1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include <linux/vmalloc.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 32 *root, struct btrfs_key *ins_key, 33 struct btrfs_path *path, int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, struct extent_buffer *dst, 36 struct extent_buffer *src, int empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct btrfs_root *root, 39 struct extent_buffer *dst_buf, 40 struct extent_buffer *src_buf); 41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 42 int level, int slot); 43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 } 50 51 /* 52 * set all locked nodes in the path to blocking locks. This should 53 * be done before scheduling 54 */ 55 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 56 { 57 int i; 58 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 59 if (!p->nodes[i] || !p->locks[i]) 60 continue; 61 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 62 if (p->locks[i] == BTRFS_READ_LOCK) 63 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 64 else if (p->locks[i] == BTRFS_WRITE_LOCK) 65 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 66 } 67 } 68 69 /* 70 * reset all the locked nodes in the patch to spinning locks. 71 * 72 * held is used to keep lockdep happy, when lockdep is enabled 73 * we set held to a blocking lock before we go around and 74 * retake all the spinlocks in the path. You can safely use NULL 75 * for held 76 */ 77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 78 struct extent_buffer *held, int held_rw) 79 { 80 int i; 81 82 if (held) { 83 btrfs_set_lock_blocking_rw(held, held_rw); 84 if (held_rw == BTRFS_WRITE_LOCK) 85 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 86 else if (held_rw == BTRFS_READ_LOCK) 87 held_rw = BTRFS_READ_LOCK_BLOCKING; 88 } 89 btrfs_set_path_blocking(p); 90 91 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 92 if (p->nodes[i] && p->locks[i]) { 93 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 94 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 95 p->locks[i] = BTRFS_WRITE_LOCK; 96 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 97 p->locks[i] = BTRFS_READ_LOCK; 98 } 99 } 100 101 if (held) 102 btrfs_clear_lock_blocking_rw(held, held_rw); 103 } 104 105 /* this also releases the path */ 106 void btrfs_free_path(struct btrfs_path *p) 107 { 108 if (!p) 109 return; 110 btrfs_release_path(p); 111 kmem_cache_free(btrfs_path_cachep, p); 112 } 113 114 /* 115 * path release drops references on the extent buffers in the path 116 * and it drops any locks held by this path 117 * 118 * It is safe to call this on paths that no locks or extent buffers held. 119 */ 120 noinline void btrfs_release_path(struct btrfs_path *p) 121 { 122 int i; 123 124 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 125 p->slots[i] = 0; 126 if (!p->nodes[i]) 127 continue; 128 if (p->locks[i]) { 129 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 130 p->locks[i] = 0; 131 } 132 free_extent_buffer(p->nodes[i]); 133 p->nodes[i] = NULL; 134 } 135 } 136 137 /* 138 * safely gets a reference on the root node of a tree. A lock 139 * is not taken, so a concurrent writer may put a different node 140 * at the root of the tree. See btrfs_lock_root_node for the 141 * looping required. 142 * 143 * The extent buffer returned by this has a reference taken, so 144 * it won't disappear. It may stop being the root of the tree 145 * at any time because there are no locks held. 146 */ 147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 148 { 149 struct extent_buffer *eb; 150 151 while (1) { 152 rcu_read_lock(); 153 eb = rcu_dereference(root->node); 154 155 /* 156 * RCU really hurts here, we could free up the root node because 157 * it was COWed but we may not get the new root node yet so do 158 * the inc_not_zero dance and if it doesn't work then 159 * synchronize_rcu and try again. 160 */ 161 if (atomic_inc_not_zero(&eb->refs)) { 162 rcu_read_unlock(); 163 break; 164 } 165 rcu_read_unlock(); 166 synchronize_rcu(); 167 } 168 return eb; 169 } 170 171 /* loop around taking references on and locking the root node of the 172 * tree until you end up with a lock on the root. A locked buffer 173 * is returned, with a reference held. 174 */ 175 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 176 { 177 struct extent_buffer *eb; 178 179 while (1) { 180 eb = btrfs_root_node(root); 181 btrfs_tree_lock(eb); 182 if (eb == root->node) 183 break; 184 btrfs_tree_unlock(eb); 185 free_extent_buffer(eb); 186 } 187 return eb; 188 } 189 190 /* loop around taking references on and locking the root node of the 191 * tree until you end up with a lock on the root. A locked buffer 192 * is returned, with a reference held. 193 */ 194 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 195 { 196 struct extent_buffer *eb; 197 198 while (1) { 199 eb = btrfs_root_node(root); 200 btrfs_tree_read_lock(eb); 201 if (eb == root->node) 202 break; 203 btrfs_tree_read_unlock(eb); 204 free_extent_buffer(eb); 205 } 206 return eb; 207 } 208 209 /* cowonly root (everything not a reference counted cow subvolume), just get 210 * put onto a simple dirty list. transaction.c walks this to make sure they 211 * get properly updated on disk. 212 */ 213 static void add_root_to_dirty_list(struct btrfs_root *root) 214 { 215 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 216 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 217 return; 218 219 spin_lock(&root->fs_info->trans_lock); 220 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 221 /* Want the extent tree to be the last on the list */ 222 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 223 list_move_tail(&root->dirty_list, 224 &root->fs_info->dirty_cowonly_roots); 225 else 226 list_move(&root->dirty_list, 227 &root->fs_info->dirty_cowonly_roots); 228 } 229 spin_unlock(&root->fs_info->trans_lock); 230 } 231 232 /* 233 * used by snapshot creation to make a copy of a root for a tree with 234 * a given objectid. The buffer with the new root node is returned in 235 * cow_ret, and this func returns zero on success or a negative error code. 236 */ 237 int btrfs_copy_root(struct btrfs_trans_handle *trans, 238 struct btrfs_root *root, 239 struct extent_buffer *buf, 240 struct extent_buffer **cow_ret, u64 new_root_objectid) 241 { 242 struct extent_buffer *cow; 243 int ret = 0; 244 int level; 245 struct btrfs_disk_key disk_key; 246 247 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 248 trans->transid != root->fs_info->running_transaction->transid); 249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 250 trans->transid != root->last_trans); 251 252 level = btrfs_header_level(buf); 253 if (level == 0) 254 btrfs_item_key(buf, &disk_key, 0); 255 else 256 btrfs_node_key(buf, &disk_key, 0); 257 258 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 259 &disk_key, level, buf->start, 0); 260 if (IS_ERR(cow)) 261 return PTR_ERR(cow); 262 263 copy_extent_buffer(cow, buf, 0, 0, cow->len); 264 btrfs_set_header_bytenr(cow, cow->start); 265 btrfs_set_header_generation(cow, trans->transid); 266 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 267 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 268 BTRFS_HEADER_FLAG_RELOC); 269 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 270 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 271 else 272 btrfs_set_header_owner(cow, new_root_objectid); 273 274 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 275 BTRFS_FSID_SIZE); 276 277 WARN_ON(btrfs_header_generation(buf) > trans->transid); 278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 279 ret = btrfs_inc_ref(trans, root, cow, 1); 280 else 281 ret = btrfs_inc_ref(trans, root, cow, 0); 282 283 if (ret) 284 return ret; 285 286 btrfs_mark_buffer_dirty(cow); 287 *cow_ret = cow; 288 return 0; 289 } 290 291 enum mod_log_op { 292 MOD_LOG_KEY_REPLACE, 293 MOD_LOG_KEY_ADD, 294 MOD_LOG_KEY_REMOVE, 295 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 296 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 297 MOD_LOG_MOVE_KEYS, 298 MOD_LOG_ROOT_REPLACE, 299 }; 300 301 struct tree_mod_move { 302 int dst_slot; 303 int nr_items; 304 }; 305 306 struct tree_mod_root { 307 u64 logical; 308 u8 level; 309 }; 310 311 struct tree_mod_elem { 312 struct rb_node node; 313 u64 logical; 314 u64 seq; 315 enum mod_log_op op; 316 317 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 318 int slot; 319 320 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 321 u64 generation; 322 323 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 324 struct btrfs_disk_key key; 325 u64 blockptr; 326 327 /* this is used for op == MOD_LOG_MOVE_KEYS */ 328 struct tree_mod_move move; 329 330 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 331 struct tree_mod_root old_root; 332 }; 333 334 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 335 { 336 read_lock(&fs_info->tree_mod_log_lock); 337 } 338 339 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 340 { 341 read_unlock(&fs_info->tree_mod_log_lock); 342 } 343 344 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 345 { 346 write_lock(&fs_info->tree_mod_log_lock); 347 } 348 349 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 350 { 351 write_unlock(&fs_info->tree_mod_log_lock); 352 } 353 354 /* 355 * Pull a new tree mod seq number for our operation. 356 */ 357 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 358 { 359 return atomic64_inc_return(&fs_info->tree_mod_seq); 360 } 361 362 /* 363 * This adds a new blocker to the tree mod log's blocker list if the @elem 364 * passed does not already have a sequence number set. So when a caller expects 365 * to record tree modifications, it should ensure to set elem->seq to zero 366 * before calling btrfs_get_tree_mod_seq. 367 * Returns a fresh, unused tree log modification sequence number, even if no new 368 * blocker was added. 369 */ 370 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 371 struct seq_list *elem) 372 { 373 tree_mod_log_write_lock(fs_info); 374 spin_lock(&fs_info->tree_mod_seq_lock); 375 if (!elem->seq) { 376 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 377 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 378 } 379 spin_unlock(&fs_info->tree_mod_seq_lock); 380 tree_mod_log_write_unlock(fs_info); 381 382 return elem->seq; 383 } 384 385 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 386 struct seq_list *elem) 387 { 388 struct rb_root *tm_root; 389 struct rb_node *node; 390 struct rb_node *next; 391 struct seq_list *cur_elem; 392 struct tree_mod_elem *tm; 393 u64 min_seq = (u64)-1; 394 u64 seq_putting = elem->seq; 395 396 if (!seq_putting) 397 return; 398 399 spin_lock(&fs_info->tree_mod_seq_lock); 400 list_del(&elem->list); 401 elem->seq = 0; 402 403 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 404 if (cur_elem->seq < min_seq) { 405 if (seq_putting > cur_elem->seq) { 406 /* 407 * blocker with lower sequence number exists, we 408 * cannot remove anything from the log 409 */ 410 spin_unlock(&fs_info->tree_mod_seq_lock); 411 return; 412 } 413 min_seq = cur_elem->seq; 414 } 415 } 416 spin_unlock(&fs_info->tree_mod_seq_lock); 417 418 /* 419 * anything that's lower than the lowest existing (read: blocked) 420 * sequence number can be removed from the tree. 421 */ 422 tree_mod_log_write_lock(fs_info); 423 tm_root = &fs_info->tree_mod_log; 424 for (node = rb_first(tm_root); node; node = next) { 425 next = rb_next(node); 426 tm = container_of(node, struct tree_mod_elem, node); 427 if (tm->seq > min_seq) 428 continue; 429 rb_erase(node, tm_root); 430 kfree(tm); 431 } 432 tree_mod_log_write_unlock(fs_info); 433 } 434 435 /* 436 * key order of the log: 437 * node/leaf start address -> sequence 438 * 439 * The 'start address' is the logical address of the *new* root node 440 * for root replace operations, or the logical address of the affected 441 * block for all other operations. 442 * 443 * Note: must be called with write lock (tree_mod_log_write_lock). 444 */ 445 static noinline int 446 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 447 { 448 struct rb_root *tm_root; 449 struct rb_node **new; 450 struct rb_node *parent = NULL; 451 struct tree_mod_elem *cur; 452 453 BUG_ON(!tm); 454 455 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 456 457 tm_root = &fs_info->tree_mod_log; 458 new = &tm_root->rb_node; 459 while (*new) { 460 cur = container_of(*new, struct tree_mod_elem, node); 461 parent = *new; 462 if (cur->logical < tm->logical) 463 new = &((*new)->rb_left); 464 else if (cur->logical > tm->logical) 465 new = &((*new)->rb_right); 466 else if (cur->seq < tm->seq) 467 new = &((*new)->rb_left); 468 else if (cur->seq > tm->seq) 469 new = &((*new)->rb_right); 470 else 471 return -EEXIST; 472 } 473 474 rb_link_node(&tm->node, parent, new); 475 rb_insert_color(&tm->node, tm_root); 476 return 0; 477 } 478 479 /* 480 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 481 * returns zero with the tree_mod_log_lock acquired. The caller must hold 482 * this until all tree mod log insertions are recorded in the rb tree and then 483 * call tree_mod_log_write_unlock() to release. 