1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include "ctree.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "locking.h" 25 26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 27 *root, struct btrfs_path *path, int level); 28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_key *ins_key, 30 struct btrfs_path *path, int data_size, int extend); 31 static int push_node_left(struct btrfs_trans_handle *trans, 32 struct btrfs_root *root, struct extent_buffer *dst, 33 struct extent_buffer *src, int empty); 34 static int balance_node_right(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, 36 struct extent_buffer *dst_buf, 37 struct extent_buffer *src_buf); 38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 39 struct btrfs_path *path, int level, int slot); 40 41 struct btrfs_path *btrfs_alloc_path(void) 42 { 43 struct btrfs_path *path; 44 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 45 if (path) 46 path->reada = 1; 47 return path; 48 } 49 50 /* 51 * set all locked nodes in the path to blocking locks. This should 52 * be done before scheduling 53 */ 54 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 55 { 56 int i; 57 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 58 if (p->nodes[i] && p->locks[i]) 59 btrfs_set_lock_blocking(p->nodes[i]); 60 } 61 } 62 63 /* 64 * reset all the locked nodes in the patch to spinning locks. 65 * 66 * held is used to keep lockdep happy, when lockdep is enabled 67 * we set held to a blocking lock before we go around and 68 * retake all the spinlocks in the path. You can safely use NULL 69 * for held 70 */ 71 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 72 struct extent_buffer *held) 73 { 74 int i; 75 76 #ifdef CONFIG_DEBUG_LOCK_ALLOC 77 /* lockdep really cares that we take all of these spinlocks 78 * in the right order. If any of the locks in the path are not 79 * currently blocking, it is going to complain. So, make really 80 * really sure by forcing the path to blocking before we clear 81 * the path blocking. 82 */ 83 if (held) 84 btrfs_set_lock_blocking(held); 85 btrfs_set_path_blocking(p); 86 #endif 87 88 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 89 if (p->nodes[i] && p->locks[i]) 90 btrfs_clear_lock_blocking(p->nodes[i]); 91 } 92 93 #ifdef CONFIG_DEBUG_LOCK_ALLOC 94 if (held) 95 btrfs_clear_lock_blocking(held); 96 #endif 97 } 98 99 /* this also releases the path */ 100 void btrfs_free_path(struct btrfs_path *p) 101 { 102 btrfs_release_path(NULL, p); 103 kmem_cache_free(btrfs_path_cachep, p); 104 } 105 106 /* 107 * path release drops references on the extent buffers in the path 108 * and it drops any locks held by this path 109 * 110 * It is safe to call this on paths that no locks or extent buffers held. 111 */ 112 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 113 { 114 int i; 115 116 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 117 p->slots[i] = 0; 118 if (!p->nodes[i]) 119 continue; 120 if (p->locks[i]) { 121 btrfs_tree_unlock(p->nodes[i]); 122 p->locks[i] = 0; 123 } 124 free_extent_buffer(p->nodes[i]); 125 p->nodes[i] = NULL; 126 } 127 } 128 129 /* 130 * safely gets a reference on the root node of a tree. A lock 131 * is not taken, so a concurrent writer may put a different node 132 * at the root of the tree. See btrfs_lock_root_node for the 133 * looping required. 134 * 135 * The extent buffer returned by this has a reference taken, so 136 * it won't disappear. It may stop being the root of the tree 137 * at any time because there are no locks held. 138 */ 139 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 140 { 141 struct extent_buffer *eb; 142 spin_lock(&root->node_lock); 143 eb = root->node; 144 extent_buffer_get(eb); 145 spin_unlock(&root->node_lock); 146 return eb; 147 } 148 149 /* loop around taking references on and locking the root node of the 150 * tree until you end up with a lock on the root. A locked buffer 151 * is returned, with a reference held. 152 */ 153 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 154 { 155 struct extent_buffer *eb; 156 157 while (1) { 158 eb = btrfs_root_node(root); 159 btrfs_tree_lock(eb); 160 161 spin_lock(&root->node_lock); 162 if (eb == root->node) { 163 spin_unlock(&root->node_lock); 164 break; 165 } 166 spin_unlock(&root->node_lock); 167 168 btrfs_tree_unlock(eb); 169 free_extent_buffer(eb); 170 } 171 return eb; 172 } 173 174 /* cowonly root (everything not a reference counted cow subvolume), just get 175 * put onto a simple dirty list. transaction.c walks this to make sure they 176 * get properly updated on disk. 177 */ 178 static void add_root_to_dirty_list(struct btrfs_root *root) 179 { 180 if (root->track_dirty && list_empty(&root->dirty_list)) { 181 list_add(&root->dirty_list, 182 &root->fs_info->dirty_cowonly_roots); 183 } 184 } 185 186 /* 187 * used by snapshot creation to make a copy of a root for a tree with 188 * a given objectid. The buffer with the new root node is returned in 189 * cow_ret, and this func returns zero on success or a negative error code. 190 */ 191 int btrfs_copy_root(struct btrfs_trans_handle *trans, 192 struct btrfs_root *root, 193 struct extent_buffer *buf, 194 struct extent_buffer **cow_ret, u64 new_root_objectid) 195 { 196 struct extent_buffer *cow; 197 u32 nritems; 198 int ret = 0; 199 int level; 200 struct btrfs_root *new_root; 201 202 new_root = kmalloc(sizeof(*new_root), GFP_NOFS); 203 if (!new_root) 204 return -ENOMEM; 205 206 memcpy(new_root, root, sizeof(*new_root)); 207 new_root->root_key.objectid = new_root_objectid; 208 209 WARN_ON(root->ref_cows && trans->transid != 210 root->fs_info->running_transaction->transid); 211 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 212 213 level = btrfs_header_level(buf); 214 nritems = btrfs_header_nritems(buf); 215 216 cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0, 217 new_root_objectid, trans->transid, 218 level, buf->start, 0); 219 if (IS_ERR(cow)) { 220 kfree(new_root); 221 return PTR_ERR(cow); 222 } 223 224 copy_extent_buffer(cow, buf, 0, 0, cow->len); 225 btrfs_set_header_bytenr(cow, cow->start); 226 btrfs_set_header_generation(cow, trans->transid); 227 btrfs_set_header_owner(cow, new_root_objectid); 228 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 229 230 write_extent_buffer(cow, root->fs_info->fsid, 231 (unsigned long)btrfs_header_fsid(cow), 232 BTRFS_FSID_SIZE); 233 234 WARN_ON(btrfs_header_generation(buf) > trans->transid); 235 ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL); 236 kfree(new_root); 237 238 if (ret) 239 return ret; 240 241 btrfs_mark_buffer_dirty(cow); 242 *cow_ret = cow; 243 return 0; 244 } 245 246 /* 247 * does the dirty work in cow of a single block. The parent block (if 248 * supplied) is updated to point to the new cow copy. The new buffer is marked 249 * dirty and returned locked. If you modify the block it needs to be marked 250 * dirty again. 251 * 252 * search_start -- an allocation hint for the new block 253 * 254 * empty_size -- a hint that you plan on doing more cow. This is the size in 255 * bytes the allocator should try to find free next to the block it returns. 256 * This is just a hint and may be ignored by the allocator. 257 */ 258 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 259 struct btrfs_root *root, 260 struct extent_buffer *buf, 261 struct extent_buffer *parent, int parent_slot, 262 struct extent_buffer **cow_ret, 263 u64 search_start, u64 empty_size) 264 { 265 u64 parent_start; 266 struct extent_buffer *cow; 267 u32 nritems; 268 int ret = 0; 269 int level; 270 int unlock_orig = 0; 271 272 if (*cow_ret == buf) 273 unlock_orig = 1; 274 275 btrfs_assert_tree_locked(buf); 276 277 if (parent) 278 parent_start = parent->start; 279 else 280 parent_start = 0; 281 282 WARN_ON(root->ref_cows && trans->transid != 283 root->fs_info->running_transaction->transid); 284 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 285 286 level = btrfs_header_level(buf); 287 nritems = btrfs_header_nritems(buf); 288 289 cow = btrfs_alloc_free_block(trans, root, buf->len, 290 parent_start, root->root_key.objectid, 291 trans->transid, level, 292 search_start, empty_size); 293 if (IS_ERR(cow)) 294 return PTR_ERR(cow); 295 296 /* cow is set to blocking by btrfs_init_new_buffer */ 297 298 copy_extent_buffer(cow, buf, 0, 0, cow->len); 299 btrfs_set_header_bytenr(cow, cow->start); 300 btrfs_set_header_generation(cow, trans->transid); 301 btrfs_set_header_owner(cow, root->root_key.objectid); 302 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN); 303 304 write_extent_buffer(cow, root->fs_info->fsid, 305 (unsigned long)btrfs_header_fsid(cow), 306 BTRFS_FSID_SIZE); 307 308 WARN_ON(btrfs_header_generation(buf) > trans->transid); 309 if (btrfs_header_generation(buf) != trans->transid) { 310 u32 nr_extents; 311 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents); 312 if (ret) 313 return ret; 314 315 ret = btrfs_cache_ref(trans, root, buf, nr_extents); 316 WARN_ON(ret); 317 } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) { 318 /* 319 * There are only two places that can drop reference to 320 * tree blocks owned by living reloc trees, one is here, 321 * the other place is btrfs_drop_subtree. In both places, 322 * we check reference count while tree block is locked. 323 * Furthermore, if reference count is one, it won't get 324 * increased by someone else. 325 */ 326 u32 refs; 327 ret = btrfs_lookup_extent_ref(trans, root, buf->start, 328 buf->len, &refs); 329 BUG_ON(ret); 330 if (refs == 1) { 331 ret = btrfs_update_ref(trans, root, buf, cow, 332 0, nritems); 333 clean_tree_block(trans, root, buf); 334 } else { 335 ret = btrfs_inc_ref(trans, root, buf, cow, NULL); 336 } 337 BUG_ON(ret); 338 } else { 339 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems); 340 if (ret) 341 return ret; 342 clean_tree_block(trans, root, buf); 343 } 344 345 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 346 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start); 347 WARN_ON(ret); 348 } 349 350 if (buf == root->node) { 351 WARN_ON(parent && parent != buf); 352 353 spin_lock(&root->node_lock); 354 root->node = cow; 355 extent_buffer_get(cow); 356 spin_unlock(&root->node_lock); 357 358 if (buf != root->commit_root) { 359 btrfs_free_extent(trans, root, buf->start, 360 buf->len, buf->start, 361 root->root_key.objectid, 362 btrfs_header_generation(buf), 363 level, 1); 364 } 365 free_extent_buffer(buf); 366 add_root_to_dirty_list(root); 367 } else { 368 btrfs_set_node_blockptr(parent, parent_slot, 369 cow->start); 370 WARN_ON(trans->transid == 0); 371 btrfs_set_node_ptr_generation(parent, parent_slot, 372 trans->transid); 373 btrfs_mark_buffer_dirty(parent); 374 WARN_ON(btrfs_header_generation(parent) != trans->transid); 375 btrfs_free_extent(trans, root, buf->start, buf->len, 376 parent_start, btrfs_header_owner(parent), 377 btrfs_header_generation(parent), level, 1); 378 } 379 if (unlock_orig) 380 btrfs_tree_unlock(buf); 381 free_extent_buffer(buf); 382 btrfs_mark_buffer_dirty(cow); 383 *cow_ret = cow; 384 return 0; 385 } 386 387 /* 388 * cows a single block, see __btrfs_cow_block for the real work. 389 * This version of it has extra checks so that a block isn't cow'd more than 390 * once per transaction, as long as it hasn't been written yet 391 */ 392 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 393 struct btrfs_root *root, struct extent_buffer *buf, 394 struct extent_buffer *parent, int parent_slot, 395 struct extent_buffer **cow_ret) 396 { 397 u64 search_start; 398 int ret; 399 400 if (trans->transaction != root->fs_info->running_transaction) { 401 printk(KERN_CRIT "trans %llu running %llu\n", 402 (unsigned long long)trans->transid, 403 (unsigned long long) 404 root->fs_info->running_transaction->transid); 405 WARN_ON(1); 406 } 407 if (trans->transid != root->fs_info->generation) { 408 printk(KERN_CRIT "trans %llu running %llu\n", 409 (unsigned long long)trans->transid, 410 (unsigned long long)root->fs_info->generation); 411 WARN_ON(1); 412 } 413 414 if (btrfs_header_generation(buf) == trans->transid && 415 btrfs_header_owner(buf) == root->root_key.objectid && 416 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) { 417 *cow_ret = buf; 418 return 0; 419 } 420 421 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 422 423 if (parent) 424 btrfs_set_lock_blocking(parent); 425 btrfs_set_lock_blocking(buf); 426 427 ret = __btrfs_cow_block(trans, root, buf, parent, 428 parent_slot, cow_ret, search_start, 0); 429 return ret; 430 } 431 432 /* 433 * helper function for defrag to decide if two blocks pointed to by a 434 * node are actually close by 435 */ 436 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 437 { 438 if (blocknr < other && other - (blocknr + blocksize) < 32768) 439 return 1; 440 if (blocknr > other && blocknr - (other + blocksize) < 32768) 441 return 1; 442 return 0; 443 } 444 445 /* 446 * compare two keys in a memcmp fashion 447 */ 448 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 449 { 450 struct btrfs_key k1; 451 452 btrfs_disk_key_to_cpu(&k1, disk); 453 454 if (k1.objectid > k2->objectid) 455 return 1; 456 if (k1.objectid < k2->objectid) 457 return -1; 458 if (k1.type > k2->type) 459 return 1; 460 if (k1.type < k2->type) 461 return -1; 462 if (k1.offset > k2->offset) 463 return 1; 464 if (k1.offset < k2->offset) 465 return -1; 466 return 0; 467 } 468 469 /* 470 * same as comp_keys only with two btrfs_key's 471 */ 472 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 473 { 474 if (k1->objectid > k2->objectid) 475 return 1; 476 if (k1->objectid < k2->objectid) 477 return -1; 478 if (k1->type > k2->type) 479 return 1; 480 if (k1->type < k2->type) 481 return -1; 482 if (k1->offset > k2->offset) 483 return 1; 484 if (k1->offset < k2->offset) 485 return -1; 486 return 0; 487 } 488 489 /* 490 * this is used by the defrag code to go through all the 491 * leaves pointed to by a node and reallocate them so that 492 * disk order is close to key order 493 */ 494 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 495 struct btrfs_root *root, struct extent_buffer *parent, 496 int start_slot, int cache_only, u64 *last_ret, 497 struct btrfs_key *progress) 498 { 499 struct extent_buffer *cur; 500 u64 blocknr; 501 u64 gen; 502 u64 search_start = *last_ret; 503 u64 last_block = 0; 504 u64 other; 505 u32 parent_nritems; 506 int end_slot; 507 int i; 508 int err = 0; 509 int parent_level; 510 int uptodate; 511 u32 blocksize; 512 int progress_passed = 0; 513 struct btrfs_disk_key disk_key; 514 515 parent_level = btrfs_header_level(parent); 516 if (cache_only && parent_level != 1) 517 return 0; 518 519 if (trans->transaction != root->fs_info->running_transaction) 520 WARN_ON(1); 521 if (trans->transid != root->fs_info->generation) 522 WARN_ON(1); 523 524 parent_nritems = btrfs_header_nritems(parent); 525 blocksize = btrfs_level_size(root, parent_level - 1); 526 end_slot = parent_nritems; 527 528 if (parent_nritems == 1) 529 return 0; 530 531 btrfs_set_lock_blocking(parent); 532 533 for (i = start_slot; i < end_slot; i++) { 534 int close = 1; 535 536 if (!parent->map_token) { 537 map_extent_buffer(parent, 538 btrfs_node_key_ptr_offset(i), 539 sizeof(struct btrfs_key_ptr), 540 &parent->map_token, &parent->kaddr, 541 &parent->map_start, &parent->map_len, 542 KM_USER1); 543 } 544 