < nritems; i++) { 4097 struct btrfs_item *item = btrfs_item_nr(i); 4098 u32 ioff; 4099 4100 ioff = btrfs_token_item_offset(right, item, &token); 4101 btrfs_set_token_item_offset(right, item, 4102 ioff + rt_data_off, &token); 4103 } 4104 4105 btrfs_set_header_nritems(l, mid); 4106 btrfs_item_key(right, &disk_key, 0); 4107 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4108 path->slots[1] + 1, 1); 4109 4110 btrfs_mark_buffer_dirty(right); 4111 btrfs_mark_buffer_dirty(l); 4112 BUG_ON(path->slots[0] != slot); 4113 4114 if (mid <= slot) { 4115 btrfs_tree_unlock(path->nodes[0]); 4116 free_extent_buffer(path->nodes[0]); 4117 path->nodes[0] = right; 4118 path->slots[0] -= mid; 4119 path->slots[1] += 1; 4120 } else { 4121 btrfs_tree_unlock(right); 4122 free_extent_buffer(right); 4123 } 4124 4125 BUG_ON(path->slots[0] < 0); 4126 } 4127 4128 /* 4129 * double splits happen when we need to insert a big item in the middle 4130 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4131 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4132 * A B C 4133 * 4134 * We avoid this by trying to push the items on either side of our target 4135 * into the adjacent leaves. If all goes well we can avoid the double split 4136 * completely. 4137 */ 4138 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4139 struct btrfs_root *root, 4140 struct btrfs_path *path, 4141 int data_size) 4142 { 4143 struct btrfs_fs_info *fs_info = root->fs_info; 4144 int ret; 4145 int progress = 0; 4146 int slot; 4147 u32 nritems; 4148 int space_needed = data_size; 4149 4150 slot = path->slots[0]; 4151 if (slot < btrfs_header_nritems(path->nodes[0])) 4152 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4153 4154 /* 4155 * try to push all the items after our slot into the 4156 * right leaf 4157 */ 4158 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4159 if (ret < 0) 4160 return ret; 4161 4162 if (ret == 0) 4163 progress++; 4164 4165 nritems = btrfs_header_nritems(path->nodes[0]); 4166 /* 4167 * our goal is to get our slot at the start or end of a leaf. If 4168 * we've done so we're done 4169 */ 4170 if (path->slots[0] == 0 || path->slots[0] == nritems) 4171 return 0; 4172 4173 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4174 return 0; 4175 4176 /* try to push all the items before our slot into the next leaf */ 4177 slot = path->slots[0]; 4178 space_needed = data_size; 4179 if (slot > 0) 4180 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4181 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4182 if (ret < 0) 4183 return ret; 4184 4185 if (ret == 0) 4186 progress++; 4187 4188 if (progress) 4189 return 0; 4190 return 1; 4191 } 4192 4193 /* 4194 * split the path's leaf in two, making sure there is at least data_size 4195 * available for the resulting leaf level of the path. 4196 * 4197 * returns 0 if all went well and < 0 on failure. 4198 */ 4199 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4200 struct btrfs_root *root, 4201 const struct btrfs_key *ins_key, 4202 struct btrfs_path *path, int data_size, 4203 int extend) 4204 { 4205 struct btrfs_disk_key disk_key; 4206 struct extent_buffer *l; 4207 u32 nritems; 4208 int mid; 4209 int slot; 4210 struct extent_buffer *right; 4211 struct btrfs_fs_info *fs_info = root->fs_info; 4212 int ret = 0; 4213 int wret; 4214 int split; 4215 int num_doubles = 0; 4216 int tried_avoid_double = 0; 4217 4218 l = path->nodes[0]; 4219 slot = path->slots[0]; 4220 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4221 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4222 return -EOVERFLOW; 4223 4224 /* first try to make some room by pushing left and right */ 4225 if (data_size && path->nodes[1]) { 4226 int space_needed = data_size; 4227 4228 if (slot < btrfs_header_nritems(l)) 4229 space_needed -= btrfs_leaf_free_space(fs_info, l); 4230 4231 wret = push_leaf_right(trans, root, path, space_needed, 4232 space_needed, 0, 0); 4233 if (wret < 0) 4234 return wret; 4235 if (wret) { 4236 space_needed = data_size; 4237 if (slot > 0) 4238 space_needed -= btrfs_leaf_free_space(fs_info, 4239 l); 4240 wret = push_leaf_left(trans, root, path, space_needed, 4241 space_needed, 0, (u32)-1); 4242 if (wret < 0) 4243 return wret; 4244 } 4245 l = path->nodes[0]; 4246 4247 /* did the pushes work? */ 4248 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4249 return 0; 4250 } 4251 4252 if (!path->nodes[1]) { 4253 ret = insert_new_root(trans, root, path, 1); 4254 if (ret) 4255 return ret; 4256 } 4257 again: 4258 split = 1; 4259 l = path->nodes[0]; 4260 slot = path->slots[0]; 4261 nritems = btrfs_header_nritems(l); 4262 mid = (nritems + 1) / 2; 4263 4264 if (mid <= slot) { 4265 if (nritems == 1 || 4266 leaf_space_used(l, mid, nritems - mid) + data_size > 4267 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4268 if (slot >= nritems) { 4269 split = 0; 4270 } else { 4271 mid = slot; 4272 if (mid != nritems && 4273 leaf_space_used(l, mid, nritems - mid) + 4274 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4275 if (data_size && !tried_avoid_double) 4276 goto push_for_double; 4277 split = 2; 4278 } 4279 } 4280 } 4281 } else { 4282 if (leaf_space_used(l, 0, mid) + data_size > 4283 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4284 if (!extend && data_size && slot == 0) { 4285 split = 0; 4286 } else if ((extend || !data_size) && slot == 0) { 4287 mid = 1; 4288 } else { 4289 mid = slot; 4290 if (mid != nritems && 4291 leaf_space_used(l, mid, nritems - mid) + 4292 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4293 if (data_size && !tried_avoid_double) 4294 goto push_for_double; 4295 split = 2; 4296 } 4297 } 4298 } 4299 } 4300 4301 if (split == 0) 4302 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4303 else 4304 btrfs_item_key(l, &disk_key, mid); 4305 4306 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4307 &disk_key, 0, l->start, 0); 4308 if (IS_ERR(right)) 4309 return PTR_ERR(right); 4310 4311 root_add_used(root, fs_info->nodesize); 4312 4313 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header)); 4314 btrfs_set_header_bytenr(right, right->start); 4315 btrfs_set_header_generation(right, trans->transid); 4316 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4317 btrfs_set_header_owner(right, root->root_key.objectid); 4318 btrfs_set_header_level(right, 0); 4319 write_extent_buffer_fsid(right, fs_info->fsid); 4320 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid); 4321 4322 if (split == 0) { 4323 if (mid <= slot) { 4324 btrfs_set_header_nritems(right, 0); 4325 insert_ptr(trans, fs_info, path, &disk_key, 4326 right->start, path->slots[1] + 1, 1); 4327 btrfs_tree_unlock(path->nodes[0]); 4328 free_extent_buffer(path->nodes[0]); 4329 path->nodes[0] = right; 4330 path->slots[0] = 0; 4331 path->slots[1] += 1; 4332 } else { 4333 btrfs_set_header_nritems(right, 0); 4334 insert_ptr(trans, fs_info, path, &disk_key, 4335 right->start, path->slots[1], 1); 4336 btrfs_tree_unlock(path->nodes[0]); 4337 free_extent_buffer(path->nodes[0]); 4338 path->nodes[0] = right; 4339 path->slots[0] = 0; 4340 if (path->slots[1] == 0) 4341 fixup_low_keys(fs_info, path, &disk_key, 1); 4342 } 4343 /* 4344 * We create a new leaf 'right' for the required ins_len and 4345 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4346 * the content of ins_len to 'right'. 