484 */ 485 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 486 struct extent_buffer *eb) { 487 smp_mb(); 488 if (list_empty(&(fs_info)->tree_mod_seq_list)) 489 return 1; 490 if (eb && btrfs_header_level(eb) == 0) 491 return 1; 492 493 tree_mod_log_write_lock(fs_info); 494 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 495 tree_mod_log_write_unlock(fs_info); 496 return 1; 497 } 498 499 return 0; 500 } 501 502 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 503 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 504 struct extent_buffer *eb) 505 { 506 smp_mb(); 507 if (list_empty(&(fs_info)->tree_mod_seq_list)) 508 return 0; 509 if (eb && btrfs_header_level(eb) == 0) 510 return 0; 511 512 return 1; 513 } 514 515 static struct tree_mod_elem * 516 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 517 enum mod_log_op op, gfp_t flags) 518 { 519 struct tree_mod_elem *tm; 520 521 tm = kzalloc(sizeof(*tm), flags); 522 if (!tm) 523 return NULL; 524 525 tm->logical = eb->start; 526 if (op != MOD_LOG_KEY_ADD) { 527 btrfs_node_key(eb, &tm->key, slot); 528 tm->blockptr = btrfs_node_blockptr(eb, slot); 529 } 530 tm->op = op; 531 tm->slot = slot; 532 tm->generation = btrfs_node_ptr_generation(eb, slot); 533 RB_CLEAR_NODE(&tm->node); 534 535 return tm; 536 } 537 538 static noinline int 539 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 540 struct extent_buffer *eb, int slot, 541 enum mod_log_op op, gfp_t flags) 542 { 543 struct tree_mod_elem *tm; 544 int ret; 545 546 if (!tree_mod_need_log(fs_info, eb)) 547 return 0; 548 549 tm = alloc_tree_mod_elem(eb, slot, op, flags); 550 if (!tm) 551 return -ENOMEM; 552 553 if (tree_mod_dont_log(fs_info, eb)) { 554 kfree(tm); 555 return 0; 556 } 557 558 ret = __tree_mod_log_insert(fs_info, tm); 559 tree_mod_log_write_unlock(fs_info); 560 if (ret) 561 kfree(tm); 562 563 return ret; 564 } 565 566 static noinline int 567 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 568 struct extent_buffer *eb, int dst_slot, int src_slot, 569 int nr_items, gfp_t flags) 570 { 571 struct tree_mod_elem *tm = NULL; 572 struct tree_mod_elem **tm_list = NULL; 573 int ret = 0; 574 int i; 575 int locked = 0; 576 577 if (!tree_mod_need_log(fs_info, eb)) 578 return 0; 579 580 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 581 if (!tm_list) 582 return -ENOMEM; 583 584 tm = kzalloc(sizeof(*tm), flags); 585 if (!tm) { 586 ret = -ENOMEM; 587 goto free_tms; 588 } 589 590 tm->logical = eb->start; 591 tm->slot = src_slot; 592 tm->move.dst_slot = dst_slot; 593 tm->move.nr_items = nr_items; 594 tm->op = MOD_LOG_MOVE_KEYS; 595 596 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 597 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 598 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 599 if (!tm_list[i]) { 600 ret = -ENOMEM; 601 goto free_tms; 602 } 603 } 604 605 if (tree_mod_dont_log(fs_info, eb)) 606 goto free_tms; 607 locked = 1; 608 609 /* 610 * When we override something during the move, we log these removals. 611 * This can only happen when we move towards the beginning of the 612 * buffer, i.e. dst_slot < src_slot. 613 */ 614 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 615 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 616 if (ret) 617 goto free_tms; 618 } 619 620 ret = __tree_mod_log_insert(fs_info, tm); 621 if (ret) 622 goto free_tms; 623 tree_mod_log_write_unlock(fs_info); 624 kfree(tm_list); 625 626 return 0; 627 free_tms: 628 for (i = 0; i < nr_items; i++) { 629 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 630 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 631 kfree(tm_list[i]); 632 } 633 if (locked) 634 tree_mod_log_write_unlock(fs_info); 635 kfree(tm_list); 636 kfree(tm); 637 638 return ret; 639 } 640 641 static inline int 642 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 643 struct tree_mod_elem **tm_list, 644 int nritems) 645 { 646 int i, j; 647 int ret; 648 649 for (i = nritems - 1; i >= 0; i--) { 650 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 651 if (ret) { 652 for (j = nritems - 1; j > i; j--) 653 rb_erase(&tm_list[j]->node, 654 &fs_info->tree_mod_log); 655 return ret; 656 } 657 } 658 659 return 0; 660 } 661 662 static noinline int 663 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 664 struct extent_buffer *old_root, 665 struct extent_buffer *new_root, gfp_t flags, 666 int log_removal) 667 { 668 struct tree_mod_elem *tm = NULL; 669 struct tree_mod_elem **tm_list = NULL; 670 int nritems = 0; 671 int ret = 0; 672 int i; 673 674 if (!tree_mod_need_log(fs_info, NULL)) 675 return 0; 676 677 if (log_removal && btrfs_header_level(old_root) > 0) { 678 nritems = btrfs_header_nritems(old_root); 679 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 680 flags); 681 if (!tm_list) { 682 ret = -ENOMEM; 683 goto free_tms; 684 } 685 for (i = 0; i < nritems; i++) { 686 tm_list[i] = alloc_tree_mod_elem(old_root, i, 687 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 688 if (!tm_list[i]) { 689 ret = -ENOMEM; 690 goto free_tms; 691 } 692 } 693 } 694 695 tm = kzalloc(sizeof(*tm), flags); 696 if (!tm) { 697 ret = -ENOMEM; 698 goto free_tms; 699 } 700 701 tm->logical = new_root->start; 702 tm->old_root.logical = old_root->start; 703 tm->old_root.level = btrfs_header_level(old_root); 704 tm->generation = btrfs_header_generation(old_root); 705 tm->op = MOD_LOG_ROOT_REPLACE; 706 707 if (tree_mod_dont_log(fs_info, NULL)) 708 goto free_tms; 709 710 if (tm_list) 711 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 712 if (!ret) 713 ret = __tree_mod_log_insert(fs_info, tm); 714 715 tree_mod_log_write_unlock(fs_info); 716 if (ret) 717 goto free_tms; 718 kfree(tm_list); 719 720 return ret; 721 722 free_tms: 723 if (tm_list) { 724 for (i = 0; i < nritems; i++) 725 kfree(tm_list[i]); 726 kfree(tm_list); 727 } 728 kfree(tm); 729 730 return ret; 731 } 732 733 static struct tree_mod_elem * 734 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 735 int smallest) 736 { 737 struct rb_root *tm_root; 738 struct rb_node *node; 739 struct tree_mod_elem *cur = NULL; 740 struct tree_mod_elem *found = NULL; 741 742 tree_mod_log_read_lock(fs_info); 743 tm_root = &fs_info->tree_mod_log; 744 node = tm_root->rb_node; 745 while (node) { 746 cur = container_of(node, struct tree_mod_elem, node); 747 if (cur->logical < start) { 748 node = node->rb_left; 749 } else if (cur->logical > start) { 750 node = node->rb_right; 751 } else if (cur->seq < min_seq) { 752 node = node->rb_left; 753 } else if (!smallest) { 754 /* we want the node with the highest seq */ 755 if (found) 756 BUG_ON(found->seq > cur->seq); 757 found = cur; 758 node = node->rb_left; 759 } else if (cur->seq > min_seq) { 760 /* we want the node with the smallest seq */ 761 if (found) 762 BUG_ON(found->seq < cur->seq); 763 found = cur; 764 node = node->rb_right; 765 } else { 766 found = cur; 767 break; 768 } 769 } 770 tree_mod_log_read_unlock(fs_info); 771 772 return found; 773 } 774 775 /* 776 * this returns the element from the log with the smallest time sequence 777 * value that's in the log (the oldest log item). any element with a time 778 * sequence lower than min_seq will be ignored. 779 */ 780 static struct tree_mod_elem * 781 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 782 u64 min_seq) 783 { 784 return __tree_mod_log_search(fs_info, start, min_seq, 1); 785 } 786 787 /* 788 * this returns the element from the log with the largest time sequence 789 * value that's in the log (the most recent log item). any element with 790 * a time sequence lower than min_seq will be ignored. 791 */ 792 static struct tree_mod_elem * 793 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 794 { 795 return __tree_mod_log_search(fs_info, start, min_seq, 0); 796 } 797 798 static noinline int 799 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 800 struct extent_buffer *src, unsigned long dst_offset, 801 unsigned long src_offset, int nr_items) 802 { 803 int ret = 0; 804 struct tree_mod_elem **tm_list = NULL; 805 struct tree_mod_elem **tm_list_add, **tm_list_rem; 806 int i; 807 int locked = 0; 808 809 if (!tree_mod_need_log(fs_info, NULL)) 810 return 0; 811 812 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 813 return 0; 814 815 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 816 GFP_NOFS); 817 if (!tm_list) 818 return -ENOMEM; 819 820 tm_list_add = tm_list; 821 tm_list_rem = tm_list + nr_items; 822 for (i = 0; i < nr_items; i++) { 823 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 824 MOD_LOG_KEY_REMOVE, GFP_NOFS); 825 if (!tm_list_rem[i]) { 826 ret = -ENOMEM; 827 goto free_tms; 828 } 829 830 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 831 MOD_LOG_KEY_ADD, GFP_NOFS); 832 if (!tm_list_add[i]) { 833 ret = -ENOMEM; 834 goto free_tms; 835 } 836 } 837 838 if (tree_mod_dont_log(fs_info, NULL)) 839 goto free_tms; 840 locked = 1; 841 842 for (i = 0; i < nr_items; i++) { 843 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 844 if (ret) 845 goto free_tms; 846 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 847 if (ret) 848 goto free_tms; 849 } 850 851 tree_mod_log_write_unlock(fs_info); 852 kfree(tm_list); 853 854 return 0; 855 856 free_tms: 857 for (i = 0; i < nr_items * 2; i++) { 858 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 859 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 860 kfree(tm_list[i]); 861 } 862 if (locked) 863 tree_mod_log_write_unlock(fs_info); 864 kfree(tm_list); 865 866 return ret; 867 } 868 869 static inline void 870 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 871 int dst_offset, int src_offset, int nr_items) 872 { 873 int ret; 874 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 875 nr_items, GFP_NOFS); 876 BUG_ON(ret < 0); 877 } 878 879 static noinline void 880 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 881 struct extent_buffer *eb, int slot, int atomic) 882 { 883 int ret; 884 885 ret = tree_mod_log_insert_key(fs_info, eb, slot, 886 MOD_LOG_KEY_REPLACE, 887 atomic ? GFP_ATOMIC : GFP_NOFS); 888 BUG_ON(ret < 0); 889 } 890 891 static noinline int 892 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 893 { 894 struct tree_mod_elem **tm_list = NULL; 895 int nritems = 0; 896 int i; 897 int ret = 0; 898 899 if (btrfs_header_level(eb) == 0) 900 return 0; 901 902 if (!tree_mod_need_log(fs_info, NULL)) 903 return 0; 904 905 nritems = btrfs_header_nritems(eb); 906 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 907 if (!tm_list) 908 return -ENOMEM; 909 910 for (i = 0; i < nritems; i++) { 911 tm_list[i] = alloc_tree_mod_elem(eb, i, 912 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 913 if (!tm_list[i]) { 914 ret = -ENOMEM; 915 goto free_tms; 916 } 917 } 918 919 if (tree_mod_dont_log(fs_info, eb)) 920 goto free_tms; 921 922 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 923 tree_mod_log_write_unlock(fs_info); 924 if (ret) 925 goto free_tms; 926 kfree(tm_list); 927 928 return 0; 929 930 free_tms: 931 for (i = 0; i < nritems; i++) 932 kfree(tm_list[i]); 933 kfree(tm_list); 934 935 return ret; 936 } 937 938 static noinline void 939 tree_mod_log_set_root_pointer(struct btrfs_root *root, 940 struct extent_buffer *new_root_node, 941 int log_removal) 942 { 943 int ret; 944 ret = tree_mod_log_insert_root(root->fs_info, root->node, 945 new_root_node, GFP_NOFS, log_removal); 946 BUG_ON(ret < 0); 947 } 948 949 /* 950 * check if the tree block can be shared by multiple trees 951 */ 952 int btrfs_block_can_be_shared(struct btrfs_root *root, 953 struct extent_buffer *buf) 954 { 955 /* 956 * Tree blocks not in reference counted trees and tree roots 957 * are never shared. If a block was allocated after the last 958 * snapshot and the block was not allocated by tree relocation, 959 * we know the block is not shared. 960 */ 961 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 962 buf != root->node && buf != root->commit_root && 963 (btrfs_header_generation(buf) <= 964 btrfs_root_last_snapshot(&root->root_item) || 965 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 966 return 1; 967 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 968 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 969 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 970 return 1; 971 #endif 972 return 0; 973 } 974 975 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 976 struct btrfs_root *root, 977 struct extent_buffer *buf, 978 struct extent_buffer *cow, 979 int *last_ref) 980 { 981 u64 refs; 982 u64 owner; 983 u64 flags; 984 u64 new_flags = 0; 985 int ret; 986 987 /* 988 * Backrefs update rules: 989 * 990 * Always use full backrefs for extent pointers in tree block 991 * allocated by tree relocation. 992 * 993 * If a shared tree block is no longer referenced by its owner 994 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 995 * use full backrefs for extent pointers in tree block. 996 * 997 * If a tree block is been relocating 998 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 999 * use full backrefs for extent pointers in tree block. 1000 * The reason for this is some operations (such as drop tree) 1001 * are only allowed for blocks use full backrefs. 1002 */ 1003 1004 if (btrfs_block_can_be_shared(root, buf)) { 1005 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1006 btrfs_header_level(buf), 1, 1007 &refs, &flags); 1008 if (ret) 1009 return ret; 1010 if (refs == 0) { 1011 ret = -EROFS; 1012 btrfs_handle_fs_error(root->fs_info, ret, NULL); 1013 return ret; 1014 } 1015 } else { 1016 refs = 1; 1017 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1018 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1019 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1020 else 1021 flags = 0; 1022 } 1023 1024 owner = btrfs_header_owner(buf); 1025 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1026 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1027 1028 if (refs > 1) { 1029 if ((owner == root->root_key.objectid || 1030 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1031 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1032 ret = btrfs_inc_ref(trans, root, buf, 1); 1033 BUG_ON(ret); /* -ENOMEM */ 1034 1035 if (root->root_key.objectid == 1036 BTRFS_TREE_RELOC_OBJECTID) { 1037 ret = btrfs_dec_ref(trans, root, buf, 0); 1038 BUG_ON(ret); /* -ENOMEM */ 1039 ret = btrfs_inc_ref(trans, root, cow, 1); 1040 BUG_ON(ret); /* -ENOMEM */ 1041 } 1042 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1043 } else { 1044 1045 if (root->root_key.objectid == 1046 BTRFS_TREE_RELOC_OBJECTID) 1047 ret = btrfs_inc_ref(trans, root, cow, 1); 1048 else 1049 ret = btrfs_inc_ref(trans, root, cow, 0); 1050 BUG_ON(ret); /* -ENOMEM */ 1051 } 1052 if (new_flags != 0) { 1053 int level = btrfs_header_level(buf); 1054 1055 ret = btrfs_set_disk_extent_flags(trans, root, 1056 buf->start, 1057 buf->len, 1058 new_flags, level, 0); 1059 if (ret) 1060 return ret; 1061 } 1062 } else { 1063 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1064 if (root->root_key.objectid == 1065 BTRFS_TREE_RELOC_OBJECTID) 1066 ret = btrfs_inc_ref(trans, root, cow, 1); 1067 else 1068 ret = btrfs_inc_ref(trans, root, cow, 0); 1069 BUG_ON(ret); /* -ENOMEM */ 1070 ret = btrfs_dec_ref(trans, root, buf, 1); 1071 BUG_ON(ret); /* -ENOMEM */ 1072 } 1073 clean_tree_block(trans, root->fs_info, buf); 1074 *last_ref = 1; 1075 } 1076 return 0; 1077 } 1078 1079 /* 1080 * does the dirty work in cow of a single block. The parent block (if 1081 * supplied) is updated to point to the new cow copy. The new buffer is marked 1082 * dirty and returned locked. If you modify the block it needs to be marked 1083 * dirty again. 