xref: /openbmc/linux/fs/btrfs/ctree.c (revision 75f25bd3)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26 
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 		      *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_key *ins_key,
31 		      struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 			  struct btrfs_root *root, struct extent_buffer *dst,
34 			  struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      struct extent_buffer *dst_buf,
38 			      struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 		   struct btrfs_path *path, int level, int slot);
41 
42 struct btrfs_path *btrfs_alloc_path(void)
43 {
44 	struct btrfs_path *path;
45 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
46 	return path;
47 }
48 
49 /*
50  * set all locked nodes in the path to blocking locks.  This should
51  * be done before scheduling
52  */
53 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
54 {
55 	int i;
56 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
57 		if (!p->nodes[i] || !p->locks[i])
58 			continue;
59 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
60 		if (p->locks[i] == BTRFS_READ_LOCK)
61 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
62 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
63 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
64 	}
65 }
66 
67 /*
68  * reset all the locked nodes in the patch to spinning locks.
69  *
70  * held is used to keep lockdep happy, when lockdep is enabled
71  * we set held to a blocking lock before we go around and
72  * retake all the spinlocks in the path.  You can safely use NULL
73  * for held
74  */
75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
76 					struct extent_buffer *held, int held_rw)
77 {
78 	int i;
79 
80 #ifdef CONFIG_DEBUG_LOCK_ALLOC
81 	/* lockdep really cares that we take all of these spinlocks
82 	 * in the right order.  If any of the locks in the path are not
83 	 * currently blocking, it is going to complain.  So, make really
84 	 * really sure by forcing the path to blocking before we clear
85 	 * the path blocking.
86 	 */
87 	if (held) {
88 		btrfs_set_lock_blocking_rw(held, held_rw);
89 		if (held_rw == BTRFS_WRITE_LOCK)
90 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
91 		else if (held_rw == BTRFS_READ_LOCK)
92 			held_rw = BTRFS_READ_LOCK_BLOCKING;
93 	}
94 	btrfs_set_path_blocking(p);
95 #endif
96 
97 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
98 		if (p->nodes[i] && p->locks[i]) {
99 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
100 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
101 				p->locks[i] = BTRFS_WRITE_LOCK;
102 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
103 				p->locks[i] = BTRFS_READ_LOCK;
104 		}
105 	}
106 
107 #ifdef CONFIG_DEBUG_LOCK_ALLOC
108 	if (held)
109 		btrfs_clear_lock_blocking_rw(held, held_rw);
110 #endif
111 }
112 
113 /* this also releases the path */
114 void btrfs_free_path(struct btrfs_path *p)
115 {
116 	if (!p)
117 		return;
118 	btrfs_release_path(p);
119 	kmem_cache_free(btrfs_path_cachep, p);
120 }
121 
122 /*
123  * path release drops references on the extent buffers in the path
124  * and it drops any locks held by this path
125  *
126  * It is safe to call this on paths that no locks or extent buffers held.
127  */
128 noinline void btrfs_release_path(struct btrfs_path *p)
129 {
130 	int i;
131 
132 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
133 		p->slots[i] = 0;
134 		if (!p->nodes[i])
135 			continue;
136 		if (p->locks[i]) {
137 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
138 			p->locks[i] = 0;
139 		}
140 		free_extent_buffer(p->nodes[i]);
141 		p->nodes[i] = NULL;
142 	}
143 }
144 
145 /*
146  * safely gets a reference on the root node of a tree.  A lock
147  * is not taken, so a concurrent writer may put a different node
148  * at the root of the tree.  See btrfs_lock_root_node for the
149  * looping required.
150  *
151  * The extent buffer returned by this has a reference taken, so
152  * it won't disappear.  It may stop being the root of the tree
153  * at any time because there are no locks held.
154  */
155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
156 {
157 	struct extent_buffer *eb;
158 
159 	rcu_read_lock();
160 	eb = rcu_dereference(root->node);
161 	extent_buffer_get(eb);
162 	rcu_read_unlock();
163 	return eb;
164 }
165 
166 /* loop around taking references on and locking the root node of the
167  * tree until you end up with a lock on the root.  A locked buffer
168  * is returned, with a reference held.
169  */
170 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
171 {
172 	struct extent_buffer *eb;
173 
174 	while (1) {
175 		eb = btrfs_root_node(root);
176 		btrfs_tree_lock(eb);
177 		if (eb == root->node)
178 			break;
179 		btrfs_tree_unlock(eb);
180 		free_extent_buffer(eb);
181 	}
182 	return eb;
183 }
184 
185 /* loop around taking references on and locking the root node of the
186  * tree until you end up with a lock on the root.  A locked buffer
187  * is returned, with a reference held.
188  */
189 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
190 {
191 	struct extent_buffer *eb;
192 
193 	while (1) {
194 		eb = btrfs_root_node(root);
195 		btrfs_tree_read_lock(eb);
196 		if (eb == root->node)
197 			break;
198 		btrfs_tree_read_unlock(eb);
199 		free_extent_buffer(eb);
200 	}
201 	return eb;
202 }
203 
204 /* cowonly root (everything not a reference counted cow subvolume), just get
205  * put onto a simple dirty list.  transaction.c walks this to make sure they
206  * get properly updated on disk.
207  */
208 static void add_root_to_dirty_list(struct btrfs_root *root)
209 {
210 	if (root->track_dirty && list_empty(&root->dirty_list)) {
211 		list_add(&root->dirty_list,
212 			 &root->fs_info->dirty_cowonly_roots);
213 	}
214 }
215 
216 /*
217  * used by snapshot creation to make a copy of a root for a tree with
218  * a given objectid.  The buffer with the new root node is returned in
219  * cow_ret, and this func returns zero on success or a negative error code.
220  */
221 int btrfs_copy_root(struct btrfs_trans_handle *trans,
222 		      struct btrfs_root *root,
223 		      struct extent_buffer *buf,
224 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
225 {
226 	struct extent_buffer *cow;
227 	int ret = 0;
228 	int level;
229 	struct btrfs_disk_key disk_key;
230 
231 	WARN_ON(root->ref_cows && trans->transid !=
232 		root->fs_info->running_transaction->transid);
233 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
234 
235 	level = btrfs_header_level(buf);
236 	if (level == 0)
237 		btrfs_item_key(buf, &disk_key, 0);
238 	else
239 		btrfs_node_key(buf, &disk_key, 0);
240 
241 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
242 				     new_root_objectid, &disk_key, level,
243 				     buf->start, 0);
244 	if (IS_ERR(cow))
245 		return PTR_ERR(cow);
246 
247 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
248 	btrfs_set_header_bytenr(cow, cow->start);
249 	btrfs_set_header_generation(cow, trans->transid);
250 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
251 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
252 				     BTRFS_HEADER_FLAG_RELOC);
253 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
254 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
255 	else
256 		btrfs_set_header_owner(cow, new_root_objectid);
257 
258 	write_extent_buffer(cow, root->fs_info->fsid,
259 			    (unsigned long)btrfs_header_fsid(cow),
260 			    BTRFS_FSID_SIZE);
261 
262 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
263 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
264 		ret = btrfs_inc_ref(trans, root, cow, 1);
265 	else
266 		ret = btrfs_inc_ref(trans, root, cow, 0);
267 
268 	if (ret)
269 		return ret;
270 
271 	btrfs_mark_buffer_dirty(cow);
272 	*cow_ret = cow;
273 	return 0;
274 }
275 
276 /*
277  * check if the tree block can be shared by multiple trees
278  */
279 int btrfs_block_can_be_shared(struct btrfs_root *root,
280 			      struct extent_buffer *buf)
281 {
282 	/*
283 	 * Tree blocks not in refernece counted trees and tree roots
284 	 * are never shared. If a block was allocated after the last
285 	 * snapshot and the block was not allocated by tree relocation,
286 	 * we know the block is not shared.
287 	 */
288 	if (root->ref_cows &&
289 	    buf != root->node && buf != root->commit_root &&
290 	    (btrfs_header_generation(buf) <=
291 	     btrfs_root_last_snapshot(&root->root_item) ||
292 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
293 		return 1;
294 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
295 	if (root->ref_cows &&
296 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
297 		return 1;
298 #endif
299 	return 0;
300 }
301 
302 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
303 				       struct btrfs_root *root,
304 				       struct extent_buffer *buf,
305 				       struct extent_buffer *cow,
306 				       int *last_ref)
307 {
308 	u64 refs;
309 	u64 owner;
310 	u64 flags;
311 	u64 new_flags = 0;
312 	int ret;
313 
314 	/*
315 	 * Backrefs update rules:
316 	 *
317 	 * Always use full backrefs for extent pointers in tree block
318 	 * allocated by tree relocation.
319 	 *
320 	 * If a shared tree block is no longer referenced by its owner
321 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
322 	 * use full backrefs for extent pointers in tree block.
323 	 *
324 	 * If a tree block is been relocating
325 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
326 	 * use full backrefs for extent pointers in tree block.
327 	 * The reason for this is some operations (such as drop tree)
328 	 * are only allowed for blocks use full backrefs.
329 	 */
330 
331 	if (btrfs_block_can_be_shared(root, buf)) {
332 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
333 					       buf->len, &refs, &flags);
334 		BUG_ON(ret);
335 		BUG_ON(refs == 0);
336 	} else {
337 		refs = 1;
338 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
339 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
340 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
341 		else
342 			flags = 0;
343 	}
344 
345 	owner = btrfs_header_owner(buf);
346 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
347 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
348 
349 	if (refs > 1) {
350 		if ((owner == root->root_key.objectid ||
351 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
352 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
353 			ret = btrfs_inc_ref(trans, root, buf, 1);
354 			BUG_ON(ret);
355 
356 			if (root->root_key.objectid ==
357 			    BTRFS_TREE_RELOC_OBJECTID) {
358 				ret = btrfs_dec_ref(trans, root, buf, 0);
359 				BUG_ON(ret);
360 				ret = btrfs_inc_ref(trans, root, cow, 1);
361 				BUG_ON(ret);
362 			}
363 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
364 		} else {
365 
366 			if (root->root_key.objectid ==
367 			    BTRFS_TREE_RELOC_OBJECTID)
368 				ret = btrfs_inc_ref(trans, root, cow, 1);
369 			else
370 				ret = btrfs_inc_ref(trans, root, cow, 0);
371 			BUG_ON(ret);
372 		}
373 		if (new_flags != 0) {
374 			ret = btrfs_set_disk_extent_flags(trans, root,
375 							  buf->start,
376 							  buf->len,
377 							  new_flags, 0);
378 			BUG_ON(ret);
379 		}
380 	} else {
381 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
382 			if (root->root_key.objectid ==
383 			    BTRFS_TREE_RELOC_OBJECTID)
384 				ret = btrfs_inc_ref(trans, root, cow, 1);
385 			else
386 				ret = btrfs_inc_ref(trans, root, cow, 0);
387 			BUG_ON(ret);
388 			ret = btrfs_dec_ref(trans, root, buf, 1);
389 			BUG_ON(ret);
390 		}
391 		clean_tree_block(trans, root, buf);
392 		*last_ref = 1;
393 	}
394 	return 0;
395 }
396 
397 /*
398  * does the dirty work in cow of a single block.  The parent block (if
399  * supplied) is updated to point to the new cow copy.  The new buffer is marked
400  * dirty and returned locked.  If you modify the block it needs to be marked
401  * dirty again.
402  *
403  * search_start -- an allocation hint for the new block
404  *
405  * empty_size -- a hint that you plan on doing more cow.  This is the size in
406  * bytes the allocator should try to find free next to the block it returns.
407  * This is just a hint and may be ignored by the allocator.
408  */
409 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
410 			     struct btrfs_root *root,
411 			     struct extent_buffer *buf,
412 			     struct extent_buffer *parent, int parent_slot,
413 			     struct extent_buffer **cow_ret,
414 			     u64 search_start, u64 empty_size)
415 {
416 	struct btrfs_disk_key disk_key;
417 	struct extent_buffer *cow;
418 	int level;
419 	int last_ref = 0;
420 	int unlock_orig = 0;
421 	u64 parent_start;
422 
423 	if (*cow_ret == buf)
424 		unlock_orig = 1;
425 
426 	btrfs_assert_tree_locked(buf);
427 
428 	WARN_ON(root->ref_cows && trans->transid !=
429 		root->fs_info->running_transaction->transid);
430 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
431 
432 	level = btrfs_header_level(buf);
433 
434 	if (level == 0)
435 		btrfs_item_key(buf, &disk_key, 0);
436 	else
437 		btrfs_node_key(buf, &disk_key, 0);
438 
439 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
440 		if (parent)
441 			parent_start = parent->start;
442 		else
443 			parent_start = 0;
444 	} else
445 		parent_start = 0;
446 
447 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
448 				     root->root_key.objectid, &disk_key,
449 				     level, search_start, empty_size);
450 	if (IS_ERR(cow))
451 		return PTR_ERR(cow);
452 
453 	/* cow is set to blocking by btrfs_init_new_buffer */
454 
455 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
456 	btrfs_set_header_bytenr(cow, cow->start);
457 	btrfs_set_header_generation(cow, trans->transid);
458 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
459 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
460 				     BTRFS_HEADER_FLAG_RELOC);
461 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
462 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
463 	else
464 		btrfs_set_header_owner(cow, root->root_key.objectid);
465 
466 	write_extent_buffer(cow, root->fs_info->fsid,
467 			    (unsigned long)btrfs_header_fsid(cow),
468 			    BTRFS_FSID_SIZE);
469 
470 	update_ref_for_cow(trans, root, buf, cow, &last_ref);
471 
472 	if (root->ref_cows)
473 		btrfs_reloc_cow_block(trans, root, buf, cow);
474 
475 	if (buf == root->node) {
476 		WARN_ON(parent && parent != buf);
477 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
478 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
479 			parent_start = buf->start;
480 		else
481 			parent_start = 0;
482 
483 		extent_buffer_get(cow);
484 		rcu_assign_pointer(root->node, cow);
485 
486 		btrfs_free_tree_block(trans, root, buf, parent_start,
487 				      last_ref);
488 		free_extent_buffer(buf);
489 		add_root_to_dirty_list(root);
490 	} else {
491 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
492 			parent_start = parent->start;
493 		else
494 			parent_start = 0;
495 
496 		WARN_ON(trans->transid != btrfs_header_generation(parent));
497 		btrfs_set_node_blockptr(parent, parent_slot,
498 					cow->start);
499 		btrfs_set_node_ptr_generation(parent, parent_slot,
500 					      trans->transid);
501 		btrfs_mark_buffer_dirty(parent);
502 		btrfs_free_tree_block(trans, root, buf, parent_start,
503 				      last_ref);
504 	}
505 	if (unlock_orig)
506 		btrfs_tree_unlock(buf);
507 	free_extent_buffer(buf);
508 	btrfs_mark_buffer_dirty(cow);
509 	*cow_ret = cow;
510 	return 0;
511 }
512 
513 static inline int should_cow_block(struct btrfs_trans_handle *trans,
514 				   struct btrfs_root *root,
515 				   struct extent_buffer *buf)
516 {
517 	if (btrfs_header_generation(buf) == trans->transid &&
518 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
519 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
520 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
521 		return 0;
522 	return 1;
523 }
524 
525 /*
526  * cows a single block, see __btrfs_cow_block for the real work.
