xref: /openbmc/linux/fs/btrfs/ctree.c (revision 7bcae826)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct btrfs_fs_info *fs_info,
36 			  struct extent_buffer *dst,
37 			  struct extent_buffer *src, int empty);
38 static int balance_node_right(struct btrfs_trans_handle *trans,
39 			      struct btrfs_fs_info *fs_info,
40 			      struct extent_buffer *dst_buf,
41 			      struct extent_buffer *src_buf);
42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
43 		    int level, int slot);
44 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
45 				 struct extent_buffer *eb);
46 
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 }
51 
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 	int i;
59 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 		if (!p->nodes[i] || !p->locks[i])
61 			continue;
62 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 		if (p->locks[i] == BTRFS_READ_LOCK)
64 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 	}
68 }
69 
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 					struct extent_buffer *held, int held_rw)
80 {
81 	int i;
82 
83 	if (held) {
84 		btrfs_set_lock_blocking_rw(held, held_rw);
85 		if (held_rw == BTRFS_WRITE_LOCK)
86 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 		else if (held_rw == BTRFS_READ_LOCK)
88 			held_rw = BTRFS_READ_LOCK_BLOCKING;
89 	}
90 	btrfs_set_path_blocking(p);
91 
92 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 		if (p->nodes[i] && p->locks[i]) {
94 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 				p->locks[i] = BTRFS_WRITE_LOCK;
97 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 				p->locks[i] = BTRFS_READ_LOCK;
99 		}
100 	}
101 
102 	if (held)
103 		btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105 
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 	if (!p)
110 		return;
111 	btrfs_release_path(p);
112 	kmem_cache_free(btrfs_path_cachep, p);
113 }
114 
115 /*
116  * path release drops references on the extent buffers in the path
117  * and it drops any locks held by this path
118  *
119  * It is safe to call this on paths that no locks or extent buffers held.
120  */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 	int i;
124 
125 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 		p->slots[i] = 0;
127 		if (!p->nodes[i])
128 			continue;
129 		if (p->locks[i]) {
130 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 			p->locks[i] = 0;
132 		}
133 		free_extent_buffer(p->nodes[i]);
134 		p->nodes[i] = NULL;
135 	}
136 }
137 
138 /*
139  * safely gets a reference on the root node of a tree.  A lock
140  * is not taken, so a concurrent writer may put a different node
141  * at the root of the tree.  See btrfs_lock_root_node for the
142  * looping required.
143  *
144  * The extent buffer returned by this has a reference taken, so
145  * it won't disappear.  It may stop being the root of the tree
146  * at any time because there are no locks held.
147  */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 	struct extent_buffer *eb;
151 
152 	while (1) {
153 		rcu_read_lock();
154 		eb = rcu_dereference(root->node);
155 
156 		/*
157 		 * RCU really hurts here, we could free up the root node because
158 		 * it was COWed but we may not get the new root node yet so do
159 		 * the inc_not_zero dance and if it doesn't work then
160 		 * synchronize_rcu and try again.
161 		 */
162 		if (atomic_inc_not_zero(&eb->refs)) {
163 			rcu_read_unlock();
164 			break;
165 		}
166 		rcu_read_unlock();
167 		synchronize_rcu();
168 	}
169 	return eb;
170 }
171 
172 /* loop around taking references on and locking the root node of the
173  * tree until you end up with a lock on the root.  A locked buffer
174  * is returned, with a reference held.
175  */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 	struct extent_buffer *eb;
179 
180 	while (1) {
181 		eb = btrfs_root_node(root);
182 		btrfs_tree_lock(eb);
183 		if (eb == root->node)
184 			break;
185 		btrfs_tree_unlock(eb);
186 		free_extent_buffer(eb);
187 	}
188 	return eb;
189 }
190 
191 /* loop around taking references on and locking the root node of the
192  * tree until you end up with a lock on the root.  A locked buffer
193  * is returned, with a reference held.
194  */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 	struct extent_buffer *eb;
198 
199 	while (1) {
200 		eb = btrfs_root_node(root);
201 		btrfs_tree_read_lock(eb);
202 		if (eb == root->node)
203 			break;
204 		btrfs_tree_read_unlock(eb);
205 		free_extent_buffer(eb);
206 	}
207 	return eb;
208 }
209 
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211  * put onto a simple dirty list.  transaction.c walks this to make sure they
212  * get properly updated on disk.
213  */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 	struct btrfs_fs_info *fs_info = root->fs_info;
217 
218 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
219 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
220 		return;
221 
222 	spin_lock(&fs_info->trans_lock);
223 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
224 		/* Want the extent tree to be the last on the list */
225 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
226 			list_move_tail(&root->dirty_list,
227 				       &fs_info->dirty_cowonly_roots);
228 		else
229 			list_move(&root->dirty_list,
230 				  &fs_info->dirty_cowonly_roots);
231 	}
232 	spin_unlock(&fs_info->trans_lock);
233 }
234 
235 /*
236  * used by snapshot creation to make a copy of a root for a tree with
237  * a given objectid.  The buffer with the new root node is returned in
238  * cow_ret, and this func returns zero on success or a negative error code.
239  */
240 int btrfs_copy_root(struct btrfs_trans_handle *trans,
241 		      struct btrfs_root *root,
242 		      struct extent_buffer *buf,
243 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
244 {
245 	struct btrfs_fs_info *fs_info = root->fs_info;
246 	struct extent_buffer *cow;
247 	int ret = 0;
248 	int level;
249 	struct btrfs_disk_key disk_key;
250 
251 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 		trans->transid != fs_info->running_transaction->transid);
253 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
254 		trans->transid != root->last_trans);
255 
256 	level = btrfs_header_level(buf);
257 	if (level == 0)
258 		btrfs_item_key(buf, &disk_key, 0);
259 	else
260 		btrfs_node_key(buf, &disk_key, 0);
261 
262 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
263 			&disk_key, level, buf->start, 0);
264 	if (IS_ERR(cow))
265 		return PTR_ERR(cow);
266 
267 	copy_extent_buffer_full(cow, buf);
268 	btrfs_set_header_bytenr(cow, cow->start);
269 	btrfs_set_header_generation(cow, trans->transid);
270 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
271 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
272 				     BTRFS_HEADER_FLAG_RELOC);
273 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
274 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
275 	else
276 		btrfs_set_header_owner(cow, new_root_objectid);
277 
278 	write_extent_buffer_fsid(cow, fs_info->fsid);
279 
280 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
281 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
282 		ret = btrfs_inc_ref(trans, root, cow, 1);
283 	else
284 		ret = btrfs_inc_ref(trans, root, cow, 0);
285 
286 	if (ret)
287 		return ret;
288 
289 	btrfs_mark_buffer_dirty(cow);
290 	*cow_ret = cow;
291 	return 0;
292 }
293 
294 enum mod_log_op {
295 	MOD_LOG_KEY_REPLACE,
296 	MOD_LOG_KEY_ADD,
297 	MOD_LOG_KEY_REMOVE,
298 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
299 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
300 	MOD_LOG_MOVE_KEYS,
301 	MOD_LOG_ROOT_REPLACE,
302 };
303 
304 struct tree_mod_move {
305 	int dst_slot;
306 	int nr_items;
307 };
308 
309 struct tree_mod_root {
310 	u64 logical;
311 	u8 level;
312 };
313 
314 struct tree_mod_elem {
315 	struct rb_node node;
316 	u64 logical;
317 	u64 seq;
318 	enum mod_log_op op;
319 
320 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
321 	int slot;
322 
323 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
324 	u64 generation;
325 
326 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
327 	struct btrfs_disk_key key;
328 	u64 blockptr;
329 
330 	/* this is used for op == MOD_LOG_MOVE_KEYS */
331 	struct tree_mod_move move;
332 
333 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
334 	struct tree_mod_root old_root;
335 };
336 
337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
338 {
339 	read_lock(&fs_info->tree_mod_log_lock);
340 }
341 
342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
343 {
344 	read_unlock(&fs_info->tree_mod_log_lock);
345 }
346 
347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
348 {
349 	write_lock(&fs_info->tree_mod_log_lock);
350 }
351 
352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
353 {
354 	write_unlock(&fs_info->tree_mod_log_lock);
355 }
356 
357 /*
358  * Pull a new tree mod seq number for our operation.
359  */
360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
361 {
362 	return atomic64_inc_return(&fs_info->tree_mod_seq);
363 }
364 
365 /*
366  * This adds a new blocker to the tree mod log's blocker list if the @elem
367  * passed does not already have a sequence number set. So when a caller expects
368  * to record tree modifications, it should ensure to set elem->seq to zero
369  * before calling btrfs_get_tree_mod_seq.
370  * Returns a fresh, unused tree log modification sequence number, even if no new
371  * blocker was added.
372  */
373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
374 			   struct seq_list *elem)
375 {
376 	tree_mod_log_write_lock(fs_info);
377 	spin_lock(&fs_info->tree_mod_seq_lock);
378 	if (!elem->seq) {
379 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
380 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
381 	}
382 	spin_unlock(&fs_info->tree_mod_seq_lock);
383 	tree_mod_log_write_unlock(fs_info);
384 
385 	return elem->seq;
386 }
387 
388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
389 			    struct seq_list *elem)
390 {
391 	struct rb_root *tm_root;
392 	struct rb_node *node;
393 	struct rb_node *next;
394 	struct seq_list *cur_elem;
395 	struct tree_mod_elem *tm;
396 	u64 min_seq = (u64)-1;
397 	u64 seq_putting = elem->seq;
398 
399 	if (!seq_putting)
400 		return;
401 
402 	spin_lock(&fs_info->tree_mod_seq_lock);
403 	list_del(&elem->list);
404 	elem->seq = 0;
405 
406 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
407 		if (cur_elem->seq < min_seq) {
408 			if (seq_putting > cur_elem->seq) {
409 				/*
410 				 * blocker with lower sequence number exists, we
411 				 * cannot remove anything from the log
412 				 */
413 				spin_unlock(&fs_info->tree_mod_seq_lock);
414 				return;
415 			}
416 			min_seq = cur_elem->seq;
417 		}
418 	}
419 	spin_unlock(&fs_info->tree_mod_seq_lock);
420 
421 	/*
422 	 * anything that's lower than the lowest existing (read: blocked)
423 	 * sequence number can be removed from the tree.
424 	 */
425 	tree_mod_log_write_lock(fs_info);
426 	tm_root = &fs_info->tree_mod_log;
427 	for (node = rb_first(tm_root); node; node = next) {
428 		next = rb_next(node);
429 		tm = rb_entry(node, struct tree_mod_elem, node);
430 		if (tm->seq > min_seq)
431 			continue;
432 		rb_erase(node, tm_root);
433 		kfree(tm);
434 	}
435 	tree_mod_log_write_unlock(fs_info);
436 }
437 
438 /*
439  * key order of the log:
440  *       node/leaf start address -> sequence
441  *
442  * The 'start address' is the logical address of the *new* root node
443  * for root replace operations, or the logical address of the affected
444  * block for all other operations.
445  *
446  * Note: must be called with write lock (tree_mod_log_write_lock).
447  */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451 	struct rb_root *tm_root;
452 	struct rb_node **new;
453 	struct rb_node *parent = NULL;
454 	struct tree_mod_elem *cur;
455 
456 	BUG_ON(!tm);
457 
458 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
459 
460 	tm_root = &fs_info->tree_mod_log;
461 	new = &tm_root->rb_node;
462 	while (*new) {
463 		cur = rb_entry(*new, struct tree_mod_elem, node);
464 		parent = *new;
465 		if (cur->logical < tm->logical)
466 			new = &((*new)->rb_left);
467 		else if (cur->logical > tm->logical)
468 			new = &((*new)->rb_right);
469 		else if (cur->seq < tm->seq)
470 			new = &((*new)->rb_left);
471 		else if (cur->seq > tm->seq)
472 			new = &((*new)->rb_right);
473 		else
474 			return -EEXIST;
475 	}
476 
477 	rb_link_node(&tm->node, parent, new);
478 	rb_insert_color(&tm->node, tm_root);
479 	return 0;
480 }
481 
482 /*
483  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484  * returns zero with the tree_mod_log_lock acquired. The caller must hold
485  * this until all tree mod log insertions are recorded in the rb tree and then
486  * call tree_mod_log_write_unlock() to release.
487  */
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 				    struct extent_buffer *eb) {
490 	smp_mb();
491 	if (list_empty(&(fs_info)->tree_mod_seq_list))
492 		return 1;
493 	if (eb && btrfs_header_level(eb) == 0)
494 		return 1;
495 
496 	tree_mod_log_write_lock(fs_info);
497 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
498 		tree_mod_log_write_unlock(fs_info);
499 		return 1;
500 	}
501 
502 	return 0;
503 }
504 
505 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
506 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
507 				    struct extent_buffer *eb)
508 {
509 	smp_mb();
510 	if (list_empty(&(fs_info)->tree_mod_seq_list))
511 		return 0;
512 	if (eb && btrfs_header_level(eb) == 0)
513 		return 0;
514 
515 	return 1;
516 }
517 
518 static struct tree_mod_elem *
519 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
520 		    enum mod_log_op op, gfp_t flags)
521 {
522 	struct tree_mod_elem *tm;
523 
524 	tm = kzalloc(sizeof(*tm), flags);
525 	if (!tm)
526 		return NULL;
527 
528 	tm->logical = eb->start;
529 	if (op != MOD_LOG_KEY_ADD) {
530 		btrfs_node_key(eb, &tm->key, slot);
531 		tm->blockptr = btrfs_node_blockptr(eb, slot);
532 	}
533 	tm->op = op;
534 	tm->slot = slot;
535 	tm->generation = btrfs_node_ptr_generation(eb, slot);
536 	RB_CLEAR_NODE(&tm->node);
537 
538 	return tm;
539 }
540 
541 static noinline int
542 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
543 			struct extent_buffer *eb, int slot,
544 			enum mod_log_op op, gfp_t flags)
545 {
546 	struct tree_mod_elem *tm;
547 	int ret;
548 
549 	if (!tree_mod_need_log(fs_info, eb))
550 		return 0;
551 
552 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
553 	if (!tm)
554 		return -ENOMEM;
555 
556 	if (tree_mod_dont_log(fs_info, eb)) {
557 		kfree(tm);
558 		return 0;
559 	}
560 
561 	ret = __tree_mod_log_insert(fs_info, tm);
562 	tree_mod_log_write_unlock(fs_info);
563 	if (ret)
564 		kfree(tm);
565 
566 	return ret;
567 }
568 
569 static noinline int
570 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
571 			 struct extent_buffer *eb, int dst_slot, int src_slot,
572 			 int nr_items, gfp_t flags)
573 {
574 	struct tree_mod_elem *tm = NULL;
575 	struct tree_mod_elem **tm_list = NULL;
576 	int ret = 0;
577 	int i;
578 	int locked = 0;
579 
580 	if (!tree_mod_need_log(fs_info, eb))
581 		return 0;
582 
583 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
584 	if (!tm_list)
585 		return -ENOMEM;
586 
587 	tm = kzalloc(sizeof(*tm), flags);
588 	if (!tm) {
589 		ret = -ENOMEM;
590 		goto free_tms;
591 	}
592 
593 	tm->logical = eb->start;
594 	tm->slot = src_slot;
595 	tm->move.dst_slot = dst_slot;
596 	tm->move.nr_items = nr_items;
597 	tm->op = MOD_LOG_MOVE_KEYS;
598 
599 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
600 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
601 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
602 		if (!tm_list[i]) {
603 			ret = -ENOMEM;
604 			goto free_tms;
605 		}
606 	}
607 
608 	if (tree_mod_dont_log(fs_info, eb))
609 		goto free_tms;
610 	locked = 1;
611 
612 	/*
613 	 * When we override something during the move, we log these removals.
614 	 * This can only happen when we move towards the beginning of the
615 	 * buffer, i.e. dst_slot < src_slot.
616 	 */
617 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
618 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
619 		if (ret)
620 			goto free_tms;
621 	}
622 
623 	ret = __tree_mod_log_insert(fs_info, tm);
624 	if (ret)
625 		goto free_tms;
626 	tree_mod_log_write_unlock(fs_info);
627 	kfree(tm_list);
628 
629 	return 0;
630 free_tms:
631 	for (i = 0; i < nr_items; i++) {
632 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
633 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
634 		kfree(tm_list[i]);
635 	}
636 	if (locked)
637 		tree_mod_log_write_unlock(fs_info);
638 	kfree(tm_list);
639 	kfree(tm);
640 
641 	return ret;
642 }
643 
644 static inline int
645 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
646 		       struct tree_mod_elem **tm_list,
647 		       int nritems)
648 {
649 	int i, j;
650 	int ret;
651 
652 	for (i = nritems - 1; i >= 0; i--) {
653 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
654 		if (ret) {
655 			for (j = nritems - 1; j > i; j--)
656 				rb_erase(&tm_list[j]->node,
657 					 &fs_info->tree_mod_log);
658 			return ret;
659 		}
660 	}
661 
662 	return 0;
663 }
664 
665 static noinline int
666 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
667 			 struct extent_buffer *old_root,
668 			 struct extent_buffer *new_root, gfp_t flags,
669 			 int log_removal)
670 {
671 	struct tree_mod_elem *tm = NULL;
672 	struct tree_mod_elem **tm_list = NULL;
673 	int nritems = 0;
674 	int ret = 0;
675 	int i;
676 
677 	if (!tree_mod_need_log(fs_info, NULL))
678 		return 0;
679 
680 	if (log_removal && btrfs_header_level(old_root) > 0) {
681 		nritems = btrfs_header_nritems(old_root);
682 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
683 				  flags);
684 		if (!tm_list) {
685 			ret = -ENOMEM;
686 			goto free_tms;
687 		}
688 		for (i = 0; i < nritems; i++) {
689 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
690 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
691 			if (!tm_list[i]) {
692 				ret = -ENOMEM;
693 				goto free_tms;
694 			}
695 		}
696 	}
697 
698 	tm = kzalloc(sizeof(*tm), flags);
699 	if (!tm) {
700 		ret = -ENOMEM;
701 		goto free_tms;
702 	}
703 
704 	tm->logical = new_root->start;
705 	tm->old_root.logical = old_root->start;
706 	tm->old_root.level = btrfs_header_level(old_root);
707 	tm->generation = btrfs_header_generation(old_root);
708 	tm->op = MOD_LOG_ROOT_REPLACE;
709 
710 	if (tree_mod_dont_log(fs_info, NULL))
711 		goto free_tms;
712 
713 	if (tm_list)
714 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
715 	if (!ret)
716 		ret = __tree_mod_log_insert(fs_info, tm);
717 
718 	tree_mod_log_write_unlock(fs_info);
719 	if (ret)
720 		goto free_tms;
721 	kfree(tm_list);
722 
723 	return ret;
724 
725 free_tms:
726 	if (tm_list) {
727 		for (i = 0; i < nritems; i++)
728 			kfree(tm_list[i]);
729 		kfree(tm_list);
730 	}
731 	kfree(tm);
732 
733 	return ret;
734 }
735 
736 static struct tree_mod_elem *
737 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
738 		      int smallest)
739 {
740 	struct rb_root *tm_root;
741 	struct rb_node *node;
742 	struct tree_mod_elem *cur = NULL;
743 	struct tree_mod_elem *found = NULL;
744 
745 	tree_mod_log_read_lock(fs_info);
746 	tm_root = &fs_info->tree_mod_log;
747 	node = tm_root->rb_node;
748 	while (node) {
749 		cur = rb_entry(node, struct tree_mod_elem, node);
750 		if (cur->logical < start) {
751 			node = node->rb_left;
752 		} else if (cur->logical > start) {
753 			node = node->rb_right;
754 		} else if (cur->seq < min_seq) {
755 			node = node->rb_left;
756 		} else if (!smallest) {
757 			/* we want the node with the highest seq */
758 			if (found)
759 				BUG_ON(found->seq > cur->seq);
760 			found = cur;
761 			node = node->rb_left;
762 		} else if (cur->seq > min_seq) {
763 			/* we want the node with the smallest seq */
764 			if (found)
765 				BUG_ON(found->seq < cur->seq);
766 			found = cur;
767 			node = node->rb_right;
768 		} else {
769 			found = cur;
770 			break;
771 		}
772 	}
773 	tree_mod_log_read_unlock(fs_info);
774 
775 	return found;
776 }
777 
778 /*
779  * this returns the element from the log with the smallest time sequence
780  * value that's in the log (the oldest log item). any element with a time
781  * sequence lower than min_seq will be ignored.
782  */
783 static struct tree_mod_elem *
784 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
785 			   u64 min_seq)
786 {
787 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
788 }
789 
790 /*
791  * this returns the element from the log with the largest time sequence
792  * value that's in the log (the most recent log item). any element with
793  * a time sequence lower than min_seq will be ignored.
794  */
795 static struct tree_mod_elem *
796 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
797 {
798 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
799 }
800 
801 static noinline int
802 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
803 		     struct extent_buffer *src, unsigned long dst_offset,
804 		     unsigned long src_offset, int nr_items)
805 {
806 	int ret = 0;
807 	struct tree_mod_elem **tm_list = NULL;
808 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
809 	int i;
810 	int locked = 0;
811 
812 	if (!tree_mod_need_log(fs_info, NULL))
813 		return 0;
814 
815 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
816 		return 0;
817 
818 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
819 			  GFP_NOFS);
820 	if (!tm_list)
821 		return -ENOMEM;
822 
823 	tm_list_add = tm_list;
824 	tm_list_rem = tm_list + nr_items;
825 	for (i = 0; i < nr_items; i++) {
826 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
827 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
828 		if (!tm_list_rem[i]) {
829 			ret = -ENOMEM;
830 			goto free_tms;
831 		}
832 
833 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
834 		    MOD_LOG_KEY_ADD, GFP_NOFS);
835 		if (!tm_list_add[i]) {
836 			ret = -ENOMEM;
837 			goto free_tms;
838 		}
839 	}
840 
841 	if (tree_mod_dont_log(fs_info, NULL))
842 		goto free_tms;
843 	locked = 1;
844 
845 	for (i = 0; i < nr_items; i++) {
846 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
847 		if (ret)
848 			goto free_tms;
849 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
850 		if (ret)
851 			goto free_tms;
852 	}
853 
854 	tree_mod_log_write_unlock(fs_info);
855 	kfree(tm_list);
856 
857 	return 0;
858 
859 free_tms:
860 	for (i = 0; i < nr_items * 2; i++) {
861 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
862 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
863 		kfree(tm_list[i]);
864 	}
865 	if (locked)
866 		tree_mod_log_write_unlock(fs_info);
867 	kfree(tm_list);
868 
869 	return ret;
870 }
871 
872 static inline void
873 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
874 		     int dst_offset, int src_offset, int nr_items)
875 {
876 	int ret;
877 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
878 				       nr_items, GFP_NOFS);
879 	BUG_ON(ret < 0);
880 }
881 
882 static noinline void
883 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
884 			  struct extent_buffer *eb, int slot, int atomic)
885 {
886 	int ret;
887 
888 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
889 					MOD_LOG_KEY_REPLACE,
890 					atomic ? GFP_ATOMIC : GFP_NOFS);
891 	BUG_ON(ret < 0);
892 }
893 
894 static noinline int
895 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
896 {
897 	struct tree_mod_elem **tm_list = NULL;
898 	int nritems = 0;
899 	int i;
900 	int ret = 0;
901 
902 	if (btrfs_header_level(eb) == 0)
903 		return 0;
904 
905 	if (!tree_mod_need_log(fs_info, NULL))
906 		return 0;
907 
908 	nritems = btrfs_header_nritems(eb);
909 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
910 	if (!tm_list)
911 		return -ENOMEM;
912 
913 	for (i = 0; i < nritems; i++) {
914 		tm_list[i] = alloc_tree_mod_elem(eb, i,
915 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
916 		if (!tm_list[i]) {
917 			ret = -ENOMEM;
918 			goto free_tms;
919 		}
920 	}
921 
922 	if (tree_mod_dont_log(fs_info, eb))
923 		goto free_tms;
924 
925 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
926 	tree_mod_log_write_unlock(fs_info);
927 	if (ret)
928 		goto free_tms;
929 	kfree(tm_list);
930 
931 	return 0;
932 
933 free_tms:
934 	for (i = 0; i < nritems; i++)
935 		kfree(tm_list[i]);
936 	kfree(tm_list);
937 
938 	return ret;
939 }
940 
941 static noinline void
942 tree_mod_log_set_root_pointer(struct btrfs_root *root,
943 			      struct extent_buffer *new_root_node,
944 			      int log_removal)
945 {
946 	int ret;
947 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
948 				       new_root_node, GFP_NOFS, log_removal);
949 	BUG_ON(ret < 0);
950 }
951 
952 /*
953  * check if the tree block can be shared by multiple trees
954  */
955 int btrfs_block_can_be_shared(struct btrfs_root *root,
956 			      struct extent_buffer *buf)
957 {
958 	/*
959 	 * Tree blocks not in reference counted trees and tree roots
960 	 * are never shared. If a block was allocated after the last
961 	 * snapshot and the block was not allocated by tree relocation,
962 	 * we know the block is not shared.