1084 * 1085 * search_start -- an allocation hint for the new block 1086 * 1087 * empty_size -- a hint that you plan on doing more cow. This is the size in 1088 * bytes the allocator should try to find free next to the block it returns. 1089 * This is just a hint and may be ignored by the allocator. 1090 */ 1091 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1092 struct btrfs_root *root, 1093 struct extent_buffer *buf, 1094 struct extent_buffer *parent, int parent_slot, 1095 struct extent_buffer **cow_ret, 1096 u64 search_start, u64 empty_size) 1097 { 1098 struct btrfs_disk_key disk_key; 1099 struct extent_buffer *cow; 1100 int level, ret; 1101 int last_ref = 0; 1102 int unlock_orig = 0; 1103 u64 parent_start = 0; 1104 1105 if (*cow_ret == buf) 1106 unlock_orig = 1; 1107 1108 btrfs_assert_tree_locked(buf); 1109 1110 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1111 trans->transid != root->fs_info->running_transaction->transid); 1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1113 trans->transid != root->last_trans); 1114 1115 level = btrfs_header_level(buf); 1116 1117 if (level == 0) 1118 btrfs_item_key(buf, &disk_key, 0); 1119 else 1120 btrfs_node_key(buf, &disk_key, 0); 1121 1122 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1123 parent_start = parent->start; 1124 1125 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1126 root->root_key.objectid, &disk_key, level, 1127 search_start, empty_size); 1128 if (IS_ERR(cow)) 1129 return PTR_ERR(cow); 1130 1131 /* cow is set to blocking by btrfs_init_new_buffer */ 1132 1133 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1134 btrfs_set_header_bytenr(cow, cow->start); 1135 btrfs_set_header_generation(cow, trans->transid); 1136 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1137 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1138 BTRFS_HEADER_FLAG_RELOC); 1139 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1140 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1141 else 1142 btrfs_set_header_owner(cow, root->root_key.objectid); 1143 1144 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1145 BTRFS_FSID_SIZE); 1146 1147 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1148 if (ret) { 1149 btrfs_abort_transaction(trans, ret); 1150 return ret; 1151 } 1152 1153 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1154 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1155 if (ret) { 1156 btrfs_abort_transaction(trans, ret); 1157 return ret; 1158 } 1159 } 1160 1161 if (buf == root->node) { 1162 WARN_ON(parent && parent != buf); 1163 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1164 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1165 parent_start = buf->start; 1166 1167 extent_buffer_get(cow); 1168 tree_mod_log_set_root_pointer(root, cow, 1); 1169 rcu_assign_pointer(root->node, cow); 1170 1171 btrfs_free_tree_block(trans, root, buf, parent_start, 1172 last_ref); 1173 free_extent_buffer(buf); 1174 add_root_to_dirty_list(root); 1175 } else { 1176 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1177 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1178 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1179 btrfs_set_node_blockptr(parent, parent_slot, 1180 cow->start); 1181 btrfs_set_node_ptr_generation(parent, parent_slot, 1182 trans->transid); 1183 btrfs_mark_buffer_dirty(parent); 1184 if (last_ref) { 1185 ret = tree_mod_log_free_eb(root->fs_info, buf); 1186 if (ret) { 1187 btrfs_abort_transaction(trans, ret); 1188 return ret; 1189 } 1190 } 1191 btrfs_free_tree_block(trans, root, buf, parent_start, 1192 last_ref); 1193 } 1194 if (unlock_orig) 1195 btrfs_tree_unlock(buf); 1196 free_extent_buffer_stale(buf); 1197 btrfs_mark_buffer_dirty(cow); 1198 *cow_ret = cow; 1199 return 0; 1200 } 1201 1202 /* 1203 * returns the logical address of the oldest predecessor of the given root. 1204 * entries older than time_seq are ignored. 1205 */ 1206 static struct tree_mod_elem * 1207 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1208 struct extent_buffer *eb_root, u64 time_seq) 1209 { 1210 struct tree_mod_elem *tm; 1211 struct tree_mod_elem *found = NULL; 1212 u64 root_logical = eb_root->start; 1213 int looped = 0; 1214 1215 if (!time_seq) 1216 return NULL; 1217 1218 /* 1219 * the very last operation that's logged for a root is the 1220 * replacement operation (if it is replaced at all). this has 1221 * the logical address of the *new* root, making it the very 1222 * first operation that's logged for this root. 1223 */ 1224 while (1) { 1225 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1226 time_seq); 1227 if (!looped && !tm) 1228 return NULL; 1229 /* 1230 * if there are no tree operation for the oldest root, we simply 1231 * return it. this should only happen if that (old) root is at 1232 * level 0. 1233 */ 1234 if (!tm) 1235 break; 1236 1237 /* 1238 * if there's an operation that's not a root replacement, we 1239 * found the oldest version of our root. normally, we'll find a 1240 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1241 */ 1242 if (tm->op != MOD_LOG_ROOT_REPLACE) 1243 break; 1244 1245 found = tm; 1246 root_logical = tm->old_root.logical; 1247 looped = 1; 1248 } 1249 1250 /* if there's no old root to return, return what we found instead */ 1251 if (!found) 1252 found = tm; 1253 1254 return found; 1255 } 1256 1257 /* 1258 * tm is a pointer to the first operation to rewind within eb. then, all 1259 * previous operations will be rewound (until we reach something older than 1260 * time_seq). 1261 */ 1262 static void 1263 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1264 u64 time_seq, struct tree_mod_elem *first_tm) 1265 { 1266 u32 n; 1267 struct rb_node *next; 1268 struct tree_mod_elem *tm = first_tm; 1269 unsigned long o_dst; 1270 unsigned long o_src; 1271 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1272 1273 n = btrfs_header_nritems(eb); 1274 tree_mod_log_read_lock(fs_info); 1275 while (tm && tm->seq >= time_seq) { 1276 /* 1277 * all the operations are recorded with the operator used for 1278 * the modification. as we're going backwards, we do the 1279 * opposite of each operation here. 1280 */ 1281 switch (tm->op) { 1282 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1283 BUG_ON(tm->slot < n); 1284 /* Fallthrough */ 1285 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1286 case MOD_LOG_KEY_REMOVE: 1287 btrfs_set_node_key(eb, &tm->key, tm->slot); 1288 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1289 btrfs_set_node_ptr_generation(eb, tm->slot, 1290 tm->generation); 1291 n++; 1292 break; 1293 case MOD_LOG_KEY_REPLACE: 1294 BUG_ON(tm->slot >= n); 1295 btrfs_set_node_key(eb, &tm->key, tm->slot); 1296 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1297 btrfs_set_node_ptr_generation(eb, tm->slot, 1298 tm->generation); 1299 break; 1300 case MOD_LOG_KEY_ADD: 1301 /* if a move operation is needed it's in the log */ 1302 n--; 1303 break; 1304 case MOD_LOG_MOVE_KEYS: 1305 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1306 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1307 memmove_extent_buffer(eb, o_dst, o_src, 1308 tm->move.nr_items * p_size); 1309 break; 1310 case MOD_LOG_ROOT_REPLACE: 1311 /* 1312 * this operation is special. for roots, this must be 1313 * handled explicitly before rewinding. 1314 * for non-roots, this operation may exist if the node 1315 * was a root: root A -> child B; then A gets empty and 1316 * B is promoted to the new root. in the mod log, we'll 1317 * have a root-replace operation for B, a tree block 1318 * that is no root. we simply ignore that operation. 1319 */ 1320 break; 1321 } 1322 next = rb_next(&tm->node); 1323 if (!next) 1324 break; 1325 tm = container_of(next, struct tree_mod_elem, node); 1326 if (tm->logical != first_tm->logical) 1327 break; 1328 } 1329 tree_mod_log_read_unlock(fs_info); 1330 btrfs_set_header_nritems(eb, n); 1331 } 1332 1333 /* 1334 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1335 * is returned. If rewind operations happen, a fresh buffer is returned. The 1336 * returned buffer is always read-locked. If the returned buffer is not the 1337 * input buffer, the lock on the input buffer is released and the input buffer 1338 * is freed (its refcount is decremented). 1339 */ 1340 static struct extent_buffer * 1341 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1342 struct extent_buffer *eb, u64 time_seq) 1343 { 1344 struct extent_buffer *eb_rewin; 1345 struct tree_mod_elem *tm; 1346 1347 if (!time_seq) 1348 return eb; 1349 1350 if (btrfs_header_level(eb) == 0) 1351 return eb; 1352 1353 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1354 if (!tm) 1355 return eb; 1356 1357 btrfs_set_path_blocking(path); 1358 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1359 1360 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1361 BUG_ON(tm->slot != 0); 1362 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start, 1363 eb->len); 1364 if (!eb_rewin) { 1365 btrfs_tree_read_unlock_blocking(eb); 1366 free_extent_buffer(eb); 1367 return NULL; 1368 } 1369 btrfs_set_header_bytenr(eb_rewin, eb->start); 1370 btrfs_set_header_backref_rev(eb_rewin, 1371 btrfs_header_backref_rev(eb)); 1372 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1373 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1374 } else { 1375 eb_rewin = btrfs_clone_extent_buffer(eb); 1376 if (!eb_rewin) { 1377 btrfs_tree_read_unlock_blocking(eb); 1378 free_extent_buffer(eb); 1379 return NULL; 1380 } 1381 } 1382 1383 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1384 btrfs_tree_read_unlock_blocking(eb); 1385 free_extent_buffer(eb); 1386 1387 extent_buffer_get(eb_rewin); 1388 btrfs_tree_read_lock(eb_rewin); 1389 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1390 WARN_ON(btrfs_header_nritems(eb_rewin) > 1391 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1392 1393 return eb_rewin; 1394 } 1395 1396 /* 1397 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1398 * value. If there are no changes, the current root->root_node is returned. If 1399 * anything changed in between, there's a fresh buffer allocated on which the 1400 * rewind operations are done. In any case, the returned buffer is read locked. 1401 * Returns NULL on error (with no locks held). 1402 */ 1403 static inline struct extent_buffer * 1404 get_old_root(struct btrfs_root *root, u64 time_seq) 1405 { 1406 struct tree_mod_elem *tm; 1407 struct extent_buffer *eb = NULL; 1408 struct extent_buffer *eb_root; 1409 struct extent_buffer *old; 1410 struct tree_mod_root *old_root = NULL; 1411 u64 old_generation = 0; 1412 u64 logical; 1413 1414 eb_root = btrfs_read_lock_root_node(root); 1415 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1416 if (!tm) 1417 return eb_root; 1418 1419 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1420 old_root = &tm->old_root; 1421 old_generation = tm->generation; 1422 logical = old_root->logical; 1423 } else { 1424 logical = eb_root->start; 1425 } 1426 1427 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1428 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1429 btrfs_tree_read_unlock(eb_root); 1430 free_extent_buffer(eb_root); 1431 old = read_tree_block(root, logical, 0); 1432 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1433 if (!IS_ERR(old)) 1434 free_extent_buffer(old); 1435 btrfs_warn(root->fs_info, 1436 "failed to read tree block %llu from get_old_root", logical); 1437 } else { 1438 eb = btrfs_clone_extent_buffer(old); 1439 free_extent_buffer(old); 1440 } 1441 } else if (old_root) { 1442 btrfs_tree_read_unlock(eb_root); 1443 free_extent_buffer(eb_root); 1444 eb = alloc_dummy_extent_buffer(root->fs_info, logical, 1445 root->nodesize); 1446 } else { 1447 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1448 eb = btrfs_clone_extent_buffer(eb_root); 1449 btrfs_tree_read_unlock_blocking(eb_root); 1450 free_extent_buffer(eb_root); 1451 } 1452 1453 if (!eb) 1454 return NULL; 1455 extent_buffer_get(eb); 1456 btrfs_tree_read_lock(eb); 1457 if (old_root) { 1458 btrfs_set_header_bytenr(eb, eb->start); 1459 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1460 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1461 btrfs_set_header_level(eb, old_root->level); 1462 btrfs_set_header_generation(eb, old_generation); 1463 } 1464 if (tm) 1465 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1466 else 1467 WARN_ON(btrfs_header_level(eb) != 0); 1468 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1469 1470 return eb; 1471 } 1472 1473 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1474 { 1475 struct tree_mod_elem *tm; 1476 int level; 1477 struct extent_buffer *eb_root = btrfs_root_node(root); 1478 1479 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1480 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1481 level = tm->old_root.level; 1482 } else { 1483 level = btrfs_header_level(eb_root); 1484 } 1485 free_extent_buffer(eb_root); 1486 1487 return level; 1488 } 1489 1490 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1491 struct btrfs_root *root, 1492 struct extent_buffer *buf) 1493 { 1494 if (btrfs_is_testing(root->fs_info)) 1495 return 0; 1496 1497 /* ensure we can see the force_cow */ 1498 smp_rmb(); 1499 1500 /* 1501 * We do not need to cow a block if 1502 * 1) this block is not created or changed in this transaction; 1503 * 2) this block does not belong to TREE_RELOC tree; 1504 * 3) the root is not forced COW. 1505 * 1506 * What is forced COW: 1507 * when we create snapshot during committing the transaction, 1508 * after we've finished coping src root, we must COW the shared 1509 * block to ensure the metadata consistency. 