xref: /openbmc/linux/fs/btrfs/ctree.c (revision 7fc96d71)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19 #include "tree-checker.h"
20 
21 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
22 		      *root, struct btrfs_path *path, int level);
23 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
24 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
25 		      int data_size, int extend);
26 static int push_node_left(struct btrfs_trans_handle *trans,
27 			  struct extent_buffer *dst,
28 			  struct extent_buffer *src, int empty);
29 static int balance_node_right(struct btrfs_trans_handle *trans,
30 			      struct extent_buffer *dst_buf,
31 			      struct extent_buffer *src_buf);
32 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
33 		    int level, int slot);
34 
35 static const struct btrfs_csums {
36 	u16		size;
37 	const char	name[10];
38 	const char	driver[12];
39 } btrfs_csums[] = {
40 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
41 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
42 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
43 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
44 				     .driver = "blake2b-256" },
45 };
46 
47 int btrfs_super_csum_size(const struct btrfs_super_block *s)
48 {
49 	u16 t = btrfs_super_csum_type(s);
50 	/*
51 	 * csum type is validated at mount time
52 	 */
53 	return btrfs_csums[t].size;
54 }
55 
56 const char *btrfs_super_csum_name(u16 csum_type)
57 {
58 	/* csum type is validated at mount time */
59 	return btrfs_csums[csum_type].name;
60 }
61 
62 /*
63  * Return driver name if defined, otherwise the name that's also a valid driver
64  * name
65  */
66 const char *btrfs_super_csum_driver(u16 csum_type)
67 {
68 	/* csum type is validated at mount time */
69 	return btrfs_csums[csum_type].driver[0] ?
70 		btrfs_csums[csum_type].driver :
71 		btrfs_csums[csum_type].name;
72 }
73 
74 size_t __attribute_const__ btrfs_get_num_csums(void)
75 {
76 	return ARRAY_SIZE(btrfs_csums);
77 }
78 
79 struct btrfs_path *btrfs_alloc_path(void)
80 {
81 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
82 }
83 
84 /* this also releases the path */
85 void btrfs_free_path(struct btrfs_path *p)
86 {
87 	if (!p)
88 		return;
89 	btrfs_release_path(p);
90 	kmem_cache_free(btrfs_path_cachep, p);
91 }
92 
93 /*
94  * path release drops references on the extent buffers in the path
95  * and it drops any locks held by this path
96  *
97  * It is safe to call this on paths that no locks or extent buffers held.
98  */
99 noinline void btrfs_release_path(struct btrfs_path *p)
100 {
101 	int i;
102 
103 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
104 		p->slots[i] = 0;
105 		if (!p->nodes[i])
106 			continue;
107 		if (p->locks[i]) {
108 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
109 			p->locks[i] = 0;
110 		}
111 		free_extent_buffer(p->nodes[i]);
112 		p->nodes[i] = NULL;
113 	}
114 }
115 
116 /*
117  * safely gets a reference on the root node of a tree.  A lock
118  * is not taken, so a concurrent writer may put a different node
119  * at the root of the tree.  See btrfs_lock_root_node for the
120  * looping required.
121  *
122  * The extent buffer returned by this has a reference taken, so
123  * it won't disappear.  It may stop being the root of the tree
124  * at any time because there are no locks held.
125  */
126 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
127 {
128 	struct extent_buffer *eb;
129 
130 	while (1) {
131 		rcu_read_lock();
132 		eb = rcu_dereference(root->node);
133 
134 		/*
135 		 * RCU really hurts here, we could free up the root node because
136 		 * it was COWed but we may not get the new root node yet so do
137 		 * the inc_not_zero dance and if it doesn't work then
138 		 * synchronize_rcu and try again.
139 		 */
140 		if (atomic_inc_not_zero(&eb->refs)) {
141 			rcu_read_unlock();
142 			break;
143 		}
144 		rcu_read_unlock();
145 		synchronize_rcu();
146 	}
147 	return eb;
148 }
149 
150 /*
151  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
152  * just get put onto a simple dirty list.  Transaction walks this list to make
153  * sure they get properly updated on disk.
154  */
155 static void add_root_to_dirty_list(struct btrfs_root *root)
156 {
157 	struct btrfs_fs_info *fs_info = root->fs_info;
158 
159 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
160 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
161 		return;
162 
163 	spin_lock(&fs_info->trans_lock);
164 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
165 		/* Want the extent tree to be the last on the list */
166 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
167 			list_move_tail(&root->dirty_list,
168 				       &fs_info->dirty_cowonly_roots);
169 		else
170 			list_move(&root->dirty_list,
171 				  &fs_info->dirty_cowonly_roots);
172 	}
173 	spin_unlock(&fs_info->trans_lock);
174 }
175 
176 /*
177  * used by snapshot creation to make a copy of a root for a tree with
178  * a given objectid.  The buffer with the new root node is returned in
179  * cow_ret, and this func returns zero on success or a negative error code.
180  */
181 int btrfs_copy_root(struct btrfs_trans_handle *trans,
182 		      struct btrfs_root *root,
183 		      struct extent_buffer *buf,
184 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
185 {
186 	struct btrfs_fs_info *fs_info = root->fs_info;
187 	struct extent_buffer *cow;
188 	int ret = 0;
189 	int level;
190 	struct btrfs_disk_key disk_key;
191 
192 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
193 		trans->transid != fs_info->running_transaction->transid);
194 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
195 		trans->transid != root->last_trans);
196 
197 	level = btrfs_header_level(buf);
198 	if (level == 0)
199 		btrfs_item_key(buf, &disk_key, 0);
200 	else
201 		btrfs_node_key(buf, &disk_key, 0);
202 
203 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
204 				     &disk_key, level, buf->start, 0,
205 				     BTRFS_NESTING_NEW_ROOT);
206 	if (IS_ERR(cow))
207 		return PTR_ERR(cow);
208 
209 	copy_extent_buffer_full(cow, buf);
210 	btrfs_set_header_bytenr(cow, cow->start);
211 	btrfs_set_header_generation(cow, trans->transid);
212 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
213 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
214 				     BTRFS_HEADER_FLAG_RELOC);
215 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
216 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
217 	else
218 		btrfs_set_header_owner(cow, new_root_objectid);
219 
220 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
221 
222 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
223 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
224 		ret = btrfs_inc_ref(trans, root, cow, 1);
225 	else
226 		ret = btrfs_inc_ref(trans, root, cow, 0);
227 	if (ret) {
228 		btrfs_tree_unlock(cow);
229 		free_extent_buffer(cow);
230 		btrfs_abort_transaction(trans, ret);
231 		return ret;
232 	}
233 
234 	btrfs_mark_buffer_dirty(cow);
235 	*cow_ret = cow;
236 	return 0;
237 }
238 
239 /*
240  * check if the tree block can be shared by multiple trees
241  */
242 int btrfs_block_can_be_shared(struct btrfs_root *root,
243 			      struct extent_buffer *buf)
244 {
245 	/*
246 	 * Tree blocks not in shareable trees and tree roots are never shared.
247 	 * If a block was allocated after the last snapshot and the block was
248 	 * not allocated by tree relocation, we know the block is not shared.
249 	 */
250 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
251 	    buf != root->node && buf != root->commit_root &&
252 	    (btrfs_header_generation(buf) <=
253 	     btrfs_root_last_snapshot(&root->root_item) ||
254 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
255 		return 1;
256 
257 	return 0;
258 }
259 
260 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
261 				       struct btrfs_root *root,
262 				       struct extent_buffer *buf,
263 				       struct extent_buffer *cow,
264 				       int *last_ref)
265 {
266 	struct btrfs_fs_info *fs_info = root->fs_info;
267 	u64 refs;
268 	u64 owner;
269 	u64 flags;
270 	u64 new_flags = 0;
271 	int ret;
272 
273 	/*
274 	 * Backrefs update rules:
275 	 *
276 	 * Always use full backrefs for extent pointers in tree block
277 	 * allocated by tree relocation.
278 	 *
279 	 * If a shared tree block is no longer referenced by its owner
280 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
281 	 * use full backrefs for extent pointers in tree block.
282 	 *
283 	 * If a tree block is been relocating
284 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
285 	 * use full backrefs for extent pointers in tree block.
286 	 * The reason for this is some operations (such as drop tree)
287 	 * are only allowed for blocks use full backrefs.
288 	 */
289 
290 	if (btrfs_block_can_be_shared(root, buf)) {
291 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
292 					       btrfs_header_level(buf), 1,
293 					       &refs, &flags);
294 		if (ret)
295 			return ret;
296 		if (refs == 0) {
297 			ret = -EROFS;
298 			btrfs_handle_fs_error(fs_info, ret, NULL);
299 			return ret;
300 		}
301 	} else {
302 		refs = 1;
303 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
304 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
305 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
306 		else
307 			flags = 0;
308 	}
309 
310 	owner = btrfs_header_owner(buf);
311 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
312 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
313 
314 	if (refs > 1) {
315 		if ((owner == root->root_key.objectid ||
316 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
317 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
318 			ret = btrfs_inc_ref(trans, root, buf, 1);
319 			if (ret)
320 				return ret;
321 
322 			if (root->root_key.objectid ==
323 			    BTRFS_TREE_RELOC_OBJECTID) {
324 				ret = btrfs_dec_ref(trans, root, buf, 0);
325 				if (ret)
326 					return ret;
327 				ret = btrfs_inc_ref(trans, root, cow, 1);
328 				if (ret)
329 					return ret;
330 			}
331 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
332 		} else {
333 
334 			if (root->root_key.objectid ==
335 			    BTRFS_TREE_RELOC_OBJECTID)
336 				ret = btrfs_inc_ref(trans, root, cow, 1);
337 			else
338 				ret = btrfs_inc_ref(trans, root, cow, 0);
339 			if (ret)
340 				return ret;
341 		}
342 		if (new_flags != 0) {
343 			int level = btrfs_header_level(buf);
344 
345 			ret = btrfs_set_disk_extent_flags(trans, buf,
346 							  new_flags, level);
347 			if (ret)
348 				return ret;
349 		}
350 	} else {
351 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
352 			if (root->root_key.objectid ==
353 			    BTRFS_TREE_RELOC_OBJECTID)
354 				ret = btrfs_inc_ref(trans, root, cow, 1);
355 			else
356 				ret = btrfs_inc_ref(trans, root, cow, 0);
357 			if (ret)
358 				return ret;
359 			ret = btrfs_dec_ref(trans, root, buf, 1);
360 			if (ret)
361 				return ret;
362 		}
363 		btrfs_clean_tree_block(buf);
364 		*last_ref = 1;
365 	}
366 	return 0;
367 }
368 
369 /*
370  * does the dirty work in cow of a single block.  The parent block (if
371  * supplied) is updated to point to the new cow copy.  The new buffer is marked
372  * dirty and returned locked.  If you modify the block it needs to be marked
373  * dirty again.
374  *
375  * search_start -- an allocation hint for the new block
376  *
377  * empty_size -- a hint that you plan on doing more cow.  This is the size in
378  * bytes the allocator should try to find free next to the block it returns.
379  * This is just a hint and may be ignored by the allocator.
380  */
381 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
382 			     struct btrfs_root *root,
383 			     struct extent_buffer *buf,
384 			     struct extent_buffer *parent, int parent_slot,
385 			     struct extent_buffer **cow_ret,
386 			     u64 search_start, u64 empty_size,
387 			     enum btrfs_lock_nesting nest)
388 {
389 	struct btrfs_fs_info *fs_info = root->fs_info;
390 	struct btrfs_disk_key disk_key;
391 	struct extent_buffer *cow;
392 	int level, ret;
393 	int last_ref = 0;
394 	int unlock_orig = 0;
395 	u64 parent_start = 0;
396 
397 	if (*cow_ret == buf)
398 		unlock_orig = 1;
399 
400 	btrfs_assert_tree_write_locked(buf);
401 
402 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
403 		trans->transid != fs_info->running_transaction->transid);
404 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
405 		trans->transid != root->last_trans);
406 
407 	level = btrfs_header_level(buf);
408 
409 	if (level == 0)
410 		btrfs_item_key(buf, &disk_key, 0);
411 	else
412 		btrfs_node_key(buf, &disk_key, 0);
413 
414 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
415 		parent_start = parent->start;
416 
417 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
418 				     root->root_key.objectid, &disk_key, level,
419 				     search_start, empty_size, nest);
420 	if (IS_ERR(cow))
421 		return PTR_ERR(cow);
422 
423 	/* cow is set to blocking by btrfs_init_new_buffer */
424 
425 	copy_extent_buffer_full(cow, buf);
426 	btrfs_set_header_bytenr(cow, cow->start);
427 	btrfs_set_header_generation(cow, trans->transid);
428 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
429 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
430 				     BTRFS_HEADER_FLAG_RELOC);
431 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
432 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
433 	else
434 		btrfs_set_header_owner(cow, root->root_key.objectid);
435 
436 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
437 
438 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
439 	if (ret) {
440 		btrfs_tree_unlock(cow);
441 		free_extent_buffer(cow);
442 		btrfs_abort_transaction(trans, ret);
443 		return ret;
444 	}
445 
446 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
447 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
448 		if (ret) {
449 			btrfs_tree_unlock(cow);
450 			free_extent_buffer(cow);
451 			btrfs_abort_transaction(trans, ret);
452 			return ret;
453 		}
454 	}
455 
456 	if (buf == root->node) {
457 		WARN_ON(parent && parent != buf);
458 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
459 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
460 			parent_start = buf->start;
461 
462 		atomic_inc(&cow->refs);
463 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
464 		BUG_ON(ret < 0);
465 		rcu_assign_pointer(root->node, cow);
466 
467 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
468 				      parent_start, last_ref);
469 		free_extent_buffer(buf);
470 		add_root_to_dirty_list(root);
471 	} else {
472 		WARN_ON(trans->transid != btrfs_header_generation(parent));
473 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
474 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
475 		btrfs_set_node_blockptr(parent, parent_slot,
476 					cow->start);
477 		btrfs_set_node_ptr_generation(parent, parent_slot,
478 					      trans->transid);
479 		btrfs_mark_buffer_dirty(parent);
480 		if (last_ref) {
481 			ret = btrfs_tree_mod_log_free_eb(buf);
482 			if (ret) {
483 				btrfs_tree_unlock(cow);
484 				free_extent_buffer(cow);
485 				btrfs_abort_transaction(trans, ret);
486 				return ret;
487 			}
488 		}
489 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
490 				      parent_start, last_ref);
491 	}
492 	if (unlock_orig)
493 		btrfs_tree_unlock(buf);
494 	free_extent_buffer_stale(buf);
495 	btrfs_mark_buffer_dirty(cow);
496 	*cow_ret = cow;
497 	return 0;
498 }
499 
500 static inline int should_cow_block(struct btrfs_trans_handle *trans,
501 				   struct btrfs_root *root,
502 				   struct extent_buffer *buf)
503 {
504 	if (btrfs_is_testing(root->fs_info))
505 		return 0;
506 
507 	/* Ensure we can see the FORCE_COW bit */
508 	smp_mb__before_atomic();
509 
510 	/*
511 	 * We do not need to cow a block if
512 	 * 1) this block is not created or changed in this transaction;
513 	 * 2) this block does not belong to TREE_RELOC tree;
514 	 * 3) the root is not forced COW.
515 	 *
516 	 * What is forced COW:
517 	 *    when we create snapshot during committing the transaction,
518 	 *    after we've finished copying src root, we must COW the shared
519 	 *    block to ensure the metadata consistency.
520 	 */
521 	if (btrfs_header_generation(buf) == trans->transid &&
522 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
523 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
524 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
525 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
526 		return 0;
527 	return 1;
528 }
529 
530 /*
531  * cows a single block, see __btrfs_cow_block for the real work.
532  * This version of it has extra checks so that a block isn't COWed more than
533  * once per transaction, as long as it hasn't been written yet
534  */
535 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
536 		    struct btrfs_root *root, struct extent_buffer *buf,
537 		    struct extent_buffer *parent, int parent_slot,
538 		    struct extent_buffer **cow_ret,
539 		    enum btrfs_lock_nesting nest)
540 {
541 	struct btrfs_fs_info *fs_info = root->fs_info;
542 	u64 search_start;
543 	int ret;
544 
545 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
546 		btrfs_err(fs_info,
547 			"COW'ing blocks on a fs root that's being dropped");
548 
549 	if (trans->transaction != fs_info->running_transaction)
550 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
551 		       trans->transid,
552 		       fs_info->running_transaction->transid);
553 
554 	if (trans->transid != fs_info->generation)
555 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
556 		       trans->transid, fs_info->generation);
557 
558 	if (!should_cow_block(trans, root, buf)) {
559 		*cow_ret = buf;
560 		return 0;
561 	}
562 
563 	search_start = buf->start & ~((u64)SZ_1G - 1);
564 
565 	/*
566 	 * Before CoWing this block for later modification, check if it's
567 	 * the subtree root and do the delayed subtree trace if needed.
568 	 *
569 	 * Also We don't care about the error, as it's handled internally.
570 	 */
571 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
572 	ret = __btrfs_cow_block(trans, root, buf, parent,
573 				 parent_slot, cow_ret, search_start, 0, nest);
574 
575 	trace_btrfs_cow_block(root, buf, *cow_ret);
576 
577 	return ret;
578 }
579 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
580 
581 /*
582  * helper function for defrag to decide if two blocks pointed to by a
583  * node are actually close by
584  */
585 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
586 {
587 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
588 		return 1;
589 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
590 		return 1;
591 	return 0;
592 }
593 
594 #ifdef __LITTLE_ENDIAN
595 
596 /*
597  * Compare two keys, on little-endian the disk order is same as CPU order and
598  * we can avoid the conversion.