963 	 */
964 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
965 	    buf != root->node && buf != root->commit_root &&
966 	    (btrfs_header_generation(buf) <=
967 	     btrfs_root_last_snapshot(&root->root_item) ||
968 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
969 		return 1;
970 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
971 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
972 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
973 		return 1;
974 #endif
975 	return 0;
976 }
977 
978 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
979 				       struct btrfs_root *root,
980 				       struct extent_buffer *buf,
981 				       struct extent_buffer *cow,
982 				       int *last_ref)
983 {
984 	struct btrfs_fs_info *fs_info = root->fs_info;
985 	u64 refs;
986 	u64 owner;
987 	u64 flags;
988 	u64 new_flags = 0;
989 	int ret;
990 
991 	/*
992 	 * Backrefs update rules:
993 	 *
994 	 * Always use full backrefs for extent pointers in tree block
995 	 * allocated by tree relocation.
996 	 *
997 	 * If a shared tree block is no longer referenced by its owner
998 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
999 	 * use full backrefs for extent pointers in tree block.
1000 	 *
1001 	 * If a tree block is been relocating
1002 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1003 	 * use full backrefs for extent pointers in tree block.
1004 	 * The reason for this is some operations (such as drop tree)
1005 	 * are only allowed for blocks use full backrefs.
1006 	 */
1007 
1008 	if (btrfs_block_can_be_shared(root, buf)) {
1009 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
1010 					       btrfs_header_level(buf), 1,
1011 					       &refs, &flags);
1012 		if (ret)
1013 			return ret;
1014 		if (refs == 0) {
1015 			ret = -EROFS;
1016 			btrfs_handle_fs_error(fs_info, ret, NULL);
1017 			return ret;
1018 		}
1019 	} else {
1020 		refs = 1;
1021 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1022 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1023 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1024 		else
1025 			flags = 0;
1026 	}
1027 
1028 	owner = btrfs_header_owner(buf);
1029 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1030 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1031 
1032 	if (refs > 1) {
1033 		if ((owner == root->root_key.objectid ||
1034 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1035 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1036 			ret = btrfs_inc_ref(trans, root, buf, 1);
1037 			BUG_ON(ret); /* -ENOMEM */
1038 
1039 			if (root->root_key.objectid ==
1040 			    BTRFS_TREE_RELOC_OBJECTID) {
1041 				ret = btrfs_dec_ref(trans, root, buf, 0);
1042 				BUG_ON(ret); /* -ENOMEM */
1043 				ret = btrfs_inc_ref(trans, root, cow, 1);
1044 				BUG_ON(ret); /* -ENOMEM */
1045 			}
1046 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1047 		} else {
1048 
1049 			if (root->root_key.objectid ==
1050 			    BTRFS_TREE_RELOC_OBJECTID)
1051 				ret = btrfs_inc_ref(trans, root, cow, 1);
1052 			else
1053 				ret = btrfs_inc_ref(trans, root, cow, 0);
1054 			BUG_ON(ret); /* -ENOMEM */
1055 		}
1056 		if (new_flags != 0) {
1057 			int level = btrfs_header_level(buf);
1058 
1059 			ret = btrfs_set_disk_extent_flags(trans, fs_info,
1060 							  buf->start,
1061 							  buf->len,
1062 							  new_flags, level, 0);
1063 			if (ret)
1064 				return ret;
1065 		}
1066 	} else {
1067 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1068 			if (root->root_key.objectid ==
1069 			    BTRFS_TREE_RELOC_OBJECTID)
1070 				ret = btrfs_inc_ref(trans, root, cow, 1);
1071 			else
1072 				ret = btrfs_inc_ref(trans, root, cow, 0);
1073 			BUG_ON(ret); /* -ENOMEM */
1074 			ret = btrfs_dec_ref(trans, root, buf, 1);
1075 			BUG_ON(ret); /* -ENOMEM */
1076 		}
1077 		clean_tree_block(fs_info, buf);
1078 		*last_ref = 1;
1079 	}
1080 	return 0;
1081 }
1082 
1083 /*
1084  * does the dirty work in cow of a single block.  The parent block (if
1085  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1086  * dirty and returned locked.  If you modify the block it needs to be marked
1087  * dirty again.
1088  *
1089  * search_start -- an allocation hint for the new block
1090  *
1091  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1092  * bytes the allocator should try to find free next to the block it returns.
1093  * This is just a hint and may be ignored by the allocator.
1094  */
1095 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1096 			     struct btrfs_root *root,
1097 			     struct extent_buffer *buf,
1098 			     struct extent_buffer *parent, int parent_slot,
1099 			     struct extent_buffer **cow_ret,
1100 			     u64 search_start, u64 empty_size)
1101 {
1102 	struct btrfs_fs_info *fs_info = root->fs_info;
1103 	struct btrfs_disk_key disk_key;
1104 	struct extent_buffer *cow;
1105 	int level, ret;
1106 	int last_ref = 0;
1107 	int unlock_orig = 0;
1108 	u64 parent_start = 0;
1109 
1110 	if (*cow_ret == buf)
1111 		unlock_orig = 1;
1112 
1113 	btrfs_assert_tree_locked(buf);
1114 
1115 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1116 		trans->transid != fs_info->running_transaction->transid);
1117 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1118 		trans->transid != root->last_trans);
1119 
1120 	level = btrfs_header_level(buf);
1121 
1122 	if (level == 0)
1123 		btrfs_item_key(buf, &disk_key, 0);
1124 	else
1125 		btrfs_node_key(buf, &disk_key, 0);
1126 
1127 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1128 		parent_start = parent->start;
1129 
1130 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1131 			root->root_key.objectid, &disk_key, level,
1132 			search_start, empty_size);
1133 	if (IS_ERR(cow))
1134 		return PTR_ERR(cow);
1135 
1136 	/* cow is set to blocking by btrfs_init_new_buffer */
1137 
1138 	copy_extent_buffer_full(cow, buf);
1139 	btrfs_set_header_bytenr(cow, cow->start);
1140 	btrfs_set_header_generation(cow, trans->transid);
1141 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1142 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1143 				     BTRFS_HEADER_FLAG_RELOC);
1144 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1145 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1146 	else
1147 		btrfs_set_header_owner(cow, root->root_key.objectid);
1148 
1149 	write_extent_buffer_fsid(cow, fs_info->fsid);
1150 
1151 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1152 	if (ret) {
1153 		btrfs_abort_transaction(trans, ret);
1154 		return ret;
1155 	}
1156 
1157 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1158 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1159 		if (ret) {
1160 			btrfs_abort_transaction(trans, ret);
1161 			return ret;
1162 		}
1163 	}
1164 
1165 	if (buf == root->node) {
1166 		WARN_ON(parent && parent != buf);
1167 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1168 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1169 			parent_start = buf->start;
1170 
1171 		extent_buffer_get(cow);
1172 		tree_mod_log_set_root_pointer(root, cow, 1);
1173 		rcu_assign_pointer(root->node, cow);
1174 
1175 		btrfs_free_tree_block(trans, root, buf, parent_start,
1176 				      last_ref);
1177 		free_extent_buffer(buf);
1178 		add_root_to_dirty_list(root);
1179 	} else {
1180 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1181 		tree_mod_log_insert_key(fs_info, parent, parent_slot,
1182 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1183 		btrfs_set_node_blockptr(parent, parent_slot,
1184 					cow->start);
1185 		btrfs_set_node_ptr_generation(parent, parent_slot,
1186 					      trans->transid);
1187 		btrfs_mark_buffer_dirty(parent);
1188 		if (last_ref) {
1189 			ret = tree_mod_log_free_eb(fs_info, buf);
1190 			if (ret) {
1191 				btrfs_abort_transaction(trans, ret);
1192 				return ret;
1193 			}
1194 		}
1195 		btrfs_free_tree_block(trans, root, buf, parent_start,
1196 				      last_ref);
1197 	}
1198 	if (unlock_orig)
1199 		btrfs_tree_unlock(buf);
1200 	free_extent_buffer_stale(buf);
1201 	btrfs_mark_buffer_dirty(cow);
1202 	*cow_ret = cow;
1203 	return 0;
1204 }
1205 
1206 /*
1207  * returns the logical address of the oldest predecessor of the given root.
1208  * entries older than time_seq are ignored.
1209  */
1210 static struct tree_mod_elem *
1211 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1212 			   struct extent_buffer *eb_root, u64 time_seq)
1213 {
1214 	struct tree_mod_elem *tm;
1215 	struct tree_mod_elem *found = NULL;
1216 	u64 root_logical = eb_root->start;
1217 	int looped = 0;
1218 
1219 	if (!time_seq)
1220 		return NULL;
1221 
1222 	/*
1223 	 * the very last operation that's logged for a root is the
1224 	 * replacement operation (if it is replaced at all). this has
1225 	 * the logical address of the *new* root, making it the very
1226 	 * first operation that's logged for this root.
1227 	 */
1228 	while (1) {
1229 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1230 						time_seq);
1231 		if (!looped && !tm)
1232 			return NULL;
1233 		/*
1234 		 * if there are no tree operation for the oldest root, we simply
1235 		 * return it. this should only happen if that (old) root is at
1236 		 * level 0.
1237 		 */
1238 		if (!tm)
1239 			break;
1240 
1241 		/*
1242 		 * if there's an operation that's not a root replacement, we
1243 		 * found the oldest version of our root. normally, we'll find a
1244 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1245 		 */
1246 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1247 			break;
1248 
1249 		found = tm;
1250 		root_logical = tm->old_root.logical;
1251 		looped = 1;
1252 	}
1253 
1254 	/* if there's no old root to return, return what we found instead */
1255 	if (!found)
1256 		found = tm;
1257 
1258 	return found;
1259 }
1260 
1261 /*
1262  * tm is a pointer to the first operation to rewind within eb. then, all
1263  * previous operations will be rewound (until we reach something older than
1264  * time_seq).
1265  */
1266 static void
1267 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1268 		      u64 time_seq, struct tree_mod_elem *first_tm)
1269 {
1270 	u32 n;
1271 	struct rb_node *next;
1272 	struct tree_mod_elem *tm = first_tm;
1273 	unsigned long o_dst;
1274 	unsigned long o_src;
1275 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1276 
1277 	n = btrfs_header_nritems(eb);
1278 	tree_mod_log_read_lock(fs_info);
1279 	while (tm && tm->seq >= time_seq) {
1280 		/*
1281 		 * all the operations are recorded with the operator used for
1282 		 * the modification. as we're going backwards, we do the
1283 		 * opposite of each operation here.
1284 		 */
1285 		switch (tm->op) {
1286 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1287 			BUG_ON(tm->slot < n);
1288 			/* Fallthrough */
1289 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1290 		case MOD_LOG_KEY_REMOVE:
1291 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1292 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1293 			btrfs_set_node_ptr_generation(eb, tm->slot,
1294 						      tm->generation);
1295 			n++;
1296 			break;
1297 		case MOD_LOG_KEY_REPLACE:
1298 			BUG_ON(tm->slot >= n);
1299 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1300 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1301 			btrfs_set_node_ptr_generation(eb, tm->slot,
1302 						      tm->generation);
1303 			break;
1304 		case MOD_LOG_KEY_ADD:
1305 			/* if a move operation is needed it's in the log */
1306 			n--;
1307 			break;
1308 		case MOD_LOG_MOVE_KEYS:
1309 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1310 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1311 			memmove_extent_buffer(eb, o_dst, o_src,
1312 					      tm->move.nr_items * p_size);
1313 			break;
1314 		case MOD_LOG_ROOT_REPLACE:
1315 			/*
1316 			 * this operation is special. for roots, this must be
1317 			 * handled explicitly before rewinding.
1318 			 * for non-roots, this operation may exist if the node
1319 			 * was a root: root A -> child B; then A gets empty and
1320 			 * B is promoted to the new root. in the mod log, we'll
1321 			 * have a root-replace operation for B, a tree block
1322 			 * that is no root. we simply ignore that operation.
1323 			 */
1324 			break;
1325 		}
1326 		next = rb_next(&tm->node);
1327 		if (!next)
1328 			break;
1329 		tm = rb_entry(next, struct tree_mod_elem, node);
1330 		if (tm->logical != first_tm->logical)
1331 			break;
1332 	}
1333 	tree_mod_log_read_unlock(fs_info);
1334 	btrfs_set_header_nritems(eb, n);
1335 }
1336 
1337 /*
1338  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1339  * is returned. If rewind operations happen, a fresh buffer is returned. The
1340  * returned buffer is always read-locked. If the returned buffer is not the
1341  * input buffer, the lock on the input buffer is released and the input buffer
1342  * is freed (its refcount is decremented).
1343  */
1344 static struct extent_buffer *
1345 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1346 		    struct extent_buffer *eb, u64 time_seq)
1347 {
1348 	struct extent_buffer *eb_rewin;
1349 	struct tree_mod_elem *tm;
1350 
1351 	if (!time_seq)
1352 		return eb;
1353 
1354 	if (btrfs_header_level(eb) == 0)
1355 		return eb;
1356 
1357 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1358 	if (!tm)
1359 		return eb;
1360 
1361 	btrfs_set_path_blocking(path);
1362 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1363 
1364 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1365 		BUG_ON(tm->slot != 0);
1366 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1367 		if (!eb_rewin) {
1368 			btrfs_tree_read_unlock_blocking(eb);
1369 			free_extent_buffer(eb);
1370 			return NULL;
1371 		}
1372 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1373 		btrfs_set_header_backref_rev(eb_rewin,
1374 					     btrfs_header_backref_rev(eb));
1375 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1376 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1377 	} else {
1378 		eb_rewin = btrfs_clone_extent_buffer(eb);
1379 		if (!eb_rewin) {
1380 			btrfs_tree_read_unlock_blocking(eb);
1381 			free_extent_buffer(eb);
1382 			return NULL;
1383 		}
1384 	}
1385 
1386 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1387 	btrfs_tree_read_unlock_blocking(eb);
1388 	free_extent_buffer(eb);
1389 
1390 	extent_buffer_get(eb_rewin);
1391 	btrfs_tree_read_lock(eb_rewin);
1392 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1393 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1394 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1395 
1396 	return eb_rewin;
1397 }
1398 
1399 /*
1400  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1401  * value. If there are no changes, the current root->root_node is returned. If
1402  * anything changed in between, there's a fresh buffer allocated on which the
1403  * rewind operations are done. In any case, the returned buffer is read locked.
1404  * Returns NULL on error (with no locks held).
1405  */
1406 static inline struct extent_buffer *
1407 get_old_root(struct btrfs_root *root, u64 time_seq)
1408 {
1409 	struct btrfs_fs_info *fs_info = root->fs_info;
1410 	struct tree_mod_elem *tm;
1411 	struct extent_buffer *eb = NULL;
1412 	struct extent_buffer *eb_root;
1413 	struct extent_buffer *old;
1414 	struct tree_mod_root *old_root = NULL;
1415 	u64 old_generation = 0;
1416 	u64 logical;
1417 
1418 	eb_root = btrfs_read_lock_root_node(root);
1419 	tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq);
1420 	if (!tm)
1421 		return eb_root;
1422 
1423 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1424 		old_root = &tm->old_root;
1425 		old_generation = tm->generation;
1426 		logical = old_root->logical;
1427 	} else {
1428 		logical = eb_root->start;
1429 	}
1430 
1431 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1432 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1433 		btrfs_tree_read_unlock(eb_root);
1434 		free_extent_buffer(eb_root);
1435 		old = read_tree_block(fs_info, logical, 0);
1436 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1437 			if (!IS_ERR(old))
1438 				free_extent_buffer(old);
1439 			btrfs_warn(fs_info,
1440 				   "failed to read tree block %llu from get_old_root",
1441 				   logical);
1442 		} else {
1443 			eb = btrfs_clone_extent_buffer(old);
1444 			free_extent_buffer(old);
1445 		}
1446 	} else if (old_root) {
1447 		btrfs_tree_read_unlock(eb_root);
1448 		free_extent_buffer(eb_root);
1449 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1450 	} else {
1451 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1452 		eb = btrfs_clone_extent_buffer(eb_root);
1453 		btrfs_tree_read_unlock_blocking(eb_root);
1454 		free_extent_buffer(eb_root);
1455 	}
1456 
1457 	if (!eb)
1458 		return NULL;
1459 	extent_buffer_get(eb);
1460 	btrfs_tree_read_lock(eb);
1461 	if (old_root) {
1462 		btrfs_set_header_bytenr(eb, eb->start);
1463 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1464 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1465 		btrfs_set_header_level(eb, old_root->level);
1466 		btrfs_set_header_generation(eb, old_generation);
1467 	}
1468 	if (tm)
1469 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1470 	else
1471 		WARN_ON(btrfs_header_level(eb) != 0);
1472 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1473 
1474 	return eb;
1475 }
1476 
1477 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1478 {
1479 	struct tree_mod_elem *tm;
1480 	int level;
1481 	struct extent_buffer *eb_root = btrfs_root_node(root);
1482 
1483 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1484 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1485 		level = tm->old_root.level;
1486 	} else {
1487 		level = btrfs_header_level(eb_root);
1488 	}
1489 	free_extent_buffer(eb_root);
1490 
1491 	return level;
1492 }
1493 
1494 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1495 				   struct btrfs_root *root,
1496 				   struct extent_buffer *buf)
1497 {
1498 	if (btrfs_is_testing(root->fs_info))
1499 		return 0;
1500 
1501 	/* ensure we can see the force_cow */
1502 	smp_rmb();
1503 
1504 	/*
1505 	 * We do not need to cow a block if
1506 	 * 1) this block is not created or changed in this transaction;
1507 	 * 2) this block does not belong to TREE_RELOC tree;
1508 	 * 3) the root is not forced COW.
1509 	 *
1510 	 * What is forced COW:
1511 	 *    when we create snapshot during committing the transaction,
1512 	 *    after we've finished coping src root, we must COW the shared
1513 	 *    block to ensure the metadata consistency.
1514 	 */
1515 	if (btrfs_header_generation(buf) == trans->transid &&
1516 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1517 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1518 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1519 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1520 		return 0;
1521 	return 1;
1522 }
1523 
1524 /*
1525  * cows a single block, see __btrfs_cow_block for the real work.
1526  * This version of it has extra checks so that a block isn't COWed more than
1527  * once per transaction, as long as it hasn't been written yet
1528  */
1529 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1530 		    struct btrfs_root *root, struct extent_buffer *buf,
1531 		    struct extent_buffer *parent, int parent_slot,
1532 		    struct extent_buffer **cow_ret)
1533 {
1534 	struct btrfs_fs_info *fs_info = root->fs_info;
1535 	u64 search_start;
1536 	int ret;
1537 
1538 	if (trans->transaction != fs_info->running_transaction)
1539 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1540 		       trans->transid,
1541 		       fs_info->running_transaction->transid);
1542 
1543 	if (trans->transid != fs_info->generation)
1544 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1545 		       trans->transid, fs_info->generation);
1546 
1547 	if (!should_cow_block(trans, root, buf)) {
1548 		trans->dirty = true;
1549 		*cow_ret = buf;
1550 		return 0;
1551 	}
1552 
1553 	search_start = buf->start & ~((u64)SZ_1G - 1);
1554 
1555 	if (parent)
1556 		btrfs_set_lock_blocking(parent);
1557 	btrfs_set_lock_blocking(buf);
1558 
1559 	ret = __btrfs_cow_block(trans, root, buf, parent,
1560 				 parent_slot, cow_ret, search_start, 0);
1561 
1562 	trace_btrfs_cow_block(root, buf, *cow_ret);
1563 
1564 	return ret;
1565 }
1566 
1567 /*
1568  * helper function for defrag to decide if two blocks pointed to by a
1569  * node are actually close by
1570  */
1571 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1572 {
1573 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1574 		return 1;
1575 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1576 		return 1;
1577 	return 0;
1578 }
1579 
1580 /*
1581  * compare two keys in a memcmp fashion
1582  */
1583 static int comp_keys(const struct btrfs_disk_key *disk,
1584 		     const struct btrfs_key *k2)
1585 {
1586 	struct btrfs_key k1;
1587 
1588 	btrfs_disk_key_to_cpu(&k1, disk);
1589 
1590 	return btrfs_comp_cpu_keys(&k1, k2);
1591 }
1592 
1593 /*
1594  * same as comp_keys only with two btrfs_key's
1595  */
1596 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1597 {
1598 	if (k1->objectid > k2->objectid)
1599 		return 1;
1600 	if (k1->objectid < k2->objectid)
1601 		return -1;
1602 	if (k1->type > k2->type)
1603 		return 1;
1604 	if (k1->type < k2->type)
1605 		return -1;
1606 	if (k1->offset > k2->offset)
1607 		return 1;
1608 	if (k1->offset < k2->offset)
1609 		return -1;
1610 	return 0;
1611 }
1612 
1613 /*
1614  * this is used by the defrag code to go through all the
1615  * leaves pointed to by a node and reallocate them so that
1616  * disk order is close to key order
1617  */
1618 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1619 		       struct btrfs_root *root, struct extent_buffer *parent,
1620 		       int start_slot, u64 *last_ret,
1621 		       struct btrfs_key *progress)
1622 {
1623 	struct btrfs_fs_info *fs_info = root->fs_info;
1624 	struct extent_buffer *cur;
1625 	u64 blocknr;
1626 	u64 gen;
1627 	u64 search_start = *last_ret;
1628 	u64 last_block = 0;
1629 	u64 other;
1630 	u32 parent_nritems;
1631 	int end_slot;
1632 	int i;
1633 	int err = 0;
1634 	int parent_level;
1635 	int uptodate;
1636 	u32 blocksize;
1637 	int progress_passed = 0;
1638 	struct btrfs_disk_key disk_key;
1639 
1640 	parent_level = btrfs_header_level(parent);
1641 
1642 	WARN_ON(trans->transaction != fs_info->running_transaction);
1643 	WARN_ON(trans->transid != fs_info->generation);
1644 
1645 	parent_nritems = btrfs_header_nritems(parent);
1646 	blocksize = fs_info->nodesize;
1647 	end_slot = parent_nritems - 1;
1648 
1649 	if (parent_nritems <= 1)
1650 		return 0;
1651 
1652 	btrfs_set_lock_blocking(parent);
1653 
1654 	for (i = start_slot; i <= end_slot; i++) {
1655 		int close = 1;
1656 
1657 		btrfs_node_key(parent, &disk_key, i);
1658 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1659 			continue;
1660 
1661 		progress_passed = 1;
1662 		blocknr = btrfs_node_blockptr(parent, i);
1663 		gen = btrfs_node_ptr_generation(parent, i);
1664 		if (last_block == 0)
1665 			last_block = blocknr;
1666 
1667 		if (i > 0) {
1668 			other = btrfs_node_blockptr(parent, i - 1);
1669 			close = close_blocks(blocknr, other, blocksize);
1670 		}
1671 		if (!close && i < end_slot) {
1672 			other = btrfs_node_blockptr(parent, i + 1);
1673 			close = close_blocks(blocknr, other, blocksize);
1674 		}
1675 		if (close) {
1676 			last_block = blocknr;
1677 			continue;
1678 		}
1679 
1680 		cur = find_extent_buffer(fs_info, blocknr);
1681 		if (cur)
1682 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1683 		else
1684 			uptodate = 0;
1685 		if (!cur || !uptodate) {
1686 			if (!cur) {
1687 				cur = read_tree_block(fs_info, blocknr, gen);
1688 				if (IS_ERR(cur)) {
1689 					return PTR_ERR(cur);
1690 				} else if (!extent_buffer_uptodate(cur)) {
1691 					free_extent_buffer(cur);
1692 					return -EIO;
1693 				}
1694 			} else if (!uptodate) {
1695 				err = btrfs_read_buffer(cur, gen);
1696 				if (err) {
1697 					free_extent_buffer(cur);
1698 					return err;
1699 				}
1700 			}
1701 		}
1702 		if (search_start == 0)
1703 			search_start = last_block;
1704 
1705 		btrfs_tree_lock(cur);
1706 		btrfs_set_lock_blocking(cur);
1707 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1708 					&cur, search_start,
1709 					min(16 * blocksize,
1710 					    (end_slot - i) * blocksize));
1711 		if (err) {
1712 			btrfs_tree_unlock(cur);
1713 			free_extent_buffer(cur);
1714 			break;
1715 		}
1716 		search_start = cur->start;
1717 		last_block = cur->start;
1718 		*last_ret = search_start;
1719 		btrfs_tree_unlock(cur);
1720 		free_extent_buffer(cur);
1721 	}
1722 	return err;
1723 }
1724 
1725 /*
1726  * search for key in the extent_buffer.  The items start at offset p,
1727  * and they are item_size apart.  There are 'max' items in p.