btrfs_node_key(parent, &disk_key, i); 545 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 546 continue; 547 548 progress_passed = 1; 549 blocknr = btrfs_node_blockptr(parent, i); 550 gen = btrfs_node_ptr_generation(parent, i); 551 if (last_block == 0) 552 last_block = blocknr; 553 554 if (i > 0) { 555 other = btrfs_node_blockptr(parent, i - 1); 556 close = close_blocks(blocknr, other, blocksize); 557 } 558 if (!close && i < end_slot - 2) { 559 other = btrfs_node_blockptr(parent, i + 1); 560 close = close_blocks(blocknr, other, blocksize); 561 } 562 if (close) { 563 last_block = blocknr; 564 continue; 565 } 566 if (parent->map_token) { 567 unmap_extent_buffer(parent, parent->map_token, 568 KM_USER1); 569 parent->map_token = NULL; 570 } 571 572 cur = btrfs_find_tree_block(root, blocknr, blocksize); 573 if (cur) 574 uptodate = btrfs_buffer_uptodate(cur, gen); 575 else 576 uptodate = 0; 577 if (!cur || !uptodate) { 578 if (cache_only) { 579 free_extent_buffer(cur); 580 continue; 581 } 582 if (!cur) { 583 cur = read_tree_block(root, blocknr, 584 blocksize, gen); 585 } else if (!uptodate) { 586 btrfs_read_buffer(cur, gen); 587 } 588 } 589 if (search_start == 0) 590 search_start = last_block; 591 592 btrfs_tree_lock(cur); 593 btrfs_set_lock_blocking(cur); 594 err = __btrfs_cow_block(trans, root, cur, parent, i, 595 &cur, search_start, 596 min(16 * blocksize, 597 (end_slot - i) * blocksize)); 598 if (err) { 599 btrfs_tree_unlock(cur); 600 free_extent_buffer(cur); 601 break; 602 } 603 search_start = cur->start; 604 last_block = cur->start; 605 *last_ret = search_start; 606 btrfs_tree_unlock(cur); 607 free_extent_buffer(cur); 608 } 609 if (parent->map_token) { 610 unmap_extent_buffer(parent, parent->map_token, 611 KM_USER1); 612 parent->map_token = NULL; 613 } 614 return err; 615 } 616 617 /* 618 * The leaf data grows from end-to-front in the node. 619 * this returns the address of the start of the last item, 620 * which is the stop of the leaf data stack 621 */ 622 static inline unsigned int leaf_data_end(struct btrfs_root *root, 623 struct extent_buffer *leaf) 624 { 625 u32 nr = btrfs_header_nritems(leaf); 626 if (nr == 0) 627 return BTRFS_LEAF_DATA_SIZE(root); 628 return btrfs_item_offset_nr(leaf, nr - 1); 629 } 630 631 /* 632 * extra debugging checks to make sure all the items in a key are 633 * well formed and in the proper order 634 */ 635 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 636 int level) 637 { 638 struct extent_buffer *parent = NULL; 639 struct extent_buffer *node = path->nodes[level]; 640 struct btrfs_disk_key parent_key; 641 struct btrfs_disk_key node_key; 642 int parent_slot; 643 int slot; 644 struct btrfs_key cpukey; 645 u32 nritems = btrfs_header_nritems(node); 646 647 if (path->nodes[level + 1]) 648 parent = path->nodes[level + 1]; 649 650 slot = path->slots[level]; 651 BUG_ON(nritems == 0); 652 if (parent) { 653 parent_slot = path->slots[level + 1]; 654 btrfs_node_key(parent, &parent_key, parent_slot); 655 btrfs_node_key(node, &node_key, 0); 656 BUG_ON(memcmp(&parent_key, &node_key, 657 sizeof(struct btrfs_disk_key))); 658 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 659 btrfs_header_bytenr(node)); 660 } 661 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 662 if (slot != 0) { 663 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 664 btrfs_node_key(node, &node_key, slot); 665 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 666 } 667 if (slot < nritems - 1) { 668 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 669 btrfs_node_key(node, &node_key, slot); 670 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 671 } 672 return 0; 673 } 674 675 /* 676 * extra checking to make sure all the items in a leaf are 677 * well formed and in the proper order 678 */ 679 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 680 int level) 681 { 682 struct extent_buffer *leaf = path->nodes[level]; 683 struct extent_buffer *parent = NULL; 684 int parent_slot; 685 struct btrfs_key cpukey; 686 struct btrfs_disk_key parent_key; 687 struct btrfs_disk_key leaf_key; 688 int slot = path->slots[0]; 689 690 u32 nritems = btrfs_header_nritems(leaf); 691 692 if (path->nodes[level + 1]) 693 parent = path->nodes[level + 1]; 694 695 if (nritems == 0) 696 return 0; 697 698 if (parent) { 699 parent_slot = path->slots[level + 1]; 700 btrfs_node_key(parent, &parent_key, parent_slot); 701 btrfs_item_key(leaf, &leaf_key, 0); 702 703 BUG_ON(memcmp(&parent_key, &leaf_key, 704 sizeof(struct btrfs_disk_key))); 705 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 706 btrfs_header_bytenr(leaf)); 707 } 708 if (slot != 0 && slot < nritems - 1) { 709 btrfs_item_key(leaf, &leaf_key, slot); 710 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 711 if (comp_keys(&leaf_key, &cpukey) <= 0) { 712 btrfs_print_leaf(root, leaf); 713 printk(KERN_CRIT "slot %d offset bad key\n", slot); 714 BUG_ON(1); 715 } 716 if (btrfs_item_offset_nr(leaf, slot - 1) != 717 btrfs_item_end_nr(leaf, slot)) { 718 btrfs_print_leaf(root, leaf); 719 printk(KERN_CRIT "slot %d offset bad\n", slot); 720 BUG_ON(1); 721 } 722 } 723 if (slot < nritems - 1) { 724 btrfs_item_key(leaf, &leaf_key, slot); 725 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 726 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 727 if (btrfs_item_offset_nr(leaf, slot) != 728 btrfs_item_end_nr(leaf, slot + 1)) { 729 btrfs_print_leaf(root, leaf); 730 printk(KERN_CRIT "slot %d offset bad\n", slot); 731 BUG_ON(1); 732 } 733 } 734 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 735 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 736 return 0; 737 } 738 739 static noinline int check_block(struct btrfs_root *root, 740 struct btrfs_path *path, int level) 741 { 742 return 0; 743 if (level == 0) 744 return check_leaf(root, path, level); 745 return check_node(root, path, level); 746 } 747 748 /* 749 * search for key in the extent_buffer. The items start at offset p, 750 * and they are item_size apart. There are 'max' items in p. 751 * 752 * the slot in the array is returned via slot, and it points to 753 * the place where you would insert key if it is not found in 754 * the array. 755 * 756 * slot may point to max if the key is bigger than all of the keys 757 */ 758 static noinline int generic_bin_search(struct extent_buffer *eb, 759 unsigned long p, 760 int item_size, struct btrfs_key *key, 761 int max, int *slot) 762 { 763 int low = 0; 764 int high = max; 765 int mid; 766 int ret; 767 struct btrfs_disk_key *tmp = NULL; 768 struct btrfs_disk_key unaligned; 769 unsigned long offset; 770 char *map_token = NULL; 771 char *kaddr = NULL; 772 unsigned long map_start = 0; 773 unsigned long map_len = 0; 774 int err; 775 776 while (low < high) { 777 mid = (low + high) / 2; 778 offset = p + mid * item_size; 779 780 if (!map_token || offset < map_start || 781 (offset + sizeof(struct btrfs_disk_key)) > 782 map_start + map_len) { 783 if (map_token) { 784 unmap_extent_buffer(eb, map_token, KM_USER0); 785 map_token = NULL; 786 } 787 788 err = map_private_extent_buffer(eb, offset, 789 sizeof(struct btrfs_disk_key), 790 &map_token, &kaddr, 791 &map_start, &map_len, KM_USER0); 792 793 if (!err) { 794 tmp = (struct btrfs_disk_key *)(kaddr + offset - 795 map_start); 796 } else { 797 read_extent_buffer(eb, &unaligned, 798 offset, sizeof(unaligned)); 799 tmp = &unaligned; 800 } 801 802 } else { 803 tmp = (struct btrfs_disk_key *)(kaddr + offset - 804 map_start); 805 } 806 ret = comp_keys(tmp, key); 807 808 if (ret < 0) 809 low = mid + 1; 810 else if (ret > 0) 811 high = mid; 812 else { 813 *slot = mid; 814 if (map_token) 815 unmap_extent_buffer(eb, map_token, KM_USER0); 816 return 0; 817 } 818 } 819 *slot = low; 820 if (map_token) 821 unmap_extent_buffer(eb, map_token, KM_USER0); 822 return 1; 823 } 824 825 /* 826 * simple bin_search frontend that does the right thing for 827 * leaves vs nodes 828 */ 829 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 830 int level, int *slot) 831 { 832 if (level == 0) { 833 return generic_bin_search(eb, 834 offsetof(struct btrfs_leaf, items), 835 sizeof(struct btrfs_item), 836 key, btrfs_header_nritems(eb), 837 slot); 838 } else { 839 return generic_bin_search(eb, 840 offsetof(struct btrfs_node, ptrs), 841 sizeof(struct btrfs_key_ptr), 842 key, btrfs_header_nritems(eb), 843 slot); 844 } 845 return -1; 846 } 847 848 /* given a node and slot number, this reads the blocks it points to. The 849 * extent buffer is returned with a reference taken (but unlocked). 850 * NULL is returned on error. 851 */ 852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 853 struct extent_buffer *parent, int slot) 854 { 855 int level = btrfs_header_level(parent); 856 if (slot < 0) 857 return NULL; 858 if (slot >= btrfs_header_nritems(parent)) 859 return NULL; 860 861 BUG_ON(level == 0); 862 863 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 864 btrfs_level_size(root, level - 1), 865 btrfs_node_ptr_generation(parent, slot)); 866 } 867 868 /* 869 * node level balancing, used to make sure nodes are in proper order for 870 * item deletion. We balance from the top down, so we have to make sure 871 * that a deletion won't leave an node completely empty later on. 872 */ 873 static noinline int balance_level(struct btrfs_trans_handle *trans, 874 struct btrfs_root *root, 875 struct btrfs_path *path, int level) 876 { 877 struct extent_buffer *right = NULL; 878 struct extent_buffer *mid; 879 struct extent_buffer *left = NULL; 880 struct extent_buffer *parent = NULL; 881 int ret = 0; 882 int wret; 883 int pslot; 884 int orig_slot = path->slots[level]; 885 int err_on_enospc = 0; 886 u64 orig_ptr; 887 888 if (level == 0) 889 return 0; 890 891 mid = path->nodes[level]; 892 893 WARN_ON(!path->locks[level]); 894 WARN_ON(btrfs_header_generation(mid) != trans->transid); 895 896 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 897 898 if (level < BTRFS_MAX_LEVEL - 1) 899 parent = path->nodes[level + 1]; 900 pslot = path->slots[level + 1]; 901 902 /* 903 * deal with the case where there is only one pointer in the root 904 * by promoting the node below to a root 905 */ 906 if (!parent) { 907 struct extent_buffer *child; 908 909 if (btrfs_header_nritems(mid) != 1) 910 return 0; 911 912 /* promote the child to a root */ 913 child = read_node_slot(root, mid, 0); 914 BUG_ON(!child); 915 btrfs_tree_lock(child); 916 btrfs_set_lock_blocking(child); 917 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 918 BUG_ON(ret); 919 920 spin_lock(&root->node_lock); 921 root->node = child; 922 spin_unlock(&root->node_lock); 923 924 ret = btrfs_update_extent_ref(trans, root, child->start, 925 child->len, 926 mid->start, child->start, 927 root->root_key.objectid, 928 trans->transid, level - 1); 929 BUG_ON(ret); 930 931 add_root_to_dirty_list(root); 932 btrfs_tree_unlock(child); 933 934 path->locks[level] = 0; 935 path->nodes[level] = NULL; 936 clean_tree_block(trans, root, mid); 937 btrfs_tree_unlock(mid); 938 /* once for the path */ 939 free_extent_buffer(mid); 940 ret = btrfs_free_extent(trans, root, mid->start, mid->len, 941 mid->start, root->root_key.objectid, 942 btrfs_header_generation(mid), 943 level, 1); 944 /* once for the root ptr */ 945 free_extent_buffer(mid); 946 return ret; 947 } 948 if (btrfs_header_nritems(mid) > 949 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 950 return 0; 951 952 if (trans->transaction->delayed_refs.flushing && 953 btrfs_header_nritems(mid) > 2) 954 return 0; 955 956 if (btrfs_header_nritems(mid) < 2) 957 err_on_enospc = 1; 958 959 left = read_node_slot(root, parent, pslot - 1); 960 if (left) { 961 btrfs_tree_lock(left); 962 btrfs_set_lock_blocking(left); 963 wret = btrfs_cow_block(trans, root, left, 964 parent, pslot - 1, &left); 965 if (wret) { 966 ret = wret; 967 goto enospc; 968 } 969 } 970 right = read_node_slot(root, parent, pslot + 1); 971 if (right) { 972 btrfs_tree_lock(right); 973 btrfs_set_lock_blocking(right); 974 wret = btrfs_cow_block(trans, root, right, 975 parent, pslot + 1, &right); 976 if (wret) { 977 ret = wret; 978 goto enospc; 979 } 980 } 981 982 /* first, try to make some room in the middle buffer */ 983 if (left) { 984 orig_slot += btrfs_header_nritems(left); 985 wret = push_node_left(trans, root, left, mid, 1); 986 if (wret < 0) 987 ret = wret; 988 if (btrfs_header_nritems(mid) < 2) 989 err_on_enospc = 1; 990 } 991 992 /* 993 * then try to empty the right most buffer into the middle 994 */ 995 if (right) { 996 wret = push_node_left(trans, root, mid, right, 1); 997 if (wret < 0 && wret != -ENOSPC) 998 ret = wret; 999 if (btrfs_header_nritems(right) == 0) { 1000 u64 bytenr = right->start; 1001 u64 generation = btrfs_header_generation(parent); 1002 u32 blocksize = right->len; 1003 1004 clean_tree_block(trans, root, right); 1005 btrfs_tree_unlock(right); 1006 free_extent_buffer(right); 1007 right = NULL; 1008 wret = del_ptr(trans, root, path, level + 1, pslot + 1009 1); 1010 if (wret) 1011 ret = wret; 1012 wret = btrfs_free_extent(trans, root, bytenr, 1013 blocksize, parent->start, 1014 btrfs_header_owner(parent), 1015 generation, level, 1); 1016 if (wret) 1017 ret = wret; 1018 } else { 1019 struct btrfs_disk_key right_key; 1020 btrfs_node_key(right, &right_key, 0); 1021 btrfs_set_node_key(parent, &right_key, pslot + 1); 1022 btrfs_mark_buffer_dirty(parent); 1023 } 1024 } 1025 if (btrfs_header_nritems(mid) == 1) { 1026 /* 1027 * we're not allowed to leave a node with one item in the 1028 * tree during a delete. A deletion from lower in the tree 1029 * could try to delete the only pointer in this node. 1030 * So, pull some keys from the left. 1031 * There has to be a left pointer at this point because 1032 * otherwise we would have pulled some pointers from the 1033 * right 1034 */ 1035 BUG_ON(!left); 1036 wret = balance_node_right(trans, root, mid, left); 1037 if (wret < 0) { 1038 ret = wret; 1039 goto enospc; 1040 } 1041 if (wret == 1) { 1042 wret = push_node_left(trans, root, left, mid, 1); 1043 if (wret < 0) 1044 ret = wret; 1045 } 1046 BUG_ON(wret == 1); 1047 } 1048 if (btrfs_header_nritems(mid) == 0) { 1049 /* we've managed to empty the middle node, drop it */ 1050 u64 root_gen = btrfs_header_generation(parent); 1051 u64 bytenr = mid->start; 1052 u32 blocksize = mid->len; 1053 1054 clean_tree_block(trans, root, mid); 1055 btrfs_tree_unlock(mid); 1056 free_extent_buffer(mid); 1057 mid = NULL; 1058 wret = del_ptr(trans, root, path, level + 1, pslot); 1059 if (wret) 1060 ret = wret; 1061 wret = btrfs_free_extent(trans, root, bytenr, blocksize, 1062 parent->start, 1063 btrfs_header_owner(parent), 1064 root_gen, level, 1); 1065 if (wret) 1066 ret = wret; 1067 } else { 1068 /* update the parent key to reflect our changes */ 1069 struct btrfs_disk_key mid_key; 1070 btrfs_node_key(mid, &mid_key, 0); 1071 btrfs_set_node_key(parent, &mid_key, pslot); 1072 btrfs_mark_buffer_dirty(parent); 1073 } 1074 1075 /* update the path */ 1076 if (left) { 1077 if (btrfs_header_nritems(left) > orig_slot) { 1078 extent_buffer_get(left); 1079 /* left was locked after cow */ 1080 path->nodes[level] = left; 1081 path->slots[level + 1] -= 1; 1082 path->slots[level] = orig_slot; 1083 if (mid) { 1084 btrfs_tree_unlock(mid); 1085 free_extent_buffer(mid); 1086 } 1087 } else { 1088 orig_slot -= btrfs_header_nritems(left); 1089 path->slots[level] = orig_slot; 1090 } 1091 } 1092 /* double check we haven't messed things up */ 1093 check_block(root, path, level); 1094 if (orig_ptr != 1095 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1096 BUG(); 1097 enospc: 1098 if (right) { 1099 btrfs_tree_unlock(right); 1100 free_extent_buffer(right); 1101 } 1102 if (left) { 1103 if (path->nodes[level] != left) 1104 btrfs_tree_unlock(left); 1105 free_extent_buffer(left); 1106 } 1107 return ret; 1108 } 1109 1110 /* Node balancing for insertion. Here we only split or push nodes around 1111 * when they are completely full. This is also done top down, so we 1112 * have to be pessimistic. 