527  * This version of it has extra checks so that a block isn't cow'd more than
528  * once per transaction, as long as it hasn't been written yet
529  */
530 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
531 		    struct btrfs_root *root, struct extent_buffer *buf,
532 		    struct extent_buffer *parent, int parent_slot,
533 		    struct extent_buffer **cow_ret)
534 {
535 	u64 search_start;
536 	int ret;
537 
538 	if (trans->transaction != root->fs_info->running_transaction) {
539 		printk(KERN_CRIT "trans %llu running %llu\n",
540 		       (unsigned long long)trans->transid,
541 		       (unsigned long long)
542 		       root->fs_info->running_transaction->transid);
543 		WARN_ON(1);
544 	}
545 	if (trans->transid != root->fs_info->generation) {
546 		printk(KERN_CRIT "trans %llu running %llu\n",
547 		       (unsigned long long)trans->transid,
548 		       (unsigned long long)root->fs_info->generation);
549 		WARN_ON(1);
550 	}
551 
552 	if (!should_cow_block(trans, root, buf)) {
553 		*cow_ret = buf;
554 		return 0;
555 	}
556 
557 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
558 
559 	if (parent)
560 		btrfs_set_lock_blocking(parent);
561 	btrfs_set_lock_blocking(buf);
562 
563 	ret = __btrfs_cow_block(trans, root, buf, parent,
564 				 parent_slot, cow_ret, search_start, 0);
565 
566 	trace_btrfs_cow_block(root, buf, *cow_ret);
567 
568 	return ret;
569 }
570 
571 /*
572  * helper function for defrag to decide if two blocks pointed to by a
573  * node are actually close by
574  */
575 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
576 {
577 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
578 		return 1;
579 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
580 		return 1;
581 	return 0;
582 }
583 
584 /*
585  * compare two keys in a memcmp fashion
586  */
587 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
588 {
589 	struct btrfs_key k1;
590 
591 	btrfs_disk_key_to_cpu(&k1, disk);
592 
593 	return btrfs_comp_cpu_keys(&k1, k2);
594 }
595 
596 /*
597  * same as comp_keys only with two btrfs_key's
598  */
599 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
600 {
601 	if (k1->objectid > k2->objectid)
602 		return 1;
603 	if (k1->objectid < k2->objectid)
604 		return -1;
605 	if (k1->type > k2->type)
606 		return 1;
607 	if (k1->type < k2->type)
608 		return -1;
609 	if (k1->offset > k2->offset)
610 		return 1;
611 	if (k1->offset < k2->offset)
612 		return -1;
613 	return 0;
614 }
615 
616 /*
617  * this is used by the defrag code to go through all the
618  * leaves pointed to by a node and reallocate them so that
619  * disk order is close to key order
620  */
621 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
622 		       struct btrfs_root *root, struct extent_buffer *parent,
623 		       int start_slot, int cache_only, u64 *last_ret,
624 		       struct btrfs_key *progress)
625 {
626 	struct extent_buffer *cur;
627 	u64 blocknr;
628 	u64 gen;
629 	u64 search_start = *last_ret;
630 	u64 last_block = 0;
631 	u64 other;
632 	u32 parent_nritems;
633 	int end_slot;
634 	int i;
635 	int err = 0;
636 	int parent_level;
637 	int uptodate;
638 	u32 blocksize;
639 	int progress_passed = 0;
640 	struct btrfs_disk_key disk_key;
641 
642 	parent_level = btrfs_header_level(parent);
643 	if (cache_only && parent_level != 1)
644 		return 0;
645 
646 	if (trans->transaction != root->fs_info->running_transaction)
647 		WARN_ON(1);
648 	if (trans->transid != root->fs_info->generation)
649 		WARN_ON(1);
650 
651 	parent_nritems = btrfs_header_nritems(parent);
652 	blocksize = btrfs_level_size(root, parent_level - 1);
653 	end_slot = parent_nritems;
654 
655 	if (parent_nritems == 1)
656 		return 0;
657 
658 	btrfs_set_lock_blocking(parent);
659 
660 	for (i = start_slot; i < end_slot; i++) {
661 		int close = 1;
662 
663 		btrfs_node_key(parent, &disk_key, i);
664 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
665 			continue;
666 
667 		progress_passed = 1;
668 		blocknr = btrfs_node_blockptr(parent, i);
669 		gen = btrfs_node_ptr_generation(parent, i);
670 		if (last_block == 0)
671 			last_block = blocknr;
672 
673 		if (i > 0) {
674 			other = btrfs_node_blockptr(parent, i - 1);
675 			close = close_blocks(blocknr, other, blocksize);
676 		}
677 		if (!close && i < end_slot - 2) {
678 			other = btrfs_node_blockptr(parent, i + 1);
679 			close = close_blocks(blocknr, other, blocksize);
680 		}
681 		if (close) {
682 			last_block = blocknr;
683 			continue;
684 		}
685 
686 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
687 		if (cur)
688 			uptodate = btrfs_buffer_uptodate(cur, gen);
689 		else
690 			uptodate = 0;
691 		if (!cur || !uptodate) {
692 			if (cache_only) {
693 				free_extent_buffer(cur);
694 				continue;
695 			}
696 			if (!cur) {
697 				cur = read_tree_block(root, blocknr,
698 							 blocksize, gen);
699 				if (!cur)
700 					return -EIO;
701 			} else if (!uptodate) {
702 				btrfs_read_buffer(cur, gen);
703 			}
704 		}
705 		if (search_start == 0)
706 			search_start = last_block;
707 
708 		btrfs_tree_lock(cur);
709 		btrfs_set_lock_blocking(cur);
710 		err = __btrfs_cow_block(trans, root, cur, parent, i,
711 					&cur, search_start,
712 					min(16 * blocksize,
713 					    (end_slot - i) * blocksize));
714 		if (err) {
715 			btrfs_tree_unlock(cur);
716 			free_extent_buffer(cur);
717 			break;
718 		}
719 		search_start = cur->start;
720 		last_block = cur->start;
721 		*last_ret = search_start;
722 		btrfs_tree_unlock(cur);
723 		free_extent_buffer(cur);
724 	}
725 	return err;
726 }
727 
728 /*
729  * The leaf data grows from end-to-front in the node.
730  * this returns the address of the start of the last item,
731  * which is the stop of the leaf data stack
732  */
733 static inline unsigned int leaf_data_end(struct btrfs_root *root,
734 					 struct extent_buffer *leaf)
735 {
736 	u32 nr = btrfs_header_nritems(leaf);
737 	if (nr == 0)
738 		return BTRFS_LEAF_DATA_SIZE(root);
739 	return btrfs_item_offset_nr(leaf, nr - 1);
740 }
741 
742 
743 /*
744  * search for key in the extent_buffer.  The items start at offset p,
745  * and they are item_size apart.  There are 'max' items in p.
746  *
747  * the slot in the array is returned via slot, and it points to
748  * the place where you would insert key if it is not found in
749  * the array.
750  *
751  * slot may point to max if the key is bigger than all of the keys
752  */
753 static noinline int generic_bin_search(struct extent_buffer *eb,
754 				       unsigned long p,
755 				       int item_size, struct btrfs_key *key,
756 				       int max, int *slot)
757 {
758 	int low = 0;
759 	int high = max;
760 	int mid;
761 	int ret;
762 	struct btrfs_disk_key *tmp = NULL;
763 	struct btrfs_disk_key unaligned;
764 	unsigned long offset;
765 	char *kaddr = NULL;
766 	unsigned long map_start = 0;
767 	unsigned long map_len = 0;
768 	int err;
769 
770 	while (low < high) {
771 		mid = (low + high) / 2;
772 		offset = p + mid * item_size;
773 
774 		if (!kaddr || offset < map_start ||
775 		    (offset + sizeof(struct btrfs_disk_key)) >
776 		    map_start + map_len) {
777 
778 			err = map_private_extent_buffer(eb, offset,
779 						sizeof(struct btrfs_disk_key),
780 						&kaddr, &map_start, &map_len);
781 
782 			if (!err) {
783 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
784 							map_start);
785 			} else {
786 				read_extent_buffer(eb, &unaligned,
787 						   offset, sizeof(unaligned));
788 				tmp = &unaligned;
789 			}
790 
791 		} else {
792 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
793 							map_start);
794 		}
795 		ret = comp_keys(tmp, key);
796 
797 		if (ret < 0)
798 			low = mid + 1;
799 		else if (ret > 0)
800 			high = mid;
801 		else {
802 			*slot = mid;
803 			return 0;
804 		}
805 	}
806 	*slot = low;
807 	return 1;
808 }
809 
810 /*
811  * simple bin_search frontend that does the right thing for
812  * leaves vs nodes
813  */
814 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
815 		      int level, int *slot)
816 {
817 	if (level == 0) {
818 		return generic_bin_search(eb,
819 					  offsetof(struct btrfs_leaf, items),
820 					  sizeof(struct btrfs_item),
821 					  key, btrfs_header_nritems(eb),
822 					  slot);
823 	} else {
824 		return generic_bin_search(eb,
825 					  offsetof(struct btrfs_node, ptrs),
826 					  sizeof(struct btrfs_key_ptr),
827 					  key, btrfs_header_nritems(eb),
828 					  slot);
829 	}
830 	return -1;
831 }
832 
833 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
834 		     int level, int *slot)
835 {
836 	return bin_search(eb, key, level, slot);
837 }
838 
839 static void root_add_used(struct btrfs_root *root, u32 size)
840 {
841 	spin_lock(&root->accounting_lock);
842 	btrfs_set_root_used(&root->root_item,
843 			    btrfs_root_used(&root->root_item) + size);
844 	spin_unlock(&root->accounting_lock);
845 }
846 
847 static void root_sub_used(struct btrfs_root *root, u32 size)
848 {
849 	spin_lock(&root->accounting_lock);
850 	btrfs_set_root_used(&root->root_item,
851 			    btrfs_root_used(&root->root_item) - size);
852 	spin_unlock(&root->accounting_lock);
853 }
854 
855 /* given a node and slot number, this reads the blocks it points to.  The
856  * extent buffer is returned with a reference taken (but unlocked).
857  * NULL is returned on error.
858  */
859 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
860 				   struct extent_buffer *parent, int slot)
861 {
862 	int level = btrfs_header_level(parent);
863 	if (slot < 0)
864 		return NULL;
865 	if (slot >= btrfs_header_nritems(parent))
866 		return NULL;
867 
868 	BUG_ON(level == 0);
869 
870 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
871 		       btrfs_level_size(root, level - 1),
872 		       btrfs_node_ptr_generation(parent, slot));
873 }
874 
875 /*
876  * node level balancing, used to make sure nodes are in proper order for
877  * item deletion.  We balance from the top down, so we have to make sure
878  * that a deletion won't leave an node completely empty later on.
879  */
880 static noinline int balance_level(struct btrfs_trans_handle *trans,
881 			 struct btrfs_root *root,
882 			 struct btrfs_path *path, int level)
883 {
884 	struct extent_buffer *right = NULL;
885 	struct extent_buffer *mid;
886 	struct extent_buffer *left = NULL;
887 	struct extent_buffer *parent = NULL;
888 	int ret = 0;
889 	int wret;
890 	int pslot;
891 	int orig_slot = path->slots[level];
892 	u64 orig_ptr;
893 
894 	if (level == 0)
895 		return 0;
896 
897 	mid = path->nodes[level];
898 
899 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
900 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
901 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
902 
903 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
904 
905 	if (level < BTRFS_MAX_LEVEL - 1)
906 		parent = path->nodes[level + 1];
907 	pslot = path->slots[level + 1];
908 
909 	/*
910 	 * deal with the case where there is only one pointer in the root
911 	 * by promoting the node below to a root
912 	 */
913 	if (!parent) {
914 		struct extent_buffer *child;
915 
916 		if (btrfs_header_nritems(mid) != 1)
917 			return 0;
918 
919 		/* promote the child to a root */
920 		child = read_node_slot(root, mid, 0);
921 		BUG_ON(!child);
922 		btrfs_tree_lock(child);
923 		btrfs_set_lock_blocking(child);
924 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
925 		if (ret) {
926 			btrfs_tree_unlock(child);
927 			free_extent_buffer(child);
928 			goto enospc;
929 		}
930 
931 		rcu_assign_pointer(root->node, child);
932 
933 		add_root_to_dirty_list(root);
934 		btrfs_tree_unlock(child);
935 
936 		path->locks[level] = 0;
937 		path->nodes[level] = NULL;
938 		clean_tree_block(trans, root, mid);
939 		btrfs_tree_unlock(mid);
940 		/* once for the path */
941 		free_extent_buffer(mid);
942 
943 		root_sub_used(root, mid->len);
944 		btrfs_free_tree_block(trans, root, mid, 0, 1);
945 		/* once for the root ptr */
946 		free_extent_buffer(mid);
947 		return 0;
948 	}
949 	if (btrfs_header_nritems(mid) >
950 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
951 		return 0;
952 
953 	btrfs_header_nritems(mid);
954 
955 	left = read_node_slot(root, parent, pslot - 1);
956 	if (left) {
957 		btrfs_tree_lock(left);
958 		btrfs_set_lock_blocking(left);
959 		wret = btrfs_cow_block(trans, root, left,
960 				       parent, pslot - 1, &left);
961 		if (wret) {
962 			ret = wret;
963 			goto enospc;
964 		}
965 	}
966 	right = read_node_slot(root, parent, pslot + 1);
967 	if (right) {
968 		btrfs_tree_lock(right);
969 		btrfs_set_lock_blocking(right);
970 		wret = btrfs_cow_block(trans, root, right,
971 				       parent, pslot + 1, &right);
972 		if (wret) {
973 			ret = wret;
974 			goto enospc;
975 		}
976 	}
977 
978 	/* first, try to make some room in the middle buffer */
979 	if (left) {
980 		orig_slot += btrfs_header_nritems(left);
981 		wret = push_node_left(trans, root, left, mid, 1);
982 		if (wret < 0)
983 			ret = wret;
984 		btrfs_header_nritems(mid);
985 	}
986 
987 	/*
988 	 * then try to empty the right most buffer into the middle
989 	 */
990 	if (right) {
991 		wret = push_node_left(trans, root, mid, right, 1);
992 		if (wret < 0 && wret != -ENOSPC)
993 			ret = wret;
994 		if (btrfs_header_nritems(right) == 0) {
995 			clean_tree_block(trans, root, right);
996 			btrfs_tree_unlock(right);
997 			wret = del_ptr(trans, root, path, level + 1, pslot +
998 				       1);
999 			if (wret)
1000 				ret = wret;
1001 			root_sub_used(root, right->len);
1002 			btrfs_free_tree_block(trans, root, right, 0, 1);
1003 			free_extent_buffer(right);
1004 			right = NULL;
1005 		} else {
1006 			struct btrfs_disk_key right_key;
1007 			btrfs_node_key(right, &right_key, 0);
1008 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1009 			btrfs_mark_buffer_dirty(parent);
1010 		}
1011 	}
1012 	if (btrfs_header_nritems(mid) == 1) {
1013 		/*
1014 		 * we're not allowed to leave a node with one item in the
1015 		 * tree during a delete.  A deletion from lower in the tree
1016 		 * could try to delete the only pointer in this node.
1017 		 * So, pull some keys from the left.
1018 		 * There has to be a left pointer at this point because
1019 		 * otherwise we would have pulled some pointers from the
1020 		 * right
1021 		 */
1022 		BUG_ON(!left);
1023 		wret = balance_node_right(trans, root, mid, left);
1024 		if (wret < 0) {
1025 			ret = wret;
1026 			goto enospc;
1027 		}
1028 		if (wret == 1) {
1029 			wret = push_node_left(trans, root, left, mid, 1);
1030 			if (wret < 0)
1031 				ret = wret;
1032 		}
1033 		BUG_ON(wret == 1);
1034 	}
1035 	if (btrfs_header_nritems(mid) == 0) {
1036 		clean_tree_block(trans, root, mid);
1037 		btrfs_tree_unlock(mid);
1038 		wret = del_ptr(trans, root, path, level + 1, pslot);
1039 		if (wret)
1040 			ret = wret;
1041 		root_sub_used(root, mid->len);
1042 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1043 		free_extent_buffer(mid);
1044 		mid = NULL;
1045 	} else {
1046 		/* update the parent key to reflect our changes */
1047 		struct btrfs_disk_key mid_key;
1048 		btrfs_node_key(mid, &mid_key, 0);
1049 		btrfs_set_node_key(parent, &mid_key, pslot);
1050 		btrfs_mark_buffer_dirty(parent);
1051 	}
1052 
1053 	/* update the path */
1054 	if (left) {
1055 		if (btrfs_header_nritems(left) > orig_slot) {
1056 			extent_buffer_get(left);
1057 			/* left was locked after cow */
1058 			path->nodes[level] = left;
1059 			path->slots[level + 1] -= 1;
1060 			path->slots[level] = orig_slot;
1061 			if (mid) {
1062 				btrfs_tree_unlock(mid);
1063 				free_extent_buffer(mid);
1064 			}
1065 		} else {
1066 			orig_slot -= btrfs_header_nritems(left);
1067 			path->slots[level] = orig_slot;
1068 		}
1069 	}
1070 	/* double check we haven't messed things up */
1071 	if (orig_ptr !=
1072 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1073 		BUG();
1074 enospc:
1075 	if (right) {
1076 		btrfs_tree_unlock(right);
1077 		free_extent_buffer(right);
1078 	}
1079 	if (left) {
1080 		if (path->nodes[level] != left)
1081 			btrfs_tree_unlock(left);
1082 		free_extent_buffer(left);
1083 	}
1084 	return ret;
1085 }
1086 
1087 /* Node balancing for insertion.  Here we only split or push nodes around
1088  * when they are completely full.  This is also done top down, so we
1089  * have to be pessimistic.