1728  *
1729  * the slot in the array is returned via slot, and it points to
1730  * the place where you would insert key if it is not found in
1731  * the array.
1732  *
1733  * slot may point to max if the key is bigger than all of the keys
1734  */
1735 static noinline int generic_bin_search(struct extent_buffer *eb,
1736 				       unsigned long p, int item_size,
1737 				       const struct btrfs_key *key,
1738 				       int max, int *slot)
1739 {
1740 	int low = 0;
1741 	int high = max;
1742 	int mid;
1743 	int ret;
1744 	struct btrfs_disk_key *tmp = NULL;
1745 	struct btrfs_disk_key unaligned;
1746 	unsigned long offset;
1747 	char *kaddr = NULL;
1748 	unsigned long map_start = 0;
1749 	unsigned long map_len = 0;
1750 	int err;
1751 
1752 	if (low > high) {
1753 		btrfs_err(eb->fs_info,
1754 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1755 			  __func__, low, high, eb->start,
1756 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1757 		return -EINVAL;
1758 	}
1759 
1760 	while (low < high) {
1761 		mid = (low + high) / 2;
1762 		offset = p + mid * item_size;
1763 
1764 		if (!kaddr || offset < map_start ||
1765 		    (offset + sizeof(struct btrfs_disk_key)) >
1766 		    map_start + map_len) {
1767 
1768 			err = map_private_extent_buffer(eb, offset,
1769 						sizeof(struct btrfs_disk_key),
1770 						&kaddr, &map_start, &map_len);
1771 
1772 			if (!err) {
1773 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1774 							map_start);
1775 			} else if (err == 1) {
1776 				read_extent_buffer(eb, &unaligned,
1777 						   offset, sizeof(unaligned));
1778 				tmp = &unaligned;
1779 			} else {
1780 				return err;
1781 			}
1782 
1783 		} else {
1784 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785 							map_start);
1786 		}
1787 		ret = comp_keys(tmp, key);
1788 
1789 		if (ret < 0)
1790 			low = mid + 1;
1791 		else if (ret > 0)
1792 			high = mid;
1793 		else {
1794 			*slot = mid;
1795 			return 0;
1796 		}
1797 	}
1798 	*slot = low;
1799 	return 1;
1800 }
1801 
1802 /*
1803  * simple bin_search frontend that does the right thing for
1804  * leaves vs nodes
1805  */
1806 static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1807 		      int level, int *slot)
1808 {
1809 	if (level == 0)
1810 		return generic_bin_search(eb,
1811 					  offsetof(struct btrfs_leaf, items),
1812 					  sizeof(struct btrfs_item),
1813 					  key, btrfs_header_nritems(eb),
1814 					  slot);
1815 	else
1816 		return generic_bin_search(eb,
1817 					  offsetof(struct btrfs_node, ptrs),
1818 					  sizeof(struct btrfs_key_ptr),
1819 					  key, btrfs_header_nritems(eb),
1820 					  slot);
1821 }
1822 
1823 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1824 		     int level, int *slot)
1825 {
1826 	return bin_search(eb, key, level, slot);
1827 }
1828 
1829 static void root_add_used(struct btrfs_root *root, u32 size)
1830 {
1831 	spin_lock(&root->accounting_lock);
1832 	btrfs_set_root_used(&root->root_item,
1833 			    btrfs_root_used(&root->root_item) + size);
1834 	spin_unlock(&root->accounting_lock);
1835 }
1836 
1837 static void root_sub_used(struct btrfs_root *root, u32 size)
1838 {
1839 	spin_lock(&root->accounting_lock);
1840 	btrfs_set_root_used(&root->root_item,
1841 			    btrfs_root_used(&root->root_item) - size);
1842 	spin_unlock(&root->accounting_lock);
1843 }
1844 
1845 /* given a node and slot number, this reads the blocks it points to.  The
1846  * extent buffer is returned with a reference taken (but unlocked).
1847  */
1848 static noinline struct extent_buffer *
1849 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1850 	       int slot)
1851 {
1852 	int level = btrfs_header_level(parent);
1853 	struct extent_buffer *eb;
1854 
1855 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1856 		return ERR_PTR(-ENOENT);
1857 
1858 	BUG_ON(level == 0);
1859 
1860 	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1861 			     btrfs_node_ptr_generation(parent, slot));
1862 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1863 		free_extent_buffer(eb);
1864 		eb = ERR_PTR(-EIO);
1865 	}
1866 
1867 	return eb;
1868 }
1869 
1870 /*
1871  * node level balancing, used to make sure nodes are in proper order for
1872  * item deletion.  We balance from the top down, so we have to make sure
1873  * that a deletion won't leave an node completely empty later on.
1874  */
1875 static noinline int balance_level(struct btrfs_trans_handle *trans,
1876 			 struct btrfs_root *root,
1877 			 struct btrfs_path *path, int level)
1878 {
1879 	struct btrfs_fs_info *fs_info = root->fs_info;
1880 	struct extent_buffer *right = NULL;
1881 	struct extent_buffer *mid;
1882 	struct extent_buffer *left = NULL;
1883 	struct extent_buffer *parent = NULL;
1884 	int ret = 0;
1885 	int wret;
1886 	int pslot;
1887 	int orig_slot = path->slots[level];
1888 	u64 orig_ptr;
1889 
1890 	if (level == 0)
1891 		return 0;
1892 
1893 	mid = path->nodes[level];
1894 
1895 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1896 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1897 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1898 
1899 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1900 
1901 	if (level < BTRFS_MAX_LEVEL - 1) {
1902 		parent = path->nodes[level + 1];
1903 		pslot = path->slots[level + 1];
1904 	}
1905 
1906 	/*
1907 	 * deal with the case where there is only one pointer in the root
1908 	 * by promoting the node below to a root
1909 	 */
1910 	if (!parent) {
1911 		struct extent_buffer *child;
1912 
1913 		if (btrfs_header_nritems(mid) != 1)
1914 			return 0;
1915 
1916 		/* promote the child to a root */
1917 		child = read_node_slot(fs_info, mid, 0);
1918 		if (IS_ERR(child)) {
1919 			ret = PTR_ERR(child);
1920 			btrfs_handle_fs_error(fs_info, ret, NULL);
1921 			goto enospc;
1922 		}
1923 
1924 		btrfs_tree_lock(child);
1925 		btrfs_set_lock_blocking(child);
1926 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1927 		if (ret) {
1928 			btrfs_tree_unlock(child);
1929 			free_extent_buffer(child);
1930 			goto enospc;
1931 		}
1932 
1933 		tree_mod_log_set_root_pointer(root, child, 1);
1934 		rcu_assign_pointer(root->node, child);
1935 
1936 		add_root_to_dirty_list(root);
1937 		btrfs_tree_unlock(child);
1938 
1939 		path->locks[level] = 0;
1940 		path->nodes[level] = NULL;
1941 		clean_tree_block(fs_info, mid);
1942 		btrfs_tree_unlock(mid);
1943 		/* once for the path */
1944 		free_extent_buffer(mid);
1945 
1946 		root_sub_used(root, mid->len);
1947 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1948 		/* once for the root ptr */
1949 		free_extent_buffer_stale(mid);
1950 		return 0;
1951 	}
1952 	if (btrfs_header_nritems(mid) >
1953 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1954 		return 0;
1955 
1956 	left = read_node_slot(fs_info, parent, pslot - 1);
1957 	if (IS_ERR(left))
1958 		left = NULL;
1959 
1960 	if (left) {
1961 		btrfs_tree_lock(left);
1962 		btrfs_set_lock_blocking(left);
1963 		wret = btrfs_cow_block(trans, root, left,
1964 				       parent, pslot - 1, &left);
1965 		if (wret) {
1966 			ret = wret;
1967 			goto enospc;
1968 		}
1969 	}
1970 
1971 	right = read_node_slot(fs_info, parent, pslot + 1);
1972 	if (IS_ERR(right))
1973 		right = NULL;
1974 
1975 	if (right) {
1976 		btrfs_tree_lock(right);
1977 		btrfs_set_lock_blocking(right);
1978 		wret = btrfs_cow_block(trans, root, right,
1979 				       parent, pslot + 1, &right);
1980 		if (wret) {
1981 			ret = wret;
1982 			goto enospc;
1983 		}
1984 	}
1985 
1986 	/* first, try to make some room in the middle buffer */
1987 	if (left) {
1988 		orig_slot += btrfs_header_nritems(left);
1989 		wret = push_node_left(trans, fs_info, left, mid, 1);
1990 		if (wret < 0)
1991 			ret = wret;
1992 	}
1993 
1994 	/*
1995 	 * then try to empty the right most buffer into the middle
1996 	 */
1997 	if (right) {
1998 		wret = push_node_left(trans, fs_info, mid, right, 1);
1999 		if (wret < 0 && wret != -ENOSPC)
2000 			ret = wret;
2001 		if (btrfs_header_nritems(right) == 0) {
2002 			clean_tree_block(fs_info, right);
2003 			btrfs_tree_unlock(right);
2004 			del_ptr(root, path, level + 1, pslot + 1);
2005 			root_sub_used(root, right->len);
2006 			btrfs_free_tree_block(trans, root, right, 0, 1);
2007 			free_extent_buffer_stale(right);
2008 			right = NULL;
2009 		} else {
2010 			struct btrfs_disk_key right_key;
2011 			btrfs_node_key(right, &right_key, 0);
2012 			tree_mod_log_set_node_key(fs_info, parent,
2013 						  pslot + 1, 0);
2014 			btrfs_set_node_key(parent, &right_key, pslot + 1);
2015 			btrfs_mark_buffer_dirty(parent);
2016 		}
2017 	}
2018 	if (btrfs_header_nritems(mid) == 1) {
2019 		/*
2020 		 * we're not allowed to leave a node with one item in the
2021 		 * tree during a delete.  A deletion from lower in the tree
2022 		 * could try to delete the only pointer in this node.
2023 		 * So, pull some keys from the left.
2024 		 * There has to be a left pointer at this point because
2025 		 * otherwise we would have pulled some pointers from the
2026 		 * right
2027 		 */
2028 		if (!left) {
2029 			ret = -EROFS;
2030 			btrfs_handle_fs_error(fs_info, ret, NULL);
2031 			goto enospc;
2032 		}
2033 		wret = balance_node_right(trans, fs_info, mid, left);
2034 		if (wret < 0) {
2035 			ret = wret;
2036 			goto enospc;
2037 		}
2038 		if (wret == 1) {
2039 			wret = push_node_left(trans, fs_info, left, mid, 1);
2040 			if (wret < 0)
2041 				ret = wret;
2042 		}
2043 		BUG_ON(wret == 1);
2044 	}
2045 	if (btrfs_header_nritems(mid) == 0) {
2046 		clean_tree_block(fs_info, mid);
2047 		btrfs_tree_unlock(mid);
2048 		del_ptr(root, path, level + 1, pslot);
2049 		root_sub_used(root, mid->len);
2050 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2051 		free_extent_buffer_stale(mid);
2052 		mid = NULL;
2053 	} else {
2054 		/* update the parent key to reflect our changes */
2055 		struct btrfs_disk_key mid_key;
2056 		btrfs_node_key(mid, &mid_key, 0);
2057 		tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2058 		btrfs_set_node_key(parent, &mid_key, pslot);
2059 		btrfs_mark_buffer_dirty(parent);
2060 	}
2061 
2062 	/* update the path */
2063 	if (left) {
2064 		if (btrfs_header_nritems(left) > orig_slot) {
2065 			extent_buffer_get(left);
2066 			/* left was locked after cow */
2067 			path->nodes[level] = left;
2068 			path->slots[level + 1] -= 1;
2069 			path->slots[level] = orig_slot;
2070 			if (mid) {
2071 				btrfs_tree_unlock(mid);
2072 				free_extent_buffer(mid);
2073 			}
2074 		} else {
2075 			orig_slot -= btrfs_header_nritems(left);
2076 			path->slots[level] = orig_slot;
2077 		}
2078 	}
2079 	/* double check we haven't messed things up */
2080 	if (orig_ptr !=
2081 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2082 		BUG();
2083 enospc:
2084 	if (right) {
2085 		btrfs_tree_unlock(right);
2086 		free_extent_buffer(right);
2087 	}
2088 	if (left) {
2089 		if (path->nodes[level] != left)
2090 			btrfs_tree_unlock(left);
2091 		free_extent_buffer(left);
2092 	}
2093 	return ret;
2094 }
2095 
2096 /* Node balancing for insertion.  Here we only split or push nodes around
2097  * when they are completely full.  This is also done top down, so we
2098  * have to be pessimistic.
2099  */
2100 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2101 					  struct btrfs_root *root,
2102 					  struct btrfs_path *path, int level)
2103 {
2104 	struct btrfs_fs_info *fs_info = root->fs_info;
2105 	struct extent_buffer *right = NULL;
2106 	struct extent_buffer *mid;
2107 	struct extent_buffer *left = NULL;
2108 	struct extent_buffer *parent = NULL;
2109 	int ret = 0;
2110 	int wret;
2111 	int pslot;
2112 	int orig_slot = path->slots[level];
2113 
2114 	if (level == 0)
2115 		return 1;
2116 
2117 	mid = path->nodes[level];
2118 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2119 
2120 	if (level < BTRFS_MAX_LEVEL - 1) {
2121 		parent = path->nodes[level + 1];
2122 		pslot = path->slots[level + 1];
2123 	}
2124 
2125 	if (!parent)
2126 		return 1;
2127 
2128 	left = read_node_slot(fs_info, parent, pslot - 1);
2129 	if (IS_ERR(left))
2130 		left = NULL;
2131 
2132 	/* first, try to make some room in the middle buffer */
2133 	if (left) {
2134 		u32 left_nr;
2135 
2136 		btrfs_tree_lock(left);
2137 		btrfs_set_lock_blocking(left);
2138 
2139 		left_nr = btrfs_header_nritems(left);
2140 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2141 			wret = 1;
2142 		} else {
2143 			ret = btrfs_cow_block(trans, root, left, parent,
2144 					      pslot - 1, &left);
2145 			if (ret)
2146 				wret = 1;
2147 			else {
2148 				wret = push_node_left(trans, fs_info,
2149 						      left, mid, 0);
2150 			}
2151 		}
2152 		if (wret < 0)
2153 			ret = wret;
2154 		if (wret == 0) {
2155 			struct btrfs_disk_key disk_key;
2156 			orig_slot += left_nr;
2157 			btrfs_node_key(mid, &disk_key, 0);
2158 			tree_mod_log_set_node_key(fs_info, parent, pslot, 0);
2159 			btrfs_set_node_key(parent, &disk_key, pslot);
2160 			btrfs_mark_buffer_dirty(parent);
2161 			if (btrfs_header_nritems(left) > orig_slot) {
2162 				path->nodes[level] = left;
2163 				path->slots[level + 1] -= 1;
2164 				path->slots[level] = orig_slot;
2165 				btrfs_tree_unlock(mid);
2166 				free_extent_buffer(mid);
2167 			} else {
2168 				orig_slot -=
2169 					btrfs_header_nritems(left);
2170 				path->slots[level] = orig_slot;
2171 				btrfs_tree_unlock(left);
2172 				free_extent_buffer(left);
2173 			}
2174 			return 0;
2175 		}
2176 		btrfs_tree_unlock(left);
2177 		free_extent_buffer(left);
2178 	}
2179 	right = read_node_slot(fs_info, parent, pslot + 1);
2180 	if (IS_ERR(right))
2181 		right = NULL;
2182 
2183 	/*
2184 	 * then try to empty the right most buffer into the middle
2185 	 */
2186 	if (right) {
2187 		u32 right_nr;
2188 
2189 		btrfs_tree_lock(right);
2190 		btrfs_set_lock_blocking(right);
2191 
2192 		right_nr = btrfs_header_nritems(right);
2193 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2194 			wret = 1;
2195 		} else {
2196 			ret = btrfs_cow_block(trans, root, right,
2197 					      parent, pslot + 1,
2198 					      &right);
2199 			if (ret)
2200 				wret = 1;
2201 			else {
2202 				wret = balance_node_right(trans, fs_info,
2203 							  right, mid);
2204 			}
2205 		}
2206 		if (wret < 0)
2207 			ret = wret;
2208 		if (wret == 0) {
2209 			struct btrfs_disk_key disk_key;
2210 
2211 			btrfs_node_key(right, &disk_key, 0);
2212 			tree_mod_log_set_node_key(fs_info, parent,
2213 						  pslot + 1, 0);
2214 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2215 			btrfs_mark_buffer_dirty(parent);
2216 
2217 			if (btrfs_header_nritems(mid) <= orig_slot) {
2218 				path->nodes[level] = right;
2219 				path->slots[level + 1] += 1;
2220 				path->slots[level] = orig_slot -
2221 					btrfs_header_nritems(mid);
2222 				btrfs_tree_unlock(mid);
2223 				free_extent_buffer(mid);
2224 			} else {
2225 				btrfs_tree_unlock(right);
2226 				free_extent_buffer(right);
2227 			}
2228 			return 0;
2229 		}
2230 		btrfs_tree_unlock(right);
2231 		free_extent_buffer(right);
2232 	}
2233 	return 1;
2234 }
2235 
2236 /*
2237  * readahead one full node of leaves, finding things that are close
2238  * to the block in 'slot', and triggering ra on them.
2239  */
2240 static void reada_for_search(struct btrfs_fs_info *fs_info,
2241 			     struct btrfs_path *path,
2242 			     int level, int slot, u64 objectid)
2243 {
2244 	struct extent_buffer *node;
2245 	struct btrfs_disk_key disk_key;
2246 	u32 nritems;
2247 	u64 search;
2248 	u64 target;
2249 	u64 nread = 0;
2250 	struct extent_buffer *eb;
2251 	u32 nr;
2252 	u32 blocksize;
2253 	u32 nscan = 0;
2254 
2255 	if (level != 1)
2256 		return;
2257 
2258 	if (!path->nodes[level])
2259 		return;
2260 
2261 	node = path->nodes[level];
2262 
2263 	search = btrfs_node_blockptr(node, slot);
2264 	blocksize = fs_info->nodesize;
2265 	eb = find_extent_buffer(fs_info, search);
2266 	if (eb) {
2267 		free_extent_buffer(eb);
2268 		return;
2269 	}
2270 
2271 	target = search;
2272 
2273 	nritems = btrfs_header_nritems(node);
2274 	nr = slot;
2275 
2276 	while (1) {
2277 		if (path->reada == READA_BACK) {
2278 			if (nr == 0)
2279 				break;
2280 			nr--;
2281 		} else if (path->reada == READA_FORWARD) {
2282 			nr++;
2283 			if (nr >= nritems)
2284 				break;
2285 		}
2286 		if (path->reada == READA_BACK && objectid) {
2287 			btrfs_node_key(node, &disk_key, nr);
2288 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2289 				break;
2290 		}
2291 		search = btrfs_node_blockptr(node, nr);
2292 		if ((search <= target && target - search <= 65536) ||
2293 		    (search > target && search - target <= 65536)) {
2294 			readahead_tree_block(fs_info, search);
2295 			nread += blocksize;
2296 		}
2297 		nscan++;
2298 		if ((nread > 65536 || nscan > 32))
2299 			break;
2300 	}
2301 }
2302 
2303 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2304 				       struct btrfs_path *path, int level)
2305 {
2306 	int slot;
2307 	int nritems;
2308 	struct extent_buffer *parent;
2309 	struct extent_buffer *eb;
2310 	u64 gen;
2311 	u64 block1 = 0;
2312 	u64 block2 = 0;
2313 
2314 	parent = path->nodes[level + 1];
2315 	if (!parent)
2316 		return;
2317 
2318 	nritems = btrfs_header_nritems(parent);
2319 	slot = path->slots[level + 1];
2320 
2321 	if (slot > 0) {
2322 		block1 = btrfs_node_blockptr(parent, slot - 1);
2323 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2324 		eb = find_extent_buffer(fs_info, block1);
2325 		/*
2326 		 * if we get -eagain from btrfs_buffer_uptodate, we
2327 		 * don't want to return eagain here.  That will loop
2328 		 * forever
2329 		 */
2330 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2331 			block1 = 0;
2332 		free_extent_buffer(eb);
2333 	}
2334 	if (slot + 1 < nritems) {
2335 		block2 = btrfs_node_blockptr(parent, slot + 1);
2336 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2337 		eb = find_extent_buffer(fs_info, block2);
2338 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2339 			block2 = 0;
2340 		free_extent_buffer(eb);
2341 	}
2342 
2343 	if (block1)
2344 		readahead_tree_block(fs_info, block1);
2345 	if (block2)
2346 		readahead_tree_block(fs_info, block2);
2347 }
2348 
2349 
2350 /*
2351  * when we walk down the tree, it is usually safe to unlock the higher layers
2352  * in the tree.  The exceptions are when our path goes through slot 0, because
2353  * operations on the tree might require changing key pointers higher up in the
2354  * tree.
