1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include <linux/vmalloc.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 32 const struct btrfs_key *ins_key, struct btrfs_path *path, 33 int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct btrfs_fs_info *fs_info, 36 struct extent_buffer *dst, 37 struct extent_buffer *src, int empty); 38 static int balance_node_right(struct btrfs_trans_handle *trans, 39 struct btrfs_fs_info *fs_info, 40 struct extent_buffer *dst_buf, 41 struct extent_buffer *src_buf); 42 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 43 int level, int slot); 44 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 45 struct extent_buffer *eb); 46 47 struct btrfs_path *btrfs_alloc_path(void) 48 { 49 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 if (held) { 84 btrfs_set_lock_blocking_rw(held, held_rw); 85 if (held_rw == BTRFS_WRITE_LOCK) 86 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 87 else if (held_rw == BTRFS_READ_LOCK) 88 held_rw = BTRFS_READ_LOCK_BLOCKING; 89 } 90 btrfs_set_path_blocking(p); 91 92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 93 if (p->nodes[i] && p->locks[i]) { 94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 96 p->locks[i] = BTRFS_WRITE_LOCK; 97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 98 p->locks[i] = BTRFS_READ_LOCK; 99 } 100 } 101 102 if (held) 103 btrfs_clear_lock_blocking_rw(held, held_rw); 104 } 105 106 /* this also releases the path */ 107 void btrfs_free_path(struct btrfs_path *p) 108 { 109 if (!p) 110 return; 111 btrfs_release_path(p); 112 kmem_cache_free(btrfs_path_cachep, p); 113 } 114 115 /* 116 * path release drops references on the extent buffers in the path 117 * and it drops any locks held by this path 118 * 119 * It is safe to call this on paths that no locks or extent buffers held. 120 */ 121 noinline void btrfs_release_path(struct btrfs_path *p) 122 { 123 int i; 124 125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 126 p->slots[i] = 0; 127 if (!p->nodes[i]) 128 continue; 129 if (p->locks[i]) { 130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 131 p->locks[i] = 0; 132 } 133 free_extent_buffer(p->nodes[i]); 134 p->nodes[i] = NULL; 135 } 136 } 137 138 /* 139 * safely gets a reference on the root node of a tree. A lock 140 * is not taken, so a concurrent writer may put a different node 141 * at the root of the tree. See btrfs_lock_root_node for the 142 * looping required. 143 * 144 * The extent buffer returned by this has a reference taken, so 145 * it won't disappear. It may stop being the root of the tree 146 * at any time because there are no locks held. 147 */ 148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 149 { 150 struct extent_buffer *eb; 151 152 while (1) { 153 rcu_read_lock(); 154 eb = rcu_dereference(root->node); 155 156 /* 157 * RCU really hurts here, we could free up the root node because 158 * it was COWed but we may not get the new root node yet so do 159 * the inc_not_zero dance and if it doesn't work then 160 * synchronize_rcu and try again. 161 */ 162 if (atomic_inc_not_zero(&eb->refs)) { 163 rcu_read_unlock(); 164 break; 165 } 166 rcu_read_unlock(); 167 synchronize_rcu(); 168 } 169 return eb; 170 } 171 172 /* loop around taking references on and locking the root node of the 173 * tree until you end up with a lock on the root. A locked buffer 174 * is returned, with a reference held. 175 */ 176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 177 { 178 struct extent_buffer *eb; 179 180 while (1) { 181 eb = btrfs_root_node(root); 182 btrfs_tree_lock(eb); 183 if (eb == root->node) 184 break; 185 btrfs_tree_unlock(eb); 186 free_extent_buffer(eb); 187 } 188 return eb; 189 } 190 191 /* loop around taking references on and locking the root node of the 192 * tree until you end up with a lock on the root. A locked buffer 193 * is returned, with a reference held. 194 */ 195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 196 { 197 struct extent_buffer *eb; 198 199 while (1) { 200 eb = btrfs_root_node(root); 201 btrfs_tree_read_lock(eb); 202 if (eb == root->node) 203 break; 204 btrfs_tree_read_unlock(eb); 205 free_extent_buffer(eb); 206 } 207 return eb; 208 } 209 210 /* cowonly root (everything not a reference counted cow subvolume), just get 211 * put onto a simple dirty list. transaction.c walks this to make sure they 212 * get properly updated on disk. 213 */ 214 static void add_root_to_dirty_list(struct btrfs_root *root) 215 { 216 struct btrfs_fs_info *fs_info = root->fs_info; 217 218 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 219 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 220 return; 221 222 spin_lock(&fs_info->trans_lock); 223 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 224 /* Want the extent tree to be the last on the list */ 225 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 226 list_move_tail(&root->dirty_list, 227 &fs_info->dirty_cowonly_roots); 228 else 229 list_move(&root->dirty_list, 230 &fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct btrfs_fs_info *fs_info = root->fs_info; 246 struct extent_buffer *cow; 247 int ret = 0; 248 int level; 249 struct btrfs_disk_key disk_key; 250 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 252 trans->transid != fs_info->running_transaction->transid); 253 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 254 trans->transid != root->last_trans); 255 256 level = btrfs_header_level(buf); 257 if (level == 0) 258 btrfs_item_key(buf, &disk_key, 0); 259 else 260 btrfs_node_key(buf, &disk_key, 0); 261 262 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 263 &disk_key, level, buf->start, 0); 264 if (IS_ERR(cow)) 265 return PTR_ERR(cow); 266 267 copy_extent_buffer_full(cow, buf); 268 btrfs_set_header_bytenr(cow, cow->start); 269 btrfs_set_header_generation(cow, trans->transid); 270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 272 BTRFS_HEADER_FLAG_RELOC); 273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 275 else 276 btrfs_set_header_owner(cow, new_root_objectid); 277 278 write_extent_buffer_fsid(cow, fs_info->fsid); 279 280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 282 ret = btrfs_inc_ref(trans, root, cow, 1); 283 else 284 ret = btrfs_inc_ref(trans, root, cow, 0); 285 286 if (ret) 287 return ret; 288 289 btrfs_mark_buffer_dirty(cow); 290 *cow_ret = cow; 291 return 0; 292 } 293 294 enum mod_log_op { 295 MOD_LOG_KEY_REPLACE, 296 MOD_LOG_KEY_ADD, 297 MOD_LOG_KEY_REMOVE, 298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 300 MOD_LOG_MOVE_KEYS, 301 MOD_LOG_ROOT_REPLACE, 302 }; 303 304 struct tree_mod_move { 305 int dst_slot; 306 int nr_items; 307 }; 308 309 struct tree_mod_root { 310 u64 logical; 311 u8 level; 312 }; 313 314 struct tree_mod_elem { 315 struct rb_node node; 316 u64 logical; 317 u64 seq; 318 enum mod_log_op op; 319 320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 321 int slot; 322 323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 324 u64 generation; 325 326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 327 struct btrfs_disk_key key; 328 u64 blockptr; 329 330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 331 struct tree_mod_move move; 332 333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 334 struct tree_mod_root old_root; 335 }; 336 337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 338 { 339 read_lock(&fs_info->tree_mod_log_lock); 340 } 341 342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 343 { 344 read_unlock(&fs_info->tree_mod_log_lock); 345 } 346 347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 348 { 349 write_lock(&fs_info->tree_mod_log_lock); 350 } 351 352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 353 { 354 write_unlock(&fs_info->tree_mod_log_lock); 355 } 356 357 /* 358 * Pull a new tree mod seq number for our operation. 359 */ 360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 361 { 362 return atomic64_inc_return(&fs_info->tree_mod_seq); 363 } 364 365 /* 366 * This adds a new blocker to the tree mod log's blocker list if the @elem 367 * passed does not already have a sequence number set. So when a caller expects 368 * to record tree modifications, it should ensure to set elem->seq to zero 369 * before calling btrfs_get_tree_mod_seq. 370 * Returns a fresh, unused tree log modification sequence number, even if no new 371 * blocker was added. 372 */ 373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 374 struct seq_list *elem) 375 { 376 tree_mod_log_write_lock(fs_info); 377 spin_lock(&fs_info->tree_mod_seq_lock); 378 if (!elem->seq) { 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 381 } 382 spin_unlock(&fs_info->tree_mod_seq_lock); 383 tree_mod_log_write_unlock(fs_info); 384 385 return elem->seq; 386 } 387 388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 389 struct seq_list *elem) 390 { 391 struct rb_root *tm_root; 392 struct rb_node *node; 393 struct rb_node *next; 394 struct seq_list *cur_elem; 395 struct tree_mod_elem *tm; 396 u64 min_seq = (u64)-1; 397 u64 seq_putting = elem->seq; 398 399 if (!seq_putting) 400 return; 401 402 spin_lock(&fs_info->tree_mod_seq_lock); 403 list_del(&elem->list); 404 elem->seq = 0; 405 406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 407 if (cur_elem->seq < min_seq) { 408 if (seq_putting > cur_elem->seq) { 409 /* 410 * blocker with lower sequence number exists, we 411 * cannot remove anything from the log 412 */ 413 spin_unlock(&fs_info->tree_mod_seq_lock); 414 return; 415 } 416 min_seq = cur_elem->seq; 417 } 418 } 419 spin_unlock(&fs_info->tree_mod_seq_lock); 420 421 /* 422 * anything that's lower than the lowest existing (read: blocked) 423 * sequence number can be removed from the tree. 424 */ 425 tree_mod_log_write_lock(fs_info); 426 tm_root = &fs_info->tree_mod_log; 427 for (node = rb_first(tm_root); node; node = next) { 428 next = rb_next(node); 429 tm = rb_entry(node, struct tree_mod_elem, node); 430 if (tm->seq > min_seq) 431 continue; 432 rb_erase(node, tm_root); 433 kfree(tm); 434 } 435 tree_mod_log_write_unlock(fs_info); 436 } 437 438 /* 439 * key order of the log: 440 * node/leaf start address -> sequence 441 * 442 * The 'start address' is the logical address of the *new* root node 443 * for root replace operations, or the logical address of the affected 444 * block for all other operations. 445 * 446 * Note: must be called with write lock (tree_mod_log_write_lock). 447 */ 448 static noinline int 449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 450 { 451 struct rb_root *tm_root; 452 struct rb_node **new; 453 struct rb_node *parent = NULL; 454 struct tree_mod_elem *cur; 455 456 BUG_ON(!tm); 457 458 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 459 460 tm_root = &fs_info->tree_mod_log; 461 new = &tm_root->rb_node; 462 while (*new) { 463 cur = rb_entry(*new, struct tree_mod_elem, node); 464 parent = *new; 465 if (cur->logical < tm->logical) 466 new = &((*new)->rb_left); 467 else if (cur->logical > tm->logical) 468 new = &((*new)->rb_right); 469 else if (cur->seq < tm->seq) 470 new = &((*new)->rb_left); 471 else if (cur->seq > tm->seq) 472 new = &((*new)->rb_right); 473 else 474 return -EEXIST; 475 } 476 477 rb_link_node(&tm->node, parent, new); 478 rb_insert_color(&tm->node, tm_root); 479 return 0; 480 } 481 482 /* 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold 485 * this until all tree mod log insertions are recorded in the rb tree and then 486 * call tree_mod_log_write_unlock() to release. 487 */ 488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 489 struct extent_buffer *eb) { 490 smp_mb(); 491 if (list_empty(&(fs_info)->tree_mod_seq_list)) 492 return 1; 493 if (eb && btrfs_header_level(eb) == 0) 494 return 1; 495 496 tree_mod_log_write_lock(fs_info); 497 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 498 tree_mod_log_write_unlock(fs_info); 499 return 1; 500 } 501 502 return 0; 503 } 504 505 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 506 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 507 struct extent_buffer *eb) 508 { 509 smp_mb(); 510 if (list_empty(&(fs_info)->tree_mod_seq_list)) 511 return 0; 512 if (eb && btrfs_header_level(eb) == 0) 513 return 0; 514 515 return 1; 516 } 517 518 static struct tree_mod_elem * 519 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 520 enum mod_log_op op, gfp_t flags) 521 { 522 struct tree_mod_elem *tm; 523 524 tm = kzalloc(sizeof(*tm), flags); 525 if (!tm) 526 return NULL; 527 528 tm->logical = eb->start; 529 if (op != MOD_LOG_KEY_ADD) { 530 btrfs_node_key(eb, &tm->key, slot); 531 tm->blockptr = btrfs_node_blockptr(eb, slot); 532 } 533 tm->op = op; 534 tm->slot = slot; 535 tm->generation = btrfs_node_ptr_generation(eb, slot); 536 RB_CLEAR_NODE(&tm->node); 537 538 return tm; 539 } 540 541 static noinline int 542 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 543 struct extent_buffer *eb, int slot, 544 enum mod_log_op op, gfp_t flags) 545 { 546 struct tree_mod_elem *tm; 547 int ret; 548 549 if (!tree_mod_need_log(fs_info, eb)) 550 return 0; 551 552 tm = alloc_tree_mod_elem(eb, slot, op, flags); 553 if (!tm) 554 return -ENOMEM; 555 556 if (tree_mod_dont_log(fs_info, eb)) { 557 kfree(tm); 558 return 0; 559 } 560 561 ret = __tree_mod_log_insert(fs_info, tm); 562 tree_mod_log_write_unlock(fs_info); 563 if (ret) 564 kfree(tm); 565 566 return ret; 567 } 568 569 static noinline int 570 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 571 struct extent_buffer *eb, int dst_slot, int src_slot, 572 int nr_items, gfp_t flags) 573 { 574 struct tree_mod_elem *tm = NULL; 575 struct tree_mod_elem **tm_list = NULL; 576 int ret = 0; 577 int i; 578 int locked = 0; 579 580 if (!tree_mod_need_log(fs_info, eb)) 581 return 0; 582 583 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 584 if (!tm_list) 585 return -ENOMEM; 586 587 tm = kzalloc(sizeof(*tm), flags); 588 if (!tm) { 589 ret = -ENOMEM; 590 goto free_tms; 591 } 592 593 tm->logical = eb->start; 594 tm->slot = src_slot; 595 tm->move.dst_slot = dst_slot; 596 tm->move.nr_items = nr_items; 597 tm->op = MOD_LOG_MOVE_KEYS; 598 599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 600 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 601 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 602 if (!tm_list[i]) { 603 ret = -ENOMEM; 604 goto free_tms; 605 } 606 } 607 608 if (tree_mod_dont_log(fs_info, eb)) 609 goto free_tms; 610 locked = 1; 611 612 /* 613 * When we override something during the move, we log these removals. 614 * This can only happen when we move towards the beginning of the 615 * buffer, i.e. dst_slot < src_slot. 616 */ 617 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 618 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 619 if (ret) 620 goto free_tms; 621 } 622 623 ret = __tree_mod_log_insert(fs_info, tm); 624 if (ret) 625 goto free_tms; 626 tree_mod_log_write_unlock(fs_info); 627 kfree(tm_list); 628 629 return 0; 630 free_tms: 631 for (i = 0; i < nr_items; i++) { 632 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 633 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 634 kfree(tm_list[i]); 635 } 636 if (locked) 637 tree_mod_log_write_unlock(fs_info); 638 kfree(tm_list); 639 kfree(tm); 640 641 return ret; 642 } 643 644 static inline int 645 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 646 struct tree_mod_elem **tm_list, 647 int nritems) 648 { 649 int i, j; 650 int ret; 651 652 for (i = nritems - 1; i >= 0; i--) { 653 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 654 if (ret) { 655 for (j = nritems - 1; j > i; j--) 656 rb_erase(&tm_list[j]->node, 657 &fs_info->tree_mod_log); 658 return ret; 659 } 660 } 661 662 return 0; 663 } 664 665 static noinline int 666 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 667 struct extent_buffer *old_root, 668 struct extent_buffer *new_root, gfp_t flags, 669 int log_removal) 670 { 671 struct tree_mod_elem *tm = NULL; 672 struct tree_mod_elem **tm_list = NULL; 673 int nritems = 0; 674 int ret = 0; 675 int i; 676 677 if (!tree_mod_need_log(fs_info, NULL)) 678 return 0; 679 680 if (log_removal && btrfs_header_level(old_root) > 0) { 681 nritems = btrfs_header_nritems(old_root); 682 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 683 flags); 684 if (!tm_list) { 685 ret = -ENOMEM; 686 goto free_tms; 687 } 688 for (i = 0; i < nritems; i++) { 689 tm_list[i] = alloc_tree_mod_elem(old_root, i, 690 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 691 if (!tm_list[i]) { 692 ret = -ENOMEM; 693 goto free_tms; 694 } 695 } 696 } 697 698 tm = kzalloc(sizeof(*tm), flags); 699 if (!tm) { 700 ret = -ENOMEM; 701 goto free_tms; 702 } 703 704 tm->logical = new_root->start; 705 tm->old_root.logical = old_root->start; 706 tm->old_root.level = btrfs_header_level(old_root); 707 tm->generation = btrfs_header_generation(old_root); 708 tm->op = MOD_LOG_ROOT_REPLACE; 709 710 if (tree_mod_dont_log(fs_info, NULL)) 711 goto free_tms; 712 713 if (tm_list) 714 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 715 if (!ret) 716 ret = __tree_mod_log_insert(fs_info, tm); 717 718 tree_mod_log_write_unlock(fs_info); 719 if (ret) 720 goto free_tms; 721 kfree(tm_list); 722 723 return ret; 724 725 free_tms: 726 if (tm_list) { 727 for (i = 0; i < nritems; i++) 728 kfree(tm_list[i]); 729 kfree(tm_list); 730 } 731 kfree(tm); 732 733 return ret; 734 } 735 736 static struct tree_mod_elem * 737 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 738 int smallest) 739 { 740 struct rb_root *tm_root; 741 struct rb_node *node; 742 struct tree_mod_elem *cur = NULL; 743 struct tree_mod_elem *found = NULL; 744 745 tree_mod_log_read_lock(fs_info); 746 tm_root = &fs_info->tree_mod_log; 747 node = tm_root->rb_node; 748 while (node) { 749 cur = rb_entry(node, struct tree_mod_elem, node); 750 if (cur->logical < start) { 751 node = node->rb_left; 752 } else if (cur->logical > start) { 753 node = node->rb_right; 754 } else if (cur->seq < min_seq) { 755 node = node->rb_left; 756 } else if (!smallest) { 757 /* we want the node with the highest seq */ 758 if (found) 759 BUG_ON(found->seq > cur->seq); 760 found = cur; 761 node = node->rb_left; 762 } else if (cur->seq > min_seq) { 763 /* we want the node with the smallest seq */ 764 if (found) 765 BUG_ON(found->seq < cur->seq); 766 found = cur; 767 node = node->rb_right; 768 } else { 769 found = cur; 770 break; 771 } 772 } 773 tree_mod_log_read_unlock(fs_info); 774 775 return found; 776 } 777 778 /* 779 * this returns the element from the log with the smallest time sequence 780 * value that's in the log (the oldest log item). any element with a time 781 * sequence lower than min_seq will be ignored. 782 */ 783 static struct tree_mod_elem * 784 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 785 u64 min_seq) 786 { 787 return __tree_mod_log_search(fs_info, start, min_seq, 1); 788 } 789 790 /* 791 * this returns the element from the log with the largest time sequence 792 * value that's in the log (the most recent log item). any element with 793 * a time sequence lower than min_seq will be ignored. 