599  */
600 static int comp_keys(const struct btrfs_disk_key *disk_key,
601 		     const struct btrfs_key *k2)
602 {
603 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
604 
605 	return btrfs_comp_cpu_keys(k1, k2);
606 }
607 
608 #else
609 
610 /*
611  * compare two keys in a memcmp fashion
612  */
613 static int comp_keys(const struct btrfs_disk_key *disk,
614 		     const struct btrfs_key *k2)
615 {
616 	struct btrfs_key k1;
617 
618 	btrfs_disk_key_to_cpu(&k1, disk);
619 
620 	return btrfs_comp_cpu_keys(&k1, k2);
621 }
622 #endif
623 
624 /*
625  * same as comp_keys only with two btrfs_key's
626  */
627 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
628 {
629 	if (k1->objectid > k2->objectid)
630 		return 1;
631 	if (k1->objectid < k2->objectid)
632 		return -1;
633 	if (k1->type > k2->type)
634 		return 1;
635 	if (k1->type < k2->type)
636 		return -1;
637 	if (k1->offset > k2->offset)
638 		return 1;
639 	if (k1->offset < k2->offset)
640 		return -1;
641 	return 0;
642 }
643 
644 /*
645  * this is used by the defrag code to go through all the
646  * leaves pointed to by a node and reallocate them so that
647  * disk order is close to key order
648  */
649 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
650 		       struct btrfs_root *root, struct extent_buffer *parent,
651 		       int start_slot, u64 *last_ret,
652 		       struct btrfs_key *progress)
653 {
654 	struct btrfs_fs_info *fs_info = root->fs_info;
655 	struct extent_buffer *cur;
656 	u64 blocknr;
657 	u64 search_start = *last_ret;
658 	u64 last_block = 0;
659 	u64 other;
660 	u32 parent_nritems;
661 	int end_slot;
662 	int i;
663 	int err = 0;
664 	u32 blocksize;
665 	int progress_passed = 0;
666 	struct btrfs_disk_key disk_key;
667 
668 	WARN_ON(trans->transaction != fs_info->running_transaction);
669 	WARN_ON(trans->transid != fs_info->generation);
670 
671 	parent_nritems = btrfs_header_nritems(parent);
672 	blocksize = fs_info->nodesize;
673 	end_slot = parent_nritems - 1;
674 
675 	if (parent_nritems <= 1)
676 		return 0;
677 
678 	for (i = start_slot; i <= end_slot; i++) {
679 		int close = 1;
680 
681 		btrfs_node_key(parent, &disk_key, i);
682 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
683 			continue;
684 
685 		progress_passed = 1;
686 		blocknr = btrfs_node_blockptr(parent, i);
687 		if (last_block == 0)
688 			last_block = blocknr;
689 
690 		if (i > 0) {
691 			other = btrfs_node_blockptr(parent, i - 1);
692 			close = close_blocks(blocknr, other, blocksize);
693 		}
694 		if (!close && i < end_slot) {
695 			other = btrfs_node_blockptr(parent, i + 1);
696 			close = close_blocks(blocknr, other, blocksize);
697 		}
698 		if (close) {
699 			last_block = blocknr;
700 			continue;
701 		}
702 
703 		cur = btrfs_read_node_slot(parent, i);
704 		if (IS_ERR(cur))
705 			return PTR_ERR(cur);
706 		if (search_start == 0)
707 			search_start = last_block;
708 
709 		btrfs_tree_lock(cur);
710 		err = __btrfs_cow_block(trans, root, cur, parent, i,
711 					&cur, search_start,
712 					min(16 * blocksize,
713 					    (end_slot - i) * blocksize),
714 					BTRFS_NESTING_COW);
715 		if (err) {
716 			btrfs_tree_unlock(cur);
717 			free_extent_buffer(cur);
718 			break;
719 		}
720 		search_start = cur->start;
721 		last_block = cur->start;
722 		*last_ret = search_start;
723 		btrfs_tree_unlock(cur);
724 		free_extent_buffer(cur);
725 	}
726 	return err;
727 }
728 
729 /*
730  * Search for a key in the given extent_buffer.
731  *
732  * The lower boundary for the search is specified by the slot number @low. Use a
733  * value of 0 to search over the whole extent buffer.
734  *
735  * The slot in the extent buffer is returned via @slot. If the key exists in the
736  * extent buffer, then @slot will point to the slot where the key is, otherwise
737  * it points to the slot where you would insert the key.
738  *
739  * Slot may point to the total number of items (i.e. one position beyond the last
740  * key) if the key is bigger than the last key in the extent buffer.
741  */
742 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
743 				       const struct btrfs_key *key, int *slot)
744 {
745 	unsigned long p;
746 	int item_size;
747 	int high = btrfs_header_nritems(eb);
748 	int ret;
749 	const int key_size = sizeof(struct btrfs_disk_key);
750 
751 	if (low > high) {
752 		btrfs_err(eb->fs_info,
753 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
754 			  __func__, low, high, eb->start,
755 			  btrfs_header_owner(eb), btrfs_header_level(eb));
756 		return -EINVAL;
757 	}
758 
759 	if (btrfs_header_level(eb) == 0) {
760 		p = offsetof(struct btrfs_leaf, items);
761 		item_size = sizeof(struct btrfs_item);
762 	} else {
763 		p = offsetof(struct btrfs_node, ptrs);
764 		item_size = sizeof(struct btrfs_key_ptr);
765 	}
766 
767 	while (low < high) {
768 		unsigned long oip;
769 		unsigned long offset;
770 		struct btrfs_disk_key *tmp;
771 		struct btrfs_disk_key unaligned;
772 		int mid;
773 
774 		mid = (low + high) / 2;
775 		offset = p + mid * item_size;
776 		oip = offset_in_page(offset);
777 
778 		if (oip + key_size <= PAGE_SIZE) {
779 			const unsigned long idx = get_eb_page_index(offset);
780 			char *kaddr = page_address(eb->pages[idx]);
781 
782 			oip = get_eb_offset_in_page(eb, offset);
783 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
784 		} else {
785 			read_extent_buffer(eb, &unaligned, offset, key_size);
786 			tmp = &unaligned;
787 		}
788 
789 		ret = comp_keys(tmp, key);
790 
791 		if (ret < 0)
792 			low = mid + 1;
793 		else if (ret > 0)
794 			high = mid;
795 		else {
796 			*slot = mid;
797 			return 0;
798 		}
799 	}
800 	*slot = low;
801 	return 1;
802 }
803 
804 /*
805  * Simple binary search on an extent buffer. Works for both leaves and nodes, and
806  * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
807  */
808 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
809 		     int *slot)
810 {
811 	return generic_bin_search(eb, 0, key, slot);
812 }
813 
814 static void root_add_used(struct btrfs_root *root, u32 size)
815 {
816 	spin_lock(&root->accounting_lock);
817 	btrfs_set_root_used(&root->root_item,
818 			    btrfs_root_used(&root->root_item) + size);
819 	spin_unlock(&root->accounting_lock);
820 }
821 
822 static void root_sub_used(struct btrfs_root *root, u32 size)
823 {
824 	spin_lock(&root->accounting_lock);
825 	btrfs_set_root_used(&root->root_item,
826 			    btrfs_root_used(&root->root_item) - size);
827 	spin_unlock(&root->accounting_lock);
828 }
829 
830 /* given a node and slot number, this reads the blocks it points to.  The
831  * extent buffer is returned with a reference taken (but unlocked).
832  */
833 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
834 					   int slot)
835 {
836 	int level = btrfs_header_level(parent);
837 	struct extent_buffer *eb;
838 	struct btrfs_key first_key;
839 
840 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
841 		return ERR_PTR(-ENOENT);
842 
843 	BUG_ON(level == 0);
844 
845 	btrfs_node_key_to_cpu(parent, &first_key, slot);
846 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
847 			     btrfs_header_owner(parent),
848 			     btrfs_node_ptr_generation(parent, slot),
849 			     level - 1, &first_key);
850 	if (IS_ERR(eb))
851 		return eb;
852 	if (!extent_buffer_uptodate(eb)) {
853 		free_extent_buffer(eb);
854 		return ERR_PTR(-EIO);
855 	}
856 
857 	return eb;
858 }
859 
860 /*
861  * node level balancing, used to make sure nodes are in proper order for
862  * item deletion.  We balance from the top down, so we have to make sure
863  * that a deletion won't leave an node completely empty later on.
864  */
865 static noinline int balance_level(struct btrfs_trans_handle *trans,
866 			 struct btrfs_root *root,
867 			 struct btrfs_path *path, int level)
868 {
869 	struct btrfs_fs_info *fs_info = root->fs_info;
870 	struct extent_buffer *right = NULL;
871 	struct extent_buffer *mid;
872 	struct extent_buffer *left = NULL;
873 	struct extent_buffer *parent = NULL;
874 	int ret = 0;
875 	int wret;
876 	int pslot;
877 	int orig_slot = path->slots[level];
878 	u64 orig_ptr;
879 
880 	ASSERT(level > 0);
881 
882 	mid = path->nodes[level];
883 
884 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
885 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
886 
887 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
888 
889 	if (level < BTRFS_MAX_LEVEL - 1) {
890 		parent = path->nodes[level + 1];
891 		pslot = path->slots[level + 1];
892 	}
893 
894 	/*
895 	 * deal with the case where there is only one pointer in the root
896 	 * by promoting the node below to a root
897 	 */
898 	if (!parent) {
899 		struct extent_buffer *child;
900 
901 		if (btrfs_header_nritems(mid) != 1)
902 			return 0;
903 
904 		/* promote the child to a root */
905 		child = btrfs_read_node_slot(mid, 0);
906 		if (IS_ERR(child)) {
907 			ret = PTR_ERR(child);
908 			btrfs_handle_fs_error(fs_info, ret, NULL);
909 			goto enospc;
910 		}
911 
912 		btrfs_tree_lock(child);
913 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
914 				      BTRFS_NESTING_COW);
915 		if (ret) {
916 			btrfs_tree_unlock(child);
917 			free_extent_buffer(child);
918 			goto enospc;
919 		}
920 
921 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
922 		BUG_ON(ret < 0);
923 		rcu_assign_pointer(root->node, child);
924 
925 		add_root_to_dirty_list(root);
926 		btrfs_tree_unlock(child);
927 
928 		path->locks[level] = 0;
929 		path->nodes[level] = NULL;
930 		btrfs_clean_tree_block(mid);
931 		btrfs_tree_unlock(mid);
932 		/* once for the path */
933 		free_extent_buffer(mid);
934 
935 		root_sub_used(root, mid->len);
936 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
937 		/* once for the root ptr */
938 		free_extent_buffer_stale(mid);
939 		return 0;
940 	}
941 	if (btrfs_header_nritems(mid) >
942 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
943 		return 0;
944 
945 	left = btrfs_read_node_slot(parent, pslot - 1);
946 	if (IS_ERR(left))
947 		left = NULL;
948 
949 	if (left) {
950 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
951 		wret = btrfs_cow_block(trans, root, left,
952 				       parent, pslot - 1, &left,
953 				       BTRFS_NESTING_LEFT_COW);
954 		if (wret) {
955 			ret = wret;
956 			goto enospc;
957 		}
958 	}
959 
960 	right = btrfs_read_node_slot(parent, pslot + 1);
961 	if (IS_ERR(right))
962 		right = NULL;
963 
964 	if (right) {
965 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
966 		wret = btrfs_cow_block(trans, root, right,
967 				       parent, pslot + 1, &right,
968 				       BTRFS_NESTING_RIGHT_COW);
969 		if (wret) {
970 			ret = wret;
971 			goto enospc;
972 		}
973 	}
974 
975 	/* first, try to make some room in the middle buffer */
976 	if (left) {
977 		orig_slot += btrfs_header_nritems(left);
978 		wret = push_node_left(trans, left, mid, 1);
979 		if (wret < 0)
980 			ret = wret;
981 	}
982 
983 	/*
984 	 * then try to empty the right most buffer into the middle
985 	 */
986 	if (right) {
987 		wret = push_node_left(trans, mid, right, 1);
988 		if (wret < 0 && wret != -ENOSPC)
989 			ret = wret;
990 		if (btrfs_header_nritems(right) == 0) {
991 			btrfs_clean_tree_block(right);
992 			btrfs_tree_unlock(right);
993 			del_ptr(root, path, level + 1, pslot + 1);
994 			root_sub_used(root, right->len);
995 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
996 					      0, 1);
997 			free_extent_buffer_stale(right);
998 			right = NULL;
999 		} else {
1000 			struct btrfs_disk_key right_key;
1001 			btrfs_node_key(right, &right_key, 0);
1002 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1003 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1004 			BUG_ON(ret < 0);
1005 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1006 			btrfs_mark_buffer_dirty(parent);
1007 		}
1008 	}
1009 	if (btrfs_header_nritems(mid) == 1) {
1010 		/*
1011 		 * we're not allowed to leave a node with one item in the
1012 		 * tree during a delete.  A deletion from lower in the tree
1013 		 * could try to delete the only pointer in this node.
1014 		 * So, pull some keys from the left.
1015 		 * There has to be a left pointer at this point because
1016 		 * otherwise we would have pulled some pointers from the
1017 		 * right
1018 		 */
1019 		if (!left) {
1020 			ret = -EROFS;
1021 			btrfs_handle_fs_error(fs_info, ret, NULL);
1022 			goto enospc;
1023 		}
1024 		wret = balance_node_right(trans, mid, left);
1025 		if (wret < 0) {
1026 			ret = wret;
1027 			goto enospc;
1028 		}
1029 		if (wret == 1) {
1030 			wret = push_node_left(trans, left, mid, 1);
1031 			if (wret < 0)
1032 				ret = wret;
1033 		}
1034 		BUG_ON(wret == 1);
1035 	}
1036 	if (btrfs_header_nritems(mid) == 0) {
1037 		btrfs_clean_tree_block(mid);
1038 		btrfs_tree_unlock(mid);
1039 		del_ptr(root, path, level + 1, pslot);
1040 		root_sub_used(root, mid->len);
1041 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1042 		free_extent_buffer_stale(mid);
1043 		mid = NULL;
1044 	} else {
1045 		/* update the parent key to reflect our changes */
1046 		struct btrfs_disk_key mid_key;
1047 		btrfs_node_key(mid, &mid_key, 0);
1048 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1049 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1050 		BUG_ON(ret < 0);
1051 		btrfs_set_node_key(parent, &mid_key, pslot);
1052 		btrfs_mark_buffer_dirty(parent);
1053 	}
1054 
1055 	/* update the path */
1056 	if (left) {
1057 		if (btrfs_header_nritems(left) > orig_slot) {
1058 			atomic_inc(&left->refs);
1059 			/* left was locked after cow */
1060 			path->nodes[level] = left;
1061 			path->slots[level + 1] -= 1;
1062 			path->slots[level] = orig_slot;
1063 			if (mid) {
1064 				btrfs_tree_unlock(mid);
1065 				free_extent_buffer(mid);
1066 			}
1067 		} else {
1068 			orig_slot -= btrfs_header_nritems(left);
1069 			path->slots[level] = orig_slot;
1070 		}
1071 	}
1072 	/* double check we haven't messed things up */
1073 	if (orig_ptr !=
1074 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1075 		BUG();
1076 enospc:
1077 	if (right) {
1078 		btrfs_tree_unlock(right);
1079 		free_extent_buffer(right);
1080 	}
1081 	if (left) {
1082 		if (path->nodes[level] != left)
1083 			btrfs_tree_unlock(left);
1084 		free_extent_buffer(left);
1085 	}
1086 	return ret;
1087 }
1088 
1089 /* Node balancing for insertion.  Here we only split or push nodes around
1090  * when they are completely full.  This is also done top down, so we
1091  * have to be pessimistic.
1092  */
1093 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1094 					  struct btrfs_root *root,
1095 					  struct btrfs_path *path, int level)
1096 {
1097 	struct btrfs_fs_info *fs_info = root->fs_info;
1098 	struct extent_buffer *right = NULL;
1099 	struct extent_buffer *mid;
1100 	struct extent_buffer *left = NULL;
1101 	struct extent_buffer *parent = NULL;
1102 	int ret = 0;
1103 	int wret;
1104 	int pslot;
1105 	int orig_slot = path->slots[level];
1106 
1107 	if (level == 0)
1108 		return 1;
1109 
1110 	mid = path->nodes[level];
1111 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1112 
1113 	if (level < BTRFS_MAX_LEVEL - 1) {
1114 		parent = path->nodes[level + 1];
1115 		pslot = path->slots[level + 1];
1116 	}
1117 
1118 	if (!parent)
1119 		return 1;
1120 
1121 	left = btrfs_read_node_slot(parent, pslot - 1);
1122 	if (IS_ERR(left))
1123 		left = NULL;
1124 
1125 	/* first, try to make some room in the middle buffer */
1126 	if (left) {
1127 		u32 left_nr;
1128 
1129 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1130 
1131 		left_nr = btrfs_header_nritems(left);
1132 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1133 			wret = 1;
1134 		} else {
1135 			ret = btrfs_cow_block(trans, root, left, parent,
1136 					      pslot - 1, &left,
1137 					      BTRFS_NESTING_LEFT_COW);
1138 			if (ret)
1139 				wret = 1;
1140 			else {
1141 				wret = push_node_left(trans, left, mid, 0);
1142 			}
1143 		}
1144 		if (wret < 0)
1145 			ret = wret;
1146 		if (wret == 0) {
1147 			struct btrfs_disk_key disk_key;
1148 			orig_slot += left_nr;
1149 			btrfs_node_key(mid, &disk_key, 0);
1150 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1151 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1152 			BUG_ON(ret < 0);
1153 			btrfs_set_node_key(parent, &disk_key, pslot);
1154 			btrfs_mark_buffer_dirty(parent);
1155 			if (btrfs_header_nritems(left) > orig_slot) {
1156 				path->nodes[level] = left;
1157 				path->slots[level + 1] -= 1;
1158 				path->slots[level] = orig_slot;
1159 				btrfs_tree_unlock(mid);
1160 				free_extent_buffer(mid);
1161 			} else {
1162 				orig_slot -=
1163 					btrfs_header_nritems(left);
1164 				path->slots[level] = orig_slot;
1165 				btrfs_tree_unlock(left);
1166 				free_extent_buffer(left);
1167 			}
1168 			return 0;
1169 		}
1170 		btrfs_tree_unlock(left);
1171 		free_extent_buffer(left);
1172 	}
1173 	right = btrfs_read_node_slot(parent, pslot + 1);
1174 	if (IS_ERR(right))
1175 		right = NULL;
1176 
1177 	/*
1178 	 * then try to empty the right most buffer into the middle
1179 	 */
1180 	if (right) {
1181 		u32 right_nr;
1182 
1183 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1184 
1185 		right_nr = btrfs_header_nritems(right);
1186 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1187 			wret = 1;
1188 		} else {
1189 			ret = btrfs_cow_block(trans, root, right,
1190 					      parent, pslot + 1,
1191 					      &right, BTRFS_NESTING_RIGHT_COW);
1192 			if (ret)
1193 				wret = 1;
1194 			else {
1195 				wret = balance_node_right(trans, right, mid);
1196 			}
1197 		}
1198 		if (wret < 0)
1199 			ret = wret;
1200 		if (wret == 0) {
1201 			struct btrfs_disk_key disk_key;
1202 
1203 			btrfs_node_key(right, &disk_key, 0);
1204 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1205 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1206 			BUG_ON(ret < 0);
1207 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1208 			btrfs_mark_buffer_dirty(parent);
1209 
1210 			if (btrfs_header_nritems(mid) <= orig_slot) {
1211 				path->nodes[level] = right;
1212 				path->slots[level + 1] += 1;
1213 				path->slots[level] = orig_slot -
1214 					btrfs_header_nritems(mid);
1215 				btrfs_tree_unlock(mid);
1216 				free_extent_buffer(mid);
1217 			} else {
1218 				btrfs_tree_unlock(right);
1219 				free_extent_buffer(right);
1220 			}
1221 			return 0;
1222 		}
1223 		btrfs_tree_unlock(right);
1224 		free_extent_buffer(right);
1225 	}
1226 	return 1;
1227 }
1228 
1229 /*
1230  * readahead one full node of leaves, finding things that are close
1231  * to the block in 'slot', and triggering ra on them.
1232  */
1233 static void reada_for_search(struct btrfs_fs_info *fs_info,
1234 			     struct btrfs_path *path,
1235 			     int level, int slot, u64 objectid)
1236 {
1237 	struct extent_buffer *node;
1238 	struct btrfs_disk_key disk_key;
1239 	u32 nritems;
1240 	u64 search;
1241 	u64 target;
1242 	u64 nread = 0;
1243 	u64 nread_max;
1244 	u32 nr;
1245 	u32 blocksize;
1246 	u32 nscan = 0;
1247 
1248 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1249 		return;
1250 
1251 	if (!path->nodes[level])
1252 		return;
1253 
1254 	node = path->nodes[level];
1255 
1256 	/*
1257 	 * Since the time between visiting leaves is much shorter than the time
1258 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1259 	 * much IO at once (possibly random).