2355  *
2356  * callers might also have set path->keep_locks, which tells this code to keep
2357  * the lock if the path points to the last slot in the block.  This is part of
2358  * walking through the tree, and selecting the next slot in the higher block.
2359  *
2360  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2361  * if lowest_unlock is 1, level 0 won't be unlocked
2362  */
2363 static noinline void unlock_up(struct btrfs_path *path, int level,
2364 			       int lowest_unlock, int min_write_lock_level,
2365 			       int *write_lock_level)
2366 {
2367 	int i;
2368 	int skip_level = level;
2369 	int no_skips = 0;
2370 	struct extent_buffer *t;
2371 
2372 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2373 		if (!path->nodes[i])
2374 			break;
2375 		if (!path->locks[i])
2376 			break;
2377 		if (!no_skips && path->slots[i] == 0) {
2378 			skip_level = i + 1;
2379 			continue;
2380 		}
2381 		if (!no_skips && path->keep_locks) {
2382 			u32 nritems;
2383 			t = path->nodes[i];
2384 			nritems = btrfs_header_nritems(t);
2385 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2386 				skip_level = i + 1;
2387 				continue;
2388 			}
2389 		}
2390 		if (skip_level < i && i >= lowest_unlock)
2391 			no_skips = 1;
2392 
2393 		t = path->nodes[i];
2394 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2395 			btrfs_tree_unlock_rw(t, path->locks[i]);
2396 			path->locks[i] = 0;
2397 			if (write_lock_level &&
2398 			    i > min_write_lock_level &&
2399 			    i <= *write_lock_level) {
2400 				*write_lock_level = i - 1;
2401 			}
2402 		}
2403 	}
2404 }
2405 
2406 /*
2407  * This releases any locks held in the path starting at level and
2408  * going all the way up to the root.
2409  *
2410  * btrfs_search_slot will keep the lock held on higher nodes in a few
2411  * corner cases, such as COW of the block at slot zero in the node.  This
2412  * ignores those rules, and it should only be called when there are no
2413  * more updates to be done higher up in the tree.
2414  */
2415 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2416 {
2417 	int i;
2418 
2419 	if (path->keep_locks)
2420 		return;
2421 
2422 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2423 		if (!path->nodes[i])
2424 			continue;
2425 		if (!path->locks[i])
2426 			continue;
2427 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2428 		path->locks[i] = 0;
2429 	}
2430 }
2431 
2432 /*
2433  * helper function for btrfs_search_slot.  The goal is to find a block
2434  * in cache without setting the path to blocking.  If we find the block
2435  * we return zero and the path is unchanged.
2436  *
2437  * If we can't find the block, we set the path blocking and do some
2438  * reada.  -EAGAIN is returned and the search must be repeated.
2439  */
2440 static int
2441 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2442 		      struct extent_buffer **eb_ret, int level, int slot,
2443 		      const struct btrfs_key *key)
2444 {
2445 	struct btrfs_fs_info *fs_info = root->fs_info;
2446 	u64 blocknr;
2447 	u64 gen;
2448 	struct extent_buffer *b = *eb_ret;
2449 	struct extent_buffer *tmp;
2450 	int ret;
2451 
2452 	blocknr = btrfs_node_blockptr(b, slot);
2453 	gen = btrfs_node_ptr_generation(b, slot);
2454 
2455 	tmp = find_extent_buffer(fs_info, blocknr);
2456 	if (tmp) {
2457 		/* first we do an atomic uptodate check */
2458 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2459 			*eb_ret = tmp;
2460 			return 0;
2461 		}
2462 
2463 		/* the pages were up to date, but we failed
2464 		 * the generation number check.  Do a full
2465 		 * read for the generation number that is correct.
2466 		 * We must do this without dropping locks so
2467 		 * we can trust our generation number
2468 		 */
2469 		btrfs_set_path_blocking(p);
2470 
2471 		/* now we're allowed to do a blocking uptodate check */
2472 		ret = btrfs_read_buffer(tmp, gen);
2473 		if (!ret) {
2474 			*eb_ret = tmp;
2475 			return 0;
2476 		}
2477 		free_extent_buffer(tmp);
2478 		btrfs_release_path(p);
2479 		return -EIO;
2480 	}
2481 
2482 	/*
2483 	 * reduce lock contention at high levels
2484 	 * of the btree by dropping locks before
2485 	 * we read.  Don't release the lock on the current
2486 	 * level because we need to walk this node to figure
2487 	 * out which blocks to read.
2488 	 */
2489 	btrfs_unlock_up_safe(p, level + 1);
2490 	btrfs_set_path_blocking(p);
2491 
2492 	free_extent_buffer(tmp);
2493 	if (p->reada != READA_NONE)
2494 		reada_for_search(fs_info, p, level, slot, key->objectid);
2495 
2496 	btrfs_release_path(p);
2497 
2498 	ret = -EAGAIN;
2499 	tmp = read_tree_block(fs_info, blocknr, 0);
2500 	if (!IS_ERR(tmp)) {
2501 		/*
2502 		 * If the read above didn't mark this buffer up to date,
2503 		 * it will never end up being up to date.  Set ret to EIO now
2504 		 * and give up so that our caller doesn't loop forever
2505 		 * on our EAGAINs.
2506 		 */
2507 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2508 			ret = -EIO;
2509 		free_extent_buffer(tmp);
2510 	} else {
2511 		ret = PTR_ERR(tmp);
2512 	}
2513 	return ret;
2514 }
2515 
2516 /*
2517  * helper function for btrfs_search_slot.  This does all of the checks
2518  * for node-level blocks and does any balancing required based on
2519  * the ins_len.
2520  *
2521  * If no extra work was required, zero is returned.  If we had to
2522  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2523  * start over
2524  */
2525 static int
2526 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2527 		       struct btrfs_root *root, struct btrfs_path *p,
2528 		       struct extent_buffer *b, int level, int ins_len,
2529 		       int *write_lock_level)
2530 {
2531 	struct btrfs_fs_info *fs_info = root->fs_info;
2532 	int ret;
2533 
2534 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2535 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2536 		int sret;
2537 
2538 		if (*write_lock_level < level + 1) {
2539 			*write_lock_level = level + 1;
2540 			btrfs_release_path(p);
2541 			goto again;
2542 		}
2543 
2544 		btrfs_set_path_blocking(p);
2545 		reada_for_balance(fs_info, p, level);
2546 		sret = split_node(trans, root, p, level);
2547 		btrfs_clear_path_blocking(p, NULL, 0);
2548 
2549 		BUG_ON(sret > 0);
2550 		if (sret) {
2551 			ret = sret;
2552 			goto done;
2553 		}
2554 		b = p->nodes[level];
2555 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2556 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2557 		int sret;
2558 
2559 		if (*write_lock_level < level + 1) {
2560 			*write_lock_level = level + 1;
2561 			btrfs_release_path(p);
2562 			goto again;
2563 		}
2564 
2565 		btrfs_set_path_blocking(p);
2566 		reada_for_balance(fs_info, p, level);
2567 		sret = balance_level(trans, root, p, level);
2568 		btrfs_clear_path_blocking(p, NULL, 0);
2569 
2570 		if (sret) {
2571 			ret = sret;
2572 			goto done;
2573 		}
2574 		b = p->nodes[level];
2575 		if (!b) {
2576 			btrfs_release_path(p);
2577 			goto again;
2578 		}
2579 		BUG_ON(btrfs_header_nritems(b) == 1);
2580 	}
2581 	return 0;
2582 
2583 again:
2584 	ret = -EAGAIN;
2585 done:
2586 	return ret;
2587 }
2588 
2589 static void key_search_validate(struct extent_buffer *b,
2590 				const struct btrfs_key *key,
2591 				int level)
2592 {
2593 #ifdef CONFIG_BTRFS_ASSERT
2594 	struct btrfs_disk_key disk_key;
2595 
2596 	btrfs_cpu_key_to_disk(&disk_key, key);
2597 
2598 	if (level == 0)
2599 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2600 		    offsetof(struct btrfs_leaf, items[0].key),
2601 		    sizeof(disk_key)));
2602 	else
2603 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2604 		    offsetof(struct btrfs_node, ptrs[0].key),
2605 		    sizeof(disk_key)));
2606 #endif
2607 }
2608 
2609 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2610 		      int level, int *prev_cmp, int *slot)
2611 {
2612 	if (*prev_cmp != 0) {
2613 		*prev_cmp = bin_search(b, key, level, slot);
2614 		return *prev_cmp;
2615 	}
2616 
2617 	key_search_validate(b, key, level);
2618 	*slot = 0;
2619 
2620 	return 0;
2621 }
2622 
2623 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2624 		u64 iobjectid, u64 ioff, u8 key_type,
2625 		struct btrfs_key *found_key)
2626 {
2627 	int ret;
2628 	struct btrfs_key key;
2629 	struct extent_buffer *eb;
2630 
2631 	ASSERT(path);
2632 	ASSERT(found_key);
2633 
2634 	key.type = key_type;
2635 	key.objectid = iobjectid;
2636 	key.offset = ioff;
2637 
2638 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2639 	if (ret < 0)
2640 		return ret;
2641 
2642 	eb = path->nodes[0];
2643 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2644 		ret = btrfs_next_leaf(fs_root, path);
2645 		if (ret)
2646 			return ret;
2647 		eb = path->nodes[0];
2648 	}
2649 
2650 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2651 	if (found_key->type != key.type ||
2652 			found_key->objectid != key.objectid)
2653 		return 1;
2654 
2655 	return 0;
2656 }
2657 
2658 /*
2659  * look for key in the tree.  path is filled in with nodes along the way
2660  * if key is found, we return zero and you can find the item in the leaf
2661  * level of the path (level 0)
2662  *
2663  * If the key isn't found, the path points to the slot where it should
2664  * be inserted, and 1 is returned.  If there are other errors during the
2665  * search a negative error number is returned.
2666  *
2667  * if ins_len > 0, nodes and leaves will be split as we walk down the
2668  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2669  * possible)
2670  */
2671 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2672 		      const struct btrfs_key *key, struct btrfs_path *p,
2673 		      int ins_len, int cow)
2674 {
2675 	struct btrfs_fs_info *fs_info = root->fs_info;
2676 	struct extent_buffer *b;
2677 	int slot;
2678 	int ret;
2679 	int err;
2680 	int level;
2681 	int lowest_unlock = 1;
2682 	int root_lock;
2683 	/* everything at write_lock_level or lower must be write locked */
2684 	int write_lock_level = 0;
2685 	u8 lowest_level = 0;
2686 	int min_write_lock_level;
2687 	int prev_cmp;
2688 
2689 	lowest_level = p->lowest_level;
2690 	WARN_ON(lowest_level && ins_len > 0);
2691 	WARN_ON(p->nodes[0] != NULL);
2692 	BUG_ON(!cow && ins_len);
2693 
2694 	if (ins_len < 0) {
2695 		lowest_unlock = 2;
2696 
2697 		/* when we are removing items, we might have to go up to level
2698 		 * two as we update tree pointers  Make sure we keep write
2699 		 * for those levels as well
2700 		 */
2701 		write_lock_level = 2;
2702 	} else if (ins_len > 0) {
2703 		/*
2704 		 * for inserting items, make sure we have a write lock on
2705 		 * level 1 so we can update keys
2706 		 */
2707 		write_lock_level = 1;
2708 	}
2709 
2710 	if (!cow)
2711 		write_lock_level = -1;
2712 
2713 	if (cow && (p->keep_locks || p->lowest_level))
2714 		write_lock_level = BTRFS_MAX_LEVEL;
2715 
2716 	min_write_lock_level = write_lock_level;
2717 
2718 again:
2719 	prev_cmp = -1;
2720 	/*
2721 	 * we try very hard to do read locks on the root
2722 	 */
2723 	root_lock = BTRFS_READ_LOCK;
2724 	level = 0;
2725 	if (p->search_commit_root) {
2726 		/*
2727 		 * the commit roots are read only
2728 		 * so we always do read locks
2729 		 */
2730 		if (p->need_commit_sem)
2731 			down_read(&fs_info->commit_root_sem);
2732 		b = root->commit_root;
2733 		extent_buffer_get(b);
2734 		level = btrfs_header_level(b);
2735 		if (p->need_commit_sem)
2736 			up_read(&fs_info->commit_root_sem);
2737 		if (!p->skip_locking)
2738 			btrfs_tree_read_lock(b);
2739 	} else {
2740 		if (p->skip_locking) {
2741 			b = btrfs_root_node(root);
2742 			level = btrfs_header_level(b);
2743 		} else {
2744 			/* we don't know the level of the root node
2745 			 * until we actually have it read locked
2746 			 */
2747 			b = btrfs_read_lock_root_node(root);
2748 			level = btrfs_header_level(b);
2749 			if (level <= write_lock_level) {
2750 				/* whoops, must trade for write lock */
2751 				btrfs_tree_read_unlock(b);
2752 				free_extent_buffer(b);
2753 				b = btrfs_lock_root_node(root);
2754 				root_lock = BTRFS_WRITE_LOCK;
2755 
2756 				/* the level might have changed, check again */
2757 				level = btrfs_header_level(b);
2758 			}
2759 		}
2760 	}
2761 	p->nodes[level] = b;
2762 	if (!p->skip_locking)
2763 		p->locks[level] = root_lock;
2764 
2765 	while (b) {
2766 		level = btrfs_header_level(b);
2767 
2768 		/*
2769 		 * setup the path here so we can release it under lock
2770 		 * contention with the cow code
2771 		 */
2772 		if (cow) {
2773 			/*
2774 			 * if we don't really need to cow this block
2775 			 * then we don't want to set the path blocking,
2776 			 * so we test it here
2777 			 */
2778 			if (!should_cow_block(trans, root, b)) {
2779 				trans->dirty = true;
2780 				goto cow_done;
2781 			}
2782 
2783 			/*
2784 			 * must have write locks on this node and the
2785 			 * parent
2786 			 */
2787 			if (level > write_lock_level ||
2788 			    (level + 1 > write_lock_level &&
2789 			    level + 1 < BTRFS_MAX_LEVEL &&
2790 			    p->nodes[level + 1])) {
2791 				write_lock_level = level + 1;
2792 				btrfs_release_path(p);
2793 				goto again;
2794 			}
2795 
2796 			btrfs_set_path_blocking(p);
2797 			err = btrfs_cow_block(trans, root, b,
2798 					      p->nodes[level + 1],
2799 					      p->slots[level + 1], &b);
2800 			if (err) {
2801 				ret = err;
2802 				goto done;
2803 			}
2804 		}
2805 cow_done:
2806 		p->nodes[level] = b;
2807 		btrfs_clear_path_blocking(p, NULL, 0);
2808 
2809 		/*
2810 		 * we have a lock on b and as long as we aren't changing
2811 		 * the tree, there is no way to for the items in b to change.
2812 		 * It is safe to drop the lock on our parent before we
2813 		 * go through the expensive btree search on b.
2814 		 *
2815 		 * If we're inserting or deleting (ins_len != 0), then we might
2816 		 * be changing slot zero, which may require changing the parent.
2817 		 * So, we can't drop the lock until after we know which slot
2818 		 * we're operating on.
2819 		 */
2820 		if (!ins_len && !p->keep_locks) {
2821 			int u = level + 1;
2822 
2823 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2824 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2825 				p->locks[u] = 0;
2826 			}
2827 		}
2828 
2829 		ret = key_search(b, key, level, &prev_cmp, &slot);
2830 		if (ret < 0)
2831 			goto done;
2832 
2833 		if (level != 0) {
2834 			int dec = 0;
2835 			if (ret && slot > 0) {
2836 				dec = 1;
2837 				slot -= 1;
2838 			}
2839 			p->slots[level] = slot;
2840 			err = setup_nodes_for_search(trans, root, p, b, level,
2841 					     ins_len, &write_lock_level);
2842 			if (err == -EAGAIN)
2843 				goto again;
2844 			if (err) {
2845 				ret = err;
2846 				goto done;
2847 			}
2848 			b = p->nodes[level];
2849 			slot = p->slots[level];
2850 
2851 			/*
2852 			 * slot 0 is special, if we change the key
2853 			 * we have to update the parent pointer
2854 			 * which means we must have a write lock
2855 			 * on the parent
2856 			 */
2857 			if (slot == 0 && ins_len &&
2858 			    write_lock_level < level + 1) {
2859 				write_lock_level = level + 1;
2860 				btrfs_release_path(p);
2861 				goto again;
2862 			}
2863 
2864 			unlock_up(p, level, lowest_unlock,
2865 				  min_write_lock_level, &write_lock_level);
2866 
2867 			if (level == lowest_level) {
2868 				if (dec)
2869 					p->slots[level]++;
2870 				goto done;
2871 			}
2872 
2873 			err = read_block_for_search(root, p, &b, level,
2874 						    slot, key);
2875 			if (err == -EAGAIN)
2876 				goto again;
2877 			if (err) {
2878 				ret = err;
2879 				goto done;
2880 			}
2881 
2882 			if (!p->skip_locking) {
2883 				level = btrfs_header_level(b);
2884 				if (level <= write_lock_level) {
2885 					err = btrfs_try_tree_write_lock(b);
2886 					if (!err) {
2887 						btrfs_set_path_blocking(p);
2888 						btrfs_tree_lock(b);
2889 						btrfs_clear_path_blocking(p, b,
2890 								  BTRFS_WRITE_LOCK);
2891 					}
2892 					p->locks[level] = BTRFS_WRITE_LOCK;
2893 				} else {
2894 					err = btrfs_tree_read_lock_atomic(b);
2895 					if (!err) {
2896 						btrfs_set_path_blocking(p);
2897 						btrfs_tree_read_lock(b);
2898 						btrfs_clear_path_blocking(p, b,
2899 								  BTRFS_READ_LOCK);
2900 					}
2901 					p->locks[level] = BTRFS_READ_LOCK;
2902 				}
2903 				p->nodes[level] = b;
2904 			}
2905 		} else {
2906 			p->slots[level] = slot;
2907 			if (ins_len > 0 &&
2908 			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2909 				if (write_lock_level < 1) {
2910 					write_lock_level = 1;
2911 					btrfs_release_path(p);
2912 					goto again;
2913 				}
2914 
2915 				btrfs_set_path_blocking(p);
2916 				err = split_leaf(trans, root, key,
2917 						 p, ins_len, ret == 0);
2918 				btrfs_clear_path_blocking(p, NULL, 0);
2919 
2920 				BUG_ON(err > 0);
2921 				if (err) {
2922 					ret = err;
2923 					goto done;
2924 				}
2925 			}
2926 			if (!p->search_for_split)
2927 				unlock_up(p, level, lowest_unlock,
2928 					  min_write_lock_level, &write_lock_level);
2929 			goto done;
2930 		}
2931 	}
2932 	ret = 1;
2933 done:
2934 	/*
2935 	 * we don't really know what they plan on doing with the path
2936 	 * from here on, so for now just mark it as blocking
2937 	 */
2938 	if (!p->leave_spinning)
2939 		btrfs_set_path_blocking(p);
2940 	if (ret < 0 && !p->skip_release_on_error)
2941 		btrfs_release_path(p);
2942 	return ret;
2943 }
2944 
2945 /*
2946  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2947  * current state of the tree together with the operations recorded in the tree
2948  * modification log to search for the key in a previous version of this tree, as
2949  * denoted by the time_seq parameter.
2950  *
2951  * Naturally, there is no support for insert, delete or cow operations.
2952  *
2953  * The resulting path and return value will be set up as if we called
2954  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2955  */
2956 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2957 			  struct btrfs_path *p, u64 time_seq)
2958 {
2959 	struct btrfs_fs_info *fs_info = root->fs_info;
2960 	struct extent_buffer *b;
2961 	int slot;
2962 	int ret;
2963 	int err;
2964 	int level;
2965 	int lowest_unlock = 1;
2966 	u8 lowest_level = 0;
2967 	int prev_cmp = -1;
2968 
2969 	lowest_level = p->lowest_level;
2970 	WARN_ON(p->nodes[0] != NULL);
2971 
2972 	if (p->search_commit_root) {
2973 		BUG_ON(time_seq);
2974 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2975 	}
2976 
2977 again:
2978 	b = get_old_root(root, time_seq);
2979 	level = btrfs_header_level(b);
2980 	p->locks[level] = BTRFS_READ_LOCK;
2981 
2982 	while (b) {
2983 		level = btrfs_header_level(b);
2984 		p->nodes[level] = b;
2985 		btrfs_clear_path_blocking(p, NULL, 0);
2986 
2987 		/*
2988 		 * we have a lock on b and as long as we aren't changing
2989 		 * the tree, there is no way to for the items in b to change.
2990 		 * It is safe to drop the lock on our parent before we
2991 		 * go through the expensive btree search on b.
2992 		 */
2993 		btrfs_unlock_up_safe(p, level + 1);
2994 
2995 		/*
2996 		 * Since we can unwind ebs we want to do a real search every
2997 		 * time.
2998 		 */
2999 		prev_cmp = -1;
3000 		ret = key_search(b, key, level, &prev_cmp, &slot);
3001 
3002 		if (level != 0) {
3003 			int dec = 0;
3004 			if (ret && slot > 0) {
3005 				dec = 1;
3006 				slot -= 1;
3007 			}
3008 			p->slots[level] = slot;
3009 			unlock_up(p, level, lowest_unlock, 0, NULL);
3010 
3011 			if (level == lowest_level) {
3012 				if (dec)
3013 					p->slots[level]++;
3014 				goto done;
3015 			}
3016 
3017 			err = read_block_for_search(root, p, &b, level,
3018 						    slot, key);
3019 			if (err == -EAGAIN)
3020 				goto again;
3021 			if (err) {
3022 				ret = err;
3023 				goto done;
3024 			}
3025 
3026 			level = btrfs_header_level(b);
3027 			err = btrfs_tree_read_lock_atomic(b);
3028 			if (!err) {
3029 				btrfs_set_path_blocking(p);
3030 				btrfs_tree_read_lock(b);
3031 				btrfs_clear_path_blocking(p, b,
3032 							  BTRFS_READ_LOCK);
3033 			}
3034 			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3035 			if (!b) {
3036 				ret = -ENOMEM;
3037 				goto done;
3038 			}
3039 			p->locks[level] = BTRFS_READ_LOCK;
3040 			p->nodes[level] = b;
3041 		} else {
3042 			p->slots[level] = slot;
3043 			unlock_up(p, level, lowest_unlock, 0, NULL);
3044 			goto done;
3045 		}
3046 	}
3047 	ret = 1;
3048 done:
3049 	if (!p->leave_spinning)
3050 		btrfs_set_path_blocking(p);
3051 	if (ret < 0)
3052 		btrfs_release_path(p);
3053 
3054 	return ret;
3055 }
3056 
3057 /*
3058  * helper to use instead of search slot if no exact match is needed but
3059  * instead the next or previous item should be returned.
3060  * When find_higher is true, the next higher item is returned, the next lower
3061  * otherwise.
3062  * When return_any and find_higher are both true, and no higher item is found,
3063  * return the next lower instead.
3064  * When return_any is true and find_higher is false, and no lower item is found,
3065  * return the next higher instead.
3066  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3067  * < 0 on error
3068  */
3069 int btrfs_search_slot_for_read(struct btrfs_root *root,
3070 			       const struct btrfs_key *key,
3071 			       struct btrfs_path *p, int find_higher,
3072 			       int return_any)
3073 {
3074 	int ret;
3075 	struct extent_buffer *leaf;
3076 
3077 again:
3078 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3079 	if (ret <= 0)
3080 		return ret;
3081 	/*
3082 	 * a return value of 1 means the path is at the position where the
3083 	 * item should be inserted. Normally this is the next bigger item,
3084 	 * but in case the previous item is the last in a leaf, path points
3085 	 * to the first free slot in the previous leaf, i.e. at an invalid
3086 	 * item.