794 */ 795 static struct tree_mod_elem * 796 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 797 { 798 return __tree_mod_log_search(fs_info, start, min_seq, 0); 799 } 800 801 static noinline int 802 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 803 struct extent_buffer *src, unsigned long dst_offset, 804 unsigned long src_offset, int nr_items) 805 { 806 int ret = 0; 807 struct tree_mod_elem **tm_list = NULL; 808 struct tree_mod_elem **tm_list_add, **tm_list_rem; 809 int i; 810 int locked = 0; 811 812 if (!tree_mod_need_log(fs_info, NULL)) 813 return 0; 814 815 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 816 return 0; 817 818 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 819 GFP_NOFS); 820 if (!tm_list) 821 return -ENOMEM; 822 823 tm_list_add = tm_list; 824 tm_list_rem = tm_list + nr_items; 825 for (i = 0; i < nr_items; i++) { 826 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 827 MOD_LOG_KEY_REMOVE, GFP_NOFS); 828 if (!tm_list_rem[i]) { 829 ret = -ENOMEM; 830 goto free_tms; 831 } 832 833 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 834 MOD_LOG_KEY_ADD, GFP_NOFS); 835 if (!tm_list_add[i]) { 836 ret = -ENOMEM; 837 goto free_tms; 838 } 839 } 840 841 if (tree_mod_dont_log(fs_info, NULL)) 842 goto free_tms; 843 locked = 1; 844 845 for (i = 0; i < nr_items; i++) { 846 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 847 if (ret) 848 goto free_tms; 849 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 850 if (ret) 851 goto free_tms; 852 } 853 854 tree_mod_log_write_unlock(fs_info); 855 kfree(tm_list); 856 857 return 0; 858 859 free_tms: 860 for (i = 0; i < nr_items * 2; i++) { 861 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 862 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 863 kfree(tm_list[i]); 864 } 865 if (locked) 866 tree_mod_log_write_unlock(fs_info); 867 kfree(tm_list); 868 869 return ret; 870 } 871 872 static inline void 873 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 874 int dst_offset, int src_offset, int nr_items) 875 { 876 int ret; 877 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 878 nr_items, GFP_NOFS); 879 BUG_ON(ret < 0); 880 } 881 882 static noinline void 883 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 884 struct extent_buffer *eb, int slot, int atomic) 885 { 886 int ret; 887 888 ret = tree_mod_log_insert_key(fs_info, eb, slot, 889 MOD_LOG_KEY_REPLACE, 890 atomic ? GFP_ATOMIC : GFP_NOFS); 891 BUG_ON(ret < 0); 892 } 893 894 static noinline int 895 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 896 { 897 struct tree_mod_elem **tm_list = NULL; 898 int nritems = 0; 899 int i; 900 int ret = 0; 901 902 if (btrfs_header_level(eb) == 0) 903 return 0; 904 905 if (!tree_mod_need_log(fs_info, NULL)) 906 return 0; 907 908 nritems = btrfs_header_nritems(eb); 909 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 910 if (!tm_list) 911 return -ENOMEM; 912 913 for (i = 0; i < nritems; i++) { 914 tm_list[i] = alloc_tree_mod_elem(eb, i, 915 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 916 if (!tm_list[i]) { 917 ret = -ENOMEM; 918 goto free_tms; 919 } 920 } 921 922 if (tree_mod_dont_log(fs_info, eb)) 923 goto free_tms; 924 925 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 926 tree_mod_log_write_unlock(fs_info); 927 if (ret) 928 goto free_tms; 929 kfree(tm_list); 930 931 return 0; 932 933 free_tms: 934 for (i = 0; i < nritems; i++) 935 kfree(tm_list[i]); 936 kfree(tm_list); 937 938 return ret; 939 } 940 941 static noinline void 942 tree_mod_log_set_root_pointer(struct btrfs_root *root, 943 struct extent_buffer *new_root_node, 944 int log_removal) 945 { 946 int ret; 947 ret = tree_mod_log_insert_root(root->fs_info, root->node, 948 new_root_node, GFP_NOFS, log_removal); 949 BUG_ON(ret < 0); 950 } 951 952 /* 953 * check if the tree block can be shared by multiple trees 954 */ 955 int btrfs_block_can_be_shared(struct btrfs_root *root, 956 struct extent_buffer *buf) 957 { 958 /* 959 * Tree blocks not in reference counted trees and tree roots 960 * are never shared. If a block was allocated after the last 961 * snapshot and the block was not allocated by tree relocation, 962 * we know the block is not shared. 963 */ 964 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 965 buf != root->node && buf != root->commit_root && 966 (btrfs_header_generation(buf) <= 967 btrfs_root_last_snapshot(&root->root_item) || 968 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 969 return 1; 970 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 971 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 972 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 973 return 1; 974 #endif 975 return 0; 976 } 977 978 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 979 struct btrfs_root *root, 980 struct extent_buffer *buf, 981 struct extent_buffer *cow, 982 int *last_ref) 983 { 984 struct btrfs_fs_info *fs_info = root->fs_info; 985 u64 refs; 986 u64 owner; 987 u64 flags; 988 u64 new_flags = 0; 989 int ret; 990 991 /* 992 * Backrefs update rules: 993 * 994 * Always use full backrefs for extent pointers in tree block 995 * allocated by tree relocation. 996 * 997 * If a shared tree block is no longer referenced by its owner 998 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 999 * use full backrefs for extent pointers in tree block. 1000 * 1001 * If a tree block is been relocating 1002 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1003 * use full backrefs for extent pointers in tree block. 1004 * The reason for this is some operations (such as drop tree) 1005 * are only allowed for blocks use full backrefs. 1006 */ 1007 1008 if (btrfs_block_can_be_shared(root, buf)) { 1009 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 1010 btrfs_header_level(buf), 1, 1011 &refs, &flags); 1012 if (ret) 1013 return ret; 1014 if (refs == 0) { 1015 ret = -EROFS; 1016 btrfs_handle_fs_error(fs_info, ret, NULL); 1017 return ret; 1018 } 1019 } else { 1020 refs = 1; 1021 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1022 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1023 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1024 else 1025 flags = 0; 1026 } 1027 1028 owner = btrfs_header_owner(buf); 1029 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1030 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1031 1032 if (refs > 1) { 1033 if ((owner == root->root_key.objectid || 1034 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1035 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1036 ret = btrfs_inc_ref(trans, root, buf, 1); 1037 BUG_ON(ret); /* -ENOMEM */ 1038 1039 if (root->root_key.objectid == 1040 BTRFS_TREE_RELOC_OBJECTID) { 1041 ret = btrfs_dec_ref(trans, root, buf, 0); 1042 BUG_ON(ret); /* -ENOMEM */ 1043 ret = btrfs_inc_ref(trans, root, cow, 1); 1044 BUG_ON(ret); /* -ENOMEM */ 1045 } 1046 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1047 } else { 1048 1049 if (root->root_key.objectid == 1050 BTRFS_TREE_RELOC_OBJECTID) 1051 ret = btrfs_inc_ref(trans, root, cow, 1); 1052 else 1053 ret = btrfs_inc_ref(trans, root, cow, 0); 1054 BUG_ON(ret); /* -ENOMEM */ 1055 } 1056 if (new_flags != 0) { 1057 int level = btrfs_header_level(buf); 1058 1059 ret = btrfs_set_disk_extent_flags(trans, fs_info, 1060 buf->start, 1061 buf->len, 1062 new_flags, level, 0); 1063 if (ret) 1064 return ret; 1065 } 1066 } else { 1067 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1068 if (root->root_key.objectid == 1069 BTRFS_TREE_RELOC_OBJECTID) 1070 ret = btrfs_inc_ref(trans, root, cow, 1); 1071 else 1072 ret = btrfs_inc_ref(trans, root, cow, 0); 1073 BUG_ON(ret); /* -ENOMEM */ 1074 ret = btrfs_dec_ref(trans, root, buf, 1); 1075 BUG_ON(ret); /* -ENOMEM */ 1076 } 1077 clean_tree_block(fs_info, buf); 1078 *last_ref = 1; 1079 } 1080 return 0; 1081 } 1082 1083 /* 1084 * does the dirty work in cow of a single block. The parent block (if 1085 * supplied) is updated to point to the new cow copy. The new buffer is marked 1086 * dirty and returned locked. If you modify the block it needs to be marked 1087 * dirty again. 1088 * 1089 * search_start -- an allocation hint for the new block 1090 * 1091 * empty_size -- a hint that you plan on doing more cow. This is the size in 1092 * bytes the allocator should try to find free next to the block it returns. 1093 * This is just a hint and may be ignored by the allocator. 1094 */ 1095 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1096 struct btrfs_root *root, 1097 struct extent_buffer *buf, 1098 struct extent_buffer *parent, int parent_slot, 1099 struct extent_buffer **cow_ret, 1100 u64 search_start, u64 empty_size) 1101 { 1102 struct btrfs_fs_info *fs_info = root->fs_info; 1103 struct btrfs_disk_key disk_key; 1104 struct extent_buffer *cow; 1105 int level, ret; 1106 int last_ref = 0; 1107 int unlock_orig = 0; 1108 u64 parent_start = 0; 1109 1110 if (*cow_ret == buf) 1111 unlock_orig = 1; 1112 1113 btrfs_assert_tree_locked(buf); 1114 1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1116 trans->transid != fs_info->running_transaction->transid); 1117 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1118 trans->transid != root->last_trans); 1119 1120 level = btrfs_header_level(buf); 1121 1122 if (level == 0) 1123 btrfs_item_key(buf, &disk_key, 0); 1124 else 1125 btrfs_node_key(buf, &disk_key, 0); 1126 1127 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1128 parent_start = parent->start; 1129 1130 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1131 root->root_key.objectid, &disk_key, level, 1132 search_start, empty_size); 1133 if (IS_ERR(cow)) 1134 return PTR_ERR(cow); 1135 1136 /* cow is set to blocking by btrfs_init_new_buffer */ 1137 1138 copy_extent_buffer_full(cow, buf); 1139 btrfs_set_header_bytenr(cow, cow->start); 1140 btrfs_set_header_generation(cow, trans->transid); 1141 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1142 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1143 BTRFS_HEADER_FLAG_RELOC); 1144 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1145 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1146 else 1147 btrfs_set_header_owner(cow, root->root_key.objectid); 1148 1149 write_extent_buffer_fsid(cow, fs_info->fsid); 1150 1151 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1152 if (ret) { 1153 btrfs_abort_transaction(trans, ret); 1154 return ret; 1155 } 1156 1157 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1158 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1159 if (ret) { 1160 btrfs_abort_transaction(trans, ret); 1161 return ret; 1162 } 1163 } 1164 1165 if (buf == root->node) { 1166 WARN_ON(parent && parent != buf); 1167 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1168 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1169 parent_start = buf->start; 1170 1171 extent_buffer_get(cow); 1172 tree_mod_log_set_root_pointer(root, cow, 1); 1173 rcu_assign_pointer(root->node, cow); 1174 1175 btrfs_free_tree_block(trans, root, buf, parent_start, 1176 last_ref); 1177 free_extent_buffer(buf); 1178 add_root_to_dirty_list(root); 1179 } else { 1180 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1181 tree_mod_log_insert_key(fs_info, parent, parent_slot, 1182 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1183 btrfs_set_node_blockptr(parent, parent_slot, 1184 cow->start); 1185 btrfs_set_node_ptr_generation(parent, parent_slot, 1186 trans->transid); 1187 btrfs_mark_buffer_dirty(parent); 1188 if (last_ref) { 1189 ret = tree_mod_log_free_eb(fs_info, buf); 1190 if (ret) { 1191 btrfs_abort_transaction(trans, ret); 1192 return ret; 1193 } 1194 } 1195 btrfs_free_tree_block(trans, root, buf, parent_start, 1196 last_ref); 1197 } 1198 if (unlock_orig) 1199 btrfs_tree_unlock(buf); 1200 free_extent_buffer_stale(buf); 1201 btrfs_mark_buffer_dirty(cow); 1202 *cow_ret = cow; 1203 return 0; 1204 } 1205 1206 /* 1207 * returns the logical address of the oldest predecessor of the given root. 1208 * entries older than time_seq are ignored. 1209 */ 1210 static struct tree_mod_elem * 1211 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1212 struct extent_buffer *eb_root, u64 time_seq) 1213 { 1214 struct tree_mod_elem *tm; 1215 struct tree_mod_elem *found = NULL; 1216 u64 root_logical = eb_root->start; 1217 int looped = 0; 1218 1219 if (!time_seq) 1220 return NULL; 1221 1222 /* 1223 * the very last operation that's logged for a root is the 1224 * replacement operation (if it is replaced at all). this has 1225 * the logical address of the *new* root, making it the very 1226 * first operation that's logged for this root. 1227 */ 1228 while (1) { 1229 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1230 time_seq); 1231 if (!looped && !tm) 1232 return NULL; 1233 /* 1234 * if there are no tree operation for the oldest root, we simply 1235 * return it. this should only happen if that (old) root is at 1236 * level 0. 1237 */ 1238 if (!tm) 1239 break; 1240 1241 /* 1242 * if there's an operation that's not a root replacement, we 1243 * found the oldest version of our root. normally, we'll find a 1244 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1245 */ 1246 if (tm->op != MOD_LOG_ROOT_REPLACE) 1247 break; 1248 1249 found = tm; 1250 root_logical = tm->old_root.logical; 1251 looped = 1; 1252 } 1253 1254 /* if there's no old root to return, return what we found instead */ 1255 if (!found) 1256 found = tm; 1257 1258 return found; 1259 } 1260 1261 /* 1262 * tm is a pointer to the first operation to rewind within eb. then, all 1263 * previous operations will be rewound (until we reach something older than 1264 * time_seq). 1265 */ 1266 static void 1267 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1268 u64 time_seq, struct tree_mod_elem *first_tm) 1269 { 1270 u32 n; 1271 struct rb_node *next; 1272 struct tree_mod_elem *tm = first_tm; 1273 unsigned long o_dst; 1274 unsigned long o_src; 1275 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1276 1277 n = btrfs_header_nritems(eb); 1278 tree_mod_log_read_lock(fs_info); 1279 while (tm && tm->seq >= time_seq) { 1280 /* 1281 * all the operations are recorded with the operator used for 1282 * the modification. as we're going backwards, we do the 1283 * opposite of each operation here. 1284 */ 1285 switch (tm->op) { 1286 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1287 BUG_ON(tm->slot < n); 1288 /* Fallthrough */ 1289 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1290 case MOD_LOG_KEY_REMOVE: 1291 btrfs_set_node_key(eb, &tm->key, tm->slot); 1292 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1293 btrfs_set_node_ptr_generation(eb, tm->slot, 1294 tm->generation); 1295 n++; 1296 break; 1297 case MOD_LOG_KEY_REPLACE: 1298 BUG_ON(tm->slot >= n); 1299 btrfs_set_node_key(eb, &tm->key, tm->slot); 1300 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1301 btrfs_set_node_ptr_generation(eb, tm->slot, 1302 tm->generation); 1303 break; 1304 case MOD_LOG_KEY_ADD: 1305 /* if a move operation is needed it's in the log */ 1306 n--; 1307 break; 1308 case MOD_LOG_MOVE_KEYS: 1309 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1310 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1311 memmove_extent_buffer(eb, o_dst, o_src, 1312 tm->move.nr_items * p_size); 1313 break; 1314 case MOD_LOG_ROOT_REPLACE: 1315 /* 1316 * this operation is special. for roots, this must be 1317 * handled explicitly before rewinding. 1318 * for non-roots, this operation may exist if the node 1319 * was a root: root A -> child B; then A gets empty and 1320 * B is promoted to the new root. in the mod log, we'll 1321 * have a root-replace operation for B, a tree block 1322 * that is no root. we simply ignore that operation. 1323 */ 1324 break; 1325 } 1326 next = rb_next(&tm->node); 1327 if (!next) 1328 break; 1329 tm = rb_entry(next, struct tree_mod_elem, node); 1330 if (tm->logical != first_tm->logical) 1331 break; 1332 } 1333 tree_mod_log_read_unlock(fs_info); 1334 btrfs_set_header_nritems(eb, n); 1335 } 1336 1337 /* 1338 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1339 * is returned. If rewind operations happen, a fresh buffer is returned. The 1340 * returned buffer is always read-locked. If the returned buffer is not the 1341 * input buffer, the lock on the input buffer is released and the input buffer 1342 * is freed (its refcount is decremented). 1343 */ 1344 static struct extent_buffer * 1345 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1346 struct extent_buffer *eb, u64 time_seq) 1347 { 1348 struct extent_buffer *eb_rewin; 1349 struct tree_mod_elem *tm; 1350 1351 if (!time_seq) 1352 return eb; 1353 1354 if (btrfs_header_level(eb) == 0) 1355 return eb; 1356 1357 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1358 if (!tm) 1359 return eb; 1360 1361 btrfs_set_path_blocking(path); 1362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1363 1364 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1365 BUG_ON(tm->slot != 0); 1366 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1367 if (!eb_rewin) { 1368 btrfs_tree_read_unlock_blocking(eb); 1369 free_extent_buffer(eb); 1370 return NULL; 1371 } 1372 btrfs_set_header_bytenr(eb_rewin, eb->start); 1373 btrfs_set_header_backref_rev(eb_rewin, 1374 btrfs_header_backref_rev(eb)); 1375 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1376 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1377 } else { 1378 eb_rewin = btrfs_clone_extent_buffer(eb); 1379 if (!eb_rewin) { 1380 btrfs_tree_read_unlock_blocking(eb); 1381 free_extent_buffer(eb); 1382 return NULL; 1383 } 1384 } 1385 1386 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1387 btrfs_tree_read_unlock_blocking(eb); 1388 free_extent_buffer(eb); 1389 1390 extent_buffer_get(eb_rewin); 1391 btrfs_tree_read_lock(eb_rewin); 1392 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1393 WARN_ON(btrfs_header_nritems(eb_rewin) > 1394 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1395 1396 return eb_rewin; 1397 } 1398 1399 /* 1400 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1401 * value. If there are no changes, the current root->root_node is returned. If 1402 * anything changed in between, there's a fresh buffer allocated on which the 1403 * rewind operations are done. In any case, the returned buffer is read locked. 1404 * Returns NULL on error (with no locks held). 1405 */ 1406 static inline struct extent_buffer * 1407 get_old_root(struct btrfs_root *root, u64 time_seq) 1408 { 1409 struct btrfs_fs_info *fs_info = root->fs_info; 1410 struct tree_mod_elem *tm; 1411 struct extent_buffer *eb = NULL; 1412 struct extent_buffer *eb_root; 1413 struct extent_buffer *old; 1414 struct tree_mod_root *old_root = NULL; 1415 u64 old_generation = 0; 1416 u64 logical; 1417 1418 eb_root = btrfs_read_lock_root_node(root); 1419 tm = __tree_mod_log_oldest_root(fs_info, eb_root, time_seq); 1420 if (!tm) 1421 return eb_root; 1422 1423 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1424 old_root = &tm->old_root; 1425 old_generation = tm->generation; 1426 logical = old_root->logical; 1427 } else { 1428 logical = eb_root->start; 1429 } 1430 1431 tm = tree_mod_log_search(fs_info, logical, time_seq); 1432 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1433 btrfs_tree_read_unlock(eb_root); 1434 free_extent_buffer(eb_root); 1435 old = read_tree_block(fs_info, logical, 0); 1436 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1437 if (!IS_ERR(old)) 1438 free_extent_buffer(old); 1439 btrfs_warn(fs_info, 1440 "failed to read tree block %llu from get_old_root", 1441 logical); 1442 } else { 1443 eb = btrfs_clone_extent_buffer(old); 1444 free_extent_buffer(old); 1445 } 1446 } else if (old_root) { 1447 btrfs_tree_read_unlock(eb_root); 1448 free_extent_buffer(eb_root); 1449 eb = alloc_dummy_extent_buffer(fs_info, logical); 1450 } else { 1451 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1452 eb = btrfs_clone_extent_buffer(eb_root); 1453 btrfs_tree_read_unlock_blocking(eb_root); 1454 free_extent_buffer(eb_root); 1455 } 1456 1457 if (!eb) 1458 return NULL; 1459 extent_buffer_get(eb); 1460 btrfs_tree_read_lock(eb); 1461 if (old_root) { 1462 btrfs_set_header_bytenr(eb, eb->start); 1463 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1464 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1465 btrfs_set_header_level(eb, old_root->level); 1466 btrfs_set_header_generation(eb, old_generation); 1467 } 1468 if (tm) 1469 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1470 else 1471 WARN_ON(btrfs_header_level(eb) != 0); 1472 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1473 1474 return eb; 1475 } 1476 1477 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1478 { 1479 struct tree_mod_elem *tm; 1480 int level; 1481 struct extent_buffer *eb_root = btrfs_root_node(root); 1482 1483 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1484 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1485 level = tm->old_root.level; 1486 } else { 1487 level = btrfs_header_level(eb_root); 1488 } 1489 free_extent_buffer(eb_root); 1490 1491 return level; 1492 } 1493 1494 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1495 struct btrfs_root *root, 1496 struct extent_buffer *buf) 1497 { 1498 if (btrfs_is_testing(root->fs_info)) 1499 return 0; 1500 1501 /* ensure we can see the force_cow */ 1502 smp_rmb(); 1503 1504 /* 1505 * We do not need to cow a block if 1506 * 1) this block is not created or changed in this transaction; 1507 * 2) this block does not belong to TREE_RELOC tree; 1508 * 3) the root is not forced COW. 1509 * 1510 * What is forced COW: 1511 * when we create snapshot during committing the transaction, 1512 * after we've finished coping src root, we must COW the shared 1513 * block to ensure the metadata consistency. 