4347 */ 4348 return ret; 4349 } 4350 4351 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4352 4353 if (split == 2) { 4354 BUG_ON(num_doubles != 0); 4355 num_doubles++; 4356 goto again; 4357 } 4358 4359 return 0; 4360 4361 push_for_double: 4362 push_for_double_split(trans, root, path, data_size); 4363 tried_avoid_double = 1; 4364 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4365 return 0; 4366 goto again; 4367 } 4368 4369 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4370 struct btrfs_root *root, 4371 struct btrfs_path *path, int ins_len) 4372 { 4373 struct btrfs_fs_info *fs_info = root->fs_info; 4374 struct btrfs_key key; 4375 struct extent_buffer *leaf; 4376 struct btrfs_file_extent_item *fi; 4377 u64 extent_len = 0; 4378 u32 item_size; 4379 int ret; 4380 4381 leaf = path->nodes[0]; 4382 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4383 4384 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4385 key.type != BTRFS_EXTENT_CSUM_KEY); 4386 4387 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4388 return 0; 4389 4390 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4391 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4392 fi = btrfs_item_ptr(leaf, path->slots[0], 4393 struct btrfs_file_extent_item); 4394 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4395 } 4396 btrfs_release_path(path); 4397 4398 path->keep_locks = 1; 4399 path->search_for_split = 1; 4400 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4401 path->search_for_split = 0; 4402 if (ret > 0) 4403 ret = -EAGAIN; 4404 if (ret < 0) 4405 goto err; 4406 4407 ret = -EAGAIN; 4408 leaf = path->nodes[0]; 4409 /* if our item isn't there, return now */ 4410 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4411 goto err; 4412 4413 /* the leaf has changed, it now has room. return now */ 4414 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4415 goto err; 4416 4417 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4418 fi = btrfs_item_ptr(leaf, path->slots[0], 4419 struct btrfs_file_extent_item); 4420 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4421 goto err; 4422 } 4423 4424 btrfs_set_path_blocking(path); 4425 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4426 if (ret) 4427 goto err; 4428 4429 path->keep_locks = 0; 4430 btrfs_unlock_up_safe(path, 1); 4431 return 0; 4432 err: 4433 path->keep_locks = 0; 4434 return ret; 4435 } 4436 4437 static noinline int split_item(struct btrfs_fs_info *fs_info, 4438 struct btrfs_path *path, 4439 const struct btrfs_key *new_key, 4440 unsigned long split_offset) 4441 { 4442 struct extent_buffer *leaf; 4443 struct btrfs_item *item; 4444 struct btrfs_item *new_item; 4445 int slot; 4446 char *buf; 4447 u32 nritems; 4448 u32 item_size; 4449 u32 orig_offset; 4450 struct btrfs_disk_key disk_key; 4451 4452 leaf = path->nodes[0]; 4453 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4454 4455 btrfs_set_path_blocking(path); 4456 4457 item = btrfs_item_nr(path->slots[0]); 4458 orig_offset = btrfs_item_offset(leaf, item); 4459 item_size = btrfs_item_size(leaf, item); 4460 4461 buf = kmalloc(item_size, GFP_NOFS); 4462 if (!buf) 4463 return -ENOMEM; 4464 4465 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4466 path->slots[0]), item_size); 4467 4468 slot = path->slots[0] + 1; 4469 nritems = btrfs_header_nritems(leaf); 4470 if (slot != nritems) { 4471 /* shift the items */ 4472 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4473 btrfs_item_nr_offset(slot), 4474 (nritems - slot) * sizeof(struct btrfs_item)); 4475 } 4476 4477 btrfs_cpu_key_to_disk(&disk_key, new_key); 4478 btrfs_set_item_key(leaf, &disk_key, slot); 4479 4480 new_item = btrfs_item_nr(slot); 4481 4482 btrfs_set_item_offset(leaf, new_item, orig_offset); 4483 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4484 4485 btrfs_set_item_offset(leaf, item, 4486 orig_offset + item_size - split_offset); 4487 btrfs_set_item_size(leaf, item, split_offset); 4488 4489 btrfs_set_header_nritems(leaf, nritems + 1); 4490 4491 /* write the data for the start of the original item */ 4492 write_extent_buffer(leaf, buf, 4493 btrfs_item_ptr_offset(leaf, path->slots[0]), 4494 split_offset); 4495 4496 /* write the data for the new item */ 4497 write_extent_buffer(leaf, buf + split_offset, 4498 btrfs_item_ptr_offset(leaf, slot), 4499 item_size - split_offset); 4500 btrfs_mark_buffer_dirty(leaf); 4501 4502 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4503 kfree(buf); 4504 return 0; 4505 } 4506 4507 /* 4508 * This function splits a single item into two items, 4509 * giving 'new_key' to the new item and splitting the 4510 * old one at split_offset (from the start of the item). 4511 * 4512 * The path may be released by this operation. After 4513 * the split, the path is pointing to the old item. The 4514 * new item is going to be in the same node as the old one. 4515 * 4516 * Note, the item being split must be smaller enough to live alone on 4517 * a tree block with room for one extra struct btrfs_item 4518 * 4519 * This allows us to split the item in place, keeping a lock on the 4520 * leaf the entire time. 4521 */ 4522 int btrfs_split_item(struct btrfs_trans_handle *trans, 4523 struct btrfs_root *root, 4524 struct btrfs_path *path, 4525 const struct btrfs_key *new_key, 4526 unsigned long split_offset) 4527 { 4528 int ret; 4529 ret = setup_leaf_for_split(trans, root, path, 4530 sizeof(struct btrfs_item)); 4531 if (ret) 4532 return ret; 4533 4534 ret = split_item(root->fs_info, path, new_key, split_offset); 4535 return ret; 4536 } 4537 4538 /* 4539 * This function duplicate a item, giving 'new_key' to the new item. 4540 * It guarantees both items live in the same tree leaf and the new item 4541 * is contiguous with the original item. 4542 * 4543 * This allows us to split file extent in place, keeping a lock on the 4544 * leaf the entire time. 4545 */ 4546 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4547 struct btrfs_root *root, 4548 struct btrfs_path *path, 4549 const struct btrfs_key *new_key) 4550 { 4551 struct extent_buffer *leaf; 4552 int ret; 4553 u32 item_size; 4554 4555 leaf = path->nodes[0]; 4556 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4557 ret = setup_leaf_for_split(trans, root, path, 4558 item_size + sizeof(struct btrfs_item)); 4559 if (ret) 4560 return ret; 4561 4562 path->slots[0]++; 4563 setup_items_for_insert(root, path, new_key, &item_size, 4564 item_size, item_size + 4565 sizeof(struct btrfs_item), 1); 4566 leaf = path->nodes[0]; 4567 memcpy_extent_buffer(leaf, 4568 btrfs_item_ptr_offset(leaf, path->slots[0]), 4569 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4570 item_size); 4571 return 0; 4572 } 4573 4574 /* 4575 * make the item pointed to by the path smaller. new_size indicates 4576 * how small to make it, and from_end tells us if we just chop bytes 4577 * off the end of the item or if we shift the item to chop bytes off 4578 * the front. 