1113 */ 1114 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1115 struct btrfs_root *root, 1116 struct btrfs_path *path, int level) 1117 { 1118 struct extent_buffer *right = NULL; 1119 struct extent_buffer *mid; 1120 struct extent_buffer *left = NULL; 1121 struct extent_buffer *parent = NULL; 1122 int ret = 0; 1123 int wret; 1124 int pslot; 1125 int orig_slot = path->slots[level]; 1126 u64 orig_ptr; 1127 1128 if (level == 0) 1129 return 1; 1130 1131 mid = path->nodes[level]; 1132 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1133 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1134 1135 if (level < BTRFS_MAX_LEVEL - 1) 1136 parent = path->nodes[level + 1]; 1137 pslot = path->slots[level + 1]; 1138 1139 if (!parent) 1140 return 1; 1141 1142 left = read_node_slot(root, parent, pslot - 1); 1143 1144 /* first, try to make some room in the middle buffer */ 1145 if (left) { 1146 u32 left_nr; 1147 1148 btrfs_tree_lock(left); 1149 btrfs_set_lock_blocking(left); 1150 1151 left_nr = btrfs_header_nritems(left); 1152 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1153 wret = 1; 1154 } else { 1155 ret = btrfs_cow_block(trans, root, left, parent, 1156 pslot - 1, &left); 1157 if (ret) 1158 wret = 1; 1159 else { 1160 wret = push_node_left(trans, root, 1161 left, mid, 0); 1162 } 1163 } 1164 if (wret < 0) 1165 ret = wret; 1166 if (wret == 0) { 1167 struct btrfs_disk_key disk_key; 1168 orig_slot += left_nr; 1169 btrfs_node_key(mid, &disk_key, 0); 1170 btrfs_set_node_key(parent, &disk_key, pslot); 1171 btrfs_mark_buffer_dirty(parent); 1172 if (btrfs_header_nritems(left) > orig_slot) { 1173 path->nodes[level] = left; 1174 path->slots[level + 1] -= 1; 1175 path->slots[level] = orig_slot; 1176 btrfs_tree_unlock(mid); 1177 free_extent_buffer(mid); 1178 } else { 1179 orig_slot -= 1180 btrfs_header_nritems(left); 1181 path->slots[level] = orig_slot; 1182 btrfs_tree_unlock(left); 1183 free_extent_buffer(left); 1184 } 1185 return 0; 1186 } 1187 btrfs_tree_unlock(left); 1188 free_extent_buffer(left); 1189 } 1190 right = read_node_slot(root, parent, pslot + 1); 1191 1192 /* 1193 * then try to empty the right most buffer into the middle 1194 */ 1195 if (right) { 1196 u32 right_nr; 1197 1198 btrfs_tree_lock(right); 1199 btrfs_set_lock_blocking(right); 1200 1201 right_nr = btrfs_header_nritems(right); 1202 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1203 wret = 1; 1204 } else { 1205 ret = btrfs_cow_block(trans, root, right, 1206 parent, pslot + 1, 1207 &right); 1208 if (ret) 1209 wret = 1; 1210 else { 1211 wret = balance_node_right(trans, root, 1212 right, mid); 1213 } 1214 } 1215 if (wret < 0) 1216 ret = wret; 1217 if (wret == 0) { 1218 struct btrfs_disk_key disk_key; 1219 1220 btrfs_node_key(right, &disk_key, 0); 1221 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1222 btrfs_mark_buffer_dirty(parent); 1223 1224 if (btrfs_header_nritems(mid) <= orig_slot) { 1225 path->nodes[level] = right; 1226 path->slots[level + 1] += 1; 1227 path->slots[level] = orig_slot - 1228 btrfs_header_nritems(mid); 1229 btrfs_tree_unlock(mid); 1230 free_extent_buffer(mid); 1231 } else { 1232 btrfs_tree_unlock(right); 1233 free_extent_buffer(right); 1234 } 1235 return 0; 1236 } 1237 btrfs_tree_unlock(right); 1238 free_extent_buffer(right); 1239 } 1240 return 1; 1241 } 1242 1243 /* 1244 * readahead one full node of leaves, finding things that are close 1245 * to the block in 'slot', and triggering ra on them. 1246 */ 1247 static void reada_for_search(struct btrfs_root *root, 1248 struct btrfs_path *path, 1249 int level, int slot, u64 objectid) 1250 { 1251 struct extent_buffer *node; 1252 struct btrfs_disk_key disk_key; 1253 u32 nritems; 1254 u64 search; 1255 u64 target; 1256 u64 nread = 0; 1257 int direction = path->reada; 1258 struct extent_buffer *eb; 1259 u32 nr; 1260 u32 blocksize; 1261 u32 nscan = 0; 1262 1263 if (level != 1) 1264 return; 1265 1266 if (!path->nodes[level]) 1267 return; 1268 1269 node = path->nodes[level]; 1270 1271 search = btrfs_node_blockptr(node, slot); 1272 blocksize = btrfs_level_size(root, level - 1); 1273 eb = btrfs_find_tree_block(root, search, blocksize); 1274 if (eb) { 1275 free_extent_buffer(eb); 1276 return; 1277 } 1278 1279 target = search; 1280 1281 nritems = btrfs_header_nritems(node); 1282 nr = slot; 1283 while (1) { 1284 if (direction < 0) { 1285 if (nr == 0) 1286 break; 1287 nr--; 1288 } else if (direction > 0) { 1289 nr++; 1290 if (nr >= nritems) 1291 break; 1292 } 1293 if (path->reada < 0 && objectid) { 1294 btrfs_node_key(node, &disk_key, nr); 1295 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1296 break; 1297 } 1298 search = btrfs_node_blockptr(node, nr); 1299 if ((search <= target && target - search <= 65536) || 1300 (search > target && search - target <= 65536)) { 1301 readahead_tree_block(root, search, blocksize, 1302 btrfs_node_ptr_generation(node, nr)); 1303 nread += blocksize; 1304 } 1305 nscan++; 1306 if ((nread > 65536 || nscan > 32)) 1307 break; 1308 } 1309 } 1310 1311 /* 1312 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1313 * cache 1314 */ 1315 static noinline int reada_for_balance(struct btrfs_root *root, 1316 struct btrfs_path *path, int level) 1317 { 1318 int slot; 1319 int nritems; 1320 struct extent_buffer *parent; 1321 struct extent_buffer *eb; 1322 u64 gen; 1323 u64 block1 = 0; 1324 u64 block2 = 0; 1325 int ret = 0; 1326 int blocksize; 1327 1328 parent = path->nodes[level + 1]; 1329 if (!parent) 1330 return 0; 1331 1332 nritems = btrfs_header_nritems(parent); 1333 slot = path->slots[level + 1]; 1334 blocksize = btrfs_level_size(root, level); 1335 1336 if (slot > 0) { 1337 block1 = btrfs_node_blockptr(parent, slot - 1); 1338 gen = btrfs_node_ptr_generation(parent, slot - 1); 1339 eb = btrfs_find_tree_block(root, block1, blocksize); 1340 if (eb && btrfs_buffer_uptodate(eb, gen)) 1341 block1 = 0; 1342 free_extent_buffer(eb); 1343 } 1344 if (slot + 1 < nritems) { 1345 block2 = btrfs_node_blockptr(parent, slot + 1); 1346 gen = btrfs_node_ptr_generation(parent, slot + 1); 1347 eb = btrfs_find_tree_block(root, block2, blocksize); 1348 if (eb && btrfs_buffer_uptodate(eb, gen)) 1349 block2 = 0; 1350 free_extent_buffer(eb); 1351 } 1352 if (block1 || block2) { 1353 ret = -EAGAIN; 1354 1355 /* release the whole path */ 1356 btrfs_release_path(root, path); 1357 1358 /* read the blocks */ 1359 if (block1) 1360 readahead_tree_block(root, block1, blocksize, 0); 1361 if (block2) 1362 readahead_tree_block(root, block2, blocksize, 0); 1363 1364 if (block1) { 1365 eb = read_tree_block(root, block1, blocksize, 0); 1366 free_extent_buffer(eb); 1367 } 1368 if (block2) { 1369 eb = read_tree_block(root, block2, blocksize, 0); 1370 free_extent_buffer(eb); 1371 } 1372 } 1373 return ret; 1374 } 1375 1376 1377 /* 1378 * when we walk down the tree, it is usually safe to unlock the higher layers 1379 * in the tree. The exceptions are when our path goes through slot 0, because 1380 * operations on the tree might require changing key pointers higher up in the 1381 * tree. 1382 * 1383 * callers might also have set path->keep_locks, which tells this code to keep 1384 * the lock if the path points to the last slot in the block. This is part of 1385 * walking through the tree, and selecting the next slot in the higher block. 1386 * 1387 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1388 * if lowest_unlock is 1, level 0 won't be unlocked 1389 */ 1390 static noinline void unlock_up(struct btrfs_path *path, int level, 1391 int lowest_unlock) 1392 { 1393 int i; 1394 int skip_level = level; 1395 int no_skips = 0; 1396 struct extent_buffer *t; 1397 1398 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1399 if (!path->nodes[i]) 1400 break; 1401 if (!path->locks[i]) 1402 break; 1403 if (!no_skips && path->slots[i] == 0) { 1404 skip_level = i + 1; 1405 continue; 1406 } 1407 if (!no_skips && path->keep_locks) { 1408 u32 nritems; 1409 t = path->nodes[i]; 1410 nritems = btrfs_header_nritems(t); 1411 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1412 skip_level = i + 1; 1413 continue; 1414 } 1415 } 1416 if (skip_level < i && i >= lowest_unlock) 1417 no_skips = 1; 1418 1419 t = path->nodes[i]; 1420 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1421 btrfs_tree_unlock(t); 1422 path->locks[i] = 0; 1423 } 1424 } 1425 } 1426 1427 /* 1428 * This releases any locks held in the path starting at level and 1429 * going all the way up to the root. 1430 * 1431 * btrfs_search_slot will keep the lock held on higher nodes in a few 1432 * corner cases, such as COW of the block at slot zero in the node. This 1433 * ignores those rules, and it should only be called when there are no 1434 * more updates to be done higher up in the tree. 1435 */ 1436 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1437 { 1438 int i; 1439 1440 if (path->keep_locks || path->lowest_level) 1441 return; 1442 1443 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1444 if (!path->nodes[i]) 1445 continue; 1446 if (!path->locks[i]) 1447 continue; 1448 btrfs_tree_unlock(path->nodes[i]); 1449 path->locks[i] = 0; 1450 } 1451 } 1452 1453 /* 1454 * helper function for btrfs_search_slot. The goal is to find a block 1455 * in cache without setting the path to blocking. If we find the block 1456 * we return zero and the path is unchanged. 1457 * 1458 * If we can't find the block, we set the path blocking and do some 1459 * reada. -EAGAIN is returned and the search must be repeated. 1460 */ 1461 static int 1462 read_block_for_search(struct btrfs_trans_handle *trans, 1463 struct btrfs_root *root, struct btrfs_path *p, 1464 struct extent_buffer **eb_ret, int level, int slot, 1465 struct btrfs_key *key) 1466 { 1467 u64 blocknr; 1468 u64 gen; 1469 u32 blocksize; 1470 struct extent_buffer *b = *eb_ret; 1471 struct extent_buffer *tmp; 1472 int ret; 1473 1474 blocknr = btrfs_node_blockptr(b, slot); 1475 gen = btrfs_node_ptr_generation(b, slot); 1476 blocksize = btrfs_level_size(root, level - 1); 1477 1478 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1479 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1480 /* 1481 * we found an up to date block without sleeping, return 1482 * right away 1483 */ 1484 *eb_ret = tmp; 1485 return 0; 1486 } 1487 1488 /* 1489 * reduce lock contention at high levels 1490 * of the btree by dropping locks before 1491 * we read. Don't release the lock on the current 1492 * level because we need to walk this node to figure 1493 * out which blocks to read. 1494 */ 1495 btrfs_unlock_up_safe(p, level + 1); 1496 btrfs_set_path_blocking(p); 1497 1498 if (tmp) 1499 free_extent_buffer(tmp); 1500 if (p->reada) 1501 reada_for_search(root, p, level, slot, key->objectid); 1502 1503 btrfs_release_path(NULL, p); 1504 1505 ret = -EAGAIN; 1506 tmp = read_tree_block(root, blocknr, blocksize, gen); 1507 if (tmp) { 1508 /* 1509 * If the read above didn't mark this buffer up to date, 1510 * it will never end up being up to date. Set ret to EIO now 1511 * and give up so that our caller doesn't loop forever 1512 * on our EAGAINs. 1513 */ 1514 if (!btrfs_buffer_uptodate(tmp, 0)) 1515 ret = -EIO; 1516 free_extent_buffer(tmp); 1517 } 1518 return ret; 1519 } 1520 1521 /* 1522 * helper function for btrfs_search_slot. This does all of the checks 1523 * for node-level blocks and does any balancing required based on 1524 * the ins_len. 1525 * 1526 * If no extra work was required, zero is returned. If we had to 1527 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1528 * start over 1529 */ 1530 static int 1531 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1532 struct btrfs_root *root, struct btrfs_path *p, 1533 struct extent_buffer *b, int level, int ins_len) 1534 { 1535 int ret; 1536 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1537 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1538 int sret; 1539 1540 sret = reada_for_balance(root, p, level); 1541 if (sret) 1542 goto again; 1543 1544 btrfs_set_path_blocking(p); 1545 sret = split_node(trans, root, p, level); 1546 btrfs_clear_path_blocking(p, NULL); 1547 1548 BUG_ON(sret > 0); 1549 if (sret) { 1550 ret = sret; 1551 goto done; 1552 } 1553 b = p->nodes[level]; 1554 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1555 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) { 1556 int sret; 1557 1558 sret = reada_for_balance(root, p, level); 1559 if (sret) 1560 goto again; 1561 1562 btrfs_set_path_blocking(p); 1563 sret = balance_level(trans, root, p, level); 1564 btrfs_clear_path_blocking(p, NULL); 1565 1566 if (sret) { 1567 ret = sret; 1568 goto done; 1569 } 1570 b = p->nodes[level]; 1571 if (!b) { 1572 btrfs_release_path(NULL, p); 1573 goto again; 1574 } 1575 BUG_ON(btrfs_header_nritems(b) == 1); 1576 } 1577 return 0; 1578 1579 again: 1580 ret = -EAGAIN; 1581 done: 1582 return ret; 1583 } 1584 1585 /* 1586 * look for key in the tree. path is filled in with nodes along the way 1587 * if key is found, we return zero and you can find the item in the leaf 1588 * level of the path (level 0) 1589 * 1590 * If the key isn't found, the path points to the slot where it should 1591 * be inserted, and 1 is returned. If there are other errors during the 1592 * search a negative error number is returned. 1593 * 1594 * if ins_len > 0, nodes and leaves will be split as we walk down the 1595 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1596 * possible) 1597 */ 1598 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1599 *root, struct btrfs_key *key, struct btrfs_path *p, int 1600 ins_len, int cow) 1601 { 1602 struct extent_buffer *b; 1603 int slot; 1604 int ret; 1605 int level; 1606 int lowest_unlock = 1; 1607 u8 lowest_level = 0; 1608 1609 lowest_level = p->lowest_level; 1610 WARN_ON(lowest_level && ins_len > 0); 1611 WARN_ON(p->nodes[0] != NULL); 1612 1613 if (ins_len < 0) 1614 lowest_unlock = 2; 1615 1616 again: 1617 if (p->skip_locking) 1618 b = btrfs_root_node(root); 1619 else 1620 b = btrfs_lock_root_node(root); 1621 1622 while (b) { 1623 level = btrfs_header_level(b); 1624 1625 /* 1626 * setup the path here so we can release it under lock 1627 * contention with the cow code 1628 */ 1629 p->nodes[level] = b; 1630 if (!p->skip_locking) 1631 p->locks[level] = 1; 1632 1633 if (cow) { 1634 int wret; 1635 1636 /* 1637 * if we don't really need to cow this block 1638 * then we don't want to set the path blocking, 1639 * so we test it here 1640 */ 1641 if (btrfs_header_generation(b) == trans->transid && 1642 btrfs_header_owner(b) == root->root_key.objectid && 1643 !