1260 	 */
1261 	if (path->reada == READA_FORWARD_ALWAYS) {
1262 		if (level > 1)
1263 			nread_max = node->fs_info->nodesize;
1264 		else
1265 			nread_max = SZ_128K;
1266 	} else {
1267 		nread_max = SZ_64K;
1268 	}
1269 
1270 	search = btrfs_node_blockptr(node, slot);
1271 	blocksize = fs_info->nodesize;
1272 	if (path->reada != READA_FORWARD_ALWAYS) {
1273 		struct extent_buffer *eb;
1274 
1275 		eb = find_extent_buffer(fs_info, search);
1276 		if (eb) {
1277 			free_extent_buffer(eb);
1278 			return;
1279 		}
1280 	}
1281 
1282 	target = search;
1283 
1284 	nritems = btrfs_header_nritems(node);
1285 	nr = slot;
1286 
1287 	while (1) {
1288 		if (path->reada == READA_BACK) {
1289 			if (nr == 0)
1290 				break;
1291 			nr--;
1292 		} else if (path->reada == READA_FORWARD ||
1293 			   path->reada == READA_FORWARD_ALWAYS) {
1294 			nr++;
1295 			if (nr >= nritems)
1296 				break;
1297 		}
1298 		if (path->reada == READA_BACK && objectid) {
1299 			btrfs_node_key(node, &disk_key, nr);
1300 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1301 				break;
1302 		}
1303 		search = btrfs_node_blockptr(node, nr);
1304 		if (path->reada == READA_FORWARD_ALWAYS ||
1305 		    (search <= target && target - search <= 65536) ||
1306 		    (search > target && search - target <= 65536)) {
1307 			btrfs_readahead_node_child(node, nr);
1308 			nread += blocksize;
1309 		}
1310 		nscan++;
1311 		if (nread > nread_max || nscan > 32)
1312 			break;
1313 	}
1314 }
1315 
1316 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1317 {
1318 	struct extent_buffer *parent;
1319 	int slot;
1320 	int nritems;
1321 
1322 	parent = path->nodes[level + 1];
1323 	if (!parent)
1324 		return;
1325 
1326 	nritems = btrfs_header_nritems(parent);
1327 	slot = path->slots[level + 1];
1328 
1329 	if (slot > 0)
1330 		btrfs_readahead_node_child(parent, slot - 1);
1331 	if (slot + 1 < nritems)
1332 		btrfs_readahead_node_child(parent, slot + 1);
1333 }
1334 
1335 
1336 /*
1337  * when we walk down the tree, it is usually safe to unlock the higher layers
1338  * in the tree.  The exceptions are when our path goes through slot 0, because
1339  * operations on the tree might require changing key pointers higher up in the
1340  * tree.
1341  *
1342  * callers might also have set path->keep_locks, which tells this code to keep
1343  * the lock if the path points to the last slot in the block.  This is part of
1344  * walking through the tree, and selecting the next slot in the higher block.
1345  *
1346  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1347  * if lowest_unlock is 1, level 0 won't be unlocked
1348  */
1349 static noinline void unlock_up(struct btrfs_path *path, int level,
1350 			       int lowest_unlock, int min_write_lock_level,
1351 			       int *write_lock_level)
1352 {
1353 	int i;
1354 	int skip_level = level;
1355 	bool check_skip = true;
1356 
1357 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1358 		if (!path->nodes[i])
1359 			break;
1360 		if (!path->locks[i])
1361 			break;
1362 
1363 		if (check_skip) {
1364 			if (path->slots[i] == 0) {
1365 				skip_level = i + 1;
1366 				continue;
1367 			}
1368 
1369 			if (path->keep_locks) {
1370 				u32 nritems;
1371 
1372 				nritems = btrfs_header_nritems(path->nodes[i]);
1373 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1374 					skip_level = i + 1;
1375 					continue;
1376 				}
1377 			}
1378 		}
1379 
1380 		if (i >= lowest_unlock && i > skip_level) {
1381 			check_skip = false;
1382 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1383 			path->locks[i] = 0;
1384 			if (write_lock_level &&
1385 			    i > min_write_lock_level &&
1386 			    i <= *write_lock_level) {
1387 				*write_lock_level = i - 1;
1388 			}
1389 		}
1390 	}
1391 }
1392 
1393 /*
1394  * Helper function for btrfs_search_slot() and other functions that do a search
1395  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1396  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1397  * its pages from disk.
1398  *
1399  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1400  * whole btree search, starting again from the current root node.
1401  */
1402 static int
1403 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1404 		      struct extent_buffer **eb_ret, int level, int slot,
1405 		      const struct btrfs_key *key)
1406 {
1407 	struct btrfs_fs_info *fs_info = root->fs_info;
1408 	u64 blocknr;
1409 	u64 gen;
1410 	struct extent_buffer *tmp;
1411 	struct btrfs_key first_key;
1412 	int ret;
1413 	int parent_level;
1414 	bool unlock_up;
1415 
1416 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1417 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1418 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1419 	parent_level = btrfs_header_level(*eb_ret);
1420 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1421 
1422 	/*
1423 	 * If we need to read an extent buffer from disk and we are holding locks
1424 	 * on upper level nodes, we unlock all the upper nodes before reading the
1425 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1426 	 * restart the search. We don't release the lock on the current level
1427 	 * because we need to walk this node to figure out which blocks to read.
1428 	 */
1429 	tmp = find_extent_buffer(fs_info, blocknr);
1430 	if (tmp) {
1431 		if (p->reada == READA_FORWARD_ALWAYS)
1432 			reada_for_search(fs_info, p, level, slot, key->objectid);
1433 
1434 		/* first we do an atomic uptodate check */
1435 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1436 			/*
1437 			 * Do extra check for first_key, eb can be stale due to
1438 			 * being cached, read from scrub, or have multiple
1439 			 * parents (shared tree blocks).
1440 			 */
1441 			if (btrfs_verify_level_key(tmp,
1442 					parent_level - 1, &first_key, gen)) {
1443 				free_extent_buffer(tmp);
1444 				return -EUCLEAN;
1445 			}
1446 			*eb_ret = tmp;
1447 			return 0;
1448 		}
1449 
1450 		if (unlock_up)
1451 			btrfs_unlock_up_safe(p, level + 1);
1452 
1453 		/* now we're allowed to do a blocking uptodate check */
1454 		ret = btrfs_read_extent_buffer(tmp, gen, parent_level - 1, &first_key);
1455 		if (ret) {
1456 			free_extent_buffer(tmp);
1457 			btrfs_release_path(p);
1458 			return -EIO;
1459 		}
1460 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1461 			free_extent_buffer(tmp);
1462 			btrfs_release_path(p);
1463 			return -EUCLEAN;
1464 		}
1465 
1466 		if (unlock_up)
1467 			ret = -EAGAIN;
1468 
1469 		goto out;
1470 	}
1471 
1472 	if (unlock_up) {
1473 		btrfs_unlock_up_safe(p, level + 1);
1474 		ret = -EAGAIN;
1475 	} else {
1476 		ret = 0;
1477 	}
1478 
1479 	if (p->reada != READA_NONE)
1480 		reada_for_search(fs_info, p, level, slot, key->objectid);
1481 
1482 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1483 			      gen, parent_level - 1, &first_key);
1484 	if (IS_ERR(tmp)) {
1485 		btrfs_release_path(p);
1486 		return PTR_ERR(tmp);
1487 	}
1488 	/*
1489 	 * If the read above didn't mark this buffer up to date,
1490 	 * it will never end up being up to date.  Set ret to EIO now
1491 	 * and give up so that our caller doesn't loop forever
1492 	 * on our EAGAINs.
1493 	 */
1494 	if (!extent_buffer_uptodate(tmp))
1495 		ret = -EIO;
1496 
1497 out:
1498 	if (ret == 0) {
1499 		*eb_ret = tmp;
1500 	} else {
1501 		free_extent_buffer(tmp);
1502 		btrfs_release_path(p);
1503 	}
1504 
1505 	return ret;
1506 }
1507 
1508 /*
1509  * helper function for btrfs_search_slot.  This does all of the checks
1510  * for node-level blocks and does any balancing required based on
1511  * the ins_len.
1512  *
1513  * If no extra work was required, zero is returned.  If we had to
1514  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1515  * start over
1516  */
1517 static int
1518 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1519 		       struct btrfs_root *root, struct btrfs_path *p,
1520 		       struct extent_buffer *b, int level, int ins_len,
1521 		       int *write_lock_level)
1522 {
1523 	struct btrfs_fs_info *fs_info = root->fs_info;
1524 	int ret = 0;
1525 
1526 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1527 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1528 
1529 		if (*write_lock_level < level + 1) {
1530 			*write_lock_level = level + 1;
1531 			btrfs_release_path(p);
1532 			return -EAGAIN;
1533 		}
1534 
1535 		reada_for_balance(p, level);
1536 		ret = split_node(trans, root, p, level);
1537 
1538 		b = p->nodes[level];
1539 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1540 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1541 
1542 		if (*write_lock_level < level + 1) {
1543 			*write_lock_level = level + 1;
1544 			btrfs_release_path(p);
1545 			return -EAGAIN;
1546 		}
1547 
1548 		reada_for_balance(p, level);
1549 		ret = balance_level(trans, root, p, level);
1550 		if (ret)
1551 			return ret;
1552 
1553 		b = p->nodes[level];
1554 		if (!b) {
1555 			btrfs_release_path(p);
1556 			return -EAGAIN;
1557 		}
1558 		BUG_ON(btrfs_header_nritems(b) == 1);
1559 	}
1560 	return ret;
1561 }
1562 
1563 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1564 		u64 iobjectid, u64 ioff, u8 key_type,
1565 		struct btrfs_key *found_key)
1566 {
1567 	int ret;
1568 	struct btrfs_key key;
1569 	struct extent_buffer *eb;
1570 
1571 	ASSERT(path);
1572 	ASSERT(found_key);
1573 
1574 	key.type = key_type;
1575 	key.objectid = iobjectid;
1576 	key.offset = ioff;
1577 
1578 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1579 	if (ret < 0)
1580 		return ret;
1581 
1582 	eb = path->nodes[0];
1583 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1584 		ret = btrfs_next_leaf(fs_root, path);
1585 		if (ret)
1586 			return ret;
1587 		eb = path->nodes[0];
1588 	}
1589 
1590 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1591 	if (found_key->type != key.type ||
1592 			found_key->objectid != key.objectid)
1593 		return 1;
1594 
1595 	return 0;
1596 }
1597 
1598 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1599 							struct btrfs_path *p,
1600 							int write_lock_level)
1601 {
1602 	struct extent_buffer *b;
1603 	int root_lock = 0;
1604 	int level = 0;
1605 
1606 	if (p->search_commit_root) {
1607 		b = root->commit_root;
1608 		atomic_inc(&b->refs);
1609 		level = btrfs_header_level(b);
1610 		/*
1611 		 * Ensure that all callers have set skip_locking when
1612 		 * p->search_commit_root = 1.
1613 		 */
1614 		ASSERT(p->skip_locking == 1);
1615 
1616 		goto out;
1617 	}
1618 
1619 	if (p->skip_locking) {
1620 		b = btrfs_root_node(root);
1621 		level = btrfs_header_level(b);
1622 		goto out;
1623 	}
1624 
1625 	/* We try very hard to do read locks on the root */
1626 	root_lock = BTRFS_READ_LOCK;
1627 
1628 	/*
1629 	 * If the level is set to maximum, we can skip trying to get the read
1630 	 * lock.
1631 	 */
1632 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1633 		/*
1634 		 * We don't know the level of the root node until we actually
1635 		 * have it read locked
1636 		 */
1637 		b = btrfs_read_lock_root_node(root);
1638 		level = btrfs_header_level(b);
1639 		if (level > write_lock_level)
1640 			goto out;
1641 
1642 		/* Whoops, must trade for write lock */
1643 		btrfs_tree_read_unlock(b);
1644 		free_extent_buffer(b);
1645 	}
1646 
1647 	b = btrfs_lock_root_node(root);
1648 	root_lock = BTRFS_WRITE_LOCK;
1649 
1650 	/* The level might have changed, check again */
1651 	level = btrfs_header_level(b);
1652 
1653 out:
1654 	/*
1655 	 * The root may have failed to write out at some point, and thus is no
1656 	 * longer valid, return an error in this case.
1657 	 */
1658 	if (!extent_buffer_uptodate(b)) {
1659 		if (root_lock)
1660 			btrfs_tree_unlock_rw(b, root_lock);
1661 		free_extent_buffer(b);
1662 		return ERR_PTR(-EIO);
1663 	}
1664 
1665 	p->nodes[level] = b;
1666 	if (!p->skip_locking)
1667 		p->locks[level] = root_lock;
1668 	/*
1669 	 * Callers are responsible for dropping b's references.
1670 	 */
1671 	return b;
1672 }
1673 
1674 /*
1675  * Replace the extent buffer at the lowest level of the path with a cloned
1676  * version. The purpose is to be able to use it safely, after releasing the
1677  * commit root semaphore, even if relocation is happening in parallel, the
1678  * transaction used for relocation is committed and the extent buffer is
1679  * reallocated in the next transaction.
1680  *
1681  * This is used in a context where the caller does not prevent transaction
1682  * commits from happening, either by holding a transaction handle or holding
1683  * some lock, while it's doing searches through a commit root.
1684  * At the moment it's only used for send operations.
1685  */
1686 static int finish_need_commit_sem_search(struct btrfs_path *path)
1687 {
1688 	const int i = path->lowest_level;
1689 	const int slot = path->slots[i];
1690 	struct extent_buffer *lowest = path->nodes[i];
1691 	struct extent_buffer *clone;
1692 
1693 	ASSERT(path->need_commit_sem);
1694 
1695 	if (!lowest)
1696 		return 0;
1697 
1698 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1699 
1700 	clone = btrfs_clone_extent_buffer(lowest);
1701 	if (!clone)
1702 		return -ENOMEM;
1703 
1704 	btrfs_release_path(path);
1705 	path->nodes[i] = clone;
1706 	path->slots[i] = slot;
1707 
1708 	return 0;
1709 }
1710 
1711 static inline int search_for_key_slot(struct extent_buffer *eb,
1712 				      int search_low_slot,
1713 				      const struct btrfs_key *key,
1714 				      int prev_cmp,
1715 				      int *slot)
1716 {
1717 	/*
1718 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1719 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1720 	 * always be at slot 0 on lower levels, since each key pointer
1721 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1722 	 * subtree it points to. Thus we can skip searching lower levels.
1723 	 */
1724 	if (prev_cmp == 0) {
1725 		*slot = 0;
1726 		return 0;
1727 	}
1728 
1729 	return generic_bin_search(eb, search_low_slot, key, slot);
1730 }
1731 
1732 static int search_leaf(struct btrfs_trans_handle *trans,
1733 		       struct btrfs_root *root,
1734 		       const struct btrfs_key *key,
1735 		       struct btrfs_path *path,
1736 		       int ins_len,
1737 		       int prev_cmp)
1738 {
1739 	struct extent_buffer *leaf = path->nodes[0];
1740 	int leaf_free_space = -1;
1741 	int search_low_slot = 0;
1742 	int ret;
1743 	bool do_bin_search = true;
1744 
1745 	/*
1746 	 * If we are doing an insertion, the leaf has enough free space and the
1747 	 * destination slot for the key is not slot 0, then we can unlock our
1748 	 * write lock on the parent, and any other upper nodes, before doing the
1749 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1750 	 * tasks to lock the parent and any other upper nodes.
1751 	 */
1752 	if (ins_len > 0) {
1753 		/*
1754 		 * Cache the leaf free space, since we will need it later and it
1755 		 * will not change until then.
1756 		 */
1757 		leaf_free_space = btrfs_leaf_free_space(leaf);
1758 
1759 		/*
1760 		 * !path->locks[1] means we have a single node tree, the leaf is
1761 		 * the root of the tree.
1762 		 */
1763 		if (path->locks[1] && leaf_free_space >= ins_len) {
1764 			struct btrfs_disk_key first_key;
1765 
1766 			ASSERT(btrfs_header_nritems(leaf) > 0);
1767 			btrfs_item_key(leaf, &first_key, 0);
1768 
1769 			/*
1770 			 * Doing the extra comparison with the first key is cheap,
1771 			 * taking into account that the first key is very likely
1772 			 * already in a cache line because it immediately follows
1773 			 * the extent buffer's header and we have recently accessed
1774 			 * the header's level field.
1775 			 */
1776 			ret = comp_keys(&first_key, key);
1777 			if (ret < 0) {
1778 				/*
1779 				 * The first key is smaller than the key we want
1780 				 * to insert, so we are safe to unlock all upper
1781 				 * nodes and we have to do the binary search.
1782 				 *
1783 				 * We do use btrfs_unlock_up_safe() and not
1784 				 * unlock_up() because the later does not unlock
1785 				 * nodes with a slot of 0 - we can safely unlock
1786 				 * any node even if its slot is 0 since in this
1787 				 * case the key does not end up at slot 0 of the
1788 				 * leaf and there's no need to split the leaf.
1789 				 */
1790 				btrfs_unlock_up_safe(path, 1);
1791 				search_low_slot = 1;
1792 			} else {
1793 				/*
1794 				 * The first key is >= then the key we want to
1795 				 * insert, so we can skip the binary search as
1796 				 * the target key will be at slot 0.
1797 				 *
1798 				 * We can not unlock upper nodes when the key is
1799 				 * less than the first key, because we will need
1800 				 * to update the key at slot 0 of the parent node
1801 				 * and possibly of other upper nodes too.
1802 				 * If the key matches the first key, then we can
1803 				 * unlock all the upper nodes, using
1804 				 * btrfs_unlock_up_safe() instead of unlock_up()
1805 				 * as stated above.
1806 				 */
1807 				if (ret == 0)
1808 					btrfs_unlock_up_safe(path, 1);
1809 				/*
1810 				 * ret is already 0 or 1, matching the result of
1811 				 * a btrfs_bin_search() call, so there is no need
1812 				 * to adjust it.
1813 				 */
1814 				do_bin_search = false;
1815 				path->slots[0] = 0;
1816 			}
1817 		}
1818 	}
1819 
1820 	if (do_bin_search) {
1821 		ret = search_for_key_slot(leaf, search_low_slot, key,
1822 					  prev_cmp, &path->slots[0]);
1823 		if (ret < 0)
1824 			return ret;
1825 	}
1826 
1827 	if (ins_len > 0) {
1828 		/*
1829 		 * Item key already exists. In this case, if we are allowed to
1830 		 * insert the item (for example, in dir_item case, item key
1831 		 * collision is allowed), it will be merged with the original
1832 		 * item. Only the item size grows, no new btrfs item will be
1833 		 * added. If search_for_extension is not set, ins_len already
1834 		 * accounts the size btrfs_item, deduct it here so leaf space
1835 		 * check will be correct.