1090  */
1091 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1092 					  struct btrfs_root *root,
1093 					  struct btrfs_path *path, int level)
1094 {
1095 	struct extent_buffer *right = NULL;
1096 	struct extent_buffer *mid;
1097 	struct extent_buffer *left = NULL;
1098 	struct extent_buffer *parent = NULL;
1099 	int ret = 0;
1100 	int wret;
1101 	int pslot;
1102 	int orig_slot = path->slots[level];
1103 
1104 	if (level == 0)
1105 		return 1;
1106 
1107 	mid = path->nodes[level];
1108 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109 
1110 	if (level < BTRFS_MAX_LEVEL - 1)
1111 		parent = path->nodes[level + 1];
1112 	pslot = path->slots[level + 1];
1113 
1114 	if (!parent)
1115 		return 1;
1116 
1117 	left = read_node_slot(root, parent, pslot - 1);
1118 
1119 	/* first, try to make some room in the middle buffer */
1120 	if (left) {
1121 		u32 left_nr;
1122 
1123 		btrfs_tree_lock(left);
1124 		btrfs_set_lock_blocking(left);
1125 
1126 		left_nr = btrfs_header_nritems(left);
1127 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1128 			wret = 1;
1129 		} else {
1130 			ret = btrfs_cow_block(trans, root, left, parent,
1131 					      pslot - 1, &left);
1132 			if (ret)
1133 				wret = 1;
1134 			else {
1135 				wret = push_node_left(trans, root,
1136 						      left, mid, 0);
1137 			}
1138 		}
1139 		if (wret < 0)
1140 			ret = wret;
1141 		if (wret == 0) {
1142 			struct btrfs_disk_key disk_key;
1143 			orig_slot += left_nr;
1144 			btrfs_node_key(mid, &disk_key, 0);
1145 			btrfs_set_node_key(parent, &disk_key, pslot);
1146 			btrfs_mark_buffer_dirty(parent);
1147 			if (btrfs_header_nritems(left) > orig_slot) {
1148 				path->nodes[level] = left;
1149 				path->slots[level + 1] -= 1;
1150 				path->slots[level] = orig_slot;
1151 				btrfs_tree_unlock(mid);
1152 				free_extent_buffer(mid);
1153 			} else {
1154 				orig_slot -=
1155 					btrfs_header_nritems(left);
1156 				path->slots[level] = orig_slot;
1157 				btrfs_tree_unlock(left);
1158 				free_extent_buffer(left);
1159 			}
1160 			return 0;
1161 		}
1162 		btrfs_tree_unlock(left);
1163 		free_extent_buffer(left);
1164 	}
1165 	right = read_node_slot(root, parent, pslot + 1);
1166 
1167 	/*
1168 	 * then try to empty the right most buffer into the middle
1169 	 */
1170 	if (right) {
1171 		u32 right_nr;
1172 
1173 		btrfs_tree_lock(right);
1174 		btrfs_set_lock_blocking(right);
1175 
1176 		right_nr = btrfs_header_nritems(right);
1177 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1178 			wret = 1;
1179 		} else {
1180 			ret = btrfs_cow_block(trans, root, right,
1181 					      parent, pslot + 1,
1182 					      &right);
1183 			if (ret)
1184 				wret = 1;
1185 			else {
1186 				wret = balance_node_right(trans, root,
1187 							  right, mid);
1188 			}
1189 		}
1190 		if (wret < 0)
1191 			ret = wret;
1192 		if (wret == 0) {
1193 			struct btrfs_disk_key disk_key;
1194 
1195 			btrfs_node_key(right, &disk_key, 0);
1196 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1197 			btrfs_mark_buffer_dirty(parent);
1198 
1199 			if (btrfs_header_nritems(mid) <= orig_slot) {
1200 				path->nodes[level] = right;
1201 				path->slots[level + 1] += 1;
1202 				path->slots[level] = orig_slot -
1203 					btrfs_header_nritems(mid);
1204 				btrfs_tree_unlock(mid);
1205 				free_extent_buffer(mid);
1206 			} else {
1207 				btrfs_tree_unlock(right);
1208 				free_extent_buffer(right);
1209 			}
1210 			return 0;
1211 		}
1212 		btrfs_tree_unlock(right);
1213 		free_extent_buffer(right);
1214 	}
1215 	return 1;
1216 }
1217 
1218 /*
1219  * readahead one full node of leaves, finding things that are close
1220  * to the block in 'slot', and triggering ra on them.
1221  */
1222 static void reada_for_search(struct btrfs_root *root,
1223 			     struct btrfs_path *path,
1224 			     int level, int slot, u64 objectid)
1225 {
1226 	struct extent_buffer *node;
1227 	struct btrfs_disk_key disk_key;
1228 	u32 nritems;
1229 	u64 search;
1230 	u64 target;
1231 	u64 nread = 0;
1232 	u64 gen;
1233 	int direction = path->reada;
1234 	struct extent_buffer *eb;
1235 	u32 nr;
1236 	u32 blocksize;
1237 	u32 nscan = 0;
1238 
1239 	if (level != 1)
1240 		return;
1241 
1242 	if (!path->nodes[level])
1243 		return;
1244 
1245 	node = path->nodes[level];
1246 
1247 	search = btrfs_node_blockptr(node, slot);
1248 	blocksize = btrfs_level_size(root, level - 1);
1249 	eb = btrfs_find_tree_block(root, search, blocksize);
1250 	if (eb) {
1251 		free_extent_buffer(eb);
1252 		return;
1253 	}
1254 
1255 	target = search;
1256 
1257 	nritems = btrfs_header_nritems(node);
1258 	nr = slot;
1259 
1260 	while (1) {
1261 		if (direction < 0) {
1262 			if (nr == 0)
1263 				break;
1264 			nr--;
1265 		} else if (direction > 0) {
1266 			nr++;
1267 			if (nr >= nritems)
1268 				break;
1269 		}
1270 		if (path->reada < 0 && objectid) {
1271 			btrfs_node_key(node, &disk_key, nr);
1272 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1273 				break;
1274 		}
1275 		search = btrfs_node_blockptr(node, nr);
1276 		if ((search <= target && target - search <= 65536) ||
1277 		    (search > target && search - target <= 65536)) {
1278 			gen = btrfs_node_ptr_generation(node, nr);
1279 			readahead_tree_block(root, search, blocksize, gen);
1280 			nread += blocksize;
1281 		}
1282 		nscan++;
1283 		if ((nread > 65536 || nscan > 32))
1284 			break;
1285 	}
1286 }
1287 
1288 /*
1289  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1290  * cache
1291  */
1292 static noinline int reada_for_balance(struct btrfs_root *root,
1293 				      struct btrfs_path *path, int level)
1294 {
1295 	int slot;
1296 	int nritems;
1297 	struct extent_buffer *parent;
1298 	struct extent_buffer *eb;
1299 	u64 gen;
1300 	u64 block1 = 0;
1301 	u64 block2 = 0;
1302 	int ret = 0;
1303 	int blocksize;
1304 
1305 	parent = path->nodes[level + 1];
1306 	if (!parent)
1307 		return 0;
1308 
1309 	nritems = btrfs_header_nritems(parent);
1310 	slot = path->slots[level + 1];
1311 	blocksize = btrfs_level_size(root, level);
1312 
1313 	if (slot > 0) {
1314 		block1 = btrfs_node_blockptr(parent, slot - 1);
1315 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1316 		eb = btrfs_find_tree_block(root, block1, blocksize);
1317 		if (eb && btrfs_buffer_uptodate(eb, gen))
1318 			block1 = 0;
1319 		free_extent_buffer(eb);
1320 	}
1321 	if (slot + 1 < nritems) {
1322 		block2 = btrfs_node_blockptr(parent, slot + 1);
1323 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1324 		eb = btrfs_find_tree_block(root, block2, blocksize);
1325 		if (eb && btrfs_buffer_uptodate(eb, gen))
1326 			block2 = 0;
1327 		free_extent_buffer(eb);
1328 	}
1329 	if (block1 || block2) {
1330 		ret = -EAGAIN;
1331 
1332 		/* release the whole path */
1333 		btrfs_release_path(path);
1334 
1335 		/* read the blocks */
1336 		if (block1)
1337 			readahead_tree_block(root, block1, blocksize, 0);
1338 		if (block2)
1339 			readahead_tree_block(root, block2, blocksize, 0);
1340 
1341 		if (block1) {
1342 			eb = read_tree_block(root, block1, blocksize, 0);
1343 			free_extent_buffer(eb);
1344 		}
1345 		if (block2) {
1346 			eb = read_tree_block(root, block2, blocksize, 0);
1347 			free_extent_buffer(eb);
1348 		}
1349 	}
1350 	return ret;
1351 }
1352 
1353 
1354 /*
1355  * when we walk down the tree, it is usually safe to unlock the higher layers
1356  * in the tree.  The exceptions are when our path goes through slot 0, because
1357  * operations on the tree might require changing key pointers higher up in the
1358  * tree.
1359  *
1360  * callers might also have set path->keep_locks, which tells this code to keep
1361  * the lock if the path points to the last slot in the block.  This is part of
1362  * walking through the tree, and selecting the next slot in the higher block.
1363  *
1364  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1365  * if lowest_unlock is 1, level 0 won't be unlocked
1366  */
1367 static noinline void unlock_up(struct btrfs_path *path, int level,
1368 			       int lowest_unlock)
1369 {
1370 	int i;
1371 	int skip_level = level;
1372 	int no_skips = 0;
1373 	struct extent_buffer *t;
1374 
1375 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1376 		if (!path->nodes[i])
1377 			break;
1378 		if (!path->locks[i])
1379 			break;
1380 		if (!no_skips && path->slots[i] == 0) {
1381 			skip_level = i + 1;
1382 			continue;
1383 		}
1384 		if (!no_skips && path->keep_locks) {
1385 			u32 nritems;
1386 			t = path->nodes[i];
1387 			nritems = btrfs_header_nritems(t);
1388 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1389 				skip_level = i + 1;
1390 				continue;
1391 			}
1392 		}
1393 		if (skip_level < i && i >= lowest_unlock)
1394 			no_skips = 1;
1395 
1396 		t = path->nodes[i];
1397 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1398 			btrfs_tree_unlock_rw(t, path->locks[i]);
1399 			path->locks[i] = 0;
1400 		}
1401 	}
1402 }
1403 
1404 /*
1405  * This releases any locks held in the path starting at level and
1406  * going all the way up to the root.
1407  *
1408  * btrfs_search_slot will keep the lock held on higher nodes in a few
1409  * corner cases, such as COW of the block at slot zero in the node.  This
1410  * ignores those rules, and it should only be called when there are no
1411  * more updates to be done higher up in the tree.
1412  */
1413 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1414 {
1415 	int i;
1416 
1417 	if (path->keep_locks)
1418 		return;
1419 
1420 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1421 		if (!path->nodes[i])
1422 			continue;
1423 		if (!path->locks[i])
1424 			continue;
1425 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1426 		path->locks[i] = 0;
1427 	}
1428 }
1429 
1430 /*
1431  * helper function for btrfs_search_slot.  The goal is to find a block
1432  * in cache without setting the path to blocking.  If we find the block
1433  * we return zero and the path is unchanged.
1434  *
1435  * If we can't find the block, we set the path blocking and do some
1436  * reada.  -EAGAIN is returned and the search must be repeated.
1437  */
1438 static int
1439 read_block_for_search(struct btrfs_trans_handle *trans,
1440 		       struct btrfs_root *root, struct btrfs_path *p,
1441 		       struct extent_buffer **eb_ret, int level, int slot,
1442 		       struct btrfs_key *key)
1443 {
1444 	u64 blocknr;
1445 	u64 gen;
1446 	u32 blocksize;
1447 	struct extent_buffer *b = *eb_ret;
1448 	struct extent_buffer *tmp;
1449 	int ret;
1450 
1451 	blocknr = btrfs_node_blockptr(b, slot);
1452 	gen = btrfs_node_ptr_generation(b, slot);
1453 	blocksize = btrfs_level_size(root, level - 1);
1454 
1455 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1456 	if (tmp) {
1457 		if (btrfs_buffer_uptodate(tmp, 0)) {
1458 			if (btrfs_buffer_uptodate(tmp, gen)) {
1459 				/*
1460 				 * we found an up to date block without
1461 				 * sleeping, return
1462 				 * right away
1463 				 */
1464 				*eb_ret = tmp;
1465 				return 0;
1466 			}
1467 			/* the pages were up to date, but we failed
1468 			 * the generation number check.  Do a full
1469 			 * read for the generation number that is correct.
1470 			 * We must do this without dropping locks so
1471 			 * we can trust our generation number
1472 			 */
1473 			free_extent_buffer(tmp);
1474 			btrfs_set_path_blocking(p);
1475 
1476 			tmp = read_tree_block(root, blocknr, blocksize, gen);
1477 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1478 				*eb_ret = tmp;
1479 				return 0;
1480 			}
1481 			free_extent_buffer(tmp);
1482 			btrfs_release_path(p);
1483 			return -EIO;
1484 		}
1485 	}
1486 
1487 	/*
1488 	 * reduce lock contention at high levels
1489 	 * of the btree by dropping locks before
1490 	 * we read.  Don't release the lock on the current
1491 	 * level because we need to walk this node to figure
1492 	 * out which blocks to read.
1493 	 */
1494 	btrfs_unlock_up_safe(p, level + 1);
1495 	btrfs_set_path_blocking(p);
1496 
1497 	free_extent_buffer(tmp);
1498 	if (p->reada)
1499 		reada_for_search(root, p, level, slot, key->objectid);
1500 
1501 	btrfs_release_path(p);
1502 
1503 	ret = -EAGAIN;
1504 	tmp = read_tree_block(root, blocknr, blocksize, 0);
1505 	if (tmp) {
1506 		/*
1507 		 * If the read above didn't mark this buffer up to date,
1508 		 * it will never end up being up to date.  Set ret to EIO now
1509 		 * and give up so that our caller doesn't loop forever
1510 		 * on our EAGAINs.
1511 		 */
1512 		if (!btrfs_buffer_uptodate(tmp, 0))
1513 			ret = -EIO;
1514 		free_extent_buffer(tmp);
1515 	}
1516 	return ret;
1517 }
1518 
1519 /*
1520  * helper function for btrfs_search_slot.  This does all of the checks
1521  * for node-level blocks and does any balancing required based on
1522  * the ins_len.
1523  *
1524  * If no extra work was required, zero is returned.  If we had to
1525  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1526  * start over
1527  */
1528 static int
1529 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1530 		       struct btrfs_root *root, struct btrfs_path *p,
1531 		       struct extent_buffer *b, int level, int ins_len,
1532 		       int *write_lock_level)
1533 {
1534 	int ret;
1535 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1536 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1537 		int sret;
1538 
1539 		if (*write_lock_level < level + 1) {
1540 			*write_lock_level = level + 1;
1541 			btrfs_release_path(p);
1542 			goto again;
1543 		}
1544 
1545 		sret = reada_for_balance(root, p, level);
1546 		if (sret)
1547 			goto again;
1548 
1549 		btrfs_set_path_blocking(p);
1550 		sret = split_node(trans, root, p, level);
1551 		btrfs_clear_path_blocking(p, NULL, 0);
1552 
1553 		BUG_ON(sret > 0);
1554 		if (sret) {
1555 			ret = sret;
1556 			goto done;
1557 		}
1558 		b = p->nodes[level];
1559 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1560 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1561 		int sret;
1562 
1563 		if (*write_lock_level < level + 1) {
1564 			*write_lock_level = level + 1;
1565 			btrfs_release_path(p);
1566 			goto again;
1567 		}
1568 
1569 		sret = reada_for_balance(root, p, level);
1570 		if (sret)
1571 			goto again;
1572 
1573 		btrfs_set_path_blocking(p);
1574 		sret = balance_level(trans, root, p, level);
1575 		btrfs_clear_path_blocking(p, NULL, 0);
1576 
1577 		if (sret) {
1578 			ret = sret;
1579 			goto done;
1580 		}
1581 		b = p->nodes[level];
1582 		if (!b) {
1583 			btrfs_release_path(p);
1584 			goto again;
1585 		}
1586 		BUG_ON(btrfs_header_nritems(b) == 1);
1587 	}
1588 	return 0;
1589 
1590 again:
1591 	ret = -EAGAIN;
1592 done:
1593 	return ret;
1594 }
1595 
1596 /*
1597  * look for key in the tree.  path is filled in with nodes along the way
1598  * if key is found, we return zero and you can find the item in the leaf
1599  * level of the path (level 0)
1600  *
1601  * If the key isn't found, the path points to the slot where it should
1602  * be inserted, and 1 is returned.  If there are other errors during the
1603  * search a negative error number is returned.