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) { 1644 goto cow_done; 1645 } 1646 btrfs_set_path_blocking(p); 1647 1648 wret = btrfs_cow_block(trans, root, b, 1649 p->nodes[level + 1], 1650 p->slots[level + 1], &b); 1651 if (wret) { 1652 free_extent_buffer(b); 1653 ret = wret; 1654 goto done; 1655 } 1656 } 1657 cow_done: 1658 BUG_ON(!cow && ins_len); 1659 if (level != btrfs_header_level(b)) 1660 WARN_ON(1); 1661 level = btrfs_header_level(b); 1662 1663 p->nodes[level] = b; 1664 if (!p->skip_locking) 1665 p->locks[level] = 1; 1666 1667 btrfs_clear_path_blocking(p, NULL); 1668 1669 /* 1670 * we have a lock on b and as long as we aren't changing 1671 * the tree, there is no way to for the items in b to change. 1672 * It is safe to drop the lock on our parent before we 1673 * go through the expensive btree search on b. 1674 * 1675 * If cow is true, then we might be changing slot zero, 1676 * which may require changing the parent. So, we can't 1677 * drop the lock until after we know which slot we're 1678 * operating on. 1679 */ 1680 if (!cow) 1681 btrfs_unlock_up_safe(p, level + 1); 1682 1683 ret = check_block(root, p, level); 1684 if (ret) { 1685 ret = -1; 1686 goto done; 1687 } 1688 1689 ret = bin_search(b, key, level, &slot); 1690 1691 if (level != 0) { 1692 if (ret && slot > 0) 1693 slot -= 1; 1694 p->slots[level] = slot; 1695 ret = setup_nodes_for_search(trans, root, p, b, level, 1696 ins_len); 1697 if (ret == -EAGAIN) 1698 goto again; 1699 else if (ret) 1700 goto done; 1701 b = p->nodes[level]; 1702 slot = p->slots[level]; 1703 1704 unlock_up(p, level, lowest_unlock); 1705 1706 /* this is only true while dropping a snapshot */ 1707 if (level == lowest_level) { 1708 ret = 0; 1709 goto done; 1710 } 1711 1712 ret = read_block_for_search(trans, root, p, 1713 &b, level, slot, key); 1714 if (ret == -EAGAIN) 1715 goto again; 1716 1717 if (ret == -EIO) 1718 goto done; 1719 1720 if (!p->skip_locking) { 1721 int lret; 1722 1723 btrfs_clear_path_blocking(p, NULL); 1724 lret = btrfs_try_spin_lock(b); 1725 1726 if (!lret) { 1727 btrfs_set_path_blocking(p); 1728 btrfs_tree_lock(b); 1729 btrfs_clear_path_blocking(p, b); 1730 } 1731 } 1732 } else { 1733 p->slots[level] = slot; 1734 if (ins_len > 0 && 1735 btrfs_leaf_free_space(root, b) < ins_len) { 1736 int sret; 1737 1738 btrfs_set_path_blocking(p); 1739 sret = split_leaf(trans, root, key, 1740 p, ins_len, ret == 0); 1741 btrfs_clear_path_blocking(p, NULL); 1742 1743 BUG_ON(sret > 0); 1744 if (sret) { 1745 ret = sret; 1746 goto done; 1747 } 1748 } 1749 if (!p->search_for_split) 1750 unlock_up(p, level, lowest_unlock); 1751 goto done; 1752 } 1753 } 1754 ret = 1; 1755 done: 1756 /* 1757 * we don't really know what they plan on doing with the path 1758 * from here on, so for now just mark it as blocking 1759 */ 1760 if (!p->leave_spinning) 1761 btrfs_set_path_blocking(p); 1762 if (ret < 0) 1763 btrfs_release_path(root, p); 1764 return ret; 1765 } 1766 1767 int btrfs_merge_path(struct btrfs_trans_handle *trans, 1768 struct btrfs_root *root, 1769 struct btrfs_key *node_keys, 1770 u64 *nodes, int lowest_level) 1771 { 1772 struct extent_buffer *eb; 1773 struct extent_buffer *parent; 1774 struct btrfs_key key; 1775 u64 bytenr; 1776 u64 generation; 1777 u32 blocksize; 1778 int level; 1779 int slot; 1780 int key_match; 1781 int ret; 1782 1783 eb = btrfs_lock_root_node(root); 1784 ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb); 1785 BUG_ON(ret); 1786 1787 btrfs_set_lock_blocking(eb); 1788 1789 parent = eb; 1790 while (1) { 1791 level = btrfs_header_level(parent); 1792 if (level == 0 || level <= lowest_level) 1793 break; 1794 1795 ret = bin_search(parent, &node_keys[lowest_level], level, 1796 &slot); 1797 if (ret && slot > 0) 1798 slot--; 1799 1800 bytenr = btrfs_node_blockptr(parent, slot); 1801 if (nodes[level - 1] == bytenr) 1802 break; 1803 1804 blocksize = btrfs_level_size(root, level - 1); 1805 generation = btrfs_node_ptr_generation(parent, slot); 1806 btrfs_node_key_to_cpu(eb, &key, slot); 1807 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key)); 1808 1809 if (generation == trans->transid) { 1810 eb = read_tree_block(root, bytenr, blocksize, 1811 generation); 1812 btrfs_tree_lock(eb); 1813 btrfs_set_lock_blocking(eb); 1814 } 1815 1816 /* 1817 * if node keys match and node pointer hasn't been modified 1818 * in the running transaction, we can merge the path. for 1819 * blocks owened by reloc trees, the node pointer check is 1820 * skipped, this is because these blocks are fully controlled 1821 * by the space balance code, no one else can modify them. 1822 */ 1823 if (!nodes[level - 1] || !key_match || 1824 (generation == trans->transid && 1825 btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) { 1826 if (level == 1 || level == lowest_level + 1) { 1827 if (generation == trans->transid) { 1828 btrfs_tree_unlock(eb); 1829 free_extent_buffer(eb); 1830 } 1831 break; 1832 } 1833 1834 if (generation != trans->transid) { 1835 eb = read_tree_block(root, bytenr, blocksize, 1836 generation); 1837 btrfs_tree_lock(eb); 1838 btrfs_set_lock_blocking(eb); 1839 } 1840 1841 ret = btrfs_cow_block(trans, root, eb, parent, slot, 1842 &eb); 1843 BUG_ON(ret); 1844 1845 if (root->root_key.objectid == 1846 BTRFS_TREE_RELOC_OBJECTID) { 1847 if (!nodes[level - 1]) { 1848 nodes[level - 1] = eb->start; 1849 memcpy(&node_keys[level - 1], &key, 1850 sizeof(node_keys[0])); 1851 } else { 1852 WARN_ON(1); 1853 } 1854 } 1855 1856 btrfs_tree_unlock(parent); 1857 free_extent_buffer(parent); 1858 parent = eb; 1859 continue; 1860 } 1861 1862 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]); 1863 btrfs_set_node_ptr_generation(parent, slot, trans->transid); 1864 btrfs_mark_buffer_dirty(parent); 1865 1866 ret = btrfs_inc_extent_ref(trans, root, 1867 nodes[level - 1], 1868 blocksize, parent->start, 1869 btrfs_header_owner(parent), 1870 btrfs_header_generation(parent), 1871 level - 1); 1872 BUG_ON(ret); 1873 1874 /* 1875 * If the block was created in the running transaction, 1876 * it's possible this is the last reference to it, so we 1877 * should drop the subtree. 1878 */ 1879 if (generation == trans->transid) { 1880 ret = btrfs_drop_subtree(trans, root, eb, parent); 1881 BUG_ON(ret); 1882 btrfs_tree_unlock(eb); 1883 free_extent_buffer(eb); 1884 } else { 1885 ret = btrfs_free_extent(trans, root, bytenr, 1886 blocksize, parent->start, 1887 btrfs_header_owner(parent), 1888 btrfs_header_generation(parent), 1889 level - 1, 1); 1890 BUG_ON(ret); 1891 } 1892 break; 1893 } 1894 btrfs_tree_unlock(parent); 1895 free_extent_buffer(parent); 1896 return 0; 1897 } 1898 1899 /* 1900 * adjust the pointers going up the tree, starting at level 1901 * making sure the right key of each node is points to 'key'. 1902 * This is used after shifting pointers to the left, so it stops 1903 * fixing up pointers when a given leaf/node is not in slot 0 of the 1904 * higher levels 1905 * 1906 * If this fails to write a tree block, it returns -1, but continues 1907 * fixing up the blocks in ram so the tree is consistent. 1908 */ 1909 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1910 struct btrfs_root *root, struct btrfs_path *path, 1911 struct btrfs_disk_key *key, int level) 1912 { 1913 int i; 1914 int ret = 0; 1915 struct extent_buffer *t; 1916 1917 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1918 int tslot = path->slots[i]; 1919 if (!path->nodes[i]) 1920 break; 1921 t = path->nodes[i]; 1922 btrfs_set_node_key(t, key, tslot); 1923 btrfs_mark_buffer_dirty(path->nodes[i]); 1924 if (tslot != 0) 1925 break; 1926 } 1927 return ret; 1928 } 1929 1930 /* 1931 * update item key. 1932 * 1933 * This function isn't completely safe. It's the caller's responsibility 1934 * that the new key won't break the order 1935 */ 1936 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1937 struct btrfs_root *root, struct btrfs_path *path, 1938 struct btrfs_key *new_key) 1939 { 1940 struct btrfs_disk_key disk_key; 1941 struct extent_buffer *eb; 1942 int slot; 1943 1944 eb = path->nodes[0]; 1945 slot = path->slots[0]; 1946 if (slot > 0) { 1947 btrfs_item_key(eb, &disk_key, slot - 1); 1948 if (comp_keys(&disk_key, new_key) >= 0) 1949 return -1; 1950 } 1951 if (slot < btrfs_header_nritems(eb) - 1) { 1952 btrfs_item_key(eb, &disk_key, slot + 1); 1953 if (comp_keys(&disk_key, new_key) <= 0) 1954 return -1; 1955 } 1956 1957 btrfs_cpu_key_to_disk(&disk_key, new_key); 1958 btrfs_set_item_key(eb, &disk_key, slot); 1959 btrfs_mark_buffer_dirty(eb); 1960 if (slot == 0) 1961 fixup_low_keys(trans, root, path, &disk_key, 1); 1962 return 0; 1963 } 1964 1965 /* 1966 * try to push data from one node into the next node left in the 1967 * tree. 1968 * 1969 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1970 * error, and > 0 if there was no room in the left hand block. 1971 */ 1972 static int push_node_left(struct btrfs_trans_handle *trans, 1973 struct btrfs_root *root, struct extent_buffer *dst, 1974 struct extent_buffer *src, int empty) 1975 { 1976 int push_items = 0; 1977 int src_nritems; 1978 int dst_nritems; 1979 int ret = 0; 1980 1981 src_nritems = btrfs_header_nritems(src); 1982 dst_nritems = btrfs_header_nritems(dst); 1983 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1984 WARN_ON(btrfs_header_generation(src) != trans->transid); 1985 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1986 1987 if (!empty && src_nritems <= 8) 1988 return 1; 1989 1990 if (push_items <= 0) 1991 return 1; 1992 1993 if (empty) { 1994 push_items = min(src_nritems, push_items); 1995 if (push_items < src_nritems) { 1996 /* leave at least 8 pointers in the node if 1997 * we aren't going to empty it 1998 */ 1999 if (src_nritems - push_items < 8) { 2000 if (push_items <= 8) 2001 return 1; 2002 push_items -= 8; 2003 } 2004 } 2005 } else 2006 push_items = min(src_nritems - 8, push_items); 2007 2008 copy_extent_buffer(dst, src, 2009 btrfs_node_key_ptr_offset(dst_nritems), 2010 btrfs_node_key_ptr_offset(0), 2011 push_items * sizeof(struct btrfs_key_ptr)); 2012 2013 if (push_items < src_nritems) { 2014 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2015 btrfs_node_key_ptr_offset(push_items), 2016 (src_nritems - push_items) * 2017 sizeof(struct btrfs_key_ptr)); 2018 } 2019 btrfs_set_header_nritems(src, src_nritems - push_items); 2020 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2021 btrfs_mark_buffer_dirty(src); 2022 btrfs_mark_buffer_dirty(dst); 2023 2024 ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items); 2025 BUG_ON(ret); 2026 2027 return ret; 2028 } 2029 2030 /* 2031 * try to push data from one node into the next node right in the 2032 * tree. 2033 * 2034 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2035 * error, and > 0 if there was no room in the right hand block. 2036 * 2037 * this will only push up to 1/2 the contents of the left node over 2038 */ 2039 static int balance_node_right(struct btrfs_trans_handle *trans, 2040 struct btrfs_root *root, 2041 struct extent_buffer *dst, 2042 struct extent_buffer *src) 2043 { 2044 int push_items = 0; 2045 int max_push; 2046 int src_nritems; 2047 int dst_nritems; 2048 int ret = 0; 2049 2050 WARN_ON(btrfs_header_generation(src) != trans->transid); 2051 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2052 2053 src_nritems = btrfs_header_nritems(src); 2054 dst_nritems = btrfs_header_nritems(dst); 2055 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2056 if (push_items <= 0) 2057 return 1; 2058 2059 if (src_nritems < 4) 2060 return 1; 2061 2062 max_push = src_nritems / 2 + 1; 2063 /* don't try to empty the node */ 2064 if (max_push >= src_nritems) 2065 return 1; 2066 2067 if (max_push < push_items) 2068 push_items = max_push; 2069 2070 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2071 btrfs_node_key_ptr_offset(0), 2072 (dst_nritems) * 2073 sizeof(struct btrfs_key_ptr)); 2074 2075 copy_extent_buffer(dst, src, 2076 btrfs_node_key_ptr_offset(0), 2077 btrfs_node_key_ptr_offset(src_nritems - push_items), 2078 push_items * sizeof(struct btrfs_key_ptr)); 2079 2080 btrfs_set_header_nritems(src, src_nritems - push_items); 2081 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2082 2083 btrfs_mark_buffer_dirty(src); 2084 btrfs_mark_buffer_dirty(dst); 2085 2086 ret = btrfs_update_ref(trans, root, src, dst, 0, push_items); 2087 BUG_ON(ret); 2088 2089 return ret; 2090 } 2091 2092 /* 2093 * helper function to insert a new root level in the tree. 2094 * A new node is allocated, and a single item is inserted to 2095 * point to the existing root 2096 * 2097 * returns zero on success or < 0 on failure. 2098 */ 2099 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2100 struct btrfs_root *root, 2101 struct btrfs_path *path, int level) 2102 { 2103 u64 lower_gen; 2104 struct extent_buffer *lower; 2105 struct extent_buffer *c; 2106 struct extent_buffer *old; 2107 struct btrfs_disk_key lower_key; 2108 int ret; 2109 2110 BUG_ON(path->nodes[level]); 2111 BUG_ON(path->nodes[level-1] != root->node); 2112 2113 lower = path->nodes[level-1]; 2114 if (level == 1) 2115 btrfs_item_key(lower, &lower_key, 0); 2116 else 2117 btrfs_node_key(lower, &lower_key, 0); 2118 2119 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2120 root->root_key.objectid, trans->transid, 2121 level, root->node->start, 0); 2122 if (IS_ERR(c)) 2123 return PTR_ERR(c); 2124 2125 memset_extent_buffer(c, 0, 0, root->nodesize); 2126 btrfs_set_header_nritems(c, 1); 2127 btrfs_set_header_level(c, level); 2128 btrfs_set_header_bytenr(c, c->start); 2129 btrfs_set_header_generation(c, trans->transid); 2130 btrfs_set_header_owner(c, root->root_key.objectid); 2131 2132 write_extent_buffer(c, root->fs_info->fsid, 2133 (unsigned long)btrfs_header_fsid(c), 2134 BTRFS_FSID_SIZE); 2135 2136 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2137 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2138 BTRFS_UUID_SIZE); 2139 2140 btrfs_set_node_key(c, &lower_key, 0); 2141 btrfs_set_node_blockptr(c, 0, lower->start); 2142 lower_gen = btrfs_header_generation(lower); 2143 WARN_ON(lower_gen != trans->transid); 2144 2145 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2146 2147 btrfs_mark_buffer_dirty(c); 2148 2149 spin_lock(&root->node_lock); 2150 old = root->node; 2151 root->node = c; 2152 spin_unlock(&root->node_lock); 2153 2154 ret = btrfs_update_extent_ref(trans, root, lower->start, 2155 lower->len, lower->start, c->start, 2156 root->root_key.objectid, 2157 trans->transid, level - 1); 2158 BUG_ON(ret); 2159 2160 /* the super has an extra ref to root->node */ 2161 free_extent_buffer(old); 2162 2163 add_root_to_dirty_list(root); 2164 extent_buffer_get(c); 2165 path->nodes[level] = c; 2166 path->locks[level] = 1; 2167 path->slots[level] = 0; 2168 return 0; 2169 } 2170 2171 /* 2172 * worker function to insert a single pointer in a node. 2173 * the node should have enough room for the pointer already 2174 * 2175 * slot and level indicate where you want the key to go, and 2176 * blocknr is the block the key points to. 2177 * 2178 * returns zero on success and < 0 on any error 2179 */ 2180 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2181 *root, struct btrfs_path *path, struct btrfs_disk_key 2182 *key, u64 bytenr, int slot, int level) 2183 { 2184 struct extent_buffer *lower; 2185 int nritems; 2186 2187 BUG_ON(!path->nodes[level]); 2188 lower = path->nodes[level]; 2189 nritems = btrfs_header_nritems(lower); 2190 BUG_ON(slot > nritems); 2191 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2192 BUG(); 2193 if (slot != nritems) { 2194 memmove_extent_buffer(lower, 