1514 */ 1515 if (btrfs_header_generation(buf) == trans->transid && 1516 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1517 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1518 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1519 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1520 return 0; 1521 return 1; 1522 } 1523 1524 /* 1525 * cows a single block, see __btrfs_cow_block for the real work. 1526 * This version of it has extra checks so that a block isn't COWed more than 1527 * once per transaction, as long as it hasn't been written yet 1528 */ 1529 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *root, struct extent_buffer *buf, 1531 struct extent_buffer *parent, int parent_slot, 1532 struct extent_buffer **cow_ret) 1533 { 1534 struct btrfs_fs_info *fs_info = root->fs_info; 1535 u64 search_start; 1536 int ret; 1537 1538 if (trans->transaction != fs_info->running_transaction) 1539 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1540 trans->transid, 1541 fs_info->running_transaction->transid); 1542 1543 if (trans->transid != fs_info->generation) 1544 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1545 trans->transid, fs_info->generation); 1546 1547 if (!should_cow_block(trans, root, buf)) { 1548 trans->dirty = true; 1549 *cow_ret = buf; 1550 return 0; 1551 } 1552 1553 search_start = buf->start & ~((u64)SZ_1G - 1); 1554 1555 if (parent) 1556 btrfs_set_lock_blocking(parent); 1557 btrfs_set_lock_blocking(buf); 1558 1559 ret = __btrfs_cow_block(trans, root, buf, parent, 1560 parent_slot, cow_ret, search_start, 0); 1561 1562 trace_btrfs_cow_block(root, buf, *cow_ret); 1563 1564 return ret; 1565 } 1566 1567 /* 1568 * helper function for defrag to decide if two blocks pointed to by a 1569 * node are actually close by 1570 */ 1571 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1572 { 1573 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1574 return 1; 1575 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1576 return 1; 1577 return 0; 1578 } 1579 1580 /* 1581 * compare two keys in a memcmp fashion 1582 */ 1583 static int comp_keys(const struct btrfs_disk_key *disk, 1584 const struct btrfs_key *k2) 1585 { 1586 struct btrfs_key k1; 1587 1588 btrfs_disk_key_to_cpu(&k1, disk); 1589 1590 return btrfs_comp_cpu_keys(&k1, k2); 1591 } 1592 1593 /* 1594 * same as comp_keys only with two btrfs_key's 1595 */ 1596 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1597 { 1598 if (k1->objectid > k2->objectid) 1599 return 1; 1600 if (k1->objectid < k2->objectid) 1601 return -1; 1602 if (k1->type > k2->type) 1603 return 1; 1604 if (k1->type < k2->type) 1605 return -1; 1606 if (k1->offset > k2->offset) 1607 return 1; 1608 if (k1->offset < k2->offset) 1609 return -1; 1610 return 0; 1611 } 1612 1613 /* 1614 * this is used by the defrag code to go through all the 1615 * leaves pointed to by a node and reallocate them so that 1616 * disk order is close to key order 1617 */ 1618 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1619 struct btrfs_root *root, struct extent_buffer *parent, 1620 int start_slot, u64 *last_ret, 1621 struct btrfs_key *progress) 1622 { 1623 struct btrfs_fs_info *fs_info = root->fs_info; 1624 struct extent_buffer *cur; 1625 u64 blocknr; 1626 u64 gen; 1627 u64 search_start = *last_ret; 1628 u64 last_block = 0; 1629 u64 other; 1630 u32 parent_nritems; 1631 int end_slot; 1632 int i; 1633 int err = 0; 1634 int parent_level; 1635 int uptodate; 1636 u32 blocksize; 1637 int progress_passed = 0; 1638 struct btrfs_disk_key disk_key; 1639 1640 parent_level = btrfs_header_level(parent); 1641 1642 WARN_ON(trans->transaction != fs_info->running_transaction); 1643 WARN_ON(trans->transid != fs_info->generation); 1644 1645 parent_nritems = btrfs_header_nritems(parent); 1646 blocksize = fs_info->nodesize; 1647 end_slot = parent_nritems - 1; 1648 1649 if (parent_nritems <= 1) 1650 return 0; 1651 1652 btrfs_set_lock_blocking(parent); 1653 1654 for (i = start_slot; i <= end_slot; i++) { 1655 int close = 1; 1656 1657 btrfs_node_key(parent, &disk_key, i); 1658 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1659 continue; 1660 1661 progress_passed = 1; 1662 blocknr = btrfs_node_blockptr(parent, i); 1663 gen = btrfs_node_ptr_generation(parent, i); 1664 if (last_block == 0) 1665 last_block = blocknr; 1666 1667 if (i > 0) { 1668 other = btrfs_node_blockptr(parent, i - 1); 1669 close = close_blocks(blocknr, other, blocksize); 1670 } 1671 if (!close && i < end_slot) { 1672 other = btrfs_node_blockptr(parent, i + 1); 1673 close = close_blocks(blocknr, other, blocksize); 1674 } 1675 if (close) { 1676 last_block = blocknr; 1677 continue; 1678 } 1679 1680 cur = find_extent_buffer(fs_info, blocknr); 1681 if (cur) 1682 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1683 else 1684 uptodate = 0; 1685 if (!cur || !uptodate) { 1686 if (!cur) { 1687 cur = read_tree_block(fs_info, blocknr, gen); 1688 if (IS_ERR(cur)) { 1689 return PTR_ERR(cur); 1690 } else if (!extent_buffer_uptodate(cur)) { 1691 free_extent_buffer(cur); 1692 return -EIO; 1693 } 1694 } else if (!uptodate) { 1695 err = btrfs_read_buffer(cur, gen); 1696 if (err) { 1697 free_extent_buffer(cur); 1698 return err; 1699 } 1700 } 1701 } 1702 if (search_start == 0) 1703 search_start = last_block; 1704 1705 btrfs_tree_lock(cur); 1706 btrfs_set_lock_blocking(cur); 1707 err = __btrfs_cow_block(trans, root, cur, parent, i, 1708 &cur, search_start, 1709 min(16 * blocksize, 1710 (end_slot - i) * blocksize)); 1711 if (err) { 1712 btrfs_tree_unlock(cur); 1713 free_extent_buffer(cur); 1714 break; 1715 } 1716 search_start = cur->start; 1717 last_block = cur->start; 1718 *last_ret = search_start; 1719 btrfs_tree_unlock(cur); 1720 free_extent_buffer(cur); 1721 } 1722 return err; 1723 } 1724 1725 /* 1726 * search for key in the extent_buffer. The items start at offset p, 1727 * and they are item_size apart. There are 'max' items in p. 1728 * 1729 * the slot in the array is returned via slot, and it points to 1730 * the place where you would insert key if it is not found in 1731 * the array. 1732 * 1733 * slot may point to max if the key is bigger than all of the keys 1734 */ 1735 static noinline int generic_bin_search(struct extent_buffer *eb, 1736 unsigned long p, int item_size, 1737 const struct btrfs_key *key, 1738 int max, int *slot) 1739 { 1740 int low = 0; 1741 int high = max; 1742 int mid; 1743 int ret; 1744 struct btrfs_disk_key *tmp = NULL; 1745 struct btrfs_disk_key unaligned; 1746 unsigned long offset; 1747 char *kaddr = NULL; 1748 unsigned long map_start = 0; 1749 unsigned long map_len = 0; 1750 int err; 1751 1752 if (low > high) { 1753 btrfs_err(eb->fs_info, 1754 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1755 __func__, low, high, eb->start, 1756 btrfs_header_owner(eb), btrfs_header_level(eb)); 1757 return -EINVAL; 1758 } 1759 1760 while (low < high) { 1761 mid = (low + high) / 2; 1762 offset = p + mid * item_size; 1763 1764 if (!kaddr || offset < map_start || 1765 (offset + sizeof(struct btrfs_disk_key)) > 1766 map_start + map_len) { 1767 1768 err = map_private_extent_buffer(eb, offset, 1769 sizeof(struct btrfs_disk_key), 1770 &kaddr, &map_start, &map_len); 1771 1772 if (!err) { 1773 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1774 map_start); 1775 } else if (err == 1) { 1776 read_extent_buffer(eb, &unaligned, 1777 offset, sizeof(unaligned)); 1778 tmp = &unaligned; 1779 } else { 1780 return err; 1781 } 1782 1783 } else { 1784 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1785 map_start); 1786 } 1787 ret = comp_keys(tmp, key); 1788 1789 if (ret < 0) 1790 low = mid + 1; 1791 else if (ret > 0) 1792 high = mid; 1793 else { 1794 *slot = mid; 1795 return 0; 1796 } 1797 } 1798 *slot = low; 1799 return 1; 1800 } 1801 1802 /* 1803 * simple bin_search frontend that does the right thing for 1804 * leaves vs nodes 1805 */ 1806 static int bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1807 int level, int *slot) 1808 { 1809 if (level == 0) 1810 return generic_bin_search(eb, 1811 offsetof(struct btrfs_leaf, items), 1812 sizeof(struct btrfs_item), 1813 key, btrfs_header_nritems(eb), 1814 slot); 1815 else 1816 return generic_bin_search(eb, 1817 offsetof(struct btrfs_node, ptrs), 1818 sizeof(struct btrfs_key_ptr), 1819 key, btrfs_header_nritems(eb), 1820 slot); 1821 } 1822 1823 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1824 int level, int *slot) 1825 { 1826 return bin_search(eb, key, level, slot); 1827 } 1828 1829 static void root_add_used(struct btrfs_root *root, u32 size) 1830 { 1831 spin_lock(&root->accounting_lock); 1832 btrfs_set_root_used(&root->root_item, 1833 btrfs_root_used(&root->root_item) + size); 1834 spin_unlock(&root->accounting_lock); 1835 } 1836 1837 static void root_sub_used(struct btrfs_root *root, u32 size) 1838 { 1839 spin_lock(&root->accounting_lock); 1840 btrfs_set_root_used(&root->root_item, 1841 btrfs_root_used(&root->root_item) - size); 1842 spin_unlock(&root->accounting_lock); 1843 } 1844 1845 /* given a node and slot number, this reads the blocks it points to. The 1846 * extent buffer is returned with a reference taken (but unlocked). 1847 */ 1848 static noinline struct extent_buffer * 1849 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1850 int slot) 1851 { 1852 int level = btrfs_header_level(parent); 1853 struct extent_buffer *eb; 1854 1855 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1856 return ERR_PTR(-ENOENT); 1857 1858 BUG_ON(level == 0); 1859 1860 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1861 btrfs_node_ptr_generation(parent, slot)); 1862 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1863 free_extent_buffer(eb); 1864 eb = ERR_PTR(-EIO); 1865 } 1866 1867 return eb; 1868 } 1869 1870 /* 1871 * node level balancing, used to make sure nodes are in proper order for 1872 * item deletion. We balance from the top down, so we have to make sure 1873 * that a deletion won't leave an node completely empty later on. 1874 */ 1875 static noinline int balance_level(struct btrfs_trans_handle *trans, 1876 struct btrfs_root *root, 1877 struct btrfs_path *path, int level) 1878 { 1879 struct btrfs_fs_info *fs_info = root->fs_info; 1880 struct extent_buffer *right = NULL; 1881 struct extent_buffer *mid; 1882 struct extent_buffer *left = NULL; 1883 struct extent_buffer *parent = NULL; 1884 int ret = 0; 1885 int wret; 1886 int pslot; 1887 int orig_slot = path->slots[level]; 1888 u64 orig_ptr; 1889 1890 if (level == 0) 1891 return 0; 1892 1893 mid = path->nodes[level]; 1894 1895 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1896 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1897 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1898 1899 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1900 1901 if (level < BTRFS_MAX_LEVEL - 1) { 1902 parent = path->nodes[level + 1]; 1903 pslot = path->slots[level + 1]; 1904 } 1905 1906 /* 1907 * deal with the case where there is only one pointer in the root 1908 * by promoting the node below to a root 1909 */ 1910 if (!parent) { 1911 struct extent_buffer *child; 1912 1913 if (btrfs_header_nritems(mid) != 1) 1914 return 0; 1915 1916 /* promote the child to a root */ 1917 child = read_node_slot(fs_info, mid, 0); 1918 if (IS_ERR(child)) { 1919 ret = PTR_ERR(child); 1920 btrfs_handle_fs_error(fs_info, ret, NULL); 1921 goto enospc; 1922 } 1923 1924 btrfs_tree_lock(child); 1925 btrfs_set_lock_blocking(child); 1926 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1927 if (ret) { 1928 btrfs_tree_unlock(child); 1929 free_extent_buffer(child); 1930 goto enospc; 1931 } 1932 1933 tree_mod_log_set_root_pointer(root, child, 1); 1934 rcu_assign_pointer(root->node, child); 1935 1936 add_root_to_dirty_list(root); 1937 btrfs_tree_unlock(child); 1938 1939 path->locks[level] = 0; 1940 path->nodes[level] = NULL; 1941 clean_tree_block(fs_info, mid); 1942 btrfs_tree_unlock(mid); 1943 /* once for the path */ 1944 free_extent_buffer(mid); 1945 1946 root_sub_used(root, mid->len); 1947 btrfs_free_tree_block(trans, root, mid, 0, 1); 1948 /* once for the root ptr */ 1949 free_extent_buffer_stale(mid); 1950 return 0; 1951 } 1952 if (btrfs_header_nritems(mid) > 1953 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1954 return 0; 1955 1956 left = read_node_slot(fs_info, parent, pslot - 1); 1957 if (IS_ERR(left)) 1958 left = NULL; 1959 1960 if (left) { 1961 btrfs_tree_lock(left); 1962 btrfs_set_lock_blocking(left); 1963 wret = btrfs_cow_block(trans, root, left, 1964 parent, pslot - 1, &left); 1965 if (wret) { 1966 ret = wret; 1967 goto enospc; 1968 } 1969 } 1970 1971 right = read_node_slot(fs_info, parent, pslot + 1); 1972 if (IS_ERR(right)) 1973 right = NULL; 1974 1975 if (right) { 1976 btrfs_tree_lock(right); 1977 btrfs_set_lock_blocking(right); 1978 wret = btrfs_cow_block(trans, root, right, 1979 parent, pslot + 1, &right); 1980 if (wret) { 1981 ret = wret; 1982 goto enospc; 1983 } 1984 } 1985 1986 /* first, try to make some room in the middle buffer */ 1987 if (left) { 1988 orig_slot += btrfs_header_nritems(left); 1989 wret = push_node_left(trans, fs_info, left, mid, 1); 1990 if (wret < 0) 1991 ret = wret; 1992 } 1993 1994 /* 1995 * then try to empty the right most buffer into the middle 1996 */ 1997 if (right) { 1998 wret = push_node_left(trans, fs_info, mid, right, 1); 1999 if (wret < 0 && wret != -ENOSPC) 2000 ret = wret; 2001 if (btrfs_header_nritems(right) == 0) { 2002 clean_tree_block(fs_info, right); 2003 btrfs_tree_unlock(right); 2004 del_ptr(root, path, level + 1, pslot + 1); 2005 root_sub_used(root, right->len); 2006 btrfs_free_tree_block(trans, root, right, 0, 1); 2007 free_extent_buffer_stale(right); 2008 right = NULL; 2009 } else { 2010 struct btrfs_disk_key right_key; 2011 btrfs_node_key(right, &right_key, 0); 2012 tree_mod_log_set_node_key(fs_info, parent, 2013 pslot + 1, 0); 2014 btrfs_set_node_key(parent, &right_key, pslot + 1); 2015 btrfs_mark_buffer_dirty(parent); 2016 } 2017 } 2018 if (btrfs_header_nritems(mid) == 1) { 2019 /* 2020 * we're not allowed to leave a node with one item in the 2021 * tree during a delete. A deletion from lower in the tree 2022 * could try to delete the only pointer in this node. 2023 * So, pull some keys from the left. 2024 * There has to be a left pointer at this point because 2025 * otherwise we would have pulled some pointers from the 2026 * right 2027 */ 2028 if (!left) { 2029 ret = -EROFS; 2030 btrfs_handle_fs_error(fs_info, ret, NULL); 2031 goto enospc; 2032 } 2033 wret = balance_node_right(trans, fs_info, mid, left); 2034 if (wret < 0) { 2035 ret = wret; 2036 goto enospc; 2037 } 2038 if (wret == 1) { 2039 wret = push_node_left(trans, fs_info, left, mid, 1); 2040 if (wret < 0) 2041 ret = wret; 2042 } 2043 BUG_ON(wret == 1); 2044 } 2045 if (btrfs_header_nritems(mid) == 0) { 2046 clean_tree_block(fs_info, mid); 2047 btrfs_tree_unlock(mid); 2048 del_ptr(root, path, level + 1, pslot); 2049 root_sub_used(root, mid->len); 2050 btrfs_free_tree_block(trans, root, mid, 0, 1); 2051 free_extent_buffer_stale(mid); 2052 mid = NULL; 2053 } else { 2054 /* update the parent key to reflect our changes */ 2055 struct btrfs_disk_key mid_key; 2056 btrfs_node_key(mid, &mid_key, 0); 2057 tree_mod_log_set_node_key(fs_info, parent, pslot, 0); 2058 btrfs_set_node_key(parent, &mid_key, pslot); 2059 btrfs_mark_buffer_dirty(parent); 2060 } 2061 2062 /* update the path */ 2063 if (left) { 2064 if (btrfs_header_nritems(left) > orig_slot) { 2065 extent_buffer_get(left); 2066 /* left was locked after cow */ 2067 path->nodes[level] = left; 2068 path->slots[level + 1] -= 1; 2069 path->slots[level] = orig_slot; 2070 if (mid) { 2071 btrfs_tree_unlock(mid); 2072 free_extent_buffer(mid); 2073 } 2074 } else { 2075 orig_slot -= btrfs_header_nritems(left); 2076 path->slots[level] = orig_slot; 2077 } 2078 } 2079 /* double check we haven't messed things up */ 2080 if (orig_ptr != 2081 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2082 BUG(); 2083 enospc: 2084 if (right) { 2085 btrfs_tree_unlock(right); 2086 free_extent_buffer(right); 2087 } 2088 if (left) { 2089 if (path->nodes[level] != left) 2090 btrfs_tree_unlock(left); 2091 free_extent_buffer(left); 2092 } 2093 return ret; 2094 } 2095 2096 /* Node balancing for insertion. Here we only split or push nodes around 2097 * when they are completely full. This is also done top down, so we 2098 * have to be pessimistic. 2099 */ 2100 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2101 struct btrfs_root *root, 2102 struct btrfs_path *path, int level) 2103 { 2104 struct btrfs_fs_info *fs_info = root->fs_info; 2105 struct extent_buffer *right = NULL; 2106 struct extent_buffer *mid; 2107 struct extent_buffer *left = NULL; 2108 struct extent_buffer *parent = NULL; 2109 int ret = 0; 2110 int wret; 2111 int pslot; 2112 int orig_slot = path->slots[level]; 2113 2114 if (level == 0) 2115 return 1; 2116 2117 mid = path->nodes[level]; 2118 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2119 2120 if (level < BTRFS_MAX_LEVEL - 1) { 2121 parent = path->nodes[level + 1]; 2122 pslot = path->slots[level + 1]; 2123 } 2124 2125 if (!parent) 2126 return 1; 2127 2128 left = read_node_slot(fs_info, parent, pslot - 1); 2129 if (IS_ERR(left)) 2130 left = NULL; 2131 2132 /* first, try to make some room in the middle buffer */ 2133 if (left) { 2134 u32 left_nr; 2135 2136 btrfs_tree_lock(left); 2137 btrfs_set_lock_blocking(left); 2138 2139 left_nr = btrfs_header_nritems(left); 2140 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2141 wret = 1; 2142 } else { 2143 ret = btrfs_cow_block(trans, root, left, parent, 2144 pslot - 1, &left); 2145 if (ret) 2146 wret = 1; 2147 else { 2148 wret = push_node_left(trans, fs_info, 2149 left, mid, 0); 2150 } 2151 } 2152 if (wret < 0) 2153 ret = wret; 2154 if (wret == 0) { 2155 struct btrfs_disk_key disk_key; 2156 orig_slot += left_nr; 2157 btrfs_node_key(mid, &disk_key, 0); 2158 tree_mod_log_set_node_key(fs_info, parent, pslot, 0); 2159 btrfs_set_node_key(parent, &disk_key, pslot); 2160 btrfs_mark_buffer_dirty(parent); 2161 if (btrfs_header_nritems(left) > orig_slot) { 2162 path->nodes[level] = left; 2163 path->slots[level + 1] -= 1; 2164 path->slots[level] = orig_slot; 2165 btrfs_tree_unlock(mid); 2166 free_extent_buffer(mid); 2167 } else { 2168 orig_slot -= 2169 btrfs_header_nritems(left); 2170 path->slots[level] = orig_slot; 2171 btrfs_tree_unlock(left); 2172 free_extent_buffer(left); 2173 } 2174 return 0; 2175 } 2176 btrfs_tree_unlock(left); 2177 free_extent_buffer(left); 2178 } 2179 right = read_node_slot(fs_info, parent, pslot + 1); 2180 if (IS_ERR(right)) 2181 right = NULL; 2182 2183 /* 2184 * then try to empty the right most buffer into the middle 2185 */ 2186 if (right) { 2187 u32 right_nr; 2188 2189 btrfs_tree_lock(right); 2190 btrfs_set_lock_blocking(right); 2191 2192 right_nr = btrfs_header_nritems(right); 2193 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2194 wret = 1; 2195 } else { 2196 ret = btrfs_cow_block(trans, root, right, 2197 parent, pslot + 1, 2198 &right); 2199 if (ret) 2200 wret = 1; 2201 else { 2202 wret = balance_node_right(trans, fs_info, 2203 right, mid); 2204 } 2205 } 2206 if (wret < 0) 2207 ret = wret; 2208 if (wret == 0) { 2209 struct btrfs_disk_key disk_key; 2210 2211 btrfs_node_key(right, &disk_key, 0); 2212 tree_mod_log_set_node_key(fs_info, parent, 2213 pslot + 1, 0); 2214 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2215 btrfs_mark_buffer_dirty(parent); 2216 2217 if (btrfs_header_nritems(mid) <= orig_slot) { 2218 path->nodes[level] = right; 2219 path->slots[level + 1] += 1; 2220 path->slots[level] = orig_slot - 2221 btrfs_header_nritems(mid); 2222 btrfs_tree_unlock(mid); 2223 free_extent_buffer(mid); 2224 } else { 2225 btrfs_tree_unlock(right); 2226 free_extent_buffer(right); 2227 } 2228 return 0; 2229 } 2230 btrfs_tree_unlock(right); 2231 free_extent_buffer(right); 2232 } 2233 return 1; 2234 } 2235 2236 /* 2237 * readahead one full node of leaves, finding things that are close 2238 * to the block in 'slot', and triggering ra on them. 2239 */ 2240 static void reada_for_search(struct btrfs_fs_info *fs_info, 2241 struct btrfs_path *path, 2242 int level, int slot, u64 objectid) 2243 { 2244 struct extent_buffer *node; 2245 struct btrfs_disk_key disk_key; 2246 u32 nritems; 2247 u64 search; 2248 u64 target; 2249 u64 nread = 0; 2250 struct extent_buffer *eb; 2251 u32 nr; 2252 u32 blocksize; 2253 u32 nscan = 0; 2254 2255 if (level != 1) 2256 return; 2257 2258 if (!path->nodes[level]) 2259 return; 2260 2261 node = path->nodes[level]; 2262 2263 search = btrfs_node_blockptr(node, slot); 2264 blocksize = fs_info->nodesize; 2265 eb = find_extent_buffer(fs_info, search); 2266 if (eb) { 2267 free_extent_buffer(eb); 2268 return; 2269 } 2270 2271 target = search; 2272 2273 nritems = btrfs_header_nritems(node); 2274 nr = slot; 2275 2276 while (1) { 2277 if (path->reada == READA_BACK) { 2278 if (nr == 0) 2279 break; 2280 nr--; 2281 } else if (path->reada == READA_FORWARD) { 2282 nr++; 2283 if (nr >= nritems) 2284 break; 2285 } 2286 if (path->reada == READA_BACK && objectid) { 2287 btrfs_node_key(node, &disk_key, nr); 2288 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2289 break; 2290 } 2291 search = btrfs_node_blockptr(node, nr); 2292 if ((search <= target && target - search <= 65536) || 2293 (search > target && search - target <= 65536)) { 2294 readahead_tree_block(fs_info, search); 2295 nread += blocksize; 2296 } 2297 nscan++; 2298 if ((nread > 65536 || nscan > 32)) 2299 break; 2300 } 2301 } 2302 2303 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2304 struct btrfs_path *path, int level) 2305 { 2306 int slot; 2307 int nritems; 2308 struct extent_buffer *parent; 2309 struct extent_buffer *eb; 2310 u64 gen; 2311 u64 block1 = 0; 2312 u64 block2 = 0; 2313 2314 parent = path->nodes[level + 1]; 2315 if (!parent) 2316 return; 2317 2318 nritems = btrfs_header_nritems(parent); 2319 slot = path->slots[level + 1]; 2320 2321 if (slot > 0) { 2322 block1 = btrfs_node_blockptr(parent, slot - 1); 2323 gen = btrfs_node_ptr_generation(parent, slot - 1); 2324 eb = find_extent_buffer(fs_info, block1); 2325 /* 2326 * if we get -eagain from btrfs_buffer_uptodate, we 2327 * don't want to return eagain here. That will loop 2328 * forever 2329 */ 2330 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2331 block1 = 0; 2332 free_extent_buffer(eb); 2333 } 2334 if (slot + 1 < nritems) { 2335 block2 = btrfs_node_blockptr(parent, slot + 1); 2336 gen = btrfs_node_ptr_generation(parent, slot + 1); 2337 eb = find_extent_buffer(fs_info, block2); 2338 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2339 block2 = 0; 2340 free_extent_buffer(eb); 2341 } 2342 2343 if (block1) 2344 readahead_tree_block(fs_info, block1); 2345 if (block2) 2346 readahead_tree_block(fs_info, block2); 2347 } 2348 2349 2350 /* 2351 * when we walk down the tree, it is usually safe to unlock the higher layers 2352 * in the tree. The exceptions are when our path goes through slot 0, because 2353 * operations on the tree might require changing key pointers higher up in the 2354 * tree. 2355 * 2356 * callers might also have set path->keep_locks, which tells this code to keep 2357 * the lock if the path points to the last slot in the block. This is part of 2358 * walking through the tree, and selecting the next slot in the higher block. 