1604  *
1605  * if ins_len > 0, nodes and leaves will be split as we walk down the
1606  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1607  * possible)
1608  */
1609 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1610 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1611 		      ins_len, int cow)
1612 {
1613 	struct extent_buffer *b;
1614 	int slot;
1615 	int ret;
1616 	int err;
1617 	int level;
1618 	int lowest_unlock = 1;
1619 	int root_lock;
1620 	/* everything at write_lock_level or lower must be write locked */
1621 	int write_lock_level = 0;
1622 	u8 lowest_level = 0;
1623 
1624 	lowest_level = p->lowest_level;
1625 	WARN_ON(lowest_level && ins_len > 0);
1626 	WARN_ON(p->nodes[0] != NULL);
1627 
1628 	if (ins_len < 0) {
1629 		lowest_unlock = 2;
1630 
1631 		/* when we are removing items, we might have to go up to level
1632 		 * two as we update tree pointers  Make sure we keep write
1633 		 * for those levels as well
1634 		 */
1635 		write_lock_level = 2;
1636 	} else if (ins_len > 0) {
1637 		/*
1638 		 * for inserting items, make sure we have a write lock on
1639 		 * level 1 so we can update keys
1640 		 */
1641 		write_lock_level = 1;
1642 	}
1643 
1644 	if (!cow)
1645 		write_lock_level = -1;
1646 
1647 	if (cow && (p->keep_locks || p->lowest_level))
1648 		write_lock_level = BTRFS_MAX_LEVEL;
1649 
1650 again:
1651 	/*
1652 	 * we try very hard to do read locks on the root
1653 	 */
1654 	root_lock = BTRFS_READ_LOCK;
1655 	level = 0;
1656 	if (p->search_commit_root) {
1657 		/*
1658 		 * the commit roots are read only
1659 		 * so we always do read locks
1660 		 */
1661 		b = root->commit_root;
1662 		extent_buffer_get(b);
1663 		level = btrfs_header_level(b);
1664 		if (!p->skip_locking)
1665 			btrfs_tree_read_lock(b);
1666 	} else {
1667 		if (p->skip_locking) {
1668 			b = btrfs_root_node(root);
1669 			level = btrfs_header_level(b);
1670 		} else {
1671 			/* we don't know the level of the root node
1672 			 * until we actually have it read locked
1673 			 */
1674 			b = btrfs_read_lock_root_node(root);
1675 			level = btrfs_header_level(b);
1676 			if (level <= write_lock_level) {
1677 				/* whoops, must trade for write lock */
1678 				btrfs_tree_read_unlock(b);
1679 				free_extent_buffer(b);
1680 				b = btrfs_lock_root_node(root);
1681 				root_lock = BTRFS_WRITE_LOCK;
1682 
1683 				/* the level might have changed, check again */
1684 				level = btrfs_header_level(b);
1685 			}
1686 		}
1687 	}
1688 	p->nodes[level] = b;
1689 	if (!p->skip_locking)
1690 		p->locks[level] = root_lock;
1691 
1692 	while (b) {
1693 		level = btrfs_header_level(b);
1694 
1695 		/*
1696 		 * setup the path here so we can release it under lock
1697 		 * contention with the cow code
1698 		 */
1699 		if (cow) {
1700 			/*
1701 			 * if we don't really need to cow this block
1702 			 * then we don't want to set the path blocking,
1703 			 * so we test it here
1704 			 */
1705 			if (!should_cow_block(trans, root, b))
1706 				goto cow_done;
1707 
1708 			btrfs_set_path_blocking(p);
1709 
1710 			/*
1711 			 * must have write locks on this node and the
1712 			 * parent
1713 			 */
1714 			if (level + 1 > write_lock_level) {
1715 				write_lock_level = level + 1;
1716 				btrfs_release_path(p);
1717 				goto again;
1718 			}
1719 
1720 			err = btrfs_cow_block(trans, root, b,
1721 					      p->nodes[level + 1],
1722 					      p->slots[level + 1], &b);
1723 			if (err) {
1724 				ret = err;
1725 				goto done;
1726 			}
1727 		}
1728 cow_done:
1729 		BUG_ON(!cow && ins_len);
1730 
1731 		p->nodes[level] = b;
1732 		btrfs_clear_path_blocking(p, NULL, 0);
1733 
1734 		/*
1735 		 * we have a lock on b and as long as we aren't changing
1736 		 * the tree, there is no way to for the items in b to change.
1737 		 * It is safe to drop the lock on our parent before we
1738 		 * go through the expensive btree search on b.
1739 		 *
1740 		 * If cow is true, then we might be changing slot zero,
1741 		 * which may require changing the parent.  So, we can't
1742 		 * drop the lock until after we know which slot we're
1743 		 * operating on.
1744 		 */
1745 		if (!cow)
1746 			btrfs_unlock_up_safe(p, level + 1);
1747 
1748 		ret = bin_search(b, key, level, &slot);
1749 
1750 		if (level != 0) {
1751 			int dec = 0;
1752 			if (ret && slot > 0) {
1753 				dec = 1;
1754 				slot -= 1;
1755 			}
1756 			p->slots[level] = slot;
1757 			err = setup_nodes_for_search(trans, root, p, b, level,
1758 					     ins_len, &write_lock_level);
1759 			if (err == -EAGAIN)
1760 				goto again;
1761 			if (err) {
1762 				ret = err;
1763 				goto done;
1764 			}
1765 			b = p->nodes[level];
1766 			slot = p->slots[level];
1767 
1768 			/*
1769 			 * slot 0 is special, if we change the key
1770 			 * we have to update the parent pointer
1771 			 * which means we must have a write lock
1772 			 * on the parent
1773 			 */
1774 			if (slot == 0 && cow &&
1775 			    write_lock_level < level + 1) {
1776 				write_lock_level = level + 1;
1777 				btrfs_release_path(p);
1778 				goto again;
1779 			}
1780 
1781 			unlock_up(p, level, lowest_unlock);
1782 
1783 			if (level == lowest_level) {
1784 				if (dec)
1785 					p->slots[level]++;
1786 				goto done;
1787 			}
1788 
1789 			err = read_block_for_search(trans, root, p,
1790 						    &b, level, slot, key);
1791 			if (err == -EAGAIN)
1792 				goto again;
1793 			if (err) {
1794 				ret = err;
1795 				goto done;
1796 			}
1797 
1798 			if (!p->skip_locking) {
1799 				level = btrfs_header_level(b);
1800 				if (level <= write_lock_level) {
1801 					err = btrfs_try_tree_write_lock(b);
1802 					if (!err) {
1803 						btrfs_set_path_blocking(p);
1804 						btrfs_tree_lock(b);
1805 						btrfs_clear_path_blocking(p, b,
1806 								  BTRFS_WRITE_LOCK);
1807 					}
1808 					p->locks[level] = BTRFS_WRITE_LOCK;
1809 				} else {
1810 					err = btrfs_try_tree_read_lock(b);
1811 					if (!err) {
1812 						btrfs_set_path_blocking(p);
1813 						btrfs_tree_read_lock(b);
1814 						btrfs_clear_path_blocking(p, b,
1815 								  BTRFS_READ_LOCK);
1816 					}
1817 					p->locks[level] = BTRFS_READ_LOCK;
1818 				}
1819 				p->nodes[level] = b;
1820 			}
1821 		} else {
1822 			p->slots[level] = slot;
1823 			if (ins_len > 0 &&
1824 			    btrfs_leaf_free_space(root, b) < ins_len) {
1825 				if (write_lock_level < 1) {
1826 					write_lock_level = 1;
1827 					btrfs_release_path(p);
1828 					goto again;
1829 				}
1830 
1831 				btrfs_set_path_blocking(p);
1832 				err = split_leaf(trans, root, key,
1833 						 p, ins_len, ret == 0);
1834 				btrfs_clear_path_blocking(p, NULL, 0);
1835 
1836 				BUG_ON(err > 0);
1837 				if (err) {
1838 					ret = err;
1839 					goto done;
1840 				}
1841 			}
1842 			if (!p->search_for_split)
1843 				unlock_up(p, level, lowest_unlock);
1844 			goto done;
1845 		}
1846 	}
1847 	ret = 1;
1848 done:
1849 	/*
1850 	 * we don't really know what they plan on doing with the path
1851 	 * from here on, so for now just mark it as blocking
1852 	 */
1853 	if (!p->leave_spinning)
1854 		btrfs_set_path_blocking(p);
1855 	if (ret < 0)
1856 		btrfs_release_path(p);
1857 	return ret;
1858 }
1859 
1860 /*
1861  * adjust the pointers going up the tree, starting at level
1862  * making sure the right key of each node is points to 'key'.
1863  * This is used after shifting pointers to the left, so it stops
1864  * fixing up pointers when a given leaf/node is not in slot 0 of the
1865  * higher levels
1866  *
1867  * If this fails to write a tree block, it returns -1, but continues
1868  * fixing up the blocks in ram so the tree is consistent.
1869  */
1870 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1871 			  struct btrfs_root *root, struct btrfs_path *path,
1872 			  struct btrfs_disk_key *key, int level)
1873 {
1874 	int i;
1875 	int ret = 0;
1876 	struct extent_buffer *t;
1877 
1878 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1879 		int tslot = path->slots[i];
1880 		if (!path->nodes[i])
1881 			break;
1882 		t = path->nodes[i];
1883 		btrfs_set_node_key(t, key, tslot);
1884 		btrfs_mark_buffer_dirty(path->nodes[i]);
1885 		if (tslot != 0)
1886 			break;
1887 	}
1888 	return ret;
1889 }
1890 
1891 /*
1892  * update item key.
1893  *
1894  * This function isn't completely safe. It's the caller's responsibility
1895  * that the new key won't break the order
1896  */
1897 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1898 			    struct btrfs_root *root, struct btrfs_path *path,
1899 			    struct btrfs_key *new_key)
1900 {
1901 	struct btrfs_disk_key disk_key;
1902 	struct extent_buffer *eb;
1903 	int slot;
1904 
1905 	eb = path->nodes[0];
1906 	slot = path->slots[0];
1907 	if (slot > 0) {
1908 		btrfs_item_key(eb, &disk_key, slot - 1);
1909 		if (comp_keys(&disk_key, new_key) >= 0)
1910 			return -1;
1911 	}
1912 	if (slot < btrfs_header_nritems(eb) - 1) {
1913 		btrfs_item_key(eb, &disk_key, slot + 1);
1914 		if (comp_keys(&disk_key, new_key) <= 0)
1915 			return -1;
1916 	}
1917 
1918 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1919 	btrfs_set_item_key(eb, &disk_key, slot);
1920 	btrfs_mark_buffer_dirty(eb);
1921 	if (slot == 0)
1922 		fixup_low_keys(trans, root, path, &disk_key, 1);
1923 	return 0;
1924 }
1925 
1926 /*
1927  * try to push data from one node into the next node left in the
1928  * tree.
1929  *
1930  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1931  * error, and > 0 if there was no room in the left hand block.
1932  */
1933 static int push_node_left(struct btrfs_trans_handle *trans,
1934 			  struct btrfs_root *root, struct extent_buffer *dst,
1935 			  struct extent_buffer *src, int empty)
1936 {
1937 	int push_items = 0;
1938 	int src_nritems;
1939 	int dst_nritems;
1940 	int ret = 0;
1941 
1942 	src_nritems = btrfs_header_nritems(src);
1943 	dst_nritems = btrfs_header_nritems(dst);
1944 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1945 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1946 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1947 
1948 	if (!empty && src_nritems <= 8)
1949 		return 1;
1950 
1951 	if (push_items <= 0)
1952 		return 1;
1953 
1954 	if (empty) {
1955 		push_items = min(src_nritems, push_items);
1956 		if (push_items < src_nritems) {
1957 			/* leave at least 8 pointers in the node if
1958 			 * we aren't going to empty it
1959 			 */
1960 			if (src_nritems - push_items < 8) {
1961 				if (push_items <= 8)
1962 					return 1;
1963 				push_items -= 8;
1964 			}
1965 		}
1966 	} else
1967 		push_items = min(src_nritems - 8, push_items);
1968 
1969 	copy_extent_buffer(dst, src,
1970 			   btrfs_node_key_ptr_offset(dst_nritems),
1971 			   btrfs_node_key_ptr_offset(0),
1972 			   push_items * sizeof(struct btrfs_key_ptr));
1973 
1974 	if (push_items < src_nritems) {
1975 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1976 				      btrfs_node_key_ptr_offset(push_items),
1977 				      (src_nritems - push_items) *
1978 				      sizeof(struct btrfs_key_ptr));
1979 	}
1980 	btrfs_set_header_nritems(src, src_nritems - push_items);
1981 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1982 	btrfs_mark_buffer_dirty(src);
1983 	btrfs_mark_buffer_dirty(dst);
1984 
1985 	return ret;
1986 }
1987 
1988 /*
1989  * try to push data from one node into the next node right in the
1990  * tree.
1991  *
1992  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1993  * error, and > 0 if there was no room in the right hand block.
1994  *
1995  * this will  only push up to 1/2 the contents of the left node over
1996  */
1997 static int balance_node_right(struct btrfs_trans_handle *trans,
1998 			      struct btrfs_root *root,
1999 			      struct extent_buffer *dst,
2000 			      struct extent_buffer *src)
2001 {
2002 	int push_items = 0;
2003 	int max_push;
2004 	int src_nritems;
2005 	int dst_nritems;
2006 	int ret = 0;
2007 
2008 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2009 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2010 
2011 	src_nritems = btrfs_header_nritems(src);
2012 	dst_nritems = btrfs_header_nritems(dst);
2013 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2014 	if (push_items <= 0)
2015 		return 1;
2016 
2017 	if (src_nritems < 4)
2018 		return 1;
2019 
2020 	max_push = src_nritems / 2 + 1;
2021 	/* don't try to empty the node */
2022 	if (max_push >= src_nritems)
2023 		return 1;
2024 
2025 	if (max_push < push_items)
2026 		push_items = max_push;
2027 
2028 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2029 				      btrfs_node_key_ptr_offset(0),
2030 				      (dst_nritems) *
2031 				      sizeof(struct btrfs_key_ptr));
2032 
2033 	copy_extent_buffer(dst, src,
2034 			   btrfs_node_key_ptr_offset(0),
2035 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2036 			   push_items * sizeof(struct btrfs_key_ptr));
2037 
2038 	btrfs_set_header_nritems(src, src_nritems - push_items);
2039 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2040 
2041 	btrfs_mark_buffer_dirty(src);
2042 	btrfs_mark_buffer_dirty(dst);
2043 
2044 	return ret;
2045 }
2046 
2047 /*
2048  * helper function to insert a new root level in the tree.
2049  * A new node is allocated, and a single item is inserted to
2050  * point to the existing root
2051  *
2052  * returns zero on success or < 0 on failure.
2053  */
2054 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2055 			   struct btrfs_root *root,
2056 			   struct btrfs_path *path, int level)
2057 {
2058 	u64 lower_gen;
2059 	struct extent_buffer *lower;
2060 	struct extent_buffer *c;
2061 	struct extent_buffer *old;
2062 	struct btrfs_disk_key lower_key;
2063 
2064 	BUG_ON(path->nodes[level]);
2065 	BUG_ON(path->nodes[level-1] != root->node);
2066 
2067 	lower = path->nodes[level-1];
2068 	if (level == 1)
2069 		btrfs_item_key(lower, &lower_key, 0);
2070 	else
2071 		btrfs_node_key(lower, &lower_key, 0);
2072 
2073 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2074 				   root->root_key.objectid, &lower_key,
2075 				   level, root->node->start, 0);
2076 	if (IS_ERR(c))
2077 		return PTR_ERR(c);
2078 
2079 	root_add_used(root, root->nodesize);
2080 
2081 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2082 	btrfs_set_header_nritems(c, 1);
2083 	btrfs_set_header_level(c, level);
2084 	btrfs_set_header_bytenr(c, c->start);
2085 	btrfs_set_header_generation(c, trans->transid);
2086 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2087 	btrfs_set_header_owner(c, root->root_key.objectid);
2088 
2089 	write_extent_buffer(c, root->fs_info->fsid,
2090 			    (unsigned long)btrfs_header_fsid(c),
2091 			    BTRFS_FSID_SIZE);
2092 
2093 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2094 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2095 			    BTRFS_UUID_SIZE);
2096 
2097 	btrfs_set_node_key(c, &lower_key, 0);
2098 	btrfs_set_node_blockptr(c, 0, lower->start);
2099 	lower_gen = btrfs_header_generation(lower);
2100 	WARN_ON(lower_gen != trans->transid);
2101 
2102 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2103 
2104 	btrfs_mark_buffer_dirty(c);
2105 
2106 	old = root->node;
2107 	rcu_assign_pointer(root->node, c);
2108 
2109 	/* the super has an extra ref to root->node */
2110 	free_extent_buffer(old);
2111 
2112 	add_root_to_dirty_list(root);
2113 	extent_buffer_get(c);
2114 	path->nodes[level] = c;
2115 	path->locks[level] = BTRFS_WRITE_LOCK;
2116 	path->slots[level] = 0;
2117 	return 0;
2118 }
2119 
2120 /*
2121  * worker function to insert a single pointer in a node.
2122  * the node should have enough room for the pointer already
2123  *
2124  * slot and level indicate where you want the key to go, and
2125  * blocknr is the block the key points to.
2126  *
2127  * returns zero on success and < 0 on any error
2128  */
2129 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2130 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2131 		      *key, u64 bytenr, int slot, int level)
2132 {
2133 	struct extent_buffer *lower;
2134 	int nritems;
2135 
2136 	BUG_ON(!path->nodes[level]);
2137 	btrfs_assert_tree_locked(path->nodes[level]);
2138 	lower = path->nodes[level];
2139 	nritems = btrfs_header_nritems(lower);
2140 	BUG_ON(slot > nritems);
2141 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2142 		BUG();
2143 	if (slot != nritems) {
2144 		memmove_extent_buffer(lower,
2145 			      btrfs_node_key_ptr_offset(slot + 1),
2146 			      btrfs_node_key_ptr_offset(slot),
2147 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2148 	}
2149 	btrfs_set_node_key(lower, key, slot);
2150 	btrfs_set_node_blockptr(lower, slot, bytenr);
2151 	WARN_ON(trans->transid == 0);
2152 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2153 	btrfs_set_header_nritems(lower, nritems + 1);
2154 	btrfs_mark_buffer_dirty(lower);
2155 	return 0;
2156 }
2157 
2158 /*
2159  * split the node at the specified level in path in two.
2160  * The path is corrected to point to the appropriate node after the split
2161  *
2162  * Before splitting this tries to make some room in the node by pushing
2163  * left and right, if either one works, it returns right away.