4579 */ 4580 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4581 struct btrfs_path *path, u32 new_size, int from_end) 4582 { 4583 int slot; 4584 struct extent_buffer *leaf; 4585 struct btrfs_item *item; 4586 u32 nritems; 4587 unsigned int data_end; 4588 unsigned int old_data_start; 4589 unsigned int old_size; 4590 unsigned int size_diff; 4591 int i; 4592 struct btrfs_map_token token; 4593 4594 btrfs_init_map_token(&token); 4595 4596 leaf = path->nodes[0]; 4597 slot = path->slots[0]; 4598 4599 old_size = btrfs_item_size_nr(leaf, slot); 4600 if (old_size == new_size) 4601 return; 4602 4603 nritems = btrfs_header_nritems(leaf); 4604 data_end = leaf_data_end(fs_info, leaf); 4605 4606 old_data_start = btrfs_item_offset_nr(leaf, slot); 4607 4608 size_diff = old_size - new_size; 4609 4610 BUG_ON(slot < 0); 4611 BUG_ON(slot >= nritems); 4612 4613 /* 4614 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4615 */ 4616 /* first correct the data pointers */ 4617 for (i = slot; i < nritems; i++) { 4618 u32 ioff; 4619 item = btrfs_item_nr(i); 4620 4621 ioff = btrfs_token_item_offset(leaf, item, &token); 4622 btrfs_set_token_item_offset(leaf, item, 4623 ioff + size_diff, &token); 4624 } 4625 4626 /* shift the data */ 4627 if (from_end) { 4628 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4629 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4630 data_end, old_data_start + new_size - data_end); 4631 } else { 4632 struct btrfs_disk_key disk_key; 4633 u64 offset; 4634 4635 btrfs_item_key(leaf, &disk_key, slot); 4636 4637 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4638 unsigned long ptr; 4639 struct btrfs_file_extent_item *fi; 4640 4641 fi = btrfs_item_ptr(leaf, slot, 4642 struct btrfs_file_extent_item); 4643 fi = (struct btrfs_file_extent_item *)( 4644 (unsigned long)fi - size_diff); 4645 4646 if (btrfs_file_extent_type(leaf, fi) == 4647 BTRFS_FILE_EXTENT_INLINE) { 4648 ptr = btrfs_item_ptr_offset(leaf, slot); 4649 memmove_extent_buffer(leaf, ptr, 4650 (unsigned long)fi, 4651 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4652 } 4653 } 4654 4655 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4656 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4657 data_end, old_data_start - data_end); 4658 4659 offset = btrfs_disk_key_offset(&disk_key); 4660 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4661 btrfs_set_item_key(leaf, &disk_key, slot); 4662 if (slot == 0) 4663 fixup_low_keys(fs_info, path, &disk_key, 1); 4664 } 4665 4666 item = btrfs_item_nr(slot); 4667 btrfs_set_item_size(leaf, item, new_size); 4668 btrfs_mark_buffer_dirty(leaf); 4669 4670 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4671 btrfs_print_leaf(leaf); 4672 BUG(); 4673 } 4674 } 4675 4676 /* 4677 * make the item pointed to by the path bigger, data_size is the added size. 4678 */ 4679 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4680 u32 data_size) 4681 { 4682 int slot; 4683 struct extent_buffer *leaf; 4684 struct btrfs_item *item; 4685 u32 nritems; 4686 unsigned int data_end; 4687 unsigned int old_data; 4688 unsigned int old_size; 4689 int i; 4690 struct btrfs_map_token token; 4691 4692 btrfs_init_map_token(&token); 4693 4694 leaf = path->nodes[0]; 4695 4696 nritems = btrfs_header_nritems(leaf); 4697 data_end = leaf_data_end(fs_info, leaf); 4698 4699 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4700 btrfs_print_leaf(leaf); 4701 BUG(); 4702 } 4703 slot = path->slots[0]; 4704 old_data = btrfs_item_end_nr(leaf, slot); 4705 4706 BUG_ON(slot < 0); 4707 if (slot >= nritems) { 4708 btrfs_print_leaf(leaf); 4709 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4710 slot, nritems); 4711 BUG_ON(1); 4712 } 4713 4714 /* 4715 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4716 */ 4717 /* first correct the data pointers */ 4718 for (i = slot; i < nritems; i++) { 4719 u32 ioff; 4720 item = btrfs_item_nr(i); 4721 4722 ioff = btrfs_token_item_offset(leaf, item, &token); 4723 btrfs_set_token_item_offset(leaf, item, 4724 ioff - data_size, &token); 4725 } 4726 4727 /* shift the data */ 4728 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4729 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4730 data_end, old_data - data_end); 4731 4732 data_end = old_data; 4733 old_size = btrfs_item_size_nr(leaf, slot); 4734 item = btrfs_item_nr(slot); 4735 btrfs_set_item_size(leaf, item, old_size + data_size); 4736 btrfs_mark_buffer_dirty(leaf); 4737 4738 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4739 btrfs_print_leaf(leaf); 4740 BUG(); 4741 } 4742 } 4743 4744 /* 4745 * this is a helper for btrfs_insert_empty_items, the main goal here is 4746 * to save stack depth by doing the bulk of the work in a function 4747 * that doesn't call btrfs_search_slot 4748 */ 4749 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4750 const struct btrfs_key *cpu_key, u32 *data_size, 4751 u32 total_data, u32 total_size, int nr) 4752 { 4753 struct btrfs_fs_info *fs_info = root->fs_info; 4754 struct btrfs_item *item; 4755 int i; 4756 u32 nritems; 4757 unsigned int data_end; 4758 struct btrfs_disk_key disk_key; 4759 struct extent_buffer *leaf; 4760 int slot; 4761 struct btrfs_map_token token; 4762 4763 if (path->slots[0] == 0) { 4764 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4765 fixup_low_keys(fs_info, path, &disk_key, 1); 4766 } 4767 btrfs_unlock_up_safe(path, 1); 4768 4769 btrfs_init_map_token(&token); 4770 4771 leaf = path->nodes[0]; 4772 slot = path->slots[0]; 4773 4774 nritems = btrfs_header_nritems(leaf); 4775 data_end = leaf_data_end(fs_info, leaf); 4776 4777 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4778 btrfs_print_leaf(leaf); 4779 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4780 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4781 BUG(); 4782 } 4783 4784 if (slot != nritems) { 4785 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4786 4787 if (old_data < data_end) { 4788 btrfs_print_leaf(leaf); 4789 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4790 slot, old_data, data_end); 4791 BUG_ON(1); 4792 } 4793 /* 4794 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4795 */ 4796 /* first correct the data pointers */ 4797 for (i = slot; i < nritems; i++) { 4798 u32 ioff; 4799 4800 item = btrfs_item_nr(i); 4801 ioff = btrfs_token_item_offset(leaf, item, &token); 4802 btrfs_set_token_item_offset(leaf, item, 4803 ioff - total_data, &token); 4804 } 4805 /* shift the items */ 4806 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4807 btrfs_item_nr_offset(slot), 4808 (nritems - slot) * sizeof(struct btrfs_item)); 4809 4810 /* shift the data */ 4811 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4812 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4813 data_end, old_data - data_end); 4814 data_end = old_data; 4815 } 4816 4817 /* setup the item for the new data */ 4818 for (i = 0; i < nr; i++) { 4819 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4820 btrfs_set_item_key(leaf, &disk_key, slot + i); 4821 item = btrfs_item_nr(slot + i); 4822 btrfs_set_token_item_offset(leaf, item, 4823 data_end - data_size[i], &token); 4824 data_end -= data_size[i]; 4825 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4826 } 4827 4828 btrfs_set_header_nritems(leaf, nritems + nr); 4829 btrfs_mark_buffer_dirty(leaf); 4830 4831 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4832 btrfs_print_leaf(leaf); 4833 BUG(); 4834 } 4835 } 4836 4837 /* 4838 * Given a key and some data, insert items into the tree. 4839 * This does all the path init required, making room in the tree if needed. 4840 */ 4841 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4842 struct btrfs_root *root, 4843 struct btrfs_path *path, 4844 const struct btrfs_key *cpu_key, u32 *data_size, 4845 int nr) 4846 { 4847 int ret = 0; 4848 int slot; 4849 int i; 4850 u32 total_size = 0; 4851 u32 total_data = 0; 4852 4853 for (i = 0; i < nr; i++) 4854 total_data += data_size[i]; 4855 4856 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4857 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4858 if (ret == 0) 4859 return -EEXIST; 4860 if (ret < 0) 4861 return ret; 4862 4863 slot = path->slots[0]; 4864 BUG_ON(slot < 0); 4865 4866 setup_items_for_insert(root, path, cpu_key, data_size, 4867 total_data, total_size, nr); 4868 return 0; 4869 } 4870 4871 /* 4872 * Given a key and some data, insert an item into the tree. 4873 * This does all the path init required, making room in the tree if needed. 4874 */ 4875 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4876 const struct btrfs_key *cpu_key, void *data, 4877 u32 data_size) 4878 { 4879 int ret = 0; 4880 struct btrfs_path *path; 4881 struct extent_buffer *leaf; 4882 unsigned long ptr; 4883 4884 path = btrfs_alloc_path(); 4885 if (!path) 4886 return -ENOMEM; 4887 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4888 if (!ret) { 4889 leaf = path->nodes[0]; 4890 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4891 write_extent_buffer(leaf, data, ptr, data_size); 4892 btrfs_mark_buffer_dirty(leaf); 4893 } 4894 btrfs_free_path(path); 4895 return ret; 4896 } 4897 4898 /* 4899 * delete the pointer from a given node. 4900 * 4901 * the tree should have been previously balanced so the deletion does not 4902 * empty a node. 4903 */ 4904 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4905 int level, int slot) 4906 { 4907 struct btrfs_fs_info *fs_info = root->fs_info; 4908 struct extent_buffer *parent = path->nodes[level]; 4909 u32 nritems; 4910 int ret; 4911 4912 nritems = btrfs_header_nritems(parent); 4913 if (slot != nritems - 1) { 4914 if (level) 4915 tree_mod_log_eb_move(fs_info, parent, slot, 4916 slot + 1, nritems - slot - 1); 4917 memmove_extent_buffer(parent, 4918 btrfs_node_key_ptr_offset(slot), 4919 btrfs_node_key_ptr_offset(slot + 1), 4920 sizeof(struct btrfs_key_ptr) * 4921 (nritems - slot - 1)); 4922 } else if (level) { 4923 ret = tree_mod_log_insert_key(fs_info, parent, slot, 4924 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4925 BUG_ON(ret < 0); 4926 } 4927 4928 nritems--; 4929 btrfs_set_header_nritems(parent, nritems); 4930 if (nritems == 0 && parent == root->node) { 4931 BUG_ON(btrfs_header_level(root->node) != 1); 4932 /* just turn the root into a leaf and break */ 4933 btrfs_set_header_level(root->node, 0); 4934 } else if (slot == 0) { 4935 struct btrfs_disk_key disk_key; 4936 4937 btrfs_node_key(parent, &disk_key, 0); 4938 fixup_low_keys(fs_info, path, &disk_key, level + 1); 4939 } 4940 btrfs_mark_buffer_dirty(parent); 4941 } 4942 4943 /* 4944 * a helper function to delete the leaf pointed to by path->slots[1] and 4945 * path->nodes[1]. 4946 * 4947 * This deletes the pointer in path->nodes[1] and frees the leaf 4948 * block extent. zero is returned if it all worked out, < 0 otherwise. 4949 * 4950 * The path must have already been setup for deleting the leaf, including 4951 * all the proper balancing. path->nodes[1] must be locked. 4952 */ 4953 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4954 struct btrfs_root *root, 4955 struct btrfs_path *path, 4956 struct extent_buffer *leaf) 4957 { 4958 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4959 del_ptr(root, path, 1, path->slots[1]); 4960 4961 /* 4962 * btrfs_free_extent is expensive, we want to make sure we 4963 * aren't holding any locks when we call it 4964 */ 4965 btrfs_unlock_up_safe(path, 0); 4966 4967 root_sub_used(root, leaf->len); 4968 4969 extent_buffer_get(leaf); 4970 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4971 free_extent_buffer_stale(leaf); 4972 } 4973 /* 4974 * delete the item at the leaf level in path. If that empties 4975 * the leaf, remove it from the tree 4976 */ 4977 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4978 struct btrfs_path *path, int slot, int nr) 4979 { 4980 struct btrfs_fs_info *fs_info = root->fs_info; 4981 struct extent_buffer *leaf; 4982 struct btrfs_item *item; 4983 u32 last_off; 4984 u32 dsize = 0; 4985 int ret = 0; 4986 int wret; 4987 int i; 4988 u32 nritems; 4989 struct btrfs_map_token token; 4990 4991 btrfs_init_map_token(&token); 4992 4993 leaf = path->nodes[0]; 4994 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4995 4996 for (i = 0; i < nr; i++) 4997 dsize += btrfs_item_size_nr(leaf, slot + i); 4998 4999 nritems = btrfs_header_nritems(leaf); 5000 5001 if (slot + nr != nritems) { 5002 int data_end = leaf_data_end(fs_info, leaf); 5003 5004 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 5005 data_end + dsize, 5006 BTRFS_LEAF_DATA_OFFSET + data_end, 5007 last_off - data_end); 5008 5009 for (i = slot + nr; i < nritems; i++) { 5010 u32 ioff; 5011 5012 item = btrfs_item_nr(i); 5013 ioff = btrfs_token_item_offset(leaf, item, &token); 5014 btrfs_set_token_item_offset(leaf, item, 5015 ioff + dsize, &token); 5016 } 5017 5018 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 5019 btrfs_item_nr_offset(slot + nr), 5020 sizeof(struct btrfs_item) * 5021 (nritems - slot - nr)); 5022 } 5023 btrfs_set_header_nritems(leaf, nritems - nr); 5024 nritems -= nr; 5025 5026 /* delete the leaf if we've emptied it */ 5027 if (nritems == 0) { 5028 if (leaf == root->node) { 5029 btrfs_set_header_level(leaf, 0); 5030 } else { 5031 btrfs_set_path_blocking(path); 5032 clean_tree_block(fs_info, leaf); 5033 btrfs_del_leaf(trans, root, path, leaf); 5034 } 5035 } else { 5036 int used = leaf_space_used(leaf, 0, nritems); 5037 if (slot == 0) { 5038 struct btrfs_disk_key disk_key; 5039 5040 btrfs_item_key(leaf, &disk_key, 0); 5041 fixup_low_keys(fs_info, path, &disk_key, 1); 5042 } 5043 5044 /* delete the leaf if it is mostly empty */ 5045 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5046 /* push_leaf_left fixes the path. 5047 * make sure the path still points to our leaf 5048 * for possible call to del_ptr below 5049 */ 5050 slot = path->slots[1]; 5051 extent_buffer_get(leaf); 5052 5053 btrfs_set_path_blocking(path); 5054 wret = push_leaf_left(trans, root, path, 1, 1, 5055 1, (u32)-1); 5056 if (wret < 0 && wret != -ENOSPC) 5057 ret = wret; 5058 5059 if (path->nodes[0] == leaf && 5060 btrfs_header_nritems(leaf)) { 5061 wret = push_leaf_right(trans, root, path, 1, 5062 1, 1, 0); 5063 if (wret < 0 && wret != -ENOSPC) 5064 ret = wret; 5065 } 5066 5067 if (btrfs_header_nritems(leaf) == 0) { 5068 path->slots[1] = slot; 5069 btrfs_del_leaf(trans, root, path, leaf); 5070 free_extent_buffer(leaf); 5071 ret = 0; 5072 } else { 5073 /* if we're still in the path, make sure 5074 * we're dirty. Otherwise, one of the 5075 * push_leaf functions must have already 5076 * dirtied this buffer 5077 */ 5078 if (path->nodes[0] == leaf) 5079 btrfs_mark_buffer_dirty(leaf); 5080 free_extent_buffer(leaf); 5081 } 5082 } else { 5083 btrfs_mark_buffer_dirty(leaf); 5084 } 5085 } 5086 return ret; 5087 } 5088 5089 /* 5090 * search the tree again to find a leaf with lesser keys 5091 * returns 0 if it found something or 1 if there are no lesser leaves. 5092 * returns < 0 on io errors. 5093 * 5094 * This may release the path, and so you may lose any locks held at the 5095 * time you call it. 5096 */ 5097 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5098 { 5099 struct btrfs_key key; 5100 struct btrfs_disk_key found_key; 5101 int ret; 5102 5103 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5104 5105 if (key.offset > 0) { 5106 key.offset--; 5107 } else if (key.type > 0) { 5108 key.type--; 5109 key.offset = (u64)-1; 5110 } else if (key.objectid > 0) { 5111 key.objectid--; 5112 key.type = (u8)-1; 5113 key.offset = (u64)-1; 5114 } else { 5115 return 1; 5116 } 5117 5118 btrfs_release_path(path); 5119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5120 if (ret < 0) 5121 return ret; 5122 btrfs_item_key(path->nodes[0], &found_key, 0); 5123 ret = comp_keys(&found_key, &key); 5124 /* 5125 * We might have had an item with the previous key in the tree right 5126 * before we released our path. And after we released our path, that 5127 * item might have been pushed to the first slot (0) of the leaf we 5128 * were holding due to a tree balance. Alternatively, an item with the 5129 * previous key can exist as the only element of a leaf (big fat item). 5130 * Therefore account for these 2 cases, so that our callers (like 5131 * btrfs_previous_item) don't miss an existing item with a key matching 5132 * the previous key we computed above. 5133 */ 5134 if (ret <= 0) 5135 return 0; 5136 return 1; 5137 } 5138 5139 /* 5140 * A helper function to walk down the tree starting at min_key, and looking 5141 * for nodes or leaves that are have a minimum transaction id. 5142 * This is used by the btree defrag code, and tree logging 5143 * 5144 * This does not cow, but it does stuff the starting key it finds back 5145 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5146 * key and get a writable path. 5147 * 5148 * This does lock as it descends, and path->keep_locks should be set 5149 * to 1 by the caller. 5150 * 5151 * This honors path->lowest_level to prevent descent past a given level 5152 * of the tree. 5153 * 5154 * min_trans indicates the oldest transaction that you are interested 5155 * in walking through. Any nodes or leaves older than min_trans are 5156 * skipped over (without reading them). 5157 * 5158 * returns zero if something useful was found, < 0 on error and 1 if there 5159 * was nothing in the tree that matched the search criteria. 5160 */ 5161 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5162 struct btrfs_path *path, 5163 u64 min_trans) 5164 { 5165 struct btrfs_fs_info *fs_info = root->fs_info; 5166 struct extent_buffer *cur; 5167 struct btrfs_key found_key; 5168 int slot; 5169 int sret; 5170 u32 nritems; 5171 int level; 5172 int ret = 1; 5173 int keep_locks = path->keep_locks; 5174 5175 path->keep_locks = 1; 5176 again: 5177 cur = btrfs_read_lock_root_node(root); 5178 level = btrfs_header_level(cur); 5179 WARN_ON(path->nodes[level]); 5180 path->nodes[level] = cur; 5181 path->locks[level] = BTRFS_READ_LOCK; 5182 5183 if (btrfs_header_generation(cur) < min_trans) { 5184 ret = 1; 5185 goto out; 5186 } 5187 while (1) { 5188 nritems = btrfs_header_nritems(cur); 5189 level = btrfs_header_level(cur); 5190 sret = btrfs_bin_search(cur, min_key, level, &slot); 5191 5192 /* at the lowest level, we're done, setup the path and exit */ 5193 if (level == path->lowest_level) { 5194 if (slot >= nritems) 5195 goto find_next_key; 5196 ret = 0; 5197 path->slots[level] = slot; 5198 btrfs_item_key_to_cpu(cur, &found_key, slot); 5199 goto out; 5200 } 5201 if (sret && slot > 0) 5202 slot--; 5203 /* 5204 * check this node pointer against the min_trans parameters. 