2359 * 2360 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2361 * if lowest_unlock is 1, level 0 won't be unlocked 2362 */ 2363 static noinline void unlock_up(struct btrfs_path *path, int level, 2364 int lowest_unlock, int min_write_lock_level, 2365 int *write_lock_level) 2366 { 2367 int i; 2368 int skip_level = level; 2369 int no_skips = 0; 2370 struct extent_buffer *t; 2371 2372 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2373 if (!path->nodes[i]) 2374 break; 2375 if (!path->locks[i]) 2376 break; 2377 if (!no_skips && path->slots[i] == 0) { 2378 skip_level = i + 1; 2379 continue; 2380 } 2381 if (!no_skips && path->keep_locks) { 2382 u32 nritems; 2383 t = path->nodes[i]; 2384 nritems = btrfs_header_nritems(t); 2385 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2386 skip_level = i + 1; 2387 continue; 2388 } 2389 } 2390 if (skip_level < i && i >= lowest_unlock) 2391 no_skips = 1; 2392 2393 t = path->nodes[i]; 2394 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2395 btrfs_tree_unlock_rw(t, path->locks[i]); 2396 path->locks[i] = 0; 2397 if (write_lock_level && 2398 i > min_write_lock_level && 2399 i <= *write_lock_level) { 2400 *write_lock_level = i - 1; 2401 } 2402 } 2403 } 2404 } 2405 2406 /* 2407 * This releases any locks held in the path starting at level and 2408 * going all the way up to the root. 2409 * 2410 * btrfs_search_slot will keep the lock held on higher nodes in a few 2411 * corner cases, such as COW of the block at slot zero in the node. This 2412 * ignores those rules, and it should only be called when there are no 2413 * more updates to be done higher up in the tree. 2414 */ 2415 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2416 { 2417 int i; 2418 2419 if (path->keep_locks) 2420 return; 2421 2422 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2423 if (!path->nodes[i]) 2424 continue; 2425 if (!path->locks[i]) 2426 continue; 2427 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2428 path->locks[i] = 0; 2429 } 2430 } 2431 2432 /* 2433 * helper function for btrfs_search_slot. The goal is to find a block 2434 * in cache without setting the path to blocking. If we find the block 2435 * we return zero and the path is unchanged. 2436 * 2437 * If we can't find the block, we set the path blocking and do some 2438 * reada. -EAGAIN is returned and the search must be repeated. 2439 */ 2440 static int 2441 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2442 struct extent_buffer **eb_ret, int level, int slot, 2443 const struct btrfs_key *key) 2444 { 2445 struct btrfs_fs_info *fs_info = root->fs_info; 2446 u64 blocknr; 2447 u64 gen; 2448 struct extent_buffer *b = *eb_ret; 2449 struct extent_buffer *tmp; 2450 int ret; 2451 2452 blocknr = btrfs_node_blockptr(b, slot); 2453 gen = btrfs_node_ptr_generation(b, slot); 2454 2455 tmp = find_extent_buffer(fs_info, blocknr); 2456 if (tmp) { 2457 /* first we do an atomic uptodate check */ 2458 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2459 *eb_ret = tmp; 2460 return 0; 2461 } 2462 2463 /* the pages were up to date, but we failed 2464 * the generation number check. Do a full 2465 * read for the generation number that is correct. 2466 * We must do this without dropping locks so 2467 * we can trust our generation number 2468 */ 2469 btrfs_set_path_blocking(p); 2470 2471 /* now we're allowed to do a blocking uptodate check */ 2472 ret = btrfs_read_buffer(tmp, gen); 2473 if (!ret) { 2474 *eb_ret = tmp; 2475 return 0; 2476 } 2477 free_extent_buffer(tmp); 2478 btrfs_release_path(p); 2479 return -EIO; 2480 } 2481 2482 /* 2483 * reduce lock contention at high levels 2484 * of the btree by dropping locks before 2485 * we read. Don't release the lock on the current 2486 * level because we need to walk this node to figure 2487 * out which blocks to read. 2488 */ 2489 btrfs_unlock_up_safe(p, level + 1); 2490 btrfs_set_path_blocking(p); 2491 2492 free_extent_buffer(tmp); 2493 if (p->reada != READA_NONE) 2494 reada_for_search(fs_info, p, level, slot, key->objectid); 2495 2496 btrfs_release_path(p); 2497 2498 ret = -EAGAIN; 2499 tmp = read_tree_block(fs_info, blocknr, 0); 2500 if (!IS_ERR(tmp)) { 2501 /* 2502 * If the read above didn't mark this buffer up to date, 2503 * it will never end up being up to date. Set ret to EIO now 2504 * and give up so that our caller doesn't loop forever 2505 * on our EAGAINs. 2506 */ 2507 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2508 ret = -EIO; 2509 free_extent_buffer(tmp); 2510 } else { 2511 ret = PTR_ERR(tmp); 2512 } 2513 return ret; 2514 } 2515 2516 /* 2517 * helper function for btrfs_search_slot. This does all of the checks 2518 * for node-level blocks and does any balancing required based on 2519 * the ins_len. 2520 * 2521 * If no extra work was required, zero is returned. If we had to 2522 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2523 * start over 2524 */ 2525 static int 2526 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2527 struct btrfs_root *root, struct btrfs_path *p, 2528 struct extent_buffer *b, int level, int ins_len, 2529 int *write_lock_level) 2530 { 2531 struct btrfs_fs_info *fs_info = root->fs_info; 2532 int ret; 2533 2534 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2535 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2536 int sret; 2537 2538 if (*write_lock_level < level + 1) { 2539 *write_lock_level = level + 1; 2540 btrfs_release_path(p); 2541 goto again; 2542 } 2543 2544 btrfs_set_path_blocking(p); 2545 reada_for_balance(fs_info, p, level); 2546 sret = split_node(trans, root, p, level); 2547 btrfs_clear_path_blocking(p, NULL, 0); 2548 2549 BUG_ON(sret > 0); 2550 if (sret) { 2551 ret = sret; 2552 goto done; 2553 } 2554 b = p->nodes[level]; 2555 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2556 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2557 int sret; 2558 2559 if (*write_lock_level < level + 1) { 2560 *write_lock_level = level + 1; 2561 btrfs_release_path(p); 2562 goto again; 2563 } 2564 2565 btrfs_set_path_blocking(p); 2566 reada_for_balance(fs_info, p, level); 2567 sret = balance_level(trans, root, p, level); 2568 btrfs_clear_path_blocking(p, NULL, 0); 2569 2570 if (sret) { 2571 ret = sret; 2572 goto done; 2573 } 2574 b = p->nodes[level]; 2575 if (!b) { 2576 btrfs_release_path(p); 2577 goto again; 2578 } 2579 BUG_ON(btrfs_header_nritems(b) == 1); 2580 } 2581 return 0; 2582 2583 again: 2584 ret = -EAGAIN; 2585 done: 2586 return ret; 2587 } 2588 2589 static void key_search_validate(struct extent_buffer *b, 2590 const struct btrfs_key *key, 2591 int level) 2592 { 2593 #ifdef CONFIG_BTRFS_ASSERT 2594 struct btrfs_disk_key disk_key; 2595 2596 btrfs_cpu_key_to_disk(&disk_key, key); 2597 2598 if (level == 0) 2599 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2600 offsetof(struct btrfs_leaf, items[0].key), 2601 sizeof(disk_key))); 2602 else 2603 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2604 offsetof(struct btrfs_node, ptrs[0].key), 2605 sizeof(disk_key))); 2606 #endif 2607 } 2608 2609 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2610 int level, int *prev_cmp, int *slot) 2611 { 2612 if (*prev_cmp != 0) { 2613 *prev_cmp = bin_search(b, key, level, slot); 2614 return *prev_cmp; 2615 } 2616 2617 key_search_validate(b, key, level); 2618 *slot = 0; 2619 2620 return 0; 2621 } 2622 2623 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2624 u64 iobjectid, u64 ioff, u8 key_type, 2625 struct btrfs_key *found_key) 2626 { 2627 int ret; 2628 struct btrfs_key key; 2629 struct extent_buffer *eb; 2630 2631 ASSERT(path); 2632 ASSERT(found_key); 2633 2634 key.type = key_type; 2635 key.objectid = iobjectid; 2636 key.offset = ioff; 2637 2638 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2639 if (ret < 0) 2640 return ret; 2641 2642 eb = path->nodes[0]; 2643 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2644 ret = btrfs_next_leaf(fs_root, path); 2645 if (ret) 2646 return ret; 2647 eb = path->nodes[0]; 2648 } 2649 2650 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2651 if (found_key->type != key.type || 2652 found_key->objectid != key.objectid) 2653 return 1; 2654 2655 return 0; 2656 } 2657 2658 /* 2659 * look for key in the tree. path is filled in with nodes along the way 2660 * if key is found, we return zero and you can find the item in the leaf 2661 * level of the path (level 0) 2662 * 2663 * If the key isn't found, the path points to the slot where it should 2664 * be inserted, and 1 is returned. If there are other errors during the 2665 * search a negative error number is returned. 2666 * 2667 * if ins_len > 0, nodes and leaves will be split as we walk down the 2668 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2669 * possible) 2670 */ 2671 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2672 const struct btrfs_key *key, struct btrfs_path *p, 2673 int ins_len, int cow) 2674 { 2675 struct btrfs_fs_info *fs_info = root->fs_info; 2676 struct extent_buffer *b; 2677 int slot; 2678 int ret; 2679 int err; 2680 int level; 2681 int lowest_unlock = 1; 2682 int root_lock; 2683 /* everything at write_lock_level or lower must be write locked */ 2684 int write_lock_level = 0; 2685 u8 lowest_level = 0; 2686 int min_write_lock_level; 2687 int prev_cmp; 2688 2689 lowest_level = p->lowest_level; 2690 WARN_ON(lowest_level && ins_len > 0); 2691 WARN_ON(p->nodes[0] != NULL); 2692 BUG_ON(!cow && ins_len); 2693 2694 if (ins_len < 0) { 2695 lowest_unlock = 2; 2696 2697 /* when we are removing items, we might have to go up to level 2698 * two as we update tree pointers Make sure we keep write 2699 * for those levels as well 2700 */ 2701 write_lock_level = 2; 2702 } else if (ins_len > 0) { 2703 /* 2704 * for inserting items, make sure we have a write lock on 2705 * level 1 so we can update keys 2706 */ 2707 write_lock_level = 1; 2708 } 2709 2710 if (!cow) 2711 write_lock_level = -1; 2712 2713 if (cow && (p->keep_locks || p->lowest_level)) 2714 write_lock_level = BTRFS_MAX_LEVEL; 2715 2716 min_write_lock_level = write_lock_level; 2717 2718 again: 2719 prev_cmp = -1; 2720 /* 2721 * we try very hard to do read locks on the root 2722 */ 2723 root_lock = BTRFS_READ_LOCK; 2724 level = 0; 2725 if (p->search_commit_root) { 2726 /* 2727 * the commit roots are read only 2728 * so we always do read locks 2729 */ 2730 if (p->need_commit_sem) 2731 down_read(&fs_info->commit_root_sem); 2732 b = root->commit_root; 2733 extent_buffer_get(b); 2734 level = btrfs_header_level(b); 2735 if (p->need_commit_sem) 2736 up_read(&fs_info->commit_root_sem); 2737 if (!p->skip_locking) 2738 btrfs_tree_read_lock(b); 2739 } else { 2740 if (p->skip_locking) { 2741 b = btrfs_root_node(root); 2742 level = btrfs_header_level(b); 2743 } else { 2744 /* we don't know the level of the root node 2745 * until we actually have it read locked 2746 */ 2747 b = btrfs_read_lock_root_node(root); 2748 level = btrfs_header_level(b); 2749 if (level <= write_lock_level) { 2750 /* whoops, must trade for write lock */ 2751 btrfs_tree_read_unlock(b); 2752 free_extent_buffer(b); 2753 b = btrfs_lock_root_node(root); 2754 root_lock = BTRFS_WRITE_LOCK; 2755 2756 /* the level might have changed, check again */ 2757 level = btrfs_header_level(b); 2758 } 2759 } 2760 } 2761 p->nodes[level] = b; 2762 if (!p->skip_locking) 2763 p->locks[level] = root_lock; 2764 2765 while (b) { 2766 level = btrfs_header_level(b); 2767 2768 /* 2769 * setup the path here so we can release it under lock 2770 * contention with the cow code 2771 */ 2772 if (cow) { 2773 /* 2774 * if we don't really need to cow this block 2775 * then we don't want to set the path blocking, 2776 * so we test it here 2777 */ 2778 if (!should_cow_block(trans, root, b)) { 2779 trans->dirty = true; 2780 goto cow_done; 2781 } 2782 2783 /* 2784 * must have write locks on this node and the 2785 * parent 2786 */ 2787 if (level > write_lock_level || 2788 (level + 1 > write_lock_level && 2789 level + 1 < BTRFS_MAX_LEVEL && 2790 p->nodes[level + 1])) { 2791 write_lock_level = level + 1; 2792 btrfs_release_path(p); 2793 goto again; 2794 } 2795 2796 btrfs_set_path_blocking(p); 2797 err = btrfs_cow_block(trans, root, b, 2798 p->nodes[level + 1], 2799 p->slots[level + 1], &b); 2800 if (err) { 2801 ret = err; 2802 goto done; 2803 } 2804 } 2805 cow_done: 2806 p->nodes[level] = b; 2807 btrfs_clear_path_blocking(p, NULL, 0); 2808 2809 /* 2810 * we have a lock on b and as long as we aren't changing 2811 * the tree, there is no way to for the items in b to change. 2812 * It is safe to drop the lock on our parent before we 2813 * go through the expensive btree search on b. 2814 * 2815 * If we're inserting or deleting (ins_len != 0), then we might 2816 * be changing slot zero, which may require changing the parent. 2817 * So, we can't drop the lock until after we know which slot 2818 * we're operating on. 2819 */ 2820 if (!ins_len && !p->keep_locks) { 2821 int u = level + 1; 2822 2823 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2824 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2825 p->locks[u] = 0; 2826 } 2827 } 2828 2829 ret = key_search(b, key, level, &prev_cmp, &slot); 2830 if (ret < 0) 2831 goto done; 2832 2833 if (level != 0) { 2834 int dec = 0; 2835 if (ret && slot > 0) { 2836 dec = 1; 2837 slot -= 1; 2838 } 2839 p->slots[level] = slot; 2840 err = setup_nodes_for_search(trans, root, p, b, level, 2841 ins_len, &write_lock_level); 2842 if (err == -EAGAIN) 2843 goto again; 2844 if (err) { 2845 ret = err; 2846 goto done; 2847 } 2848 b = p->nodes[level]; 2849 slot = p->slots[level]; 2850 2851 /* 2852 * slot 0 is special, if we change the key 2853 * we have to update the parent pointer 2854 * which means we must have a write lock 2855 * on the parent 2856 */ 2857 if (slot == 0 && ins_len && 2858 write_lock_level < level + 1) { 2859 write_lock_level = level + 1; 2860 btrfs_release_path(p); 2861 goto again; 2862 } 2863 2864 unlock_up(p, level, lowest_unlock, 2865 min_write_lock_level, &write_lock_level); 2866 2867 if (level == lowest_level) { 2868 if (dec) 2869 p->slots[level]++; 2870 goto done; 2871 } 2872 2873 err = read_block_for_search(root, p, &b, level, 2874 slot, key); 2875 if (err == -EAGAIN) 2876 goto again; 2877 if (err) { 2878 ret = err; 2879 goto done; 2880 } 2881 2882 if (!p->skip_locking) { 2883 level = btrfs_header_level(b); 2884 if (level <= write_lock_level) { 2885 err = btrfs_try_tree_write_lock(b); 2886 if (!err) { 2887 btrfs_set_path_blocking(p); 2888 btrfs_tree_lock(b); 2889 btrfs_clear_path_blocking(p, b, 2890 BTRFS_WRITE_LOCK); 2891 } 2892 p->locks[level] = BTRFS_WRITE_LOCK; 2893 } else { 2894 err = btrfs_tree_read_lock_atomic(b); 2895 if (!err) { 2896 btrfs_set_path_blocking(p); 2897 btrfs_tree_read_lock(b); 2898 btrfs_clear_path_blocking(p, b, 2899 BTRFS_READ_LOCK); 2900 } 2901 p->locks[level] = BTRFS_READ_LOCK; 2902 } 2903 p->nodes[level] = b; 2904 } 2905 } else { 2906 p->slots[level] = slot; 2907 if (ins_len > 0 && 2908 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2909 if (write_lock_level < 1) { 2910 write_lock_level = 1; 2911 btrfs_release_path(p); 2912 goto again; 2913 } 2914 2915 btrfs_set_path_blocking(p); 2916 err = split_leaf(trans, root, key, 2917 p, ins_len, ret == 0); 2918 btrfs_clear_path_blocking(p, NULL, 0); 2919 2920 BUG_ON(err > 0); 2921 if (err) { 2922 ret = err; 2923 goto done; 2924 } 2925 } 2926 if (!p->search_for_split) 2927 unlock_up(p, level, lowest_unlock, 2928 min_write_lock_level, &write_lock_level); 2929 goto done; 2930 } 2931 } 2932 ret = 1; 2933 done: 2934 /* 2935 * we don't really know what they plan on doing with the path 2936 * from here on, so for now just mark it as blocking 2937 */ 2938 if (!p->leave_spinning) 2939 btrfs_set_path_blocking(p); 2940 if (ret < 0 && !p->skip_release_on_error) 2941 btrfs_release_path(p); 2942 return ret; 2943 } 2944 2945 /* 2946 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2947 * current state of the tree together with the operations recorded in the tree 2948 * modification log to search for the key in a previous version of this tree, as 2949 * denoted by the time_seq parameter. 2950 * 2951 * Naturally, there is no support for insert, delete or cow operations. 2952 * 2953 * The resulting path and return value will be set up as if we called 2954 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2955 */ 2956 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2957 struct btrfs_path *p, u64 time_seq) 2958 { 2959 struct btrfs_fs_info *fs_info = root->fs_info; 2960 struct extent_buffer *b; 2961 int slot; 2962 int ret; 2963 int err; 2964 int level; 2965 int lowest_unlock = 1; 2966 u8 lowest_level = 0; 2967 int prev_cmp = -1; 2968 2969 lowest_level = p->lowest_level; 2970 WARN_ON(p->nodes[0] != NULL); 2971 2972 if (p->search_commit_root) { 2973 BUG_ON(time_seq); 2974 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2975 } 2976 2977 again: 2978 b = get_old_root(root, time_seq); 2979 level = btrfs_header_level(b); 2980 p->locks[level] = BTRFS_READ_LOCK; 2981 2982 while (b) { 2983 level = btrfs_header_level(b); 2984 p->nodes[level] = b; 2985 btrfs_clear_path_blocking(p, NULL, 0); 2986 2987 /* 2988 * we have a lock on b and as long as we aren't changing 2989 * the tree, there is no way to for the items in b to change. 2990 * It is safe to drop the lock on our parent before we 2991 * go through the expensive btree search on b. 2992 */ 2993 btrfs_unlock_up_safe(p, level + 1); 2994 2995 /* 2996 * Since we can unwind ebs we want to do a real search every 2997 * time. 2998 */ 2999 prev_cmp = -1; 3000 ret = key_search(b, key, level, &prev_cmp, &slot); 3001 3002 if (level != 0) { 3003 int dec = 0; 3004 if (ret && slot > 0) { 3005 dec = 1; 3006 slot -= 1; 3007 } 3008 p->slots[level] = slot; 3009 unlock_up(p, level, lowest_unlock, 0, NULL); 3010 3011 if (level == lowest_level) { 3012 if (dec) 3013 p->slots[level]++; 3014 goto done; 3015 } 3016 3017 err = read_block_for_search(root, p, &b, level, 3018 slot, key); 3019 if (err == -EAGAIN) 3020 goto again; 3021 if (err) { 3022 ret = err; 3023 goto done; 3024 } 3025 3026 level = btrfs_header_level(b); 3027 err = btrfs_tree_read_lock_atomic(b); 3028 if (!err) { 3029 btrfs_set_path_blocking(p); 3030 btrfs_tree_read_lock(b); 3031 btrfs_clear_path_blocking(p, b, 3032 BTRFS_READ_LOCK); 3033 } 3034 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3035 if (!b) { 3036 ret = -ENOMEM; 3037 goto done; 3038 } 3039 p->locks[level] = BTRFS_READ_LOCK; 3040 p->nodes[level] = b; 3041 } else { 3042 p->slots[level] = slot; 3043 unlock_up(p, level, lowest_unlock, 0, NULL); 3044 goto done; 3045 } 3046 } 3047 ret = 1; 3048 done: 3049 if (!p->leave_spinning) 3050 btrfs_set_path_blocking(p); 3051 if (ret < 0) 3052 btrfs_release_path(p); 3053 3054 return ret; 3055 } 3056 3057 /* 3058 * helper to use instead of search slot if no exact match is needed but 3059 * instead the next or previous item should be returned. 3060 * When find_higher is true, the next higher item is returned, the next lower 3061 * otherwise. 3062 * When return_any and find_higher are both true, and no higher item is found, 3063 * return the next lower instead. 3064 * When return_any is true and find_higher is false, and no lower item is found, 3065 * return the next higher instead. 