3087 	 */
3088 	leaf = p->nodes[0];
3089 
3090 	if (find_higher) {
3091 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3092 			ret = btrfs_next_leaf(root, p);
3093 			if (ret <= 0)
3094 				return ret;
3095 			if (!return_any)
3096 				return 1;
3097 			/*
3098 			 * no higher item found, return the next
3099 			 * lower instead
3100 			 */
3101 			return_any = 0;
3102 			find_higher = 0;
3103 			btrfs_release_path(p);
3104 			goto again;
3105 		}
3106 	} else {
3107 		if (p->slots[0] == 0) {
3108 			ret = btrfs_prev_leaf(root, p);
3109 			if (ret < 0)
3110 				return ret;
3111 			if (!ret) {
3112 				leaf = p->nodes[0];
3113 				if (p->slots[0] == btrfs_header_nritems(leaf))
3114 					p->slots[0]--;
3115 				return 0;
3116 			}
3117 			if (!return_any)
3118 				return 1;
3119 			/*
3120 			 * no lower item found, return the next
3121 			 * higher instead
3122 			 */
3123 			return_any = 0;
3124 			find_higher = 1;
3125 			btrfs_release_path(p);
3126 			goto again;
3127 		} else {
3128 			--p->slots[0];
3129 		}
3130 	}
3131 	return 0;
3132 }
3133 
3134 /*
3135  * adjust the pointers going up the tree, starting at level
3136  * making sure the right key of each node is points to 'key'.
3137  * This is used after shifting pointers to the left, so it stops
3138  * fixing up pointers when a given leaf/node is not in slot 0 of the
3139  * higher levels
3140  *
3141  */
3142 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3143 			   struct btrfs_path *path,
3144 			   struct btrfs_disk_key *key, int level)
3145 {
3146 	int i;
3147 	struct extent_buffer *t;
3148 
3149 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3150 		int tslot = path->slots[i];
3151 		if (!path->nodes[i])
3152 			break;
3153 		t = path->nodes[i];
3154 		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3155 		btrfs_set_node_key(t, key, tslot);
3156 		btrfs_mark_buffer_dirty(path->nodes[i]);
3157 		if (tslot != 0)
3158 			break;
3159 	}
3160 }
3161 
3162 /*
3163  * update item key.
3164  *
3165  * This function isn't completely safe. It's the caller's responsibility
3166  * that the new key won't break the order
3167  */
3168 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3169 			     struct btrfs_path *path,
3170 			     const struct btrfs_key *new_key)
3171 {
3172 	struct btrfs_disk_key disk_key;
3173 	struct extent_buffer *eb;
3174 	int slot;
3175 
3176 	eb = path->nodes[0];
3177 	slot = path->slots[0];
3178 	if (slot > 0) {
3179 		btrfs_item_key(eb, &disk_key, slot - 1);
3180 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3181 	}
3182 	if (slot < btrfs_header_nritems(eb) - 1) {
3183 		btrfs_item_key(eb, &disk_key, slot + 1);
3184 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3185 	}
3186 
3187 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3188 	btrfs_set_item_key(eb, &disk_key, slot);
3189 	btrfs_mark_buffer_dirty(eb);
3190 	if (slot == 0)
3191 		fixup_low_keys(fs_info, path, &disk_key, 1);
3192 }
3193 
3194 /*
3195  * try to push data from one node into the next node left in the
3196  * tree.
3197  *
3198  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3199  * error, and > 0 if there was no room in the left hand block.
3200  */
3201 static int push_node_left(struct btrfs_trans_handle *trans,
3202 			  struct btrfs_fs_info *fs_info,
3203 			  struct extent_buffer *dst,
3204 			  struct extent_buffer *src, int empty)
3205 {
3206 	int push_items = 0;
3207 	int src_nritems;
3208 	int dst_nritems;
3209 	int ret = 0;
3210 
3211 	src_nritems = btrfs_header_nritems(src);
3212 	dst_nritems = btrfs_header_nritems(dst);
3213 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3214 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3215 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3216 
3217 	if (!empty && src_nritems <= 8)
3218 		return 1;
3219 
3220 	if (push_items <= 0)
3221 		return 1;
3222 
3223 	if (empty) {
3224 		push_items = min(src_nritems, push_items);
3225 		if (push_items < src_nritems) {
3226 			/* leave at least 8 pointers in the node if
3227 			 * we aren't going to empty it
3228 			 */
3229 			if (src_nritems - push_items < 8) {
3230 				if (push_items <= 8)
3231 					return 1;
3232 				push_items -= 8;
3233 			}
3234 		}
3235 	} else
3236 		push_items = min(src_nritems - 8, push_items);
3237 
3238 	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3239 				   push_items);
3240 	if (ret) {
3241 		btrfs_abort_transaction(trans, ret);
3242 		return ret;
3243 	}
3244 	copy_extent_buffer(dst, src,
3245 			   btrfs_node_key_ptr_offset(dst_nritems),
3246 			   btrfs_node_key_ptr_offset(0),
3247 			   push_items * sizeof(struct btrfs_key_ptr));
3248 
3249 	if (push_items < src_nritems) {
3250 		/*
3251 		 * don't call tree_mod_log_eb_move here, key removal was already
3252 		 * fully logged by tree_mod_log_eb_copy above.
3253 		 */
3254 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3255 				      btrfs_node_key_ptr_offset(push_items),
3256 				      (src_nritems - push_items) *
3257 				      sizeof(struct btrfs_key_ptr));
3258 	}
3259 	btrfs_set_header_nritems(src, src_nritems - push_items);
3260 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3261 	btrfs_mark_buffer_dirty(src);
3262 	btrfs_mark_buffer_dirty(dst);
3263 
3264 	return ret;
3265 }
3266 
3267 /*
3268  * try to push data from one node into the next node right in the
3269  * tree.
3270  *
3271  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3272  * error, and > 0 if there was no room in the right hand block.
3273  *
3274  * this will  only push up to 1/2 the contents of the left node over
3275  */
3276 static int balance_node_right(struct btrfs_trans_handle *trans,
3277 			      struct btrfs_fs_info *fs_info,
3278 			      struct extent_buffer *dst,
3279 			      struct extent_buffer *src)
3280 {
3281 	int push_items = 0;
3282 	int max_push;
3283 	int src_nritems;
3284 	int dst_nritems;
3285 	int ret = 0;
3286 
3287 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3288 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3289 
3290 	src_nritems = btrfs_header_nritems(src);
3291 	dst_nritems = btrfs_header_nritems(dst);
3292 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3293 	if (push_items <= 0)
3294 		return 1;
3295 
3296 	if (src_nritems < 4)
3297 		return 1;
3298 
3299 	max_push = src_nritems / 2 + 1;
3300 	/* don't try to empty the node */
3301 	if (max_push >= src_nritems)
3302 		return 1;
3303 
3304 	if (max_push < push_items)
3305 		push_items = max_push;
3306 
3307 	tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems);
3308 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3309 				      btrfs_node_key_ptr_offset(0),
3310 				      (dst_nritems) *
3311 				      sizeof(struct btrfs_key_ptr));
3312 
3313 	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3314 				   src_nritems - push_items, push_items);
3315 	if (ret) {
3316 		btrfs_abort_transaction(trans, ret);
3317 		return ret;
3318 	}
3319 	copy_extent_buffer(dst, src,
3320 			   btrfs_node_key_ptr_offset(0),
3321 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3322 			   push_items * sizeof(struct btrfs_key_ptr));
3323 
3324 	btrfs_set_header_nritems(src, src_nritems - push_items);
3325 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3326 
3327 	btrfs_mark_buffer_dirty(src);
3328 	btrfs_mark_buffer_dirty(dst);
3329 
3330 	return ret;
3331 }
3332 
3333 /*
3334  * helper function to insert a new root level in the tree.
3335  * A new node is allocated, and a single item is inserted to
3336  * point to the existing root
3337  *
3338  * returns zero on success or < 0 on failure.
3339  */
3340 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3341 			   struct btrfs_root *root,
3342 			   struct btrfs_path *path, int level)
3343 {
3344 	struct btrfs_fs_info *fs_info = root->fs_info;
3345 	u64 lower_gen;
3346 	struct extent_buffer *lower;
3347 	struct extent_buffer *c;
3348 	struct extent_buffer *old;
3349 	struct btrfs_disk_key lower_key;
3350 
3351 	BUG_ON(path->nodes[level]);
3352 	BUG_ON(path->nodes[level-1] != root->node);
3353 
3354 	lower = path->nodes[level-1];
3355 	if (level == 1)
3356 		btrfs_item_key(lower, &lower_key, 0);
3357 	else
3358 		btrfs_node_key(lower, &lower_key, 0);
3359 
3360 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3361 				   &lower_key, level, root->node->start, 0);
3362 	if (IS_ERR(c))
3363 		return PTR_ERR(c);
3364 
3365 	root_add_used(root, fs_info->nodesize);
3366 
3367 	memzero_extent_buffer(c, 0, sizeof(struct btrfs_header));
3368 	btrfs_set_header_nritems(c, 1);
3369 	btrfs_set_header_level(c, level);
3370 	btrfs_set_header_bytenr(c, c->start);
3371 	btrfs_set_header_generation(c, trans->transid);
3372 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3373 	btrfs_set_header_owner(c, root->root_key.objectid);
3374 
3375 	write_extent_buffer_fsid(c, fs_info->fsid);
3376 	write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid);
3377 
3378 	btrfs_set_node_key(c, &lower_key, 0);
3379 	btrfs_set_node_blockptr(c, 0, lower->start);
3380 	lower_gen = btrfs_header_generation(lower);
3381 	WARN_ON(lower_gen != trans->transid);
3382 
3383 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3384 
3385 	btrfs_mark_buffer_dirty(c);
3386 
3387 	old = root->node;
3388 	tree_mod_log_set_root_pointer(root, c, 0);
3389 	rcu_assign_pointer(root->node, c);
3390 
3391 	/* the super has an extra ref to root->node */
3392 	free_extent_buffer(old);
3393 
3394 	add_root_to_dirty_list(root);
3395 	extent_buffer_get(c);
3396 	path->nodes[level] = c;
3397 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3398 	path->slots[level] = 0;
3399 	return 0;
3400 }
3401 
3402 /*
3403  * worker function to insert a single pointer in a node.
3404  * the node should have enough room for the pointer already
3405  *
3406  * slot and level indicate where you want the key to go, and
3407  * blocknr is the block the key points to.
3408  */
3409 static void insert_ptr(struct btrfs_trans_handle *trans,
3410 		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3411 		       struct btrfs_disk_key *key, u64 bytenr,
3412 		       int slot, int level)
3413 {
3414 	struct extent_buffer *lower;
3415 	int nritems;
3416 	int ret;
3417 
3418 	BUG_ON(!path->nodes[level]);
3419 	btrfs_assert_tree_locked(path->nodes[level]);
3420 	lower = path->nodes[level];
3421 	nritems = btrfs_header_nritems(lower);
3422 	BUG_ON(slot > nritems);
3423 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3424 	if (slot != nritems) {
3425 		if (level)
3426 			tree_mod_log_eb_move(fs_info, lower, slot + 1,
3427 					     slot, nritems - slot);
3428 		memmove_extent_buffer(lower,
3429 			      btrfs_node_key_ptr_offset(slot + 1),
3430 			      btrfs_node_key_ptr_offset(slot),
3431 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3432 	}
3433 	if (level) {
3434 		ret = tree_mod_log_insert_key(fs_info, lower, slot,
3435 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3436 		BUG_ON(ret < 0);
3437 	}
3438 	btrfs_set_node_key(lower, key, slot);
3439 	btrfs_set_node_blockptr(lower, slot, bytenr);
3440 	WARN_ON(trans->transid == 0);
3441 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3442 	btrfs_set_header_nritems(lower, nritems + 1);
3443 	btrfs_mark_buffer_dirty(lower);
3444 }
3445 
3446 /*
3447  * split the node at the specified level in path in two.
3448  * The path is corrected to point to the appropriate node after the split
3449  *
3450  * Before splitting this tries to make some room in the node by pushing
3451  * left and right, if either one works, it returns right away.
3452  *
3453  * returns 0 on success and < 0 on failure
3454  */
3455 static noinline int split_node(struct btrfs_trans_handle *trans,
3456 			       struct btrfs_root *root,
3457 			       struct btrfs_path *path, int level)
3458 {
3459 	struct btrfs_fs_info *fs_info = root->fs_info;
3460 	struct extent_buffer *c;
3461 	struct extent_buffer *split;
3462 	struct btrfs_disk_key disk_key;
3463 	int mid;
3464 	int ret;
3465 	u32 c_nritems;
3466 
3467 	c = path->nodes[level];
3468 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3469 	if (c == root->node) {
3470 		/*
3471 		 * trying to split the root, lets make a new one
3472 		 *
3473 		 * tree mod log: We don't log_removal old root in
3474 		 * insert_new_root, because that root buffer will be kept as a
3475 		 * normal node. We are going to log removal of half of the
3476 		 * elements below with tree_mod_log_eb_copy. We're holding a
3477 		 * tree lock on the buffer, which is why we cannot race with
3478 		 * other tree_mod_log users.
3479 		 */
3480 		ret = insert_new_root(trans, root, path, level + 1);
3481 		if (ret)
3482 			return ret;
3483 	} else {
3484 		ret = push_nodes_for_insert(trans, root, path, level);
3485 		c = path->nodes[level];
3486 		if (!ret && btrfs_header_nritems(c) <
3487 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3488 			return 0;
3489 		if (ret < 0)
3490 			return ret;
3491 	}
3492 
3493 	c_nritems = btrfs_header_nritems(c);
3494 	mid = (c_nritems + 1) / 2;
3495 	btrfs_node_key(c, &disk_key, mid);
3496 
3497 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3498 			&disk_key, level, c->start, 0);
3499 	if (IS_ERR(split))
3500 		return PTR_ERR(split);
3501 
3502 	root_add_used(root, fs_info->nodesize);
3503 
3504 	memzero_extent_buffer(split, 0, sizeof(struct btrfs_header));
3505 	btrfs_set_header_level(split, btrfs_header_level(c));
3506 	btrfs_set_header_bytenr(split, split->start);
3507 	btrfs_set_header_generation(split, trans->transid);
3508 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3509 	btrfs_set_header_owner(split, root->root_key.objectid);
3510 	write_extent_buffer_fsid(split, fs_info->fsid);
3511 	write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid);
3512 
3513 	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3514 	if (ret) {
3515 		btrfs_abort_transaction(trans, ret);
3516 		return ret;
3517 	}
3518 	copy_extent_buffer(split, c,
3519 			   btrfs_node_key_ptr_offset(0),
3520 			   btrfs_node_key_ptr_offset(mid),
3521 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3522 	btrfs_set_header_nritems(split, c_nritems - mid);
3523 	btrfs_set_header_nritems(c, mid);
3524 	ret = 0;
3525 
3526 	btrfs_mark_buffer_dirty(c);
3527 	btrfs_mark_buffer_dirty(split);
3528 
3529 	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3530 		   path->slots[level + 1] + 1, level + 1);
3531 
3532 	if (path->slots[level] >= mid) {
3533 		path->slots[level] -= mid;
3534 		btrfs_tree_unlock(c);
3535 		free_extent_buffer(c);
3536 		path->nodes[level] = split;
3537 		path->slots[level + 1] += 1;
3538 	} else {
3539 		btrfs_tree_unlock(split);
3540 		free_extent_buffer(split);
3541 	}
3542 	return ret;
3543 }
3544 
3545 /*
3546  * how many bytes are required to store the items in a leaf.  start
3547  * and nr indicate which items in the leaf to check.  This totals up the
3548  * space used both by the item structs and the item data
3549  */
3550 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3551 {
3552 	struct btrfs_item *start_item;
3553 	struct btrfs_item *end_item;
3554 	struct btrfs_map_token token;
3555 	int data_len;
3556 	int nritems = btrfs_header_nritems(l);
3557 	int end = min(nritems, start + nr) - 1;
3558 
3559 	if (!nr)
3560 		return 0;
3561 	btrfs_init_map_token(&token);
3562 	start_item = btrfs_item_nr(start);
3563 	end_item = btrfs_item_nr(end);
3564 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3565 		btrfs_token_item_size(l, start_item, &token);
3566 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3567 	data_len += sizeof(struct btrfs_item) * nr;
3568 	WARN_ON(data_len < 0);
3569 	return data_len;
3570 }
3571 
3572 /*
3573  * The space between the end of the leaf items and
3574  * the start of the leaf data.  IOW, how much room
3575  * the leaf has left for both items and data
3576  */
3577 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3578 				   struct extent_buffer *leaf)
3579 {
3580 	int nritems = btrfs_header_nritems(leaf);
3581 	int ret;
3582 
3583 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3584 	if (ret < 0) {
3585 		btrfs_crit(fs_info,
3586 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3587 			   ret,
3588 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3589 			   leaf_space_used(leaf, 0, nritems), nritems);
3590 	}
3591 	return ret;
3592 }
3593 
3594 /*
3595  * min slot controls the lowest index we're willing to push to the
3596  * right.  We'll push up to and including min_slot, but no lower
3597  */
3598 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3599 				      struct btrfs_path *path,
3600 				      int data_size, int empty,
3601 				      struct extent_buffer *right,
3602 				      int free_space, u32 left_nritems,
3603 				      u32 min_slot)
3604 {
3605 	struct extent_buffer *left = path->nodes[0];
3606 	struct extent_buffer *upper = path->nodes[1];
3607 	struct btrfs_map_token token;
3608 	struct btrfs_disk_key disk_key;
3609 	int slot;
3610 	u32 i;
3611 	int push_space = 0;
3612 	int push_items = 0;
3613 	struct btrfs_item *item;
3614 	u32 nr;
3615 	u32 right_nritems;
3616 	u32 data_end;
3617 	u32 this_item_size;
3618 
3619 	btrfs_init_map_token(&token);
3620 
3621 	if (empty)
3622 		nr = 0;
3623 	else
3624 		nr = max_t(u32, 1, min_slot);
3625 
3626 	if (path->slots[0] >= left_nritems)
3627 		push_space += data_size;
3628 
3629 	slot = path->slots[1];
3630 	i = left_nritems - 1;
3631 	while (i >= nr) {
3632 		item = btrfs_item_nr(i);
3633 
3634 		if (!empty && push_items > 0) {
3635 			if (path->slots[0] > i)
3636 				break;
3637 			if (path->slots[0] == i) {
3638 				int space = btrfs_leaf_free_space(fs_info, left);
3639 				if (space + push_space * 2 > free_space)
3640 					break;
3641 			}
3642 		}
3643 
3644 		if (path->slots[0] == i)
3645 			push_space += data_size;
3646 
3647 		this_item_size = btrfs_item_size(left, item);
3648 		if (this_item_size + sizeof(*item) + push_space > free_space)
3649 			break;
3650 
3651 		push_items++;
3652 		push_space += this_item_size + sizeof(*item);
3653 		if (i == 0)
3654 			break;
3655 		i--;
3656 	}
3657 
3658 	if (push_items == 0)
3659 		goto out_unlock;
3660 
3661 	WARN_ON(!empty && push_items == left_nritems);
3662 
3663 	/* push left to right */
3664 	right_nritems = btrfs_header_nritems(right);
3665 
3666 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3667 	push_space -= leaf_data_end(fs_info, left);
3668 
3669 	/* make room in the right data area */
3670 	data_end = leaf_data_end(fs_info, right);
3671 	memmove_extent_buffer(right,
3672 			      btrfs_leaf_data(right) + data_end - push_space,
3673 			      btrfs_leaf_data(right) + data_end,
3674 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3675 
3676 	/* copy from the left data area */
3677 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3678 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3679 		     btrfs_leaf_data(left) + leaf_data_end(fs_info, left),
3680 		     push_space);
3681 
3682 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3683 			      btrfs_item_nr_offset(0),
3684 			      right_nritems * sizeof(struct btrfs_item));
3685 
3686 	/* copy the items from left to right */
3687 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3688 		   btrfs_item_nr_offset(left_nritems - push_items),
3689 		   push_items * sizeof(struct btrfs_item));
3690 
3691 	/* update the item pointers */
3692 	right_nritems += push_items;
3693 	btrfs_set_header_nritems(right, right_nritems);
3694 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3695 	for (i = 0; i < right_nritems; i++) {
3696 		item = btrfs_item_nr(i);
3697 		push_space -= btrfs_token_item_size(right, item, &token);
3698 		btrfs_set_token_item_offset(right, item, push_space, &token);
3699 	}
3700 
3701 	left_nritems -= push_items;
3702 	btrfs_set_header_nritems(left, left_nritems);
3703 
3704 	if (left_nritems)
3705 		btrfs_mark_buffer_dirty(left);
3706 	else
3707 		clean_tree_block(fs_info, left);
3708 
3709 	btrfs_mark_buffer_dirty(right);
3710 
3711 	btrfs_item_key(right, &disk_key, 0);
3712 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3713 	btrfs_mark_buffer_dirty(upper);
3714 
3715 	/* then fixup the leaf pointer in the path */
3716 	if (path->slots[0] >= left_nritems) {
3717 		path->slots[0] -= left_nritems;
3718 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3719 			clean_tree_block(fs_info, path->nodes[0]);
3720 		btrfs_tree_unlock(path->nodes[0]);
3721 		free_extent_buffer(path->nodes[0]);
3722 		path->nodes[0] = right;
3723 		path->slots[1] += 1;
3724 	} else {
3725 		btrfs_tree_unlock(right);
3726 		free_extent_buffer(right);
3727 	}
3728 	return 0;
3729 
3730 out_unlock:
3731 	btrfs_tree_unlock(right);
3732 	free_extent_buffer(right);
3733 	return 1;
3734 }
3735 
3736 /*
3737  * push some data in the path leaf to the right, trying to free up at
3738  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3739  *
3740  * returns 1 if the push failed because the other node didn't have enough
3741  * room, 0 if everything worked out and < 0 if there were major errors.
3742  *
3743  * this will push starting from min_slot to the end of the leaf.  It won't
3744  * push any slot lower than min_slot
3745  */
3746 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3747 			   *root, struct btrfs_path *path,
3748 			   int min_data_size, int data_size,
3749 			   int empty, u32 min_slot)
3750 {
3751 	struct btrfs_fs_info *fs_info = root->fs_info;
3752 	struct extent_buffer *left = path->nodes[0];
3753 	struct extent_buffer *right;
3754 	struct extent_buffer *upper;
3755 	int slot;
3756 	int free_space;
3757 	u32 left_nritems;
3758 	int ret;
3759 
3760 	if (!path->nodes[1])
3761 		return 1;
3762 
3763 	slot = path->slots[1];
3764 	upper = path->nodes[1];
3765 	if (slot >= btrfs_header_nritems(upper) - 1)
3766 		return 1;
3767 
3768 	btrfs_assert_tree_locked(path->nodes[1]);
3769 
3770 	right = read_node_slot(fs_info, upper, slot + 1);
3771 	/*
3772 	 * slot + 1 is not valid or we fail to read the right node,
3773 	 * no big deal, just return.