1510 */ 1511 if (btrfs_header_generation(buf) == trans->transid && 1512 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1513 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1514 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1515 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1516 return 0; 1517 return 1; 1518 } 1519 1520 /* 1521 * cows a single block, see __btrfs_cow_block for the real work. 1522 * This version of it has extra checks so that a block isn't COWed more than 1523 * once per transaction, as long as it hasn't been written yet 1524 */ 1525 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1526 struct btrfs_root *root, struct extent_buffer *buf, 1527 struct extent_buffer *parent, int parent_slot, 1528 struct extent_buffer **cow_ret) 1529 { 1530 u64 search_start; 1531 int ret; 1532 1533 if (trans->transaction != root->fs_info->running_transaction) 1534 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1535 trans->transid, 1536 root->fs_info->running_transaction->transid); 1537 1538 if (trans->transid != root->fs_info->generation) 1539 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1540 trans->transid, root->fs_info->generation); 1541 1542 if (!should_cow_block(trans, root, buf)) { 1543 trans->dirty = true; 1544 *cow_ret = buf; 1545 return 0; 1546 } 1547 1548 search_start = buf->start & ~((u64)SZ_1G - 1); 1549 1550 if (parent) 1551 btrfs_set_lock_blocking(parent); 1552 btrfs_set_lock_blocking(buf); 1553 1554 ret = __btrfs_cow_block(trans, root, buf, parent, 1555 parent_slot, cow_ret, search_start, 0); 1556 1557 trace_btrfs_cow_block(root, buf, *cow_ret); 1558 1559 return ret; 1560 } 1561 1562 /* 1563 * helper function for defrag to decide if two blocks pointed to by a 1564 * node are actually close by 1565 */ 1566 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1567 { 1568 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1569 return 1; 1570 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1571 return 1; 1572 return 0; 1573 } 1574 1575 /* 1576 * compare two keys in a memcmp fashion 1577 */ 1578 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1579 { 1580 struct btrfs_key k1; 1581 1582 btrfs_disk_key_to_cpu(&k1, disk); 1583 1584 return btrfs_comp_cpu_keys(&k1, k2); 1585 } 1586 1587 /* 1588 * same as comp_keys only with two btrfs_key's 1589 */ 1590 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1591 { 1592 if (k1->objectid > k2->objectid) 1593 return 1; 1594 if (k1->objectid < k2->objectid) 1595 return -1; 1596 if (k1->type > k2->type) 1597 return 1; 1598 if (k1->type < k2->type) 1599 return -1; 1600 if (k1->offset > k2->offset) 1601 return 1; 1602 if (k1->offset < k2->offset) 1603 return -1; 1604 return 0; 1605 } 1606 1607 /* 1608 * this is used by the defrag code to go through all the 1609 * leaves pointed to by a node and reallocate them so that 1610 * disk order is close to key order 1611 */ 1612 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1613 struct btrfs_root *root, struct extent_buffer *parent, 1614 int start_slot, u64 *last_ret, 1615 struct btrfs_key *progress) 1616 { 1617 struct extent_buffer *cur; 1618 u64 blocknr; 1619 u64 gen; 1620 u64 search_start = *last_ret; 1621 u64 last_block = 0; 1622 u64 other; 1623 u32 parent_nritems; 1624 int end_slot; 1625 int i; 1626 int err = 0; 1627 int parent_level; 1628 int uptodate; 1629 u32 blocksize; 1630 int progress_passed = 0; 1631 struct btrfs_disk_key disk_key; 1632 1633 parent_level = btrfs_header_level(parent); 1634 1635 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1636 WARN_ON(trans->transid != root->fs_info->generation); 1637 1638 parent_nritems = btrfs_header_nritems(parent); 1639 blocksize = root->nodesize; 1640 end_slot = parent_nritems - 1; 1641 1642 if (parent_nritems <= 1) 1643 return 0; 1644 1645 btrfs_set_lock_blocking(parent); 1646 1647 for (i = start_slot; i <= end_slot; i++) { 1648 int close = 1; 1649 1650 btrfs_node_key(parent, &disk_key, i); 1651 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1652 continue; 1653 1654 progress_passed = 1; 1655 blocknr = btrfs_node_blockptr(parent, i); 1656 gen = btrfs_node_ptr_generation(parent, i); 1657 if (last_block == 0) 1658 last_block = blocknr; 1659 1660 if (i > 0) { 1661 other = btrfs_node_blockptr(parent, i - 1); 1662 close = close_blocks(blocknr, other, blocksize); 1663 } 1664 if (!close && i < end_slot) { 1665 other = btrfs_node_blockptr(parent, i + 1); 1666 close = close_blocks(blocknr, other, blocksize); 1667 } 1668 if (close) { 1669 last_block = blocknr; 1670 continue; 1671 } 1672 1673 cur = btrfs_find_tree_block(root->fs_info, blocknr); 1674 if (cur) 1675 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1676 else 1677 uptodate = 0; 1678 if (!cur || !uptodate) { 1679 if (!cur) { 1680 cur = read_tree_block(root, blocknr, gen); 1681 if (IS_ERR(cur)) { 1682 return PTR_ERR(cur); 1683 } else if (!extent_buffer_uptodate(cur)) { 1684 free_extent_buffer(cur); 1685 return -EIO; 1686 } 1687 } else if (!uptodate) { 1688 err = btrfs_read_buffer(cur, gen); 1689 if (err) { 1690 free_extent_buffer(cur); 1691 return err; 1692 } 1693 } 1694 } 1695 if (search_start == 0) 1696 search_start = last_block; 1697 1698 btrfs_tree_lock(cur); 1699 btrfs_set_lock_blocking(cur); 1700 err = __btrfs_cow_block(trans, root, cur, parent, i, 1701 &cur, search_start, 1702 min(16 * blocksize, 1703 (end_slot - i) * blocksize)); 1704 if (err) { 1705 btrfs_tree_unlock(cur); 1706 free_extent_buffer(cur); 1707 break; 1708 } 1709 search_start = cur->start; 1710 last_block = cur->start; 1711 *last_ret = search_start; 1712 btrfs_tree_unlock(cur); 1713 free_extent_buffer(cur); 1714 } 1715 return err; 1716 } 1717 1718 1719 /* 1720 * search for key in the extent_buffer. The items start at offset p, 1721 * and they are item_size apart. There are 'max' items in p. 1722 * 1723 * the slot in the array is returned via slot, and it points to 1724 * the place where you would insert key if it is not found in 1725 * the array. 1726 * 1727 * slot may point to max if the key is bigger than all of the keys 1728 */ 1729 static noinline int generic_bin_search(struct extent_buffer *eb, 1730 unsigned long p, 1731 int item_size, struct btrfs_key *key, 1732 int max, int *slot) 1733 { 1734 int low = 0; 1735 int high = max; 1736 int mid; 1737 int ret; 1738 struct btrfs_disk_key *tmp = NULL; 1739 struct btrfs_disk_key unaligned; 1740 unsigned long offset; 1741 char *kaddr = NULL; 1742 unsigned long map_start = 0; 1743 unsigned long map_len = 0; 1744 int err; 1745 1746 if (low > high) { 1747 btrfs_err(eb->fs_info, 1748 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1749 __func__, low, high, eb->start, 1750 btrfs_header_owner(eb), btrfs_header_level(eb)); 1751 return -EINVAL; 1752 } 1753 1754 while (low < high) { 1755 mid = (low + high) / 2; 1756 offset = p + mid * item_size; 1757 1758 if (!kaddr || offset < map_start || 1759 (offset + sizeof(struct btrfs_disk_key)) > 1760 map_start + map_len) { 1761 1762 err = map_private_extent_buffer(eb, offset, 1763 sizeof(struct btrfs_disk_key), 1764 &kaddr, &map_start, &map_len); 1765 1766 if (!err) { 1767 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1768 map_start); 1769 } else if (err == 1) { 1770 read_extent_buffer(eb, &unaligned, 1771 offset, sizeof(unaligned)); 1772 tmp = &unaligned; 1773 } else { 1774 return err; 1775 } 1776 1777 } else { 1778 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1779 map_start); 1780 } 1781 ret = comp_keys(tmp, key); 1782 1783 if (ret < 0) 1784 low = mid + 1; 1785 else if (ret > 0) 1786 high = mid; 1787 else { 1788 *slot = mid; 1789 return 0; 1790 } 1791 } 1792 *slot = low; 1793 return 1; 1794 } 1795 1796 /* 1797 * simple bin_search frontend that does the right thing for 1798 * leaves vs nodes 1799 */ 1800 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1801 int level, int *slot) 1802 { 1803 if (level == 0) 1804 return generic_bin_search(eb, 1805 offsetof(struct btrfs_leaf, items), 1806 sizeof(struct btrfs_item), 1807 key, btrfs_header_nritems(eb), 1808 slot); 1809 else 1810 return generic_bin_search(eb, 1811 offsetof(struct btrfs_node, ptrs), 1812 sizeof(struct btrfs_key_ptr), 1813 key, btrfs_header_nritems(eb), 1814 slot); 1815 } 1816 1817 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1818 int level, int *slot) 1819 { 1820 return bin_search(eb, key, level, slot); 1821 } 1822 1823 static void root_add_used(struct btrfs_root *root, u32 size) 1824 { 1825 spin_lock(&root->accounting_lock); 1826 btrfs_set_root_used(&root->root_item, 1827 btrfs_root_used(&root->root_item) + size); 1828 spin_unlock(&root->accounting_lock); 1829 } 1830 1831 static void root_sub_used(struct btrfs_root *root, u32 size) 1832 { 1833 spin_lock(&root->accounting_lock); 1834 btrfs_set_root_used(&root->root_item, 1835 btrfs_root_used(&root->root_item) - size); 1836 spin_unlock(&root->accounting_lock); 1837 } 1838 1839 /* given a node and slot number, this reads the blocks it points to. The 1840 * extent buffer is returned with a reference taken (but unlocked). 1841 */ 1842 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1843 struct extent_buffer *parent, int slot) 1844 { 1845 int level = btrfs_header_level(parent); 1846 struct extent_buffer *eb; 1847 1848 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1849 return ERR_PTR(-ENOENT); 1850 1851 BUG_ON(level == 0); 1852 1853 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1854 btrfs_node_ptr_generation(parent, slot)); 1855 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1856 free_extent_buffer(eb); 1857 eb = ERR_PTR(-EIO); 1858 } 1859 1860 return eb; 1861 } 1862 1863 /* 1864 * node level balancing, used to make sure nodes are in proper order for 1865 * item deletion. We balance from the top down, so we have to make sure 1866 * that a deletion won't leave an node completely empty later on. 1867 */ 1868 static noinline int balance_level(struct btrfs_trans_handle *trans, 1869 struct btrfs_root *root, 1870 struct btrfs_path *path, int level) 1871 { 1872 struct extent_buffer *right = NULL; 1873 struct extent_buffer *mid; 1874 struct extent_buffer *left = NULL; 1875 struct extent_buffer *parent = NULL; 1876 int ret = 0; 1877 int wret; 1878 int pslot; 1879 int orig_slot = path->slots[level]; 1880 u64 orig_ptr; 1881 1882 if (level == 0) 1883 return 0; 1884 1885 mid = path->nodes[level]; 1886 1887 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1888 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1889 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1890 1891 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1892 1893 if (level < BTRFS_MAX_LEVEL - 1) { 1894 parent = path->nodes[level + 1]; 1895 pslot = path->slots[level + 1]; 1896 } 1897 1898 /* 1899 * deal with the case where there is only one pointer in the root 1900 * by promoting the node below to a root 1901 */ 1902 if (!parent) { 1903 struct extent_buffer *child; 1904 1905 if (btrfs_header_nritems(mid) != 1) 1906 return 0; 1907 1908 /* promote the child to a root */ 1909 child = read_node_slot(root, mid, 0); 1910 if (IS_ERR(child)) { 1911 ret = PTR_ERR(child); 1912 btrfs_handle_fs_error(root->fs_info, ret, NULL); 1913 goto enospc; 1914 } 1915 1916 btrfs_tree_lock(child); 1917 btrfs_set_lock_blocking(child); 1918 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1919 if (ret) { 1920 btrfs_tree_unlock(child); 1921 free_extent_buffer(child); 1922 goto enospc; 1923 } 1924 1925 tree_mod_log_set_root_pointer(root, child, 1); 1926 rcu_assign_pointer(root->node, child); 1927 1928 add_root_to_dirty_list(root); 1929 btrfs_tree_unlock(child); 1930 1931 path->locks[level] = 0; 1932 path->nodes[level] = NULL; 1933 clean_tree_block(trans, root->fs_info, mid); 1934 btrfs_tree_unlock(mid); 1935 /* once for the path */ 1936 free_extent_buffer(mid); 1937 1938 root_sub_used(root, mid->len); 1939 btrfs_free_tree_block(trans, root, mid, 0, 1); 1940 /* once for the root ptr */ 1941 free_extent_buffer_stale(mid); 1942 return 0; 1943 } 1944 if (btrfs_header_nritems(mid) > 1945 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1946 return 0; 1947 1948 left = read_node_slot(root, parent, pslot - 1); 1949 if (IS_ERR(left)) 1950 left = NULL; 1951 1952 if (left) { 1953 btrfs_tree_lock(left); 1954 btrfs_set_lock_blocking(left); 1955 wret = btrfs_cow_block(trans, root, left, 1956 parent, pslot - 1, &left); 1957 if (wret) { 1958 ret = wret; 1959 goto enospc; 1960 } 1961 } 1962 1963 right = read_node_slot(root, parent, pslot + 1); 1964 if (IS_ERR(right)) 1965 right = NULL; 1966 1967 if (right) { 1968 btrfs_tree_lock(right); 1969 btrfs_set_lock_blocking(right); 1970 wret = btrfs_cow_block(trans, root, right, 1971 parent, pslot + 1, &right); 1972 if (wret) { 1973 ret = wret; 1974 goto enospc; 1975 } 1976 } 1977 1978 /* first, try to make some room in the middle buffer */ 1979 if (left) { 1980 orig_slot += btrfs_header_nritems(left); 1981 wret = push_node_left(trans, root, left, mid, 1); 1982 if (wret < 0) 1983 ret = wret; 1984 } 1985 1986 /* 1987 * then try to empty the right most buffer into the middle 1988 */ 1989 if (right) { 1990 wret = push_node_left(trans, root, mid, right, 1); 1991 if (wret < 0 && wret != -ENOSPC) 1992 ret = wret; 1993 if (btrfs_header_nritems(right) == 0) { 1994 clean_tree_block(trans, root->fs_info, right); 1995 btrfs_tree_unlock(right); 1996 del_ptr(root, path, level + 1, pslot + 1); 1997 root_sub_used(root, right->len); 1998 btrfs_free_tree_block(trans, root, right, 0, 1); 1999 free_extent_buffer_stale(right); 2000 right = NULL; 2001 } else { 2002 struct btrfs_disk_key right_key; 2003 btrfs_node_key(right, &right_key, 0); 2004 tree_mod_log_set_node_key(root->fs_info, parent, 2005 pslot + 1, 0); 2006 btrfs_set_node_key(parent, &right_key, pslot + 1); 2007 btrfs_mark_buffer_dirty(parent); 2008 } 2009 } 2010 if (btrfs_header_nritems(mid) == 1) { 2011 /* 2012 * we're not