3066 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3067 * < 0 on error 3068 */ 3069 int btrfs_search_slot_for_read(struct btrfs_root *root, 3070 const struct btrfs_key *key, 3071 struct btrfs_path *p, int find_higher, 3072 int return_any) 3073 { 3074 int ret; 3075 struct extent_buffer *leaf; 3076 3077 again: 3078 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3079 if (ret <= 0) 3080 return ret; 3081 /* 3082 * a return value of 1 means the path is at the position where the 3083 * item should be inserted. Normally this is the next bigger item, 3084 * but in case the previous item is the last in a leaf, path points 3085 * to the first free slot in the previous leaf, i.e. at an invalid 3086 * item. 3087 */ 3088 leaf = p->nodes[0]; 3089 3090 if (find_higher) { 3091 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3092 ret = btrfs_next_leaf(root, p); 3093 if (ret <= 0) 3094 return ret; 3095 if (!return_any) 3096 return 1; 3097 /* 3098 * no higher item found, return the next 3099 * lower instead 3100 */ 3101 return_any = 0; 3102 find_higher = 0; 3103 btrfs_release_path(p); 3104 goto again; 3105 } 3106 } else { 3107 if (p->slots[0] == 0) { 3108 ret = btrfs_prev_leaf(root, p); 3109 if (ret < 0) 3110 return ret; 3111 if (!ret) { 3112 leaf = p->nodes[0]; 3113 if (p->slots[0] == btrfs_header_nritems(leaf)) 3114 p->slots[0]--; 3115 return 0; 3116 } 3117 if (!return_any) 3118 return 1; 3119 /* 3120 * no lower item found, return the next 3121 * higher instead 3122 */ 3123 return_any = 0; 3124 find_higher = 1; 3125 btrfs_release_path(p); 3126 goto again; 3127 } else { 3128 --p->slots[0]; 3129 } 3130 } 3131 return 0; 3132 } 3133 3134 /* 3135 * adjust the pointers going up the tree, starting at level 3136 * making sure the right key of each node is points to 'key'. 3137 * This is used after shifting pointers to the left, so it stops 3138 * fixing up pointers when a given leaf/node is not in slot 0 of the 3139 * higher levels 3140 * 3141 */ 3142 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3143 struct btrfs_path *path, 3144 struct btrfs_disk_key *key, int level) 3145 { 3146 int i; 3147 struct extent_buffer *t; 3148 3149 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3150 int tslot = path->slots[i]; 3151 if (!path->nodes[i]) 3152 break; 3153 t = path->nodes[i]; 3154 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3155 btrfs_set_node_key(t, key, tslot); 3156 btrfs_mark_buffer_dirty(path->nodes[i]); 3157 if (tslot != 0) 3158 break; 3159 } 3160 } 3161 3162 /* 3163 * update item key. 3164 * 3165 * This function isn't completely safe. It's the caller's responsibility 3166 * that the new key won't break the order 3167 */ 3168 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3169 struct btrfs_path *path, 3170 const struct btrfs_key *new_key) 3171 { 3172 struct btrfs_disk_key disk_key; 3173 struct extent_buffer *eb; 3174 int slot; 3175 3176 eb = path->nodes[0]; 3177 slot = path->slots[0]; 3178 if (slot > 0) { 3179 btrfs_item_key(eb, &disk_key, slot - 1); 3180 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3181 } 3182 if (slot < btrfs_header_nritems(eb) - 1) { 3183 btrfs_item_key(eb, &disk_key, slot + 1); 3184 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3185 } 3186 3187 btrfs_cpu_key_to_disk(&disk_key, new_key); 3188 btrfs_set_item_key(eb, &disk_key, slot); 3189 btrfs_mark_buffer_dirty(eb); 3190 if (slot == 0) 3191 fixup_low_keys(fs_info, path, &disk_key, 1); 3192 } 3193 3194 /* 3195 * try to push data from one node into the next node left in the 3196 * tree. 3197 * 3198 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3199 * error, and > 0 if there was no room in the left hand block. 3200 */ 3201 static int push_node_left(struct btrfs_trans_handle *trans, 3202 struct btrfs_fs_info *fs_info, 3203 struct extent_buffer *dst, 3204 struct extent_buffer *src, int empty) 3205 { 3206 int push_items = 0; 3207 int src_nritems; 3208 int dst_nritems; 3209 int ret = 0; 3210 3211 src_nritems = btrfs_header_nritems(src); 3212 dst_nritems = btrfs_header_nritems(dst); 3213 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3214 WARN_ON(btrfs_header_generation(src) != trans->transid); 3215 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3216 3217 if (!empty && src_nritems <= 8) 3218 return 1; 3219 3220 if (push_items <= 0) 3221 return 1; 3222 3223 if (empty) { 3224 push_items = min(src_nritems, push_items); 3225 if (push_items < src_nritems) { 3226 /* leave at least 8 pointers in the node if 3227 * we aren't going to empty it 3228 */ 3229 if (src_nritems - push_items < 8) { 3230 if (push_items <= 8) 3231 return 1; 3232 push_items -= 8; 3233 } 3234 } 3235 } else 3236 push_items = min(src_nritems - 8, push_items); 3237 3238 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3239 push_items); 3240 if (ret) { 3241 btrfs_abort_transaction(trans, ret); 3242 return ret; 3243 } 3244 copy_extent_buffer(dst, src, 3245 btrfs_node_key_ptr_offset(dst_nritems), 3246 btrfs_node_key_ptr_offset(0), 3247 push_items * sizeof(struct btrfs_key_ptr)); 3248 3249 if (push_items < src_nritems) { 3250 /* 3251 * don't call tree_mod_log_eb_move here, key removal was already 3252 * fully logged by tree_mod_log_eb_copy above. 3253 */ 3254 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3255 btrfs_node_key_ptr_offset(push_items), 3256 (src_nritems - push_items) * 3257 sizeof(struct btrfs_key_ptr)); 3258 } 3259 btrfs_set_header_nritems(src, src_nritems - push_items); 3260 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3261 btrfs_mark_buffer_dirty(src); 3262 btrfs_mark_buffer_dirty(dst); 3263 3264 return ret; 3265 } 3266 3267 /* 3268 * try to push data from one node into the next node right in the 3269 * tree. 3270 * 3271 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3272 * error, and > 0 if there was no room in the right hand block. 3273 * 3274 * this will only push up to 1/2 the contents of the left node over 3275 */ 3276 static int balance_node_right(struct btrfs_trans_handle *trans, 3277 struct btrfs_fs_info *fs_info, 3278 struct extent_buffer *dst, 3279 struct extent_buffer *src) 3280 { 3281 int push_items = 0; 3282 int max_push; 3283 int src_nritems; 3284 int dst_nritems; 3285 int ret = 0; 3286 3287 WARN_ON(btrfs_header_generation(src) != trans->transid); 3288 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3289 3290 src_nritems = btrfs_header_nritems(src); 3291 dst_nritems = btrfs_header_nritems(dst); 3292 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3293 if (push_items <= 0) 3294 return 1; 3295 3296 if (src_nritems < 4) 3297 return 1; 3298 3299 max_push = src_nritems / 2 + 1; 3300 /* don't try to empty the node */ 3301 if (max_push >= src_nritems) 3302 return 1; 3303 3304 if (max_push < push_items) 3305 push_items = max_push; 3306 3307 tree_mod_log_eb_move(fs_info, dst, push_items, 0, dst_nritems); 3308 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3309 btrfs_node_key_ptr_offset(0), 3310 (dst_nritems) * 3311 sizeof(struct btrfs_key_ptr)); 3312 3313 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3314 src_nritems - push_items, push_items); 3315 if (ret) { 3316 btrfs_abort_transaction(trans, ret); 3317 return ret; 3318 } 3319 copy_extent_buffer(dst, src, 3320 btrfs_node_key_ptr_offset(0), 3321 btrfs_node_key_ptr_offset(src_nritems - push_items), 3322 push_items * sizeof(struct btrfs_key_ptr)); 3323 3324 btrfs_set_header_nritems(src, src_nritems - push_items); 3325 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3326 3327 btrfs_mark_buffer_dirty(src); 3328 btrfs_mark_buffer_dirty(dst); 3329 3330 return ret; 3331 } 3332 3333 /* 3334 * helper function to insert a new root level in the tree. 3335 * A new node is allocated, and a single item is inserted to 3336 * point to the existing root 3337 * 3338 * returns zero on success or < 0 on failure. 3339 */ 3340 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3341 struct btrfs_root *root, 3342 struct btrfs_path *path, int level) 3343 { 3344 struct btrfs_fs_info *fs_info = root->fs_info; 3345 u64 lower_gen; 3346 struct extent_buffer *lower; 3347 struct extent_buffer *c; 3348 struct extent_buffer *old; 3349 struct btrfs_disk_key lower_key; 3350 3351 BUG_ON(path->nodes[level]); 3352 BUG_ON(path->nodes[level-1] != root->node); 3353 3354 lower = path->nodes[level-1]; 3355 if (level == 1) 3356 btrfs_item_key(lower, &lower_key, 0); 3357 else 3358 btrfs_node_key(lower, &lower_key, 0); 3359 3360 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3361 &lower_key, level, root->node->start, 0); 3362 if (IS_ERR(c)) 3363 return PTR_ERR(c); 3364 3365 root_add_used(root, fs_info->nodesize); 3366 3367 memzero_extent_buffer(c, 0, sizeof(struct btrfs_header)); 3368 btrfs_set_header_nritems(c, 1); 3369 btrfs_set_header_level(c, level); 3370 btrfs_set_header_bytenr(c, c->start); 3371 btrfs_set_header_generation(c, trans->transid); 3372 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3373 btrfs_set_header_owner(c, root->root_key.objectid); 3374 3375 write_extent_buffer_fsid(c, fs_info->fsid); 3376 write_extent_buffer_chunk_tree_uuid(c, fs_info->chunk_tree_uuid); 3377 3378 btrfs_set_node_key(c, &lower_key, 0); 3379 btrfs_set_node_blockptr(c, 0, lower->start); 3380 lower_gen = btrfs_header_generation(lower); 3381 WARN_ON(lower_gen != trans->transid); 3382 3383 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3384 3385 btrfs_mark_buffer_dirty(c); 3386 3387 old = root->node; 3388 tree_mod_log_set_root_pointer(root, c, 0); 3389 rcu_assign_pointer(root->node, c); 3390 3391 /* the super has an extra ref to root->node */ 3392 free_extent_buffer(old); 3393 3394 add_root_to_dirty_list(root); 3395 extent_buffer_get(c); 3396 path->nodes[level] = c; 3397 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3398 path->slots[level] = 0; 3399 return 0; 3400 } 3401 3402 /* 3403 * worker function to insert a single pointer in a node. 3404 * the node should have enough room for the pointer already 3405 * 3406 * slot and level indicate where you want the key to go, and 3407 * blocknr is the block the key points to. 3408 */ 3409 static void insert_ptr(struct btrfs_trans_handle *trans, 3410 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3411 struct btrfs_disk_key *key, u64 bytenr, 3412 int slot, int level) 3413 { 3414 struct extent_buffer *lower; 3415 int nritems; 3416 int ret; 3417 3418 BUG_ON(!path->nodes[level]); 3419 btrfs_assert_tree_locked(path->nodes[level]); 3420 lower = path->nodes[level]; 3421 nritems = btrfs_header_nritems(lower); 3422 BUG_ON(slot > nritems); 3423 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3424 if (slot != nritems) { 3425 if (level) 3426 tree_mod_log_eb_move(fs_info, lower, slot + 1, 3427 slot, nritems - slot); 3428 memmove_extent_buffer(lower, 3429 btrfs_node_key_ptr_offset(slot + 1), 3430 btrfs_node_key_ptr_offset(slot), 3431 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3432 } 3433 if (level) { 3434 ret = tree_mod_log_insert_key(fs_info, lower, slot, 3435 MOD_LOG_KEY_ADD, GFP_NOFS); 3436 BUG_ON(ret < 0); 3437 } 3438 btrfs_set_node_key(lower, key, slot); 3439 btrfs_set_node_blockptr(lower, slot, bytenr); 3440 WARN_ON(trans->transid == 0); 3441 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3442 btrfs_set_header_nritems(lower, nritems + 1); 3443 btrfs_mark_buffer_dirty(lower); 3444 } 3445 3446 /* 3447 * split the node at the specified level in path in two. 3448 * The path is corrected to point to the appropriate node after the split 3449 * 3450 * Before splitting this tries to make some room in the node by pushing 3451 * left and right, if either one works, it returns right away. 3452 * 3453 * returns 0 on success and < 0 on failure 3454 */ 3455 static noinline int split_node(struct btrfs_trans_handle *trans, 3456 struct btrfs_root *root, 3457 struct btrfs_path *path, int level) 3458 { 3459 struct btrfs_fs_info *fs_info = root->fs_info; 3460 struct extent_buffer *c; 3461 struct extent_buffer *split; 3462 struct btrfs_disk_key disk_key; 3463 int mid; 3464 int ret; 3465 u32 c_nritems; 3466 3467 c = path->nodes[level]; 3468 WARN_ON(btrfs_header_generation(c) != trans->transid); 3469 if (c == root->node) { 3470 /* 3471 * trying to split the root, lets make a new one 3472 * 3473 * tree mod log: We don't log_removal old root in 3474 * insert_new_root, because that root buffer will be kept as a 3475 * normal node. We are going to log removal of half of the 3476 * elements below with tree_mod_log_eb_copy. We're holding a 3477 * tree lock on the buffer, which is why we cannot race with 3478 * other tree_mod_log users. 3479 */ 3480 ret = insert_new_root(trans, root, path, level + 1); 3481 if (ret) 3482 return ret; 3483 } else { 3484 ret = push_nodes_for_insert(trans, root, path, level); 3485 c = path->nodes[level]; 3486 if (!ret && btrfs_header_nritems(c) < 3487 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3488 return 0; 3489 if (ret < 0) 3490 return ret; 3491 } 3492 3493 c_nritems = btrfs_header_nritems(c); 3494 mid = (c_nritems + 1) / 2; 3495 btrfs_node_key(c, &disk_key, mid); 3496 3497 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3498 &disk_key, level, c->start, 0); 3499 if (IS_ERR(split)) 3500 return PTR_ERR(split); 3501 3502 root_add_used(root, fs_info->nodesize); 3503 3504 memzero_extent_buffer(split, 0, sizeof(struct btrfs_header)); 3505 btrfs_set_header_level(split, btrfs_header_level(c)); 3506 btrfs_set_header_bytenr(split, split->start); 3507 btrfs_set_header_generation(split, trans->transid); 3508 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3509 btrfs_set_header_owner(split, root->root_key.objectid); 3510 write_extent_buffer_fsid(split, fs_info->fsid); 3511 write_extent_buffer_chunk_tree_uuid(split, fs_info->chunk_tree_uuid); 3512 3513 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3514 if (ret) { 3515 btrfs_abort_transaction(trans, ret); 3516 return ret; 3517 } 3518 copy_extent_buffer(split, c, 3519 btrfs_node_key_ptr_offset(0), 3520 btrfs_node_key_ptr_offset(mid), 3521 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3522 btrfs_set_header_nritems(split, c_nritems - mid); 3523 btrfs_set_header_nritems(c, mid); 3524 ret = 0; 3525 3526 btrfs_mark_buffer_dirty(c); 3527 btrfs_mark_buffer_dirty(split); 3528 3529 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3530 path->slots[level + 1] + 1, level + 1); 3531 3532 if (path->slots[level] >= mid) { 3533 path->slots[level] -= mid; 3534 btrfs_tree_unlock(c); 3535 free_extent_buffer(c); 3536 path->nodes[level] = split; 3537 path->slots[level + 1] += 1; 3538 } else { 3539 btrfs_tree_unlock(split); 3540 free_extent_buffer(split); 3541 } 3542 return ret; 3543 } 3544 3545 /* 3546 * how many bytes are required to store the items in a leaf. start 3547 * and nr indicate which items in the leaf to check. This totals up the 3548 * space used both by the item structs and the item data 3549 */ 3550 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3551 { 3552 struct btrfs_item *start_item; 3553 struct btrfs_item *end_item; 3554 struct btrfs_map_token token; 3555 int data_len; 3556 int nritems = btrfs_header_nritems(l); 3557 int end = min(nritems, start + nr) - 1; 3558 3559 if (!nr) 3560 return 0; 3561 btrfs_init_map_token(&token); 3562 start_item = btrfs_item_nr(start); 3563 end_item = btrfs_item_nr(end); 3564 data_len = btrfs_token_item_offset(l, start_item, &token) + 3565 btrfs_token_item_size(l, start_item, &token); 3566 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3567 data_len += sizeof(struct btrfs_item) * nr; 3568 WARN_ON(data_len < 0); 3569 return data_len; 3570 } 3571 3572 /* 3573 * The space between the end of the leaf items and 3574 * the start of the leaf data. IOW, how much room 3575 * the leaf has left for both items and data 3576 */ 3577 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3578 struct extent_buffer *leaf) 3579 { 3580 int nritems = btrfs_header_nritems(leaf); 3581 int ret; 3582 3583 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3584 if (ret < 0) { 3585 btrfs_crit(fs_info, 3586 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3587 ret, 3588 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3589 leaf_space_used(leaf, 0, nritems), nritems); 3590 } 3591 return ret; 3592 } 3593 3594 /* 3595 * min slot controls the lowest index we're willing to push to the 3596 * right. We'll push up to and including min_slot, but no lower 3597 */ 3598 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3599 struct btrfs_path *path, 3600 int data_size, int empty, 3601 struct extent_buffer *right, 3602 int free_space, u32 left_nritems, 3603 u32 min_slot) 3604 { 3605 struct extent_buffer *left = path->nodes[0]; 3606 struct extent_buffer *upper = path->nodes[1]; 3607 struct btrfs_map_token token; 3608 struct btrfs_disk_key disk_key; 3609 int slot; 3610 u32 i; 3611 int push_space = 0; 3612 int push_items = 0; 3613 struct btrfs_item *item; 3614 u32 nr; 3615 u32 right_nritems; 3616 u32 data_end; 3617 u32 this_item_size; 3618 3619 btrfs_init_map_token(&token); 3620 3621 if (empty) 3622 nr = 0; 3623 else 3624 nr = max_t(u32, 1, min_slot); 3625 3626 if (path->slots[0] >= left_nritems) 3627 push_space += data_size; 3628 3629 slot = path->slots[1]; 3630 i = left_nritems - 1; 3631 while (i >= nr) { 3632 item = btrfs_item_nr(i); 3633 3634 if (!empty && push_items > 0) { 3635 if (path->slots[0] > i) 3636 break; 3637 if (path->slots[0] == i) { 3638 int space = btrfs_leaf_free_space(fs_info, left); 3639 if (space + push_space * 2 > free_space) 3640 break; 3641 } 3642 } 3643 3644 if (path->slots[0] == i) 3645 push_space += data_size; 3646 3647 this_item_size = btrfs_item_size(left, item); 3648 if (this_item_size + sizeof(*item) + push_space > free_space) 3649 break; 3650 3651 push_items++; 3652 push_space += this_item_size + sizeof(*item); 3653 if (i == 0) 3654 break; 3655 i--; 3656 } 3657 3658 if (push_items == 0) 3659 goto out_unlock; 3660 3661 WARN_ON(!empty && push_items == left_nritems); 3662 3663 /* push left to right */ 3664 right_nritems = btrfs_header_nritems(right); 3665 3666 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3667 push_space -= leaf_data_end(fs_info, left); 3668 3669 /* make room in the right data area */ 3670 data_end = leaf_data_end(fs_info, right); 3671 memmove_extent_buffer(right, 3672 btrfs_leaf_data(right) + data_end - push_space, 3673 btrfs_leaf_data(right) + data_end, 3674 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3675 3676 /* copy from the left data area */ 3677 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3678 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3679 btrfs_leaf_data(left) + leaf_data_end(fs_info, left), 3680 push_space); 3681 3682 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3683 btrfs_item_nr_offset(0), 3684 right_nritems * sizeof(struct btrfs_item)); 3685 3686 /* copy the items from left to right */ 3687 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3688 btrfs_item_nr_offset(left_nritems - push_items), 3689 push_items * sizeof(struct btrfs_item)); 3690 3691 /* update the item pointers */ 3692 right_nritems += push_items; 3693 btrfs_set_header_nritems(right, right_nritems); 3694 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3695 for (i = 0; i < right_nritems; i++) { 3696 item = btrfs_item_nr(i); 3697 push_space -= btrfs_token_item_size(right, item, &token); 3698 btrfs_set_token_item_offset(right, item, push_space, &token); 3699 } 3700 3701 left_nritems -= push_items; 3702 btrfs_set_header_nritems(left, left_nritems); 3703 3704 if (left_nritems) 3705 btrfs_mark_buffer_dirty(left); 3706 else 3707 clean_tree_block(fs_info, left); 3708 3709 btrfs_mark_buffer_dirty(right); 3710 3711 btrfs_item_key(right, &disk_key, 0); 3712 btrfs_set_node_key(upper, &disk_key, slot + 1); 3713 btrfs_mark_buffer_dirty(upper); 3714 3715 /* then fixup the leaf pointer in the path */ 3716 if (path->slots[0] >= left_nritems) { 3717 path->slots[0] -= left_nritems; 3718 if (btrfs_header_nritems(path->nodes[0]) == 0) 3719 clean_tree_block(fs_info, path->nodes[0]); 3720 btrfs_tree_unlock(path->nodes[0]); 3721 free_extent_buffer(path->nodes[0]); 3722 path->nodes[0] = right; 3723 path->slots[1] += 1; 3724 } else { 3725 btrfs_tree_unlock(right); 3726 free_extent_buffer(right); 3727 } 3728 return 0; 3729 3730 out_unlock: 3731 btrfs_tree_unlock(right); 3732 free_extent_buffer(right); 3733 return 1; 3734 } 3735 3736 /* 3737 * push some data in the path leaf to the right, trying to free up at 3738 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3739 * 3740 * returns 1 if the push failed because the other node didn't have enough 3741 * room, 0 if everything worked out and < 0 if there were major errors. 3742 * 3743 * this will push starting from min_slot to the end of the leaf. It won't 3744 * push any slot lower than min_slot 3745 */ 3746 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3747 *root, struct btrfs_path *path, 3748 int min_data_size, int data_size, 3749 int empty, u32 min_slot) 3750 { 3751 struct btrfs_fs_info *fs_info = root->fs_info; 3752 struct extent_buffer *left = path->nodes[0]; 3753 struct extent_buffer *right; 3754 struct extent_buffer *upper; 3755 int slot; 3756 int free_space; 3757 u32 left_nritems; 3758 int ret; 3759 3760 if (!path->nodes[1]) 3761 return 1; 3762 3763 slot = path->slots[1]; 3764 upper = path->nodes[1]; 3765 if (slot >= btrfs_header_nritems(upper) - 1) 3766 return 1; 3767 3768 btrfs_assert_tree_locked(path->nodes[1]); 3769 3770 right = read_node_slot(fs_info, upper, slot + 1); 3771 /* 3772 * slot + 1 is not valid or we fail to read the right node, 3773 * no big deal, just return. 