3774 	 */
3775 	if (IS_ERR(right))
3776 		return 1;
3777 
3778 	btrfs_tree_lock(right);
3779 	btrfs_set_lock_blocking(right);
3780 
3781 	free_space = btrfs_leaf_free_space(fs_info, right);
3782 	if (free_space < data_size)
3783 		goto out_unlock;
3784 
3785 	/* cow and double check */
3786 	ret = btrfs_cow_block(trans, root, right, upper,
3787 			      slot + 1, &right);
3788 	if (ret)
3789 		goto out_unlock;
3790 
3791 	free_space = btrfs_leaf_free_space(fs_info, right);
3792 	if (free_space < data_size)
3793 		goto out_unlock;
3794 
3795 	left_nritems = btrfs_header_nritems(left);
3796 	if (left_nritems == 0)
3797 		goto out_unlock;
3798 
3799 	if (path->slots[0] == left_nritems && !empty) {
3800 		/* Key greater than all keys in the leaf, right neighbor has
3801 		 * enough room for it and we're not emptying our leaf to delete
3802 		 * it, therefore use right neighbor to insert the new item and
3803 		 * no need to touch/dirty our left leaft. */
3804 		btrfs_tree_unlock(left);
3805 		free_extent_buffer(left);
3806 		path->nodes[0] = right;
3807 		path->slots[0] = 0;
3808 		path->slots[1]++;
3809 		return 0;
3810 	}
3811 
3812 	return __push_leaf_right(fs_info, path, min_data_size, empty,
3813 				right, free_space, left_nritems, min_slot);
3814 out_unlock:
3815 	btrfs_tree_unlock(right);
3816 	free_extent_buffer(right);
3817 	return 1;
3818 }
3819 
3820 /*
3821  * push some data in the path leaf to the left, trying to free up at
3822  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3823  *
3824  * max_slot can put a limit on how far into the leaf we'll push items.  The
3825  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3826  * items
3827  */
3828 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3829 				     struct btrfs_path *path, int data_size,
3830 				     int empty, struct extent_buffer *left,
3831 				     int free_space, u32 right_nritems,
3832 				     u32 max_slot)
3833 {
3834 	struct btrfs_disk_key disk_key;
3835 	struct extent_buffer *right = path->nodes[0];
3836 	int i;
3837 	int push_space = 0;
3838 	int push_items = 0;
3839 	struct btrfs_item *item;
3840 	u32 old_left_nritems;
3841 	u32 nr;
3842 	int ret = 0;
3843 	u32 this_item_size;
3844 	u32 old_left_item_size;
3845 	struct btrfs_map_token token;
3846 
3847 	btrfs_init_map_token(&token);
3848 
3849 	if (empty)
3850 		nr = min(right_nritems, max_slot);
3851 	else
3852 		nr = min(right_nritems - 1, max_slot);
3853 
3854 	for (i = 0; i < nr; i++) {
3855 		item = btrfs_item_nr(i);
3856 
3857 		if (!empty && push_items > 0) {
3858 			if (path->slots[0] < i)
3859 				break;
3860 			if (path->slots[0] == i) {
3861 				int space = btrfs_leaf_free_space(fs_info, right);
3862 				if (space + push_space * 2 > free_space)
3863 					break;
3864 			}
3865 		}
3866 
3867 		if (path->slots[0] == i)
3868 			push_space += data_size;
3869 
3870 		this_item_size = btrfs_item_size(right, item);
3871 		if (this_item_size + sizeof(*item) + push_space > free_space)
3872 			break;
3873 
3874 		push_items++;
3875 		push_space += this_item_size + sizeof(*item);
3876 	}
3877 
3878 	if (push_items == 0) {
3879 		ret = 1;
3880 		goto out;
3881 	}
3882 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3883 
3884 	/* push data from right to left */
3885 	copy_extent_buffer(left, right,
3886 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3887 			   btrfs_item_nr_offset(0),
3888 			   push_items * sizeof(struct btrfs_item));
3889 
3890 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3891 		     btrfs_item_offset_nr(right, push_items - 1);
3892 
3893 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3894 		     leaf_data_end(fs_info, left) - push_space,
3895 		     btrfs_leaf_data(right) +
3896 		     btrfs_item_offset_nr(right, push_items - 1),
3897 		     push_space);
3898 	old_left_nritems = btrfs_header_nritems(left);
3899 	BUG_ON(old_left_nritems <= 0);
3900 
3901 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3902 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3903 		u32 ioff;
3904 
3905 		item = btrfs_item_nr(i);
3906 
3907 		ioff = btrfs_token_item_offset(left, item, &token);
3908 		btrfs_set_token_item_offset(left, item,
3909 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3910 		      &token);
3911 	}
3912 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3913 
3914 	/* fixup right node */
3915 	if (push_items > right_nritems)
3916 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3917 		       right_nritems);
3918 
3919 	if (push_items < right_nritems) {
3920 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3921 						  leaf_data_end(fs_info, right);
3922 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3923 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3924 				      btrfs_leaf_data(right) +
3925 				      leaf_data_end(fs_info, right), push_space);
3926 
3927 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3928 			      btrfs_item_nr_offset(push_items),
3929 			     (btrfs_header_nritems(right) - push_items) *
3930 			     sizeof(struct btrfs_item));
3931 	}
3932 	right_nritems -= push_items;
3933 	btrfs_set_header_nritems(right, right_nritems);
3934 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3935 	for (i = 0; i < right_nritems; i++) {
3936 		item = btrfs_item_nr(i);
3937 
3938 		push_space = push_space - btrfs_token_item_size(right,
3939 								item, &token);
3940 		btrfs_set_token_item_offset(right, item, push_space, &token);
3941 	}
3942 
3943 	btrfs_mark_buffer_dirty(left);
3944 	if (right_nritems)
3945 		btrfs_mark_buffer_dirty(right);
3946 	else
3947 		clean_tree_block(fs_info, right);
3948 
3949 	btrfs_item_key(right, &disk_key, 0);
3950 	fixup_low_keys(fs_info, path, &disk_key, 1);
3951 
3952 	/* then fixup the leaf pointer in the path */
3953 	if (path->slots[0] < push_items) {
3954 		path->slots[0] += old_left_nritems;
3955 		btrfs_tree_unlock(path->nodes[0]);
3956 		free_extent_buffer(path->nodes[0]);
3957 		path->nodes[0] = left;
3958 		path->slots[1] -= 1;
3959 	} else {
3960 		btrfs_tree_unlock(left);
3961 		free_extent_buffer(left);
3962 		path->slots[0] -= push_items;
3963 	}
3964 	BUG_ON(path->slots[0] < 0);
3965 	return ret;
3966 out:
3967 	btrfs_tree_unlock(left);
3968 	free_extent_buffer(left);
3969 	return ret;
3970 }
3971 
3972 /*
3973  * push some data in the path leaf to the left, trying to free up at
3974  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3975  *
3976  * max_slot can put a limit on how far into the leaf we'll push items.  The
3977  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3978  * items
3979  */
3980 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3981 			  *root, struct btrfs_path *path, int min_data_size,
3982 			  int data_size, int empty, u32 max_slot)
3983 {
3984 	struct btrfs_fs_info *fs_info = root->fs_info;
3985 	struct extent_buffer *right = path->nodes[0];
3986 	struct extent_buffer *left;
3987 	int slot;
3988 	int free_space;
3989 	u32 right_nritems;
3990 	int ret = 0;
3991 
3992 	slot = path->slots[1];
3993 	if (slot == 0)
3994 		return 1;
3995 	if (!path->nodes[1])
3996 		return 1;
3997 
3998 	right_nritems = btrfs_header_nritems(right);
3999 	if (right_nritems == 0)
4000 		return 1;
4001 
4002 	btrfs_assert_tree_locked(path->nodes[1]);
4003 
4004 	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
4005 	/*
4006 	 * slot - 1 is not valid or we fail to read the left node,
4007 	 * no big deal, just return.
4008 	 */
4009 	if (IS_ERR(left))
4010 		return 1;
4011 
4012 	btrfs_tree_lock(left);
4013 	btrfs_set_lock_blocking(left);
4014 
4015 	free_space = btrfs_leaf_free_space(fs_info, left);
4016 	if (free_space < data_size) {
4017 		ret = 1;
4018 		goto out;
4019 	}
4020 
4021 	/* cow and double check */
4022 	ret = btrfs_cow_block(trans, root, left,
4023 			      path->nodes[1], slot - 1, &left);
4024 	if (ret) {
4025 		/* we hit -ENOSPC, but it isn't fatal here */
4026 		if (ret == -ENOSPC)
4027 			ret = 1;
4028 		goto out;
4029 	}
4030 
4031 	free_space = btrfs_leaf_free_space(fs_info, left);
4032 	if (free_space < data_size) {
4033 		ret = 1;
4034 		goto out;
4035 	}
4036 
4037 	return __push_leaf_left(fs_info, path, min_data_size,
4038 			       empty, left, free_space, right_nritems,
4039 			       max_slot);
4040 out:
4041 	btrfs_tree_unlock(left);
4042 	free_extent_buffer(left);
4043 	return ret;
4044 }
4045 
4046 /*
4047  * split the path's leaf in two, making sure there is at least data_size
4048  * available for the resulting leaf level of the path.
4049  */
4050 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4051 				    struct btrfs_fs_info *fs_info,
4052 				    struct btrfs_path *path,
4053 				    struct extent_buffer *l,
4054 				    struct extent_buffer *right,
4055 				    int slot, int mid, int nritems)
4056 {
4057 	int data_copy_size;
4058 	int rt_data_off;
4059 	int i;
4060 	struct btrfs_disk_key disk_key;
4061 	struct btrfs_map_token token;
4062 
4063 	btrfs_init_map_token(&token);
4064 
4065 	nritems = nritems - mid;
4066 	btrfs_set_header_nritems(right, nritems);
4067 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4068 
4069 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4070 			   btrfs_item_nr_offset(mid),
4071 			   nritems * sizeof(struct btrfs_item));
4072 
4073 	copy_extent_buffer(right, l,
4074 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) -
4075 		     data_copy_size, btrfs_leaf_data(l) +
4076 		     leaf_data_end(fs_info, l), data_copy_size);
4077 
4078 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4079 
4080 	for (i = 0; i < nritems; i++) {
4081 		struct btrfs_item *item = btrfs_item_nr(i);
4082 		u32 ioff;
4083 
4084 		ioff = btrfs_token_item_offset(right, item, &token);
4085 		btrfs_set_token_item_offset(right, item,
4086 					    ioff + rt_data_off, &token);
4087 	}
4088 
4089 	btrfs_set_header_nritems(l, mid);
4090 	btrfs_item_key(right, &disk_key, 0);
4091 	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4092 		   path->slots[1] + 1, 1);
4093 
4094 	btrfs_mark_buffer_dirty(right);
4095 	btrfs_mark_buffer_dirty(l);
4096 	BUG_ON(path->slots[0] != slot);
4097 
4098 	if (mid <= slot) {
4099 		btrfs_tree_unlock(path->nodes[0]);
4100 		free_extent_buffer(path->nodes[0]);
4101 		path->nodes[0] = right;
4102 		path->slots[0] -= mid;
4103 		path->slots[1] += 1;
4104 	} else {
4105 		btrfs_tree_unlock(right);
4106 		free_extent_buffer(right);
4107 	}
4108 
4109 	BUG_ON(path->slots[0] < 0);
4110 }
4111 
4112 /*
4113  * double splits happen when we need to insert a big item in the middle
4114  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4115  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4116  *          A                 B                 C
4117  *
4118  * We avoid this by trying to push the items on either side of our target
4119  * into the adjacent leaves.  If all goes well we can avoid the double split
4120  * completely.
4121  */
4122 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4123 					  struct btrfs_root *root,
4124 					  struct btrfs_path *path,
4125 					  int data_size)
4126 {
4127 	struct btrfs_fs_info *fs_info = root->fs_info;
4128 	int ret;
4129 	int progress = 0;
4130 	int slot;
4131 	u32 nritems;
4132 	int space_needed = data_size;
4133 
4134 	slot = path->slots[0];
4135 	if (slot < btrfs_header_nritems(path->nodes[0]))
4136 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4137 
4138 	/*
4139 	 * try to push all the items after our slot into the
4140 	 * right leaf
4141 	 */
4142 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4143 	if (ret < 0)
4144 		return ret;
4145 
4146 	if (ret == 0)
4147 		progress++;
4148 
4149 	nritems = btrfs_header_nritems(path->nodes[0]);
4150 	/*
4151 	 * our goal is to get our slot at the start or end of a leaf.  If
4152 	 * we've done so we're done
4153 	 */
4154 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4155 		return 0;
4156 
4157 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4158 		return 0;
4159 
4160 	/* try to push all the items before our slot into the next leaf */
4161 	slot = path->slots[0];
4162 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4163 	if (ret < 0)
4164 		return ret;
4165 
4166 	if (ret == 0)
4167 		progress++;
4168 
4169 	if (progress)
4170 		return 0;
4171 	return 1;
4172 }
4173 
4174 /*
4175  * split the path's leaf in two, making sure there is at least data_size
4176  * available for the resulting leaf level of the path.
4177  *
4178  * returns 0 if all went well and < 0 on failure.
4179  */
4180 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4181 			       struct btrfs_root *root,
4182 			       const struct btrfs_key *ins_key,
4183 			       struct btrfs_path *path, int data_size,
4184 			       int extend)
4185 {
4186 	struct btrfs_disk_key disk_key;
4187 	struct extent_buffer *l;
4188 	u32 nritems;
4189 	int mid;
4190 	int slot;
4191 	struct extent_buffer *right;
4192 	struct btrfs_fs_info *fs_info = root->fs_info;
4193 	int ret = 0;
4194 	int wret;
4195 	int split;
4196 	int num_doubles = 0;
4197 	int tried_avoid_double = 0;
4198 
4199 	l = path->nodes[0];
4200 	slot = path->slots[0];
4201 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4202 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4203 		return -EOVERFLOW;
4204 
4205 	/* first try to make some room by pushing left and right */
4206 	if (data_size && path->nodes[1]) {
4207 		int space_needed = data_size;
4208 
4209 		if (slot < btrfs_header_nritems(l))
4210 			space_needed -= btrfs_leaf_free_space(fs_info, l);
4211 
4212 		wret = push_leaf_right(trans, root, path, space_needed,
4213 				       space_needed, 0, 0);
4214 		if (wret < 0)
4215 			return wret;
4216 		if (wret) {
4217 			wret = push_leaf_left(trans, root, path, space_needed,
4218 					      space_needed, 0, (u32)-1);
4219 			if (wret < 0)
4220 				return wret;
4221 		}
4222 		l = path->nodes[0];
4223 
4224 		/* did the pushes work? */
4225 		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4226 			return 0;
4227 	}
4228 
4229 	if (!path->nodes[1]) {
4230 		ret = insert_new_root(trans, root, path, 1);
4231 		if (ret)
4232 			return ret;
4233 	}
4234 again:
4235 	split = 1;
4236 	l = path->nodes[0];
4237 	slot = path->slots[0];
4238 	nritems = btrfs_header_nritems(l);
4239 	mid = (nritems + 1) / 2;
4240 
4241 	if (mid <= slot) {
4242 		if (nritems == 1 ||
4243 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4244 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4245 			if (slot >= nritems) {
4246 				split = 0;
4247 			} else {
4248 				mid = slot;
4249 				if (mid != nritems &&
4250 				    leaf_space_used(l, mid, nritems - mid) +
4251 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4252 					if (data_size && !tried_avoid_double)
4253 						goto push_for_double;
4254 					split = 2;
4255 				}
4256 			}
4257 		}
4258 	} else {
4259 		if (leaf_space_used(l, 0, mid) + data_size >
4260 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4261 			if (!extend && data_size && slot == 0) {
4262 				split = 0;
4263 			} else if ((extend || !data_size) && slot == 0) {
4264 				mid = 1;
4265 			} else {
4266 				mid = slot;
4267 				if (mid != nritems &&
4268 				    leaf_space_used(l, mid, nritems - mid) +
4269 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4270 					if (data_size && !tried_avoid_double)
4271 						goto push_for_double;
4272 					split = 2;
4273 				}
4274 			}
4275 		}
4276 	}
4277 
4278 	if (split == 0)
4279 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4280 	else
4281 		btrfs_item_key(l, &disk_key, mid);
4282 
4283 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4284 			&disk_key, 0, l->start, 0);
4285 	if (IS_ERR(right))
4286 		return PTR_ERR(right);
4287 
4288 	root_add_used(root, fs_info->nodesize);
4289 
4290 	memzero_extent_buffer(right, 0, sizeof(struct btrfs_header));
4291 	btrfs_set_header_bytenr(right, right->start);
4292 	btrfs_set_header_generation(right, trans->transid);
4293 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4294 	btrfs_set_header_owner(right, root->root_key.objectid);
4295 	btrfs_set_header_level(right, 0);
4296 	write_extent_buffer_fsid(right, fs_info->fsid);
4297 	write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid);
4298 
4299 	if (split == 0) {
4300 		if (mid <= slot) {
4301 			btrfs_set_header_nritems(right, 0);
4302 			insert_ptr(trans, fs_info, path, &disk_key,
4303 				   right->start, path->slots[1] + 1, 1);
4304 			btrfs_tree_unlock(path->nodes[0]);
4305 			free_extent_buffer(path->nodes[0]);
4306 			path->nodes[0] = right;
4307 			path->slots[0] = 0;
4308 			path->slots[1] += 1;
4309 		} else {
4310 			btrfs_set_header_nritems(right, 0);
4311 			insert_ptr(trans, fs_info, path, &disk_key,
4312 				   right->start, path->slots[1], 1);
4313 			btrfs_tree_unlock(path->nodes[0]);
4314 			free_extent_buffer(path->nodes[0]);
4315 			path->nodes[0] = right;
4316 			path->slots[0] = 0;
4317 			if (path->slots[1] == 0)
4318 				fixup_low_keys(fs_info, path, &disk_key, 1);
4319 		}
4320 		/*
4321 		 * We create a new leaf 'right' for the required ins_len and
4322 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4323 		 * the content of ins_len to 'right'.
4324 		 */
4325 		return ret;
4326 	}
4327 
4328 	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4329 
4330 	if (split == 2) {
4331 		BUG_ON(num_doubles != 0);
4332 		num_doubles++;
4333 		goto again;
4334 	}
4335 
4336 	return 0;
4337 
4338 push_for_double:
4339 	push_for_double_split(trans, root, path, data_size);
4340 	tried_avoid_double = 1;
4341 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4342 		return 0;
4343 	goto again;
4344 }
4345 
4346 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4347 					 struct btrfs_root *root,
4348 					 struct btrfs_path *path, int ins_len)
4349 {
4350 	struct btrfs_fs_info *fs_info = root->fs_info;
4351 	struct btrfs_key key;
4352 	struct extent_buffer *leaf;
4353 	struct btrfs_file_extent_item *fi;
4354 	u64 extent_len = 0;
4355 	u32 item_size;
4356 	int ret;
4357 
4358 	leaf = path->nodes[0];
4359 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4360 
4361 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4362 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4363 
4364 	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4365 		return 0;
4366 
4367 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4368 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4369 		fi = btrfs_item_ptr(leaf, path->slots[0],
4370 				    struct btrfs_file_extent_item);
4371 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4372 	}
4373 	btrfs_release_path(path);
4374 
4375 	path->keep_locks = 1;
4376 	path->search_for_split = 1;
4377 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4378 	path->search_for_split = 0;
4379 	if (ret > 0)
4380 		ret = -EAGAIN;
4381 	if (ret < 0)
4382 		goto err;
4383 
4384 	ret = -EAGAIN;
4385 	leaf = path->nodes[0];
4386 	/* if our item isn't there, return now */
4387 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4388 		goto err;
4389 
4390 	/* the leaf has  changed, it now has room.  return now */
4391 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4392 		goto err;
4393 
4394 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4395 		fi = btrfs_item_ptr(leaf, path->slots[0],
4396 				    struct btrfs_file_extent_item);
4397 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4398 			goto err;
4399 	}
4400 
4401 	btrfs_set_path_blocking(path);
4402 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4403 	if (ret)
4404 		goto err;
4405 
4406 	path->keep_locks = 0;
4407 	btrfs_unlock_up_safe(path, 1);
4408 	return 0;
4409 err:
4410 	path->keep_locks = 0;
4411 	return ret;
4412 }
4413 
4414 static noinline int split_item(struct btrfs_fs_info *fs_info,
4415 			       struct btrfs_path *path,
4416 			       const struct btrfs_key *new_key,
4417 			       unsigned long split_offset)
4418 {
4419 	struct extent_buffer *leaf;
4420 	struct btrfs_item *item;
4421 	struct btrfs_item *new_item;
4422 	int slot;
4423 	char *buf;
4424 	u32 nritems;
4425 	u32 item_size;
4426 	u32 orig_offset;
4427 	struct btrfs_disk_key disk_key;
4428 
4429 	leaf = path->nodes[0];
4430 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4431 
4432 	btrfs_set_path_blocking(path);
4433 
4434 	item = btrfs_item_nr(path->slots[0]);
4435 	orig_offset = btrfs_item_offset(leaf, item);
4436 	item_size = btrfs_item_size(leaf, item);
4437 
4438 	buf = kmalloc(item_size, GFP_NOFS);
4439 	if (!buf)
4440 		return -ENOMEM;
4441 
4442 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4443 			    path->slots[0]), item_size);
4444 
4445 	slot = path->slots[0] + 1;
4446 	nritems = btrfs_header_nritems(leaf);
4447 	if (slot != nritems) {
4448 		/* shift the items */
4449 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4450 				btrfs_item_nr_offset(slot),
4451 				(nritems - slot) * sizeof(struct btrfs_item));
4452 	}
4453 
4454 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4455 	btrfs_set_item_key(leaf, &disk_key, slot);
4456 
4457 	new_item = btrfs_item_nr(slot);
4458 
4459 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4460 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4461 
4462 	btrfs_set_item_offset(leaf, item,
4463 			      orig_offset + item_size - split_offset);
4464 	btrfs_set_item_size(leaf, item, split_offset);
4465 
4466 	btrfs_set_header_nritems(leaf, nritems + 1);
4467 
4468 	/* write the data for the start of the original item */
4469 	write_extent_buffer(leaf, buf,
4470 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4471 			    split_offset);
4472 
4473 	/* write the data for the new item */
4474 	write_extent_buffer(leaf, buf + split_offset,
4475 			    btrfs_item_ptr_offset(leaf, slot),
4476 			    item_size - split_offset);
4477 	btrfs_mark_buffer_dirty(leaf);
4478 
4479 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4480 	kfree(buf);
4481 	return 0;
4482 }
4483 
4484 /*
4485  * This function splits a single item into two items,
4486  * giving 'new_key' to the new item and splitting the
4487  * old one at split_offset (from the start of the item).
4488  *
4489  * The path may be released by this operation.  After
4490  * the split, the path is pointing to the old item.  The
4491  * new item is going to be in the same node as the old one.
4492  *
4493  * Note, the item being split must be smaller enough to live alone on
4494  * a tree block with room for one extra struct btrfs_item
4495  *
4496  * This allows us to split the item in place, keeping a lock on the
4497  * leaf the entire time.
4498  */
4499 int btrfs_split_item(struct btrfs_trans_handle *trans,
4500 		     struct btrfs_root *root,
4501 		     struct btrfs_path *path,
4502 		     const struct btrfs_key *new_key,
4503 		     unsigned long split_offset)
4504 {
4505 	int ret;
4506 	ret = setup_leaf_for_split(trans, root, path,
4507 				   sizeof(struct btrfs_item));
4508 	if (ret)
4509 		return ret;
4510 
4511 	ret = split_item(root->fs_info, path, new_key, split_offset);
4512 	return ret;
4513 }
4514 
4515 /*
4516  * This function duplicate a item, giving 'new_key' to the new item.
4517  * It guarantees both items live in the same tree leaf and the new item
4518  * is contiguous with the original item.