2164  *
2165  * returns 0 on success and < 0 on failure
2166  */
2167 static noinline int split_node(struct btrfs_trans_handle *trans,
2168 			       struct btrfs_root *root,
2169 			       struct btrfs_path *path, int level)
2170 {
2171 	struct extent_buffer *c;
2172 	struct extent_buffer *split;
2173 	struct btrfs_disk_key disk_key;
2174 	int mid;
2175 	int ret;
2176 	int wret;
2177 	u32 c_nritems;
2178 
2179 	c = path->nodes[level];
2180 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2181 	if (c == root->node) {
2182 		/* trying to split the root, lets make a new one */
2183 		ret = insert_new_root(trans, root, path, level + 1);
2184 		if (ret)
2185 			return ret;
2186 	} else {
2187 		ret = push_nodes_for_insert(trans, root, path, level);
2188 		c = path->nodes[level];
2189 		if (!ret && btrfs_header_nritems(c) <
2190 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2191 			return 0;
2192 		if (ret < 0)
2193 			return ret;
2194 	}
2195 
2196 	c_nritems = btrfs_header_nritems(c);
2197 	mid = (c_nritems + 1) / 2;
2198 	btrfs_node_key(c, &disk_key, mid);
2199 
2200 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2201 					root->root_key.objectid,
2202 					&disk_key, level, c->start, 0);
2203 	if (IS_ERR(split))
2204 		return PTR_ERR(split);
2205 
2206 	root_add_used(root, root->nodesize);
2207 
2208 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2209 	btrfs_set_header_level(split, btrfs_header_level(c));
2210 	btrfs_set_header_bytenr(split, split->start);
2211 	btrfs_set_header_generation(split, trans->transid);
2212 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2213 	btrfs_set_header_owner(split, root->root_key.objectid);
2214 	write_extent_buffer(split, root->fs_info->fsid,
2215 			    (unsigned long)btrfs_header_fsid(split),
2216 			    BTRFS_FSID_SIZE);
2217 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2218 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2219 			    BTRFS_UUID_SIZE);
2220 
2221 
2222 	copy_extent_buffer(split, c,
2223 			   btrfs_node_key_ptr_offset(0),
2224 			   btrfs_node_key_ptr_offset(mid),
2225 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2226 	btrfs_set_header_nritems(split, c_nritems - mid);
2227 	btrfs_set_header_nritems(c, mid);
2228 	ret = 0;
2229 
2230 	btrfs_mark_buffer_dirty(c);
2231 	btrfs_mark_buffer_dirty(split);
2232 
2233 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2234 			  path->slots[level + 1] + 1,
2235 			  level + 1);
2236 	if (wret)
2237 		ret = wret;
2238 
2239 	if (path->slots[level] >= mid) {
2240 		path->slots[level] -= mid;
2241 		btrfs_tree_unlock(c);
2242 		free_extent_buffer(c);
2243 		path->nodes[level] = split;
2244 		path->slots[level + 1] += 1;
2245 	} else {
2246 		btrfs_tree_unlock(split);
2247 		free_extent_buffer(split);
2248 	}
2249 	return ret;
2250 }
2251 
2252 /*
2253  * how many bytes are required to store the items in a leaf.  start
2254  * and nr indicate which items in the leaf to check.  This totals up the
2255  * space used both by the item structs and the item data
2256  */
2257 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2258 {
2259 	int data_len;
2260 	int nritems = btrfs_header_nritems(l);
2261 	int end = min(nritems, start + nr) - 1;
2262 
2263 	if (!nr)
2264 		return 0;
2265 	data_len = btrfs_item_end_nr(l, start);
2266 	data_len = data_len - btrfs_item_offset_nr(l, end);
2267 	data_len += sizeof(struct btrfs_item) * nr;
2268 	WARN_ON(data_len < 0);
2269 	return data_len;
2270 }
2271 
2272 /*
2273  * The space between the end of the leaf items and
2274  * the start of the leaf data.  IOW, how much room
2275  * the leaf has left for both items and data
2276  */
2277 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2278 				   struct extent_buffer *leaf)
2279 {
2280 	int nritems = btrfs_header_nritems(leaf);
2281 	int ret;
2282 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2283 	if (ret < 0) {
2284 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2285 		       "used %d nritems %d\n",
2286 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2287 		       leaf_space_used(leaf, 0, nritems), nritems);
2288 	}
2289 	return ret;
2290 }
2291 
2292 /*
2293  * min slot controls the lowest index we're willing to push to the
2294  * right.  We'll push up to and including min_slot, but no lower
2295  */
2296 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2297 				      struct btrfs_root *root,
2298 				      struct btrfs_path *path,
2299 				      int data_size, int empty,
2300 				      struct extent_buffer *right,
2301 				      int free_space, u32 left_nritems,
2302 				      u32 min_slot)
2303 {
2304 	struct extent_buffer *left = path->nodes[0];
2305 	struct extent_buffer *upper = path->nodes[1];
2306 	struct btrfs_disk_key disk_key;
2307 	int slot;
2308 	u32 i;
2309 	int push_space = 0;
2310 	int push_items = 0;
2311 	struct btrfs_item *item;
2312 	u32 nr;
2313 	u32 right_nritems;
2314 	u32 data_end;
2315 	u32 this_item_size;
2316 
2317 	if (empty)
2318 		nr = 0;
2319 	else
2320 		nr = max_t(u32, 1, min_slot);
2321 
2322 	if (path->slots[0] >= left_nritems)
2323 		push_space += data_size;
2324 
2325 	slot = path->slots[1];
2326 	i = left_nritems - 1;
2327 	while (i >= nr) {
2328 		item = btrfs_item_nr(left, i);
2329 
2330 		if (!empty && push_items > 0) {
2331 			if (path->slots[0] > i)
2332 				break;
2333 			if (path->slots[0] == i) {
2334 				int space = btrfs_leaf_free_space(root, left);
2335 				if (space + push_space * 2 > free_space)
2336 					break;
2337 			}
2338 		}
2339 
2340 		if (path->slots[0] == i)
2341 			push_space += data_size;
2342 
2343 		this_item_size = btrfs_item_size(left, item);
2344 		if (this_item_size + sizeof(*item) + push_space > free_space)
2345 			break;
2346 
2347 		push_items++;
2348 		push_space += this_item_size + sizeof(*item);
2349 		if (i == 0)
2350 			break;
2351 		i--;
2352 	}
2353 
2354 	if (push_items == 0)
2355 		goto out_unlock;
2356 
2357 	if (!empty && push_items == left_nritems)
2358 		WARN_ON(1);
2359 
2360 	/* push left to right */
2361 	right_nritems = btrfs_header_nritems(right);
2362 
2363 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2364 	push_space -= leaf_data_end(root, left);
2365 
2366 	/* make room in the right data area */
2367 	data_end = leaf_data_end(root, right);
2368 	memmove_extent_buffer(right,
2369 			      btrfs_leaf_data(right) + data_end - push_space,
2370 			      btrfs_leaf_data(right) + data_end,
2371 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2372 
2373 	/* copy from the left data area */
2374 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2375 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2376 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2377 		     push_space);
2378 
2379 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2380 			      btrfs_item_nr_offset(0),
2381 			      right_nritems * sizeof(struct btrfs_item));
2382 
2383 	/* copy the items from left to right */
2384 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2385 		   btrfs_item_nr_offset(left_nritems - push_items),
2386 		   push_items * sizeof(struct btrfs_item));
2387 
2388 	/* update the item pointers */
2389 	right_nritems += push_items;
2390 	btrfs_set_header_nritems(right, right_nritems);
2391 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2392 	for (i = 0; i < right_nritems; i++) {
2393 		item = btrfs_item_nr(right, i);
2394 		push_space -= btrfs_item_size(right, item);
2395 		btrfs_set_item_offset(right, item, push_space);
2396 	}
2397 
2398 	left_nritems -= push_items;
2399 	btrfs_set_header_nritems(left, left_nritems);
2400 
2401 	if (left_nritems)
2402 		btrfs_mark_buffer_dirty(left);
2403 	else
2404 		clean_tree_block(trans, root, left);
2405 
2406 	btrfs_mark_buffer_dirty(right);
2407 
2408 	btrfs_item_key(right, &disk_key, 0);
2409 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2410 	btrfs_mark_buffer_dirty(upper);
2411 
2412 	/* then fixup the leaf pointer in the path */
2413 	if (path->slots[0] >= left_nritems) {
2414 		path->slots[0] -= left_nritems;
2415 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2416 			clean_tree_block(trans, root, path->nodes[0]);
2417 		btrfs_tree_unlock(path->nodes[0]);
2418 		free_extent_buffer(path->nodes[0]);
2419 		path->nodes[0] = right;
2420 		path->slots[1] += 1;
2421 	} else {
2422 		btrfs_tree_unlock(right);
2423 		free_extent_buffer(right);
2424 	}
2425 	return 0;
2426 
2427 out_unlock:
2428 	btrfs_tree_unlock(right);
2429 	free_extent_buffer(right);
2430 	return 1;
2431 }
2432 
2433 /*
2434  * push some data in the path leaf to the right, trying to free up at
2435  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2436  *
2437  * returns 1 if the push failed because the other node didn't have enough
2438  * room, 0 if everything worked out and < 0 if there were major errors.
2439  *
2440  * this will push starting from min_slot to the end of the leaf.  It won't
2441  * push any slot lower than min_slot
2442  */
2443 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2444 			   *root, struct btrfs_path *path,
2445 			   int min_data_size, int data_size,
2446 			   int empty, u32 min_slot)
2447 {
2448 	struct extent_buffer *left = path->nodes[0];
2449 	struct extent_buffer *right;
2450 	struct extent_buffer *upper;
2451 	int slot;
2452 	int free_space;
2453 	u32 left_nritems;
2454 	int ret;
2455 
2456 	if (!path->nodes[1])
2457 		return 1;
2458 
2459 	slot = path->slots[1];
2460 	upper = path->nodes[1];
2461 	if (slot >= btrfs_header_nritems(upper) - 1)
2462 		return 1;
2463 
2464 	btrfs_assert_tree_locked(path->nodes[1]);
2465 
2466 	right = read_node_slot(root, upper, slot + 1);
2467 	if (right == NULL)
2468 		return 1;
2469 
2470 	btrfs_tree_lock(right);
2471 	btrfs_set_lock_blocking(right);
2472 
2473 	free_space = btrfs_leaf_free_space(root, right);
2474 	if (free_space < data_size)
2475 		goto out_unlock;
2476 
2477 	/* cow and double check */
2478 	ret = btrfs_cow_block(trans, root, right, upper,
2479 			      slot + 1, &right);
2480 	if (ret)
2481 		goto out_unlock;
2482 
2483 	free_space = btrfs_leaf_free_space(root, right);
2484 	if (free_space < data_size)
2485 		goto out_unlock;
2486 
2487 	left_nritems = btrfs_header_nritems(left);
2488 	if (left_nritems == 0)
2489 		goto out_unlock;
2490 
2491 	return __push_leaf_right(trans, root, path, min_data_size, empty,
2492 				right, free_space, left_nritems, min_slot);
2493 out_unlock:
2494 	btrfs_tree_unlock(right);
2495 	free_extent_buffer(right);
2496 	return 1;
2497 }
2498 
2499 /*
2500  * push some data in the path leaf to the left, trying to free up at
2501  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2502  *
2503  * max_slot can put a limit on how far into the leaf we'll push items.  The
2504  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2505  * items
2506  */
2507 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2508 				     struct btrfs_root *root,
2509 				     struct btrfs_path *path, int data_size,
2510 				     int empty, struct extent_buffer *left,
2511 				     int free_space, u32 right_nritems,
2512 				     u32 max_slot)
2513 {
2514 	struct btrfs_disk_key disk_key;
2515 	struct extent_buffer *right = path->nodes[0];
2516 	int i;
2517 	int push_space = 0;
2518 	int push_items = 0;
2519 	struct btrfs_item *item;
2520 	u32 old_left_nritems;
2521 	u32 nr;
2522 	int ret = 0;
2523 	int wret;
2524 	u32 this_item_size;
2525 	u32 old_left_item_size;
2526 
2527 	if (empty)
2528 		nr = min(right_nritems, max_slot);
2529 	else
2530 		nr = min(right_nritems - 1, max_slot);
2531 
2532 	for (i = 0; i < nr; i++) {
2533 		item = btrfs_item_nr(right, i);
2534 
2535 		if (!empty && push_items > 0) {
2536 			if (path->slots[0] < i)
2537 				break;
2538 			if (path->slots[0] == i) {
2539 				int space = btrfs_leaf_free_space(root, right);
2540 				if (space + push_space * 2 > free_space)
2541 					break;
2542 			}
2543 		}
2544 
2545 		if (path->slots[0] == i)
2546 			push_space += data_size;
2547 
2548 		this_item_size = btrfs_item_size(right, item);
2549 		if (this_item_size + sizeof(*item) + push_space > free_space)
2550 			break;
2551 
2552 		push_items++;
2553 		push_space += this_item_size + sizeof(*item);
2554 	}
2555 
2556 	if (push_items == 0) {
2557 		ret = 1;
2558 		goto out;
2559 	}
2560 	if (!empty && push_items == btrfs_header_nritems(right))
2561 		WARN_ON(1);
2562 
2563 	/* push data from right to left */
2564 	copy_extent_buffer(left, right,
2565 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2566 			   btrfs_item_nr_offset(0),
2567 			   push_items * sizeof(struct btrfs_item));
2568 
2569 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2570 		     btrfs_item_offset_nr(right, push_items - 1);
2571 
2572 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2573 		     leaf_data_end(root, left) - push_space,
2574 		     btrfs_leaf_data(right) +
2575 		     btrfs_item_offset_nr(right, push_items - 1),
2576 		     push_space);
2577 	old_left_nritems = btrfs_header_nritems(left);
2578 	BUG_ON(old_left_nritems <= 0);
2579 
2580 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2581 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2582 		u32 ioff;
2583 
2584 		item = btrfs_item_nr(left, i);
2585 
2586 		ioff = btrfs_item_offset(left, item);
2587 		btrfs_set_item_offset(left, item,
2588 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2589 	}
2590 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2591 
2592 	/* fixup right node */
2593 	if (push_items > right_nritems) {
2594 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2595 		       right_nritems);
2596 		WARN_ON(1);
2597 	}
2598 
2599 	if (push_items < right_nritems) {
2600 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2601 						  leaf_data_end(root, right);
2602 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2603 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2604 				      btrfs_leaf_data(right) +
2605 				      leaf_data_end(root, right), push_space);
2606 
2607 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2608 			      btrfs_item_nr_offset(push_items),
2609 			     (btrfs_header_nritems(right) - push_items) *
2610 			     sizeof(struct btrfs_item));
2611 	}
2612 	right_nritems -= push_items;
2613 	btrfs_set_header_nritems(right, right_nritems);
2614 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2615 	for (i = 0; i < right_nritems; i++) {
2616 		item = btrfs_item_nr(right, i);
2617 
2618 		push_space = push_space - btrfs_item_size(right, item);
2619 		btrfs_set_item_offset(right, item, push_space);
2620 	}
2621 
2622 	btrfs_mark_buffer_dirty(left);
2623 	if (right_nritems)
2624 		btrfs_mark_buffer_dirty(right);
2625 	else
2626 		clean_tree_block(trans, root, right);
2627 
2628 	btrfs_item_key(right, &disk_key, 0);
2629 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2630 	if (wret)
2631 		ret = wret;
2632 
2633 	/* then fixup the leaf pointer in the path */
2634 	if (path->slots[0] < push_items) {
2635 		path->slots[0] += old_left_nritems;
2636 		btrfs_tree_unlock(path->nodes[0]);
2637 		free_extent_buffer(path->nodes[0]);
2638 		path->nodes[0] = left;
2639 		path->slots[1] -= 1;
2640 	} else {
2641 		btrfs_tree_unlock(left);
2642 		free_extent_buffer(left);
2643 		path->slots[0] -= push_items;
2644 	}
2645 	BUG_ON(path->slots[0] < 0);
2646 	return ret;
2647 out:
2648 	btrfs_tree_unlock(left);
2649 	free_extent_buffer(left);
2650 	return ret;
2651 }
2652 
2653 /*
2654  * push some data in the path leaf to the left, trying to free up at
2655  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2656  *
2657  * max_slot can put a limit on how far into the leaf we'll push items.  The
2658  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2659  * items
2660  */
2661 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2662 			  *root, struct btrfs_path *path, int min_data_size,
2663 			  int data_size, int empty, u32 max_slot)
2664 {
2665 	struct extent_buffer *right = path->nodes[0];
2666 	struct extent_buffer *left;
2667 	int slot;
2668 	int free_space;
2669 	u32 right_nritems;
2670 	int ret = 0;
2671 
2672 	slot = path->slots[1];
2673 	if (slot == 0)
2674 		return 1;
2675 	if (!path->nodes[1])
2676 		return 1;
2677 
2678 	right_nritems = btrfs_header_nritems(right);
2679 	if (right_nritems == 0)
2680 		return 1;
2681 
2682 	btrfs_assert_tree_locked(path->nodes[1]);
2683 
2684 	left = read_node_slot(root, path->nodes[1], slot - 1);
2685 	if (left == NULL)
2686 		return 1;
2687 
2688 	btrfs_tree_lock(left);
2689 	btrfs_set_lock_blocking(left);
2690 
2691 	free_space = btrfs_leaf_free_space(root, left);
2692 	if (free_space < data_size) {
2693 		ret = 1;
2694 		goto out;
2695 	}
2696 
2697 	/* cow and double check */
2698 	ret = btrfs_cow_block(trans, root, left,
2699 			      path->nodes[1], slot - 1, &left);
2700 	if (ret) {
2701 		/* we hit -ENOSPC, but it isn't fatal here */
2702 		ret = 1;
2703 		goto out;
2704 	}
2705 
2706 	free_space = btrfs_leaf_free_space(root, left);
2707 	if (free_space < data_size) {
2708 		ret = 1;
2709 		goto out;
2710 	}
2711 
2712 	return __push_leaf_left(trans, root, path, min_data_size,
2713 			       empty, left, free_space, right_nritems,
2714 			       max_slot);
2715 out:
2716 	btrfs_tree_unlock(left);
2717 	free_extent_buffer(left);
2718 	return ret;
2719 }
2720 
2721 /*
2722  * split the path's leaf in two, making sure there is at least data_size
2723  * available for the resulting leaf level of the path.