allowed to leave a node with one item in the 2013 * tree during a delete. A deletion from lower in the tree 2014 * could try to delete the only pointer in this node. 2015 * So, pull some keys from the left. 2016 * There has to be a left pointer at this point because 2017 * otherwise we would have pulled some pointers from the 2018 * right 2019 */ 2020 if (!left) { 2021 ret = -EROFS; 2022 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2023 goto enospc; 2024 } 2025 wret = balance_node_right(trans, root, mid, left); 2026 if (wret < 0) { 2027 ret = wret; 2028 goto enospc; 2029 } 2030 if (wret == 1) { 2031 wret = push_node_left(trans, root, left, mid, 1); 2032 if (wret < 0) 2033 ret = wret; 2034 } 2035 BUG_ON(wret == 1); 2036 } 2037 if (btrfs_header_nritems(mid) == 0) { 2038 clean_tree_block(trans, root->fs_info, mid); 2039 btrfs_tree_unlock(mid); 2040 del_ptr(root, path, level + 1, pslot); 2041 root_sub_used(root, mid->len); 2042 btrfs_free_tree_block(trans, root, mid, 0, 1); 2043 free_extent_buffer_stale(mid); 2044 mid = NULL; 2045 } else { 2046 /* update the parent key to reflect our changes */ 2047 struct btrfs_disk_key mid_key; 2048 btrfs_node_key(mid, &mid_key, 0); 2049 tree_mod_log_set_node_key(root->fs_info, parent, 2050 pslot, 0); 2051 btrfs_set_node_key(parent, &mid_key, pslot); 2052 btrfs_mark_buffer_dirty(parent); 2053 } 2054 2055 /* update the path */ 2056 if (left) { 2057 if (btrfs_header_nritems(left) > orig_slot) { 2058 extent_buffer_get(left); 2059 /* left was locked after cow */ 2060 path->nodes[level] = left; 2061 path->slots[level + 1] -= 1; 2062 path->slots[level] = orig_slot; 2063 if (mid) { 2064 btrfs_tree_unlock(mid); 2065 free_extent_buffer(mid); 2066 } 2067 } else { 2068 orig_slot -= btrfs_header_nritems(left); 2069 path->slots[level] = orig_slot; 2070 } 2071 } 2072 /* double check we haven't messed things up */ 2073 if (orig_ptr != 2074 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2075 BUG(); 2076 enospc: 2077 if (right) { 2078 btrfs_tree_unlock(right); 2079 free_extent_buffer(right); 2080 } 2081 if (left) { 2082 if (path->nodes[level] != left) 2083 btrfs_tree_unlock(left); 2084 free_extent_buffer(left); 2085 } 2086 return ret; 2087 } 2088 2089 /* Node balancing for insertion. Here we only split or push nodes around 2090 * when they are completely full. This is also done top down, so we 2091 * have to be pessimistic. 2092 */ 2093 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2094 struct btrfs_root *root, 2095 struct btrfs_path *path, int level) 2096 { 2097 struct extent_buffer *right = NULL; 2098 struct extent_buffer *mid; 2099 struct extent_buffer *left = NULL; 2100 struct extent_buffer *parent = NULL; 2101 int ret = 0; 2102 int wret; 2103 int pslot; 2104 int orig_slot = path->slots[level]; 2105 2106 if (level == 0) 2107 return 1; 2108 2109 mid = path->nodes[level]; 2110 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2111 2112 if (level < BTRFS_MAX_LEVEL - 1) { 2113 parent = path->nodes[level + 1]; 2114 pslot = path->slots[level + 1]; 2115 } 2116 2117 if (!parent) 2118 return 1; 2119 2120 left = read_node_slot(root, parent, pslot - 1); 2121 if (IS_ERR(left)) 2122 left = NULL; 2123 2124 /* first, try to make some room in the middle buffer */ 2125 if (left) { 2126 u32 left_nr; 2127 2128 btrfs_tree_lock(left); 2129 btrfs_set_lock_blocking(left); 2130 2131 left_nr = btrfs_header_nritems(left); 2132 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2133 wret = 1; 2134 } else { 2135 ret = btrfs_cow_block(trans, root, left, parent, 2136 pslot - 1, &left); 2137 if (ret) 2138 wret = 1; 2139 else { 2140 wret = push_node_left(trans, root, 2141 left, mid, 0); 2142 } 2143 } 2144 if (wret < 0) 2145 ret = wret; 2146 if (wret == 0) { 2147 struct btrfs_disk_key disk_key; 2148 orig_slot += left_nr; 2149 btrfs_node_key(mid, &disk_key, 0); 2150 tree_mod_log_set_node_key(root->fs_info, parent, 2151 pslot, 0); 2152 btrfs_set_node_key(parent, &disk_key, pslot); 2153 btrfs_mark_buffer_dirty(parent); 2154 if (btrfs_header_nritems(left) > orig_slot) { 2155 path->nodes[level] = left; 2156 path->slots[level + 1] -= 1; 2157 path->slots[level] = orig_slot; 2158 btrfs_tree_unlock(mid); 2159 free_extent_buffer(mid); 2160 } else { 2161 orig_slot -= 2162 btrfs_header_nritems(left); 2163 path->slots[level] = orig_slot; 2164 btrfs_tree_unlock(left); 2165 free_extent_buffer(left); 2166 } 2167 return 0; 2168 } 2169 btrfs_tree_unlock(left); 2170 free_extent_buffer(left); 2171 } 2172 right = read_node_slot(root, parent, pslot + 1); 2173 if (IS_ERR(right)) 2174 right = NULL; 2175 2176 /* 2177 * then try to empty the right most buffer into the middle 2178 */ 2179 if (right) { 2180 u32 right_nr; 2181 2182 btrfs_tree_lock(right); 2183 btrfs_set_lock_blocking(right); 2184 2185 right_nr = btrfs_header_nritems(right); 2186 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2187 wret = 1; 2188 } else { 2189 ret = btrfs_cow_block(trans, root, right, 2190 parent, pslot + 1, 2191 &right); 2192 if (ret) 2193 wret = 1; 2194 else { 2195 wret = balance_node_right(trans, root, 2196 right, mid); 2197 } 2198 } 2199 if (wret < 0) 2200 ret = wret; 2201 if (wret == 0) { 2202 struct btrfs_disk_key disk_key; 2203 2204 btrfs_node_key(right, &disk_key, 0); 2205 tree_mod_log_set_node_key(root->fs_info, parent, 2206 pslot + 1, 0); 2207 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2208 btrfs_mark_buffer_dirty(parent); 2209 2210 if (btrfs_header_nritems(mid) <= orig_slot) { 2211 path->nodes[level] = right; 2212 path->slots[level + 1] += 1; 2213 path->slots[level] = orig_slot - 2214 btrfs_header_nritems(mid); 2215 btrfs_tree_unlock(mid); 2216 free_extent_buffer(mid); 2217 } else { 2218 btrfs_tree_unlock(right); 2219 free_extent_buffer(right); 2220 } 2221 return 0; 2222 } 2223 btrfs_tree_unlock(right); 2224 free_extent_buffer(right); 2225 } 2226 return 1; 2227 } 2228 2229 /* 2230 * readahead one full node of leaves, finding things that are close 2231 * to the block in 'slot', and triggering ra on them. 2232 */ 2233 static void reada_for_search(struct btrfs_root *root, 2234 struct btrfs_path *path, 2235 int level, int slot, u64 objectid) 2236 { 2237 struct extent_buffer *node; 2238 struct btrfs_disk_key disk_key; 2239 u32 nritems; 2240 u64 search; 2241 u64 target; 2242 u64 nread = 0; 2243 struct extent_buffer *eb; 2244 u32 nr; 2245 u32 blocksize; 2246 u32 nscan = 0; 2247 2248 if (level != 1) 2249 return; 2250 2251 if (!path->nodes[level]) 2252 return; 2253 2254 node = path->nodes[level]; 2255 2256 search = btrfs_node_blockptr(node, slot); 2257 blocksize = root->nodesize; 2258 eb = btrfs_find_tree_block(root->fs_info, search); 2259 if (eb) { 2260 free_extent_buffer(eb); 2261 return; 2262 } 2263 2264 target = search; 2265 2266 nritems = btrfs_header_nritems(node); 2267 nr = slot; 2268 2269 while (1) { 2270 if (path->reada == READA_BACK) { 2271 if (nr == 0) 2272 break; 2273 nr--; 2274 } else if (path->reada == READA_FORWARD) { 2275 nr++; 2276 if (nr >= nritems) 2277 break; 2278 } 2279 if (path->reada == READA_BACK && objectid) { 2280 btrfs_node_key(node, &disk_key, nr); 2281 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2282 break; 2283 } 2284 search = btrfs_node_blockptr(node, nr); 2285 if ((search <= target && target - search <= 65536) || 2286 (search > target && search - target <= 65536)) { 2287 readahead_tree_block(root, search); 2288 nread += blocksize; 2289 } 2290 nscan++; 2291 if ((nread > 65536 || nscan > 32)) 2292 break; 2293 } 2294 } 2295 2296 static noinline void reada_for_balance(struct btrfs_root *root, 2297 struct btrfs_path *path, int level) 2298 { 2299 int slot; 2300 int nritems; 2301 struct extent_buffer *parent; 2302 struct extent_buffer *eb; 2303 u64 gen; 2304 u64 block1 = 0; 2305 u64 block2 = 0; 2306 2307 parent = path->nodes[level + 1]; 2308 if (!parent) 2309 return; 2310 2311 nritems = btrfs_header_nritems(parent); 2312 slot = path->slots[level + 1]; 2313 2314 if (slot > 0) { 2315 block1 = btrfs_node_blockptr(parent, slot - 1); 2316 gen = btrfs_node_ptr_generation(parent, slot - 1); 2317 eb = btrfs_find_tree_block(root->fs_info, block1); 2318 /* 2319 * if we get -eagain from btrfs_buffer_uptodate, we 2320 * don't want to return eagain here. That will loop 2321 * forever 2322 */ 2323 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2324 block1 = 0; 2325 free_extent_buffer(eb); 2326 } 2327 if (slot + 1 < nritems) { 2328 block2 = btrfs_node_blockptr(parent, slot + 1); 2329 gen = btrfs_node_ptr_generation(parent, slot + 1); 2330 eb = btrfs_find_tree_block(root->fs_info, block2); 2331 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2332 block2 = 0; 2333 free_extent_buffer(eb); 2334 } 2335 2336 if (block1) 2337 readahead_tree_block(root, block1); 2338 if (block2) 2339 readahead_tree_block(root, block2); 2340 } 2341 2342 2343 /* 2344 * when we walk down the tree, it is usually safe to unlock the higher layers 2345 * in the tree. The exceptions are when our path goes through slot 0, because 2346 * operations on the tree might require changing key pointers higher up in the 2347 * tree. 2348 * 2349 * callers might also have set path->keep_locks, which tells this code to keep 2350 * the lock if the path points to the last slot in the block. This is part of 2351 * walking through the tree, and selecting the next slot in the higher block. 2352 * 2353 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2354 * if lowest_unlock is 1, level 0 won't be unlocked 2355 */ 2356 static noinline void unlock_up(struct btrfs_path *path, int level, 2357 int lowest_unlock, int min_write_lock_level, 2358 int *write_lock_level) 2359 { 2360 int i; 2361 int skip_level = level; 2362 int no_skips = 0; 2363 struct extent_buffer *t; 2364 2365 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2366 if (!path->nodes[i]) 2367 break; 2368 if (!path->locks[i]) 2369 break; 2370 if (!no_skips && path->slots[i] == 0) { 2371 skip_level = i + 1; 2372 continue; 2373 } 2374 if (!no_skips && path->keep_locks) { 2375 u32 nritems; 2376 t = path->nodes[i]; 2377 nritems = btrfs_header_nritems(t); 2378 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2379 skip_level = i + 1; 2380 continue; 2381 } 2382 } 2383 if (skip_level < i && i >= lowest_unlock) 2384 no_skips = 1; 2385 2386 t = path->nodes[i]; 2387 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2388 btrfs_tree_unlock_rw(t, path->locks[i]); 2389 path->locks[i] = 0; 2390 if (write_lock_level && 2391 i > min_write_lock_level && 2392 i <= *write_lock_level) { 2393 *write_lock_level = i - 1; 2394 } 2395 } 2396 } 2397 } 2398 2399 /* 2400 * This releases any locks held in the path starting at level and 2401 * going all the way up to the root. 2402 * 2403 * btrfs_search_slot will keep the lock held on higher nodes in a few 2404 * corner cases, such as COW of the block at slot zero in the node. This 2405 * ignores those rules, and it should only be called when there are no 2406 * more updates to be done higher up in the tree. 2407 */ 2408 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2409 { 2410 int i; 2411 2412 if (path->keep_locks) 2413 return; 2414 2415 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2416 if (!path->nodes[i]) 2417 continue; 2418 if (!path->locks[i]) 2419 continue; 2420 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2421 path->locks[i] = 0; 2422 } 2423 } 2424 2425 /* 2426 * helper function for btrfs_search_slot. The goal is to find a block 2427 * in cache without setting the path to blocking. If we find the block 2428 * we return zero and the path is unchanged. 2429 * 2430 * If we can't find the block, we set the path blocking and do some 2431 * reada. -EAGAIN is returned and the search must be repeated. 2432 */ 2433 static int 2434 read_block_for_search(struct btrfs_trans_handle *trans, 2435 struct btrfs_root *root, struct btrfs_path *p, 2436 struct extent_buffer **eb_ret, int level, int slot, 2437 struct btrfs_key *key, u64 time_seq) 2438 { 2439 u64 blocknr; 2440 u64 gen; 2441 struct extent_buffer *b = *eb_ret; 2442 struct extent_buffer *tmp; 2443 int ret; 2444 2445 blocknr = btrfs_node_blockptr(b, slot); 2446 gen = btrfs_node_ptr_generation(b, slot); 2447 2448 tmp = btrfs_find_tree_block(root->fs_info, blocknr); 2449 if (tmp) { 2450 /* first we do an atomic uptodate check */ 2451 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2452 *eb_ret = tmp; 2453 return 0; 2454 } 2455 2456 /* the pages were up to date, but we failed 2457 * the generation number check. Do a full 2458 * read for the generation number that is correct. 2459 * We must do this without dropping locks so 2460 * we can trust our generation number 2461 */ 2462 btrfs_set_path_blocking(p); 2463 2464 /* now we're allowed to do a blocking uptodate check */ 2465 ret = btrfs_read_buffer(tmp, gen); 2466 if (!ret) { 2467 *eb_ret = tmp; 2468 return 0; 2469 } 2470 free_extent_buffer(tmp); 2471 btrfs_release_path(p); 2472 return -EIO; 2473 } 2474 2475 /* 2476 * reduce lock contention at high levels 2477 * of the btree by dropping locks before 2478 * we read. Don't release the lock on the current 2479 * level because we need to walk this node to figure 2480 * out which blocks to read. 2481 */ 2482 btrfs_unlock_up_safe(p, level + 1); 2483 btrfs_set_path_blocking(p); 2484 2485 free_extent_buffer(tmp); 2486 if (p->reada != READA_NONE) 2487 reada_for_search(root, p, level, slot, key->objectid); 2488 2489 btrfs_release_path(p); 2490 2491 ret = -EAGAIN; 2492 tmp = read_tree_block(root, blocknr, 0); 2493 if (!IS_ERR(tmp)) { 2494 /* 2495 * If the read above didn't mark this buffer up to date, 2496 * it will never end up being up to date. Set ret to EIO now 2497 * and give up so that our caller doesn't loop forever 2498 * on our EAGAINs. 