4519  *
4520  * This allows us to split file extent in place, keeping a lock on the
4521  * leaf the entire time.
4522  */
4523 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4524 			 struct btrfs_root *root,
4525 			 struct btrfs_path *path,
4526 			 const struct btrfs_key *new_key)
4527 {
4528 	struct extent_buffer *leaf;
4529 	int ret;
4530 	u32 item_size;
4531 
4532 	leaf = path->nodes[0];
4533 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4534 	ret = setup_leaf_for_split(trans, root, path,
4535 				   item_size + sizeof(struct btrfs_item));
4536 	if (ret)
4537 		return ret;
4538 
4539 	path->slots[0]++;
4540 	setup_items_for_insert(root, path, new_key, &item_size,
4541 			       item_size, item_size +
4542 			       sizeof(struct btrfs_item), 1);
4543 	leaf = path->nodes[0];
4544 	memcpy_extent_buffer(leaf,
4545 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4546 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4547 			     item_size);
4548 	return 0;
4549 }
4550 
4551 /*
4552  * make the item pointed to by the path smaller.  new_size indicates
4553  * how small to make it, and from_end tells us if we just chop bytes
4554  * off the end of the item or if we shift the item to chop bytes off
4555  * the front.
4556  */
4557 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4558 			 struct btrfs_path *path, u32 new_size, int from_end)
4559 {
4560 	int slot;
4561 	struct extent_buffer *leaf;
4562 	struct btrfs_item *item;
4563 	u32 nritems;
4564 	unsigned int data_end;
4565 	unsigned int old_data_start;
4566 	unsigned int old_size;
4567 	unsigned int size_diff;
4568 	int i;
4569 	struct btrfs_map_token token;
4570 
4571 	btrfs_init_map_token(&token);
4572 
4573 	leaf = path->nodes[0];
4574 	slot = path->slots[0];
4575 
4576 	old_size = btrfs_item_size_nr(leaf, slot);
4577 	if (old_size == new_size)
4578 		return;
4579 
4580 	nritems = btrfs_header_nritems(leaf);
4581 	data_end = leaf_data_end(fs_info, leaf);
4582 
4583 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4584 
4585 	size_diff = old_size - new_size;
4586 
4587 	BUG_ON(slot < 0);
4588 	BUG_ON(slot >= nritems);
4589 
4590 	/*
4591 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4592 	 */
4593 	/* first correct the data pointers */
4594 	for (i = slot; i < nritems; i++) {
4595 		u32 ioff;
4596 		item = btrfs_item_nr(i);
4597 
4598 		ioff = btrfs_token_item_offset(leaf, item, &token);
4599 		btrfs_set_token_item_offset(leaf, item,
4600 					    ioff + size_diff, &token);
4601 	}
4602 
4603 	/* shift the data */
4604 	if (from_end) {
4605 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4606 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4607 			      data_end, old_data_start + new_size - data_end);
4608 	} else {
4609 		struct btrfs_disk_key disk_key;
4610 		u64 offset;
4611 
4612 		btrfs_item_key(leaf, &disk_key, slot);
4613 
4614 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4615 			unsigned long ptr;
4616 			struct btrfs_file_extent_item *fi;
4617 
4618 			fi = btrfs_item_ptr(leaf, slot,
4619 					    struct btrfs_file_extent_item);
4620 			fi = (struct btrfs_file_extent_item *)(
4621 			     (unsigned long)fi - size_diff);
4622 
4623 			if (btrfs_file_extent_type(leaf, fi) ==
4624 			    BTRFS_FILE_EXTENT_INLINE) {
4625 				ptr = btrfs_item_ptr_offset(leaf, slot);
4626 				memmove_extent_buffer(leaf, ptr,
4627 				      (unsigned long)fi,
4628 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4629 			}
4630 		}
4631 
4632 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4633 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4634 			      data_end, old_data_start - data_end);
4635 
4636 		offset = btrfs_disk_key_offset(&disk_key);
4637 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4638 		btrfs_set_item_key(leaf, &disk_key, slot);
4639 		if (slot == 0)
4640 			fixup_low_keys(fs_info, path, &disk_key, 1);
4641 	}
4642 
4643 	item = btrfs_item_nr(slot);
4644 	btrfs_set_item_size(leaf, item, new_size);
4645 	btrfs_mark_buffer_dirty(leaf);
4646 
4647 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4648 		btrfs_print_leaf(fs_info, leaf);
4649 		BUG();
4650 	}
4651 }
4652 
4653 /*
4654  * make the item pointed to by the path bigger, data_size is the added size.
4655  */
4656 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4657 		       u32 data_size)
4658 {
4659 	int slot;
4660 	struct extent_buffer *leaf;
4661 	struct btrfs_item *item;
4662 	u32 nritems;
4663 	unsigned int data_end;
4664 	unsigned int old_data;
4665 	unsigned int old_size;
4666 	int i;
4667 	struct btrfs_map_token token;
4668 
4669 	btrfs_init_map_token(&token);
4670 
4671 	leaf = path->nodes[0];
4672 
4673 	nritems = btrfs_header_nritems(leaf);
4674 	data_end = leaf_data_end(fs_info, leaf);
4675 
4676 	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4677 		btrfs_print_leaf(fs_info, leaf);
4678 		BUG();
4679 	}
4680 	slot = path->slots[0];
4681 	old_data = btrfs_item_end_nr(leaf, slot);
4682 
4683 	BUG_ON(slot < 0);
4684 	if (slot >= nritems) {
4685 		btrfs_print_leaf(fs_info, leaf);
4686 		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4687 			   slot, nritems);
4688 		BUG_ON(1);
4689 	}
4690 
4691 	/*
4692 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4693 	 */
4694 	/* first correct the data pointers */
4695 	for (i = slot; i < nritems; i++) {
4696 		u32 ioff;
4697 		item = btrfs_item_nr(i);
4698 
4699 		ioff = btrfs_token_item_offset(leaf, item, &token);
4700 		btrfs_set_token_item_offset(leaf, item,
4701 					    ioff - data_size, &token);
4702 	}
4703 
4704 	/* shift the data */
4705 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4706 		      data_end - data_size, btrfs_leaf_data(leaf) +
4707 		      data_end, old_data - data_end);
4708 
4709 	data_end = old_data;
4710 	old_size = btrfs_item_size_nr(leaf, slot);
4711 	item = btrfs_item_nr(slot);
4712 	btrfs_set_item_size(leaf, item, old_size + data_size);
4713 	btrfs_mark_buffer_dirty(leaf);
4714 
4715 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4716 		btrfs_print_leaf(fs_info, leaf);
4717 		BUG();
4718 	}
4719 }
4720 
4721 /*
4722  * this is a helper for btrfs_insert_empty_items, the main goal here is
4723  * to save stack depth by doing the bulk of the work in a function
4724  * that doesn't call btrfs_search_slot
4725  */
4726 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4727 			    const struct btrfs_key *cpu_key, u32 *data_size,
4728 			    u32 total_data, u32 total_size, int nr)
4729 {
4730 	struct btrfs_fs_info *fs_info = root->fs_info;
4731 	struct btrfs_item *item;
4732 	int i;
4733 	u32 nritems;
4734 	unsigned int data_end;
4735 	struct btrfs_disk_key disk_key;
4736 	struct extent_buffer *leaf;
4737 	int slot;
4738 	struct btrfs_map_token token;
4739 
4740 	if (path->slots[0] == 0) {
4741 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4742 		fixup_low_keys(fs_info, path, &disk_key, 1);
4743 	}
4744 	btrfs_unlock_up_safe(path, 1);
4745 
4746 	btrfs_init_map_token(&token);
4747 
4748 	leaf = path->nodes[0];
4749 	slot = path->slots[0];
4750 
4751 	nritems = btrfs_header_nritems(leaf);
4752 	data_end = leaf_data_end(fs_info, leaf);
4753 
4754 	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4755 		btrfs_print_leaf(fs_info, leaf);
4756 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4757 			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4758 		BUG();
4759 	}
4760 
4761 	if (slot != nritems) {
4762 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4763 
4764 		if (old_data < data_end) {
4765 			btrfs_print_leaf(fs_info, leaf);
4766 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4767 				   slot, old_data, data_end);
4768 			BUG_ON(1);
4769 		}
4770 		/*
4771 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4772 		 */
4773 		/* first correct the data pointers */
4774 		for (i = slot; i < nritems; i++) {
4775 			u32 ioff;
4776 
4777 			item = btrfs_item_nr(i);
4778 			ioff = btrfs_token_item_offset(leaf, item, &token);
4779 			btrfs_set_token_item_offset(leaf, item,
4780 						    ioff - total_data, &token);
4781 		}
4782 		/* shift the items */
4783 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4784 			      btrfs_item_nr_offset(slot),
4785 			      (nritems - slot) * sizeof(struct btrfs_item));
4786 
4787 		/* shift the data */
4788 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4789 			      data_end - total_data, btrfs_leaf_data(leaf) +
4790 			      data_end, old_data - data_end);
4791 		data_end = old_data;
4792 	}
4793 
4794 	/* setup the item for the new data */
4795 	for (i = 0; i < nr; i++) {
4796 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4797 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4798 		item = btrfs_item_nr(slot + i);
4799 		btrfs_set_token_item_offset(leaf, item,
4800 					    data_end - data_size[i], &token);
4801 		data_end -= data_size[i];
4802 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4803 	}
4804 
4805 	btrfs_set_header_nritems(leaf, nritems + nr);
4806 	btrfs_mark_buffer_dirty(leaf);
4807 
4808 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4809 		btrfs_print_leaf(fs_info, leaf);
4810 		BUG();
4811 	}
4812 }
4813 
4814 /*
4815  * Given a key and some data, insert items into the tree.
4816  * This does all the path init required, making room in the tree if needed.
4817  */
4818 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4819 			    struct btrfs_root *root,
4820 			    struct btrfs_path *path,
4821 			    const struct btrfs_key *cpu_key, u32 *data_size,
4822 			    int nr)
4823 {
4824 	int ret = 0;
4825 	int slot;
4826 	int i;
4827 	u32 total_size = 0;
4828 	u32 total_data = 0;
4829 
4830 	for (i = 0; i < nr; i++)
4831 		total_data += data_size[i];
4832 
4833 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4834 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4835 	if (ret == 0)
4836 		return -EEXIST;
4837 	if (ret < 0)
4838 		return ret;
4839 
4840 	slot = path->slots[0];
4841 	BUG_ON(slot < 0);
4842 
4843 	setup_items_for_insert(root, path, cpu_key, data_size,
4844 			       total_data, total_size, nr);
4845 	return 0;
4846 }
4847 
4848 /*
4849  * Given a key and some data, insert an item into the tree.
4850  * This does all the path init required, making room in the tree if needed.
4851  */
4852 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4853 		      const struct btrfs_key *cpu_key, void *data,
4854 		      u32 data_size)
4855 {
4856 	int ret = 0;
4857 	struct btrfs_path *path;
4858 	struct extent_buffer *leaf;
4859 	unsigned long ptr;
4860 
4861 	path = btrfs_alloc_path();
4862 	if (!path)
4863 		return -ENOMEM;
4864 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4865 	if (!ret) {
4866 		leaf = path->nodes[0];
4867 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4868 		write_extent_buffer(leaf, data, ptr, data_size);
4869 		btrfs_mark_buffer_dirty(leaf);
4870 	}
4871 	btrfs_free_path(path);
4872 	return ret;
4873 }
4874 
4875 /*
4876  * delete the pointer from a given node.
4877  *
4878  * the tree should have been previously balanced so the deletion does not
4879  * empty a node.
4880  */
4881 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4882 		    int level, int slot)
4883 {
4884 	struct btrfs_fs_info *fs_info = root->fs_info;
4885 	struct extent_buffer *parent = path->nodes[level];
4886 	u32 nritems;
4887 	int ret;
4888 
4889 	nritems = btrfs_header_nritems(parent);
4890 	if (slot != nritems - 1) {
4891 		if (level)
4892 			tree_mod_log_eb_move(fs_info, parent, slot,
4893 					     slot + 1, nritems - slot - 1);
4894 		memmove_extent_buffer(parent,
4895 			      btrfs_node_key_ptr_offset(slot),
4896 			      btrfs_node_key_ptr_offset(slot + 1),
4897 			      sizeof(struct btrfs_key_ptr) *
4898 			      (nritems - slot - 1));
4899 	} else if (level) {
4900 		ret = tree_mod_log_insert_key(fs_info, parent, slot,
4901 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4902 		BUG_ON(ret < 0);
4903 	}
4904 
4905 	nritems--;
4906 	btrfs_set_header_nritems(parent, nritems);
4907 	if (nritems == 0 && parent == root->node) {
4908 		BUG_ON(btrfs_header_level(root->node) != 1);
4909 		/* just turn the root into a leaf and break */
4910 		btrfs_set_header_level(root->node, 0);
4911 	} else if (slot == 0) {
4912 		struct btrfs_disk_key disk_key;
4913 
4914 		btrfs_node_key(parent, &disk_key, 0);
4915 		fixup_low_keys(fs_info, path, &disk_key, level + 1);
4916 	}
4917 	btrfs_mark_buffer_dirty(parent);
4918 }
4919 
4920 /*
4921  * a helper function to delete the leaf pointed to by path->slots[1] and
4922  * path->nodes[1].
4923  *
4924  * This deletes the pointer in path->nodes[1] and frees the leaf
4925  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4926  *
4927  * The path must have already been setup for deleting the leaf, including
4928  * all the proper balancing.  path->nodes[1] must be locked.
4929  */
4930 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4931 				    struct btrfs_root *root,
4932 				    struct btrfs_path *path,
4933 				    struct extent_buffer *leaf)
4934 {
4935 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4936 	del_ptr(root, path, 1, path->slots[1]);
4937 
4938 	/*
4939 	 * btrfs_free_extent is expensive, we want to make sure we
4940 	 * aren't holding any locks when we call it
4941 	 */
4942 	btrfs_unlock_up_safe(path, 0);
4943 
4944 	root_sub_used(root, leaf->len);
4945 
4946 	extent_buffer_get(leaf);
4947 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4948 	free_extent_buffer_stale(leaf);
4949 }
4950 /*
4951  * delete the item at the leaf level in path.  If that empties
4952  * the leaf, remove it from the tree
4953  */
4954 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4955 		    struct btrfs_path *path, int slot, int nr)
4956 {
4957 	struct btrfs_fs_info *fs_info = root->fs_info;
4958 	struct extent_buffer *leaf;
4959 	struct btrfs_item *item;
4960 	u32 last_off;
4961 	u32 dsize = 0;
4962 	int ret = 0;
4963 	int wret;
4964 	int i;
4965 	u32 nritems;
4966 	struct btrfs_map_token token;
4967 
4968 	btrfs_init_map_token(&token);
4969 
4970 	leaf = path->nodes[0];
4971 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4972 
4973 	for (i = 0; i < nr; i++)
4974 		dsize += btrfs_item_size_nr(leaf, slot + i);
4975 
4976 	nritems = btrfs_header_nritems(leaf);
4977 
4978 	if (slot + nr != nritems) {
4979 		int data_end = leaf_data_end(fs_info, leaf);
4980 
4981 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4982 			      data_end + dsize,
4983 			      btrfs_leaf_data(leaf) + data_end,
4984 			      last_off - data_end);
4985 
4986 		for (i = slot + nr; i < nritems; i++) {
4987 			u32 ioff;
4988 
4989 			item = btrfs_item_nr(i);
4990 			ioff = btrfs_token_item_offset(leaf, item, &token);
4991 			btrfs_set_token_item_offset(leaf, item,
4992 						    ioff + dsize, &token);
4993 		}
4994 
4995 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4996 			      btrfs_item_nr_offset(slot + nr),
4997 			      sizeof(struct btrfs_item) *
4998 			      (nritems - slot - nr));
4999 	}
5000 	btrfs_set_header_nritems(leaf, nritems - nr);
5001 	nritems -= nr;
5002 
5003 	/* delete the leaf if we've emptied it */
5004 	if (nritems == 0) {
5005 		if (leaf == root->node) {
5006 			btrfs_set_header_level(leaf, 0);
5007 		} else {
5008 			btrfs_set_path_blocking(path);
5009 			clean_tree_block(fs_info, leaf);
5010 			btrfs_del_leaf(trans, root, path, leaf);
5011 		}
5012 	} else {
5013 		int used = leaf_space_used(leaf, 0, nritems);
5014 		if (slot == 0) {
5015 			struct btrfs_disk_key disk_key;
5016 
5017 			btrfs_item_key(leaf, &disk_key, 0);
5018 			fixup_low_keys(fs_info, path, &disk_key, 1);
5019 		}
5020 
5021 		/* delete the leaf if it is mostly empty */
5022 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5023 			/* push_leaf_left fixes the path.
5024 			 * make sure the path still points to our leaf
5025 			 * for possible call to del_ptr below
5026 			 */
5027 			slot = path->slots[1];
5028 			extent_buffer_get(leaf);
5029 
5030 			btrfs_set_path_blocking(path);
5031 			wret = push_leaf_left(trans, root, path, 1, 1,
5032 					      1, (u32)-1);
5033 			if (wret < 0 && wret != -ENOSPC)
5034 				ret = wret;
5035 
5036 			if (path->nodes[0] == leaf &&
5037 			    btrfs_header_nritems(leaf)) {
5038 				wret = push_leaf_right(trans, root, path, 1,
5039 						       1, 1, 0);
5040 				if (wret < 0 && wret != -ENOSPC)
5041 					ret = wret;
5042 			}
5043 
5044 			if (btrfs_header_nritems(leaf) == 0) {
5045 				path->slots[1] = slot;
5046 				btrfs_del_leaf(trans, root, path, leaf);
5047 				free_extent_buffer(leaf);
5048 				ret = 0;
5049 			} else {
5050 				/* if we're still in the path, make sure
5051 				 * we're dirty.  Otherwise, one of the
5052 				 * push_leaf functions must have already
5053 				 * dirtied this buffer
5054 				 */
5055 				if (path->nodes[0] == leaf)
5056 					btrfs_mark_buffer_dirty(leaf);
5057 				free_extent_buffer(leaf);
5058 			}
5059 		} else {
5060 			btrfs_mark_buffer_dirty(leaf);
5061 		}
5062 	}
5063 	return ret;
5064 }
5065 
5066 /*
5067  * search the tree again to find a leaf with lesser keys
5068  * returns 0 if it found something or 1 if there are no lesser leaves.
5069  * returns < 0 on io errors.
5070  *
5071  * This may release the path, and so you may lose any locks held at the
5072  * time you call it.
5073  */
5074 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5075 {
5076 	struct btrfs_key key;
5077 	struct btrfs_disk_key found_key;
5078 	int ret;
5079 
5080 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5081 
5082 	if (key.offset > 0) {
5083 		key.offset--;
5084 	} else if (key.type > 0) {
5085 		key.type--;
5086 		key.offset = (u64)-1;
5087 	} else if (key.objectid > 0) {
5088 		key.objectid--;
5089 		key.type = (u8)-1;
5090 		key.offset = (u64)-1;
5091 	} else {
5092 		return 1;
5093 	}
5094 
5095 	btrfs_release_path(path);
5096 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5097 	if (ret < 0)
5098 		return ret;
5099 	btrfs_item_key(path->nodes[0], &found_key, 0);
5100 	ret = comp_keys(&found_key, &key);
5101 	/*
5102 	 * We might have had an item with the previous key in the tree right
5103 	 * before we released our path. And after we released our path, that
5104 	 * item might have been pushed to the first slot (0) of the leaf we
5105 	 * were holding due to a tree balance. Alternatively, an item with the
5106 	 * previous key can exist as the only element of a leaf (big fat item).
5107 	 * Therefore account for these 2 cases, so that our callers (like
5108 	 * btrfs_previous_item) don't miss an existing item with a key matching
5109 	 * the previous key we computed above.
5110 	 */
5111 	if (ret <= 0)
5112 		return 0;
5113 	return 1;
5114 }
5115 
5116 /*
5117  * A helper function to walk down the tree starting at min_key, and looking
5118  * for nodes or leaves that are have a minimum transaction id.
5119  * This is used by the btree defrag code, and tree logging
5120  *
5121  * This does not cow, but it does stuff the starting key it finds back
5122  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5123  * key and get a writable path.
5124  *
5125  * This does lock as it descends, and path->keep_locks should be set
5126  * to 1 by the caller.
5127  *
5128  * This honors path->lowest_level to prevent descent past a given level
5129  * of the tree.
5130  *
5131  * min_trans indicates the oldest transaction that you are interested
5132  * in walking through.  Any nodes or leaves older than min_trans are
5133  * skipped over (without reading them).
5134  *
5135  * returns zero if something useful was found, < 0 on error and 1 if there
5136  * was nothing in the tree that matched the search criteria.
5137  */
5138 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5139 			 struct btrfs_path *path,
5140 			 u64 min_trans)
5141 {
5142 	struct btrfs_fs_info *fs_info = root->fs_info;
5143 	struct extent_buffer *cur;
5144 	struct btrfs_key found_key;
5145 	int slot;
5146 	int sret;
5147 	u32 nritems;
5148 	int level;
5149 	int ret = 1;
5150 	int keep_locks = path->keep_locks;
5151 
5152 	path->keep_locks = 1;
5153 again:
5154 	cur = btrfs_read_lock_root_node(root);
5155 	level = btrfs_header_level(cur);
5156 	WARN_ON(path->nodes[level]);
5157 	path->nodes[level] = cur;
5158 	path->locks[level] = BTRFS_READ_LOCK;
5159 
5160 	if (btrfs_header_generation(cur) < min_trans) {
5161 		ret = 1;
5162 		goto out;
5163 	}
5164 	while (1) {
5165 		nritems = btrfs_header_nritems(cur);
5166 		level = btrfs_header_level(cur);
5167 		sret = bin_search(cur, min_key, level, &slot);
5168 
5169 		/* at the lowest level, we're done, setup the path and exit */
5170 		if (level == path->lowest_level) {
5171 			if (slot >= nritems)
5172 				goto find_next_key;
5173 			ret = 0;
5174 			path->slots[level] = slot;
5175 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5176 			goto out;
5177 		}
5178 		if (sret && slot > 0)
5179 			slot--;
5180 		/*
5181 		 * check this node pointer against the min_trans parameters.
5182 		 * If it is too old, old, skip to the next one.