3774 */ 3775 if (IS_ERR(right)) 3776 return 1; 3777 3778 btrfs_tree_lock(right); 3779 btrfs_set_lock_blocking(right); 3780 3781 free_space = btrfs_leaf_free_space(fs_info, right); 3782 if (free_space < data_size) 3783 goto out_unlock; 3784 3785 /* cow and double check */ 3786 ret = btrfs_cow_block(trans, root, right, upper, 3787 slot + 1, &right); 3788 if (ret) 3789 goto out_unlock; 3790 3791 free_space = btrfs_leaf_free_space(fs_info, right); 3792 if (free_space < data_size) 3793 goto out_unlock; 3794 3795 left_nritems = btrfs_header_nritems(left); 3796 if (left_nritems == 0) 3797 goto out_unlock; 3798 3799 if (path->slots[0] == left_nritems && !empty) { 3800 /* Key greater than all keys in the leaf, right neighbor has 3801 * enough room for it and we're not emptying our leaf to delete 3802 * it, therefore use right neighbor to insert the new item and 3803 * no need to touch/dirty our left leaft. */ 3804 btrfs_tree_unlock(left); 3805 free_extent_buffer(left); 3806 path->nodes[0] = right; 3807 path->slots[0] = 0; 3808 path->slots[1]++; 3809 return 0; 3810 } 3811 3812 return __push_leaf_right(fs_info, path, min_data_size, empty, 3813 right, free_space, left_nritems, min_slot); 3814 out_unlock: 3815 btrfs_tree_unlock(right); 3816 free_extent_buffer(right); 3817 return 1; 3818 } 3819 3820 /* 3821 * push some data in the path leaf to the left, trying to free up at 3822 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3823 * 3824 * max_slot can put a limit on how far into the leaf we'll push items. The 3825 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3826 * items 3827 */ 3828 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3829 struct btrfs_path *path, int data_size, 3830 int empty, struct extent_buffer *left, 3831 int free_space, u32 right_nritems, 3832 u32 max_slot) 3833 { 3834 struct btrfs_disk_key disk_key; 3835 struct extent_buffer *right = path->nodes[0]; 3836 int i; 3837 int push_space = 0; 3838 int push_items = 0; 3839 struct btrfs_item *item; 3840 u32 old_left_nritems; 3841 u32 nr; 3842 int ret = 0; 3843 u32 this_item_size; 3844 u32 old_left_item_size; 3845 struct btrfs_map_token token; 3846 3847 btrfs_init_map_token(&token); 3848 3849 if (empty) 3850 nr = min(right_nritems, max_slot); 3851 else 3852 nr = min(right_nritems - 1, max_slot); 3853 3854 for (i = 0; i < nr; i++) { 3855 item = btrfs_item_nr(i); 3856 3857 if (!empty && push_items > 0) { 3858 if (path->slots[0] < i) 3859 break; 3860 if (path->slots[0] == i) { 3861 int space = btrfs_leaf_free_space(fs_info, right); 3862 if (space + push_space * 2 > free_space) 3863 break; 3864 } 3865 } 3866 3867 if (path->slots[0] == i) 3868 push_space += data_size; 3869 3870 this_item_size = btrfs_item_size(right, item); 3871 if (this_item_size + sizeof(*item) + push_space > free_space) 3872 break; 3873 3874 push_items++; 3875 push_space += this_item_size + sizeof(*item); 3876 } 3877 3878 if (push_items == 0) { 3879 ret = 1; 3880 goto out; 3881 } 3882 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3883 3884 /* push data from right to left */ 3885 copy_extent_buffer(left, right, 3886 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3887 btrfs_item_nr_offset(0), 3888 push_items * sizeof(struct btrfs_item)); 3889 3890 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3891 btrfs_item_offset_nr(right, push_items - 1); 3892 3893 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3894 leaf_data_end(fs_info, left) - push_space, 3895 btrfs_leaf_data(right) + 3896 btrfs_item_offset_nr(right, push_items - 1), 3897 push_space); 3898 old_left_nritems = btrfs_header_nritems(left); 3899 BUG_ON(old_left_nritems <= 0); 3900 3901 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3902 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3903 u32 ioff; 3904 3905 item = btrfs_item_nr(i); 3906 3907 ioff = btrfs_token_item_offset(left, item, &token); 3908 btrfs_set_token_item_offset(left, item, 3909 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3910 &token); 3911 } 3912 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3913 3914 /* fixup right node */ 3915 if (push_items > right_nritems) 3916 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3917 right_nritems); 3918 3919 if (push_items < right_nritems) { 3920 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3921 leaf_data_end(fs_info, right); 3922 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3923 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3924 btrfs_leaf_data(right) + 3925 leaf_data_end(fs_info, right), push_space); 3926 3927 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3928 btrfs_item_nr_offset(push_items), 3929 (btrfs_header_nritems(right) - push_items) * 3930 sizeof(struct btrfs_item)); 3931 } 3932 right_nritems -= push_items; 3933 btrfs_set_header_nritems(right, right_nritems); 3934 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3935 for (i = 0; i < right_nritems; i++) { 3936 item = btrfs_item_nr(i); 3937 3938 push_space = push_space - btrfs_token_item_size(right, 3939 item, &token); 3940 btrfs_set_token_item_offset(right, item, push_space, &token); 3941 } 3942 3943 btrfs_mark_buffer_dirty(left); 3944 if (right_nritems) 3945 btrfs_mark_buffer_dirty(right); 3946 else 3947 clean_tree_block(fs_info, right); 3948 3949 btrfs_item_key(right, &disk_key, 0); 3950 fixup_low_keys(fs_info, path, &disk_key, 1); 3951 3952 /* then fixup the leaf pointer in the path */ 3953 if (path->slots[0] < push_items) { 3954 path->slots[0] += old_left_nritems; 3955 btrfs_tree_unlock(path->nodes[0]); 3956 free_extent_buffer(path->nodes[0]); 3957 path->nodes[0] = left; 3958 path->slots[1] -= 1; 3959 } else { 3960 btrfs_tree_unlock(left); 3961 free_extent_buffer(left); 3962 path->slots[0] -= push_items; 3963 } 3964 BUG_ON(path->slots[0] < 0); 3965 return ret; 3966 out: 3967 btrfs_tree_unlock(left); 3968 free_extent_buffer(left); 3969 return ret; 3970 } 3971 3972 /* 3973 * push some data in the path leaf to the left, trying to free up at 3974 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3975 * 3976 * max_slot can put a limit on how far into the leaf we'll push items. The 3977 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3978 * items 3979 */ 3980 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3981 *root, struct btrfs_path *path, int min_data_size, 3982 int data_size, int empty, u32 max_slot) 3983 { 3984 struct btrfs_fs_info *fs_info = root->fs_info; 3985 struct extent_buffer *right = path->nodes[0]; 3986 struct extent_buffer *left; 3987 int slot; 3988 int free_space; 3989 u32 right_nritems; 3990 int ret = 0; 3991 3992 slot = path->slots[1]; 3993 if (slot == 0) 3994 return 1; 3995 if (!path->nodes[1]) 3996 return 1; 3997 3998 right_nritems = btrfs_header_nritems(right); 3999 if (right_nritems == 0) 4000 return 1; 4001 4002 btrfs_assert_tree_locked(path->nodes[1]); 4003 4004 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 4005 /* 4006 * slot - 1 is not valid or we fail to read the left node, 4007 * no big deal, just return. 4008 */ 4009 if (IS_ERR(left)) 4010 return 1; 4011 4012 btrfs_tree_lock(left); 4013 btrfs_set_lock_blocking(left); 4014 4015 free_space = btrfs_leaf_free_space(fs_info, left); 4016 if (free_space < data_size) { 4017 ret = 1; 4018 goto out; 4019 } 4020 4021 /* cow and double check */ 4022 ret = btrfs_cow_block(trans, root, left, 4023 path->nodes[1], slot - 1, &left); 4024 if (ret) { 4025 /* we hit -ENOSPC, but it isn't fatal here */ 4026 if (ret == -ENOSPC) 4027 ret = 1; 4028 goto out; 4029 } 4030 4031 free_space = btrfs_leaf_free_space(fs_info, left); 4032 if (free_space < data_size) { 4033 ret = 1; 4034 goto out; 4035 } 4036 4037 return __push_leaf_left(fs_info, path, min_data_size, 4038 empty, left, free_space, right_nritems, 4039 max_slot); 4040 out: 4041 btrfs_tree_unlock(left); 4042 free_extent_buffer(left); 4043 return ret; 4044 } 4045 4046 /* 4047 * split the path's leaf in two, making sure there is at least data_size 4048 * available for the resulting leaf level of the path. 4049 */ 4050 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4051 struct btrfs_fs_info *fs_info, 4052 struct btrfs_path *path, 4053 struct extent_buffer *l, 4054 struct extent_buffer *right, 4055 int slot, int mid, int nritems) 4056 { 4057 int data_copy_size; 4058 int rt_data_off; 4059 int i; 4060 struct btrfs_disk_key disk_key; 4061 struct btrfs_map_token token; 4062 4063 btrfs_init_map_token(&token); 4064 4065 nritems = nritems - mid; 4066 btrfs_set_header_nritems(right, nritems); 4067 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4068 4069 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4070 btrfs_item_nr_offset(mid), 4071 nritems * sizeof(struct btrfs_item)); 4072 4073 copy_extent_buffer(right, l, 4074 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(fs_info) - 4075 data_copy_size, btrfs_leaf_data(l) + 4076 leaf_data_end(fs_info, l), data_copy_size); 4077 4078 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4079 4080 for (i = 0; i < nritems; i++) { 4081 struct btrfs_item *item = btrfs_item_nr(i); 4082 u32 ioff; 4083 4084 ioff = btrfs_token_item_offset(right, item, &token); 4085 btrfs_set_token_item_offset(right, item, 4086 ioff + rt_data_off, &token); 4087 } 4088 4089 btrfs_set_header_nritems(l, mid); 4090 btrfs_item_key(right, &disk_key, 0); 4091 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4092 path->slots[1] + 1, 1); 4093 4094 btrfs_mark_buffer_dirty(right); 4095 btrfs_mark_buffer_dirty(l); 4096 BUG_ON(path->slots[0] != slot); 4097 4098 if (mid <= slot) { 4099 btrfs_tree_unlock(path->nodes[0]); 4100 free_extent_buffer(path->nodes[0]); 4101 path->nodes[0] = right; 4102 path->slots[0] -= mid; 4103 path->slots[1] += 1; 4104 } else { 4105 btrfs_tree_unlock(right); 4106 free_extent_buffer(right); 4107 } 4108 4109 BUG_ON(path->slots[0] < 0); 4110 } 4111 4112 /* 4113 * double splits happen when we need to insert a big item in the middle 4114 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4115 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4116 * A B C 4117 * 4118 * We avoid this by trying to push the items on either side of our target 4119 * into the adjacent leaves. If all goes well we can avoid the double split 4120 * completely. 4121 */ 4122 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4123 struct btrfs_root *root, 4124 struct btrfs_path *path, 4125 int data_size) 4126 { 4127 struct btrfs_fs_info *fs_info = root->fs_info; 4128 int ret; 4129 int progress = 0; 4130 int slot; 4131 u32 nritems; 4132 int space_needed = data_size; 4133 4134 slot = path->slots[0]; 4135 if (slot < btrfs_header_nritems(path->nodes[0])) 4136 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4137 4138 /* 4139 * try to push all the items after our slot into the 4140 * right leaf 4141 */ 4142 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4143 if (ret < 0) 4144 return ret; 4145 4146 if (ret == 0) 4147 progress++; 4148 4149 nritems = btrfs_header_nritems(path->nodes[0]); 4150 /* 4151 * our goal is to get our slot at the start or end of a leaf. If 4152 * we've done so we're done 4153 */ 4154 if (path->slots[0] == 0 || path->slots[0] == nritems) 4155 return 0; 4156 4157 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4158 return 0; 4159 4160 /* try to push all the items before our slot into the next leaf */ 4161 slot = path->slots[0]; 4162 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4163 if (ret < 0) 4164 return ret; 4165 4166 if (ret == 0) 4167 progress++; 4168 4169 if (progress) 4170 return 0; 4171 return 1; 4172 } 4173 4174 /* 4175 * split the path's leaf in two, making sure there is at least data_size 4176 * available for the resulting leaf level of the path. 4177 * 4178 * returns 0 if all went well and < 0 on failure. 4179 */ 4180 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4181 struct btrfs_root *root, 4182 const struct btrfs_key *ins_key, 4183 struct btrfs_path *path, int data_size, 4184 int extend) 4185 { 4186 struct btrfs_disk_key disk_key; 4187 struct extent_buffer *l; 4188 u32 nritems; 4189 int mid; 4190 int slot; 4191 struct extent_buffer *right; 4192 struct btrfs_fs_info *fs_info = root->fs_info; 4193 int ret = 0; 4194 int wret; 4195 int split; 4196 int num_doubles = 0; 4197 int tried_avoid_double = 0; 4198 4199 l = path->nodes[0]; 4200 slot = path->slots[0]; 4201 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4202 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4203 return -EOVERFLOW; 4204 4205 /* first try to make some room by pushing left and right */ 4206 if (data_size && path->nodes[1]) { 4207 int space_needed = data_size; 4208 4209 if (slot < btrfs_header_nritems(l)) 4210 space_needed -= btrfs_leaf_free_space(fs_info, l); 4211 4212 wret = push_leaf_right(trans, root, path, space_needed, 4213 space_needed, 0, 0); 4214 if (wret < 0) 4215 return wret; 4216 if (wret) { 4217 wret = push_leaf_left(trans, root, path, space_needed, 4218 space_needed, 0, (u32)-1); 4219 if (wret < 0) 4220 return wret; 4221 } 4222 l = path->nodes[0]; 4223 4224 /* did the pushes work? */ 4225 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4226 return 0; 4227 } 4228 4229 if (!path->nodes[1]) { 4230 ret = insert_new_root(trans, root, path, 1); 4231 if (ret) 4232 return ret; 4233 } 4234 again: 4235 split = 1; 4236 l = path->nodes[0]; 4237 slot = path->slots[0]; 4238 nritems = btrfs_header_nritems(l); 4239 mid = (nritems + 1) / 2; 4240 4241 if (mid <= slot) { 4242 if (nritems == 1 || 4243 leaf_space_used(l, mid, nritems - mid) + data_size > 4244 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4245 if (slot >= nritems) { 4246 split = 0; 4247 } else { 4248 mid = slot; 4249 if (mid != nritems && 4250 leaf_space_used(l, mid, nritems - mid) + 4251 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4252 if (data_size && !tried_avoid_double) 4253 goto push_for_double; 4254 split = 2; 4255 } 4256 } 4257 } 4258 } else { 4259 if (leaf_space_used(l, 0, mid) + data_size > 4260 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4261 if (!extend && data_size && slot == 0) { 4262 split = 0; 4263 } else if ((extend || !data_size) && slot == 0) { 4264 mid = 1; 4265 } else { 4266 mid = slot; 4267 if (mid != nritems && 4268 leaf_space_used(l, mid, nritems - mid) + 4269 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4270 if (data_size && !tried_avoid_double) 4271 goto push_for_double; 4272 split = 2; 4273 } 4274 } 4275 } 4276 } 4277 4278 if (split == 0) 4279 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4280 else 4281 btrfs_item_key(l, &disk_key, mid); 4282 4283 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4284 &disk_key, 0, l->start, 0); 4285 if (IS_ERR(right)) 4286 return PTR_ERR(right); 4287 4288 root_add_used(root, fs_info->nodesize); 4289 4290 memzero_extent_buffer(right, 0, sizeof(struct btrfs_header)); 4291 btrfs_set_header_bytenr(right, right->start); 4292 btrfs_set_header_generation(right, trans->transid); 4293 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4294 btrfs_set_header_owner(right, root->root_key.objectid); 4295 btrfs_set_header_level(right, 0); 4296 write_extent_buffer_fsid(right, fs_info->fsid); 4297 write_extent_buffer_chunk_tree_uuid(right, fs_info->chunk_tree_uuid); 4298 4299 if (split == 0) { 4300 if (mid <= slot) { 4301 btrfs_set_header_nritems(right, 0); 4302 insert_ptr(trans, fs_info, path, &disk_key, 4303 right->start, path->slots[1] + 1, 1); 4304 btrfs_tree_unlock(path->nodes[0]); 4305 free_extent_buffer(path->nodes[0]); 4306 path->nodes[0] = right; 4307 path->slots[0] = 0; 4308 path->slots[1] += 1; 4309 } else { 4310 btrfs_set_header_nritems(right, 0); 4311 insert_ptr(trans, fs_info, path, &disk_key, 4312 right->start, path->slots[1], 1); 4313 btrfs_tree_unlock(path->nodes[0]); 4314 free_extent_buffer(path->nodes[0]); 4315 path->nodes[0] = right; 4316 path->slots[0] = 0; 4317 if (path->slots[1] == 0) 4318 fixup_low_keys(fs_info, path, &disk_key, 1); 4319 } 4320 /* 4321 * We create a new leaf 'right' for the required ins_len and 4322 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4323 * the content of ins_len to 'right'. 4324 */ 4325 return ret; 4326 } 4327 4328 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4329 4330 if (split == 2) { 4331 BUG_ON(num_doubles != 0); 4332 num_doubles++; 4333 goto again; 4334 } 4335 4336 return 0; 4337 4338 push_for_double: 4339 push_for_double_split(trans, root, path, data_size); 4340 tried_avoid_double = 1; 4341 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4342 return 0; 4343 goto again; 4344 } 4345 4346 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4347 struct btrfs_root *root, 4348 struct btrfs_path *path, int ins_len) 4349 { 4350 struct btrfs_fs_info *fs_info = root->fs_info; 4351 struct btrfs_key key; 4352 struct extent_buffer *leaf; 4353 struct btrfs_file_extent_item *fi; 4354 u64 extent_len = 0; 4355 u32 item_size; 4356 int ret; 4357 4358 leaf = path->nodes[0]; 4359 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4360 4361 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4362 key.type != BTRFS_EXTENT_CSUM_KEY); 4363 4364 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4365 return 0; 4366 4367 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4368 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4369 fi = btrfs_item_ptr(leaf, path->slots[0], 4370 struct btrfs_file_extent_item); 4371 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4372 } 4373 btrfs_release_path(path); 4374 4375 path->keep_locks = 1; 4376 path->search_for_split = 1; 4377 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4378 path->search_for_split = 0; 4379 if (ret > 0) 4380 ret = -EAGAIN; 4381 if (ret < 0) 4382 goto err; 4383 4384 ret = -EAGAIN; 4385 leaf = path->nodes[0]; 4386 /* if our item isn't there, return now */ 4387 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4388 goto err; 4389 4390 /* the leaf has changed, it now has room. return now */ 4391 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4392 goto err; 4393 4394 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4395 fi = btrfs_item_ptr(leaf, path->slots[0], 4396 struct btrfs_file_extent_item); 4397 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4398 goto err; 4399 } 4400 4401 btrfs_set_path_blocking(path); 4402 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4403 if (ret) 4404 goto err; 4405 4406 path->keep_locks = 0; 4407 btrfs_unlock_up_safe(path, 1); 4408 return 0; 4409 err: 4410 path->keep_locks = 0; 4411 return ret; 4412 } 4413 4414 static noinline int split_item(struct btrfs_fs_info *fs_info, 4415 struct btrfs_path *path, 4416 const struct btrfs_key *new_key, 4417 unsigned long split_offset) 4418 { 4419 struct extent_buffer *leaf; 4420 struct btrfs_item *item; 4421 struct btrfs_item *new_item; 4422 int slot; 4423 char *buf; 4424 u32 nritems; 4425 u32 item_size; 4426 u32 orig_offset; 4427 struct btrfs_disk_key disk_key; 4428 4429 leaf = path->nodes[0]; 4430 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4431 4432 btrfs_set_path_blocking(path); 4433 4434 item = btrfs_item_nr(path->slots[0]); 4435 orig_offset = btrfs_item_offset(leaf, item); 4436 item_size = btrfs_item_size(leaf, item); 4437 4438 buf = kmalloc(item_size, GFP_NOFS); 4439 if (!buf) 4440 return -ENOMEM; 4441 4442 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4443 path->slots[0]), item_size); 4444 4445 slot = path->slots[0] + 1; 4446 nritems = btrfs_header_nritems(leaf); 4447 if (slot != nritems) { 4448 /* shift the items */ 4449 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4450 btrfs_item_nr_offset(slot), 4451 (nritems - slot) * sizeof(struct btrfs_item)); 4452 } 4453 4454 btrfs_cpu_key_to_disk(&disk_key, new_key); 4455 btrfs_set_item_key(leaf, &disk_key, slot); 4456 4457 new_item = btrfs_item_nr(slot); 4458 4459 btrfs_set_item_offset(leaf, new_item, orig_offset); 4460 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4461 4462 btrfs_set_item_offset(leaf, item, 4463 orig_offset + item_size - split_offset); 4464 btrfs_set_item_size(leaf, item, split_offset); 4465 4466 btrfs_set_header_nritems(leaf, nritems + 1); 4467 4468 /* write the data for the start of the original item */ 4469 write_extent_buffer(leaf, buf, 4470 btrfs_item_ptr_offset(leaf, path->slots[0]), 4471 split_offset); 4472 4473 /* write the data for the new item */ 4474 write_extent_buffer(leaf, buf + split_offset, 4475 btrfs_item_ptr_offset(leaf, slot), 4476 item_size - split_offset); 4477 btrfs_mark_buffer_dirty(leaf); 4478 4479 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4480 kfree(buf); 4481 return 0; 4482 } 4483 4484 /* 4485 * This function splits a single item into two items, 4486 * giving 'new_key' to the new item and splitting the 4487 * old one at split_offset (from the start of the item). 