2499 */ 2500 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2501 ret = -EIO; 2502 free_extent_buffer(tmp); 2503 } else { 2504 ret = PTR_ERR(tmp); 2505 } 2506 return ret; 2507 } 2508 2509 /* 2510 * helper function for btrfs_search_slot. This does all of the checks 2511 * for node-level blocks and does any balancing required based on 2512 * the ins_len. 2513 * 2514 * If no extra work was required, zero is returned. If we had to 2515 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2516 * start over 2517 */ 2518 static int 2519 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2520 struct btrfs_root *root, struct btrfs_path *p, 2521 struct extent_buffer *b, int level, int ins_len, 2522 int *write_lock_level) 2523 { 2524 int ret; 2525 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2526 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2527 int sret; 2528 2529 if (*write_lock_level < level + 1) { 2530 *write_lock_level = level + 1; 2531 btrfs_release_path(p); 2532 goto again; 2533 } 2534 2535 btrfs_set_path_blocking(p); 2536 reada_for_balance(root, p, level); 2537 sret = split_node(trans, root, p, level); 2538 btrfs_clear_path_blocking(p, NULL, 0); 2539 2540 BUG_ON(sret > 0); 2541 if (sret) { 2542 ret = sret; 2543 goto done; 2544 } 2545 b = p->nodes[level]; 2546 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2547 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2548 int sret; 2549 2550 if (*write_lock_level < level + 1) { 2551 *write_lock_level = level + 1; 2552 btrfs_release_path(p); 2553 goto again; 2554 } 2555 2556 btrfs_set_path_blocking(p); 2557 reada_for_balance(root, p, level); 2558 sret = balance_level(trans, root, p, level); 2559 btrfs_clear_path_blocking(p, NULL, 0); 2560 2561 if (sret) { 2562 ret = sret; 2563 goto done; 2564 } 2565 b = p->nodes[level]; 2566 if (!b) { 2567 btrfs_release_path(p); 2568 goto again; 2569 } 2570 BUG_ON(btrfs_header_nritems(b) == 1); 2571 } 2572 return 0; 2573 2574 again: 2575 ret = -EAGAIN; 2576 done: 2577 return ret; 2578 } 2579 2580 static void key_search_validate(struct extent_buffer *b, 2581 struct btrfs_key *key, 2582 int level) 2583 { 2584 #ifdef CONFIG_BTRFS_ASSERT 2585 struct btrfs_disk_key disk_key; 2586 2587 btrfs_cpu_key_to_disk(&disk_key, key); 2588 2589 if (level == 0) 2590 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2591 offsetof(struct btrfs_leaf, items[0].key), 2592 sizeof(disk_key))); 2593 else 2594 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2595 offsetof(struct btrfs_node, ptrs[0].key), 2596 sizeof(disk_key))); 2597 #endif 2598 } 2599 2600 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2601 int level, int *prev_cmp, int *slot) 2602 { 2603 if (*prev_cmp != 0) { 2604 *prev_cmp = bin_search(b, key, level, slot); 2605 return *prev_cmp; 2606 } 2607 2608 key_search_validate(b, key, level); 2609 *slot = 0; 2610 2611 return 0; 2612 } 2613 2614 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2615 u64 iobjectid, u64 ioff, u8 key_type, 2616 struct btrfs_key *found_key) 2617 { 2618 int ret; 2619 struct btrfs_key key; 2620 struct extent_buffer *eb; 2621 2622 ASSERT(path); 2623 ASSERT(found_key); 2624 2625 key.type = key_type; 2626 key.objectid = iobjectid; 2627 key.offset = ioff; 2628 2629 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2630 if (ret < 0) 2631 return ret; 2632 2633 eb = path->nodes[0]; 2634 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2635 ret = btrfs_next_leaf(fs_root, path); 2636 if (ret) 2637 return ret; 2638 eb = path->nodes[0]; 2639 } 2640 2641 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2642 if (found_key->type != key.type || 2643 found_key->objectid != key.objectid) 2644 return 1; 2645 2646 return 0; 2647 } 2648 2649 /* 2650 * look for key in the tree. path is filled in with nodes along the way 2651 * if key is found, we return zero and you can find the item in the leaf 2652 * level of the path (level 0) 2653 * 2654 * If the key isn't found, the path points to the slot where it should 2655 * be inserted, and 1 is returned. If there are other errors during the 2656 * search a negative error number is returned. 2657 * 2658 * if ins_len > 0, nodes and leaves will be split as we walk down the 2659 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2660 * possible) 2661 */ 2662 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2663 *root, struct btrfs_key *key, struct btrfs_path *p, int 2664 ins_len, int cow) 2665 { 2666 struct extent_buffer *b; 2667 int slot; 2668 int ret; 2669 int err; 2670 int level; 2671 int lowest_unlock = 1; 2672 int root_lock; 2673 /* everything at write_lock_level or lower must be write locked */ 2674 int write_lock_level = 0; 2675 u8 lowest_level = 0; 2676 int min_write_lock_level; 2677 int prev_cmp; 2678 2679 lowest_level = p->lowest_level; 2680 WARN_ON(lowest_level && ins_len > 0); 2681 WARN_ON(p->nodes[0] != NULL); 2682 BUG_ON(!cow && ins_len); 2683 2684 if (ins_len < 0) { 2685 lowest_unlock = 2; 2686 2687 /* when we are removing items, we might have to go up to level 2688 * two as we update tree pointers Make sure we keep write 2689 * for those levels as well 2690 */ 2691 write_lock_level = 2; 2692 } else if (ins_len > 0) { 2693 /* 2694 * for inserting items, make sure we have a write lock on 2695 * level 1 so we can update keys 2696 */ 2697 write_lock_level = 1; 2698 } 2699 2700 if (!cow) 2701 write_lock_level = -1; 2702 2703 if (cow && (p->keep_locks || p->lowest_level)) 2704 write_lock_level = BTRFS_MAX_LEVEL; 2705 2706 min_write_lock_level = write_lock_level; 2707 2708 again: 2709 prev_cmp = -1; 2710 /* 2711 * we try very hard to do read locks on the root 2712 */ 2713 root_lock = BTRFS_READ_LOCK; 2714 level = 0; 2715 if (p->search_commit_root) { 2716 /* 2717 * the commit roots are read only 2718 * so we always do read locks 2719 */ 2720 if (p->need_commit_sem) 2721 down_read(&root->fs_info->commit_root_sem); 2722 b = root->commit_root; 2723 extent_buffer_get(b); 2724 level = btrfs_header_level(b); 2725 if (p->need_commit_sem) 2726 up_read(&root->fs_info->commit_root_sem); 2727 if (!p->skip_locking) 2728 btrfs_tree_read_lock(b); 2729 } else { 2730 if (p->skip_locking) { 2731 b = btrfs_root_node(root); 2732 level = btrfs_header_level(b); 2733 } else { 2734 /* we don't know the level of the root node 2735 * until we actually have it read locked 2736 */ 2737 b = btrfs_read_lock_root_node(root); 2738 level = btrfs_header_level(b); 2739 if (level <= write_lock_level) { 2740 /* whoops, must trade for write lock */ 2741 btrfs_tree_read_unlock(b); 2742 free_extent_buffer(b); 2743 b = btrfs_lock_root_node(root); 2744 root_lock = BTRFS_WRITE_LOCK; 2745 2746 /* the level might have changed, check again */ 2747 level = btrfs_header_level(b); 2748 } 2749 } 2750 } 2751 p->nodes[level] = b; 2752 if (!p->skip_locking) 2753 p->locks[level] = root_lock; 2754 2755 while (b) { 2756 level = btrfs_header_level(b); 2757 2758 /* 2759 * setup the path here so we can release it under lock 2760 * contention with the cow code 2761 */ 2762 if (cow) { 2763 /* 2764 * if we don't really need to cow this block 2765 * then we don't want to set the path blocking, 2766 * so we test it here 2767 */ 2768 if (!should_cow_block(trans, root, b)) { 2769 trans->dirty = true; 2770 goto cow_done; 2771 } 2772 2773 /* 2774 * must have write locks on this node and the 2775 * parent 2776 */ 2777 if (level > write_lock_level || 2778 (level + 1 > write_lock_level && 2779 level + 1 < BTRFS_MAX_LEVEL && 2780 p->nodes[level + 1])) { 2781 write_lock_level = level + 1; 2782 btrfs_release_path(p); 2783 goto again; 2784 } 2785 2786 btrfs_set_path_blocking(p); 2787 err = btrfs_cow_block(trans, root, b, 2788 p->nodes[level + 1], 2789 p->slots[level + 1], &b); 2790 if (err) { 2791 ret = err; 2792 goto done; 2793 } 2794 } 2795 cow_done: 2796 p->nodes[level] = b; 2797 btrfs_clear_path_blocking(p, NULL, 0); 2798 2799 /* 2800 * we have a lock on b and as long as we aren't changing 2801 * the tree, there is no way to for the items in b to change. 2802 * It is safe to drop the lock on our parent before we 2803 * go through the expensive btree search on b. 2804 * 2805 * If we're inserting or deleting (ins_len != 0), then we might 2806 * be changing slot zero, which may require changing the parent. 2807 * So, we can't drop the lock until after we know which slot 2808 * we're operating on. 2809 */ 2810 if (!ins_len && !p->keep_locks) { 2811 int u = level + 1; 2812 2813 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2814 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2815 p->locks[u] = 0; 2816 } 2817 } 2818 2819 ret = key_search(b, key, level, &prev_cmp, &slot); 2820 if (ret < 0) 2821 goto done; 2822 2823 if (level != 0) { 2824 int dec = 0; 2825 if (ret && slot > 0) { 2826 dec = 1; 2827 slot -= 1; 2828 } 2829 p->slots[level] = slot; 2830 err = setup_nodes_for_search(trans, root, p, b, level, 2831 ins_len, &write_lock_level); 2832 if (err == -EAGAIN) 2833 goto again; 2834 if (err) { 2835 ret = err; 2836 goto done; 2837 } 2838 b = p->nodes[level]; 2839 slot = p->slots[level]; 2840 2841 /* 2842 * slot 0 is special, if we change the key 2843 * we have to update the parent pointer 2844 * which means we must have a write lock 2845 * on the parent 2846 */ 2847 if (slot == 0 && ins_len && 2848 write_lock_level < level + 1) { 2849 write_lock_level = level + 1; 2850 btrfs_release_path(p); 2851 goto again; 2852 } 2853 2854 unlock_up(p, level, lowest_unlock, 2855 min_write_lock_level, &write_lock_level); 2856 2857 if (level == lowest_level) { 2858 if (dec) 2859 p->slots[level]++; 2860 goto done; 2861 } 2862 2863 err = read_block_for_search(trans, root, p, 2864 &b, level, slot, key, 0); 2865 if (err == -EAGAIN) 2866 goto again; 2867 if (err) { 2868 ret = err; 2869 goto done; 2870 } 2871 2872 if (!p->skip_locking) { 2873 level = btrfs_header_level(b); 2874 if (level <= write_lock_level) { 2875 err = btrfs_try_tree_write_lock(b); 2876 if (!err) { 2877 btrfs_set_path_blocking(p); 2878 btrfs_tree_lock(b); 2879 btrfs_clear_path_blocking(p, b, 2880 BTRFS_WRITE_LOCK); 2881 } 2882 p->locks[level] = BTRFS_WRITE_LOCK; 2883 } else { 2884 err = btrfs_tree_read_lock_atomic(b); 2885 if (!err) { 2886 btrfs_set_path_blocking(p); 2887 btrfs_tree_read_lock(b); 2888 btrfs_clear_path_blocking(p, b, 2889 BTRFS_READ_LOCK); 2890 } 2891 p->locks[level] = BTRFS_READ_LOCK; 2892 } 2893 p->nodes[level] = b; 2894 } 2895 } else { 2896 p->slots[level] = slot; 2897 if (ins_len > 0 && 2898 btrfs_leaf_free_space(root, b) < ins_len) { 2899 if (write_lock_level < 1) { 2900 write_lock_level = 1; 2901 btrfs_release_path(p); 2902 goto again; 2903 } 2904 2905 btrfs_set_path_blocking(p); 2906 err = split_leaf(trans, root, key, 2907 p, ins_len, ret == 0); 2908 btrfs_clear_path_blocking(p, NULL, 0); 2909 2910 BUG_ON(err > 0); 2911 if (err) { 2912 ret = err; 2913 goto done; 2914 } 2915 } 2916 if (!p->search_for_split) 2917 unlock_up(p, level, lowest_unlock, 2918 min_write_lock_level, &write_lock_level); 2919 goto done; 2920 } 2921 } 2922 ret = 1; 2923 done: 2924 /* 2925 * we don't really know what they plan on doing with the path 2926 * from here on, so for now just mark it as blocking 2927 */ 2928 if (!p->leave_spinning) 2929 btrfs_set_path_blocking(p); 2930 if (ret < 0 && !p->skip_release_on_error) 2931 btrfs_release_path(p); 2932 return ret; 2933 } 2934 2935 /* 2936 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2937 * current state of the tree together with the operations recorded in the tree 2938 * modification log to search for the key in a previous version of this tree, as 2939 * denoted by the time_seq parameter. 2940 * 2941 * Naturally, there is no support for insert, delete or cow operations. 2942 * 2943 * The resulting path and return value will be set up as if we called 2944 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2945 */ 2946 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2947 struct btrfs_path *p, u64 time_seq) 2948 { 2949 struct extent_buffer *b; 2950 int slot; 2951 int ret; 2952 int err; 2953 int level; 2954 int lowest_unlock = 1; 2955 u8 lowest_level = 0; 2956 int prev_cmp = -1; 2957 2958 lowest_level = p->lowest_level; 2959 WARN_ON(p->nodes[0] != NULL); 2960 2961 if (p->search_commit_root) { 2962 BUG_ON(time_seq); 2963 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2964 } 2965 2966 again: 2967 b = get_old_root(root, time_seq); 2968 level = btrfs_header_level(b); 2969 p->locks[level] = BTRFS_READ_LOCK; 2970 2971 while (b) { 2972 level = btrfs_header_level(b); 2973 p->nodes[level] = b; 2974 btrfs_clear_path_blocking(p, NULL, 0); 2975 2976 /* 2977 * we have a lock on b and as long as we aren't changing 2978 * the tree, there is no way to for the items in b to change. 2979 * It is safe to drop the lock on our parent before we 2980 * go through the expensive btree search on b. 2981 */ 2982 btrfs_unlock_up_safe(p, level + 1); 2983 2984 /* 2985 * Since we can unwind ebs we want to do a real search every 2986 * time. 2987 */ 2988 prev_cmp = -1; 2989 ret = key_search(b, key, level, &prev_cmp, &slot); 2990 2991 if (level != 0) { 2992 int dec = 0; 2993 if (ret && slot > 0) { 2994 dec = 1; 2995 slot -= 1; 2996 } 2997 p->slots[level] = slot; 2998 unlock_up(p, level, lowest_unlock, 0, NULL); 2999 3000 if (level == lowest_level) { 3001 if (dec) 3002 p->slots[level]++; 3003 goto done; 3004 } 3005 3006 err = read_block_for_search(NULL, root, p, &b, level, 3007 slot, key, time_seq); 3008 if (err == -EAGAIN) 3009 goto again; 3010 if (err) { 3011 ret = err; 3012 goto done; 3013 } 3014 3015 level = btrfs_header_level(b); 3016 err = btrfs_tree_read_lock_atomic(b); 3017 if (!err) { 3018 btrfs_set_path_blocking(p); 3019 btrfs_tree_read_lock(b); 3020 btrfs_clear_path_blocking(p, b, 3021 BTRFS_READ_LOCK); 3022 } 3023 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3024 if (!b) { 3025 ret = -ENOMEM; 3026 goto done; 3027 } 3028 p->locks[level] = BTRFS_READ_LOCK; 3029 p->nodes[level] = b; 3030 } else { 3031 p->slots[level] = slot; 3032 unlock_up(p, level, lowest_unlock, 0, NULL); 3033 goto done; 3034 } 3035 } 3036 ret = 1; 3037 done: 3038 if (!p->leave_spinning) 3039 btrfs_set_path_blocking(p); 3040 if (ret < 0) 3041 btrfs_release_path(p); 3042 3043 return ret; 3044 } 3045 3046 /* 3047 * helper to use instead of search slot if no exact match is needed but 3048 * instead the next or previous item should be returned. 