1836 		 */
1837 		if (ret == 0 && !path->search_for_extension) {
1838 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1839 			ins_len -= sizeof(struct btrfs_item);
1840 		}
1841 
1842 		ASSERT(leaf_free_space >= 0);
1843 
1844 		if (leaf_free_space < ins_len) {
1845 			int err;
1846 
1847 			err = split_leaf(trans, root, key, path, ins_len,
1848 					 (ret == 0));
1849 			ASSERT(err <= 0);
1850 			if (WARN_ON(err > 0))
1851 				err = -EUCLEAN;
1852 			if (err)
1853 				ret = err;
1854 		}
1855 	}
1856 
1857 	return ret;
1858 }
1859 
1860 /*
1861  * btrfs_search_slot - look for a key in a tree and perform necessary
1862  * modifications to preserve tree invariants.
1863  *
1864  * @trans:	Handle of transaction, used when modifying the tree
1865  * @p:		Holds all btree nodes along the search path
1866  * @root:	The root node of the tree
1867  * @key:	The key we are looking for
1868  * @ins_len:	Indicates purpose of search:
1869  *              >0  for inserts it's size of item inserted (*)
1870  *              <0  for deletions
1871  *               0  for plain searches, not modifying the tree
1872  *
1873  *              (*) If size of item inserted doesn't include
1874  *              sizeof(struct btrfs_item), then p->search_for_extension must
1875  *              be set.
1876  * @cow:	boolean should CoW operations be performed. Must always be 1
1877  *		when modifying the tree.
1878  *
1879  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1880  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1881  *
1882  * If @key is found, 0 is returned and you can find the item in the leaf level
1883  * of the path (level 0)
1884  *
1885  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1886  * points to the slot where it should be inserted
1887  *
1888  * If an error is encountered while searching the tree a negative error number
1889  * is returned
1890  */
1891 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1892 		      const struct btrfs_key *key, struct btrfs_path *p,
1893 		      int ins_len, int cow)
1894 {
1895 	struct btrfs_fs_info *fs_info = root->fs_info;
1896 	struct extent_buffer *b;
1897 	int slot;
1898 	int ret;
1899 	int err;
1900 	int level;
1901 	int lowest_unlock = 1;
1902 	/* everything at write_lock_level or lower must be write locked */
1903 	int write_lock_level = 0;
1904 	u8 lowest_level = 0;
1905 	int min_write_lock_level;
1906 	int prev_cmp;
1907 
1908 	lowest_level = p->lowest_level;
1909 	WARN_ON(lowest_level && ins_len > 0);
1910 	WARN_ON(p->nodes[0] != NULL);
1911 	BUG_ON(!cow && ins_len);
1912 
1913 	if (ins_len < 0) {
1914 		lowest_unlock = 2;
1915 
1916 		/* when we are removing items, we might have to go up to level
1917 		 * two as we update tree pointers  Make sure we keep write
1918 		 * for those levels as well
1919 		 */
1920 		write_lock_level = 2;
1921 	} else if (ins_len > 0) {
1922 		/*
1923 		 * for inserting items, make sure we have a write lock on
1924 		 * level 1 so we can update keys
1925 		 */
1926 		write_lock_level = 1;
1927 	}
1928 
1929 	if (!cow)
1930 		write_lock_level = -1;
1931 
1932 	if (cow && (p->keep_locks || p->lowest_level))
1933 		write_lock_level = BTRFS_MAX_LEVEL;
1934 
1935 	min_write_lock_level = write_lock_level;
1936 
1937 	if (p->need_commit_sem) {
1938 		ASSERT(p->search_commit_root);
1939 		down_read(&fs_info->commit_root_sem);
1940 	}
1941 
1942 again:
1943 	prev_cmp = -1;
1944 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1945 	if (IS_ERR(b)) {
1946 		ret = PTR_ERR(b);
1947 		goto done;
1948 	}
1949 
1950 	while (b) {
1951 		int dec = 0;
1952 
1953 		level = btrfs_header_level(b);
1954 
1955 		if (cow) {
1956 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1957 
1958 			/*
1959 			 * if we don't really need to cow this block
1960 			 * then we don't want to set the path blocking,
1961 			 * so we test it here
1962 			 */
1963 			if (!should_cow_block(trans, root, b))
1964 				goto cow_done;
1965 
1966 			/*
1967 			 * must have write locks on this node and the
1968 			 * parent
1969 			 */
1970 			if (level > write_lock_level ||
1971 			    (level + 1 > write_lock_level &&
1972 			    level + 1 < BTRFS_MAX_LEVEL &&
1973 			    p->nodes[level + 1])) {
1974 				write_lock_level = level + 1;
1975 				btrfs_release_path(p);
1976 				goto again;
1977 			}
1978 
1979 			if (last_level)
1980 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1981 						      &b,
1982 						      BTRFS_NESTING_COW);
1983 			else
1984 				err = btrfs_cow_block(trans, root, b,
1985 						      p->nodes[level + 1],
1986 						      p->slots[level + 1], &b,
1987 						      BTRFS_NESTING_COW);
1988 			if (err) {
1989 				ret = err;
1990 				goto done;
1991 			}
1992 		}
1993 cow_done:
1994 		p->nodes[level] = b;
1995 
1996 		/*
1997 		 * we have a lock on b and as long as we aren't changing
1998 		 * the tree, there is no way to for the items in b to change.
1999 		 * It is safe to drop the lock on our parent before we
2000 		 * go through the expensive btree search on b.
2001 		 *
2002 		 * If we're inserting or deleting (ins_len != 0), then we might
2003 		 * be changing slot zero, which may require changing the parent.
2004 		 * So, we can't drop the lock until after we know which slot
2005 		 * we're operating on.
2006 		 */
2007 		if (!ins_len && !p->keep_locks) {
2008 			int u = level + 1;
2009 
2010 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2011 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2012 				p->locks[u] = 0;
2013 			}
2014 		}
2015 
2016 		if (level == 0) {
2017 			if (ins_len > 0)
2018 				ASSERT(write_lock_level >= 1);
2019 
2020 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2021 			if (!p->search_for_split)
2022 				unlock_up(p, level, lowest_unlock,
2023 					  min_write_lock_level, NULL);
2024 			goto done;
2025 		}
2026 
2027 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2028 		if (ret < 0)
2029 			goto done;
2030 		prev_cmp = ret;
2031 
2032 		if (ret && slot > 0) {
2033 			dec = 1;
2034 			slot--;
2035 		}
2036 		p->slots[level] = slot;
2037 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2038 					     &write_lock_level);
2039 		if (err == -EAGAIN)
2040 			goto again;
2041 		if (err) {
2042 			ret = err;
2043 			goto done;
2044 		}
2045 		b = p->nodes[level];
2046 		slot = p->slots[level];
2047 
2048 		/*
2049 		 * Slot 0 is special, if we change the key we have to update
2050 		 * the parent pointer which means we must have a write lock on
2051 		 * the parent
2052 		 */
2053 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2054 			write_lock_level = level + 1;
2055 			btrfs_release_path(p);
2056 			goto again;
2057 		}
2058 
2059 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2060 			  &write_lock_level);
2061 
2062 		if (level == lowest_level) {
2063 			if (dec)
2064 				p->slots[level]++;
2065 			goto done;
2066 		}
2067 
2068 		err = read_block_for_search(root, p, &b, level, slot, key);
2069 		if (err == -EAGAIN)
2070 			goto again;
2071 		if (err) {
2072 			ret = err;
2073 			goto done;
2074 		}
2075 
2076 		if (!p->skip_locking) {
2077 			level = btrfs_header_level(b);
2078 			if (level <= write_lock_level) {
2079 				btrfs_tree_lock(b);
2080 				p->locks[level] = BTRFS_WRITE_LOCK;
2081 			} else {
2082 				btrfs_tree_read_lock(b);
2083 				p->locks[level] = BTRFS_READ_LOCK;
2084 			}
2085 			p->nodes[level] = b;
2086 		}
2087 	}
2088 	ret = 1;
2089 done:
2090 	if (ret < 0 && !p->skip_release_on_error)
2091 		btrfs_release_path(p);
2092 
2093 	if (p->need_commit_sem) {
2094 		int ret2;
2095 
2096 		ret2 = finish_need_commit_sem_search(p);
2097 		up_read(&fs_info->commit_root_sem);
2098 		if (ret2)
2099 			ret = ret2;
2100 	}
2101 
2102 	return ret;
2103 }
2104 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2105 
2106 /*
2107  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2108  * current state of the tree together with the operations recorded in the tree
2109  * modification log to search for the key in a previous version of this tree, as
2110  * denoted by the time_seq parameter.
2111  *
2112  * Naturally, there is no support for insert, delete or cow operations.
2113  *
2114  * The resulting path and return value will be set up as if we called
2115  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2116  */
2117 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2118 			  struct btrfs_path *p, u64 time_seq)
2119 {
2120 	struct btrfs_fs_info *fs_info = root->fs_info;
2121 	struct extent_buffer *b;
2122 	int slot;
2123 	int ret;
2124 	int err;
2125 	int level;
2126 	int lowest_unlock = 1;
2127 	u8 lowest_level = 0;
2128 
2129 	lowest_level = p->lowest_level;
2130 	WARN_ON(p->nodes[0] != NULL);
2131 
2132 	if (p->search_commit_root) {
2133 		BUG_ON(time_seq);
2134 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2135 	}
2136 
2137 again:
2138 	b = btrfs_get_old_root(root, time_seq);
2139 	if (!b) {
2140 		ret = -EIO;
2141 		goto done;
2142 	}
2143 	level = btrfs_header_level(b);
2144 	p->locks[level] = BTRFS_READ_LOCK;
2145 
2146 	while (b) {
2147 		int dec = 0;
2148 
2149 		level = btrfs_header_level(b);
2150 		p->nodes[level] = b;
2151 
2152 		/*
2153 		 * we have a lock on b and as long as we aren't changing
2154 		 * the tree, there is no way to for the items in b to change.
2155 		 * It is safe to drop the lock on our parent before we
2156 		 * go through the expensive btree search on b.
2157 		 */
2158 		btrfs_unlock_up_safe(p, level + 1);
2159 
2160 		ret = btrfs_bin_search(b, key, &slot);
2161 		if (ret < 0)
2162 			goto done;
2163 
2164 		if (level == 0) {
2165 			p->slots[level] = slot;
2166 			unlock_up(p, level, lowest_unlock, 0, NULL);
2167 			goto done;
2168 		}
2169 
2170 		if (ret && slot > 0) {
2171 			dec = 1;
2172 			slot--;
2173 		}
2174 		p->slots[level] = slot;
2175 		unlock_up(p, level, lowest_unlock, 0, NULL);
2176 
2177 		if (level == lowest_level) {
2178 			if (dec)
2179 				p->slots[level]++;
2180 			goto done;
2181 		}
2182 
2183 		err = read_block_for_search(root, p, &b, level, slot, key);
2184 		if (err == -EAGAIN)
2185 			goto again;
2186 		if (err) {
2187 			ret = err;
2188 			goto done;
2189 		}
2190 
2191 		level = btrfs_header_level(b);
2192 		btrfs_tree_read_lock(b);
2193 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2194 		if (!b) {
2195 			ret = -ENOMEM;
2196 			goto done;
2197 		}
2198 		p->locks[level] = BTRFS_READ_LOCK;
2199 		p->nodes[level] = b;
2200 	}
2201 	ret = 1;
2202 done:
2203 	if (ret < 0)
2204 		btrfs_release_path(p);
2205 
2206 	return ret;
2207 }
2208 
2209 /*
2210  * helper to use instead of search slot if no exact match is needed but
2211  * instead the next or previous item should be returned.
2212  * When find_higher is true, the next higher item is returned, the next lower
2213  * otherwise.
2214  * When return_any and find_higher are both true, and no higher item is found,
2215  * return the next lower instead.
2216  * When return_any is true and find_higher is false, and no lower item is found,
2217  * return the next higher instead.
2218  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2219  * < 0 on error
2220  */
2221 int btrfs_search_slot_for_read(struct btrfs_root *root,
2222 			       const struct btrfs_key *key,
2223 			       struct btrfs_path *p, int find_higher,
2224 			       int return_any)
2225 {
2226 	int ret;
2227 	struct extent_buffer *leaf;
2228 
2229 again:
2230 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2231 	if (ret <= 0)
2232 		return ret;
2233 	/*
2234 	 * a return value of 1 means the path is at the position where the
2235 	 * item should be inserted. Normally this is the next bigger item,
2236 	 * but in case the previous item is the last in a leaf, path points
2237 	 * to the first free slot in the previous leaf, i.e. at an invalid
2238 	 * item.
2239 	 */
2240 	leaf = p->nodes[0];
2241 
2242 	if (find_higher) {
2243 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2244 			ret = btrfs_next_leaf(root, p);
2245 			if (ret <= 0)
2246 				return ret;
2247 			if (!return_any)
2248 				return 1;
2249 			/*
2250 			 * no higher item found, return the next
2251 			 * lower instead
2252 			 */
2253 			return_any = 0;
2254 			find_higher = 0;
2255 			btrfs_release_path(p);
2256 			goto again;
2257 		}
2258 	} else {
2259 		if (p->slots[0] == 0) {
2260 			ret = btrfs_prev_leaf(root, p);
2261 			if (ret < 0)
2262 				return ret;
2263 			if (!ret) {
2264 				leaf = p->nodes[0];
2265 				if (p->slots[0] == btrfs_header_nritems(leaf))
2266 					p->slots[0]--;
2267 				return 0;
2268 			}
2269 			if (!return_any)
2270 				return 1;
2271 			/*
2272 			 * no lower item found, return the next
2273 			 * higher instead
2274 			 */
2275 			return_any = 0;
2276 			find_higher = 1;
2277 			btrfs_release_path(p);
2278 			goto again;
2279 		} else {
2280 			--p->slots[0];
2281 		}
2282 	}
2283 	return 0;
2284 }
2285 
2286 /*
2287  * Execute search and call btrfs_previous_item to traverse backwards if the item
2288  * was not found.
2289  *
2290  * Return 0 if found, 1 if not found and < 0 if error.
2291  */
2292 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2293 			   struct btrfs_path *path)
2294 {
2295 	int ret;
2296 
2297 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2298 	if (ret > 0)
2299 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2300 
2301 	if (ret == 0)
2302 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2303 
2304 	return ret;
2305 }
2306 
2307 /**
2308  * Search for a valid slot for the given path.
2309  *
2310  * @root:	The root node of the tree.
2311  * @key:	Will contain a valid item if found.
2312  * @path:	The starting point to validate the slot.
2313  *
2314  * Return: 0  if the item is valid
2315  *         1  if not found
2316  *         <0 if error.
2317  */
2318 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2319 			      struct btrfs_path *path)
2320 {
2321 	while (1) {
2322 		int ret;
2323 		const int slot = path->slots[0];
2324 		const struct extent_buffer *leaf = path->nodes[0];
2325 
2326 		/* This is where we start walking the path. */
2327 		if (slot >= btrfs_header_nritems(leaf)) {
2328 			/*
2329 			 * If we've reached the last slot in this leaf we need
2330 			 * to go to the next leaf and reset the path.
2331 			 */
2332 			ret = btrfs_next_leaf(root, path);
2333 			if (ret)
2334 				return ret;
2335 			continue;
2336 		}
2337 		/* Store the found, valid item in @key. */
2338 		btrfs_item_key_to_cpu(leaf, key, slot);
2339 		break;
2340 	}
2341 	return 0;
2342 }
2343 
2344 /*
2345  * adjust the pointers going up the tree, starting at level
2346  * making sure the right key of each node is points to 'key'.
2347  * This is used after shifting pointers to the left, so it stops
2348  * fixing up pointers when a given leaf/node is not in slot 0 of the
2349  * higher levels
2350  *
2351  */
2352 static void fixup_low_keys(struct btrfs_path *path,
2353 			   struct btrfs_disk_key *key, int level)
2354 {
2355 	int i;
2356 	struct extent_buffer *t;
2357 	int ret;
2358 
2359 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2360 		int tslot = path->slots[i];
2361 
2362 		if (!path->nodes[i])
2363 			break;
2364 		t = path->nodes[i];
2365 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2366 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2367 		BUG_ON(ret < 0);
2368 		btrfs_set_node_key(t, key, tslot);
2369 		btrfs_mark_buffer_dirty(path->nodes[i]);
2370 		if (tslot != 0)
2371 			break;
2372 	}
2373 }
2374 
2375 /*
2376  * update item key.
2377  *
2378  * This function isn't completely safe. It's the caller's responsibility
2379  * that the new key won't break the order
2380  */
2381 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2382 			     struct btrfs_path *path,
2383 			     const struct btrfs_key *new_key)
2384 {
2385 	struct btrfs_disk_key disk_key;
2386 	struct extent_buffer *eb;
2387 	int slot;
2388 
2389 	eb = path->nodes[0];
2390 	slot = path->slots[0];
2391 	if (slot > 0) {
2392 		btrfs_item_key(eb, &disk_key, slot - 1);
2393 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2394 			btrfs_crit(fs_info,
2395 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2396 				   slot, btrfs_disk_key_objectid(&disk_key),
2397 				   btrfs_disk_key_type(&disk_key),
2398 				   btrfs_disk_key_offset(&disk_key),
2399 				   new_key->objectid, new_key->type,
2400 				   new_key->offset);
2401 			btrfs_print_leaf(eb);
2402 			BUG();
2403 		}
2404 	}
2405 	if (slot < btrfs_header_nritems(eb) - 1) {
2406 		btrfs_item_key(eb, &disk_key, slot + 1);
2407 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2408 			btrfs_crit(fs_info,
2409 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2410 				   slot, btrfs_disk_key_objectid(&disk_key),
2411 				   btrfs_disk_key_type(&disk_key),
2412 				   btrfs_disk_key_offset(&disk_key),
2413 				   new_key->objectid, new_key->type,
2414 				   new_key->offset);
2415 			btrfs_print_leaf(eb);
2416 			BUG();
2417 		}
2418 	}
2419 
2420 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2421 	btrfs_set_item_key(eb, &disk_key, slot);
2422 	btrfs_mark_buffer_dirty(eb);
2423 	if (slot == 0)
2424 		fixup_low_keys(path, &disk_key, 1);
2425 }
2426 
2427 /*
2428  * Check key order of two sibling extent buffers.
2429  *
2430  * Return true if something is wrong.
2431  * Return false if everything is fine.
2432  *
2433  * Tree-checker only works inside one tree block, thus the following
2434  * corruption can not be detected by tree-checker:
2435  *
2436  * Leaf @left			| Leaf @right
2437  * --------------------------------------------------------------
2438  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2439  *
2440  * Key f6 in leaf @left itself is valid, but not valid when the next
2441  * key in leaf @right is 7.
2442  * This can only be checked at tree block merge time.
2443  * And since tree checker has ensured all key order in each tree block
2444  * is correct, we only need to bother the last key of @left and the first
2445  * key of @right.
2446  */
2447 static bool check_sibling_keys(struct extent_buffer *left,
2448 			       struct extent_buffer *right)
2449 {
2450 	struct btrfs_key left_last;
2451 	struct btrfs_key right_first;
2452 	int level = btrfs_header_level(left);
2453 	int nr_left = btrfs_header_nritems(left);
2454 	int nr_right = btrfs_header_nritems(right);
2455 
2456 	/* No key to check in one of the tree blocks */
2457 	if (!nr_left || !nr_right)
2458 		return false;
2459 
2460 	if (level) {
2461 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2462 		btrfs_node_key_to_cpu(right, &right_first, 0);
2463 	} else {
2464 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2465 		btrfs_item_key_to_cpu(right, &right_first, 0);
2466 	}
2467 
2468 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2469 		btrfs_crit(left->fs_info,
2470 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2471 			   left_last.objectid, left_last.type,
2472 			   left_last.offset, right_first.objectid,
2473 			   right_first.type, right_first.offset);
2474 		return true;
2475 	}
2476 	return false;
2477 }
2478 
2479 /*
2480  * try to push data from one node into the next node left in the
2481  * tree.