2195 btrfs_node_key_ptr_offset(slot + 1), 2196 btrfs_node_key_ptr_offset(slot), 2197 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2198 } 2199 btrfs_set_node_key(lower, key, slot); 2200 btrfs_set_node_blockptr(lower, slot, bytenr); 2201 WARN_ON(trans->transid == 0); 2202 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2203 btrfs_set_header_nritems(lower, nritems + 1); 2204 btrfs_mark_buffer_dirty(lower); 2205 return 0; 2206 } 2207 2208 /* 2209 * split the node at the specified level in path in two. 2210 * The path is corrected to point to the appropriate node after the split 2211 * 2212 * Before splitting this tries to make some room in the node by pushing 2213 * left and right, if either one works, it returns right away. 2214 * 2215 * returns 0 on success and < 0 on failure 2216 */ 2217 static noinline int split_node(struct btrfs_trans_handle *trans, 2218 struct btrfs_root *root, 2219 struct btrfs_path *path, int level) 2220 { 2221 struct extent_buffer *c; 2222 struct extent_buffer *split; 2223 struct btrfs_disk_key disk_key; 2224 int mid; 2225 int ret; 2226 int wret; 2227 u32 c_nritems; 2228 2229 c = path->nodes[level]; 2230 WARN_ON(btrfs_header_generation(c) != trans->transid); 2231 if (c == root->node) { 2232 /* trying to split the root, lets make a new one */ 2233 ret = insert_new_root(trans, root, path, level + 1); 2234 if (ret) 2235 return ret; 2236 } else if (!trans->transaction->delayed_refs.flushing) { 2237 ret = push_nodes_for_insert(trans, root, path, level); 2238 c = path->nodes[level]; 2239 if (!ret && btrfs_header_nritems(c) < 2240 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2241 return 0; 2242 if (ret < 0) 2243 return ret; 2244 } 2245 2246 c_nritems = btrfs_header_nritems(c); 2247 2248 split = btrfs_alloc_free_block(trans, root, root->nodesize, 2249 path->nodes[level + 1]->start, 2250 root->root_key.objectid, 2251 trans->transid, level, c->start, 0); 2252 if (IS_ERR(split)) 2253 return PTR_ERR(split); 2254 2255 btrfs_set_header_flags(split, btrfs_header_flags(c)); 2256 btrfs_set_header_level(split, btrfs_header_level(c)); 2257 btrfs_set_header_bytenr(split, split->start); 2258 btrfs_set_header_generation(split, trans->transid); 2259 btrfs_set_header_owner(split, root->root_key.objectid); 2260 btrfs_set_header_flags(split, 0); 2261 write_extent_buffer(split, root->fs_info->fsid, 2262 (unsigned long)btrfs_header_fsid(split), 2263 BTRFS_FSID_SIZE); 2264 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2265 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2266 BTRFS_UUID_SIZE); 2267 2268 mid = (c_nritems + 1) / 2; 2269 2270 copy_extent_buffer(split, c, 2271 btrfs_node_key_ptr_offset(0), 2272 btrfs_node_key_ptr_offset(mid), 2273 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2274 btrfs_set_header_nritems(split, c_nritems - mid); 2275 btrfs_set_header_nritems(c, mid); 2276 ret = 0; 2277 2278 btrfs_mark_buffer_dirty(c); 2279 btrfs_mark_buffer_dirty(split); 2280 2281 btrfs_node_key(split, &disk_key, 0); 2282 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2283 path->slots[level + 1] + 1, 2284 level + 1); 2285 if (wret) 2286 ret = wret; 2287 2288 ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid); 2289 BUG_ON(ret); 2290 2291 if (path->slots[level] >= mid) { 2292 path->slots[level] -= mid; 2293 btrfs_tree_unlock(c); 2294 free_extent_buffer(c); 2295 path->nodes[level] = split; 2296 path->slots[level + 1] += 1; 2297 } else { 2298 btrfs_tree_unlock(split); 2299 free_extent_buffer(split); 2300 } 2301 return ret; 2302 } 2303 2304 /* 2305 * how many bytes are required to store the items in a leaf. start 2306 * and nr indicate which items in the leaf to check. This totals up the 2307 * space used both by the item structs and the item data 2308 */ 2309 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2310 { 2311 int data_len; 2312 int nritems = btrfs_header_nritems(l); 2313 int end = min(nritems, start + nr) - 1; 2314 2315 if (!nr) 2316 return 0; 2317 data_len = btrfs_item_end_nr(l, start); 2318 data_len = data_len - btrfs_item_offset_nr(l, end); 2319 data_len += sizeof(struct btrfs_item) * nr; 2320 WARN_ON(data_len < 0); 2321 return data_len; 2322 } 2323 2324 /* 2325 * The space between the end of the leaf items and 2326 * the start of the leaf data. IOW, how much room 2327 * the leaf has left for both items and data 2328 */ 2329 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2330 struct extent_buffer *leaf) 2331 { 2332 int nritems = btrfs_header_nritems(leaf); 2333 int ret; 2334 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2335 if (ret < 0) { 2336 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2337 "used %d nritems %d\n", 2338 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2339 leaf_space_used(leaf, 0, nritems), nritems); 2340 } 2341 return ret; 2342 } 2343 2344 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2345 struct btrfs_root *root, 2346 struct btrfs_path *path, 2347 int data_size, int empty, 2348 struct extent_buffer *right, 2349 int free_space, u32 left_nritems) 2350 { 2351 struct extent_buffer *left = path->nodes[0]; 2352 struct extent_buffer *upper = path->nodes[1]; 2353 struct btrfs_disk_key disk_key; 2354 int slot; 2355 u32 i; 2356 int push_space = 0; 2357 int push_items = 0; 2358 struct btrfs_item *item; 2359 u32 nr; 2360 u32 right_nritems; 2361 u32 data_end; 2362 u32 this_item_size; 2363 int ret; 2364 2365 if (empty) 2366 nr = 0; 2367 else 2368 nr = 1; 2369 2370 if (path->slots[0] >= left_nritems) 2371 push_space += data_size; 2372 2373 slot = path->slots[1]; 2374 i = left_nritems - 1; 2375 while (i >= nr) { 2376 item = btrfs_item_nr(left, i); 2377 2378 if (!empty && push_items > 0) { 2379 if (path->slots[0] > i) 2380 break; 2381 if (path->slots[0] == i) { 2382 int space = btrfs_leaf_free_space(root, left); 2383 if (space + push_space * 2 > free_space) 2384 break; 2385 } 2386 } 2387 2388 if (path->slots[0] == i) 2389 push_space += data_size; 2390 2391 if (!left->map_token) { 2392 map_extent_buffer(left, (unsigned long)item, 2393 sizeof(struct btrfs_item), 2394 &left->map_token, &left->kaddr, 2395 &left->map_start, &left->map_len, 2396 KM_USER1); 2397 } 2398 2399 this_item_size = btrfs_item_size(left, item); 2400 if (this_item_size + sizeof(*item) + push_space > free_space) 2401 break; 2402 2403 push_items++; 2404 push_space += this_item_size + sizeof(*item); 2405 if (i == 0) 2406 break; 2407 i--; 2408 } 2409 if (left->map_token) { 2410 unmap_extent_buffer(left, left->map_token, KM_USER1); 2411 left->map_token = NULL; 2412 } 2413 2414 if (push_items == 0) 2415 goto out_unlock; 2416 2417 if (!empty && push_items == left_nritems) 2418 WARN_ON(1); 2419 2420 /* push left to right */ 2421 right_nritems = btrfs_header_nritems(right); 2422 2423 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2424 push_space -= leaf_data_end(root, left); 2425 2426 /* make room in the right data area */ 2427 data_end = leaf_data_end(root, right); 2428 memmove_extent_buffer(right, 2429 btrfs_leaf_data(right) + data_end - push_space, 2430 btrfs_leaf_data(right) + data_end, 2431 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2432 2433 /* copy from the left data area */ 2434 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2435 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2436 btrfs_leaf_data(left) + leaf_data_end(root, left), 2437 push_space); 2438 2439 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2440 btrfs_item_nr_offset(0), 2441 right_nritems * sizeof(struct btrfs_item)); 2442 2443 /* copy the items from left to right */ 2444 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2445 btrfs_item_nr_offset(left_nritems - push_items), 2446 push_items * sizeof(struct btrfs_item)); 2447 2448 /* update the item pointers */ 2449 right_nritems += push_items; 2450 btrfs_set_header_nritems(right, right_nritems); 2451 push_space = BTRFS_LEAF_DATA_SIZE(root); 2452 for (i = 0; i < right_nritems; i++) { 2453 item = btrfs_item_nr(right, i); 2454 if (!right->map_token) { 2455 map_extent_buffer(right, (unsigned long)item, 2456 sizeof(struct btrfs_item), 2457 &right->map_token, &right->kaddr, 2458 &right->map_start, &right->map_len, 2459 KM_USER1); 2460 } 2461 push_space -= btrfs_item_size(right, item); 2462 btrfs_set_item_offset(right, item, push_space); 2463 } 2464 2465 if (right->map_token) { 2466 unmap_extent_buffer(right, right->map_token, KM_USER1); 2467 right->map_token = NULL; 2468 } 2469 left_nritems -= push_items; 2470 btrfs_set_header_nritems(left, left_nritems); 2471 2472 if (left_nritems) 2473 btrfs_mark_buffer_dirty(left); 2474 btrfs_mark_buffer_dirty(right); 2475 2476 ret = btrfs_update_ref(trans, root, left, right, 0, push_items); 2477 BUG_ON(ret); 2478 2479 btrfs_item_key(right, &disk_key, 0); 2480 btrfs_set_node_key(upper, &disk_key, slot + 1); 2481 btrfs_mark_buffer_dirty(upper); 2482 2483 /* then fixup the leaf pointer in the path */ 2484 if (path->slots[0] >= left_nritems) { 2485 path->slots[0] -= left_nritems; 2486 if (btrfs_header_nritems(path->nodes[0]) == 0) 2487 clean_tree_block(trans, root, path->nodes[0]); 2488 btrfs_tree_unlock(path->nodes[0]); 2489 free_extent_buffer(path->nodes[0]); 2490 path->nodes[0] = right; 2491 path->slots[1] += 1; 2492 } else { 2493 btrfs_tree_unlock(right); 2494 free_extent_buffer(right); 2495 } 2496 return 0; 2497 2498 out_unlock: 2499 btrfs_tree_unlock(right); 2500 free_extent_buffer(right); 2501 return 1; 2502 } 2503 2504 /* 2505 * push some data in the path leaf to the right, trying to free up at 2506 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2507 * 2508 * returns 1 if the push failed because the other node didn't have enough 2509 * room, 0 if everything worked out and < 0 if there were major errors. 2510 */ 2511 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2512 *root, struct btrfs_path *path, int data_size, 2513 int empty) 2514 { 2515 struct extent_buffer *left = path->nodes[0]; 2516 struct extent_buffer *right; 2517 struct extent_buffer *upper; 2518 int slot; 2519 int free_space; 2520 u32 left_nritems; 2521 int ret; 2522 2523 if (!path->nodes[1]) 2524 return 1; 2525 2526 slot = path->slots[1]; 2527 upper = path->nodes[1]; 2528 if (slot >= btrfs_header_nritems(upper) - 1) 2529 return 1; 2530 2531 btrfs_assert_tree_locked(path->nodes[1]); 2532 2533 right = read_node_slot(root, upper, slot + 1); 2534 btrfs_tree_lock(right); 2535 btrfs_set_lock_blocking(right); 2536 2537 free_space = btrfs_leaf_free_space(root, right); 2538 if (free_space < data_size) 2539 goto out_unlock; 2540 2541 /* cow and double check */ 2542 ret = btrfs_cow_block(trans, root, right, upper, 2543 slot + 1, &right); 2544 if (ret) 2545 goto out_unlock; 2546 2547 free_space = btrfs_leaf_free_space(root, right); 2548 if (free_space < data_size) 2549 goto out_unlock; 2550 2551 left_nritems = btrfs_header_nritems(left); 2552 if (left_nritems == 0) 2553 goto out_unlock; 2554 2555 return __push_leaf_right(trans, root, path, data_size, empty, 2556 right, free_space, left_nritems); 2557 out_unlock: 2558 btrfs_tree_unlock(right); 2559 free_extent_buffer(right); 2560 return 1; 2561 } 2562 2563 /* 2564 * push some data in the path leaf to the left, trying to free up at 2565 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2566 */ 2567 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2568 struct btrfs_root *root, 2569 struct btrfs_path *path, int data_size, 2570 int empty, struct extent_buffer *left, 2571 int free_space, int right_nritems) 2572 { 2573 struct btrfs_disk_key disk_key; 2574 struct extent_buffer *right = path->nodes[0]; 2575 int slot; 2576 int i; 2577 int push_space = 0; 2578 int push_items = 0; 2579 struct btrfs_item *item; 2580 u32 old_left_nritems; 2581 u32 nr; 2582 int ret = 0; 2583 int wret; 2584 u32 this_item_size; 2585 u32 old_left_item_size; 2586 2587 slot = path->slots[1]; 2588 2589 if (empty) 2590 nr = right_nritems; 2591 else 2592 nr = right_nritems - 1; 2593 2594 for (i = 0; i < nr; i++) { 2595 item = btrfs_item_nr(right, i); 2596 if (!right->map_token) { 2597 map_extent_buffer(right, (unsigned long)item, 2598 sizeof(struct btrfs_item), 2599 &right->map_token, &right->kaddr, 2600 &right->map_start, &right->map_len, 2601 KM_USER1); 2602 } 2603 2604 if (!empty && push_items > 0) { 2605 if (path->slots[0] < i) 2606 break; 2607 if (path->slots[0] == i) { 2608 int space = btrfs_leaf_free_space(root, right); 2609 if (space + push_space * 2 > free_space) 2610 break; 2611 } 2612 } 2613 2614 if (path->slots[0] == i) 2615 push_space += data_size; 2616 2617 this_item_size = btrfs_item_size(right, item); 2618 if (this_item_size + sizeof(*item) + push_space > free_space) 2619 break; 2620 2621 push_items++; 2622 push_space += this_item_size + sizeof(*item); 2623 } 2624 2625 if (right->map_token) { 2626 unmap_extent_buffer(right, right->map_token, KM_USER1); 2627 right->map_token = NULL; 2628 } 2629 2630 if (push_items == 0) { 2631 ret = 1; 2632 goto out; 2633 } 2634 if (!empty && push_items == btrfs_header_nritems(right)) 2635 WARN_ON(1); 2636 2637 /* push data from right to left */ 2638 copy_extent_buffer(left, right, 2639 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2640 btrfs_item_nr_offset(0), 2641 push_items * sizeof(struct btrfs_item)); 2642 2643 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2644 btrfs_item_offset_nr(right, push_items - 1); 2645 2646 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2647 leaf_data_end(root, left) - push_space, 2648 btrfs_leaf_data(right) + 2649 btrfs_item_offset_nr(right, push_items - 1), 2650 push_space); 2651 old_left_nritems = btrfs_header_nritems(left); 2652 BUG_ON(old_left_nritems <= 0); 2653 2654 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2655 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2656 u32 ioff; 2657 2658 item = btrfs_item_nr(left, i); 2659 if (!left->map_token) { 2660 map_extent_buffer(left, (unsigned long)item, 2661 sizeof(struct btrfs_item), 2662 &left->map_token, &left->kaddr, 2663 &left->map_start, &left->map_len, 2664 KM_USER1); 2665 } 2666 2667 ioff = btrfs_item_offset(left, item); 2668 btrfs_set_item_offset(left, item, 2669 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2670 } 2671 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2672 if (left->map_token) { 2673 unmap_extent_buffer(left, left->map_token, KM_USER1); 2674 left->map_token = NULL; 2675 } 2676 2677 /* fixup right node */ 2678 if (push_items > right_nritems) { 2679 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2680 right_nritems); 2681 WARN_ON(1); 2682 } 2683 2684 if (push_items < right_nritems) { 2685 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2686 leaf_data_end(root, right); 2687 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2688 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2689 btrfs_leaf_data(right) + 2690 leaf_data_end(root, right), push_space); 2691 2692 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2693 btrfs_item_nr_offset(push_items), 2694 (btrfs_header_nritems(right) - push_items) * 2695 sizeof(struct btrfs_item)); 2696 } 2697 right_nritems -= push_items; 2698 btrfs_set_header_nritems(right, right_nritems); 2699 push_space = BTRFS_LEAF_DATA_SIZE(root); 2700 for (i = 0; i < right_nritems; i++) { 2701 item = btrfs_item_nr(right, i); 2702 2703 if (!right->map_token) { 2704 