5205 * If it is too old, old, skip to the next one. 5206 */ 5207 while (slot < nritems) { 5208 u64 gen; 5209 5210 gen = btrfs_node_ptr_generation(cur, slot); 5211 if (gen < min_trans) { 5212 slot++; 5213 continue; 5214 } 5215 break; 5216 } 5217 find_next_key: 5218 /* 5219 * we didn't find a candidate key in this node, walk forward 5220 * and find another one 5221 */ 5222 if (slot >= nritems) { 5223 path->slots[level] = slot; 5224 btrfs_set_path_blocking(path); 5225 sret = btrfs_find_next_key(root, path, min_key, level, 5226 min_trans); 5227 if (sret == 0) { 5228 btrfs_release_path(path); 5229 goto again; 5230 } else { 5231 goto out; 5232 } 5233 } 5234 /* save our key for returning back */ 5235 btrfs_node_key_to_cpu(cur, &found_key, slot); 5236 path->slots[level] = slot; 5237 if (level == path->lowest_level) { 5238 ret = 0; 5239 goto out; 5240 } 5241 btrfs_set_path_blocking(path); 5242 cur = read_node_slot(fs_info, cur, slot); 5243 if (IS_ERR(cur)) { 5244 ret = PTR_ERR(cur); 5245 goto out; 5246 } 5247 5248 btrfs_tree_read_lock(cur); 5249 5250 path->locks[level - 1] = BTRFS_READ_LOCK; 5251 path->nodes[level - 1] = cur; 5252 unlock_up(path, level, 1, 0, NULL); 5253 btrfs_clear_path_blocking(path, NULL, 0); 5254 } 5255 out: 5256 path->keep_locks = keep_locks; 5257 if (ret == 0) { 5258 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5259 btrfs_set_path_blocking(path); 5260 memcpy(min_key, &found_key, sizeof(found_key)); 5261 } 5262 return ret; 5263 } 5264 5265 static int tree_move_down(struct btrfs_fs_info *fs_info, 5266 struct btrfs_path *path, 5267 int *level) 5268 { 5269 struct extent_buffer *eb; 5270 5271 BUG_ON(*level == 0); 5272 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5273 if (IS_ERR(eb)) 5274 return PTR_ERR(eb); 5275 5276 path->nodes[*level - 1] = eb; 5277 path->slots[*level - 1] = 0; 5278 (*level)--; 5279 return 0; 5280 } 5281 5282 static int tree_move_next_or_upnext(struct btrfs_path *path, 5283 int *level, int root_level) 5284 { 5285 int ret = 0; 5286 int nritems; 5287 nritems = btrfs_header_nritems(path->nodes[*level]); 5288 5289 path->slots[*level]++; 5290 5291 while (path->slots[*level] >= nritems) { 5292 if (*level == root_level) 5293 return -1; 5294 5295 /* move upnext */ 5296 path->slots[*level] = 0; 5297 free_extent_buffer(path->nodes[*level]); 5298 path->nodes[*level] = NULL; 5299 (*level)++; 5300 path->slots[*level]++; 5301 5302 nritems = btrfs_header_nritems(path->nodes[*level]); 5303 ret = 1; 5304 } 5305 return ret; 5306 } 5307 5308 /* 5309 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5310 * or down. 5311 */ 5312 static int tree_advance(struct btrfs_fs_info *fs_info, 5313 struct btrfs_path *path, 5314 int *level, int root_level, 5315 int allow_down, 5316 struct btrfs_key *key) 5317 { 5318 int ret; 5319 5320 if (*level == 0 || !allow_down) { 5321 ret = tree_move_next_or_upnext(path, level, root_level); 5322 } else { 5323 ret = tree_move_down(fs_info, path, level); 5324 } 5325 if (ret >= 0) { 5326 if (*level == 0) 5327 btrfs_item_key_to_cpu(path->nodes[*level], key, 5328 path->slots[*level]); 5329 else 5330 btrfs_node_key_to_cpu(path->nodes[*level], key, 5331 path->slots[*level]); 5332 } 5333 return ret; 5334 } 5335 5336 static int tree_compare_item(struct btrfs_path *left_path, 5337 struct btrfs_path *right_path, 5338 char *tmp_buf) 5339 { 5340 int cmp; 5341 int len1, len2; 5342 unsigned long off1, off2; 5343 5344 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5345 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5346 if (len1 != len2) 5347 return 1; 5348 5349 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5350 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5351 right_path->slots[0]); 5352 5353 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5354 5355 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5356 if (cmp) 5357 return 1; 5358 return 0; 5359 } 5360 5361 #define ADVANCE 1 5362 #define ADVANCE_ONLY_NEXT -1 5363 5364 /* 5365 * This function compares two trees and calls the provided callback for 5366 * every changed/new/deleted item it finds. 5367 * If shared tree blocks are encountered, whole subtrees are skipped, making 5368 * the compare pretty fast on snapshotted subvolumes. 5369 * 5370 * This currently works on commit roots only. As commit roots are read only, 5371 * we don't do any locking. The commit roots are protected with transactions. 5372 * Transactions are ended and rejoined when a commit is tried in between. 5373 * 5374 * This function checks for modifications done to the trees while comparing. 5375 * If it detects a change, it aborts immediately. 5376 */ 5377 int btrfs_compare_trees(struct btrfs_root *left_root, 5378 struct btrfs_root *right_root, 5379 btrfs_changed_cb_t changed_cb, void *ctx) 5380 { 5381 struct btrfs_fs_info *fs_info = left_root->fs_info; 5382 int ret; 5383 int cmp; 5384 struct btrfs_path *left_path = NULL; 5385 struct btrfs_path *right_path = NULL; 5386 struct btrfs_key left_key; 5387 struct btrfs_key right_key; 5388 char *tmp_buf = NULL; 5389 int left_root_level; 5390 int right_root_level; 5391 int left_level; 5392 int right_level; 5393 int left_end_reached; 5394 int right_end_reached; 5395 int advance_left; 5396 int advance_right; 5397 u64 left_blockptr; 5398 u64 right_blockptr; 5399 u64 left_gen; 5400 u64 right_gen; 5401 5402 left_path = btrfs_alloc_path(); 5403 if (!left_path) { 5404 ret = -ENOMEM; 5405 goto out; 5406 } 5407 right_path = btrfs_alloc_path(); 5408 if (!right_path) { 5409 ret = -ENOMEM; 5410 goto out; 5411 } 5412 5413 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5414 if (!tmp_buf) { 5415 ret = -ENOMEM; 5416 goto out; 5417 } 5418 5419 left_path->search_commit_root = 1; 5420 left_path->skip_locking = 1; 5421 right_path->search_commit_root = 1; 5422 right_path->skip_locking = 1; 5423 5424 /* 5425 * Strategy: Go to the first items of both trees. Then do 5426 * 5427 * If both trees are at level 0 5428 * Compare keys of current items 5429 * If left < right treat left item as new, advance left tree 5430 * and repeat 5431 * If left > right treat right item as deleted, advance right tree 5432 * and repeat 5433 * If left == right do deep compare of items, treat as changed if 5434 * needed, advance both trees and repeat 5435 * If both trees are at the same level but not at level 0 5436 * Compare keys of current nodes/leafs 5437 * If left < right advance left tree and repeat 5438 * If left > right advance right tree and repeat 5439 * If left == right compare blockptrs of the next nodes/leafs 5440 * If they match advance both trees but stay at the same level 5441 * and repeat 5442 * If they don't match advance both trees while allowing to go 5443 * deeper and repeat 5444 * If tree levels are different 5445 * Advance the tree that needs it and repeat 5446 * 5447 * Advancing a tree means: 5448 * If we are at level 0, try to go to the next slot. If that's not 5449 * possible, go one level up and repeat. Stop when we found a level 5450 * where we could go to the next slot. We may at this point be on a 5451 * node or a leaf. 5452 * 5453 * If we are not at level 0 and not on shared tree blocks, go one 5454 * level deeper. 5455 * 5456 * If we are not at level 0 and on shared tree blocks, go one slot to 5457 * the right if possible or go up and right. 