2482  *
2483  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2484  * error, and > 0 if there was no room in the left hand block.
2485  */
2486 static int push_node_left(struct btrfs_trans_handle *trans,
2487 			  struct extent_buffer *dst,
2488 			  struct extent_buffer *src, int empty)
2489 {
2490 	struct btrfs_fs_info *fs_info = trans->fs_info;
2491 	int push_items = 0;
2492 	int src_nritems;
2493 	int dst_nritems;
2494 	int ret = 0;
2495 
2496 	src_nritems = btrfs_header_nritems(src);
2497 	dst_nritems = btrfs_header_nritems(dst);
2498 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2499 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2500 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2501 
2502 	if (!empty && src_nritems <= 8)
2503 		return 1;
2504 
2505 	if (push_items <= 0)
2506 		return 1;
2507 
2508 	if (empty) {
2509 		push_items = min(src_nritems, push_items);
2510 		if (push_items < src_nritems) {
2511 			/* leave at least 8 pointers in the node if
2512 			 * we aren't going to empty it
2513 			 */
2514 			if (src_nritems - push_items < 8) {
2515 				if (push_items <= 8)
2516 					return 1;
2517 				push_items -= 8;
2518 			}
2519 		}
2520 	} else
2521 		push_items = min(src_nritems - 8, push_items);
2522 
2523 	/* dst is the left eb, src is the middle eb */
2524 	if (check_sibling_keys(dst, src)) {
2525 		ret = -EUCLEAN;
2526 		btrfs_abort_transaction(trans, ret);
2527 		return ret;
2528 	}
2529 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2530 	if (ret) {
2531 		btrfs_abort_transaction(trans, ret);
2532 		return ret;
2533 	}
2534 	copy_extent_buffer(dst, src,
2535 			   btrfs_node_key_ptr_offset(dst_nritems),
2536 			   btrfs_node_key_ptr_offset(0),
2537 			   push_items * sizeof(struct btrfs_key_ptr));
2538 
2539 	if (push_items < src_nritems) {
2540 		/*
2541 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2542 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2543 		 */
2544 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2545 				      btrfs_node_key_ptr_offset(push_items),
2546 				      (src_nritems - push_items) *
2547 				      sizeof(struct btrfs_key_ptr));
2548 	}
2549 	btrfs_set_header_nritems(src, src_nritems - push_items);
2550 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2551 	btrfs_mark_buffer_dirty(src);
2552 	btrfs_mark_buffer_dirty(dst);
2553 
2554 	return ret;
2555 }
2556 
2557 /*
2558  * try to push data from one node into the next node right in the
2559  * tree.
2560  *
2561  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2562  * error, and > 0 if there was no room in the right hand block.
2563  *
2564  * this will  only push up to 1/2 the contents of the left node over
2565  */
2566 static int balance_node_right(struct btrfs_trans_handle *trans,
2567 			      struct extent_buffer *dst,
2568 			      struct extent_buffer *src)
2569 {
2570 	struct btrfs_fs_info *fs_info = trans->fs_info;
2571 	int push_items = 0;
2572 	int max_push;
2573 	int src_nritems;
2574 	int dst_nritems;
2575 	int ret = 0;
2576 
2577 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2578 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2579 
2580 	src_nritems = btrfs_header_nritems(src);
2581 	dst_nritems = btrfs_header_nritems(dst);
2582 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2583 	if (push_items <= 0)
2584 		return 1;
2585 
2586 	if (src_nritems < 4)
2587 		return 1;
2588 
2589 	max_push = src_nritems / 2 + 1;
2590 	/* don't try to empty the node */
2591 	if (max_push >= src_nritems)
2592 		return 1;
2593 
2594 	if (max_push < push_items)
2595 		push_items = max_push;
2596 
2597 	/* dst is the right eb, src is the middle eb */
2598 	if (check_sibling_keys(src, dst)) {
2599 		ret = -EUCLEAN;
2600 		btrfs_abort_transaction(trans, ret);
2601 		return ret;
2602 	}
2603 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2604 	BUG_ON(ret < 0);
2605 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2606 				      btrfs_node_key_ptr_offset(0),
2607 				      (dst_nritems) *
2608 				      sizeof(struct btrfs_key_ptr));
2609 
2610 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2611 					 push_items);
2612 	if (ret) {
2613 		btrfs_abort_transaction(trans, ret);
2614 		return ret;
2615 	}
2616 	copy_extent_buffer(dst, src,
2617 			   btrfs_node_key_ptr_offset(0),
2618 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2619 			   push_items * sizeof(struct btrfs_key_ptr));
2620 
2621 	btrfs_set_header_nritems(src, src_nritems - push_items);
2622 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2623 
2624 	btrfs_mark_buffer_dirty(src);
2625 	btrfs_mark_buffer_dirty(dst);
2626 
2627 	return ret;
2628 }
2629 
2630 /*
2631  * helper function to insert a new root level in the tree.
2632  * A new node is allocated, and a single item is inserted to
2633  * point to the existing root
2634  *
2635  * returns zero on success or < 0 on failure.
2636  */
2637 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2638 			   struct btrfs_root *root,
2639 			   struct btrfs_path *path, int level)
2640 {
2641 	struct btrfs_fs_info *fs_info = root->fs_info;
2642 	u64 lower_gen;
2643 	struct extent_buffer *lower;
2644 	struct extent_buffer *c;
2645 	struct extent_buffer *old;
2646 	struct btrfs_disk_key lower_key;
2647 	int ret;
2648 
2649 	BUG_ON(path->nodes[level]);
2650 	BUG_ON(path->nodes[level-1] != root->node);
2651 
2652 	lower = path->nodes[level-1];
2653 	if (level == 1)
2654 		btrfs_item_key(lower, &lower_key, 0);
2655 	else
2656 		btrfs_node_key(lower, &lower_key, 0);
2657 
2658 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2659 				   &lower_key, level, root->node->start, 0,
2660 				   BTRFS_NESTING_NEW_ROOT);
2661 	if (IS_ERR(c))
2662 		return PTR_ERR(c);
2663 
2664 	root_add_used(root, fs_info->nodesize);
2665 
2666 	btrfs_set_header_nritems(c, 1);
2667 	btrfs_set_node_key(c, &lower_key, 0);
2668 	btrfs_set_node_blockptr(c, 0, lower->start);
2669 	lower_gen = btrfs_header_generation(lower);
2670 	WARN_ON(lower_gen != trans->transid);
2671 
2672 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2673 
2674 	btrfs_mark_buffer_dirty(c);
2675 
2676 	old = root->node;
2677 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2678 	BUG_ON(ret < 0);
2679 	rcu_assign_pointer(root->node, c);
2680 
2681 	/* the super has an extra ref to root->node */
2682 	free_extent_buffer(old);
2683 
2684 	add_root_to_dirty_list(root);
2685 	atomic_inc(&c->refs);
2686 	path->nodes[level] = c;
2687 	path->locks[level] = BTRFS_WRITE_LOCK;
2688 	path->slots[level] = 0;
2689 	return 0;
2690 }
2691 
2692 /*
2693  * worker function to insert a single pointer in a node.
2694  * the node should have enough room for the pointer already
2695  *
2696  * slot and level indicate where you want the key to go, and
2697  * blocknr is the block the key points to.
2698  */
2699 static void insert_ptr(struct btrfs_trans_handle *trans,
2700 		       struct btrfs_path *path,
2701 		       struct btrfs_disk_key *key, u64 bytenr,
2702 		       int slot, int level)
2703 {
2704 	struct extent_buffer *lower;
2705 	int nritems;
2706 	int ret;
2707 
2708 	BUG_ON(!path->nodes[level]);
2709 	btrfs_assert_tree_write_locked(path->nodes[level]);
2710 	lower = path->nodes[level];
2711 	nritems = btrfs_header_nritems(lower);
2712 	BUG_ON(slot > nritems);
2713 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2714 	if (slot != nritems) {
2715 		if (level) {
2716 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2717 					slot, nritems - slot);
2718 			BUG_ON(ret < 0);
2719 		}
2720 		memmove_extent_buffer(lower,
2721 			      btrfs_node_key_ptr_offset(slot + 1),
2722 			      btrfs_node_key_ptr_offset(slot),
2723 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2724 	}
2725 	if (level) {
2726 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2727 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2728 		BUG_ON(ret < 0);
2729 	}
2730 	btrfs_set_node_key(lower, key, slot);
2731 	btrfs_set_node_blockptr(lower, slot, bytenr);
2732 	WARN_ON(trans->transid == 0);
2733 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2734 	btrfs_set_header_nritems(lower, nritems + 1);
2735 	btrfs_mark_buffer_dirty(lower);
2736 }
2737 
2738 /*
2739  * split the node at the specified level in path in two.
2740  * The path is corrected to point to the appropriate node after the split
2741  *
2742  * Before splitting this tries to make some room in the node by pushing
2743  * left and right, if either one works, it returns right away.
2744  *
2745  * returns 0 on success and < 0 on failure
2746  */
2747 static noinline int split_node(struct btrfs_trans_handle *trans,
2748 			       struct btrfs_root *root,
2749 			       struct btrfs_path *path, int level)
2750 {
2751 	struct btrfs_fs_info *fs_info = root->fs_info;
2752 	struct extent_buffer *c;
2753 	struct extent_buffer *split;
2754 	struct btrfs_disk_key disk_key;
2755 	int mid;
2756 	int ret;
2757 	u32 c_nritems;
2758 
2759 	c = path->nodes[level];
2760 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2761 	if (c == root->node) {
2762 		/*
2763 		 * trying to split the root, lets make a new one
2764 		 *
2765 		 * tree mod log: We don't log_removal old root in
2766 		 * insert_new_root, because that root buffer will be kept as a
2767 		 * normal node. We are going to log removal of half of the
2768 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2769 		 * holding a tree lock on the buffer, which is why we cannot
2770 		 * race with other tree_mod_log users.
2771 		 */
2772 		ret = insert_new_root(trans, root, path, level + 1);
2773 		if (ret)
2774 			return ret;
2775 	} else {
2776 		ret = push_nodes_for_insert(trans, root, path, level);
2777 		c = path->nodes[level];
2778 		if (!ret && btrfs_header_nritems(c) <
2779 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2780 			return 0;
2781 		if (ret < 0)
2782 			return ret;
2783 	}
2784 
2785 	c_nritems = btrfs_header_nritems(c);
2786 	mid = (c_nritems + 1) / 2;
2787 	btrfs_node_key(c, &disk_key, mid);
2788 
2789 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2790 				       &disk_key, level, c->start, 0,
2791 				       BTRFS_NESTING_SPLIT);
2792 	if (IS_ERR(split))
2793 		return PTR_ERR(split);
2794 
2795 	root_add_used(root, fs_info->nodesize);
2796 	ASSERT(btrfs_header_level(c) == level);
2797 
2798 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2799 	if (ret) {
2800 		btrfs_abort_transaction(trans, ret);
2801 		return ret;
2802 	}
2803 	copy_extent_buffer(split, c,
2804 			   btrfs_node_key_ptr_offset(0),
2805 			   btrfs_node_key_ptr_offset(mid),
2806 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2807 	btrfs_set_header_nritems(split, c_nritems - mid);
2808 	btrfs_set_header_nritems(c, mid);
2809 
2810 	btrfs_mark_buffer_dirty(c);
2811 	btrfs_mark_buffer_dirty(split);
2812 
2813 	insert_ptr(trans, path, &disk_key, split->start,
2814 		   path->slots[level + 1] + 1, level + 1);
2815 
2816 	if (path->slots[level] >= mid) {
2817 		path->slots[level] -= mid;
2818 		btrfs_tree_unlock(c);
2819 		free_extent_buffer(c);
2820 		path->nodes[level] = split;
2821 		path->slots[level + 1] += 1;
2822 	} else {
2823 		btrfs_tree_unlock(split);
2824 		free_extent_buffer(split);
2825 	}
2826 	return 0;
2827 }
2828 
2829 /*
2830  * how many bytes are required to store the items in a leaf.  start
2831  * and nr indicate which items in the leaf to check.  This totals up the
2832  * space used both by the item structs and the item data
2833  */
2834 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2835 {
2836 	int data_len;
2837 	int nritems = btrfs_header_nritems(l);
2838 	int end = min(nritems, start + nr) - 1;
2839 
2840 	if (!nr)
2841 		return 0;
2842 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2843 	data_len = data_len - btrfs_item_offset(l, end);
2844 	data_len += sizeof(struct btrfs_item) * nr;
2845 	WARN_ON(data_len < 0);
2846 	return data_len;
2847 }
2848 
2849 /*
2850  * The space between the end of the leaf items and
2851  * the start of the leaf data.  IOW, how much room
2852  * the leaf has left for both items and data
2853  */
2854 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2855 {
2856 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2857 	int nritems = btrfs_header_nritems(leaf);
2858 	int ret;
2859 
2860 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2861 	if (ret < 0) {
2862 		btrfs_crit(fs_info,
2863 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2864 			   ret,
2865 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2866 			   leaf_space_used(leaf, 0, nritems), nritems);
2867 	}
2868 	return ret;
2869 }
2870 
2871 /*
2872  * min slot controls the lowest index we're willing to push to the
2873  * right.  We'll push up to and including min_slot, but no lower
2874  */
2875 static noinline int __push_leaf_right(struct btrfs_path *path,
2876 				      int data_size, int empty,
2877 				      struct extent_buffer *right,
2878 				      int free_space, u32 left_nritems,
2879 				      u32 min_slot)
2880 {
2881 	struct btrfs_fs_info *fs_info = right->fs_info;
2882 	struct extent_buffer *left = path->nodes[0];
2883 	struct extent_buffer *upper = path->nodes[1];
2884 	struct btrfs_map_token token;
2885 	struct btrfs_disk_key disk_key;
2886 	int slot;
2887 	u32 i;
2888 	int push_space = 0;
2889 	int push_items = 0;
2890 	u32 nr;
2891 	u32 right_nritems;
2892 	u32 data_end;
2893 	u32 this_item_size;
2894 
2895 	if (empty)
2896 		nr = 0;
2897 	else
2898 		nr = max_t(u32, 1, min_slot);
2899 
2900 	if (path->slots[0] >= left_nritems)
2901 		push_space += data_size;
2902 
2903 	slot = path->slots[1];
2904 	i = left_nritems - 1;
2905 	while (i >= nr) {
2906 		if (!empty && push_items > 0) {
2907 			if (path->slots[0] > i)
2908 				break;
2909 			if (path->slots[0] == i) {
2910 				int space = btrfs_leaf_free_space(left);
2911 
2912 				if (space + push_space * 2 > free_space)
2913 					break;
2914 			}
2915 		}
2916 
2917 		if (path->slots[0] == i)
2918 			push_space += data_size;
2919 
2920 		this_item_size = btrfs_item_size(left, i);
2921 		if (this_item_size + sizeof(struct btrfs_item) +
2922 		    push_space > free_space)
2923 			break;
2924 
2925 		push_items++;
2926 		push_space += this_item_size + sizeof(struct btrfs_item);
2927 		if (i == 0)
2928 			break;
2929 		i--;
2930 	}
2931 
2932 	if (push_items == 0)
2933 		goto out_unlock;
2934 
2935 	WARN_ON(!empty && push_items == left_nritems);
2936 
2937 	/* push left to right */
2938 	right_nritems = btrfs_header_nritems(right);
2939 
2940 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
2941 	push_space -= leaf_data_end(left);
2942 
2943 	/* make room in the right data area */
2944 	data_end = leaf_data_end(right);
2945 	memmove_extent_buffer(right,
2946 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2947 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2948 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2949 
2950 	/* copy from the left data area */
2951 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2952 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2953 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2954 		     push_space);
2955 
2956 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2957 			      btrfs_item_nr_offset(0),
2958 			      right_nritems * sizeof(struct btrfs_item));
2959 
2960 	/* copy the items from left to right */
2961 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2962 		   btrfs_item_nr_offset(left_nritems - push_items),
2963 		   push_items * sizeof(struct btrfs_item));
2964 
2965 	/* update the item pointers */
2966 	btrfs_init_map_token(&token, right);
2967 	right_nritems += push_items;
2968 	btrfs_set_header_nritems(right, right_nritems);
2969 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2970 	for (i = 0; i < right_nritems; i++) {
2971 		push_space -= btrfs_token_item_size(&token, i);
2972 		btrfs_set_token_item_offset(&token, i, push_space);
2973 	}
2974 
2975 	left_nritems -= push_items;
2976 	btrfs_set_header_nritems(left, left_nritems);
2977 
2978 	if (left_nritems)
2979 		btrfs_mark_buffer_dirty(left);
2980 	else
2981 		btrfs_clean_tree_block(left);
2982 
2983 	btrfs_mark_buffer_dirty(right);
2984 
2985 	btrfs_item_key(right, &disk_key, 0);
2986 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2987 	btrfs_mark_buffer_dirty(upper);
2988 
2989 	/* then fixup the leaf pointer in the path */
2990 	if (path->slots[0] >= left_nritems) {
2991 		path->slots[0] -= left_nritems;
2992 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2993 			btrfs_clean_tree_block(path->nodes[0]);
2994 		btrfs_tree_unlock(path->nodes[0]);
2995 		free_extent_buffer(path->nodes[0]);
2996 		path->nodes[0] = right;
2997 		path->slots[1] += 1;
2998 	} else {
2999 		btrfs_tree_unlock(right);
3000 		free_extent_buffer(right);
3001 	}
3002 	return 0;
3003 
3004 out_unlock:
3005 	btrfs_tree_unlock(right);
3006 	free_extent_buffer(right);
3007 	return 1;
3008 }
3009 
3010 /*
3011  * push some data in the path leaf to the right, trying to free up at
3012  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3013  *
3014  * returns 1 if the push failed because the other node didn't have enough
3015  * room, 0 if everything worked out and < 0 if there were major errors.
3016  *
3017  * this will push starting from min_slot to the end of the leaf.  It won't
3018  * push any slot lower than min_slot
3019  */
3020 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3021 			   *root, struct btrfs_path *path,
3022 			   int min_data_size, int data_size,
3023 			   int empty, u32 min_slot)
3024 {
3025 	struct extent_buffer *left = path->nodes[0];
3026 	struct extent_buffer *right;
3027 	struct extent_buffer *upper;
3028 	int slot;
3029 	int free_space;
3030 	u32 left_nritems;
3031 	int ret;
3032 
3033 	if (!path->nodes[1])
3034 		return 1;
3035 
3036 	slot = path->slots[1];
3037 	upper = path->nodes[1];
3038 	if (slot >= btrfs_header_nritems(upper) - 1)
3039 		return 1;
3040 
3041 	btrfs_assert_tree_write_locked(path->nodes[1]);
3042 
3043 	right = btrfs_read_node_slot(upper, slot + 1);
3044 	/*
3045 	 * slot + 1 is not valid or we fail to read the right node,
3046 	 * no big deal, just return.