map_extent_buffer(right, (unsigned long)item, 2705 sizeof(struct btrfs_item), 2706 &right->map_token, &right->kaddr, 2707 &right->map_start, &right->map_len, 2708 KM_USER1); 2709 } 2710 2711 push_space = push_space - btrfs_item_size(right, item); 2712 btrfs_set_item_offset(right, item, push_space); 2713 } 2714 if (right->map_token) { 2715 unmap_extent_buffer(right, right->map_token, KM_USER1); 2716 right->map_token = NULL; 2717 } 2718 2719 btrfs_mark_buffer_dirty(left); 2720 if (right_nritems) 2721 btrfs_mark_buffer_dirty(right); 2722 2723 ret = btrfs_update_ref(trans, root, right, left, 2724 old_left_nritems, push_items); 2725 BUG_ON(ret); 2726 2727 btrfs_item_key(right, &disk_key, 0); 2728 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2729 if (wret) 2730 ret = wret; 2731 2732 /* then fixup the leaf pointer in the path */ 2733 if (path->slots[0] < push_items) { 2734 path->slots[0] += old_left_nritems; 2735 if (btrfs_header_nritems(path->nodes[0]) == 0) 2736 clean_tree_block(trans, root, path->nodes[0]); 2737 btrfs_tree_unlock(path->nodes[0]); 2738 free_extent_buffer(path->nodes[0]); 2739 path->nodes[0] = left; 2740 path->slots[1] -= 1; 2741 } else { 2742 btrfs_tree_unlock(left); 2743 free_extent_buffer(left); 2744 path->slots[0] -= push_items; 2745 } 2746 BUG_ON(path->slots[0] < 0); 2747 return ret; 2748 out: 2749 btrfs_tree_unlock(left); 2750 free_extent_buffer(left); 2751 return ret; 2752 } 2753 2754 /* 2755 * push some data in the path leaf to the left, trying to free up at 2756 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2757 */ 2758 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2759 *root, struct btrfs_path *path, int data_size, 2760 int empty) 2761 { 2762 struct extent_buffer *right = path->nodes[0]; 2763 struct extent_buffer *left; 2764 int slot; 2765 int free_space; 2766 u32 right_nritems; 2767 int ret = 0; 2768 2769 slot = path->slots[1]; 2770 if (slot == 0) 2771 return 1; 2772 if (!path->nodes[1]) 2773 return 1; 2774 2775 right_nritems = btrfs_header_nritems(right); 2776 if (right_nritems == 0) 2777 return 1; 2778 2779 btrfs_assert_tree_locked(path->nodes[1]); 2780 2781 left = read_node_slot(root, path->nodes[1], slot - 1); 2782 btrfs_tree_lock(left); 2783 btrfs_set_lock_blocking(left); 2784 2785 free_space = btrfs_leaf_free_space(root, left); 2786 if (free_space < data_size) { 2787 ret = 1; 2788 goto out; 2789 } 2790 2791 /* cow and double check */ 2792 ret = btrfs_cow_block(trans, root, left, 2793 path->nodes[1], slot - 1, &left); 2794 if (ret) { 2795 /* we hit -ENOSPC, but it isn't fatal here */ 2796 ret = 1; 2797 goto out; 2798 } 2799 2800 free_space = btrfs_leaf_free_space(root, left); 2801 if (free_space < data_size) { 2802 ret = 1; 2803 goto out; 2804 } 2805 2806 return __push_leaf_left(trans, root, path, data_size, 2807 empty, left, free_space, right_nritems); 2808 out: 2809 btrfs_tree_unlock(left); 2810 free_extent_buffer(left); 2811 return ret; 2812 } 2813 2814 /* 2815 * split the path's leaf in two, making sure there is at least data_size 2816 * available for the resulting leaf level of the path. 2817 * 2818 * returns 0 if all went well and < 0 on failure. 2819 */ 2820 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2821 struct btrfs_root *root, 2822 struct btrfs_path *path, 2823 struct extent_buffer *l, 2824 struct extent_buffer *right, 2825 int slot, int mid, int nritems) 2826 { 2827 int data_copy_size; 2828 int rt_data_off; 2829 int i; 2830 int ret = 0; 2831 int wret; 2832 struct btrfs_disk_key disk_key; 2833 2834 nritems = nritems - mid; 2835 btrfs_set_header_nritems(right, nritems); 2836 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2837 2838 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2839 btrfs_item_nr_offset(mid), 2840 nritems * sizeof(struct btrfs_item)); 2841 2842 copy_extent_buffer(right, l, 2843 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2844 data_copy_size, btrfs_leaf_data(l) + 2845 leaf_data_end(root, l), data_copy_size); 2846 2847 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2848 btrfs_item_end_nr(l, mid); 2849 2850 for (i = 0; i < nritems; i++) { 2851 struct btrfs_item *item = btrfs_item_nr(right, i); 2852 u32 ioff; 2853 2854 if (!right->map_token) { 2855 map_extent_buffer(right, (unsigned long)item, 2856 sizeof(struct btrfs_item), 2857 &right->map_token, &right->kaddr, 2858 &right->map_start, &right->map_len, 2859 KM_USER1); 2860 } 2861 2862 ioff = btrfs_item_offset(right, item); 2863 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2864 } 2865 2866 if (right->map_token) { 2867 unmap_extent_buffer(right, right->map_token, KM_USER1); 2868 right->map_token = NULL; 2869 } 2870 2871 btrfs_set_header_nritems(l, mid); 2872 ret = 0; 2873 btrfs_item_key(right, &disk_key, 0); 2874 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2875 path->slots[1] + 1, 1); 2876 if (wret) 2877 ret = wret; 2878 2879 btrfs_mark_buffer_dirty(right); 2880 btrfs_mark_buffer_dirty(l); 2881 BUG_ON(path->slots[0] != slot); 2882 2883 ret = btrfs_update_ref(trans, root, l, right, 0, nritems); 2884 BUG_ON(ret); 2885 2886 if (mid <= slot) { 2887 btrfs_tree_unlock(path->nodes[0]); 2888 free_extent_buffer(path->nodes[0]); 2889 path->nodes[0] = right; 2890 path->slots[0] -= mid; 2891 path->slots[1] += 1; 2892 } else { 2893 btrfs_tree_unlock(right); 2894 free_extent_buffer(right); 2895 } 2896 2897 BUG_ON(path->slots[0] < 0); 2898 2899 return ret; 2900 } 2901 2902 /* 2903 * split the path's leaf in two, making sure there is at least data_size 2904 * available for the resulting leaf level of the path. 2905 * 2906 * returns 0 if all went well and < 0 on failure. 2907 */ 2908 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2909 struct btrfs_root *root, 2910 struct btrfs_key *ins_key, 2911 struct btrfs_path *path, int data_size, 2912 int extend) 2913 { 2914 struct extent_buffer *l; 2915 u32 nritems; 2916 int mid; 2917 int slot; 2918 struct extent_buffer *right; 2919 int ret = 0; 2920 int wret; 2921 int double_split; 2922 int num_doubles = 0; 2923 2924 /* first try to make some room by pushing left and right */ 2925 if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY && 2926 !trans->transaction->delayed_refs.flushing) { 2927 wret = push_leaf_right(trans, root, path, data_size, 0); 2928 if (wret < 0) 2929 return wret; 2930 if (wret) { 2931 wret = push_leaf_left(trans, root, path, data_size, 0); 2932 if (wret < 0) 2933 return wret; 2934 } 2935 l = path->nodes[0]; 2936 2937 /* did the pushes work? */ 2938 if (btrfs_leaf_free_space(root, l) >= data_size) 2939 return 0; 2940 } 2941 2942 if (!path->nodes[1]) { 2943 ret = insert_new_root(trans, root, path, 1); 2944 if (ret) 2945 return ret; 2946 } 2947 again: 2948 double_split = 0; 2949 l = path->nodes[0]; 2950 slot = path->slots[0]; 2951 nritems = btrfs_header_nritems(l); 2952 mid = (nritems + 1) / 2; 2953 2954 right = btrfs_alloc_free_block(trans, root, root->leafsize, 2955 path->nodes[1]->start, 2956 root->root_key.objectid, 2957 trans->transid, 0, l->start, 0); 2958 if (IS_ERR(right)) { 2959 BUG_ON(1); 2960 return PTR_ERR(right); 2961 } 2962 2963 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 2964 btrfs_set_header_bytenr(right, right->start); 2965 btrfs_set_header_generation(right, trans->transid); 2966 btrfs_set_header_owner(right, root->root_key.objectid); 2967 btrfs_set_header_level(right, 0); 2968 write_extent_buffer(right, root->fs_info->fsid, 2969 (unsigned long)btrfs_header_fsid(right), 2970 BTRFS_FSID_SIZE); 2971 2972 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 2973 (unsigned long)btrfs_header_chunk_tree_uuid(right), 2974 BTRFS_UUID_SIZE); 2975 2976 if (mid <= slot) { 2977 if (nritems == 1 || 2978 leaf_space_used(l, mid, nritems - mid) + data_size > 2979 BTRFS_LEAF_DATA_SIZE(root)) { 2980 if (slot >= nritems) { 2981 struct btrfs_disk_key disk_key; 2982 2983 btrfs_cpu_key_to_disk(&disk_key, ins_key); 2984 btrfs_set_header_nritems(right, 0); 2985 wret = insert_ptr(trans, root, path, 2986 &disk_key, right->start, 2987 path->slots[1] + 1, 1); 2988 if (wret) 2989 ret = wret; 2990 2991 btrfs_tree_unlock(path->nodes[0]); 2992 free_extent_buffer(path->nodes[0]); 2993 path->nodes[0] = right; 2994 path->slots[0] = 0; 2995 path->slots[1] += 1; 2996 btrfs_mark_buffer_dirty(right); 2997 return ret; 2998 } 2999 mid = slot; 3000 if (mid != nritems && 3001 leaf_space_used(l, mid, nritems - mid) + 3002 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3003 double_split = 1; 3004 } 3005 } 3006 } else { 3007 if (leaf_space_used(l, 0, mid) + data_size > 3008 BTRFS_LEAF_DATA_SIZE(root)) { 3009 if (!extend && data_size && slot == 0) { 3010 struct btrfs_disk_key disk_key; 3011 3012 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3013 btrfs_set_header_nritems(right, 0); 3014 wret = insert_ptr(trans, root, path, 3015 &disk_key, 3016 right->start, 3017 path->slots[1], 1); 3018 if (wret) 3019 ret = wret; 3020 btrfs_tree_unlock(path->nodes[0]); 3021 free_extent_buffer(path->nodes[0]); 3022 path->nodes[0] = right; 3023 path->slots[0] = 0; 3024 if (path->slots[1] == 0) { 3025 wret = fixup_low_keys(trans, root, 3026 path, &disk_key, 1); 3027 if (wret) 3028 ret = wret; 3029 } 3030 btrfs_mark_buffer_dirty(right); 3031 return ret; 3032 } else if ((extend || !data_size) && slot == 0) { 3033 mid = 1; 3034 } else { 3035 mid = slot; 3036 if (mid != nritems && 3037 leaf_space_used(l, mid, nritems - mid) + 3038 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3039 double_split = 1; 3040 } 3041 } 3042 } 3043 } 3044 3045 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3046 BUG_ON(ret); 3047 3048 if (double_split) { 3049 BUG_ON(num_doubles != 0); 3050 num_doubles++; 3051 goto again; 3052 } 3053 3054 return ret; 3055 } 3056 3057 /* 3058 * This function splits a single item into two items, 3059 * giving 'new_key' to the new item and splitting the 3060 * old one at split_offset (from the start of the item). 3061 * 3062 * The path may be released by this operation. After 3063 * the split, the path is pointing to the old item. The 3064 * new item is going to be in the same node as the old one. 3065 * 3066 * Note, the item being split must be smaller enough to live alone on 3067 * a tree block with room for one extra struct btrfs_item 3068 * 3069 * This allows us to split the item in place, keeping a lock on the 3070 * leaf the entire time. 3071 */ 3072 int btrfs_split_item(struct btrfs_trans_handle *trans, 3073 struct btrfs_root *root, 3074 struct btrfs_path *path, 3075 struct btrfs_key *new_key, 3076 unsigned long split_offset) 3077 { 3078 u32 item_size; 3079 struct extent_buffer *leaf; 3080 struct btrfs_key orig_key; 3081 struct btrfs_item *item; 3082 struct btrfs_item *new_item; 3083 int ret = 0; 3084 int slot; 3085 u32 nritems; 3086 u32 orig_offset; 3087 struct btrfs_disk_key disk_key; 3088 char *buf; 3089 3090 leaf = path->nodes[0]; 3091 btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]); 3092 if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item)) 3093 goto split; 3094 3095 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3096 btrfs_release_path(root, path); 3097 3098 path->search_for_split = 1; 3099 path->keep_locks = 1; 3100 3101 ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1); 3102 path->search_for_split = 0; 3103 3104 /* if our item isn't there or got smaller, return now */ 3105 if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0], 3106 path->slots[0])) { 3107 path->keep_locks = 0; 3108 return -EAGAIN; 3109 } 3110 3111 btrfs_set_path_blocking(path); 3112 ret = split_leaf(trans, root, &orig_key, path, 3113 sizeof(struct btrfs_item), 1); 3114 path->keep_locks = 0; 3115 BUG_ON(ret); 3116 3117 btrfs_unlock_up_safe(path, 1); 3118 leaf = path->nodes[0]; 3119 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3120 3121 split: 3122 /* 3123 * make sure any changes to the path from split_leaf leave it 3124 * in a blocking state 3125 */ 3126 btrfs_set_path_blocking(path); 3127 3128 item = btrfs_item_nr(leaf, path->slots[0]); 3129 orig_offset = btrfs_item_offset(leaf, item); 3130 item_size = btrfs_item_size(leaf, item); 3131 3132 buf = kmalloc(item_size, GFP_NOFS); 3133 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3134 path->slots[0]), item_size); 3135 slot = path->slots[0] + 1; 3136 leaf = path->nodes[0]; 3137 3138 nritems = btrfs_header_nritems(leaf); 3139 3140 if (slot != nritems) { 3141 /* shift the items */ 3142 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3143 btrfs_item_nr_offset(slot), 3144 (nritems - slot) * sizeof(struct btrfs_item)); 3145 3146 } 3147 3148 btrfs_cpu_key_to_disk(&disk_key, new_key); 3149 btrfs_set_item_key(leaf, &disk_key, slot); 3150 3151 new_item = btrfs_item_nr(leaf, slot); 3152 3153 btrfs_set_item_offset(leaf, new_item, orig_offset); 3154 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3155 3156 btrfs_set_item_offset(leaf, item, 3157 orig_offset + item_size - split_offset); 3158 btrfs_set_item_size(leaf, item, split_offset); 3159 3160 btrfs_set_header_nritems(leaf, nritems + 1); 3161 3162 /* write the data for the start of the original item */ 3163 write_extent_buffer(leaf, buf, 3164 btrfs_item_ptr_offset(leaf, path->slots[0]), 3165 split_offset); 3166 3167 /* write the data for the new item */ 3168 write_extent_buffer(leaf, buf + split_offset, 3169 btrfs_item_ptr_offset(leaf, slot), 3170 item_size - split_offset); 3171 btrfs_mark_buffer_dirty(leaf); 3172 3173 ret = 0; 3174 if (btrfs_leaf_free_space(root, leaf) < 0) { 3175 btrfs_print_leaf(root, leaf); 3176 BUG(); 3177 } 3178 kfree(buf); 3179 return ret; 3180 } 3181 3182 /* 3183 * make the item pointed to by the path smaller. new_size indicates 3184 * how small to make it, and from_end tells us if we just chop bytes 3185 * off the end of the item or if we shift the item to chop bytes off 3186 * the front. 