5458 */ 5459 5460 down_read(&fs_info->commit_root_sem); 5461 left_level = btrfs_header_level(left_root->commit_root); 5462 left_root_level = left_level; 5463 left_path->nodes[left_level] = left_root->commit_root; 5464 extent_buffer_get(left_path->nodes[left_level]); 5465 5466 right_level = btrfs_header_level(right_root->commit_root); 5467 right_root_level = right_level; 5468 right_path->nodes[right_level] = right_root->commit_root; 5469 extent_buffer_get(right_path->nodes[right_level]); 5470 up_read(&fs_info->commit_root_sem); 5471 5472 if (left_level == 0) 5473 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5474 &left_key, left_path->slots[left_level]); 5475 else 5476 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5477 &left_key, left_path->slots[left_level]); 5478 if (right_level == 0) 5479 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5480 &right_key, right_path->slots[right_level]); 5481 else 5482 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5483 &right_key, right_path->slots[right_level]); 5484 5485 left_end_reached = right_end_reached = 0; 5486 advance_left = advance_right = 0; 5487 5488 while (1) { 5489 if (advance_left && !left_end_reached) { 5490 ret = tree_advance(fs_info, left_path, &left_level, 5491 left_root_level, 5492 advance_left != ADVANCE_ONLY_NEXT, 5493 &left_key); 5494 if (ret == -1) 5495 left_end_reached = ADVANCE; 5496 else if (ret < 0) 5497 goto out; 5498 advance_left = 0; 5499 } 5500 if (advance_right && !right_end_reached) { 5501 ret = tree_advance(fs_info, right_path, &right_level, 5502 right_root_level, 5503 advance_right != ADVANCE_ONLY_NEXT, 5504 &right_key); 5505 if (ret == -1) 5506 right_end_reached = ADVANCE; 5507 else if (ret < 0) 5508 goto out; 5509 advance_right = 0; 5510 } 5511 5512 if (left_end_reached && right_end_reached) { 5513 ret = 0; 5514 goto out; 5515 } else if (left_end_reached) { 5516 if (right_level == 0) { 5517 ret = changed_cb(left_path, right_path, 5518 &right_key, 5519 BTRFS_COMPARE_TREE_DELETED, 5520 ctx); 5521 if (ret < 0) 5522 goto out; 5523 } 5524 advance_right = ADVANCE; 5525 continue; 5526 } else if (right_end_reached) { 5527 if (left_level == 0) { 5528 ret = changed_cb(left_path, right_path, 5529 &left_key, 5530 BTRFS_COMPARE_TREE_NEW, 5531 ctx); 5532 if (ret < 0) 5533 goto out; 5534 } 5535 advance_left = ADVANCE; 5536 continue; 5537 } 5538 5539 if (left_level == 0 && right_level == 0) { 5540 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5541 if (cmp < 0) { 5542 ret = changed_cb(left_path, right_path, 5543 &left_key, 5544 BTRFS_COMPARE_TREE_NEW, 5545 ctx); 5546 if (ret < 0) 5547 goto out; 5548 advance_left = ADVANCE; 5549 } else if (cmp > 0) { 5550 ret = changed_cb(left_path, right_path, 5551 &right_key, 5552 BTRFS_COMPARE_TREE_DELETED, 5553 ctx); 5554 if (ret < 0) 5555 goto out; 5556 advance_right = ADVANCE; 5557 } else { 5558 enum btrfs_compare_tree_result result; 5559 5560 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5561 ret = tree_compare_item(left_path, right_path, 5562 tmp_buf); 5563 if (ret) 5564 result = BTRFS_COMPARE_TREE_CHANGED; 5565 else 5566 result = BTRFS_COMPARE_TREE_SAME; 5567 ret = changed_cb(left_path, right_path, 5568 &left_key, result, ctx); 5569 if (ret < 0) 5570 goto out; 5571 advance_left = ADVANCE; 5572 advance_right = ADVANCE; 5573 } 5574 } else if (left_level == right_level) { 5575 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5576 if (cmp < 0) { 5577 advance_left = ADVANCE; 5578 } else if (cmp > 0) { 5579 advance_right = ADVANCE; 5580 } else { 5581 left_blockptr = btrfs_node_blockptr( 5582 left_path->nodes[left_level], 5583 left_path->slots[left_level]); 5584 right_blockptr = btrfs_node_blockptr( 5585 right_path->nodes[right_level], 5586 right_path->slots[right_level]); 5587 left_gen = btrfs_node_ptr_generation( 5588 left_path->nodes[left_level], 5589 left_path->slots[left_level]); 5590 right_gen = btrfs_node_ptr_generation( 5591 right_path->nodes[right_level], 5592 right_path->slots[right_level]); 5593 if (left_blockptr == right_blockptr && 5594 left_gen == right_gen) { 5595 /* 5596 * As we're on a shared block, don't 5597 * allow to go deeper. 5598 */ 5599 advance_left = ADVANCE_ONLY_NEXT; 5600 advance_right = ADVANCE_ONLY_NEXT; 5601 } else { 5602 advance_left = ADVANCE; 5603 advance_right = ADVANCE; 5604 } 5605 } 5606 } else if (left_level < right_level) { 5607 advance_right = ADVANCE; 5608 } else { 5609 advance_left = ADVANCE; 5610 } 5611 } 5612 5613 out: 5614 btrfs_free_path(left_path); 5615 btrfs_free_path(right_path); 5616 kvfree(tmp_buf); 5617 return ret; 5618 } 5619 5620 /* 5621 * this is similar to btrfs_next_leaf, but does not try to preserve 5622 * and fixup the path. It looks for and returns the next key in the 5623 * tree based on the current path and the min_trans parameters. 5624 * 5625 * 0 is returned if another key is found, < 0 if there are any errors 5626 * and 1 is returned if there are no higher keys in the tree 5627 * 5628 * path->keep_locks should be set to 1 on the search made before 5629 * calling this function. 5630 */ 5631 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5632 struct btrfs_key *key, int level, u64 min_trans) 5633 { 5634 int slot; 5635 struct extent_buffer *c; 5636 5637 WARN_ON(!path->keep_locks); 5638 while (level < BTRFS_MAX_LEVEL) { 5639 if (!path->nodes[level]) 5640 return 1; 5641 5642 slot = path->slots[level] + 1; 5643 c = path->nodes[level]; 5644 next: 5645 if (slot >= btrfs_header_nritems(c)) { 5646 int ret; 5647 int orig_lowest; 5648 struct btrfs_key cur_key; 5649 if (level + 1 >= BTRFS_MAX_LEVEL || 5650 !path->nodes[level + 1]) 5651 return 1; 5652 5653 if (path->locks[level + 1]) { 5654 level++; 5655 continue; 5656 } 5657 5658 slot = btrfs_header_nritems(c) - 1; 5659 if (level == 0) 5660 btrfs_item_key_to_cpu(c, &cur_key, slot); 5661 else 5662 btrfs_node_key_to_cpu(c, &cur_key, slot); 5663 5664 orig_lowest = path->lowest_level; 5665 btrfs_release_path(path); 5666 path->lowest_level = level; 5667 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5668 0, 0); 5669 path->lowest_level = orig_lowest; 5670 if (ret < 0) 5671 return ret; 5672 5673 c = path->nodes[level]; 5674 slot = path->slots[level]; 5675 if (ret == 0) 5676 slot++; 5677 goto next; 5678 } 5679 5680 if (level == 0) 5681 btrfs_item_key_to_cpu(c, key, slot); 5682 else { 5683 u64 gen = btrfs_node_ptr_generation(c, slot); 5684 5685 if (gen < min_trans) { 5686 slot++; 5687 goto next; 5688 } 5689 btrfs_node_key_to_cpu(c, key, slot); 5690 } 5691 return 0; 5692 } 5693 return 1; 5694 } 5695 5696 /* 5697 * search the tree again to find a leaf with greater keys 5698 * returns 0 if it found something or 1 if there are no greater leaves. 5699 * returns < 0 on io errors. 