3049 * When find_higher is true, the next higher item is returned, the next lower 3050 * otherwise. 3051 * When return_any and find_higher are both true, and no higher item is found, 3052 * return the next lower instead. 3053 * When return_any is true and find_higher is false, and no lower item is found, 3054 * return the next higher instead. 3055 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3056 * < 0 on error 3057 */ 3058 int btrfs_search_slot_for_read(struct btrfs_root *root, 3059 struct btrfs_key *key, struct btrfs_path *p, 3060 int find_higher, int return_any) 3061 { 3062 int ret; 3063 struct extent_buffer *leaf; 3064 3065 again: 3066 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3067 if (ret <= 0) 3068 return ret; 3069 /* 3070 * a return value of 1 means the path is at the position where the 3071 * item should be inserted. Normally this is the next bigger item, 3072 * but in case the previous item is the last in a leaf, path points 3073 * to the first free slot in the previous leaf, i.e. at an invalid 3074 * item. 3075 */ 3076 leaf = p->nodes[0]; 3077 3078 if (find_higher) { 3079 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3080 ret = btrfs_next_leaf(root, p); 3081 if (ret <= 0) 3082 return ret; 3083 if (!return_any) 3084 return 1; 3085 /* 3086 * no higher item found, return the next 3087 * lower instead 3088 */ 3089 return_any = 0; 3090 find_higher = 0; 3091 btrfs_release_path(p); 3092 goto again; 3093 } 3094 } else { 3095 if (p->slots[0] == 0) { 3096 ret = btrfs_prev_leaf(root, p); 3097 if (ret < 0) 3098 return ret; 3099 if (!ret) { 3100 leaf = p->nodes[0]; 3101 if (p->slots[0] == btrfs_header_nritems(leaf)) 3102 p->slots[0]--; 3103 return 0; 3104 } 3105 if (!return_any) 3106 return 1; 3107 /* 3108 * no lower item found, return the next 3109 * higher instead 3110 */ 3111 return_any = 0; 3112 find_higher = 1; 3113 btrfs_release_path(p); 3114 goto again; 3115 } else { 3116 --p->slots[0]; 3117 } 3118 } 3119 return 0; 3120 } 3121 3122 /* 3123 * adjust the pointers going up the tree, starting at level 3124 * making sure the right key of each node is points to 'key'. 3125 * This is used after shifting pointers to the left, so it stops 3126 * fixing up pointers when a given leaf/node is not in slot 0 of the 3127 * higher levels 3128 * 3129 */ 3130 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3131 struct btrfs_path *path, 3132 struct btrfs_disk_key *key, int level) 3133 { 3134 int i; 3135 struct extent_buffer *t; 3136 3137 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3138 int tslot = path->slots[i]; 3139 if (!path->nodes[i]) 3140 break; 3141 t = path->nodes[i]; 3142 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3143 btrfs_set_node_key(t, key, tslot); 3144 btrfs_mark_buffer_dirty(path->nodes[i]); 3145 if (tslot != 0) 3146 break; 3147 } 3148 } 3149 3150 /* 3151 * update item key. 3152 * 3153 * This function isn't completely safe. It's the caller's responsibility 3154 * that the new key won't break the order 3155 */ 3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3157 struct btrfs_path *path, 3158 struct btrfs_key *new_key) 3159 { 3160 struct btrfs_disk_key disk_key; 3161 struct extent_buffer *eb; 3162 int slot; 3163 3164 eb = path->nodes[0]; 3165 slot = path->slots[0]; 3166 if (slot > 0) { 3167 btrfs_item_key(eb, &disk_key, slot - 1); 3168 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3169 } 3170 if (slot < btrfs_header_nritems(eb) - 1) { 3171 btrfs_item_key(eb, &disk_key, slot + 1); 3172 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3173 } 3174 3175 btrfs_cpu_key_to_disk(&disk_key, new_key); 3176 btrfs_set_item_key(eb, &disk_key, slot); 3177 btrfs_mark_buffer_dirty(eb); 3178 if (slot == 0) 3179 fixup_low_keys(fs_info, path, &disk_key, 1); 3180 } 3181 3182 /* 3183 * try to push data from one node into the next node left in the 3184 * tree. 3185 * 3186 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3187 * error, and > 0 if there was no room in the left hand block. 3188 */ 3189 static int push_node_left(struct btrfs_trans_handle *trans, 3190 struct btrfs_root *root, struct extent_buffer *dst, 3191 struct extent_buffer *src, int empty) 3192 { 3193 int push_items = 0; 3194 int src_nritems; 3195 int dst_nritems; 3196 int ret = 0; 3197 3198 src_nritems = btrfs_header_nritems(src); 3199 dst_nritems = btrfs_header_nritems(dst); 3200 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3201 WARN_ON(btrfs_header_generation(src) != trans->transid); 3202 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3203 3204 if (!empty && src_nritems <= 8) 3205 return 1; 3206 3207 if (push_items <= 0) 3208 return 1; 3209 3210 if (empty) { 3211 push_items = min(src_nritems, push_items); 3212 if (push_items < src_nritems) { 3213 /* leave at least 8 pointers in the node if 3214 * we aren't going to empty it 3215 */ 3216 if (src_nritems - push_items < 8) { 3217 if (push_items <= 8) 3218 return 1; 3219 push_items -= 8; 3220 } 3221 } 3222 } else 3223 push_items = min(src_nritems - 8, push_items); 3224 3225 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3226 push_items); 3227 if (ret) { 3228 btrfs_abort_transaction(trans, ret); 3229 return ret; 3230 } 3231 copy_extent_buffer(dst, src, 3232 btrfs_node_key_ptr_offset(dst_nritems), 3233 btrfs_node_key_ptr_offset(0), 3234 push_items * sizeof(struct btrfs_key_ptr)); 3235 3236 if (push_items < src_nritems) { 3237 /* 3238 * don't call tree_mod_log_eb_move here, key removal was already 3239 * fully logged by tree_mod_log_eb_copy above. 3240 */ 3241 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3242 btrfs_node_key_ptr_offset(push_items), 3243 (src_nritems - push_items) * 3244 sizeof(struct btrfs_key_ptr)); 3245 } 3246 btrfs_set_header_nritems(src, src_nritems - push_items); 3247 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3248 btrfs_mark_buffer_dirty(src); 3249 btrfs_mark_buffer_dirty(dst); 3250 3251 return ret; 3252 } 3253 3254 /* 3255 * try to push data from one node into the next node right in the 3256 * tree. 3257 * 3258 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3259 * error, and > 0 if there was no room in the right hand block. 3260 * 3261 * this will only push up to 1/2 the contents of the left node over 3262 */ 3263 static int balance_node_right(struct btrfs_trans_handle *trans, 3264 struct btrfs_root *root, 3265 struct extent_buffer *dst, 3266 struct extent_buffer *src) 3267 { 3268 int push_items = 0; 3269 int max_push; 3270 int src_nritems; 3271 int dst_nritems; 3272 int ret = 0; 3273 3274 WARN_ON(btrfs_header_generation(src) != trans->transid); 3275 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3276 3277 src_nritems = btrfs_header_nritems(src); 3278 dst_nritems = btrfs_header_nritems(dst); 3279 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3280 if (push_items <= 0) 3281 return 1; 3282 3283 if (src_nritems < 4) 3284 return 1; 3285 3286 max_push = src_nritems / 2 + 1; 3287 /* don't try to empty the node */ 3288 if (max_push >= src_nritems) 3289 return 1; 3290 3291 if (max_push < push_items) 3292 push_items = max_push; 3293 3294 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3295 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3296 btrfs_node_key_ptr_offset(0), 3297 (dst_nritems) * 3298 sizeof(struct btrfs_key_ptr)); 3299 3300 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3301 src_nritems - push_items, push_items); 3302 if (ret) { 3303 btrfs_abort_transaction(trans, ret); 3304 return ret; 3305 } 3306 copy_extent_buffer(dst, src, 3307 btrfs_node_key_ptr_offset(0), 3308 btrfs_node_key_ptr_offset(src_nritems - push_items), 3309 push_items * sizeof(struct btrfs_key_ptr)); 3310 3311 btrfs_set_header_nritems(src, src_nritems - push_items); 3312 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3313 3314 btrfs_mark_buffer_dirty(src); 3315 btrfs_mark_buffer_dirty(dst); 3316 3317 return ret; 3318 } 3319 3320 /* 3321 * helper function to insert a new root level in the tree. 3322 * A new node is allocated, and a single item is inserted to 3323 * point to the existing root 3324 * 3325 * returns zero on success or < 0 on failure. 3326 */ 3327 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3328 struct btrfs_root *root, 3329 struct btrfs_path *path, int level) 3330 { 3331 u64 lower_gen; 3332 struct extent_buffer *lower; 3333 struct extent_buffer *c; 3334 struct extent_buffer *old; 3335 struct btrfs_disk_key lower_key; 3336 3337 BUG_ON(path->nodes[level]); 3338 BUG_ON(path->nodes[level-1] != root->node); 3339 3340 lower = path->nodes[level-1]; 3341 if (level == 1) 3342 btrfs_item_key(lower, &lower_key, 0); 3343 else 3344 btrfs_node_key(lower, &lower_key, 0); 3345 3346 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3347 &lower_key, level, root->node->start, 0); 3348 if (IS_ERR(c)) 3349 return PTR_ERR(c); 3350 3351 root_add_used(root, root->nodesize); 3352 3353 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3354 btrfs_set_header_nritems(c, 1); 3355 btrfs_set_header_level(c, level); 3356 btrfs_set_header_bytenr(c, c->start); 3357 btrfs_set_header_generation(c, trans->transid); 3358 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3359 btrfs_set_header_owner(c, root->root_key.objectid); 3360 3361 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3362 BTRFS_FSID_SIZE); 3363 3364 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3365 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3366 3367 btrfs_set_node_key(c, &lower_key, 0); 3368 btrfs_set_node_blockptr(c, 0, lower->start); 3369 lower_gen = btrfs_header_generation(lower); 3370 WARN_ON(lower_gen != trans->transid); 3371 3372 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3373 3374 btrfs_mark_buffer_dirty(c); 3375 3376 old = root->node; 3377 tree_mod_log_set_root_pointer(root, c, 0); 3378 rcu_assign_pointer(root->node, c); 3379 3380 /* the super has an extra ref to root->node */ 3381 free_extent_buffer(old); 3382 3383 add_root_to_dirty_list(root); 3384 extent_buffer_get(c); 3385 path->nodes[level] = c; 3386 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3387 path->slots[level] = 0; 3388 return 0; 3389 } 3390 3391 /* 3392 * worker function to insert a single pointer in a node. 3393 * the node should have enough room for the pointer already 3394 * 3395 * slot and level indicate where you want the key to go, and 3396 * blocknr is the block the key points to. 3397 */ 3398 static void insert_ptr(struct btrfs_trans_handle *trans, 3399 struct btrfs_root *root, struct btrfs_path *path, 3400 struct btrfs_disk_key *key, u64 bytenr, 3401 int slot, int level) 3402 { 3403 struct extent_buffer *lower; 3404 int nritems; 3405 int ret; 3406 3407 BUG_ON(!path->nodes[level]); 3408 btrfs_assert_tree_locked(path->nodes[level]); 3409 lower = path->nodes[level]; 3410 nritems = btrfs_header_nritems(lower); 3411 BUG_ON(slot > nritems); 3412 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3413 if (slot != nritems) { 3414 if (level) 3415 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3416 slot, nritems - slot); 3417 memmove_extent_buffer(lower, 3418 btrfs_node_key_ptr_offset(slot + 1), 3419 btrfs_node_key_ptr_offset(slot), 3420 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3421 } 3422 if (level) { 3423 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3424 MOD_LOG_KEY_ADD, GFP_NOFS); 3425 BUG_ON(ret < 0); 3426 } 3427 btrfs_set_node_key(lower, key, slot); 3428 btrfs_set_node_blockptr(lower, slot, bytenr); 3429 WARN_ON(trans->transid == 0); 3430 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3431 btrfs_set_header_nritems(lower, nritems + 1); 3432 btrfs_mark_buffer_dirty(lower); 3433 } 3434 3435 /* 3436 * split the node at the specified level in path in two. 3437 * The path is corrected to point to the appropriate node after the split 3438 * 3439 * Before splitting this tries to make some room in the node by pushing 3440 * left and right, if either one works, it returns right away. 3441 * 3442 * returns 0 on success and < 0 on failure 3443 */ 3444 static noinline int split_node(struct btrfs_trans_handle *trans, 3445 struct btrfs_root *root, 3446 struct btrfs_path *path, int level) 3447 { 3448 struct extent_buffer *c; 3449 struct extent_buffer *split; 3450 struct btrfs_disk_key disk_key; 3451 int mid; 3452 int ret; 3453 u32 c_nritems; 3454 3455 c = path->nodes[level]; 3456 WARN_ON(btrfs_header_generation(c) != trans->transid); 3457 if (c == root->node) { 3458 /* 3459 * trying to split the root, lets make a new one 3460 * 3461 * tree mod log: We don't log_removal old root in 3462 * insert_new_root, because that root buffer will be kept as a 3463 * normal node. We are going to log removal of half of the 3464 * elements below with tree_mod_log_eb_copy. We're holding a 3465 * tree lock on the buffer, which is why we cannot race with 3466 * other tree_mod_log users. 