3187 */ 3188 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3189 struct btrfs_root *root, 3190 struct btrfs_path *path, 3191 u32 new_size, int from_end) 3192 { 3193 int ret = 0; 3194 int slot; 3195 int slot_orig; 3196 struct extent_buffer *leaf; 3197 struct btrfs_item *item; 3198 u32 nritems; 3199 unsigned int data_end; 3200 unsigned int old_data_start; 3201 unsigned int old_size; 3202 unsigned int size_diff; 3203 int i; 3204 3205 slot_orig = path->slots[0]; 3206 leaf = path->nodes[0]; 3207 slot = path->slots[0]; 3208 3209 old_size = btrfs_item_size_nr(leaf, slot); 3210 if (old_size == new_size) 3211 return 0; 3212 3213 nritems = btrfs_header_nritems(leaf); 3214 data_end = leaf_data_end(root, leaf); 3215 3216 old_data_start = btrfs_item_offset_nr(leaf, slot); 3217 3218 size_diff = old_size - new_size; 3219 3220 BUG_ON(slot < 0); 3221 BUG_ON(slot >= nritems); 3222 3223 /* 3224 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3225 */ 3226 /* first correct the data pointers */ 3227 for (i = slot; i < nritems; i++) { 3228 u32 ioff; 3229 item = btrfs_item_nr(leaf, i); 3230 3231 if (!leaf->map_token) { 3232 map_extent_buffer(leaf, (unsigned long)item, 3233 sizeof(struct btrfs_item), 3234 &leaf->map_token, &leaf->kaddr, 3235 &leaf->map_start, &leaf->map_len, 3236 KM_USER1); 3237 } 3238 3239 ioff = btrfs_item_offset(leaf, item); 3240 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3241 } 3242 3243 if (leaf->map_token) { 3244 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3245 leaf->map_token = NULL; 3246 } 3247 3248 /* shift the data */ 3249 if (from_end) { 3250 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3251 data_end + size_diff, btrfs_leaf_data(leaf) + 3252 data_end, old_data_start + new_size - data_end); 3253 } else { 3254 struct btrfs_disk_key disk_key; 3255 u64 offset; 3256 3257 btrfs_item_key(leaf, &disk_key, slot); 3258 3259 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3260 unsigned long ptr; 3261 struct btrfs_file_extent_item *fi; 3262 3263 fi = btrfs_item_ptr(leaf, slot, 3264 struct btrfs_file_extent_item); 3265 fi = (struct btrfs_file_extent_item *)( 3266 (unsigned long)fi - size_diff); 3267 3268 if (btrfs_file_extent_type(leaf, fi) == 3269 BTRFS_FILE_EXTENT_INLINE) { 3270 ptr = btrfs_item_ptr_offset(leaf, slot); 3271 memmove_extent_buffer(leaf, ptr, 3272 (unsigned long)fi, 3273 offsetof(struct btrfs_file_extent_item, 3274 disk_bytenr)); 3275 } 3276 } 3277 3278 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3279 data_end + size_diff, btrfs_leaf_data(leaf) + 3280 data_end, old_data_start - data_end); 3281 3282 offset = btrfs_disk_key_offset(&disk_key); 3283 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3284 btrfs_set_item_key(leaf, &disk_key, slot); 3285 if (slot == 0) 3286 fixup_low_keys(trans, root, path, &disk_key, 1); 3287 } 3288 3289 item = btrfs_item_nr(leaf, slot); 3290 btrfs_set_item_size(leaf, item, new_size); 3291 btrfs_mark_buffer_dirty(leaf); 3292 3293 ret = 0; 3294 if (btrfs_leaf_free_space(root, leaf) < 0) { 3295 btrfs_print_leaf(root, leaf); 3296 BUG(); 3297 } 3298 return ret; 3299 } 3300 3301 /* 3302 * make the item pointed to by the path bigger, data_size is the new size. 3303 */ 3304 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3305 struct btrfs_root *root, struct btrfs_path *path, 3306 u32 data_size) 3307 { 3308 int ret = 0; 3309 int slot; 3310 int slot_orig; 3311 struct extent_buffer *leaf; 3312 struct btrfs_item *item; 3313 u32 nritems; 3314 unsigned int data_end; 3315 unsigned int old_data; 3316 unsigned int old_size; 3317 int i; 3318 3319 slot_orig = path->slots[0]; 3320 leaf = path->nodes[0]; 3321 3322 nritems = btrfs_header_nritems(leaf); 3323 data_end = leaf_data_end(root, leaf); 3324 3325 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3326 btrfs_print_leaf(root, leaf); 3327 BUG(); 3328 } 3329 slot = path->slots[0]; 3330 old_data = btrfs_item_end_nr(leaf, slot); 3331 3332 BUG_ON(slot < 0); 3333 if (slot >= nritems) { 3334 btrfs_print_leaf(root, leaf); 3335 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3336 slot, nritems); 3337 BUG_ON(1); 3338 } 3339 3340 /* 3341 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3342 */ 3343 /* first correct the data pointers */ 3344 for (i = slot; i < nritems; i++) { 3345 u32 ioff; 3346 item = btrfs_item_nr(leaf, i); 3347 3348 if (!leaf->map_token) { 3349 map_extent_buffer(leaf, (unsigned long)item, 3350 sizeof(struct btrfs_item), 3351 &leaf->map_token, &leaf->kaddr, 3352 &leaf->map_start, &leaf->map_len, 3353 KM_USER1); 3354 } 3355 ioff = btrfs_item_offset(leaf, item); 3356 btrfs_set_item_offset(leaf, item, ioff - data_size); 3357 } 3358 3359 if (leaf->map_token) { 3360 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3361 leaf->map_token = NULL; 3362 } 3363 3364 /* shift the data */ 3365 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3366 data_end - data_size, btrfs_leaf_data(leaf) + 3367 data_end, old_data - data_end); 3368 3369 data_end = old_data; 3370 old_size = btrfs_item_size_nr(leaf, slot); 3371 item = btrfs_item_nr(leaf, slot); 3372 btrfs_set_item_size(leaf, item, old_size + data_size); 3373 btrfs_mark_buffer_dirty(leaf); 3374 3375 ret = 0; 3376 if (btrfs_leaf_free_space(root, leaf) < 0) { 3377 btrfs_print_leaf(root, leaf); 3378 BUG(); 3379 } 3380 return ret; 3381 } 3382 3383 /* 3384 * Given a key and some data, insert items into the tree. 3385 * This does all the path init required, making room in the tree if needed. 3386 * Returns the number of keys that were inserted. 3387 */ 3388 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3389 struct btrfs_root *root, 3390 struct btrfs_path *path, 3391 struct btrfs_key *cpu_key, u32 *data_size, 3392 int nr) 3393 { 3394 struct extent_buffer *leaf; 3395 struct btrfs_item *item; 3396 int ret = 0; 3397 int slot; 3398 int i; 3399 u32 nritems; 3400 u32 total_data = 0; 3401 u32 total_size = 0; 3402 unsigned int data_end; 3403 struct btrfs_disk_key disk_key; 3404 struct btrfs_key found_key; 3405 3406 for (i = 0; i < nr; i++) { 3407 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3408 BTRFS_LEAF_DATA_SIZE(root)) { 3409 break; 3410 nr = i; 3411 } 3412 total_data += data_size[i]; 3413 total_size += data_size[i] + sizeof(struct btrfs_item); 3414 } 3415 BUG_ON(nr == 0); 3416 3417 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3418 if (ret == 0) 3419 return -EEXIST; 3420 if (ret < 0) 3421 goto out; 3422 3423 leaf = path->nodes[0]; 3424 3425 nritems = btrfs_header_nritems(leaf); 3426 data_end = leaf_data_end(root, leaf); 3427 3428 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3429 for (i = nr; i >= 0; i--) { 3430 total_data -= data_size[i]; 3431 total_size -= data_size[i] + sizeof(struct btrfs_item); 3432 if (total_size < btrfs_leaf_free_space(root, leaf)) 3433 break; 3434 } 3435 nr = i; 3436 } 3437 3438 slot = path->slots[0]; 3439 BUG_ON(slot < 0); 3440 3441 if (slot != nritems) { 3442 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3443 3444 item = btrfs_item_nr(leaf, slot); 3445 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3446 3447 /* figure out how many keys we can insert in here */ 3448 total_data = data_size[0]; 3449 for (i = 1; i < nr; i++) { 3450 if (comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3451 break; 3452 total_data += data_size[i]; 3453 } 3454 nr = i; 3455 3456 if (old_data < data_end) { 3457 btrfs_print_leaf(root, leaf); 3458 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3459 slot, old_data, data_end); 3460 BUG_ON(1); 3461 } 3462 /* 3463 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3464 */ 3465 /* first correct the data pointers */ 3466 WARN_ON(leaf->map_token); 3467 for (i = slot; i < nritems; i++) { 3468 u32 ioff; 3469 3470 item = btrfs_item_nr(leaf, i); 3471 if (!leaf->map_token) { 3472 map_extent_buffer(leaf, (unsigned long)item, 3473 sizeof(struct btrfs_item), 3474 &leaf->map_token, &leaf->kaddr, 3475 &leaf->map_start, &leaf->map_len, 3476 KM_USER1); 3477 } 3478 3479 ioff = btrfs_item_offset(leaf, item); 3480 btrfs_set_item_offset(leaf, item, ioff - total_data); 3481 } 3482 if (leaf->map_token) { 3483 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3484 leaf->map_token = NULL; 3485 } 3486 3487 /* shift the items */ 3488 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3489 btrfs_item_nr_offset(slot), 3490 (nritems - slot) * sizeof(struct btrfs_item)); 3491 3492 /* shift the data */ 3493 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3494 data_end - total_data, btrfs_leaf_data(leaf) + 3495 data_end, old_data - data_end); 3496 data_end = old_data; 3497 } else { 3498 /* 3499 * this sucks but it has to be done, if we are inserting at 3500 * the end of the leaf only insert 1 of the items, since we 3501 * have no way of knowing whats on the next leaf and we'd have 3502 * to drop our current locks to figure it out 3503 */ 3504 nr = 1; 3505 } 3506 3507 /* setup the item for the new data */ 3508 for (i = 0; i < nr; i++) { 3509 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3510 btrfs_set_item_key(leaf, &disk_key, slot + i); 3511 item = btrfs_item_nr(leaf, slot + i); 3512 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3513 data_end -= data_size[i]; 3514 btrfs_set_item_size(leaf, item, data_size[i]); 3515 } 3516 btrfs_set_header_nritems(leaf, nritems + nr); 3517 btrfs_mark_buffer_dirty(leaf); 3518 3519 ret = 0; 3520 if (slot == 0) { 3521 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3522 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3523 } 3524 3525 if (btrfs_leaf_free_space(root, leaf) < 0) { 3526 btrfs_print_leaf(root, leaf); 3527 BUG(); 3528 } 3529 out: 3530 if (!ret) 3531 ret = nr; 3532 return ret; 3533 } 3534 3535 /* 3536 * this is a helper for btrfs_insert_empty_items, the main goal here is 3537 * to save stack depth by doing the bulk of the work in a function 3538 * that doesn't call btrfs_search_slot 3539 */ 3540 static noinline_for_stack int 3541 setup_items_for_insert(struct btrfs_trans_handle *trans, 3542 struct btrfs_root *root, struct btrfs_path *path, 3543 struct btrfs_key *cpu_key, u32 *data_size, 3544 u32 total_data, u32 total_size, int nr) 3545 { 3546 struct btrfs_item *item; 3547 int i; 3548 u32 nritems; 3549 unsigned int data_end; 3550 struct btrfs_disk_key disk_key; 3551 int ret; 3552 struct extent_buffer *leaf; 3553 int slot; 3554 3555 leaf = path->nodes[0]; 3556 slot = path->slots[0]; 3557 3558 nritems = btrfs_header_nritems(leaf); 3559 data_end = leaf_data_end(root, leaf); 3560 3561 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3562 btrfs_print_leaf(root, leaf); 3563 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3564 total_size, btrfs_leaf_free_space(root, leaf)); 3565 BUG(); 3566 } 3567 3568 if (slot != nritems) { 3569 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3570 3571 if (old_data < data_end) { 3572 btrfs_print_leaf(root, leaf); 3573 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3574 slot, old_data, data_end); 3575 BUG_ON(1); 3576 } 3577 /* 3578 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3579 */ 3580 /* first correct the data pointers */ 3581 WARN_ON(leaf->map_token); 3582 for (i = slot; i < nritems; i++) { 3583 u32 ioff; 3584 3585 item = btrfs_item_nr(leaf, i); 3586 if (!leaf->map_token) { 3587 map_extent_buffer(leaf, (unsigned long)item, 3588 sizeof(struct btrfs_item), 3589 &leaf->map_token, &leaf->kaddr, 3590 &leaf->map_start, &leaf->map_len, 3591 KM_USER1); 3592 } 3593 3594 ioff = btrfs_item_offset(leaf, item); 3595 btrfs_set_item_offset(leaf, item, ioff - total_data); 3596 } 3597 if (leaf->map_token) { 3598 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3599 leaf->map_token = NULL; 3600 } 3601 3602 /* shift the items */ 3603 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3604 btrfs_item_nr_offset(slot), 3605 (nritems - slot) * sizeof(struct btrfs_item)); 3606 3607 /* shift the data */ 3608 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3609 data_end - total_data, btrfs_leaf_data(leaf) + 3610 data_end, old_data - data_end); 3611 data_end = old_data; 3612 } 3613 3614 /* setup the item for the new data */ 3615 for (i = 0; i < nr; i++) { 3616 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3617 btrfs_set_item_key(leaf, &disk_key, slot + i); 3618 item = btrfs_item_nr(leaf, slot + i); 3619 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3620 data_end -= data_size[i]; 3621 btrfs_set_item_size(leaf, item, data_size[i]); 3622 } 3623 3624 btrfs_set_header_nritems(leaf, nritems + nr); 3625 3626 ret = 0; 3627 if (slot == 0) { 3628 struct btrfs_disk_key disk_key; 3629 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3630 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3631 } 3632 btrfs_unlock_up_safe(path, 1); 3633 btrfs_mark_buffer_dirty(leaf); 3634 3635 if (btrfs_leaf_free_space(root, leaf) < 0) { 3636 btrfs_print_leaf(root, leaf); 3637 BUG(); 3638 } 3639 return ret; 3640 } 3641 3642 /* 3643 * Given a key and some data, insert items into the tree. 3644 * This does all the path init required, making room in the tree if needed. 3645 */ 3646 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3647 struct btrfs_root *root, 3648 struct btrfs_path *path, 3649 struct btrfs_key *cpu_key, u32 *data_size, 3650 int nr) 3651 { 3652 struct extent_buffer *leaf; 3653 int ret = 0; 3654 int slot; 3655 int i; 3656 u32 total_size = 0; 3657 u32 total_data = 0; 3658 3659 for (i = 0; i < nr; i++) 3660 total_data += data_size[i]; 3661 3662 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3663 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3664 if (ret == 0) 3665 return -EEXIST; 3666 if (ret < 0) 3667 goto out; 3668 3669 leaf = path->nodes[0]; 3670 slot = path->slots[0]; 3671 BUG_ON(slot < 0); 3672 3673 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3674 total_data, total_size, nr); 3675 3676 out: 3677 return ret; 3678 } 3679 3680 /* 3681 * Given a key and some data, insert an item into the tree. 3682 * This does all the path init required, making room in the tree if needed. 3683 */ 3684 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3685 *root, struct btrfs_key *cpu_key, void *data, u32 3686 data_size) 3687 { 3688 int ret = 0; 3689 struct btrfs_path *path; 3690 struct extent_buffer *leaf; 3691 unsigned long ptr; 3692 3693 path = btrfs_alloc_path(); 3694 BUG_ON(!path); 3695 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3696 if (!ret) { 3697 leaf = path->nodes[0]; 3698 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3699 write_extent_buffer(leaf, data, ptr, data_size); 3700 btrfs_mark_buffer_dirty(leaf); 3701 } 3702 btrfs_free_path(path); 3703 return ret; 3704 } 3705 3706 /* 3707 * delete the pointer from a given node. 3708 * 3709 * the tree should have been previously balanced so the deletion does not 3710 * empty a node. 3711 */ 3712 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3713 struct btrfs_path *path, int level, int slot) 3714 { 3715 struct extent_buffer *parent = path->nodes[level]; 3716 u32 nritems; 3717 int ret = 0; 3718 int wret; 3719 3720 nritems = btrfs_header_nritems(parent); 3721 if (slot != nritems - 1) { 3722 memmove_extent_buffer(parent, 3723 btrfs_node_key_ptr_offset(slot), 3724 btrfs_node_key_ptr_offset(slot + 1), 3725 sizeof(struct btrfs_key_ptr) * 3726 (nritems - slot - 1)); 3727 } 3728 nritems--; 3729 btrfs_set_header_nritems(parent, nritems); 3730 if (nritems == 0 && parent == root->node) { 3731 BUG_ON(btrfs_header_level(root->node) != 1); 3732 /* just turn the root into a leaf and break */ 3733 btrfs_set_header_level(root->node, 0); 3734 } else if (slot == 0) { 3735 struct btrfs_disk_key disk_key; 3736 3737 btrfs_node_key(parent, &disk_key, 0); 3738 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3739 if (wret) 3740 ret = wret; 3741 } 3742 btrfs_mark_buffer_dirty(parent); 3743 return ret; 3744 } 3745 3746 /* 3747 * a helper function to delete the leaf pointed to by path->slots[1] and 3748 * path->nodes[1]. bytenr is the node block pointer, but since the callers 3749 * already know it, it is faster to have them pass it down than to 3750 * read it out of the node again. 3751 * 3752 * This deletes the pointer in path->nodes[1] and frees the leaf 3753 * block extent. zero is returned if it all worked out, < 0 otherwise. 3754 * 3755 * The path must have already been setup for deleting the leaf, including 3756 * all the proper balancing. path->nodes[1] must be locked. 