2724  *
2725  * returns 0 if all went well and < 0 on failure.
2726  */
2727 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2728 			       struct btrfs_root *root,
2729 			       struct btrfs_path *path,
2730 			       struct extent_buffer *l,
2731 			       struct extent_buffer *right,
2732 			       int slot, int mid, int nritems)
2733 {
2734 	int data_copy_size;
2735 	int rt_data_off;
2736 	int i;
2737 	int ret = 0;
2738 	int wret;
2739 	struct btrfs_disk_key disk_key;
2740 
2741 	nritems = nritems - mid;
2742 	btrfs_set_header_nritems(right, nritems);
2743 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2744 
2745 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2746 			   btrfs_item_nr_offset(mid),
2747 			   nritems * sizeof(struct btrfs_item));
2748 
2749 	copy_extent_buffer(right, l,
2750 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2751 		     data_copy_size, btrfs_leaf_data(l) +
2752 		     leaf_data_end(root, l), data_copy_size);
2753 
2754 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2755 		      btrfs_item_end_nr(l, mid);
2756 
2757 	for (i = 0; i < nritems; i++) {
2758 		struct btrfs_item *item = btrfs_item_nr(right, i);
2759 		u32 ioff;
2760 
2761 		ioff = btrfs_item_offset(right, item);
2762 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2763 	}
2764 
2765 	btrfs_set_header_nritems(l, mid);
2766 	ret = 0;
2767 	btrfs_item_key(right, &disk_key, 0);
2768 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2769 			  path->slots[1] + 1, 1);
2770 	if (wret)
2771 		ret = wret;
2772 
2773 	btrfs_mark_buffer_dirty(right);
2774 	btrfs_mark_buffer_dirty(l);
2775 	BUG_ON(path->slots[0] != slot);
2776 
2777 	if (mid <= slot) {
2778 		btrfs_tree_unlock(path->nodes[0]);
2779 		free_extent_buffer(path->nodes[0]);
2780 		path->nodes[0] = right;
2781 		path->slots[0] -= mid;
2782 		path->slots[1] += 1;
2783 	} else {
2784 		btrfs_tree_unlock(right);
2785 		free_extent_buffer(right);
2786 	}
2787 
2788 	BUG_ON(path->slots[0] < 0);
2789 
2790 	return ret;
2791 }
2792 
2793 /*
2794  * double splits happen when we need to insert a big item in the middle
2795  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2796  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2797  *          A                 B                 C
2798  *
2799  * We avoid this by trying to push the items on either side of our target
2800  * into the adjacent leaves.  If all goes well we can avoid the double split
2801  * completely.
2802  */
2803 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2804 					  struct btrfs_root *root,
2805 					  struct btrfs_path *path,
2806 					  int data_size)
2807 {
2808 	int ret;
2809 	int progress = 0;
2810 	int slot;
2811 	u32 nritems;
2812 
2813 	slot = path->slots[0];
2814 
2815 	/*
2816 	 * try to push all the items after our slot into the
2817 	 * right leaf
2818 	 */
2819 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2820 	if (ret < 0)
2821 		return ret;
2822 
2823 	if (ret == 0)
2824 		progress++;
2825 
2826 	nritems = btrfs_header_nritems(path->nodes[0]);
2827 	/*
2828 	 * our goal is to get our slot at the start or end of a leaf.  If
2829 	 * we've done so we're done
2830 	 */
2831 	if (path->slots[0] == 0 || path->slots[0] == nritems)
2832 		return 0;
2833 
2834 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2835 		return 0;
2836 
2837 	/* try to push all the items before our slot into the next leaf */
2838 	slot = path->slots[0];
2839 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2840 	if (ret < 0)
2841 		return ret;
2842 
2843 	if (ret == 0)
2844 		progress++;
2845 
2846 	if (progress)
2847 		return 0;
2848 	return 1;
2849 }
2850 
2851 /*
2852  * split the path's leaf in two, making sure there is at least data_size
2853  * available for the resulting leaf level of the path.
2854  *
2855  * returns 0 if all went well and < 0 on failure.
2856  */
2857 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2858 			       struct btrfs_root *root,
2859 			       struct btrfs_key *ins_key,
2860 			       struct btrfs_path *path, int data_size,
2861 			       int extend)
2862 {
2863 	struct btrfs_disk_key disk_key;
2864 	struct extent_buffer *l;
2865 	u32 nritems;
2866 	int mid;
2867 	int slot;
2868 	struct extent_buffer *right;
2869 	int ret = 0;
2870 	int wret;
2871 	int split;
2872 	int num_doubles = 0;
2873 	int tried_avoid_double = 0;
2874 
2875 	l = path->nodes[0];
2876 	slot = path->slots[0];
2877 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2878 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2879 		return -EOVERFLOW;
2880 
2881 	/* first try to make some room by pushing left and right */
2882 	if (data_size) {
2883 		wret = push_leaf_right(trans, root, path, data_size,
2884 				       data_size, 0, 0);
2885 		if (wret < 0)
2886 			return wret;
2887 		if (wret) {
2888 			wret = push_leaf_left(trans, root, path, data_size,
2889 					      data_size, 0, (u32)-1);
2890 			if (wret < 0)
2891 				return wret;
2892 		}
2893 		l = path->nodes[0];
2894 
2895 		/* did the pushes work? */
2896 		if (btrfs_leaf_free_space(root, l) >= data_size)
2897 			return 0;
2898 	}
2899 
2900 	if (!path->nodes[1]) {
2901 		ret = insert_new_root(trans, root, path, 1);
2902 		if (ret)
2903 			return ret;
2904 	}
2905 again:
2906 	split = 1;
2907 	l = path->nodes[0];
2908 	slot = path->slots[0];
2909 	nritems = btrfs_header_nritems(l);
2910 	mid = (nritems + 1) / 2;
2911 
2912 	if (mid <= slot) {
2913 		if (nritems == 1 ||
2914 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2915 			BTRFS_LEAF_DATA_SIZE(root)) {
2916 			if (slot >= nritems) {
2917 				split = 0;
2918 			} else {
2919 				mid = slot;
2920 				if (mid != nritems &&
2921 				    leaf_space_used(l, mid, nritems - mid) +
2922 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2923 					if (data_size && !tried_avoid_double)
2924 						goto push_for_double;
2925 					split = 2;
2926 				}
2927 			}
2928 		}
2929 	} else {
2930 		if (leaf_space_used(l, 0, mid) + data_size >
2931 			BTRFS_LEAF_DATA_SIZE(root)) {
2932 			if (!extend && data_size && slot == 0) {
2933 				split = 0;
2934 			} else if ((extend || !data_size) && slot == 0) {
2935 				mid = 1;
2936 			} else {
2937 				mid = slot;
2938 				if (mid != nritems &&
2939 				    leaf_space_used(l, mid, nritems - mid) +
2940 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2941 					if (data_size && !tried_avoid_double)
2942 						goto push_for_double;
2943 					split = 2 ;
2944 				}
2945 			}
2946 		}
2947 	}
2948 
2949 	if (split == 0)
2950 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2951 	else
2952 		btrfs_item_key(l, &disk_key, mid);
2953 
2954 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2955 					root->root_key.objectid,
2956 					&disk_key, 0, l->start, 0);
2957 	if (IS_ERR(right))
2958 		return PTR_ERR(right);
2959 
2960 	root_add_used(root, root->leafsize);
2961 
2962 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2963 	btrfs_set_header_bytenr(right, right->start);
2964 	btrfs_set_header_generation(right, trans->transid);
2965 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2966 	btrfs_set_header_owner(right, root->root_key.objectid);
2967 	btrfs_set_header_level(right, 0);
2968 	write_extent_buffer(right, root->fs_info->fsid,
2969 			    (unsigned long)btrfs_header_fsid(right),
2970 			    BTRFS_FSID_SIZE);
2971 
2972 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2973 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2974 			    BTRFS_UUID_SIZE);
2975 
2976 	if (split == 0) {
2977 		if (mid <= slot) {
2978 			btrfs_set_header_nritems(right, 0);
2979 			wret = insert_ptr(trans, root, path,
2980 					  &disk_key, right->start,
2981 					  path->slots[1] + 1, 1);
2982 			if (wret)
2983 				ret = wret;
2984 
2985 			btrfs_tree_unlock(path->nodes[0]);
2986 			free_extent_buffer(path->nodes[0]);
2987 			path->nodes[0] = right;
2988 			path->slots[0] = 0;
2989 			path->slots[1] += 1;
2990 		} else {
2991 			btrfs_set_header_nritems(right, 0);
2992 			wret = insert_ptr(trans, root, path,
2993 					  &disk_key,
2994 					  right->start,
2995 					  path->slots[1], 1);
2996 			if (wret)
2997 				ret = wret;
2998 			btrfs_tree_unlock(path->nodes[0]);
2999 			free_extent_buffer(path->nodes[0]);
3000 			path->nodes[0] = right;
3001 			path->slots[0] = 0;
3002 			if (path->slots[1] == 0) {
3003 				wret = fixup_low_keys(trans, root,
3004 						path, &disk_key, 1);
3005 				if (wret)
3006 					ret = wret;
3007 			}
3008 		}
3009 		btrfs_mark_buffer_dirty(right);
3010 		return ret;
3011 	}
3012 
3013 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3014 	BUG_ON(ret);
3015 
3016 	if (split == 2) {
3017 		BUG_ON(num_doubles != 0);
3018 		num_doubles++;
3019 		goto again;
3020 	}
3021 
3022 	return ret;
3023 
3024 push_for_double:
3025 	push_for_double_split(trans, root, path, data_size);
3026 	tried_avoid_double = 1;
3027 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3028 		return 0;
3029 	goto again;
3030 }
3031 
3032 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3033 					 struct btrfs_root *root,
3034 					 struct btrfs_path *path, int ins_len)
3035 {
3036 	struct btrfs_key key;
3037 	struct extent_buffer *leaf;
3038 	struct btrfs_file_extent_item *fi;
3039 	u64 extent_len = 0;
3040 	u32 item_size;
3041 	int ret;
3042 
3043 	leaf = path->nodes[0];
3044 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3045 
3046 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3047 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3048 
3049 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3050 		return 0;
3051 
3052 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3053 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3054 		fi = btrfs_item_ptr(leaf, path->slots[0],
3055 				    struct btrfs_file_extent_item);
3056 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3057 	}
3058 	btrfs_release_path(path);
3059 
3060 	path->keep_locks = 1;
3061 	path->search_for_split = 1;
3062 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3063 	path->search_for_split = 0;
3064 	if (ret < 0)
3065 		goto err;
3066 
3067 	ret = -EAGAIN;
3068 	leaf = path->nodes[0];
3069 	/* if our item isn't there or got smaller, return now */
3070 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3071 		goto err;
3072 
3073 	/* the leaf has  changed, it now has room.  return now */
3074 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3075 		goto err;
3076 
3077 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3078 		fi = btrfs_item_ptr(leaf, path->slots[0],
3079 				    struct btrfs_file_extent_item);
3080 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3081 			goto err;
3082 	}
3083 
3084 	btrfs_set_path_blocking(path);
3085 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3086 	if (ret)
3087 		goto err;
3088 
3089 	path->keep_locks = 0;
3090 	btrfs_unlock_up_safe(path, 1);
3091 	return 0;
3092 err:
3093 	path->keep_locks = 0;
3094 	return ret;
3095 }
3096 
3097 static noinline int split_item(struct btrfs_trans_handle *trans,
3098 			       struct btrfs_root *root,
3099 			       struct btrfs_path *path,
3100 			       struct btrfs_key *new_key,
3101 			       unsigned long split_offset)
3102 {
3103 	struct extent_buffer *leaf;
3104 	struct btrfs_item *item;
3105 	struct btrfs_item *new_item;
3106 	int slot;
3107 	char *buf;
3108 	u32 nritems;
3109 	u32 item_size;
3110 	u32 orig_offset;
3111 	struct btrfs_disk_key disk_key;
3112 
3113 	leaf = path->nodes[0];
3114 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3115 
3116 	btrfs_set_path_blocking(path);
3117 
3118 	item = btrfs_item_nr(leaf, path->slots[0]);
3119 	orig_offset = btrfs_item_offset(leaf, item);
3120 	item_size = btrfs_item_size(leaf, item);
3121 
3122 	buf = kmalloc(item_size, GFP_NOFS);
3123 	if (!buf)
3124 		return -ENOMEM;
3125 
3126 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3127 			    path->slots[0]), item_size);
3128 
3129 	slot = path->slots[0] + 1;
3130 	nritems = btrfs_header_nritems(leaf);
3131 	if (slot != nritems) {
3132 		/* shift the items */
3133 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3134 				btrfs_item_nr_offset(slot),
3135 				(nritems - slot) * sizeof(struct btrfs_item));
3136 	}
3137 
3138 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3139 	btrfs_set_item_key(leaf, &disk_key, slot);
3140 
3141 	new_item = btrfs_item_nr(leaf, slot);
3142 
3143 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3144 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3145 
3146 	btrfs_set_item_offset(leaf, item,
3147 			      orig_offset + item_size - split_offset);
3148 	btrfs_set_item_size(leaf, item, split_offset);
3149 
3150 	btrfs_set_header_nritems(leaf, nritems + 1);
3151 
3152 	/* write the data for the start of the original item */
3153 	write_extent_buffer(leaf, buf,
3154 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3155 			    split_offset);
3156 
3157 	/* write the data for the new item */
3158 	write_extent_buffer(leaf, buf + split_offset,
3159 			    btrfs_item_ptr_offset(leaf, slot),
3160 			    item_size - split_offset);
3161 	btrfs_mark_buffer_dirty(leaf);
3162 
3163 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3164 	kfree(buf);
3165 	return 0;
3166 }
3167 
3168 /*
3169  * This function splits a single item into two items,
3170  * giving 'new_key' to the new item and splitting the
3171  * old one at split_offset (from the start of the item).
3172  *
3173  * The path may be released by this operation.  After
3174  * the split, the path is pointing to the old item.  The
3175  * new item is going to be in the same node as the old one.
3176  *
3177  * Note, the item being split must be smaller enough to live alone on
3178  * a tree block with room for one extra struct btrfs_item
3179  *
3180  * This allows us to split the item in place, keeping a lock on the
3181  * leaf the entire time.
3182  */
3183 int btrfs_split_item(struct btrfs_trans_handle *trans,
3184 		     struct btrfs_root *root,
3185 		     struct btrfs_path *path,
3186 		     struct btrfs_key *new_key,
3187 		     unsigned long split_offset)
3188 {
3189 	int ret;
3190 	ret = setup_leaf_for_split(trans, root, path,
3191 				   sizeof(struct btrfs_item));
3192 	if (ret)
3193 		return ret;
3194 
3195 	ret = split_item(trans, root, path, new_key, split_offset);
3196 	return ret;
3197 }
3198 
3199 /*
3200  * This function duplicate a item, giving 'new_key' to the new item.
3201  * It guarantees both items live in the same tree leaf and the new item
3202  * is contiguous with the original item.
3203  *
3204  * This allows us to split file extent in place, keeping a lock on the
3205  * leaf the entire time.
3206  */
3207 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3208 			 struct btrfs_root *root,
3209 			 struct btrfs_path *path,
3210 			 struct btrfs_key *new_key)
3211 {
3212 	struct extent_buffer *leaf;
3213 	int ret;
3214 	u32 item_size;
3215 
3216 	leaf = path->nodes[0];
3217 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3218 	ret = setup_leaf_for_split(trans, root, path,
3219 				   item_size + sizeof(struct btrfs_item));
3220 	if (ret)
3221 		return ret;
3222 
3223 	path->slots[0]++;
3224 	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3225 				     item_size, item_size +
3226 				     sizeof(struct btrfs_item), 1);
3227 	BUG_ON(ret);
3228 
3229 	leaf = path->nodes[0];
3230 	memcpy_extent_buffer(leaf,
3231 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3232 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3233 			     item_size);
3234 	return 0;
3235 }
3236 
3237 /*
3238  * make the item pointed to by the path smaller.  new_size indicates
3239  * how small to make it, and from_end tells us if we just chop bytes
3240  * off the end of the item or if we shift the item to chop bytes off
3241  * the front.