3047 	 */
3048 	if (IS_ERR(right))
3049 		return 1;
3050 
3051 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3052 
3053 	free_space = btrfs_leaf_free_space(right);
3054 	if (free_space < data_size)
3055 		goto out_unlock;
3056 
3057 	ret = btrfs_cow_block(trans, root, right, upper,
3058 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3059 	if (ret)
3060 		goto out_unlock;
3061 
3062 	left_nritems = btrfs_header_nritems(left);
3063 	if (left_nritems == 0)
3064 		goto out_unlock;
3065 
3066 	if (check_sibling_keys(left, right)) {
3067 		ret = -EUCLEAN;
3068 		btrfs_tree_unlock(right);
3069 		free_extent_buffer(right);
3070 		return ret;
3071 	}
3072 	if (path->slots[0] == left_nritems && !empty) {
3073 		/* Key greater than all keys in the leaf, right neighbor has
3074 		 * enough room for it and we're not emptying our leaf to delete
3075 		 * it, therefore use right neighbor to insert the new item and
3076 		 * no need to touch/dirty our left leaf. */
3077 		btrfs_tree_unlock(left);
3078 		free_extent_buffer(left);
3079 		path->nodes[0] = right;
3080 		path->slots[0] = 0;
3081 		path->slots[1]++;
3082 		return 0;
3083 	}
3084 
3085 	return __push_leaf_right(path, min_data_size, empty,
3086 				right, free_space, left_nritems, min_slot);
3087 out_unlock:
3088 	btrfs_tree_unlock(right);
3089 	free_extent_buffer(right);
3090 	return 1;
3091 }
3092 
3093 /*
3094  * push some data in the path leaf to the left, trying to free up at
3095  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3096  *
3097  * max_slot can put a limit on how far into the leaf we'll push items.  The
3098  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3099  * items
3100  */
3101 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3102 				     int empty, struct extent_buffer *left,
3103 				     int free_space, u32 right_nritems,
3104 				     u32 max_slot)
3105 {
3106 	struct btrfs_fs_info *fs_info = left->fs_info;
3107 	struct btrfs_disk_key disk_key;
3108 	struct extent_buffer *right = path->nodes[0];
3109 	int i;
3110 	int push_space = 0;
3111 	int push_items = 0;
3112 	u32 old_left_nritems;
3113 	u32 nr;
3114 	int ret = 0;
3115 	u32 this_item_size;
3116 	u32 old_left_item_size;
3117 	struct btrfs_map_token token;
3118 
3119 	if (empty)
3120 		nr = min(right_nritems, max_slot);
3121 	else
3122 		nr = min(right_nritems - 1, max_slot);
3123 
3124 	for (i = 0; i < nr; i++) {
3125 		if (!empty && push_items > 0) {
3126 			if (path->slots[0] < i)
3127 				break;
3128 			if (path->slots[0] == i) {
3129 				int space = btrfs_leaf_free_space(right);
3130 
3131 				if (space + push_space * 2 > free_space)
3132 					break;
3133 			}
3134 		}
3135 
3136 		if (path->slots[0] == i)
3137 			push_space += data_size;
3138 
3139 		this_item_size = btrfs_item_size(right, i);
3140 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3141 		    free_space)
3142 			break;
3143 
3144 		push_items++;
3145 		push_space += this_item_size + sizeof(struct btrfs_item);
3146 	}
3147 
3148 	if (push_items == 0) {
3149 		ret = 1;
3150 		goto out;
3151 	}
3152 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3153 
3154 	/* push data from right to left */
3155 	copy_extent_buffer(left, right,
3156 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3157 			   btrfs_item_nr_offset(0),
3158 			   push_items * sizeof(struct btrfs_item));
3159 
3160 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3161 		     btrfs_item_offset(right, push_items - 1);
3162 
3163 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3164 		     leaf_data_end(left) - push_space,
3165 		     BTRFS_LEAF_DATA_OFFSET +
3166 		     btrfs_item_offset(right, push_items - 1),
3167 		     push_space);
3168 	old_left_nritems = btrfs_header_nritems(left);
3169 	BUG_ON(old_left_nritems <= 0);
3170 
3171 	btrfs_init_map_token(&token, left);
3172 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3173 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3174 		u32 ioff;
3175 
3176 		ioff = btrfs_token_item_offset(&token, i);
3177 		btrfs_set_token_item_offset(&token, i,
3178 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3179 	}
3180 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3181 
3182 	/* fixup right node */
3183 	if (push_items > right_nritems)
3184 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3185 		       right_nritems);
3186 
3187 	if (push_items < right_nritems) {
3188 		push_space = btrfs_item_offset(right, push_items - 1) -
3189 						  leaf_data_end(right);
3190 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3191 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3192 				      BTRFS_LEAF_DATA_OFFSET +
3193 				      leaf_data_end(right), push_space);
3194 
3195 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3196 			      btrfs_item_nr_offset(push_items),
3197 			     (btrfs_header_nritems(right) - push_items) *
3198 			     sizeof(struct btrfs_item));
3199 	}
3200 
3201 	btrfs_init_map_token(&token, right);
3202 	right_nritems -= push_items;
3203 	btrfs_set_header_nritems(right, right_nritems);
3204 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3205 	for (i = 0; i < right_nritems; i++) {
3206 		push_space = push_space - btrfs_token_item_size(&token, i);
3207 		btrfs_set_token_item_offset(&token, i, push_space);
3208 	}
3209 
3210 	btrfs_mark_buffer_dirty(left);
3211 	if (right_nritems)
3212 		btrfs_mark_buffer_dirty(right);
3213 	else
3214 		btrfs_clean_tree_block(right);
3215 
3216 	btrfs_item_key(right, &disk_key, 0);
3217 	fixup_low_keys(path, &disk_key, 1);
3218 
3219 	/* then fixup the leaf pointer in the path */
3220 	if (path->slots[0] < push_items) {
3221 		path->slots[0] += old_left_nritems;
3222 		btrfs_tree_unlock(path->nodes[0]);
3223 		free_extent_buffer(path->nodes[0]);
3224 		path->nodes[0] = left;
3225 		path->slots[1] -= 1;
3226 	} else {
3227 		btrfs_tree_unlock(left);
3228 		free_extent_buffer(left);
3229 		path->slots[0] -= push_items;
3230 	}
3231 	BUG_ON(path->slots[0] < 0);
3232 	return ret;
3233 out:
3234 	btrfs_tree_unlock(left);
3235 	free_extent_buffer(left);
3236 	return ret;
3237 }
3238 
3239 /*
3240  * push some data in the path leaf to the left, trying to free up at
3241  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3242  *
3243  * max_slot can put a limit on how far into the leaf we'll push items.  The
3244  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3245  * items
3246  */
3247 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3248 			  *root, struct btrfs_path *path, int min_data_size,
3249 			  int data_size, int empty, u32 max_slot)
3250 {
3251 	struct extent_buffer *right = path->nodes[0];
3252 	struct extent_buffer *left;
3253 	int slot;
3254 	int free_space;
3255 	u32 right_nritems;
3256 	int ret = 0;
3257 
3258 	slot = path->slots[1];
3259 	if (slot == 0)
3260 		return 1;
3261 	if (!path->nodes[1])
3262 		return 1;
3263 
3264 	right_nritems = btrfs_header_nritems(right);
3265 	if (right_nritems == 0)
3266 		return 1;
3267 
3268 	btrfs_assert_tree_write_locked(path->nodes[1]);
3269 
3270 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3271 	/*
3272 	 * slot - 1 is not valid or we fail to read the left node,
3273 	 * no big deal, just return.
3274 	 */
3275 	if (IS_ERR(left))
3276 		return 1;
3277 
3278 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3279 
3280 	free_space = btrfs_leaf_free_space(left);
3281 	if (free_space < data_size) {
3282 		ret = 1;
3283 		goto out;
3284 	}
3285 
3286 	ret = btrfs_cow_block(trans, root, left,
3287 			      path->nodes[1], slot - 1, &left,
3288 			      BTRFS_NESTING_LEFT_COW);
3289 	if (ret) {
3290 		/* we hit -ENOSPC, but it isn't fatal here */
3291 		if (ret == -ENOSPC)
3292 			ret = 1;
3293 		goto out;
3294 	}
3295 
3296 	if (check_sibling_keys(left, right)) {
3297 		ret = -EUCLEAN;
3298 		goto out;
3299 	}
3300 	return __push_leaf_left(path, min_data_size,
3301 			       empty, left, free_space, right_nritems,
3302 			       max_slot);
3303 out:
3304 	btrfs_tree_unlock(left);
3305 	free_extent_buffer(left);
3306 	return ret;
3307 }
3308 
3309 /*
3310  * split the path's leaf in two, making sure there is at least data_size
3311  * available for the resulting leaf level of the path.
3312  */
3313 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3314 				    struct btrfs_path *path,
3315 				    struct extent_buffer *l,
3316 				    struct extent_buffer *right,
3317 				    int slot, int mid, int nritems)
3318 {
3319 	struct btrfs_fs_info *fs_info = trans->fs_info;
3320 	int data_copy_size;
3321 	int rt_data_off;
3322 	int i;
3323 	struct btrfs_disk_key disk_key;
3324 	struct btrfs_map_token token;
3325 
3326 	nritems = nritems - mid;
3327 	btrfs_set_header_nritems(right, nritems);
3328 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3329 
3330 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3331 			   btrfs_item_nr_offset(mid),
3332 			   nritems * sizeof(struct btrfs_item));
3333 
3334 	copy_extent_buffer(right, l,
3335 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3336 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3337 		     leaf_data_end(l), data_copy_size);
3338 
3339 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3340 
3341 	btrfs_init_map_token(&token, right);
3342 	for (i = 0; i < nritems; i++) {
3343 		u32 ioff;
3344 
3345 		ioff = btrfs_token_item_offset(&token, i);
3346 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3347 	}
3348 
3349 	btrfs_set_header_nritems(l, mid);
3350 	btrfs_item_key(right, &disk_key, 0);
3351 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3352 
3353 	btrfs_mark_buffer_dirty(right);
3354 	btrfs_mark_buffer_dirty(l);
3355 	BUG_ON(path->slots[0] != slot);
3356 
3357 	if (mid <= slot) {
3358 		btrfs_tree_unlock(path->nodes[0]);
3359 		free_extent_buffer(path->nodes[0]);
3360 		path->nodes[0] = right;
3361 		path->slots[0] -= mid;
3362 		path->slots[1] += 1;
3363 	} else {
3364 		btrfs_tree_unlock(right);
3365 		free_extent_buffer(right);
3366 	}
3367 
3368 	BUG_ON(path->slots[0] < 0);
3369 }
3370 
3371 /*
3372  * double splits happen when we need to insert a big item in the middle
3373  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3374  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3375  *          A                 B                 C
3376  *
3377  * We avoid this by trying to push the items on either side of our target
3378  * into the adjacent leaves.  If all goes well we can avoid the double split
3379  * completely.
3380  */
3381 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3382 					  struct btrfs_root *root,
3383 					  struct btrfs_path *path,
3384 					  int data_size)
3385 {
3386 	int ret;
3387 	int progress = 0;
3388 	int slot;
3389 	u32 nritems;
3390 	int space_needed = data_size;
3391 
3392 	slot = path->slots[0];
3393 	if (slot < btrfs_header_nritems(path->nodes[0]))
3394 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3395 
3396 	/*
3397 	 * try to push all the items after our slot into the
3398 	 * right leaf
3399 	 */
3400 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3401 	if (ret < 0)
3402 		return ret;
3403 
3404 	if (ret == 0)
3405 		progress++;
3406 
3407 	nritems = btrfs_header_nritems(path->nodes[0]);
3408 	/*
3409 	 * our goal is to get our slot at the start or end of a leaf.  If
3410 	 * we've done so we're done
3411 	 */
3412 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3413 		return 0;
3414 
3415 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3416 		return 0;
3417 
3418 	/* try to push all the items before our slot into the next leaf */
3419 	slot = path->slots[0];
3420 	space_needed = data_size;
3421 	if (slot > 0)
3422 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3423 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3424 	if (ret < 0)
3425 		return ret;
3426 
3427 	if (ret == 0)
3428 		progress++;
3429 
3430 	if (progress)
3431 		return 0;
3432 	return 1;
3433 }
3434 
3435 /*
3436  * split the path's leaf in two, making sure there is at least data_size
3437  * available for the resulting leaf level of the path.
3438  *
3439  * returns 0 if all went well and < 0 on failure.
3440  */
3441 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3442 			       struct btrfs_root *root,
3443 			       const struct btrfs_key *ins_key,
3444 			       struct btrfs_path *path, int data_size,
3445 			       int extend)
3446 {
3447 	struct btrfs_disk_key disk_key;
3448 	struct extent_buffer *l;
3449 	u32 nritems;
3450 	int mid;
3451 	int slot;
3452 	struct extent_buffer *right;
3453 	struct btrfs_fs_info *fs_info = root->fs_info;
3454 	int ret = 0;
3455 	int wret;
3456 	int split;
3457 	int num_doubles = 0;
3458 	int tried_avoid_double = 0;
3459 
3460 	l = path->nodes[0];
3461 	slot = path->slots[0];
3462 	if (extend && data_size + btrfs_item_size(l, slot) +
3463 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3464 		return -EOVERFLOW;
3465 
3466 	/* first try to make some room by pushing left and right */
3467 	if (data_size && path->nodes[1]) {
3468 		int space_needed = data_size;
3469 
3470 		if (slot < btrfs_header_nritems(l))
3471 			space_needed -= btrfs_leaf_free_space(l);
3472 
3473 		wret = push_leaf_right(trans, root, path, space_needed,
3474 				       space_needed, 0, 0);
3475 		if (wret < 0)
3476 			return wret;
3477 		if (wret) {
3478 			space_needed = data_size;
3479 			if (slot > 0)
3480 				space_needed -= btrfs_leaf_free_space(l);
3481 			wret = push_leaf_left(trans, root, path, space_needed,
3482 					      space_needed, 0, (u32)-1);
3483 			if (wret < 0)
3484 				return wret;
3485 		}
3486 		l = path->nodes[0];
3487 
3488 		/* did the pushes work? */
3489 		if (btrfs_leaf_free_space(l) >= data_size)
3490 			return 0;
3491 	}
3492 
3493 	if (!path->nodes[1]) {
3494 		ret = insert_new_root(trans, root, path, 1);
3495 		if (ret)
3496 			return ret;
3497 	}
3498 again:
3499 	split = 1;
3500 	l = path->nodes[0];
3501 	slot = path->slots[0];
3502 	nritems = btrfs_header_nritems(l);
3503 	mid = (nritems + 1) / 2;
3504 
3505 	if (mid <= slot) {
3506 		if (nritems == 1 ||
3507 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3508 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3509 			if (slot >= nritems) {
3510 				split = 0;
3511 			} else {
3512 				mid = slot;
3513 				if (mid != nritems &&
3514 				    leaf_space_used(l, mid, nritems - mid) +
3515 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3516 					if (data_size && !tried_avoid_double)
3517 						goto push_for_double;
3518 					split = 2;
3519 				}
3520 			}
3521 		}
3522 	} else {
3523 		if (leaf_space_used(l, 0, mid) + data_size >
3524 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3525 			if (!extend && data_size && slot == 0) {
3526 				split = 0;
3527 			} else if ((extend || !data_size) && slot == 0) {
3528 				mid = 1;
3529 			} else {
3530 				mid = slot;
3531 				if (mid != nritems &&
3532 				    leaf_space_used(l, mid, nritems - mid) +
3533 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3534 					if (data_size && !tried_avoid_double)
3535 						goto push_for_double;
3536 					split = 2;
3537 				}
3538 			}
3539 		}
3540 	}
3541 
3542 	if (split == 0)
3543 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3544 	else
3545 		btrfs_item_key(l, &disk_key, mid);
3546 
3547 	/*
3548 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3549 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3550 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3551 	 * out.  In the future we could add a
3552 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3553 	 * use BTRFS_NESTING_NEW_ROOT.
3554 	 */
3555 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3556 				       &disk_key, 0, l->start, 0,
3557 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3558 				       BTRFS_NESTING_SPLIT);
3559 	if (IS_ERR(right))
3560 		return PTR_ERR(right);
3561 
3562 	root_add_used(root, fs_info->nodesize);
3563 
3564 	if (split == 0) {
3565 		if (mid <= slot) {
3566 			btrfs_set_header_nritems(right, 0);
3567 			insert_ptr(trans, path, &disk_key,
3568 				   right->start, path->slots[1] + 1, 1);
3569 			btrfs_tree_unlock(path->nodes[0]);
3570 			free_extent_buffer(path->nodes[0]);
3571 			path->nodes[0] = right;
3572 			path->slots[0] = 0;
3573 			path->slots[1] += 1;
3574 		} else {
3575 			btrfs_set_header_nritems(right, 0);
3576 			insert_ptr(trans, path, &disk_key,
3577 				   right->start, path->slots[1], 1);
3578 			btrfs_tree_unlock(path->nodes[0]);
3579 			free_extent_buffer(path->nodes[0]);
3580 			path->nodes[0] = right;
3581 			path->slots[0] = 0;
3582 			if (path->slots[1] == 0)
3583 				fixup_low_keys(path, &disk_key, 1);
3584 		}
3585 		/*
3586 		 * We create a new leaf 'right' for the required ins_len and
3587 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3588 		 * the content of ins_len to 'right'.