5183 		 */
5184 		while (slot < nritems) {
5185 			u64 gen;
5186 
5187 			gen = btrfs_node_ptr_generation(cur, slot);
5188 			if (gen < min_trans) {
5189 				slot++;
5190 				continue;
5191 			}
5192 			break;
5193 		}
5194 find_next_key:
5195 		/*
5196 		 * we didn't find a candidate key in this node, walk forward
5197 		 * and find another one
5198 		 */
5199 		if (slot >= nritems) {
5200 			path->slots[level] = slot;
5201 			btrfs_set_path_blocking(path);
5202 			sret = btrfs_find_next_key(root, path, min_key, level,
5203 						  min_trans);
5204 			if (sret == 0) {
5205 				btrfs_release_path(path);
5206 				goto again;
5207 			} else {
5208 				goto out;
5209 			}
5210 		}
5211 		/* save our key for returning back */
5212 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5213 		path->slots[level] = slot;
5214 		if (level == path->lowest_level) {
5215 			ret = 0;
5216 			goto out;
5217 		}
5218 		btrfs_set_path_blocking(path);
5219 		cur = read_node_slot(fs_info, cur, slot);
5220 		if (IS_ERR(cur)) {
5221 			ret = PTR_ERR(cur);
5222 			goto out;
5223 		}
5224 
5225 		btrfs_tree_read_lock(cur);
5226 
5227 		path->locks[level - 1] = BTRFS_READ_LOCK;
5228 		path->nodes[level - 1] = cur;
5229 		unlock_up(path, level, 1, 0, NULL);
5230 		btrfs_clear_path_blocking(path, NULL, 0);
5231 	}
5232 out:
5233 	path->keep_locks = keep_locks;
5234 	if (ret == 0) {
5235 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5236 		btrfs_set_path_blocking(path);
5237 		memcpy(min_key, &found_key, sizeof(found_key));
5238 	}
5239 	return ret;
5240 }
5241 
5242 static int tree_move_down(struct btrfs_fs_info *fs_info,
5243 			   struct btrfs_path *path,
5244 			   int *level)
5245 {
5246 	struct extent_buffer *eb;
5247 
5248 	BUG_ON(*level == 0);
5249 	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5250 	if (IS_ERR(eb))
5251 		return PTR_ERR(eb);
5252 
5253 	path->nodes[*level - 1] = eb;
5254 	path->slots[*level - 1] = 0;
5255 	(*level)--;
5256 	return 0;
5257 }
5258 
5259 static int tree_move_next_or_upnext(struct btrfs_path *path,
5260 				    int *level, int root_level)
5261 {
5262 	int ret = 0;
5263 	int nritems;
5264 	nritems = btrfs_header_nritems(path->nodes[*level]);
5265 
5266 	path->slots[*level]++;
5267 
5268 	while (path->slots[*level] >= nritems) {
5269 		if (*level == root_level)
5270 			return -1;
5271 
5272 		/* move upnext */
5273 		path->slots[*level] = 0;
5274 		free_extent_buffer(path->nodes[*level]);
5275 		path->nodes[*level] = NULL;
5276 		(*level)++;
5277 		path->slots[*level]++;
5278 
5279 		nritems = btrfs_header_nritems(path->nodes[*level]);
5280 		ret = 1;
5281 	}
5282 	return ret;
5283 }
5284 
5285 /*
5286  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5287  * or down.
5288  */
5289 static int tree_advance(struct btrfs_fs_info *fs_info,
5290 			struct btrfs_path *path,
5291 			int *level, int root_level,
5292 			int allow_down,
5293 			struct btrfs_key *key)
5294 {
5295 	int ret;
5296 
5297 	if (*level == 0 || !allow_down) {
5298 		ret = tree_move_next_or_upnext(path, level, root_level);
5299 	} else {
5300 		ret = tree_move_down(fs_info, path, level);
5301 	}
5302 	if (ret >= 0) {
5303 		if (*level == 0)
5304 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5305 					path->slots[*level]);
5306 		else
5307 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5308 					path->slots[*level]);
5309 	}
5310 	return ret;
5311 }
5312 
5313 static int tree_compare_item(struct btrfs_path *left_path,
5314 			     struct btrfs_path *right_path,
5315 			     char *tmp_buf)
5316 {
5317 	int cmp;
5318 	int len1, len2;
5319 	unsigned long off1, off2;
5320 
5321 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5322 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5323 	if (len1 != len2)
5324 		return 1;
5325 
5326 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5327 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5328 				right_path->slots[0]);
5329 
5330 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5331 
5332 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5333 	if (cmp)
5334 		return 1;
5335 	return 0;
5336 }
5337 
5338 #define ADVANCE 1
5339 #define ADVANCE_ONLY_NEXT -1
5340 
5341 /*
5342  * This function compares two trees and calls the provided callback for
5343  * every changed/new/deleted item it finds.
5344  * If shared tree blocks are encountered, whole subtrees are skipped, making
5345  * the compare pretty fast on snapshotted subvolumes.
5346  *
5347  * This currently works on commit roots only. As commit roots are read only,
5348  * we don't do any locking. The commit roots are protected with transactions.
5349  * Transactions are ended and rejoined when a commit is tried in between.
5350  *
5351  * This function checks for modifications done to the trees while comparing.
5352  * If it detects a change, it aborts immediately.
5353  */
5354 int btrfs_compare_trees(struct btrfs_root *left_root,
5355 			struct btrfs_root *right_root,
5356 			btrfs_changed_cb_t changed_cb, void *ctx)
5357 {
5358 	struct btrfs_fs_info *fs_info = left_root->fs_info;
5359 	int ret;
5360 	int cmp;
5361 	struct btrfs_path *left_path = NULL;
5362 	struct btrfs_path *right_path = NULL;
5363 	struct btrfs_key left_key;
5364 	struct btrfs_key right_key;
5365 	char *tmp_buf = NULL;
5366 	int left_root_level;
5367 	int right_root_level;
5368 	int left_level;
5369 	int right_level;
5370 	int left_end_reached;
5371 	int right_end_reached;
5372 	int advance_left;
5373 	int advance_right;
5374 	u64 left_blockptr;
5375 	u64 right_blockptr;
5376 	u64 left_gen;
5377 	u64 right_gen;
5378 
5379 	left_path = btrfs_alloc_path();
5380 	if (!left_path) {
5381 		ret = -ENOMEM;
5382 		goto out;
5383 	}
5384 	right_path = btrfs_alloc_path();
5385 	if (!right_path) {
5386 		ret = -ENOMEM;
5387 		goto out;
5388 	}
5389 
5390 	tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN);
5391 	if (!tmp_buf) {
5392 		tmp_buf = vmalloc(fs_info->nodesize);
5393 		if (!tmp_buf) {
5394 			ret = -ENOMEM;
5395 			goto out;
5396 		}
5397 	}
5398 
5399 	left_path->search_commit_root = 1;
5400 	left_path->skip_locking = 1;
5401 	right_path->search_commit_root = 1;
5402 	right_path->skip_locking = 1;
5403 
5404 	/*
5405 	 * Strategy: Go to the first items of both trees. Then do
5406 	 *
5407 	 * If both trees are at level 0
5408 	 *   Compare keys of current items
5409 	 *     If left < right treat left item as new, advance left tree
5410 	 *       and repeat
5411 	 *     If left > right treat right item as deleted, advance right tree
5412 	 *       and repeat
5413 	 *     If left == right do deep compare of items, treat as changed if
5414 	 *       needed, advance both trees and repeat
5415 	 * If both trees are at the same level but not at level 0
5416 	 *   Compare keys of current nodes/leafs
5417 	 *     If left < right advance left tree and repeat
5418 	 *     If left > right advance right tree and repeat
5419 	 *     If left == right compare blockptrs of the next nodes/leafs
5420 	 *       If they match advance both trees but stay at the same level
5421 	 *         and repeat
5422 	 *       If they don't match advance both trees while allowing to go
5423 	 *         deeper and repeat
5424 	 * If tree levels are different
5425 	 *   Advance the tree that needs it and repeat
5426 	 *
5427 	 * Advancing a tree means:
5428 	 *   If we are at level 0, try to go to the next slot. If that's not
5429 	 *   possible, go one level up and repeat. Stop when we found a level
5430 	 *   where we could go to the next slot. We may at this point be on a
5431 	 *   node or a leaf.
5432 	 *
5433 	 *   If we are not at level 0 and not on shared tree blocks, go one
5434 	 *   level deeper.
5435 	 *
5436 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5437 	 *   the right if possible or go up and right.
5438 	 */
5439 
5440 	down_read(&fs_info->commit_root_sem);
5441 	left_level = btrfs_header_level(left_root->commit_root);
5442 	left_root_level = left_level;
5443 	left_path->nodes[left_level] = left_root->commit_root;
5444 	extent_buffer_get(left_path->nodes[left_level]);
5445 
5446 	right_level = btrfs_header_level(right_root->commit_root);
5447 	right_root_level = right_level;
5448 	right_path->nodes[right_level] = right_root->commit_root;
5449 	extent_buffer_get(right_path->nodes[right_level]);
5450 	up_read(&fs_info->commit_root_sem);
5451 
5452 	if (left_level == 0)
5453 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5454 				&left_key, left_path->slots[left_level]);
5455 	else
5456 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5457 				&left_key, left_path->slots[left_level]);
5458 	if (right_level == 0)
5459 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5460 				&right_key, right_path->slots[right_level]);
5461 	else
5462 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5463 				&right_key, right_path->slots[right_level]);
5464 
5465 	left_end_reached = right_end_reached = 0;
5466 	advance_left = advance_right = 0;
5467 
5468 	while (1) {
5469 		if (advance_left && !left_end_reached) {
5470 			ret = tree_advance(fs_info, left_path, &left_level,
5471 					left_root_level,
5472 					advance_left != ADVANCE_ONLY_NEXT,
5473 					&left_key);
5474 			if (ret == -1)
5475 				left_end_reached = ADVANCE;
5476 			else if (ret < 0)
5477 				goto out;
5478 			advance_left = 0;
5479 		}
5480 		if (advance_right && !right_end_reached) {
5481 			ret = tree_advance(fs_info, right_path, &right_level,
5482 					right_root_level,
5483 					advance_right != ADVANCE_ONLY_NEXT,
5484 					&right_key);
5485 			if (ret == -1)
5486 				right_end_reached = ADVANCE;
5487 			else if (ret < 0)
5488 				goto out;
5489 			advance_right = 0;
5490 		}
5491 
5492 		if (left_end_reached && right_end_reached) {
5493 			ret = 0;
5494 			goto out;
5495 		} else if (left_end_reached) {
5496 			if (right_level == 0) {
5497 				ret = changed_cb(left_root, right_root,
5498 						left_path, right_path,
5499 						&right_key,
5500 						BTRFS_COMPARE_TREE_DELETED,
5501 						ctx);
5502 				if (ret < 0)
5503 					goto out;
5504 			}
5505 			advance_right = ADVANCE;
5506 			continue;
5507 		} else if (right_end_reached) {
5508 			if (left_level == 0) {
5509 				ret = changed_cb(left_root, right_root,
5510 						left_path, right_path,
5511 						&left_key,
5512 						BTRFS_COMPARE_TREE_NEW,
5513 						ctx);
5514 				if (ret < 0)
5515 					goto out;
5516 			}
5517 			advance_left = ADVANCE;
5518 			continue;
5519 		}
5520 
5521 		if (left_level == 0 && right_level == 0) {
5522 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5523 			if (cmp < 0) {
5524 				ret = changed_cb(left_root, right_root,
5525 						left_path, right_path,
5526 						&left_key,
5527 						BTRFS_COMPARE_TREE_NEW,
5528 						ctx);
5529 				if (ret < 0)
5530 					goto out;
5531 				advance_left = ADVANCE;
5532 			} else if (cmp > 0) {
5533 				ret = changed_cb(left_root, right_root,
5534 						left_path, right_path,
5535 						&right_key,
5536 						BTRFS_COMPARE_TREE_DELETED,
5537 						ctx);
5538 				if (ret < 0)
5539 					goto out;
5540 				advance_right = ADVANCE;
5541 			} else {
5542 				enum btrfs_compare_tree_result result;
5543 
5544 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5545 				ret = tree_compare_item(left_path, right_path,
5546 							tmp_buf);
5547 				if (ret)
5548 					result = BTRFS_COMPARE_TREE_CHANGED;
5549 				else
5550 					result = BTRFS_COMPARE_TREE_SAME;
5551 				ret = changed_cb(left_root, right_root,
5552 						 left_path, right_path,
5553 						 &left_key, result, ctx);
5554 				if (ret < 0)
5555 					goto out;
5556 				advance_left = ADVANCE;
5557 				advance_right = ADVANCE;
5558 			}
5559 		} else if (left_level == right_level) {
5560 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5561 			if (cmp < 0) {
5562 				advance_left = ADVANCE;
5563 			} else if (cmp > 0) {
5564 				advance_right = ADVANCE;
5565 			} else {
5566 				left_blockptr = btrfs_node_blockptr(
5567 						left_path->nodes[left_level],
5568 						left_path->slots[left_level]);
5569 				right_blockptr = btrfs_node_blockptr(
5570 						right_path->nodes[right_level],
5571 						right_path->slots[right_level]);
5572 				left_gen = btrfs_node_ptr_generation(
5573 						left_path->nodes[left_level],
5574 						left_path->slots[left_level]);
5575 				right_gen = btrfs_node_ptr_generation(
5576 						right_path->nodes[right_level],
5577 						right_path->slots[right_level]);
5578 				if (left_blockptr == right_blockptr &&
5579 				    left_gen == right_gen) {
5580 					/*
5581 					 * As we're on a shared block, don't
5582 					 * allow to go deeper.
5583 					 */
5584 					advance_left = ADVANCE_ONLY_NEXT;
5585 					advance_right = ADVANCE_ONLY_NEXT;
5586 				} else {
5587 					advance_left = ADVANCE;
5588 					advance_right = ADVANCE;
5589 				}
5590 			}
5591 		} else if (left_level < right_level) {
5592 			advance_right = ADVANCE;
5593 		} else {
5594 			advance_left = ADVANCE;
5595 		}
5596 	}
5597 
5598 out:
5599 	btrfs_free_path(left_path);
5600 	btrfs_free_path(right_path);
5601 	kvfree(tmp_buf);
5602 	return ret;
5603 }
5604 
5605 /*
5606  * this is similar to btrfs_next_leaf, but does not try to preserve
5607  * and fixup the path.  It looks for and returns the next key in the
5608  * tree based on the current path and the min_trans parameters.
5609  *
5610  * 0 is returned if another key is found, < 0 if there are any errors
5611  * and 1 is returned if there are no higher keys in the tree
5612  *
5613  * path->keep_locks should be set to 1 on the search made before
5614  * calling this function.
5615  */
5616 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5617 			struct btrfs_key *key, int level, u64 min_trans)
5618 {
5619 	int slot;
5620 	struct extent_buffer *c;
5621 
5622 	WARN_ON(!path->keep_locks);
5623 	while (level < BTRFS_MAX_LEVEL) {
5624 		if (!path->nodes[level])
5625 			return 1;
5626 
5627 		slot = path->slots[level] + 1;
5628 		c = path->nodes[level];
5629 next:
5630 		if (slot >= btrfs_header_nritems(c)) {
5631 			int ret;
5632 			int orig_lowest;
5633 			struct btrfs_key cur_key;
5634 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5635 			    !path->nodes[level + 1])
5636 				return 1;
5637 
5638 			if (path->locks[level + 1]) {
5639 				level++;
5640 				continue;
5641 			}
5642 
5643 			slot = btrfs_header_nritems(c) - 1;
5644 			if (level == 0)
5645 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5646 			else
5647 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5648 
5649 			orig_lowest = path->lowest_level;
5650 			btrfs_release_path(path);
5651 			path->lowest_level = level;
5652 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5653 						0, 0);
5654 			path->lowest_level = orig_lowest;
5655 			if (ret < 0)
5656 				return ret;
5657 
5658 			c = path->nodes[level];
5659 			slot = path->slots[level];
5660 			if (ret == 0)
5661 				slot++;
5662 			goto next;
5663 		}
5664 
5665 		if (level == 0)
5666 			btrfs_item_key_to_cpu(c, key, slot);
5667 		else {
5668 			u64 gen = btrfs_node_ptr_generation(c, slot);
5669 
5670 			if (gen < min_trans) {
5671 				slot++;
5672 				goto next;
5673 			}
5674 			btrfs_node_key_to_cpu(c, key, slot);
5675 		}
5676 		return 0;
5677 	}
5678 	return 1;
5679 }
5680 
5681 /*
5682  * search the tree again to find a leaf with greater keys
5683  * returns 0 if it found something or 1 if there are no greater leaves.
5684  * returns < 0 on io errors.
5685  */
5686 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5687 {
5688 	return btrfs_next_old_leaf(root, path, 0);
5689 }
5690 
5691 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5692 			u64 time_seq)
5693 {
5694 	int slot;
5695 	int level;
5696 	struct extent_buffer *c;
5697 	struct extent_buffer *next;
5698 	struct btrfs_key key;
5699 	u32 nritems;
5700 	int ret;
5701 	int old_spinning = path->leave_spinning;
5702 	int next_rw_lock = 0;
5703 
5704 	nritems = btrfs_header_nritems(path->nodes[0]);
5705 	if (nritems == 0)
5706 		return 1;
5707 
5708 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5709 again:
5710 	level = 1;
5711 	next = NULL;
5712 	next_rw_lock = 0;
5713 	btrfs_release_path(path);
5714 
5715 	path->keep_locks = 1;
5716 	path->leave_spinning = 1;
5717 
5718 	if (time_seq)
5719 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5720 	else
5721 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5722 	path->keep_locks = 0;
5723 
5724 	if (ret < 0)
5725 		return ret;
5726 
5727 	nritems = btrfs_header_nritems(path->nodes[0]);
5728 	/*
5729 	 * by releasing the path above we dropped all our locks.  A balance
5730 	 * could have added more items next to the key that used to be
5731 	 * at the very end of the block.  So, check again here and
5732 	 * advance the path if there are now more items available.
5733 	 */
5734 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5735 		if (ret == 0)
5736 			path->slots[0]++;
5737 		ret = 0;
5738 		goto done;
5739 	}
5740 	/*
5741 	 * So the above check misses one case:
5742 	 * - after releasing the path above, someone has removed the item that
5743 	 *   used to be at the very end of the block, and balance between leafs
5744 	 *   gets another one with bigger key.offset to replace it.
5745 	 *
5746 	 * This one should be returned as well, or we can get leaf corruption
5747 	 * later(esp. in __btrfs_drop_extents()).
5748 	 *
5749 	 * And a bit more explanation about this check,
5750 	 * with ret > 0, the key isn't found, the path points to the slot
5751 	 * where it should be inserted, so the path->slots[0] item must be the
5752 	 * bigger one.
5753 	 */
5754 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5755 		ret = 0;
5756 		goto done;
5757 	}
5758 
5759 	while (level < BTRFS_MAX_LEVEL) {
5760 		if (!path->nodes[level]) {
5761 			ret = 1;
5762 			goto done;
5763 		}
5764 
5765 		slot = path->slots[level] + 1;
5766 		c = path->nodes[level];
5767 		if (slot >= btrfs_header_nritems(c)) {
5768 			level++;
5769 			if (level == BTRFS_MAX_LEVEL) {
5770 				ret = 1;
5771 				goto done;
5772 			}
5773 			continue;
5774 		}
5775 
5776 		if (next) {
5777 			btrfs_tree_unlock_rw(next, next_rw_lock);
5778 			free_extent_buffer(next);
5779 		}
5780 
5781 		next = c;
5782 		next_rw_lock = path->locks[level];
5783 		ret = read_block_for_search(root, path, &next, level,
5784 					    slot, &key);
5785 		if (ret == -EAGAIN)
5786 			goto again;
5787 
5788 		if (ret < 0) {
5789 			btrfs_release_path(path);
5790 			goto done;
5791 		}
5792 
5793 		if (!path->skip_locking) {
5794 			ret = btrfs_try_tree_read_lock(next);
5795 			if (!ret && time_seq) {
5796 				/*
5797 				 * If we don't get the lock, we may be racing
5798 				 * with push_leaf_left, holding that lock while
5799 				 * itself waiting for the leaf we've currently
5800 				 * locked. To solve this situation, we give up
5801 				 * on our lock and cycle.
5802 				 */
5803 				free_extent_buffer(next);
5804 				btrfs_release_path(path);
5805 				cond_resched();
5806 				goto again;
5807 			}
5808 			if (!ret) {
5809 				btrfs_set_path_blocking(path);
5810 				btrfs_tree_read_lock(next);
5811 				btrfs_clear_path_blocking(path, next,
5812 							  BTRFS_READ_LOCK);
5813 			}
5814 			next_rw_lock = BTRFS_READ_LOCK;
5815 		}
5816 		break;
5817 	}
5818 	path->slots[level] = slot;
5819 	while (1) {
5820 		level--;
5821 		c = path->nodes[level];
5822 		if (path->locks[level])
5823 			btrfs_tree_unlock_rw(c, path->locks[level]);
5824 
5825 		free_extent_buffer(c);
5826 		path->nodes[level] = next;
5827 		path->slots[level] = 0;
5828 		if (!path->skip_locking)
5829 			path->locks[level] = next_rw_lock;
5830 		if (!level)
5831 			break;
5832 
5833 		ret = read_block_for_search(root, path, &next, level,
5834 					    0, &key);
5835 		if (ret == -EAGAIN)
5836 			goto again;
5837 
5838 		if (ret < 0) {
5839 			btrfs_release_path(path);
5840 			goto done;
5841 		}
5842 
5843 		if (!path->skip_locking) {
5844 			ret = btrfs_try_tree_read_lock(next);
5845 			if (!ret) {
5846 				btrfs_set_path_blocking(path);
5847 				btrfs_tree_read_lock(next);
5848 				btrfs_clear_path_blocking(path, next,
5849 							  BTRFS_READ_LOCK);
5850 			}
5851 			next_rw_lock = BTRFS_READ_LOCK;
5852 		}
5853 	}
5854 	ret = 0;
5855 done:
5856 	unlock_up(path, 0, 1, 0, NULL);
5857 	path->leave_spinning = old_spinning;
5858 	if (!old_spinning)
5859 		btrfs_set_path_blocking(path);
5860 
5861 	return ret;
5862 }
5863 
5864 /*
5865  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5866  * searching until it gets past min_objectid or finds an item of 'type'
5867  *
5868  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5869  */
5870 int btrfs_previous_item(struct btrfs_root *root,
5871 			struct btrfs_path *path, u64 min_objectid,
5872 			int type)
5873 {
5874 	struct btrfs_key found_key;
5875 	struct extent_buffer *leaf;
5876 	u32 nritems;
5877 	int ret;
5878 
5879 	while (1) {
5880 		if (path->slots[0] == 0) {
5881 			btrfs_set_path_blocking(path);
5882 			ret = btrfs_prev_leaf(root, path);
5883 			if (ret != 0)
5884 				return ret;
5885 		} else {
5886 			path->slots[0]--;
5887 		}
5888 		leaf = path->nodes[0];
5889 		nritems = btrfs_header_nritems(leaf);
5890 		if (nritems == 0)
5891 			return 1;
5892 		if (path->slots[0] == nritems)
5893 			path->slots[0]--;
5894 
5895 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5896 		if (found_key.objectid < min_objectid)
5897 			break;
5898 		if (found_key.type == type)
5899 			return 0;
5900 		if (found_key.objectid == min_objectid &&
5901 		    found_key.type < type)
5902 			break;
5903 	}
5904 	return 1;
5905 }
5906 
5907 /*
5908  * search in extent tree to find a previous Metadata/Data extent item with
5909  * min objecitd.
5910  *
5911  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5912  */
5913 int btrfs_previous_extent_item(struct btrfs_root *root,
5914 			struct btrfs_path *path, u64 min_objectid)
5915 {
5916 	struct btrfs_key found_key;
5917 	struct extent_buffer *leaf;
5918 	u32 nritems;
5919 	int ret;
5920 
5921 	while (1) {
5922 		if (path->slots[0] == 0) {
5923 			btrfs_set_path_blocking(path);
5924 			ret = btrfs_prev_leaf(root, path);
5925 			if (ret != 0)
5926 				return ret;
5927 		} else {
5928 			path->slots[0]--;
5929 		}
5930 		leaf = path->nodes[0];
5931 		nritems = btrfs_header_nritems(leaf);
5932 		if (nritems == 0)
5933 			return 1;
5934 		if (path->slots[0] == nritems)
5935 			path->slots[0]--;
5936 
5937 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5938 		if (found_key.objectid < min_objectid)
5939 			break;
5940 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5941 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5942 			return 0;
5943 		if (found_key.objectid == min_objectid &&
5944 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5945 			break;
5946 	}
5947 	return 1;
5948 }
5949