3242  */
3243 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3244 			struct btrfs_root *root,
3245 			struct btrfs_path *path,
3246 			u32 new_size, int from_end)
3247 {
3248 	int slot;
3249 	struct extent_buffer *leaf;
3250 	struct btrfs_item *item;
3251 	u32 nritems;
3252 	unsigned int data_end;
3253 	unsigned int old_data_start;
3254 	unsigned int old_size;
3255 	unsigned int size_diff;
3256 	int i;
3257 
3258 	leaf = path->nodes[0];
3259 	slot = path->slots[0];
3260 
3261 	old_size = btrfs_item_size_nr(leaf, slot);
3262 	if (old_size == new_size)
3263 		return 0;
3264 
3265 	nritems = btrfs_header_nritems(leaf);
3266 	data_end = leaf_data_end(root, leaf);
3267 
3268 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3269 
3270 	size_diff = old_size - new_size;
3271 
3272 	BUG_ON(slot < 0);
3273 	BUG_ON(slot >= nritems);
3274 
3275 	/*
3276 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3277 	 */
3278 	/* first correct the data pointers */
3279 	for (i = slot; i < nritems; i++) {
3280 		u32 ioff;
3281 		item = btrfs_item_nr(leaf, i);
3282 
3283 		ioff = btrfs_item_offset(leaf, item);
3284 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3285 	}
3286 
3287 	/* shift the data */
3288 	if (from_end) {
3289 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3290 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3291 			      data_end, old_data_start + new_size - data_end);
3292 	} else {
3293 		struct btrfs_disk_key disk_key;
3294 		u64 offset;
3295 
3296 		btrfs_item_key(leaf, &disk_key, slot);
3297 
3298 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3299 			unsigned long ptr;
3300 			struct btrfs_file_extent_item *fi;
3301 
3302 			fi = btrfs_item_ptr(leaf, slot,
3303 					    struct btrfs_file_extent_item);
3304 			fi = (struct btrfs_file_extent_item *)(
3305 			     (unsigned long)fi - size_diff);
3306 
3307 			if (btrfs_file_extent_type(leaf, fi) ==
3308 			    BTRFS_FILE_EXTENT_INLINE) {
3309 				ptr = btrfs_item_ptr_offset(leaf, slot);
3310 				memmove_extent_buffer(leaf, ptr,
3311 				      (unsigned long)fi,
3312 				      offsetof(struct btrfs_file_extent_item,
3313 						 disk_bytenr));
3314 			}
3315 		}
3316 
3317 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3318 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3319 			      data_end, old_data_start - data_end);
3320 
3321 		offset = btrfs_disk_key_offset(&disk_key);
3322 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3323 		btrfs_set_item_key(leaf, &disk_key, slot);
3324 		if (slot == 0)
3325 			fixup_low_keys(trans, root, path, &disk_key, 1);
3326 	}
3327 
3328 	item = btrfs_item_nr(leaf, slot);
3329 	btrfs_set_item_size(leaf, item, new_size);
3330 	btrfs_mark_buffer_dirty(leaf);
3331 
3332 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3333 		btrfs_print_leaf(root, leaf);
3334 		BUG();
3335 	}
3336 	return 0;
3337 }
3338 
3339 /*
3340  * make the item pointed to by the path bigger, data_size is the new size.
3341  */
3342 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3343 		      struct btrfs_root *root, struct btrfs_path *path,
3344 		      u32 data_size)
3345 {
3346 	int slot;
3347 	struct extent_buffer *leaf;
3348 	struct btrfs_item *item;
3349 	u32 nritems;
3350 	unsigned int data_end;
3351 	unsigned int old_data;
3352 	unsigned int old_size;
3353 	int i;
3354 
3355 	leaf = path->nodes[0];
3356 
3357 	nritems = btrfs_header_nritems(leaf);
3358 	data_end = leaf_data_end(root, leaf);
3359 
3360 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3361 		btrfs_print_leaf(root, leaf);
3362 		BUG();
3363 	}
3364 	slot = path->slots[0];
3365 	old_data = btrfs_item_end_nr(leaf, slot);
3366 
3367 	BUG_ON(slot < 0);
3368 	if (slot >= nritems) {
3369 		btrfs_print_leaf(root, leaf);
3370 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3371 		       slot, nritems);
3372 		BUG_ON(1);
3373 	}
3374 
3375 	/*
3376 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3377 	 */
3378 	/* first correct the data pointers */
3379 	for (i = slot; i < nritems; i++) {
3380 		u32 ioff;
3381 		item = btrfs_item_nr(leaf, i);
3382 
3383 		ioff = btrfs_item_offset(leaf, item);
3384 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3385 	}
3386 
3387 	/* shift the data */
3388 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3389 		      data_end - data_size, btrfs_leaf_data(leaf) +
3390 		      data_end, old_data - data_end);
3391 
3392 	data_end = old_data;
3393 	old_size = btrfs_item_size_nr(leaf, slot);
3394 	item = btrfs_item_nr(leaf, slot);
3395 	btrfs_set_item_size(leaf, item, old_size + data_size);
3396 	btrfs_mark_buffer_dirty(leaf);
3397 
3398 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3399 		btrfs_print_leaf(root, leaf);
3400 		BUG();
3401 	}
3402 	return 0;
3403 }
3404 
3405 /*
3406  * Given a key and some data, insert items into the tree.
3407  * This does all the path init required, making room in the tree if needed.
3408  * Returns the number of keys that were inserted.
3409  */
3410 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3411 			    struct btrfs_root *root,
3412 			    struct btrfs_path *path,
3413 			    struct btrfs_key *cpu_key, u32 *data_size,
3414 			    int nr)
3415 {
3416 	struct extent_buffer *leaf;
3417 	struct btrfs_item *item;
3418 	int ret = 0;
3419 	int slot;
3420 	int i;
3421 	u32 nritems;
3422 	u32 total_data = 0;
3423 	u32 total_size = 0;
3424 	unsigned int data_end;
3425 	struct btrfs_disk_key disk_key;
3426 	struct btrfs_key found_key;
3427 
3428 	for (i = 0; i < nr; i++) {
3429 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3430 		    BTRFS_LEAF_DATA_SIZE(root)) {
3431 			break;
3432 			nr = i;
3433 		}
3434 		total_data += data_size[i];
3435 		total_size += data_size[i] + sizeof(struct btrfs_item);
3436 	}
3437 	BUG_ON(nr == 0);
3438 
3439 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3440 	if (ret == 0)
3441 		return -EEXIST;
3442 	if (ret < 0)
3443 		goto out;
3444 
3445 	leaf = path->nodes[0];
3446 
3447 	nritems = btrfs_header_nritems(leaf);
3448 	data_end = leaf_data_end(root, leaf);
3449 
3450 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3451 		for (i = nr; i >= 0; i--) {
3452 			total_data -= data_size[i];
3453 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3454 			if (total_size < btrfs_leaf_free_space(root, leaf))
3455 				break;
3456 		}
3457 		nr = i;
3458 	}
3459 
3460 	slot = path->slots[0];
3461 	BUG_ON(slot < 0);
3462 
3463 	if (slot != nritems) {
3464 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3465 
3466 		item = btrfs_item_nr(leaf, slot);
3467 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3468 
3469 		/* figure out how many keys we can insert in here */
3470 		total_data = data_size[0];
3471 		for (i = 1; i < nr; i++) {
3472 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3473 				break;
3474 			total_data += data_size[i];
3475 		}
3476 		nr = i;
3477 
3478 		if (old_data < data_end) {
3479 			btrfs_print_leaf(root, leaf);
3480 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3481 			       slot, old_data, data_end);
3482 			BUG_ON(1);
3483 		}
3484 		/*
3485 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3486 		 */
3487 		/* first correct the data pointers */
3488 		for (i = slot; i < nritems; i++) {
3489 			u32 ioff;
3490 
3491 			item = btrfs_item_nr(leaf, i);
3492 			ioff = btrfs_item_offset(leaf, item);
3493 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3494 		}
3495 		/* shift the items */
3496 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3497 			      btrfs_item_nr_offset(slot),
3498 			      (nritems - slot) * sizeof(struct btrfs_item));
3499 
3500 		/* shift the data */
3501 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3502 			      data_end - total_data, btrfs_leaf_data(leaf) +
3503 			      data_end, old_data - data_end);
3504 		data_end = old_data;
3505 	} else {
3506 		/*
3507 		 * this sucks but it has to be done, if we are inserting at
3508 		 * the end of the leaf only insert 1 of the items, since we
3509 		 * have no way of knowing whats on the next leaf and we'd have
3510 		 * to drop our current locks to figure it out
3511 		 */
3512 		nr = 1;
3513 	}
3514 
3515 	/* setup the item for the new data */
3516 	for (i = 0; i < nr; i++) {
3517 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3518 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3519 		item = btrfs_item_nr(leaf, slot + i);
3520 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3521 		data_end -= data_size[i];
3522 		btrfs_set_item_size(leaf, item, data_size[i]);
3523 	}
3524 	btrfs_set_header_nritems(leaf, nritems + nr);
3525 	btrfs_mark_buffer_dirty(leaf);
3526 
3527 	ret = 0;
3528 	if (slot == 0) {
3529 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3530 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3531 	}
3532 
3533 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3534 		btrfs_print_leaf(root, leaf);
3535 		BUG();
3536 	}
3537 out:
3538 	if (!ret)
3539 		ret = nr;
3540 	return ret;
3541 }
3542 
3543 /*
3544  * this is a helper for btrfs_insert_empty_items, the main goal here is
3545  * to save stack depth by doing the bulk of the work in a function
3546  * that doesn't call btrfs_search_slot
3547  */
3548 int setup_items_for_insert(struct btrfs_trans_handle *trans,
3549 			   struct btrfs_root *root, struct btrfs_path *path,
3550 			   struct btrfs_key *cpu_key, u32 *data_size,
3551 			   u32 total_data, u32 total_size, int nr)
3552 {
3553 	struct btrfs_item *item;
3554 	int i;
3555 	u32 nritems;
3556 	unsigned int data_end;
3557 	struct btrfs_disk_key disk_key;
3558 	int ret;
3559 	struct extent_buffer *leaf;
3560 	int slot;
3561 
3562 	leaf = path->nodes[0];
3563 	slot = path->slots[0];
3564 
3565 	nritems = btrfs_header_nritems(leaf);
3566 	data_end = leaf_data_end(root, leaf);
3567 
3568 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3569 		btrfs_print_leaf(root, leaf);
3570 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3571 		       total_size, btrfs_leaf_free_space(root, leaf));
3572 		BUG();
3573 	}
3574 
3575 	if (slot != nritems) {
3576 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3577 
3578 		if (old_data < data_end) {
3579 			btrfs_print_leaf(root, leaf);
3580 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3581 			       slot, old_data, data_end);
3582 			BUG_ON(1);
3583 		}
3584 		/*
3585 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3586 		 */
3587 		/* first correct the data pointers */
3588 		for (i = slot; i < nritems; i++) {
3589 			u32 ioff;
3590 
3591 			item = btrfs_item_nr(leaf, i);
3592 			ioff = btrfs_item_offset(leaf, item);
3593 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3594 		}
3595 		/* shift the items */
3596 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3597 			      btrfs_item_nr_offset(slot),
3598 			      (nritems - slot) * sizeof(struct btrfs_item));
3599 
3600 		/* shift the data */
3601 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3602 			      data_end - total_data, btrfs_leaf_data(leaf) +
3603 			      data_end, old_data - data_end);
3604 		data_end = old_data;
3605 	}
3606 
3607 	/* setup the item for the new data */
3608 	for (i = 0; i < nr; i++) {
3609 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3610 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3611 		item = btrfs_item_nr(leaf, slot + i);
3612 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3613 		data_end -= data_size[i];
3614 		btrfs_set_item_size(leaf, item, data_size[i]);
3615 	}
3616 
3617 	btrfs_set_header_nritems(leaf, nritems + nr);
3618 
3619 	ret = 0;
3620 	if (slot == 0) {
3621 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3622 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3623 	}
3624 	btrfs_unlock_up_safe(path, 1);
3625 	btrfs_mark_buffer_dirty(leaf);
3626 
3627 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3628 		btrfs_print_leaf(root, leaf);
3629 		BUG();
3630 	}
3631 	return ret;
3632 }
3633 
3634 /*
3635  * Given a key and some data, insert items into the tree.
3636  * This does all the path init required, making room in the tree if needed.
3637  */
3638 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3639 			    struct btrfs_root *root,
3640 			    struct btrfs_path *path,
3641 			    struct btrfs_key *cpu_key, u32 *data_size,
3642 			    int nr)
3643 {
3644 	int ret = 0;
3645 	int slot;
3646 	int i;
3647 	u32 total_size = 0;
3648 	u32 total_data = 0;
3649 
3650 	for (i = 0; i < nr; i++)
3651 		total_data += data_size[i];
3652 
3653 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3654 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3655 	if (ret == 0)
3656 		return -EEXIST;
3657 	if (ret < 0)
3658 		goto out;
3659 
3660 	slot = path->slots[0];
3661 	BUG_ON(slot < 0);
3662 
3663 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3664 			       total_data, total_size, nr);
3665 
3666 out:
3667 	return ret;
3668 }
3669 
3670 /*
3671  * Given a key and some data, insert an item into the tree.
3672  * This does all the path init required, making room in the tree if needed.
3673  */
3674 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3675 		      *root, struct btrfs_key *cpu_key, void *data, u32
3676 		      data_size)
3677 {
3678 	int ret = 0;
3679 	struct btrfs_path *path;
3680 	struct extent_buffer *leaf;
3681 	unsigned long ptr;
3682 
3683 	path = btrfs_alloc_path();
3684 	if (!path)
3685 		return -ENOMEM;
3686 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3687 	if (!ret) {
3688 		leaf = path->nodes[0];
3689 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3690 		write_extent_buffer(leaf, data, ptr, data_size);
3691 		btrfs_mark_buffer_dirty(leaf);
3692 	}
3693 	btrfs_free_path(path);
3694 	return ret;
3695 }
3696 
3697 /*
3698  * delete the pointer from a given node.
3699  *
3700  * the tree should have been previously balanced so the deletion does not
3701  * empty a node.
3702  */
3703 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3704 		   struct btrfs_path *path, int level, int slot)
3705 {
3706 	struct extent_buffer *parent = path->nodes[level];
3707 	u32 nritems;
3708 	int ret = 0;
3709 	int wret;
3710 
3711 	nritems = btrfs_header_nritems(parent);
3712 	if (slot != nritems - 1) {
3713 		memmove_extent_buffer(parent,
3714 			      btrfs_node_key_ptr_offset(slot),
3715 			      btrfs_node_key_ptr_offset(slot + 1),
3716 			      sizeof(struct btrfs_key_ptr) *
3717 			      (nritems - slot - 1));
3718 	}
3719 	nritems--;
3720 	btrfs_set_header_nritems(parent, nritems);
3721 	if (nritems == 0 && parent == root->node) {
3722 		BUG_ON(btrfs_header_level(root->node) != 1);
3723 		/* just turn the root into a leaf and break */
3724 		btrfs_set_header_level(root->node, 0);
3725 	} else if (slot == 0) {
3726 		struct btrfs_disk_key disk_key;
3727 
3728 		btrfs_node_key(parent, &disk_key, 0);
3729 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3730 		if (wret)
3731 			ret = wret;
3732 	}
3733 	btrfs_mark_buffer_dirty(parent);
3734 	return ret;
3735 }
3736 
3737 /*
3738  * a helper function to delete the leaf pointed to by path->slots[1] and
3739  * path->nodes[1].
3740  *
3741  * This deletes the pointer in path->nodes[1] and frees the leaf
3742  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3743  *
3744  * The path must have already been setup for deleting the leaf, including
3745  * all the proper balancing.  path->nodes[1] must be locked.
3746  */
3747 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3748 				   struct btrfs_root *root,
3749 				   struct btrfs_path *path,
3750 				   struct extent_buffer *leaf)
3751 {
3752 	int ret;
3753 
3754 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3755 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3756 	if (ret)
3757 		return ret;
3758 
3759 	/*
3760 	 * btrfs_free_extent is expensive, we want to make sure we
3761 	 * aren't holding any locks when we call it
3762 	 */
3763 	btrfs_unlock_up_safe(path, 0);
3764 
3765 	root_sub_used(root, leaf->len);
3766 
3767 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3768 	return 0;
3769 }
3770 /*
3771  * delete the item at the leaf level in path.  If that empties
3772  * the leaf, remove it from the tree
3773  */
3774 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3775 		    struct btrfs_path *path, int slot, int nr)
3776 {
3777 	struct extent_buffer *leaf;
3778 	struct btrfs_item *item;
3779 	int last_off;
3780 	int dsize = 0;
3781 	int ret = 0;
3782 	int wret;
3783 	int i;
3784 	u32 nritems;
3785 
3786 	leaf = path->nodes[0];
3787 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3788 
3789 	for (i = 0; i < nr; i++)
3790 		dsize += btrfs_item_size_nr(leaf, slot + i);
3791 
3792 	nritems = btrfs_header_nritems(leaf);
3793 
3794 	if (slot + nr != nritems) {
3795 		int data_end = leaf_data_end(root, leaf);
3796 
3797 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3798 			      data_end + dsize,
3799 			      btrfs_leaf_data(leaf) + data_end,
3800 			      last_off - data_end);
3801 
3802 		for (i = slot + nr; i < nritems; i++) {
3803 			u32 ioff;
3804 
3805 			item = btrfs_item_nr(leaf, i);
3806 			ioff = btrfs_item_offset(leaf, item);
3807 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3808 		}
3809 
3810 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3811 			      btrfs_item_nr_offset(slot + nr),
3812 			      sizeof(struct btrfs_item) *
3813 			      (nritems - slot - nr));
3814 	}
3815 	btrfs_set_header_nritems(leaf, nritems - nr);
3816 	nritems -= nr;
3817 
3818 	/* delete the leaf if we've emptied it */
3819 	if (nritems == 0) {
3820 		if (leaf == root->node) {
3821 			btrfs_set_header_level(leaf, 0);
3822 		} else {
3823 			btrfs_set_path_blocking(path);
3824 			clean_tree_block(trans, root, leaf);
3825 			ret = btrfs_del_leaf(trans, root, path, leaf);
3826 			BUG_ON(ret);
3827 		}
3828 	} else {
3829 		int used = leaf_space_used(leaf, 0, nritems);
3830 		if (slot == 0) {
3831 			struct btrfs_disk_key disk_key;
3832 
3833 			btrfs_item_key(leaf, &disk_key, 0);
3834 			wret = fixup_low_keys(trans, root, path,
3835 					      &disk_key, 1);
3836 			if (wret)
3837 				ret = wret;
3838 		}
3839 
3840 		/* delete the leaf if it is mostly empty */
3841 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3842 			/* push_leaf_left fixes the path.