3589 		 */
3590 		return ret;
3591 	}
3592 
3593 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3594 
3595 	if (split == 2) {
3596 		BUG_ON(num_doubles != 0);
3597 		num_doubles++;
3598 		goto again;
3599 	}
3600 
3601 	return 0;
3602 
3603 push_for_double:
3604 	push_for_double_split(trans, root, path, data_size);
3605 	tried_avoid_double = 1;
3606 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3607 		return 0;
3608 	goto again;
3609 }
3610 
3611 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3612 					 struct btrfs_root *root,
3613 					 struct btrfs_path *path, int ins_len)
3614 {
3615 	struct btrfs_key key;
3616 	struct extent_buffer *leaf;
3617 	struct btrfs_file_extent_item *fi;
3618 	u64 extent_len = 0;
3619 	u32 item_size;
3620 	int ret;
3621 
3622 	leaf = path->nodes[0];
3623 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3624 
3625 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3626 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3627 
3628 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3629 		return 0;
3630 
3631 	item_size = btrfs_item_size(leaf, path->slots[0]);
3632 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3633 		fi = btrfs_item_ptr(leaf, path->slots[0],
3634 				    struct btrfs_file_extent_item);
3635 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3636 	}
3637 	btrfs_release_path(path);
3638 
3639 	path->keep_locks = 1;
3640 	path->search_for_split = 1;
3641 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3642 	path->search_for_split = 0;
3643 	if (ret > 0)
3644 		ret = -EAGAIN;
3645 	if (ret < 0)
3646 		goto err;
3647 
3648 	ret = -EAGAIN;
3649 	leaf = path->nodes[0];
3650 	/* if our item isn't there, return now */
3651 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3652 		goto err;
3653 
3654 	/* the leaf has  changed, it now has room.  return now */
3655 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3656 		goto err;
3657 
3658 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3659 		fi = btrfs_item_ptr(leaf, path->slots[0],
3660 				    struct btrfs_file_extent_item);
3661 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3662 			goto err;
3663 	}
3664 
3665 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3666 	if (ret)
3667 		goto err;
3668 
3669 	path->keep_locks = 0;
3670 	btrfs_unlock_up_safe(path, 1);
3671 	return 0;
3672 err:
3673 	path->keep_locks = 0;
3674 	return ret;
3675 }
3676 
3677 static noinline int split_item(struct btrfs_path *path,
3678 			       const struct btrfs_key *new_key,
3679 			       unsigned long split_offset)
3680 {
3681 	struct extent_buffer *leaf;
3682 	int orig_slot, slot;
3683 	char *buf;
3684 	u32 nritems;
3685 	u32 item_size;
3686 	u32 orig_offset;
3687 	struct btrfs_disk_key disk_key;
3688 
3689 	leaf = path->nodes[0];
3690 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3691 
3692 	orig_slot = path->slots[0];
3693 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3694 	item_size = btrfs_item_size(leaf, path->slots[0]);
3695 
3696 	buf = kmalloc(item_size, GFP_NOFS);
3697 	if (!buf)
3698 		return -ENOMEM;
3699 
3700 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3701 			    path->slots[0]), item_size);
3702 
3703 	slot = path->slots[0] + 1;
3704 	nritems = btrfs_header_nritems(leaf);
3705 	if (slot != nritems) {
3706 		/* shift the items */
3707 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3708 				btrfs_item_nr_offset(slot),
3709 				(nritems - slot) * sizeof(struct btrfs_item));
3710 	}
3711 
3712 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3713 	btrfs_set_item_key(leaf, &disk_key, slot);
3714 
3715 	btrfs_set_item_offset(leaf, slot, orig_offset);
3716 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3717 
3718 	btrfs_set_item_offset(leaf, orig_slot,
3719 				 orig_offset + item_size - split_offset);
3720 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3721 
3722 	btrfs_set_header_nritems(leaf, nritems + 1);
3723 
3724 	/* write the data for the start of the original item */
3725 	write_extent_buffer(leaf, buf,
3726 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3727 			    split_offset);
3728 
3729 	/* write the data for the new item */
3730 	write_extent_buffer(leaf, buf + split_offset,
3731 			    btrfs_item_ptr_offset(leaf, slot),
3732 			    item_size - split_offset);
3733 	btrfs_mark_buffer_dirty(leaf);
3734 
3735 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3736 	kfree(buf);
3737 	return 0;
3738 }
3739 
3740 /*
3741  * This function splits a single item into two items,
3742  * giving 'new_key' to the new item and splitting the
3743  * old one at split_offset (from the start of the item).
3744  *
3745  * The path may be released by this operation.  After
3746  * the split, the path is pointing to the old item.  The
3747  * new item is going to be in the same node as the old one.
3748  *
3749  * Note, the item being split must be smaller enough to live alone on
3750  * a tree block with room for one extra struct btrfs_item
3751  *
3752  * This allows us to split the item in place, keeping a lock on the
3753  * leaf the entire time.
3754  */
3755 int btrfs_split_item(struct btrfs_trans_handle *trans,
3756 		     struct btrfs_root *root,
3757 		     struct btrfs_path *path,
3758 		     const struct btrfs_key *new_key,
3759 		     unsigned long split_offset)
3760 {
3761 	int ret;
3762 	ret = setup_leaf_for_split(trans, root, path,
3763 				   sizeof(struct btrfs_item));
3764 	if (ret)
3765 		return ret;
3766 
3767 	ret = split_item(path, new_key, split_offset);
3768 	return ret;
3769 }
3770 
3771 /*
3772  * make the item pointed to by the path smaller.  new_size indicates
3773  * how small to make it, and from_end tells us if we just chop bytes
3774  * off the end of the item or if we shift the item to chop bytes off
3775  * the front.
3776  */
3777 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3778 {
3779 	int slot;
3780 	struct extent_buffer *leaf;
3781 	u32 nritems;
3782 	unsigned int data_end;
3783 	unsigned int old_data_start;
3784 	unsigned int old_size;
3785 	unsigned int size_diff;
3786 	int i;
3787 	struct btrfs_map_token token;
3788 
3789 	leaf = path->nodes[0];
3790 	slot = path->slots[0];
3791 
3792 	old_size = btrfs_item_size(leaf, slot);
3793 	if (old_size == new_size)
3794 		return;
3795 
3796 	nritems = btrfs_header_nritems(leaf);
3797 	data_end = leaf_data_end(leaf);
3798 
3799 	old_data_start = btrfs_item_offset(leaf, slot);
3800 
3801 	size_diff = old_size - new_size;
3802 
3803 	BUG_ON(slot < 0);
3804 	BUG_ON(slot >= nritems);
3805 
3806 	/*
3807 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3808 	 */
3809 	/* first correct the data pointers */
3810 	btrfs_init_map_token(&token, leaf);
3811 	for (i = slot; i < nritems; i++) {
3812 		u32 ioff;
3813 
3814 		ioff = btrfs_token_item_offset(&token, i);
3815 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3816 	}
3817 
3818 	/* shift the data */
3819 	if (from_end) {
3820 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3821 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3822 			      data_end, old_data_start + new_size - data_end);
3823 	} else {
3824 		struct btrfs_disk_key disk_key;
3825 		u64 offset;
3826 
3827 		btrfs_item_key(leaf, &disk_key, slot);
3828 
3829 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3830 			unsigned long ptr;
3831 			struct btrfs_file_extent_item *fi;
3832 
3833 			fi = btrfs_item_ptr(leaf, slot,
3834 					    struct btrfs_file_extent_item);
3835 			fi = (struct btrfs_file_extent_item *)(
3836 			     (unsigned long)fi - size_diff);
3837 
3838 			if (btrfs_file_extent_type(leaf, fi) ==
3839 			    BTRFS_FILE_EXTENT_INLINE) {
3840 				ptr = btrfs_item_ptr_offset(leaf, slot);
3841 				memmove_extent_buffer(leaf, ptr,
3842 				      (unsigned long)fi,
3843 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3844 			}
3845 		}
3846 
3847 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3848 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3849 			      data_end, old_data_start - data_end);
3850 
3851 		offset = btrfs_disk_key_offset(&disk_key);
3852 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3853 		btrfs_set_item_key(leaf, &disk_key, slot);
3854 		if (slot == 0)
3855 			fixup_low_keys(path, &disk_key, 1);
3856 	}
3857 
3858 	btrfs_set_item_size(leaf, slot, new_size);
3859 	btrfs_mark_buffer_dirty(leaf);
3860 
3861 	if (btrfs_leaf_free_space(leaf) < 0) {
3862 		btrfs_print_leaf(leaf);
3863 		BUG();
3864 	}
3865 }
3866 
3867 /*
3868  * make the item pointed to by the path bigger, data_size is the added size.
3869  */
3870 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3871 {
3872 	int slot;
3873 	struct extent_buffer *leaf;
3874 	u32 nritems;
3875 	unsigned int data_end;
3876 	unsigned int old_data;
3877 	unsigned int old_size;
3878 	int i;
3879 	struct btrfs_map_token token;
3880 
3881 	leaf = path->nodes[0];
3882 
3883 	nritems = btrfs_header_nritems(leaf);
3884 	data_end = leaf_data_end(leaf);
3885 
3886 	if (btrfs_leaf_free_space(leaf) < data_size) {
3887 		btrfs_print_leaf(leaf);
3888 		BUG();
3889 	}
3890 	slot = path->slots[0];
3891 	old_data = btrfs_item_data_end(leaf, slot);
3892 
3893 	BUG_ON(slot < 0);
3894 	if (slot >= nritems) {
3895 		btrfs_print_leaf(leaf);
3896 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3897 			   slot, nritems);
3898 		BUG();
3899 	}
3900 
3901 	/*
3902 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3903 	 */
3904 	/* first correct the data pointers */
3905 	btrfs_init_map_token(&token, leaf);
3906 	for (i = slot; i < nritems; i++) {
3907 		u32 ioff;
3908 
3909 		ioff = btrfs_token_item_offset(&token, i);
3910 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
3911 	}
3912 
3913 	/* shift the data */
3914 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3915 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3916 		      data_end, old_data - data_end);
3917 
3918 	data_end = old_data;
3919 	old_size = btrfs_item_size(leaf, slot);
3920 	btrfs_set_item_size(leaf, slot, old_size + data_size);
3921 	btrfs_mark_buffer_dirty(leaf);
3922 
3923 	if (btrfs_leaf_free_space(leaf) < 0) {
3924 		btrfs_print_leaf(leaf);
3925 		BUG();
3926 	}
3927 }
3928 
3929 /**
3930  * setup_items_for_insert - Helper called before inserting one or more items
3931  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3932  * in a function that doesn't call btrfs_search_slot
3933  *
3934  * @root:	root we are inserting items to
3935  * @path:	points to the leaf/slot where we are going to insert new items
3936  * @batch:      information about the batch of items to insert
3937  */
3938 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3939 				   const struct btrfs_item_batch *batch)
3940 {
3941 	struct btrfs_fs_info *fs_info = root->fs_info;
3942 	int i;
3943 	u32 nritems;
3944 	unsigned int data_end;
3945 	struct btrfs_disk_key disk_key;
3946 	struct extent_buffer *leaf;
3947 	int slot;
3948 	struct btrfs_map_token token;
3949 	u32 total_size;
3950 
3951 	/*
3952 	 * Before anything else, update keys in the parent and other ancestors
3953 	 * if needed, then release the write locks on them, so that other tasks
3954 	 * can use them while we modify the leaf.
3955 	 */
3956 	if (path->slots[0] == 0) {
3957 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3958 		fixup_low_keys(path, &disk_key, 1);
3959 	}
3960 	btrfs_unlock_up_safe(path, 1);
3961 
3962 	leaf = path->nodes[0];
3963 	slot = path->slots[0];
3964 
3965 	nritems = btrfs_header_nritems(leaf);
3966 	data_end = leaf_data_end(leaf);
3967 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3968 
3969 	if (btrfs_leaf_free_space(leaf) < total_size) {
3970 		btrfs_print_leaf(leaf);
3971 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3972 			   total_size, btrfs_leaf_free_space(leaf));
3973 		BUG();
3974 	}
3975 
3976 	btrfs_init_map_token(&token, leaf);
3977 	if (slot != nritems) {
3978 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
3979 
3980 		if (old_data < data_end) {
3981 			btrfs_print_leaf(leaf);
3982 			btrfs_crit(fs_info,
3983 		"item at slot %d with data offset %u beyond data end of leaf %u",
3984 				   slot, old_data, data_end);
3985 			BUG();
3986 		}
3987 		/*
3988 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3989 		 */
3990 		/* first correct the data pointers */
3991 		for (i = slot; i < nritems; i++) {
3992 			u32 ioff;
3993 
3994 			ioff = btrfs_token_item_offset(&token, i);
3995 			btrfs_set_token_item_offset(&token, i,
3996 						       ioff - batch->total_data_size);
3997 		}
3998 		/* shift the items */
3999 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
4000 			      btrfs_item_nr_offset(slot),
4001 			      (nritems - slot) * sizeof(struct btrfs_item));
4002 
4003 		/* shift the data */
4004 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4005 				      data_end - batch->total_data_size,
4006 				      BTRFS_LEAF_DATA_OFFSET + data_end,
4007 				      old_data - data_end);
4008 		data_end = old_data;
4009 	}
4010 
4011 	/* setup the item for the new data */
4012 	for (i = 0; i < batch->nr; i++) {
4013 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4014 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4015 		data_end -= batch->data_sizes[i];
4016 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4017 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4018 	}
4019 
4020 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4021 	btrfs_mark_buffer_dirty(leaf);
4022 
4023 	if (btrfs_leaf_free_space(leaf) < 0) {
4024 		btrfs_print_leaf(leaf);
4025 		BUG();
4026 	}
4027 }
4028 
4029 /*
4030  * Insert a new item into a leaf.
4031  *
4032  * @root:      The root of the btree.
4033  * @path:      A path pointing to the target leaf and slot.
4034  * @key:       The key of the new item.
4035  * @data_size: The size of the data associated with the new key.
4036  */
4037 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4038 				 struct btrfs_path *path,
4039 				 const struct btrfs_key *key,
4040 				 u32 data_size)
4041 {
4042 	struct btrfs_item_batch batch;
4043 
4044 	batch.keys = key;
4045 	batch.data_sizes = &data_size;
4046 	batch.total_data_size = data_size;
4047 	batch.nr = 1;
4048 
4049 	setup_items_for_insert(root, path, &batch);
4050 }
4051 
4052 /*
4053  * Given a key and some data, insert items into the tree.
4054  * This does all the path init required, making room in the tree if needed.
4055  */
4056 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4057 			    struct btrfs_root *root,
4058 			    struct btrfs_path *path,
4059 			    const struct btrfs_item_batch *batch)
4060 {
4061 	int ret = 0;
4062 	int slot;
4063 	u32 total_size;
4064 
4065 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4066 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4067 	if (ret == 0)
4068 		return -EEXIST;
4069 	if (ret < 0)
4070 		return ret;
4071 
4072 	slot = path->slots[0];
4073 	BUG_ON(slot < 0);
4074 
4075 	setup_items_for_insert(root, path, batch);
4076 	return 0;
4077 }
4078 
4079 /*
4080  * Given a key and some data, insert an item into the tree.
4081  * This does all the path init required, making room in the tree if needed.
4082  */
4083 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4084 		      const struct btrfs_key *cpu_key, void *data,
4085 		      u32 data_size)
4086 {
4087 	int ret = 0;
4088 	struct btrfs_path *path;
4089 	struct extent_buffer *leaf;
4090 	unsigned long ptr;
4091 
4092 	path = btrfs_alloc_path();
4093 	if (!path)
4094 		return -ENOMEM;
4095 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4096 	if (!ret) {
4097 		leaf = path->nodes[0];
4098 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4099 		write_extent_buffer(leaf, data, ptr, data_size);
4100 		btrfs_mark_buffer_dirty(leaf);
4101 	}
4102 	btrfs_free_path(path);
4103 	return ret;
4104 }
4105 
4106 /*
4107  * This function duplicates an item, giving 'new_key' to the new item.
4108  * It guarantees both items live in the same tree leaf and the new item is
4109  * contiguous with the original item.
4110  *
4111  * This allows us to split a file extent in place, keeping a lock on the leaf
4112  * the entire time.
4113  */
4114 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4115 			 struct btrfs_root *root,
4116 			 struct btrfs_path *path,
4117 			 const struct btrfs_key *new_key)
4118 {
4119 	struct extent_buffer *leaf;
4120 	int ret;
4121 	u32 item_size;
4122 
4123 	leaf = path->nodes[0];
4124 	item_size = btrfs_item_size(leaf, path->slots[0]);
4125 	ret = setup_leaf_for_split(trans, root, path,
4126 				   item_size + sizeof(struct btrfs_item));
4127 	if (ret)
4128 		return ret;
4129 
4130 	path->slots[0]++;
4131 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4132 	leaf = path->nodes[0];
4133 	memcpy_extent_buffer(leaf,
4134 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4135 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4136 			     item_size);
4137 	return 0;
4138 }
4139 
4140 /*
4141  * delete the pointer from a given node.
4142  *
4143  * the tree should have been previously balanced so the deletion does not
4144  * empty a node.
4145  */
4146 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4147 		    int level, int slot)
4148 {
4149 	struct extent_buffer *parent = path->nodes[level];
4150 	u32 nritems;
4151 	int ret;
4152 
4153 	nritems = btrfs_header_nritems(parent);
4154 	if (slot != nritems - 1) {
4155 		if (level) {
4156 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4157 					slot + 1, nritems - slot - 1);
4158 			BUG_ON(ret < 0);
4159 		}
4160 		memmove_extent_buffer(parent,
4161 			      btrfs_node_key_ptr_offset(slot),
4162 			      btrfs_node_key_ptr_offset(slot + 1),
4163 			      sizeof(struct btrfs_key_ptr) *
4164 			      (nritems - slot - 1));
4165 	} else if (level) {
4166 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4167 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4168 		BUG_ON(ret < 0);
4169 	}
4170 
4171 	nritems--;
4172 	btrfs_set_header_nritems(parent, nritems);
4173 	if (nritems == 0 && parent == root->node) {
4174 		BUG_ON(btrfs_header_level(root->node) != 1);
4175 		/* just turn the root into a leaf and break */
4176 		btrfs_set_header_level(root->node, 0);
4177 	} else if (slot == 0) {
4178 		struct btrfs_disk_key disk_key;
4179 
4180 		btrfs_node_key(parent, &disk_key, 0);
4181 		fixup_low_keys(path, &disk_key, level + 1);
4182 	}
4183 	btrfs_mark_buffer_dirty(parent);
4184 }
4185 
4186 /*
4187  * a helper function to delete the leaf pointed to by path->slots[1] and
4188  * path->nodes[1].
4189  *
4190  * This deletes the pointer in path->nodes[1] and frees the leaf
4191  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4192  *
4193  * The path must have already been setup for deleting the leaf, including
4194  * all the proper balancing.  path->nodes[1] must be locked.
4195  */
4196 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4197 				    struct btrfs_root *root,
4198 				    struct btrfs_path *path,
4199 				    struct extent_buffer *leaf)
4200 {
4201 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4202 	del_ptr(root, path, 1, path->slots[1]);
4203 
4204 	/*
4205 	 * btrfs_free_extent is expensive, we want to make sure we
4206 	 * aren't holding any locks when we call it
4207 	 */
4208 	btrfs_unlock_up_safe(path, 0);
4209 
4210 	root_sub_used(root, leaf->len);
4211 
4212 	atomic_inc(&leaf->refs);
4213 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4214 	free_extent_buffer_stale(leaf);
4215 }
4216 /*
4217  * delete the item at the leaf level in path.  If that empties
4218  * the leaf, remove it from the tree
4219  */
4220 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4221 		    struct btrfs_path *path, int slot, int nr)
4222 {
4223 	struct btrfs_fs_info *fs_info = root->fs_info;
4224 	struct extent_buffer *leaf;
4225 	int ret = 0;
4226 	int wret;
4227 	u32 nritems;
4228 
4229 	leaf = path->nodes[0];
4230 	nritems = btrfs_header_nritems(leaf);
4231 
4232 	if (slot + nr != nritems) {
4233 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4234 		const int data_end = leaf_data_end(leaf);
4235 		struct btrfs_map_token token;
4236 		u32 dsize = 0;
4237 		int i;
4238 
4239 		for (i = 0; i < nr; i++)
4240 			dsize += btrfs_item_size(leaf, slot + i);
4241 
4242 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4243 			      data_end + dsize,
4244 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4245 			      last_off - data_end);
4246 
4247 		btrfs_init_map_token(&token, leaf);
4248 		for (i = slot + nr; i < nritems; i++) {
4249 			u32 ioff;
4250 
4251 			ioff = btrfs_token_item_offset(&token, i);
4252 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4253 		}
4254 
4255 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4256 			      btrfs_item_nr_offset(slot + nr),
4257 			      sizeof(struct btrfs_item) *
4258 			      (nritems - slot - nr));
4259 	}
4260 	btrfs_set_header_nritems(leaf, nritems - nr);
4261 	nritems -= nr;
4262 
4263 	/* delete the leaf if we've emptied it */
4264 	if (nritems == 0) {
4265 		if (leaf == root->node) {
4266 			btrfs_set_header_level(leaf, 0);
4267 		} else {
4268 			btrfs_clean_tree_block(leaf);
4269 			btrfs_del_leaf(trans, root, path, leaf);
4270 		}
4271 	} else {
4272 		int used = leaf_space_used(leaf, 0, nritems);
4273 		if (slot == 0) {
4274 			struct btrfs_disk_key disk_key;
4275 
4276 			btrfs_item_key(leaf, &disk_key, 0);
4277 			fixup_low_keys(path, &disk_key, 1);
4278 		}
4279 
4280 		/*
4281 		 * Try to delete the leaf if it is mostly empty. We do this by
4282 		 * trying to move all its items into its left and right neighbours.