5700 */ 5701 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5702 { 5703 return btrfs_next_old_leaf(root, path, 0); 5704 } 5705 5706 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5707 u64 time_seq) 5708 { 5709 int slot; 5710 int level; 5711 struct extent_buffer *c; 5712 struct extent_buffer *next; 5713 struct btrfs_key key; 5714 u32 nritems; 5715 int ret; 5716 int old_spinning = path->leave_spinning; 5717 int next_rw_lock = 0; 5718 5719 nritems = btrfs_header_nritems(path->nodes[0]); 5720 if (nritems == 0) 5721 return 1; 5722 5723 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5724 again: 5725 level = 1; 5726 next = NULL; 5727 next_rw_lock = 0; 5728 btrfs_release_path(path); 5729 5730 path->keep_locks = 1; 5731 path->leave_spinning = 1; 5732 5733 if (time_seq) 5734 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5735 else 5736 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5737 path->keep_locks = 0; 5738 5739 if (ret < 0) 5740 return ret; 5741 5742 nritems = btrfs_header_nritems(path->nodes[0]); 5743 /* 5744 * by releasing the path above we dropped all our locks. A balance 5745 * could have added more items next to the key that used to be 5746 * at the very end of the block. So, check again here and 5747 * advance the path if there are now more items available. 5748 */ 5749 if (nritems > 0 && path->slots[0] < nritems - 1) { 5750 if (ret == 0) 5751 path->slots[0]++; 5752 ret = 0; 5753 goto done; 5754 } 5755 /* 5756 * So the above check misses one case: 5757 * - after releasing the path above, someone has removed the item that 5758 * used to be at the very end of the block, and balance between leafs 5759 * gets another one with bigger key.offset to replace it. 5760 * 5761 * This one should be returned as well, or we can get leaf corruption 5762 * later(esp. in __btrfs_drop_extents()). 5763 * 5764 * And a bit more explanation about this check, 5765 * with ret > 0, the key isn't found, the path points to the slot 5766 * where it should be inserted, so the path->slots[0] item must be the 5767 * bigger one. 5768 */ 5769 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5770 ret = 0; 5771 goto done; 5772 } 5773 5774 while (level < BTRFS_MAX_LEVEL) { 5775 if (!path->nodes[level]) { 5776 ret = 1; 5777 goto done; 5778 } 5779 5780 slot = path->slots[level] + 1; 5781 c = path->nodes[level]; 5782 if (slot >= btrfs_header_nritems(c)) { 5783 level++; 5784 if (level == BTRFS_MAX_LEVEL) { 5785 ret = 1; 5786 goto done; 5787 } 5788 continue; 5789 } 5790 5791 if (next) { 5792 btrfs_tree_unlock_rw(next, next_rw_lock); 5793 free_extent_buffer(next); 5794 } 5795 5796 next = c; 5797 next_rw_lock = path->locks[level]; 5798 ret = read_block_for_search(root, path, &next, level, 5799 slot, &key); 5800 if (ret == -EAGAIN) 5801 goto again; 5802 5803 if (ret < 0) { 5804 btrfs_release_path(path); 5805 goto done; 5806 } 5807 5808 if (!path->skip_locking) { 5809 ret = btrfs_try_tree_read_lock(next); 5810 if (!ret && time_seq) { 5811 /* 5812 * If we don't get the lock, we may be racing 5813 * with push_leaf_left, holding that lock while 5814 * itself waiting for the leaf we've currently 5815 * locked. To solve this situation, we give up 5816 * on our lock and cycle. 5817 */ 5818 free_extent_buffer(next); 5819 btrfs_release_path(path); 5820 cond_resched(); 5821 goto again; 5822 } 5823 if (!ret) { 5824 btrfs_set_path_blocking(path); 5825 btrfs_tree_read_lock(next); 5826 btrfs_clear_path_blocking(path, next, 5827 BTRFS_READ_LOCK); 5828 } 5829 next_rw_lock = BTRFS_READ_LOCK; 5830 } 5831 break; 5832 } 5833 path->slots[level] = slot; 5834 while (1) { 5835 level--; 5836 c = path->nodes[level]; 5837 if (path->locks[level]) 5838 btrfs_tree_unlock_rw(c, path->locks[level]); 5839 5840 free_extent_buffer(c); 5841 path->nodes[level] = next; 5842 path->slots[level] = 0; 5843 if (!path->skip_locking) 5844 path->locks[level] = next_rw_lock; 5845 if (!level) 5846 break; 5847 5848 ret = read_block_for_search(root, path, &next, level, 5849 0, &key); 5850 if (ret == -EAGAIN) 5851 goto again; 5852 5853 if (ret < 0) { 5854 btrfs_release_path(path); 5855 goto done; 5856 } 5857 5858 if (!path->skip_locking) { 5859 ret = btrfs_try_tree_read_lock(next); 5860 if (!ret) { 5861 btrfs_set_path_blocking(path); 5862 btrfs_tree_read_lock(next); 5863 btrfs_clear_path_blocking(path, next, 5864 BTRFS_READ_LOCK); 5865 } 5866 next_rw_lock = BTRFS_READ_LOCK; 5867 } 5868 } 5869 ret = 0; 5870 done: 5871 unlock_up(path, 0, 1, 0, NULL); 5872 path->leave_spinning = old_spinning; 5873 if (!old_spinning) 5874 btrfs_set_path_blocking(path); 5875 5876 return ret; 5877 } 5878 5879 /* 5880 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5881 * searching until it gets past min_objectid or finds an item of 'type' 5882 * 5883 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5884 */ 5885 int btrfs_previous_item(struct btrfs_root *root, 5886 struct btrfs_path *path, u64 min_objectid, 5887 int type) 5888 { 5889 struct btrfs_key found_key; 5890 struct extent_buffer *leaf; 5891 u32 nritems; 5892 int ret; 5893 5894 while (1) { 5895 if (path->slots[0] == 0) { 5896 btrfs_set_path_blocking(path); 5897 ret = btrfs_prev_leaf(root, path); 5898 if (ret != 0) 5899 return ret; 5900 } else { 5901 path->slots[0]--; 5902 } 5903 leaf = path->nodes[0]; 5904 nritems = btrfs_header_nritems(leaf); 5905 if (nritems == 0) 5906 return 1; 5907 if (path->slots[0] == nritems) 5908 path->slots[0]--; 5909 5910 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5911 if (found_key.objectid < min_objectid) 5912 break; 5913 if (found_key.type == type) 5914 return 0; 5915 if (found_key.objectid == min_objectid && 5916 found_key.type < type) 5917 break; 5918 } 5919 return 1; 5920 } 5921 5922 /* 5923 * search in extent tree to find a previous Metadata/Data extent item with 5924 * min objecitd. 5925 * 5926 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5927 */ 5928 int btrfs_previous_extent_item(struct btrfs_root *root, 5929 struct btrfs_path *path, u64 min_objectid) 5930 { 5931 struct btrfs_key found_key; 5932 struct extent_buffer *leaf; 5933 u32 nritems; 5934 int ret; 5935 5936 while (1) { 5937 if (path->slots[0] == 0) { 5938 btrfs_set_path_blocking(path); 5939 ret = btrfs_prev_leaf(root, path); 5940 if (ret != 0) 5941 return ret; 5942 } else { 5943 path->slots[0]--; 5944 } 5945 leaf = path->nodes[0]; 5946 nritems = btrfs_header_nritems(leaf); 5947 if (nritems == 0) 5948 return 1; 5949 if (path->slots[0] == nritems) 5950 path->slots[0]--; 5951 5952 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5953 if (found_key.objectid < min_objectid) 5954 break; 5955 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5956 found_key.type == BTRFS_METADATA_ITEM_KEY) 5957 return 0; 5958 if (found_key.objectid == min_objectid && 5959 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5960 break; 5961 } 5962 return 1; 5963 } 5964