4488 * 4489 * The path may be released by this operation. After 4490 * the split, the path is pointing to the old item. The 4491 * new item is going to be in the same node as the old one. 4492 * 4493 * Note, the item being split must be smaller enough to live alone on 4494 * a tree block with room for one extra struct btrfs_item 4495 * 4496 * This allows us to split the item in place, keeping a lock on the 4497 * leaf the entire time. 4498 */ 4499 int btrfs_split_item(struct btrfs_trans_handle *trans, 4500 struct btrfs_root *root, 4501 struct btrfs_path *path, 4502 const struct btrfs_key *new_key, 4503 unsigned long split_offset) 4504 { 4505 int ret; 4506 ret = setup_leaf_for_split(trans, root, path, 4507 sizeof(struct btrfs_item)); 4508 if (ret) 4509 return ret; 4510 4511 ret = split_item(root->fs_info, path, new_key, split_offset); 4512 return ret; 4513 } 4514 4515 /* 4516 * This function duplicate a item, giving 'new_key' to the new item. 4517 * It guarantees both items live in the same tree leaf and the new item 4518 * is contiguous with the original item. 4519 * 4520 * This allows us to split file extent in place, keeping a lock on the 4521 * leaf the entire time. 4522 */ 4523 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4524 struct btrfs_root *root, 4525 struct btrfs_path *path, 4526 const struct btrfs_key *new_key) 4527 { 4528 struct extent_buffer *leaf; 4529 int ret; 4530 u32 item_size; 4531 4532 leaf = path->nodes[0]; 4533 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4534 ret = setup_leaf_for_split(trans, root, path, 4535 item_size + sizeof(struct btrfs_item)); 4536 if (ret) 4537 return ret; 4538 4539 path->slots[0]++; 4540 setup_items_for_insert(root, path, new_key, &item_size, 4541 item_size, item_size + 4542 sizeof(struct btrfs_item), 1); 4543 leaf = path->nodes[0]; 4544 memcpy_extent_buffer(leaf, 4545 btrfs_item_ptr_offset(leaf, path->slots[0]), 4546 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4547 item_size); 4548 return 0; 4549 } 4550 4551 /* 4552 * make the item pointed to by the path smaller. new_size indicates 4553 * how small to make it, and from_end tells us if we just chop bytes 4554 * off the end of the item or if we shift the item to chop bytes off 4555 * the front. 4556 */ 4557 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4558 struct btrfs_path *path, u32 new_size, int from_end) 4559 { 4560 int slot; 4561 struct extent_buffer *leaf; 4562 struct btrfs_item *item; 4563 u32 nritems; 4564 unsigned int data_end; 4565 unsigned int old_data_start; 4566 unsigned int old_size; 4567 unsigned int size_diff; 4568 int i; 4569 struct btrfs_map_token token; 4570 4571 btrfs_init_map_token(&token); 4572 4573 leaf = path->nodes[0]; 4574 slot = path->slots[0]; 4575 4576 old_size = btrfs_item_size_nr(leaf, slot); 4577 if (old_size == new_size) 4578 return; 4579 4580 nritems = btrfs_header_nritems(leaf); 4581 data_end = leaf_data_end(fs_info, leaf); 4582 4583 old_data_start = btrfs_item_offset_nr(leaf, slot); 4584 4585 size_diff = old_size - new_size; 4586 4587 BUG_ON(slot < 0); 4588 BUG_ON(slot >= nritems); 4589 4590 /* 4591 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4592 */ 4593 /* first correct the data pointers */ 4594 for (i = slot; i < nritems; i++) { 4595 u32 ioff; 4596 item = btrfs_item_nr(i); 4597 4598 ioff = btrfs_token_item_offset(leaf, item, &token); 4599 btrfs_set_token_item_offset(leaf, item, 4600 ioff + size_diff, &token); 4601 } 4602 4603 /* shift the data */ 4604 if (from_end) { 4605 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4606 data_end + size_diff, btrfs_leaf_data(leaf) + 4607 data_end, old_data_start + new_size - data_end); 4608 } else { 4609 struct btrfs_disk_key disk_key; 4610 u64 offset; 4611 4612 btrfs_item_key(leaf, &disk_key, slot); 4613 4614 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4615 unsigned long ptr; 4616 struct btrfs_file_extent_item *fi; 4617 4618 fi = btrfs_item_ptr(leaf, slot, 4619 struct btrfs_file_extent_item); 4620 fi = (struct btrfs_file_extent_item *)( 4621 (unsigned long)fi - size_diff); 4622 4623 if (btrfs_file_extent_type(leaf, fi) == 4624 BTRFS_FILE_EXTENT_INLINE) { 4625 ptr = btrfs_item_ptr_offset(leaf, slot); 4626 memmove_extent_buffer(leaf, ptr, 4627 (unsigned long)fi, 4628 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4629 } 4630 } 4631 4632 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4633 data_end + size_diff, btrfs_leaf_data(leaf) + 4634 data_end, old_data_start - data_end); 4635 4636 offset = btrfs_disk_key_offset(&disk_key); 4637 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4638 btrfs_set_item_key(leaf, &disk_key, slot); 4639 if (slot == 0) 4640 fixup_low_keys(fs_info, path, &disk_key, 1); 4641 } 4642 4643 item = btrfs_item_nr(slot); 4644 btrfs_set_item_size(leaf, item, new_size); 4645 btrfs_mark_buffer_dirty(leaf); 4646 4647 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4648 btrfs_print_leaf(fs_info, leaf); 4649 BUG(); 4650 } 4651 } 4652 4653 /* 4654 * make the item pointed to by the path bigger, data_size is the added size. 4655 */ 4656 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4657 u32 data_size) 4658 { 4659 int slot; 4660 struct extent_buffer *leaf; 4661 struct btrfs_item *item; 4662 u32 nritems; 4663 unsigned int data_end; 4664 unsigned int old_data; 4665 unsigned int old_size; 4666 int i; 4667 struct btrfs_map_token token; 4668 4669 btrfs_init_map_token(&token); 4670 4671 leaf = path->nodes[0]; 4672 4673 nritems = btrfs_header_nritems(leaf); 4674 data_end = leaf_data_end(fs_info, leaf); 4675 4676 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4677 btrfs_print_leaf(fs_info, leaf); 4678 BUG(); 4679 } 4680 slot = path->slots[0]; 4681 old_data = btrfs_item_end_nr(leaf, slot); 4682 4683 BUG_ON(slot < 0); 4684 if (slot >= nritems) { 4685 btrfs_print_leaf(fs_info, leaf); 4686 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4687 slot, nritems); 4688 BUG_ON(1); 4689 } 4690 4691 /* 4692 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4693 */ 4694 /* first correct the data pointers */ 4695 for (i = slot; i < nritems; i++) { 4696 u32 ioff; 4697 item = btrfs_item_nr(i); 4698 4699 ioff = btrfs_token_item_offset(leaf, item, &token); 4700 btrfs_set_token_item_offset(leaf, item, 4701 ioff - data_size, &token); 4702 } 4703 4704 /* shift the data */ 4705 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4706 data_end - data_size, btrfs_leaf_data(leaf) + 4707 data_end, old_data - data_end); 4708 4709 data_end = old_data; 4710 old_size = btrfs_item_size_nr(leaf, slot); 4711 item = btrfs_item_nr(slot); 4712 btrfs_set_item_size(leaf, item, old_size + data_size); 4713 btrfs_mark_buffer_dirty(leaf); 4714 4715 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4716 btrfs_print_leaf(fs_info, leaf); 4717 BUG(); 4718 } 4719 } 4720 4721 /* 4722 * this is a helper for btrfs_insert_empty_items, the main goal here is 4723 * to save stack depth by doing the bulk of the work in a function 4724 * that doesn't call btrfs_search_slot 4725 */ 4726 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4727 const struct btrfs_key *cpu_key, u32 *data_size, 4728 u32 total_data, u32 total_size, int nr) 4729 { 4730 struct btrfs_fs_info *fs_info = root->fs_info; 4731 struct btrfs_item *item; 4732 int i; 4733 u32 nritems; 4734 unsigned int data_end; 4735 struct btrfs_disk_key disk_key; 4736 struct extent_buffer *leaf; 4737 int slot; 4738 struct btrfs_map_token token; 4739 4740 if (path->slots[0] == 0) { 4741 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4742 fixup_low_keys(fs_info, path, &disk_key, 1); 4743 } 4744 btrfs_unlock_up_safe(path, 1); 4745 4746 btrfs_init_map_token(&token); 4747 4748 leaf = path->nodes[0]; 4749 slot = path->slots[0]; 4750 4751 nritems = btrfs_header_nritems(leaf); 4752 data_end = leaf_data_end(fs_info, leaf); 4753 4754 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4755 btrfs_print_leaf(fs_info, leaf); 4756 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4757 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4758 BUG(); 4759 } 4760 4761 if (slot != nritems) { 4762 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4763 4764 if (old_data < data_end) { 4765 btrfs_print_leaf(fs_info, leaf); 4766 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4767 slot, old_data, data_end); 4768 BUG_ON(1); 4769 } 4770 /* 4771 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4772 */ 4773 /* first correct the data pointers */ 4774 for (i = slot; i < nritems; i++) { 4775 u32 ioff; 4776 4777 item = btrfs_item_nr(i); 4778 ioff = btrfs_token_item_offset(leaf, item, &token); 4779 btrfs_set_token_item_offset(leaf, item, 4780 ioff - total_data, &token); 4781 } 4782 /* shift the items */ 4783 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4784 btrfs_item_nr_offset(slot), 4785 (nritems - slot) * sizeof(struct btrfs_item)); 4786 4787 /* shift the data */ 4788 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4789 data_end - total_data, btrfs_leaf_data(leaf) + 4790 data_end, old_data - data_end); 4791 data_end = old_data; 4792 } 4793 4794 /* setup the item for the new data */ 4795 for (i = 0; i < nr; i++) { 4796 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4797 btrfs_set_item_key(leaf, &disk_key, slot + i); 4798 item = btrfs_item_nr(slot + i); 4799 btrfs_set_token_item_offset(leaf, item, 4800 data_end - data_size[i], &token); 4801 data_end -= data_size[i]; 4802 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4803 } 4804 4805 btrfs_set_header_nritems(leaf, nritems + nr); 4806 btrfs_mark_buffer_dirty(leaf); 4807 4808 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4809 btrfs_print_leaf(fs_info, leaf); 4810 BUG(); 4811 } 4812 } 4813 4814 /* 4815 * Given a key and some data, insert items into the tree. 4816 * This does all the path init required, making room in the tree if needed. 4817 */ 4818 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4819 struct btrfs_root *root, 4820 struct btrfs_path *path, 4821 const struct btrfs_key *cpu_key, u32 *data_size, 4822 int nr) 4823 { 4824 int ret = 0; 4825 int slot; 4826 int i; 4827 u32 total_size = 0; 4828 u32 total_data = 0; 4829 4830 for (i = 0; i < nr; i++) 4831 total_data += data_size[i]; 4832 4833 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4834 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4835 if (ret == 0) 4836 return -EEXIST; 4837 if (ret < 0) 4838 return ret; 4839 4840 slot = path->slots[0]; 4841 BUG_ON(slot < 0); 4842 4843 setup_items_for_insert(root, path, cpu_key, data_size, 4844 total_data, total_size, nr); 4845 return 0; 4846 } 4847 4848 /* 4849 * Given a key and some data, insert an item into the tree. 4850 * This does all the path init required, making room in the tree if needed. 4851 */ 4852 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4853 const struct btrfs_key *cpu_key, void *data, 4854 u32 data_size) 4855 { 4856 int ret = 0; 4857 struct btrfs_path *path; 4858 struct extent_buffer *leaf; 4859 unsigned long ptr; 4860 4861 path = btrfs_alloc_path(); 4862 if (!path) 4863 return -ENOMEM; 4864 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4865 if (!ret) { 4866 leaf = path->nodes[0]; 4867 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4868 write_extent_buffer(leaf, data, ptr, data_size); 4869 btrfs_mark_buffer_dirty(leaf); 4870 } 4871 btrfs_free_path(path); 4872 return ret; 4873 } 4874 4875 /* 4876 * delete the pointer from a given node. 4877 * 4878 * the tree should have been previously balanced so the deletion does not 4879 * empty a node. 4880 */ 4881 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4882 int level, int slot) 4883 { 4884 struct btrfs_fs_info *fs_info = root->fs_info; 4885 struct extent_buffer *parent = path->nodes[level]; 4886 u32 nritems; 4887 int ret; 4888 4889 nritems = btrfs_header_nritems(parent); 4890 if (slot != nritems - 1) { 4891 if (level) 4892 tree_mod_log_eb_move(fs_info, parent, slot, 4893 slot + 1, nritems - slot - 1); 4894 memmove_extent_buffer(parent, 4895 btrfs_node_key_ptr_offset(slot), 4896 btrfs_node_key_ptr_offset(slot + 1), 4897 sizeof(struct btrfs_key_ptr) * 4898 (nritems - slot - 1)); 4899 } else if (level) { 4900 ret = tree_mod_log_insert_key(fs_info, parent, slot, 4901 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4902 BUG_ON(ret < 0); 4903 } 4904 4905 nritems--; 4906 btrfs_set_header_nritems(parent, nritems); 4907 if (nritems == 0 && parent == root->node) { 4908 BUG_ON(btrfs_header_level(root->node) != 1); 4909 /* just turn the root into a leaf and break */ 4910 btrfs_set_header_level(root->node, 0); 4911 } else if (slot == 0) { 4912 struct btrfs_disk_key disk_key; 4913 4914 btrfs_node_key(parent, &disk_key, 0); 4915 fixup_low_keys(fs_info, path, &disk_key, level + 1); 4916 } 4917 btrfs_mark_buffer_dirty(parent); 4918 } 4919 4920 /* 4921 * a helper function to delete the leaf pointed to by path->slots[1] and 4922 * path->nodes[1]. 4923 * 4924 * This deletes the pointer in path->nodes[1] and frees the leaf 4925 * block extent. zero is returned if it all worked out, < 0 otherwise. 4926 * 4927 * The path must have already been setup for deleting the leaf, including 4928 * all the proper balancing. path->nodes[1] must be locked. 4929 */ 4930 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4931 struct btrfs_root *root, 4932 struct btrfs_path *path, 4933 struct extent_buffer *leaf) 4934 { 4935 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4936 del_ptr(root, path, 1, path->slots[1]); 4937 4938 /* 4939 * btrfs_free_extent is expensive, we want to make sure we 4940 * aren't holding any locks when we call it 4941 */ 4942 btrfs_unlock_up_safe(path, 0); 4943 4944 root_sub_used(root, leaf->len); 4945 4946 extent_buffer_get(leaf); 4947 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4948 free_extent_buffer_stale(leaf); 4949 } 4950 /* 4951 * delete the item at the leaf level in path. If that empties 4952 * the leaf, remove it from the tree 4953 */ 4954 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4955 struct btrfs_path *path, int slot, int nr) 4956 { 4957 struct btrfs_fs_info *fs_info = root->fs_info; 4958 struct extent_buffer *leaf; 4959 struct btrfs_item *item; 4960 u32 last_off; 4961 u32 dsize = 0; 4962 int ret = 0; 4963 int wret; 4964 int i; 4965 u32 nritems; 4966 struct btrfs_map_token token; 4967 4968 btrfs_init_map_token(&token); 4969 4970 leaf = path->nodes[0]; 4971 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4972 4973 for (i = 0; i < nr; i++) 4974 dsize += btrfs_item_size_nr(leaf, slot + i); 4975 4976 nritems = btrfs_header_nritems(leaf); 4977 4978 if (slot + nr != nritems) { 4979 int data_end = leaf_data_end(fs_info, leaf); 4980 4981 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4982 data_end + dsize, 4983 btrfs_leaf_data(leaf) + data_end, 4984 last_off - data_end); 4985 4986 for (i = slot + nr; i < nritems; i++) { 4987 u32 ioff; 4988 4989 item = btrfs_item_nr(i); 4990 ioff = btrfs_token_item_offset(leaf, item, &token); 4991 btrfs_set_token_item_offset(leaf, item, 4992 ioff + dsize, &token); 4993 } 4994 4995 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4996 btrfs_item_nr_offset(slot + nr), 4997 sizeof(struct btrfs_item) * 4998 (nritems - slot - nr)); 4999 } 5000 btrfs_set_header_nritems(leaf, nritems - nr); 5001 nritems -= nr; 5002 5003 /* delete the leaf if we've emptied it */ 5004 if (nritems == 0) { 5005 if (leaf == root->node) { 5006 btrfs_set_header_level(leaf, 0); 5007 } else { 5008 btrfs_set_path_blocking(path); 5009 clean_tree_block(fs_info, leaf); 5010 btrfs_del_leaf(trans, root, path, leaf); 5011 } 5012 } else { 5013 int used = leaf_space_used(leaf, 0, nritems); 5014 if (slot == 0) { 5015 struct btrfs_disk_key disk_key; 5016 5017 btrfs_item_key(leaf, &disk_key, 0); 5018 fixup_low_keys(fs_info, path, &disk_key, 1); 5019 } 5020 5021 /* delete the leaf if it is mostly empty */ 5022 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5023 /* push_leaf_left fixes the path. 5024 * make sure the path still points to our leaf 5025 * for possible call to del_ptr below 5026 */ 5027 slot = path->slots[1]; 5028 extent_buffer_get(leaf); 5029 5030 btrfs_set_path_blocking(path); 5031 wret = push_leaf_left(trans, root, path, 1, 1, 5032 1, (u32)-1); 5033 if (wret < 0 && wret != -ENOSPC) 5034 ret = wret; 5035 5036 if (path->nodes[0] == leaf && 5037 btrfs_header_nritems(leaf)) { 5038 wret = push_leaf_right(trans, root, path, 1, 5039 1, 1, 0); 5040 if (wret < 0 && wret != -ENOSPC) 5041 ret = wret; 5042 } 5043 5044 if (btrfs_header_nritems(leaf) == 0) { 5045 path->slots[1] = slot; 5046 btrfs_del_leaf(trans, root, path, leaf); 5047 free_extent_buffer(leaf); 5048 ret = 0; 5049 } else { 5050 /* if we're still in the path, make sure 5051 * we're dirty. Otherwise, one of the 5052 * push_leaf functions must have already 5053 * dirtied this buffer 5054 */ 5055 if (path->nodes[0] == leaf) 5056 btrfs_mark_buffer_dirty(leaf); 5057 free_extent_buffer(leaf); 5058 } 5059 } else { 5060 btrfs_mark_buffer_dirty(leaf); 5061 } 5062 } 5063 return ret; 5064 } 5065 5066 /* 5067 * search the tree again to find a leaf with lesser keys 5068 * returns 0 if it found something or 1 if there are no lesser leaves. 5069 * returns < 0 on io errors. 5070 * 5071 * This may release the path, and so you may lose any locks held at the 5072 * time you call it. 5073 */ 5074 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5075 { 5076 struct btrfs_key key; 5077 struct btrfs_disk_key found_key; 5078 int ret; 5079 5080 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5081 5082 if (key.offset > 0) { 5083 key.offset--; 5084 } else if (key.type > 0) { 5085 key.type--; 5086 key.offset = (u64)-1; 5087 } else if (key.objectid > 0) { 5088 key.objectid--; 5089 key.type = (u8)-1; 5090 key.offset = (u64)-1; 5091 } else { 5092 return 1; 5093 } 5094 5095 btrfs_release_path(path); 5096 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5097 if (ret < 0) 5098 return ret; 5099 btrfs_item_key(path->nodes[0], &found_key, 0); 5100 ret = comp_keys(&found_key, &key); 5101 /* 5102 * We might have had an item with the previous key in the tree right 5103 * before we released our path. And after we released our path, that 5104 * item might have been pushed to the first slot (0) of the leaf we 5105 * were holding due to a tree balance. Alternatively, an item with the 5106 * previous key can exist as the only element of a leaf (big fat item). 5107 * Therefore account for these 2 cases, so that our callers (like 5108 * btrfs_previous_item) don't miss an existing item with a key matching 5109 * the previous key we computed above. 5110 */ 5111 if (ret <= 0) 5112 return 0; 5113 return 1; 5114 } 5115 5116 /* 5117 * A helper function to walk down the tree starting at min_key, and looking 5118 * for nodes or leaves that are have a minimum transaction id. 5119 * This is used by the btree defrag code, and tree logging 5120 * 5121 * This does not cow, but it does stuff the starting key it finds back 5122 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5123 * key and get a writable path. 5124 * 5125 * This does lock as it descends, and path->keep_locks should be set 5126 * to 1 by the caller. 5127 * 5128 * This honors path->lowest_level to prevent descent past a given level 5129 * of the tree. 5130 * 5131 * min_trans indicates the oldest transaction that you are interested 5132 * in walking through. Any nodes or leaves older than min_trans are 5133 * skipped over (without reading them). 5134 * 5135 * returns zero if something useful was found, < 0 on error and 1 if there 5136 * was nothing in the tree that matched the search criteria. 5137 */ 5138 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5139 struct btrfs_path *path, 5140 u64 min_trans) 5141 { 5142 struct btrfs_fs_info *fs_info = root->fs_info; 5143 struct extent_buffer *cur; 5144 struct btrfs_key found_key; 5145 int slot; 5146 int sret; 5147 u32 nritems; 5148 int level; 5149 int ret = 1; 5150 int keep_locks = path->keep_locks; 5151 5152 path->keep_locks = 1; 5153 again: 5154 cur = btrfs_read_lock_root_node(root); 5155 level = btrfs_header_level(cur); 5156 WARN_ON(path->nodes[level]); 5157 path->nodes[level] = cur; 5158 path->locks[level] = BTRFS_READ_LOCK; 5159 5160 if (btrfs_header_generation(cur) < min_trans) { 5161 ret = 1; 5162 goto out; 5163 } 5164 while (1) { 5165 nritems = btrfs_header_nritems(cur); 5166 level = btrfs_header_level(cur); 5167 sret = bin_search(cur, min_key, level, &slot); 5168 5169 /* at the lowest level, we're done, setup the path and exit */ 5170 if (level == path->lowest_level) { 5171 if (slot >= nritems) 5172 goto find_next_key; 5173 ret = 0; 5174 path->slots[level] = slot; 5175 btrfs_item_key_to_cpu(cur, &found_key, slot); 5176 goto out; 5177 } 5178 if (sret && slot > 0) 5179 slot--; 5180 /* 5181 * check this node pointer against the min_trans parameters. 