4283 		 * If we can't move all the items, then we don't delete it - it's
4284 		 * not ideal, but future insertions might fill the leaf with more
4285 		 * items, or items from other leaves might be moved later into our
4286 		 * leaf due to deletions on those leaves.
4287 		 */
4288 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4289 			u32 min_push_space;
4290 
4291 			/* push_leaf_left fixes the path.
4292 			 * make sure the path still points to our leaf
4293 			 * for possible call to del_ptr below
4294 			 */
4295 			slot = path->slots[1];
4296 			atomic_inc(&leaf->refs);
4297 			/*
4298 			 * We want to be able to at least push one item to the
4299 			 * left neighbour leaf, and that's the first item.
4300 			 */
4301 			min_push_space = sizeof(struct btrfs_item) +
4302 				btrfs_item_size(leaf, 0);
4303 			wret = push_leaf_left(trans, root, path, 0,
4304 					      min_push_space, 1, (u32)-1);
4305 			if (wret < 0 && wret != -ENOSPC)
4306 				ret = wret;
4307 
4308 			if (path->nodes[0] == leaf &&
4309 			    btrfs_header_nritems(leaf)) {
4310 				/*
4311 				 * If we were not able to push all items from our
4312 				 * leaf to its left neighbour, then attempt to
4313 				 * either push all the remaining items to the
4314 				 * right neighbour or none. There's no advantage
4315 				 * in pushing only some items, instead of all, as
4316 				 * it's pointless to end up with a leaf having
4317 				 * too few items while the neighbours can be full
4318 				 * or nearly full.
4319 				 */
4320 				nritems = btrfs_header_nritems(leaf);
4321 				min_push_space = leaf_space_used(leaf, 0, nritems);
4322 				wret = push_leaf_right(trans, root, path, 0,
4323 						       min_push_space, 1, 0);
4324 				if (wret < 0 && wret != -ENOSPC)
4325 					ret = wret;
4326 			}
4327 
4328 			if (btrfs_header_nritems(leaf) == 0) {
4329 				path->slots[1] = slot;
4330 				btrfs_del_leaf(trans, root, path, leaf);
4331 				free_extent_buffer(leaf);
4332 				ret = 0;
4333 			} else {
4334 				/* if we're still in the path, make sure
4335 				 * we're dirty.  Otherwise, one of the
4336 				 * push_leaf functions must have already
4337 				 * dirtied this buffer
4338 				 */
4339 				if (path->nodes[0] == leaf)
4340 					btrfs_mark_buffer_dirty(leaf);
4341 				free_extent_buffer(leaf);
4342 			}
4343 		} else {
4344 			btrfs_mark_buffer_dirty(leaf);
4345 		}
4346 	}
4347 	return ret;
4348 }
4349 
4350 /*
4351  * search the tree again to find a leaf with lesser keys
4352  * returns 0 if it found something or 1 if there are no lesser leaves.
4353  * returns < 0 on io errors.
4354  *
4355  * This may release the path, and so you may lose any locks held at the
4356  * time you call it.
4357  */
4358 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4359 {
4360 	struct btrfs_key key;
4361 	struct btrfs_disk_key found_key;
4362 	int ret;
4363 
4364 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4365 
4366 	if (key.offset > 0) {
4367 		key.offset--;
4368 	} else if (key.type > 0) {
4369 		key.type--;
4370 		key.offset = (u64)-1;
4371 	} else if (key.objectid > 0) {
4372 		key.objectid--;
4373 		key.type = (u8)-1;
4374 		key.offset = (u64)-1;
4375 	} else {
4376 		return 1;
4377 	}
4378 
4379 	btrfs_release_path(path);
4380 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4381 	if (ret < 0)
4382 		return ret;
4383 	btrfs_item_key(path->nodes[0], &found_key, 0);
4384 	ret = comp_keys(&found_key, &key);
4385 	/*
4386 	 * We might have had an item with the previous key in the tree right
4387 	 * before we released our path. And after we released our path, that
4388 	 * item might have been pushed to the first slot (0) of the leaf we
4389 	 * were holding due to a tree balance. Alternatively, an item with the
4390 	 * previous key can exist as the only element of a leaf (big fat item).
4391 	 * Therefore account for these 2 cases, so that our callers (like
4392 	 * btrfs_previous_item) don't miss an existing item with a key matching
4393 	 * the previous key we computed above.
4394 	 */
4395 	if (ret <= 0)
4396 		return 0;
4397 	return 1;
4398 }
4399 
4400 /*
4401  * A helper function to walk down the tree starting at min_key, and looking
4402  * for nodes or leaves that are have a minimum transaction id.
4403  * This is used by the btree defrag code, and tree logging
4404  *
4405  * This does not cow, but it does stuff the starting key it finds back
4406  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4407  * key and get a writable path.
4408  *
4409  * This honors path->lowest_level to prevent descent past a given level
4410  * of the tree.
4411  *
4412  * min_trans indicates the oldest transaction that you are interested
4413  * in walking through.  Any nodes or leaves older than min_trans are
4414  * skipped over (without reading them).
4415  *
4416  * returns zero if something useful was found, < 0 on error and 1 if there
4417  * was nothing in the tree that matched the search criteria.
4418  */
4419 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4420 			 struct btrfs_path *path,
4421 			 u64 min_trans)
4422 {
4423 	struct extent_buffer *cur;
4424 	struct btrfs_key found_key;
4425 	int slot;
4426 	int sret;
4427 	u32 nritems;
4428 	int level;
4429 	int ret = 1;
4430 	int keep_locks = path->keep_locks;
4431 
4432 	path->keep_locks = 1;
4433 again:
4434 	cur = btrfs_read_lock_root_node(root);
4435 	level = btrfs_header_level(cur);
4436 	WARN_ON(path->nodes[level]);
4437 	path->nodes[level] = cur;
4438 	path->locks[level] = BTRFS_READ_LOCK;
4439 
4440 	if (btrfs_header_generation(cur) < min_trans) {
4441 		ret = 1;
4442 		goto out;
4443 	}
4444 	while (1) {
4445 		nritems = btrfs_header_nritems(cur);
4446 		level = btrfs_header_level(cur);
4447 		sret = btrfs_bin_search(cur, min_key, &slot);
4448 		if (sret < 0) {
4449 			ret = sret;
4450 			goto out;
4451 		}
4452 
4453 		/* at the lowest level, we're done, setup the path and exit */
4454 		if (level == path->lowest_level) {
4455 			if (slot >= nritems)
4456 				goto find_next_key;
4457 			ret = 0;
4458 			path->slots[level] = slot;
4459 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4460 			goto out;
4461 		}
4462 		if (sret && slot > 0)
4463 			slot--;
4464 		/*
4465 		 * check this node pointer against the min_trans parameters.
4466 		 * If it is too old, skip to the next one.
4467 		 */
4468 		while (slot < nritems) {
4469 			u64 gen;
4470 
4471 			gen = btrfs_node_ptr_generation(cur, slot);
4472 			if (gen < min_trans) {
4473 				slot++;
4474 				continue;
4475 			}
4476 			break;
4477 		}
4478 find_next_key:
4479 		/*
4480 		 * we didn't find a candidate key in this node, walk forward
4481 		 * and find another one
4482 		 */
4483 		if (slot >= nritems) {
4484 			path->slots[level] = slot;
4485 			sret = btrfs_find_next_key(root, path, min_key, level,
4486 						  min_trans);
4487 			if (sret == 0) {
4488 				btrfs_release_path(path);
4489 				goto again;
4490 			} else {
4491 				goto out;
4492 			}
4493 		}
4494 		/* save our key for returning back */
4495 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4496 		path->slots[level] = slot;
4497 		if (level == path->lowest_level) {
4498 			ret = 0;
4499 			goto out;
4500 		}
4501 		cur = btrfs_read_node_slot(cur, slot);
4502 		if (IS_ERR(cur)) {
4503 			ret = PTR_ERR(cur);
4504 			goto out;
4505 		}
4506 
4507 		btrfs_tree_read_lock(cur);
4508 
4509 		path->locks[level - 1] = BTRFS_READ_LOCK;
4510 		path->nodes[level - 1] = cur;
4511 		unlock_up(path, level, 1, 0, NULL);
4512 	}
4513 out:
4514 	path->keep_locks = keep_locks;
4515 	if (ret == 0) {
4516 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4517 		memcpy(min_key, &found_key, sizeof(found_key));
4518 	}
4519 	return ret;
4520 }
4521 
4522 /*
4523  * this is similar to btrfs_next_leaf, but does not try to preserve
4524  * and fixup the path.  It looks for and returns the next key in the
4525  * tree based on the current path and the min_trans parameters.
4526  *
4527  * 0 is returned if another key is found, < 0 if there are any errors
4528  * and 1 is returned if there are no higher keys in the tree
4529  *
4530  * path->keep_locks should be set to 1 on the search made before
4531  * calling this function.
4532  */
4533 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4534 			struct btrfs_key *key, int level, u64 min_trans)
4535 {
4536 	int slot;
4537 	struct extent_buffer *c;
4538 
4539 	WARN_ON(!path->keep_locks && !path->skip_locking);
4540 	while (level < BTRFS_MAX_LEVEL) {
4541 		if (!path->nodes[level])
4542 			return 1;
4543 
4544 		slot = path->slots[level] + 1;
4545 		c = path->nodes[level];
4546 next:
4547 		if (slot >= btrfs_header_nritems(c)) {
4548 			int ret;
4549 			int orig_lowest;
4550 			struct btrfs_key cur_key;
4551 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4552 			    !path->nodes[level + 1])
4553 				return 1;
4554 
4555 			if (path->locks[level + 1] || path->skip_locking) {
4556 				level++;
4557 				continue;
4558 			}
4559 
4560 			slot = btrfs_header_nritems(c) - 1;
4561 			if (level == 0)
4562 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4563 			else
4564 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4565 
4566 			orig_lowest = path->lowest_level;
4567 			btrfs_release_path(path);
4568 			path->lowest_level = level;
4569 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4570 						0, 0);
4571 			path->lowest_level = orig_lowest;
4572 			if (ret < 0)
4573 				return ret;
4574 
4575 			c = path->nodes[level];
4576 			slot = path->slots[level];
4577 			if (ret == 0)
4578 				slot++;
4579 			goto next;
4580 		}
4581 
4582 		if (level == 0)
4583 			btrfs_item_key_to_cpu(c, key, slot);
4584 		else {
4585 			u64 gen = btrfs_node_ptr_generation(c, slot);
4586 
4587 			if (gen < min_trans) {
4588 				slot++;
4589 				goto next;
4590 			}
4591 			btrfs_node_key_to_cpu(c, key, slot);
4592 		}
4593 		return 0;
4594 	}
4595 	return 1;
4596 }
4597 
4598 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4599 			u64 time_seq)
4600 {
4601 	int slot;
4602 	int level;
4603 	struct extent_buffer *c;
4604 	struct extent_buffer *next;
4605 	struct btrfs_fs_info *fs_info = root->fs_info;
4606 	struct btrfs_key key;
4607 	bool need_commit_sem = false;
4608 	u32 nritems;
4609 	int ret;
4610 	int i;
4611 
4612 	nritems = btrfs_header_nritems(path->nodes[0]);
4613 	if (nritems == 0)
4614 		return 1;
4615 
4616 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4617 again:
4618 	level = 1;
4619 	next = NULL;
4620 	btrfs_release_path(path);
4621 
4622 	path->keep_locks = 1;
4623 
4624 	if (time_seq) {
4625 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4626 	} else {
4627 		if (path->need_commit_sem) {
4628 			path->need_commit_sem = 0;
4629 			need_commit_sem = true;
4630 			down_read(&fs_info->commit_root_sem);
4631 		}
4632 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4633 	}
4634 	path->keep_locks = 0;
4635 
4636 	if (ret < 0)
4637 		goto done;
4638 
4639 	nritems = btrfs_header_nritems(path->nodes[0]);
4640 	/*
4641 	 * by releasing the path above we dropped all our locks.  A balance
4642 	 * could have added more items next to the key that used to be
4643 	 * at the very end of the block.  So, check again here and
4644 	 * advance the path if there are now more items available.
4645 	 */
4646 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4647 		if (ret == 0)
4648 			path->slots[0]++;
4649 		ret = 0;
4650 		goto done;
4651 	}
4652 	/*
4653 	 * So the above check misses one case:
4654 	 * - after releasing the path above, someone has removed the item that
4655 	 *   used to be at the very end of the block, and balance between leafs
4656 	 *   gets another one with bigger key.offset to replace it.
4657 	 *
4658 	 * This one should be returned as well, or we can get leaf corruption
4659 	 * later(esp. in __btrfs_drop_extents()).
4660 	 *
4661 	 * And a bit more explanation about this check,
4662 	 * with ret > 0, the key isn't found, the path points to the slot
4663 	 * where it should be inserted, so the path->slots[0] item must be the
4664 	 * bigger one.
4665 	 */
4666 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4667 		ret = 0;
4668 		goto done;
4669 	}
4670 
4671 	while (level < BTRFS_MAX_LEVEL) {
4672 		if (!path->nodes[level]) {
4673 			ret = 1;
4674 			goto done;
4675 		}
4676 
4677 		slot = path->slots[level] + 1;
4678 		c = path->nodes[level];
4679 		if (slot >= btrfs_header_nritems(c)) {
4680 			level++;
4681 			if (level == BTRFS_MAX_LEVEL) {
4682 				ret = 1;
4683 				goto done;
4684 			}
4685 			continue;
4686 		}
4687 
4688 
4689 		/*
4690 		 * Our current level is where we're going to start from, and to
4691 		 * make sure lockdep doesn't complain we need to drop our locks
4692 		 * and nodes from 0 to our current level.
4693 		 */
4694 		for (i = 0; i < level; i++) {
4695 			if (path->locks[level]) {
4696 				btrfs_tree_read_unlock(path->nodes[i]);
4697 				path->locks[i] = 0;
4698 			}
4699 			free_extent_buffer(path->nodes[i]);
4700 			path->nodes[i] = NULL;
4701 		}
4702 
4703 		next = c;
4704 		ret = read_block_for_search(root, path, &next, level,
4705 					    slot, &key);
4706 		if (ret == -EAGAIN)
4707 			goto again;
4708 
4709 		if (ret < 0) {
4710 			btrfs_release_path(path);
4711 			goto done;
4712 		}
4713 
4714 		if (!path->skip_locking) {
4715 			ret = btrfs_try_tree_read_lock(next);
4716 			if (!ret && time_seq) {
4717 				/*
4718 				 * If we don't get the lock, we may be racing
4719 				 * with push_leaf_left, holding that lock while
4720 				 * itself waiting for the leaf we've currently
4721 				 * locked. To solve this situation, we give up
4722 				 * on our lock and cycle.
4723 				 */
4724 				free_extent_buffer(next);
4725 				btrfs_release_path(path);
4726 				cond_resched();
4727 				goto again;
4728 			}
4729 			if (!ret)
4730 				btrfs_tree_read_lock(next);
4731 		}
4732 		break;
4733 	}
4734 	path->slots[level] = slot;
4735 	while (1) {
4736 		level--;
4737 		path->nodes[level] = next;
4738 		path->slots[level] = 0;
4739 		if (!path->skip_locking)
4740 			path->locks[level] = BTRFS_READ_LOCK;
4741 		if (!level)
4742 			break;
4743 
4744 		ret = read_block_for_search(root, path, &next, level,
4745 					    0, &key);
4746 		if (ret == -EAGAIN)
4747 			goto again;
4748 
4749 		if (ret < 0) {
4750 			btrfs_release_path(path);
4751 			goto done;
4752 		}
4753 
4754 		if (!path->skip_locking)
4755 			btrfs_tree_read_lock(next);
4756 	}
4757 	ret = 0;
4758 done:
4759 	unlock_up(path, 0, 1, 0, NULL);
4760 	if (need_commit_sem) {
4761 		int ret2;
4762 
4763 		path->need_commit_sem = 1;
4764 		ret2 = finish_need_commit_sem_search(path);
4765 		up_read(&fs_info->commit_root_sem);
4766 		if (ret2)
4767 			ret = ret2;
4768 	}
4769 
4770 	return ret;
4771 }
4772 
4773 /*
4774  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4775  * searching until it gets past min_objectid or finds an item of 'type'
4776  *
4777  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4778  */
4779 int btrfs_previous_item(struct btrfs_root *root,
4780 			struct btrfs_path *path, u64 min_objectid,
4781 			int type)
4782 {
4783 	struct btrfs_key found_key;
4784 	struct extent_buffer *leaf;
4785 	u32 nritems;
4786 	int ret;
4787 
4788 	while (1) {
4789 		if (path->slots[0] == 0) {
4790 			ret = btrfs_prev_leaf(root, path);
4791 			if (ret != 0)
4792 				return ret;
4793 		} else {
4794 			path->slots[0]--;
4795 		}
4796 		leaf = path->nodes[0];
4797 		nritems = btrfs_header_nritems(leaf);
4798 		if (nritems == 0)
4799 			return 1;
4800 		if (path->slots[0] == nritems)
4801 			path->slots[0]--;
4802 
4803 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4804 		if (found_key.objectid < min_objectid)
4805 			break;
4806 		if (found_key.type == type)
4807 			return 0;
4808 		if (found_key.objectid == min_objectid &&
4809 		    found_key.type < type)
4810 			break;
4811 	}
4812 	return 1;
4813 }
4814 
4815 /*
4816  * search in extent tree to find a previous Metadata/Data extent item with
4817  * min objecitd.
4818  *
4819  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4820  */
4821 int btrfs_previous_extent_item(struct btrfs_root *root,
4822 			struct btrfs_path *path, u64 min_objectid)
4823 {
4824 	struct btrfs_key found_key;
4825 	struct extent_buffer *leaf;
4826 	u32 nritems;
4827 	int ret;
4828 
4829 	while (1) {
4830 		if (path->slots[0] == 0) {
4831 			ret = btrfs_prev_leaf(root, path);
4832 			if (ret != 0)
4833 				return ret;
4834 		} else {
4835 			path->slots[0]--;
4836 		}
4837 		leaf = path->nodes[0];
4838 		nritems = btrfs_header_nritems(leaf);
4839 		if (nritems == 0)
4840 			return 1;
4841 		if (path->slots[0] == nritems)
4842 			path->slots[0]--;
4843 
4844 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4845 		if (found_key.objectid < min_objectid)
4846 			break;
4847 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4848 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4849 			return 0;
4850 		if (found_key.objectid == min_objectid &&
4851 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4852 			break;
4853 	}
4854 	return 1;
4855 }
4856