3757 */ 3758 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3759 struct btrfs_root *root, 3760 struct btrfs_path *path, u64 bytenr) 3761 { 3762 int ret; 3763 u64 root_gen = btrfs_header_generation(path->nodes[1]); 3764 u64 parent_start = path->nodes[1]->start; 3765 u64 parent_owner = btrfs_header_owner(path->nodes[1]); 3766 3767 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3768 if (ret) 3769 return ret; 3770 3771 /* 3772 * btrfs_free_extent is expensive, we want to make sure we 3773 * aren't holding any locks when we call it 3774 */ 3775 btrfs_unlock_up_safe(path, 0); 3776 3777 ret = btrfs_free_extent(trans, root, bytenr, 3778 btrfs_level_size(root, 0), 3779 parent_start, parent_owner, 3780 root_gen, 0, 1); 3781 return ret; 3782 } 3783 /* 3784 * delete the item at the leaf level in path. If that empties 3785 * the leaf, remove it from the tree 3786 */ 3787 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3788 struct btrfs_path *path, int slot, int nr) 3789 { 3790 struct extent_buffer *leaf; 3791 struct btrfs_item *item; 3792 int last_off; 3793 int dsize = 0; 3794 int ret = 0; 3795 int wret; 3796 int i; 3797 u32 nritems; 3798 3799 leaf = path->nodes[0]; 3800 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3801 3802 for (i = 0; i < nr; i++) 3803 dsize += btrfs_item_size_nr(leaf, slot + i); 3804 3805 nritems = btrfs_header_nritems(leaf); 3806 3807 if (slot + nr != nritems) { 3808 int data_end = leaf_data_end(root, leaf); 3809 3810 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3811 data_end + dsize, 3812 btrfs_leaf_data(leaf) + data_end, 3813 last_off - data_end); 3814 3815 for (i = slot + nr; i < nritems; i++) { 3816 u32 ioff; 3817 3818 item = btrfs_item_nr(leaf, i); 3819 if (!leaf->map_token) { 3820 map_extent_buffer(leaf, (unsigned long)item, 3821 sizeof(struct btrfs_item), 3822 &leaf->map_token, &leaf->kaddr, 3823 &leaf->map_start, &leaf->map_len, 3824 KM_USER1); 3825 } 3826 ioff = btrfs_item_offset(leaf, item); 3827 btrfs_set_item_offset(leaf, item, ioff + dsize); 3828 } 3829 3830 if (leaf->map_token) { 3831 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3832 leaf->map_token = NULL; 3833 } 3834 3835 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3836 btrfs_item_nr_offset(slot + nr), 3837 sizeof(struct btrfs_item) * 3838 (nritems - slot - nr)); 3839 } 3840 btrfs_set_header_nritems(leaf, nritems - nr); 3841 nritems -= nr; 3842 3843 /* delete the leaf if we've emptied it */ 3844 if (nritems == 0) { 3845 if (leaf == root->node) { 3846 btrfs_set_header_level(leaf, 0); 3847 } else { 3848 ret = btrfs_del_leaf(trans, root, path, leaf->start); 3849 BUG_ON(ret); 3850 } 3851 } else { 3852 int used = leaf_space_used(leaf, 0, nritems); 3853 if (slot == 0) { 3854 struct btrfs_disk_key disk_key; 3855 3856 btrfs_item_key(leaf, &disk_key, 0); 3857 wret = fixup_low_keys(trans, root, path, 3858 &disk_key, 1); 3859 if (wret) 3860 ret = wret; 3861 } 3862 3863 /* delete the leaf if it is mostly empty */ 3864 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4 && 3865 !trans->transaction->delayed_refs.flushing) { 3866 /* push_leaf_left fixes the path. 3867 * make sure the path still points to our leaf 3868 * for possible call to del_ptr below 3869 */ 3870 slot = path->slots[1]; 3871 extent_buffer_get(leaf); 3872 3873 btrfs_set_path_blocking(path); 3874 wret = push_leaf_left(trans, root, path, 1, 1); 3875 if (wret < 0 && wret != -ENOSPC) 3876 ret = wret; 3877 3878 if (path->nodes[0] == leaf && 3879 btrfs_header_nritems(leaf)) { 3880 wret = push_leaf_right(trans, root, path, 1, 1); 3881 if (wret < 0 && wret != -ENOSPC) 3882 ret = wret; 3883 } 3884 3885 if (btrfs_header_nritems(leaf) == 0) { 3886 path->slots[1] = slot; 3887 ret = btrfs_del_leaf(trans, root, path, 3888 leaf->start); 3889 BUG_ON(ret); 3890 free_extent_buffer(leaf); 3891 } else { 3892 /* if we're still in the path, make sure 3893 * we're dirty. Otherwise, one of the 3894 * push_leaf functions must have already 3895 * dirtied this buffer 3896 */ 3897 if (path->nodes[0] == leaf) 3898 btrfs_mark_buffer_dirty(leaf); 3899 free_extent_buffer(leaf); 3900 } 3901 } else { 3902 btrfs_mark_buffer_dirty(leaf); 3903 } 3904 } 3905 return ret; 3906 } 3907 3908 /* 3909 * search the tree again to find a leaf with lesser keys 3910 * returns 0 if it found something or 1 if there are no lesser leaves. 3911 * returns < 0 on io errors. 3912 * 3913 * This may release the path, and so you may lose any locks held at the 3914 * time you call it. 3915 */ 3916 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3917 { 3918 struct btrfs_key key; 3919 struct btrfs_disk_key found_key; 3920 int ret; 3921 3922 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3923 3924 if (key.offset > 0) 3925 key.offset--; 3926 else if (key.type > 0) 3927 key.type--; 3928 else if (key.objectid > 0) 3929 key.objectid--; 3930 else 3931 return 1; 3932 3933 btrfs_release_path(root, path); 3934 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3935 if (ret < 0) 3936 return ret; 3937 btrfs_item_key(path->nodes[0], &found_key, 0); 3938 ret = comp_keys(&found_key, &key); 3939 if (ret < 0) 3940 return 0; 3941 return 1; 3942 } 3943 3944 /* 3945 * A helper function to walk down the tree starting at min_key, and looking 3946 * for nodes or leaves that are either in cache or have a minimum 3947 * transaction id. This is used by the btree defrag code, and tree logging 3948 * 3949 * This does not cow, but it does stuff the starting key it finds back 3950 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3951 * key and get a writable path. 3952 * 3953 * This does lock as it descends, and path->keep_locks should be set 3954 * to 1 by the caller. 3955 * 3956 * This honors path->lowest_level to prevent descent past a given level 3957 * of the tree. 3958 * 3959 * min_trans indicates the oldest transaction that you are interested 3960 * in walking through. Any nodes or leaves older than min_trans are 3961 * skipped over (without reading them). 3962 * 3963 * returns zero if something useful was found, < 0 on error and 1 if there 3964 * was nothing in the tree that matched the search criteria. 3965 */ 3966 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3967 struct btrfs_key *max_key, 3968 struct btrfs_path *path, int cache_only, 3969 u64 min_trans) 3970 { 3971 struct extent_buffer *cur; 3972 struct btrfs_key found_key; 3973 int slot; 3974 int sret; 3975 u32 nritems; 3976 int level; 3977 int ret = 1; 3978 3979 WARN_ON(!path->keep_locks); 3980 again: 3981 cur = btrfs_lock_root_node(root); 3982 level = btrfs_header_level(cur); 3983 WARN_ON(path->nodes[level]); 3984 path->nodes[level] = cur; 3985 path->locks[level] = 1; 3986 3987 if (btrfs_header_generation(cur) < min_trans) { 3988 ret = 1; 3989 goto out; 3990 } 3991 while (1) { 3992 nritems = btrfs_header_nritems(cur); 3993 level = btrfs_header_level(cur); 3994 sret = bin_search(cur, min_key, level, &slot); 3995 3996 /* at the lowest level, we're done, setup the path and exit */ 3997 if (level == path->lowest_level) { 3998 if (slot >= nritems) 3999 goto find_next_key; 4000 ret = 0; 4001 path->slots[level] = slot; 4002 btrfs_item_key_to_cpu(cur, &found_key, slot); 4003 goto out; 4004 } 4005 if (sret && slot > 0) 4006 slot--; 4007 /* 4008 * check this node pointer against the cache_only and 4009 * min_trans parameters. If it isn't in cache or is too 4010 * old, skip to the next one. 4011 */ 4012 while (slot < nritems) { 4013 u64 blockptr; 4014 u64 gen; 4015 struct extent_buffer *tmp; 4016 struct btrfs_disk_key disk_key; 4017 4018 blockptr = btrfs_node_blockptr(cur, slot); 4019 gen = btrfs_node_ptr_generation(cur, slot); 4020 if (gen < min_trans) { 4021 slot++; 4022 continue; 4023 } 4024 if (!cache_only) 4025 break; 4026 4027 if (max_key) { 4028 btrfs_node_key(cur, &disk_key, slot); 4029 if (comp_keys(&disk_key, max_key) >= 0) { 4030 ret = 1; 4031 goto out; 4032 } 4033 } 4034 4035 tmp = btrfs_find_tree_block(root, blockptr, 4036 btrfs_level_size(root, level - 1)); 4037 4038 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4039 free_extent_buffer(tmp); 4040 break; 4041 } 4042 if (tmp) 4043 free_extent_buffer(tmp); 4044 slot++; 4045 } 4046 find_next_key: 4047 /* 4048 * we didn't find a candidate key in this node, walk forward 4049 * and find another one 4050 */ 4051 if (slot >= nritems) { 4052 path->slots[level] = slot; 4053 btrfs_set_path_blocking(path); 4054 sret = btrfs_find_next_key(root, path, min_key, level, 4055 cache_only, min_trans); 4056 if (sret == 0) { 4057 btrfs_release_path(root, path); 4058 goto again; 4059 } else { 4060 goto out; 4061 } 4062 } 4063 /* save our key for returning back */ 4064 btrfs_node_key_to_cpu(cur, &found_key, slot); 4065 path->slots[level] = slot; 4066 if (level == path->lowest_level) { 4067 ret = 0; 4068 unlock_up(path, level, 1); 4069 goto out; 4070 } 4071 btrfs_set_path_blocking(path); 4072 cur = read_node_slot(root, cur, slot); 4073 4074 btrfs_tree_lock(cur); 4075 4076 path->locks[level - 1] = 1; 4077 path->nodes[level - 1] = cur; 4078 unlock_up(path, level, 1); 4079 btrfs_clear_path_blocking(path, NULL); 4080 } 4081 out: 4082 if (ret == 0) 4083 memcpy(min_key, &found_key, sizeof(found_key)); 4084 btrfs_set_path_blocking(path); 4085 return ret; 4086 } 4087 4088 /* 4089 * this is similar to btrfs_next_leaf, but does not try to preserve 4090 * and fixup the path. It looks for and returns the next key in the 4091 * tree based on the current path and the cache_only and min_trans 4092 * parameters. 4093 * 4094 * 0 is returned if another key is found, < 0 if there are any errors 4095 * and 1 is returned if there are no higher keys in the tree 4096 * 4097 * path->keep_locks should be set to 1 on the search made before 4098 * calling this function. 4099 */ 4100 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4101 struct btrfs_key *key, int lowest_level, 4102 int cache_only, u64 min_trans) 4103 { 4104 int level = lowest_level; 4105 int slot; 4106 struct extent_buffer *c; 4107 4108 WARN_ON(!path->keep_locks); 4109 while (level < BTRFS_MAX_LEVEL) { 4110 if (!path->nodes[level]) 4111 return 1; 4112 4113 slot = path->slots[level] + 1; 4114 c = path->nodes[level]; 4115 next: 4116 if (slot >= btrfs_header_nritems(c)) { 4117 level++; 4118 if (level == BTRFS_MAX_LEVEL) 4119 return 1; 4120 continue; 4121 } 4122 if (level == 0) 4123 btrfs_item_key_to_cpu(c, key, slot); 4124 else { 4125 u64 blockptr = btrfs_node_blockptr(c, slot); 4126 u64 gen = btrfs_node_ptr_generation(c, slot); 4127 4128 if (cache_only) { 4129 struct extent_buffer *cur; 4130 cur = btrfs_find_tree_block(root, blockptr, 4131 btrfs_level_size(root, level - 1)); 4132 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4133 slot++; 4134 if (cur) 4135 free_extent_buffer(cur); 4136 goto next; 4137 } 4138 free_extent_buffer(cur); 4139 } 4140 if (gen < min_trans) { 4141 slot++; 4142 goto next; 4143 } 4144 btrfs_node_key_to_cpu(c, key, slot); 4145 } 4146 return 0; 4147 } 4148 return 1; 4149 } 4150 4151 /* 4152 * search the tree again to find a leaf with greater keys 4153 * returns 0 if it found something or 1 if there are no greater leaves. 4154 * returns < 0 on io errors. 4155 */ 4156 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4157 { 4158 int slot; 4159 int level; 4160 struct extent_buffer *c; 4161 struct extent_buffer *next; 4162 struct btrfs_key key; 4163 u32 nritems; 4164 int ret; 4165 int old_spinning = path->leave_spinning; 4166 int force_blocking = 0; 4167 4168 nritems = btrfs_header_nritems(path->nodes[0]); 4169 if (nritems == 0) 4170 return 1; 4171 4172 /* 4173 * we take the blocks in an order that upsets lockdep. Using 4174 * blocking mode is the only way around it. 4175 */ 4176 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4177 force_blocking = 1; 4178 #endif 4179 4180 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4181 again: 4182 level = 1; 4183 next = NULL; 4184 btrfs_release_path(root, path); 4185 4186 path->keep_locks = 1; 4187 4188 if (!force_blocking) 4189 path->leave_spinning = 1; 4190 4191 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4192 path->keep_locks = 0; 4193 4194 if (ret < 0) 4195 return ret; 4196 4197 nritems = btrfs_header_nritems(path->nodes[0]); 4198 /* 4199 * by releasing the path above we dropped all our locks. A balance 4200 * could have added more items next to the key that used to be 4201 * at the very end of the block. So, check again here and 4202 * advance the path if there are now more items available. 4203 */ 4204 if (nritems > 0 && path->slots[0] < nritems - 1) { 4205 path->slots[0]++; 4206 ret = 0; 4207 goto done; 4208 } 4209 4210 while (level < BTRFS_MAX_LEVEL) { 4211 if (!path->nodes[level]) { 4212 ret = 1; 4213 goto done; 4214 } 4215 4216 slot = path->slots[level] + 1; 4217 c = path->nodes[level]; 4218 if (slot >= btrfs_header_nritems(c)) { 4219 level++; 4220 if (level == BTRFS_MAX_LEVEL) { 4221 ret = 1; 4222 goto done; 4223 } 4224 continue; 4225 } 4226 4227 if (next) { 4228 btrfs_tree_unlock(next); 4229 free_extent_buffer(next); 4230 } 4231 4232 next = c; 4233 ret = read_block_for_search(NULL, root, path, &next, level, 4234 slot, &key); 4235 if (ret == -EAGAIN) 4236 goto again; 4237 4238 if (ret < 0) { 4239 btrfs_release_path(root, path); 4240 goto done; 4241 } 4242 4243 if (!path->skip_locking) { 4244 ret = btrfs_try_spin_lock(next); 4245 if (!ret) { 4246 btrfs_set_path_blocking(path); 4247 btrfs_tree_lock(next); 4248 if (!force_blocking) 4249 btrfs_clear_path_blocking(path, next); 4250 } 4251 if (force_blocking) 4252 btrfs_set_lock_blocking(next); 4253 } 4254 break; 4255 } 4256 path->slots[level] = slot; 4257 while (1) { 4258 level--; 4259 c = path->nodes[level]; 4260 if (path->locks[level]) 4261 btrfs_tree_unlock(c); 4262 4263 free_extent_buffer(c); 4264 path->nodes[level] = next; 4265 path->slots[level] = 0; 4266 if (!path->skip_locking) 4267 path->locks[level] = 1; 4268 4269 if (!level) 4270 break; 4271 4272 ret = read_block_for_search(NULL, root, path, &next, level, 4273 0, &key); 4274 if (ret == -EAGAIN) 4275 goto again; 4276 4277 if (ret < 0) { 4278 btrfs_release_path(root, path); 4279 goto done; 4280 } 4281 4282 if (!path->skip_locking) { 4283 btrfs_assert_tree_locked(path->nodes[level]); 4284 ret = btrfs_try_spin_lock(next); 4285 if (!ret) { 4286 btrfs_set_path_blocking(path); 4287 btrfs_tree_lock(next); 4288 if (!force_blocking) 4289 btrfs_clear_path_blocking(path, next); 4290 } 4291 if (force_blocking) 4292 btrfs_set_lock_blocking(next); 4293 } 4294 } 4295 ret = 0; 4296 done: 4297 unlock_up(path, 0, 1); 4298 path->leave_spinning = old_spinning; 4299 if (!old_spinning) 4300 btrfs_set_path_blocking(path); 4301 4302 return ret; 4303 } 4304 4305 /* 4306 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4307 * searching until it gets past min_objectid or finds an item of 'type' 4308 * 4309 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4310 */ 4311 int btrfs_previous_item(struct btrfs_root *root, 4312 struct btrfs_path *path, u64 min_objectid, 4313 int type) 4314 { 4315 struct btrfs_key found_key; 4316 struct extent_buffer *leaf; 4317 u32 nritems; 4318 int ret; 4319 4320 while (1) { 4321 if (path->slots[0] == 0) { 4322 btrfs_set_path_blocking(path); 4323 ret = btrfs_prev_leaf(root, path); 4324 if (ret != 0) 4325 return ret; 4326 } else { 4327 path->slots[0]--; 4328 } 4329 leaf = path->nodes[0]; 4330 nritems = btrfs_header_nritems(leaf); 4331 if (nritems == 0) 4332 return 1; 4333 if (path->slots[0] == nritems) 4334 path->slots[0]--; 4335 4336 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4337 if (found_key.type == type) 4338 return 0; 4339 if (found_key.objectid < min_objectid) 4340 break; 4341 if (found_key.objectid == min_objectid && 4342 found_key.type < type) 4343 break; 4344 } 4345 return 1; 4346 } 4347