5182 * If it is too old, old, skip to the next one. 5183 */ 5184 while (slot < nritems) { 5185 u64 gen; 5186 5187 gen = btrfs_node_ptr_generation(cur, slot); 5188 if (gen < min_trans) { 5189 slot++; 5190 continue; 5191 } 5192 break; 5193 } 5194 find_next_key: 5195 /* 5196 * we didn't find a candidate key in this node, walk forward 5197 * and find another one 5198 */ 5199 if (slot >= nritems) { 5200 path->slots[level] = slot; 5201 btrfs_set_path_blocking(path); 5202 sret = btrfs_find_next_key(root, path, min_key, level, 5203 min_trans); 5204 if (sret == 0) { 5205 btrfs_release_path(path); 5206 goto again; 5207 } else { 5208 goto out; 5209 } 5210 } 5211 /* save our key for returning back */ 5212 btrfs_node_key_to_cpu(cur, &found_key, slot); 5213 path->slots[level] = slot; 5214 if (level == path->lowest_level) { 5215 ret = 0; 5216 goto out; 5217 } 5218 btrfs_set_path_blocking(path); 5219 cur = read_node_slot(fs_info, cur, slot); 5220 if (IS_ERR(cur)) { 5221 ret = PTR_ERR(cur); 5222 goto out; 5223 } 5224 5225 btrfs_tree_read_lock(cur); 5226 5227 path->locks[level - 1] = BTRFS_READ_LOCK; 5228 path->nodes[level - 1] = cur; 5229 unlock_up(path, level, 1, 0, NULL); 5230 btrfs_clear_path_blocking(path, NULL, 0); 5231 } 5232 out: 5233 path->keep_locks = keep_locks; 5234 if (ret == 0) { 5235 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5236 btrfs_set_path_blocking(path); 5237 memcpy(min_key, &found_key, sizeof(found_key)); 5238 } 5239 return ret; 5240 } 5241 5242 static int tree_move_down(struct btrfs_fs_info *fs_info, 5243 struct btrfs_path *path, 5244 int *level) 5245 { 5246 struct extent_buffer *eb; 5247 5248 BUG_ON(*level == 0); 5249 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5250 if (IS_ERR(eb)) 5251 return PTR_ERR(eb); 5252 5253 path->nodes[*level - 1] = eb; 5254 path->slots[*level - 1] = 0; 5255 (*level)--; 5256 return 0; 5257 } 5258 5259 static int tree_move_next_or_upnext(struct btrfs_path *path, 5260 int *level, int root_level) 5261 { 5262 int ret = 0; 5263 int nritems; 5264 nritems = btrfs_header_nritems(path->nodes[*level]); 5265 5266 path->slots[*level]++; 5267 5268 while (path->slots[*level] >= nritems) { 5269 if (*level == root_level) 5270 return -1; 5271 5272 /* move upnext */ 5273 path->slots[*level] = 0; 5274 free_extent_buffer(path->nodes[*level]); 5275 path->nodes[*level] = NULL; 5276 (*level)++; 5277 path->slots[*level]++; 5278 5279 nritems = btrfs_header_nritems(path->nodes[*level]); 5280 ret = 1; 5281 } 5282 return ret; 5283 } 5284 5285 /* 5286 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5287 * or down. 5288 */ 5289 static int tree_advance(struct btrfs_fs_info *fs_info, 5290 struct btrfs_path *path, 5291 int *level, int root_level, 5292 int allow_down, 5293 struct btrfs_key *key) 5294 { 5295 int ret; 5296 5297 if (*level == 0 || !allow_down) { 5298 ret = tree_move_next_or_upnext(path, level, root_level); 5299 } else { 5300 ret = tree_move_down(fs_info, path, level); 5301 } 5302 if (ret >= 0) { 5303 if (*level == 0) 5304 btrfs_item_key_to_cpu(path->nodes[*level], key, 5305 path->slots[*level]); 5306 else 5307 btrfs_node_key_to_cpu(path->nodes[*level], key, 5308 path->slots[*level]); 5309 } 5310 return ret; 5311 } 5312 5313 static int tree_compare_item(struct btrfs_path *left_path, 5314 struct btrfs_path *right_path, 5315 char *tmp_buf) 5316 { 5317 int cmp; 5318 int len1, len2; 5319 unsigned long off1, off2; 5320 5321 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5322 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5323 if (len1 != len2) 5324 return 1; 5325 5326 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5327 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5328 right_path->slots[0]); 5329 5330 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5331 5332 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5333 if (cmp) 5334 return 1; 5335 return 0; 5336 } 5337 5338 #define ADVANCE 1 5339 #define ADVANCE_ONLY_NEXT -1 5340 5341 /* 5342 * This function compares two trees and calls the provided callback for 5343 * every changed/new/deleted item it finds. 5344 * If shared tree blocks are encountered, whole subtrees are skipped, making 5345 * the compare pretty fast on snapshotted subvolumes. 5346 * 5347 * This currently works on commit roots only. As commit roots are read only, 5348 * we don't do any locking. The commit roots are protected with transactions. 5349 * Transactions are ended and rejoined when a commit is tried in between. 5350 * 5351 * This function checks for modifications done to the trees while comparing. 5352 * If it detects a change, it aborts immediately. 5353 */ 5354 int btrfs_compare_trees(struct btrfs_root *left_root, 5355 struct btrfs_root *right_root, 5356 btrfs_changed_cb_t changed_cb, void *ctx) 5357 { 5358 struct btrfs_fs_info *fs_info = left_root->fs_info; 5359 int ret; 5360 int cmp; 5361 struct btrfs_path *left_path = NULL; 5362 struct btrfs_path *right_path = NULL; 5363 struct btrfs_key left_key; 5364 struct btrfs_key right_key; 5365 char *tmp_buf = NULL; 5366 int left_root_level; 5367 int right_root_level; 5368 int left_level; 5369 int right_level; 5370 int left_end_reached; 5371 int right_end_reached; 5372 int advance_left; 5373 int advance_right; 5374 u64 left_blockptr; 5375 u64 right_blockptr; 5376 u64 left_gen; 5377 u64 right_gen; 5378 5379 left_path = btrfs_alloc_path(); 5380 if (!left_path) { 5381 ret = -ENOMEM; 5382 goto out; 5383 } 5384 right_path = btrfs_alloc_path(); 5385 if (!right_path) { 5386 ret = -ENOMEM; 5387 goto out; 5388 } 5389 5390 tmp_buf = kmalloc(fs_info->nodesize, GFP_KERNEL | __GFP_NOWARN); 5391 if (!tmp_buf) { 5392 tmp_buf = vmalloc(fs_info->nodesize); 5393 if (!tmp_buf) { 5394 ret = -ENOMEM; 5395 goto out; 5396 } 5397 } 5398 5399 left_path->search_commit_root = 1; 5400 left_path->skip_locking = 1; 5401 right_path->search_commit_root = 1; 5402 right_path->skip_locking = 1; 5403 5404 /* 5405 * Strategy: Go to the first items of both trees. Then do 5406 * 5407 * If both trees are at level 0 5408 * Compare keys of current items 5409 * If left < right treat left item as new, advance left tree 5410 * and repeat 5411 * If left > right treat right item as deleted, advance right tree 5412 * and repeat 5413 * If left == right do deep compare of items, treat as changed if 5414 * needed, advance both trees and repeat 5415 * If both trees are at the same level but not at level 0 5416 * Compare keys of current nodes/leafs 5417 * If left < right advance left tree and repeat 5418 * If left > right advance right tree and repeat 5419 * If left == right compare blockptrs of the next nodes/leafs 5420 * If they match advance both trees but stay at the same level 5421 * and repeat 5422 * If they don't match advance both trees while allowing to go 5423 * deeper and repeat 5424 * If tree levels are different 5425 * Advance the tree that needs it and repeat 5426 * 5427 * Advancing a tree means: 5428 * If we are at level 0, try to go to the next slot. If that's not 5429 * possible, go one level up and repeat. Stop when we found a level 5430 * where we could go to the next slot. We may at this point be on a 5431 * node or a leaf. 5432 * 5433 * If we are not at level 0 and not on shared tree blocks, go one 5434 * level deeper. 5435 * 5436 * If we are not at level 0 and on shared tree blocks, go one slot to 5437 * the right if possible or go up and right. 5438 */ 5439 5440 down_read(&fs_info->commit_root_sem); 5441 left_level = btrfs_header_level(left_root->commit_root); 5442 left_root_level = left_level; 5443 left_path->nodes[left_level] = left_root->commit_root; 5444 extent_buffer_get(left_path->nodes[left_level]); 5445 5446 right_level = btrfs_header_level(right_root->commit_root); 5447 right_root_level = right_level; 5448 right_path->nodes[right_level] = right_root->commit_root; 5449 extent_buffer_get(right_path->nodes[right_level]); 5450 up_read(&fs_info->commit_root_sem); 5451 5452 if (left_level == 0) 5453 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5454 &left_key, left_path->slots[left_level]); 5455 else 5456 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5457 &left_key, left_path->slots[left_level]); 5458 if (right_level == 0) 5459 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5460 &right_key, right_path->slots[right_level]); 5461 else 5462 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5463 &right_key, right_path->slots[right_level]); 5464 5465 left_end_reached = right_end_reached = 0; 5466 advance_left = advance_right = 0; 5467 5468 while (1) { 5469 if (advance_left && !left_end_reached) { 5470 ret = tree_advance(fs_info, left_path, &left_level, 5471 left_root_level, 5472 advance_left != ADVANCE_ONLY_NEXT, 5473 &left_key); 5474 if (ret == -1) 5475 left_end_reached = ADVANCE; 5476 else if (ret < 0) 5477 goto out; 5478 advance_left = 0; 5479 } 5480 if (advance_right && !right_end_reached) { 5481 ret = tree_advance(fs_info, right_path, &right_level, 5482 right_root_level, 5483 advance_right != ADVANCE_ONLY_NEXT, 5484 &right_key); 5485 if (ret == -1) 5486 right_end_reached = ADVANCE; 5487 else if (ret < 0) 5488 goto out; 5489 advance_right = 0; 5490 } 5491 5492 if (left_end_reached && right_end_reached) { 5493 ret = 0; 5494 goto out; 5495 } else if (left_end_reached) { 5496 if (right_level == 0) { 5497 ret = changed_cb(left_root, right_root, 5498 left_path, right_path, 5499 &right_key, 5500 BTRFS_COMPARE_TREE_DELETED, 5501 ctx); 5502 if (ret < 0) 5503 goto out; 5504 } 5505 advance_right = ADVANCE; 5506 continue; 5507 } else if (right_end_reached) { 5508 if (left_level == 0) { 5509 ret = changed_cb(left_root, right_root, 5510 left_path, right_path, 5511 &left_key, 5512 BTRFS_COMPARE_TREE_NEW, 5513 ctx); 5514 if (ret < 0) 5515 goto out; 5516 } 5517 advance_left = ADVANCE; 5518 continue; 5519 } 5520 5521 if (left_level == 0 && right_level == 0) { 5522 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5523 if (cmp < 0) { 5524 ret = changed_cb(left_root, right_root, 5525 left_path, right_path, 5526 &left_key, 5527 BTRFS_COMPARE_TREE_NEW, 5528 ctx); 5529 if (ret < 0) 5530 goto out; 5531 advance_left = ADVANCE; 5532 } else if (cmp > 0) { 5533 ret = changed_cb(left_root, right_root, 5534 left_path, right_path, 5535 &right_key, 5536 BTRFS_COMPARE_TREE_DELETED, 5537 ctx); 5538 if (ret < 0) 5539 goto out; 5540 advance_right = ADVANCE; 5541 } else { 5542 enum btrfs_compare_tree_result result; 5543 5544 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5545 ret = tree_compare_item(left_path, right_path, 5546 tmp_buf); 5547 if (ret) 5548 result = BTRFS_COMPARE_TREE_CHANGED; 5549 else 5550 result = BTRFS_COMPARE_TREE_SAME; 5551 ret = changed_cb(left_root, right_root, 5552 left_path, right_path, 5553 &left_key, result, ctx); 5554 if (ret < 0) 5555 goto out; 5556 advance_left = ADVANCE; 5557 advance_right = ADVANCE; 5558 } 5559 } else if (left_level == right_level) { 5560 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5561 if (cmp < 0) { 5562 advance_left = ADVANCE; 5563 } else if (cmp > 0) { 5564 advance_right = ADVANCE; 5565 } else { 5566 left_blockptr = btrfs_node_blockptr( 5567 left_path->nodes[left_level], 5568 left_path->slots[left_level]); 5569 right_blockptr = btrfs_node_blockptr( 5570 right_path->nodes[right_level], 5571 right_path->slots[right_level]); 5572 left_gen = btrfs_node_ptr_generation( 5573 left_path->nodes[left_level], 5574 left_path->slots[left_level]); 5575 right_gen = btrfs_node_ptr_generation( 5576 right_path->nodes[right_level], 5577 right_path->slots[right_level]); 5578 if (left_blockptr == right_blockptr && 5579 left_gen == right_gen) { 5580 /* 5581 * As we're on a shared block, don't 5582 * allow to go deeper. 5583 */ 5584 advance_left = ADVANCE_ONLY_NEXT; 5585 advance_right = ADVANCE_ONLY_NEXT; 5586 } else { 5587 advance_left = ADVANCE; 5588 advance_right = ADVANCE; 5589 } 5590 } 5591 } else if (left_level < right_level) { 5592 advance_right = ADVANCE; 5593 } else { 5594 advance_left = ADVANCE; 5595 } 5596 } 5597 5598 out: 5599 btrfs_free_path(left_path); 5600 btrfs_free_path(right_path); 5601 kvfree(tmp_buf); 5602 return ret; 5603 } 5604 5605 /* 5606 * this is similar to btrfs_next_leaf, but does not try to preserve 5607 * and fixup the path. It looks for and returns the next key in the 5608 * tree based on the current path and the min_trans parameters. 5609 * 5610 * 0 is returned if another key is found, < 0 if there are any errors 5611 * and 1 is returned if there are no higher keys in the tree 5612 * 5613 * path->keep_locks should be set to 1 on the search made before 5614 * calling this function. 5615 */ 5616 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5617 struct btrfs_key *key, int level, u64 min_trans) 5618 { 5619 int slot; 5620 struct extent_buffer *c; 5621 5622 WARN_ON(!path->keep_locks); 5623 while (level < BTRFS_MAX_LEVEL) { 5624 if (!path->nodes[level]) 5625 return 1; 5626 5627 slot = path->slots[level] + 1; 5628 c = path->nodes[level]; 5629 next: 5630 if (slot >= btrfs_header_nritems(c)) { 5631 int ret; 5632 int orig_lowest; 5633 struct btrfs_key cur_key; 5634 if (level + 1 >= BTRFS_MAX_LEVEL || 5635 !path->nodes[level + 1]) 5636 return 1; 5637 5638 if (path->locks[level + 1]) { 5639 level++; 5640 continue; 5641 } 5642 5643 slot = btrfs_header_nritems(c) - 1; 5644 if (level == 0) 5645 btrfs_item_key_to_cpu(c, &cur_key, slot); 5646 else 5647 btrfs_node_key_to_cpu(c, &cur_key, slot); 5648 5649 orig_lowest = path->lowest_level; 5650 btrfs_release_path(path); 5651 path->lowest_level = level; 5652 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5653 0, 0); 5654 path->lowest_level = orig_lowest; 5655 if (ret < 0) 5656 return ret; 5657 5658 c = path->nodes[level]; 5659 slot = path->slots[level]; 5660 if (ret == 0) 5661 slot++; 5662 goto next; 5663 } 5664 5665 if (level == 0) 5666 btrfs_item_key_to_cpu(c, key, slot); 5667 else { 5668 u64 gen = btrfs_node_ptr_generation(c, slot); 5669 5670 if (gen < min_trans) { 5671 slot++; 5672 goto next; 5673 } 5674 btrfs_node_key_to_cpu(c, key, slot); 5675 } 5676 return 0; 5677 } 5678 return 1; 5679 } 5680 5681 /* 5682 * search the tree again to find a leaf with greater keys 5683 * returns 0 if it found something or 1 if there are no greater leaves. 5684 * returns < 0 on io errors. 5685 */ 5686 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5687 { 5688 return btrfs_next_old_leaf(root, path, 0); 5689 } 5690 5691 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5692 u64 time_seq) 5693 { 5694 int slot; 5695 int level; 5696 struct extent_buffer *c; 5697 struct extent_buffer *next; 5698 struct btrfs_key key; 5699 u32 nritems; 5700 int ret; 5701 int old_spinning = path->leave_spinning; 5702 int next_rw_lock = 0; 5703 5704 nritems = btrfs_header_nritems(path->nodes[0]); 5705 if (nritems == 0) 5706 return 1; 5707 5708 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5709 again: 5710 level = 1; 5711 next = NULL; 5712 next_rw_lock = 0; 5713 btrfs_release_path(path); 5714 5715 path->keep_locks = 1; 5716 path->leave_spinning = 1; 5717 5718 if (time_seq) 5719 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5720 else 5721 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5722 path->keep_locks = 0; 5723 5724 if (ret < 0) 5725 return ret; 5726 5727 nritems = btrfs_header_nritems(path->nodes[0]); 5728 /* 5729 * by releasing the path above we dropped all our locks. A balance 5730 * could have added more items next to the key that used to be 5731 * at the very end of the block. So, check again here and 5732 * advance the path if there are now more items available. 5733 */ 5734 if (nritems > 0 && path->slots[0] < nritems - 1) { 5735 if (ret == 0) 5736 path->slots[0]++; 5737 ret = 0; 5738 goto done; 5739 } 5740 /* 5741 * So the above check misses one case: 5742 * - after releasing the path above, someone has removed the item that 5743 * used to be at the very end of the block, and balance between leafs 5744 * gets another one with bigger key.offset to replace it. 5745 * 5746 * This one should be returned as well, or we can get leaf corruption 5747 * later(esp. in __btrfs_drop_extents()). 5748 * 5749 * And a bit more explanation about this check, 5750 * with ret > 0, the key isn't found, the path points to the slot 5751 * where it should be inserted, so the path->slots[0] item must be the 5752 * bigger one. 5753 */ 5754 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5755 ret = 0; 5756 goto done; 5757 } 5758 5759 while (level < BTRFS_MAX_LEVEL) { 5760 if (!path->nodes[level]) { 5761 ret = 1; 5762 goto done; 5763 } 5764 5765 slot = path->slots[level] + 1; 5766 c = path->nodes[level]; 5767 if (slot >= btrfs_header_nritems(c)) { 5768 level++; 5769 if (level == BTRFS_MAX_LEVEL) { 5770 ret = 1; 5771 goto done; 5772 } 5773 continue; 5774 } 5775 5776 if (next) { 5777 btrfs_tree_unlock_rw(next, next_rw_lock); 5778 free_extent_buffer(next); 5779 } 5780 5781 next = c; 5782 next_rw_lock = path->locks[level]; 5783 ret = read_block_for_search(root, path, &next, level, 5784 slot, &key); 5785 if (ret == -EAGAIN) 5786 goto again; 5787 5788 if (ret < 0) { 5789 btrfs_release_path(path); 5790 goto done; 5791 } 5792 5793 if (!path->skip_locking) { 5794 ret = btrfs_try_tree_read_lock(next); 5795 if (!ret && time_seq) { 5796 /* 5797 * If we don't get the lock, we may be racing 5798 * with push_leaf_left, holding that lock while 5799 * itself waiting for the leaf we've currently 5800 * locked. To solve this situation, we give up 5801 * on our lock and cycle. 5802 */ 5803 free_extent_buffer(next); 5804 btrfs_release_path(path); 5805 cond_resched(); 5806 goto again; 5807 } 5808 if (!ret) { 5809 btrfs_set_path_blocking(path); 5810 btrfs_tree_read_lock(next); 5811 btrfs_clear_path_blocking(path, next, 5812 BTRFS_READ_LOCK); 5813 } 5814 next_rw_lock = BTRFS_READ_LOCK; 5815 } 5816 break; 5817 } 5818 path->slots[level] = slot; 5819 while (1) { 5820 level--; 5821 c = path->nodes[level]; 5822 if (path->locks[level]) 5823 btrfs_tree_unlock_rw(c, path->locks[level]); 5824 5825 free_extent_buffer(c); 5826 path->nodes[level] = next; 5827 path->slots[level] = 0; 5828 if (!path->skip_locking) 5829 path->locks[level] = next_rw_lock; 5830 if (!level) 5831 break; 5832 5833 ret = read_block_for_search(root, path, &next, level, 5834 0, &key); 5835 if (ret == -EAGAIN) 5836 goto again; 5837 5838 if (ret < 0) { 5839 btrfs_release_path(path); 5840 goto done; 5841 } 5842 5843 if (!path->skip_locking) { 5844 ret = btrfs_try_tree_read_lock(next); 5845 if (!ret) { 5846 btrfs_set_path_blocking(path); 5847 btrfs_tree_read_lock(next); 5848 btrfs_clear_path_blocking(path, next, 5849 BTRFS_READ_LOCK); 5850 } 5851 next_rw_lock = BTRFS_READ_LOCK; 5852 } 5853 } 5854 ret = 0; 5855 done: 5856 unlock_up(path, 0, 1, 0, NULL); 5857 path->leave_spinning = old_spinning; 5858 if (!old_spinning) 5859 btrfs_set_path_blocking(path); 5860 5861 return ret; 5862 } 5863 5864 /* 5865 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5866 * searching until it gets past min_objectid or finds an item of 'type' 5867 * 5868 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5869 */ 5870 int btrfs_previous_item(struct btrfs_root *root, 5871 struct btrfs_path *path, u64 min_objectid, 5872 int type) 5873 { 5874 struct btrfs_key found_key; 5875 struct extent_buffer *leaf; 5876 u32 nritems; 5877 int ret; 5878 5879 while (1) { 5880 if (path->slots[0] == 0) { 5881 btrfs_set_path_blocking(path); 5882 ret = btrfs_prev_leaf(root, path); 5883 if (ret != 0) 5884 return ret; 5885 } else { 5886 path->slots[0]--; 5887 } 5888 leaf = path->nodes[0]; 5889 nritems = btrfs_header_nritems(leaf); 5890 if (nritems == 0) 5891 return 1; 5892 if (path->slots[0] == nritems) 5893 path->slots[0]--; 5894 5895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5896 if (found_key.objectid < min_objectid) 5897 break; 5898 if (found_key.type == type) 5899 return 0; 5900 if (found_key.objectid == min_objectid && 5901 found_key.type < type) 5902 break; 5903 } 5904 return 1; 5905 } 5906 5907 /* 5908 * search in extent tree to find a previous Metadata/Data extent item with 5909 * min objecitd. 5910 * 5911 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5912 */ 5913 int btrfs_previous_extent_item(struct btrfs_root *root, 5914 struct btrfs_path *path, u64 min_objectid) 5915 { 5916 struct btrfs_key found_key; 5917 struct extent_buffer *leaf; 5918 u32 nritems; 5919 int ret; 5920 5921 while (1) { 5922 if (path->slots[0] == 0) { 5923 btrfs_set_path_blocking(path); 5924 ret = btrfs_prev_leaf(root, path); 5925 if (ret != 0) 5926 return ret; 5927 } else { 5928 path->slots[0]--; 5929 } 5930 leaf = path->nodes[0]; 5931 nritems = btrfs_header_nritems(leaf); 5932 if (nritems == 0) 5933 return 1; 5934 if (path->slots[0] == nritems) 5935 path->slots[0]--; 5936 5937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5938 if (found_key.objectid < min_objectid) 5939 break; 5940 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5941 found_key.type == BTRFS_METADATA_ITEM_KEY) 5942 return 0; 5943 if (found_key.objectid == min_objectid && 5944 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5945 break; 5946 } 5947 return 1; 5948 } 5949