3843 			 * make sure the path still points to our leaf
3844 			 * for possible call to del_ptr below
3845 			 */
3846 			slot = path->slots[1];
3847 			extent_buffer_get(leaf);
3848 
3849 			btrfs_set_path_blocking(path);
3850 			wret = push_leaf_left(trans, root, path, 1, 1,
3851 					      1, (u32)-1);
3852 			if (wret < 0 && wret != -ENOSPC)
3853 				ret = wret;
3854 
3855 			if (path->nodes[0] == leaf &&
3856 			    btrfs_header_nritems(leaf)) {
3857 				wret = push_leaf_right(trans, root, path, 1,
3858 						       1, 1, 0);
3859 				if (wret < 0 && wret != -ENOSPC)
3860 					ret = wret;
3861 			}
3862 
3863 			if (btrfs_header_nritems(leaf) == 0) {
3864 				path->slots[1] = slot;
3865 				ret = btrfs_del_leaf(trans, root, path, leaf);
3866 				BUG_ON(ret);
3867 				free_extent_buffer(leaf);
3868 			} else {
3869 				/* if we're still in the path, make sure
3870 				 * we're dirty.  Otherwise, one of the
3871 				 * push_leaf functions must have already
3872 				 * dirtied this buffer
3873 				 */
3874 				if (path->nodes[0] == leaf)
3875 					btrfs_mark_buffer_dirty(leaf);
3876 				free_extent_buffer(leaf);
3877 			}
3878 		} else {
3879 			btrfs_mark_buffer_dirty(leaf);
3880 		}
3881 	}
3882 	return ret;
3883 }
3884 
3885 /*
3886  * search the tree again to find a leaf with lesser keys
3887  * returns 0 if it found something or 1 if there are no lesser leaves.
3888  * returns < 0 on io errors.
3889  *
3890  * This may release the path, and so you may lose any locks held at the
3891  * time you call it.
3892  */
3893 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3894 {
3895 	struct btrfs_key key;
3896 	struct btrfs_disk_key found_key;
3897 	int ret;
3898 
3899 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3900 
3901 	if (key.offset > 0)
3902 		key.offset--;
3903 	else if (key.type > 0)
3904 		key.type--;
3905 	else if (key.objectid > 0)
3906 		key.objectid--;
3907 	else
3908 		return 1;
3909 
3910 	btrfs_release_path(path);
3911 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3912 	if (ret < 0)
3913 		return ret;
3914 	btrfs_item_key(path->nodes[0], &found_key, 0);
3915 	ret = comp_keys(&found_key, &key);
3916 	if (ret < 0)
3917 		return 0;
3918 	return 1;
3919 }
3920 
3921 /*
3922  * A helper function to walk down the tree starting at min_key, and looking
3923  * for nodes or leaves that are either in cache or have a minimum
3924  * transaction id.  This is used by the btree defrag code, and tree logging
3925  *
3926  * This does not cow, but it does stuff the starting key it finds back
3927  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3928  * key and get a writable path.
3929  *
3930  * This does lock as it descends, and path->keep_locks should be set
3931  * to 1 by the caller.
3932  *
3933  * This honors path->lowest_level to prevent descent past a given level
3934  * of the tree.
3935  *
3936  * min_trans indicates the oldest transaction that you are interested
3937  * in walking through.  Any nodes or leaves older than min_trans are
3938  * skipped over (without reading them).
3939  *
3940  * returns zero if something useful was found, < 0 on error and 1 if there
3941  * was nothing in the tree that matched the search criteria.
3942  */
3943 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3944 			 struct btrfs_key *max_key,
3945 			 struct btrfs_path *path, int cache_only,
3946 			 u64 min_trans)
3947 {
3948 	struct extent_buffer *cur;
3949 	struct btrfs_key found_key;
3950 	int slot;
3951 	int sret;
3952 	u32 nritems;
3953 	int level;
3954 	int ret = 1;
3955 
3956 	WARN_ON(!path->keep_locks);
3957 again:
3958 	cur = btrfs_read_lock_root_node(root);
3959 	level = btrfs_header_level(cur);
3960 	WARN_ON(path->nodes[level]);
3961 	path->nodes[level] = cur;
3962 	path->locks[level] = BTRFS_READ_LOCK;
3963 
3964 	if (btrfs_header_generation(cur) < min_trans) {
3965 		ret = 1;
3966 		goto out;
3967 	}
3968 	while (1) {
3969 		nritems = btrfs_header_nritems(cur);
3970 		level = btrfs_header_level(cur);
3971 		sret = bin_search(cur, min_key, level, &slot);
3972 
3973 		/* at the lowest level, we're done, setup the path and exit */
3974 		if (level == path->lowest_level) {
3975 			if (slot >= nritems)
3976 				goto find_next_key;
3977 			ret = 0;
3978 			path->slots[level] = slot;
3979 			btrfs_item_key_to_cpu(cur, &found_key, slot);
3980 			goto out;
3981 		}
3982 		if (sret && slot > 0)
3983 			slot--;
3984 		/*
3985 		 * check this node pointer against the cache_only and
3986 		 * min_trans parameters.  If it isn't in cache or is too
3987 		 * old, skip to the next one.
3988 		 */
3989 		while (slot < nritems) {
3990 			u64 blockptr;
3991 			u64 gen;
3992 			struct extent_buffer *tmp;
3993 			struct btrfs_disk_key disk_key;
3994 
3995 			blockptr = btrfs_node_blockptr(cur, slot);
3996 			gen = btrfs_node_ptr_generation(cur, slot);
3997 			if (gen < min_trans) {
3998 				slot++;
3999 				continue;
4000 			}
4001 			if (!cache_only)
4002 				break;
4003 
4004 			if (max_key) {
4005 				btrfs_node_key(cur, &disk_key, slot);
4006 				if (comp_keys(&disk_key, max_key) >= 0) {
4007 					ret = 1;
4008 					goto out;
4009 				}
4010 			}
4011 
4012 			tmp = btrfs_find_tree_block(root, blockptr,
4013 					    btrfs_level_size(root, level - 1));
4014 
4015 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4016 				free_extent_buffer(tmp);
4017 				break;
4018 			}
4019 			if (tmp)
4020 				free_extent_buffer(tmp);
4021 			slot++;
4022 		}
4023 find_next_key:
4024 		/*
4025 		 * we didn't find a candidate key in this node, walk forward
4026 		 * and find another one
4027 		 */
4028 		if (slot >= nritems) {
4029 			path->slots[level] = slot;
4030 			btrfs_set_path_blocking(path);
4031 			sret = btrfs_find_next_key(root, path, min_key, level,
4032 						  cache_only, min_trans);
4033 			if (sret == 0) {
4034 				btrfs_release_path(path);
4035 				goto again;
4036 			} else {
4037 				goto out;
4038 			}
4039 		}
4040 		/* save our key for returning back */
4041 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4042 		path->slots[level] = slot;
4043 		if (level == path->lowest_level) {
4044 			ret = 0;
4045 			unlock_up(path, level, 1);
4046 			goto out;
4047 		}
4048 		btrfs_set_path_blocking(path);
4049 		cur = read_node_slot(root, cur, slot);
4050 		BUG_ON(!cur);
4051 
4052 		btrfs_tree_read_lock(cur);
4053 
4054 		path->locks[level - 1] = BTRFS_READ_LOCK;
4055 		path->nodes[level - 1] = cur;
4056 		unlock_up(path, level, 1);
4057 		btrfs_clear_path_blocking(path, NULL, 0);
4058 	}
4059 out:
4060 	if (ret == 0)
4061 		memcpy(min_key, &found_key, sizeof(found_key));
4062 	btrfs_set_path_blocking(path);
4063 	return ret;
4064 }
4065 
4066 /*
4067  * this is similar to btrfs_next_leaf, but does not try to preserve
4068  * and fixup the path.  It looks for and returns the next key in the
4069  * tree based on the current path and the cache_only and min_trans
4070  * parameters.
4071  *
4072  * 0 is returned if another key is found, < 0 if there are any errors
4073  * and 1 is returned if there are no higher keys in the tree
4074  *
4075  * path->keep_locks should be set to 1 on the search made before
4076  * calling this function.
4077  */
4078 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4079 			struct btrfs_key *key, int level,
4080 			int cache_only, u64 min_trans)
4081 {
4082 	int slot;
4083 	struct extent_buffer *c;
4084 
4085 	WARN_ON(!path->keep_locks);
4086 	while (level < BTRFS_MAX_LEVEL) {
4087 		if (!path->nodes[level])
4088 			return 1;
4089 
4090 		slot = path->slots[level] + 1;
4091 		c = path->nodes[level];
4092 next:
4093 		if (slot >= btrfs_header_nritems(c)) {
4094 			int ret;
4095 			int orig_lowest;
4096 			struct btrfs_key cur_key;
4097 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4098 			    !path->nodes[level + 1])
4099 				return 1;
4100 
4101 			if (path->locks[level + 1]) {
4102 				level++;
4103 				continue;
4104 			}
4105 
4106 			slot = btrfs_header_nritems(c) - 1;
4107 			if (level == 0)
4108 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4109 			else
4110 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4111 
4112 			orig_lowest = path->lowest_level;
4113 			btrfs_release_path(path);
4114 			path->lowest_level = level;
4115 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4116 						0, 0);
4117 			path->lowest_level = orig_lowest;
4118 			if (ret < 0)
4119 				return ret;
4120 
4121 			c = path->nodes[level];
4122 			slot = path->slots[level];
4123 			if (ret == 0)
4124 				slot++;
4125 			goto next;
4126 		}
4127 
4128 		if (level == 0)
4129 			btrfs_item_key_to_cpu(c, key, slot);
4130 		else {
4131 			u64 blockptr = btrfs_node_blockptr(c, slot);
4132 			u64 gen = btrfs_node_ptr_generation(c, slot);
4133 
4134 			if (cache_only) {
4135 				struct extent_buffer *cur;
4136 				cur = btrfs_find_tree_block(root, blockptr,
4137 					    btrfs_level_size(root, level - 1));
4138 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4139 					slot++;
4140 					if (cur)
4141 						free_extent_buffer(cur);
4142 					goto next;
4143 				}
4144 				free_extent_buffer(cur);
4145 			}
4146 			if (gen < min_trans) {
4147 				slot++;
4148 				goto next;
4149 			}
4150 			btrfs_node_key_to_cpu(c, key, slot);
4151 		}
4152 		return 0;
4153 	}
4154 	return 1;
4155 }
4156 
4157 /*
4158  * search the tree again to find a leaf with greater keys
4159  * returns 0 if it found something or 1 if there are no greater leaves.
4160  * returns < 0 on io errors.
4161  */
4162 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4163 {
4164 	int slot;
4165 	int level;
4166 	struct extent_buffer *c;
4167 	struct extent_buffer *next;
4168 	struct btrfs_key key;
4169 	u32 nritems;
4170 	int ret;
4171 	int old_spinning = path->leave_spinning;
4172 	int next_rw_lock = 0;
4173 
4174 	nritems = btrfs_header_nritems(path->nodes[0]);
4175 	if (nritems == 0)
4176 		return 1;
4177 
4178 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4179 again:
4180 	level = 1;
4181 	next = NULL;
4182 	next_rw_lock = 0;
4183 	btrfs_release_path(path);
4184 
4185 	path->keep_locks = 1;
4186 	path->leave_spinning = 1;
4187 
4188 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4189 	path->keep_locks = 0;
4190 
4191 	if (ret < 0)
4192 		return ret;
4193 
4194 	nritems = btrfs_header_nritems(path->nodes[0]);
4195 	/*
4196 	 * by releasing the path above we dropped all our locks.  A balance
4197 	 * could have added more items next to the key that used to be
4198 	 * at the very end of the block.  So, check again here and
4199 	 * advance the path if there are now more items available.
4200 	 */
4201 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4202 		if (ret == 0)
4203 			path->slots[0]++;
4204 		ret = 0;
4205 		goto done;
4206 	}
4207 
4208 	while (level < BTRFS_MAX_LEVEL) {
4209 		if (!path->nodes[level]) {
4210 			ret = 1;
4211 			goto done;
4212 		}
4213 
4214 		slot = path->slots[level] + 1;
4215 		c = path->nodes[level];
4216 		if (slot >= btrfs_header_nritems(c)) {
4217 			level++;
4218 			if (level == BTRFS_MAX_LEVEL) {
4219 				ret = 1;
4220 				goto done;
4221 			}
4222 			continue;
4223 		}
4224 
4225 		if (next) {
4226 			btrfs_tree_unlock_rw(next, next_rw_lock);
4227 			free_extent_buffer(next);
4228 		}
4229 
4230 		next = c;
4231 		next_rw_lock = path->locks[level];
4232 		ret = read_block_for_search(NULL, root, path, &next, level,
4233 					    slot, &key);
4234 		if (ret == -EAGAIN)
4235 			goto again;
4236 
4237 		if (ret < 0) {
4238 			btrfs_release_path(path);
4239 			goto done;
4240 		}
4241 
4242 		if (!path->skip_locking) {
4243 			ret = btrfs_try_tree_read_lock(next);
4244 			if (!ret) {
4245 				btrfs_set_path_blocking(path);
4246 				btrfs_tree_read_lock(next);
4247 				btrfs_clear_path_blocking(path, next,
4248 							  BTRFS_READ_LOCK);
4249 			}
4250 			next_rw_lock = BTRFS_READ_LOCK;
4251 		}
4252 		break;
4253 	}
4254 	path->slots[level] = slot;
4255 	while (1) {
4256 		level--;
4257 		c = path->nodes[level];
4258 		if (path->locks[level])
4259 			btrfs_tree_unlock_rw(c, path->locks[level]);
4260 
4261 		free_extent_buffer(c);
4262 		path->nodes[level] = next;
4263 		path->slots[level] = 0;
4264 		if (!path->skip_locking)
4265 			path->locks[level] = next_rw_lock;
4266 		if (!level)
4267 			break;
4268 
4269 		ret = read_block_for_search(NULL, root, path, &next, level,
4270 					    0, &key);
4271 		if (ret == -EAGAIN)
4272 			goto again;
4273 
4274 		if (ret < 0) {
4275 			btrfs_release_path(path);
4276 			goto done;
4277 		}
4278 
4279 		if (!path->skip_locking) {
4280 			ret = btrfs_try_tree_read_lock(next);
4281 			if (!ret) {
4282 				btrfs_set_path_blocking(path);
4283 				btrfs_tree_read_lock(next);
4284 				btrfs_clear_path_blocking(path, next,
4285 							  BTRFS_READ_LOCK);
4286 			}
4287 			next_rw_lock = BTRFS_READ_LOCK;
4288 		}
4289 	}
4290 	ret = 0;
4291 done:
4292 	unlock_up(path, 0, 1);
4293 	path->leave_spinning = old_spinning;
4294 	if (!old_spinning)
4295 		btrfs_set_path_blocking(path);
4296 
4297 	return ret;
4298 }
4299 
4300 /*
4301  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4302  * searching until it gets past min_objectid or finds an item of 'type'
4303  *
4304  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4305  */
4306 int btrfs_previous_item(struct btrfs_root *root,
4307 			struct btrfs_path *path, u64 min_objectid,
4308 			int type)
4309 {
4310 	struct btrfs_key found_key;
4311 	struct extent_buffer *leaf;
4312 	u32 nritems;
4313 	int ret;
4314 
4315 	while (1) {
4316 		if (path->slots[0] == 0) {
4317 			btrfs_set_path_blocking(path);
4318 			ret = btrfs_prev_leaf(root, path);
4319 			if (ret != 0)
4320 				return ret;
4321 		} else {
4322 			path->slots[0]--;
4323 		}
4324 		leaf = path->nodes[0];
4325 		nritems = btrfs_header_nritems(leaf);
4326 		if (nritems == 0)
4327 			return 1;
4328 		if (path->slots[0] == nritems)
4329 			path->slots[0]--;
4330 
4331 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4332 		if (found_key.objectid < min_objectid)
4333 			break;
4334 		if (found_key.type == type)
4335 			return 0;
4336 		if (found_key.objectid == min_objectid &&
4337 		    found_key.type < type)
4338 			break;
4339 	}
4340 	return 1;
4341 }
4342