3467 */ 3468 ret = insert_new_root(trans, root, path, level + 1); 3469 if (ret) 3470 return ret; 3471 } else { 3472 ret = push_nodes_for_insert(trans, root, path, level); 3473 c = path->nodes[level]; 3474 if (!ret && btrfs_header_nritems(c) < 3475 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3476 return 0; 3477 if (ret < 0) 3478 return ret; 3479 } 3480 3481 c_nritems = btrfs_header_nritems(c); 3482 mid = (c_nritems + 1) / 2; 3483 btrfs_node_key(c, &disk_key, mid); 3484 3485 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3486 &disk_key, level, c->start, 0); 3487 if (IS_ERR(split)) 3488 return PTR_ERR(split); 3489 3490 root_add_used(root, root->nodesize); 3491 3492 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3493 btrfs_set_header_level(split, btrfs_header_level(c)); 3494 btrfs_set_header_bytenr(split, split->start); 3495 btrfs_set_header_generation(split, trans->transid); 3496 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3497 btrfs_set_header_owner(split, root->root_key.objectid); 3498 write_extent_buffer(split, root->fs_info->fsid, 3499 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3500 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3501 btrfs_header_chunk_tree_uuid(split), 3502 BTRFS_UUID_SIZE); 3503 3504 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3505 mid, c_nritems - mid); 3506 if (ret) { 3507 btrfs_abort_transaction(trans, ret); 3508 return ret; 3509 } 3510 copy_extent_buffer(split, c, 3511 btrfs_node_key_ptr_offset(0), 3512 btrfs_node_key_ptr_offset(mid), 3513 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3514 btrfs_set_header_nritems(split, c_nritems - mid); 3515 btrfs_set_header_nritems(c, mid); 3516 ret = 0; 3517 3518 btrfs_mark_buffer_dirty(c); 3519 btrfs_mark_buffer_dirty(split); 3520 3521 insert_ptr(trans, root, path, &disk_key, split->start, 3522 path->slots[level + 1] + 1, level + 1); 3523 3524 if (path->slots[level] >= mid) { 3525 path->slots[level] -= mid; 3526 btrfs_tree_unlock(c); 3527 free_extent_buffer(c); 3528 path->nodes[level] = split; 3529 path->slots[level + 1] += 1; 3530 } else { 3531 btrfs_tree_unlock(split); 3532 free_extent_buffer(split); 3533 } 3534 return ret; 3535 } 3536 3537 /* 3538 * how many bytes are required to store the items in a leaf. start 3539 * and nr indicate which items in the leaf to check. This totals up the 3540 * space used both by the item structs and the item data 3541 */ 3542 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3543 { 3544 struct btrfs_item *start_item; 3545 struct btrfs_item *end_item; 3546 struct btrfs_map_token token; 3547 int data_len; 3548 int nritems = btrfs_header_nritems(l); 3549 int end = min(nritems, start + nr) - 1; 3550 3551 if (!nr) 3552 return 0; 3553 btrfs_init_map_token(&token); 3554 start_item = btrfs_item_nr(start); 3555 end_item = btrfs_item_nr(end); 3556 data_len = btrfs_token_item_offset(l, start_item, &token) + 3557 btrfs_token_item_size(l, start_item, &token); 3558 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3559 data_len += sizeof(struct btrfs_item) * nr; 3560 WARN_ON(data_len < 0); 3561 return data_len; 3562 } 3563 3564 /* 3565 * The space between the end of the leaf items and 3566 * the start of the leaf data. IOW, how much room 3567 * the leaf has left for both items and data 3568 */ 3569 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3570 struct extent_buffer *leaf) 3571 { 3572 int nritems = btrfs_header_nritems(leaf); 3573 int ret; 3574 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3575 if (ret < 0) { 3576 btrfs_crit(root->fs_info, 3577 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3578 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3579 leaf_space_used(leaf, 0, nritems), nritems); 3580 } 3581 return ret; 3582 } 3583 3584 /* 3585 * min slot controls the lowest index we're willing to push to the 3586 * right. We'll push up to and including min_slot, but no lower 3587 */ 3588 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3589 struct btrfs_root *root, 3590 struct btrfs_path *path, 3591 int data_size, int empty, 3592 struct extent_buffer *right, 3593 int free_space, u32 left_nritems, 3594 u32 min_slot) 3595 { 3596 struct extent_buffer *left = path->nodes[0]; 3597 struct extent_buffer *upper = path->nodes[1]; 3598 struct btrfs_map_token token; 3599 struct btrfs_disk_key disk_key; 3600 int slot; 3601 u32 i; 3602 int push_space = 0; 3603 int push_items = 0; 3604 struct btrfs_item *item; 3605 u32 nr; 3606 u32 right_nritems; 3607 u32 data_end; 3608 u32 this_item_size; 3609 3610 btrfs_init_map_token(&token); 3611 3612 if (empty) 3613 nr = 0; 3614 else 3615 nr = max_t(u32, 1, min_slot); 3616 3617 if (path->slots[0] >= left_nritems) 3618 push_space += data_size; 3619 3620 slot = path->slots[1]; 3621 i = left_nritems - 1; 3622 while (i >= nr) { 3623 item = btrfs_item_nr(i); 3624 3625 if (!empty && push_items > 0) { 3626 if (path->slots[0] > i) 3627 break; 3628 if (path->slots[0] == i) { 3629 int space = btrfs_leaf_free_space(root, left); 3630 if (space + push_space * 2 > free_space) 3631 break; 3632 } 3633 } 3634 3635 if (path->slots[0] == i) 3636 push_space += data_size; 3637 3638 this_item_size = btrfs_item_size(left, item); 3639 if (this_item_size + sizeof(*item) + push_space > free_space) 3640 break; 3641 3642 push_items++; 3643 push_space += this_item_size + sizeof(*item); 3644 if (i == 0) 3645 break; 3646 i--; 3647 } 3648 3649 if (push_items == 0) 3650 goto out_unlock; 3651 3652 WARN_ON(!empty && push_items == left_nritems); 3653 3654 /* push left to right */ 3655 right_nritems = btrfs_header_nritems(right); 3656 3657 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3658 push_space -= leaf_data_end(root, left); 3659 3660 /* make room in the right data area */ 3661 data_end = leaf_data_end(root, right); 3662 memmove_extent_buffer(right, 3663 btrfs_leaf_data(right) + data_end - push_space, 3664 btrfs_leaf_data(right) + data_end, 3665 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3666 3667 /* copy from the left data area */ 3668 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3669 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3670 btrfs_leaf_data(left) + leaf_data_end(root, left), 3671 push_space); 3672 3673 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3674 btrfs_item_nr_offset(0), 3675 right_nritems * sizeof(struct btrfs_item)); 3676 3677 /* copy the items from left to right */ 3678 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3679 btrfs_item_nr_offset(left_nritems - push_items), 3680 push_items * sizeof(struct btrfs_item)); 3681 3682 /* update the item pointers */ 3683 right_nritems += push_items; 3684 btrfs_set_header_nritems(right, right_nritems); 3685 push_space = BTRFS_LEAF_DATA_SIZE(root); 3686 for (i = 0; i < right_nritems; i++) { 3687 item = btrfs_item_nr(i); 3688 push_space -= btrfs_token_item_size(right, item, &token); 3689 btrfs_set_token_item_offset(right, item, push_space, &token); 3690 } 3691 3692 left_nritems -= push_items; 3693 btrfs_set_header_nritems(left, left_nritems); 3694 3695 if (left_nritems) 3696 btrfs_mark_buffer_dirty(left); 3697 else 3698 clean_tree_block(trans, root->fs_info, left); 3699 3700 btrfs_mark_buffer_dirty(right); 3701 3702 btrfs_item_key(right, &disk_key, 0); 3703 btrfs_set_node_key(upper, &disk_key, slot + 1); 3704 btrfs_mark_buffer_dirty(upper); 3705 3706 /* then fixup the leaf pointer in the path */ 3707 if (path->slots[0] >= left_nritems) { 3708 path->slots[0] -= left_nritems; 3709 if (btrfs_header_nritems(path->nodes[0]) == 0) 3710 clean_tree_block(trans, root->fs_info, path->nodes[0]); 3711 btrfs_tree_unlock(path->nodes[0]); 3712 free_extent_buffer(path->nodes[0]); 3713 path->nodes[0] = right; 3714 path->slots[1] += 1; 3715 } else { 3716 btrfs_tree_unlock(right); 3717 free_extent_buffer(right); 3718 } 3719 return 0; 3720 3721 out_unlock: 3722 btrfs_tree_unlock(right); 3723 free_extent_buffer(right); 3724 return 1; 3725 } 3726 3727 /* 3728 * push some data in the path leaf to the right, trying to free up at 3729 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3730 * 3731 * returns 1 if the push failed because the other node didn't have enough 3732 * room, 0 if everything worked out and < 0 if there were major errors. 3733 * 3734 * this will push starting from min_slot to the end of the leaf. It won't 3735 * push any slot lower than min_slot 3736 */ 3737 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3738 *root, struct btrfs_path *path, 3739 int min_data_size, int data_size, 3740 int empty, u32 min_slot) 3741 { 3742 struct extent_buffer *left = path->nodes[0]; 3743 struct extent_buffer *right; 3744 struct extent_buffer *upper; 3745 int slot; 3746 int free_space; 3747 u32 left_nritems; 3748 int ret; 3749 3750 if (!path->nodes[1]) 3751 return 1; 3752 3753 slot = path->slots[1]; 3754 upper = path->nodes[1]; 3755 if (slot >= btrfs_header_nritems(upper) - 1) 3756 return 1; 3757 3758 btrfs_assert_tree_locked(path->nodes[1]); 3759 3760 right = read_node_slot(root, upper, slot + 1); 3761 /* 3762 * slot + 1 is not valid or we fail to read the right node, 3763 * no big deal, just return. 3764 */ 3765 if (IS_ERR(right)) 3766 return 1; 3767 3768 btrfs_tree_lock(right); 3769 btrfs_set_lock_blocking(right); 3770 3771 free_space = btrfs_leaf_free_space(root, right); 3772 if (free_space < data_size) 3773 goto out_unlock; 3774 3775 /* cow and double check */ 3776 ret = btrfs_cow_block(trans, root, right, upper, 3777 slot + 1, &right); 3778 if (ret) 3779 goto out_unlock; 3780 3781 free_space = btrfs_leaf_free_space(root, right); 3782 if (free_space < data_size) 3783 goto out_unlock; 3784 3785 left_nritems = btrfs_header_nritems(left); 3786 if (left_nritems == 0) 3787 goto out_unlock; 3788 3789 if (path->slots[0] == left_nritems && !empty) { 3790 /* Key greater than all keys in the leaf, right neighbor has 3791 * enough room for it and we're not emptying our leaf to delete 3792 * it, therefore use right neighbor to insert the new item and 3793 * no need to touch/dirty our left leaft. */ 3794 btrfs_tree_unlock(left); 3795 free_extent_buffer(left); 3796 path->nodes[0] = right; 3797 path->slots[0] = 0; 3798 path->slots[1]++; 3799 return 0; 3800 } 3801 3802 return __push_leaf_right(trans, root, path, min_data_size, empty, 3803 right, free_space, left_nritems, min_slot); 3804 out_unlock: 3805 btrfs_tree_unlock(right); 3806 free_extent_buffer(right); 3807 return 1; 3808 } 3809 3810 /* 3811 * push some data in the path leaf to the left, trying to free up at 3812 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3813 * 3814 * max_slot can put a limit on how far into the leaf we'll push items. The 3815 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3816 * items 3817 */ 3818 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3819 struct btrfs_root *root, 3820 struct btrfs_path *path, int data_size, 3821 int empty, struct extent_buffer *left, 3822 int free_space, u32 right_nritems, 3823 u32 max_slot) 3824 { 3825 struct btrfs_disk_key disk_key; 3826 struct extent_buffer *right = path->nodes[0]; 3827 int i; 3828 int push_space = 0; 3829 int push_items = 0; 3830 struct btrfs_item *item; 3831 u32 old_left_nritems; 3832 u32 nr; 3833 int ret = 0; 3834 u32 this_item_size; 3835 u32 old_left_item_size; 3836 struct btrfs_map_token token; 3837 3838 btrfs_init_map_token(&token); 3839 3840 if (empty) 3841 nr = min(right_nritems, max_slot); 3842 else 3843 nr = min(right_nritems - 1, max_slot); 3844 3845 for (i = 0; i < nr; i++) { 3846 item = btrfs_item_nr(i); 3847 3848 if (!empty && push_items > 0) { 3849 if (path->slots[0] < i) 3850 break; 3851 if (path->slots[0] == i) { 3852 int space = btrfs_leaf_free_space(root, right); 3853 if (space + push_space * 2 > free_space) 3854 break; 3855 } 3856 } 3857 3858 if (path->slots[0] == i) 3859 push_space += data_size; 3860 3861 this_item_size = btrfs_item_size(right, item); 3862 if (this_item_size + sizeof(*item) + push_space > free_space) 3863 break; 3864 3865 push_items++; 3866 push_space += this_item_size + sizeof(*item); 3867 } 3868 3869 if (push_items == 0) { 3870 ret = 1; 3871 goto out; 3872 } 3873 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3874 3875 /* push data from right to left */ 3876 copy_extent_buffer(left, right, 3877 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3878 btrfs_item_nr_offset(0), 3879 push_items * sizeof(struct btrfs_item)); 3880 3881 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3882 btrfs_item_offset_nr(right, push_items - 1); 3883 3884 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3885 leaf_data_end(root, left) - push_space, 3886 btrfs_leaf_data(right) + 3887 btrfs_item_offset_nr(right, push_items - 1), 3888 push_space); 3889 old_left_nritems = btrfs_header_nritems(left); 3890 BUG_ON(old_left_nritems <= 0); 3891 3892 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3893 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3894 u32 ioff; 3895 3896 item = btrfs_item_nr(i); 3897 3898 ioff = btrfs_token_item_offset(left, item, &token); 3899 btrfs_set_token_item_offset(left, item, 3900 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3901 &token); 3902 } 3903 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3904 3905 /* fixup right node */ 3906 if (push_items > right_nritems) 3907 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3908 right_nritems); 3909 3910 if (push_items < right_nritems) { 3911 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3912 leaf_data_end(root, right); 3913 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3914 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3915 btrfs_leaf_data(right) + 3916 leaf_data_end(root, right), push_space); 3917 3918 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3919 btrfs_item_nr_offset(push_items), 3920 (btrfs_header_nritems(right) - push_items) * 3921 sizeof(struct btrfs_item)); 3922 } 3923 right_nritems -= push_items; 3924 btrfs_set_header_nritems(right, right_nritems); 3925 push_space = BTRFS_LEAF_DATA_SIZE(root); 3926 for (i = 0; i < right_nritems; i++) { 3927 item = btrfs_item_nr(i); 3928 3929 push_space = push_space - btrfs_token_item_size(right, 3930 item, &token); 3931 btrfs_set_token_item_offset(right, item, push_space, &token); 3932 } 3933 3934 btrfs_mark_buffer_dirty(left); 3935 if (right_nritems) 3936 btrfs_mark_buffer_dirty(right); 3937 else 3938 clean_tree_block(trans, root->fs_info, right); 3939 3940 btrfs_item_key(right, &disk_key, 0); 3941 fixup_low_keys(root->fs_info, path, &disk_key, 1); 3942 3943 /* then fixup the leaf pointer in the path */ 3944 if (path->slots[0] < push_items) { 3945 path->slots[0] += old_left_nritems; 3946 btrfs_tree_unlock(path->nodes[0]); 3947 free_extent_buffer(path->nodes[0]); 3948 path->nodes[0] = left; 3949 path->slots[1] -= 1; 3950 } else { 3951 btrfs_tree_unlock(left); 3952 free_extent_buffer(left); 3953 path->slots[0] -= push_items; 3954 } 3955 BUG_ON(path->slots[0] < 0); 3956 return ret; 3957 out: 3958 btrfs_tree_unlock(left); 3959 free_extent_buffer(left); 3960 return ret; 3961 } 3962 3963 /* 3964 * push some data in the path leaf to the left, trying to free up at 3965 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3966 * 3967 * max_slot can put a limit on how far into the leaf we'll push items. The 3968 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3969 * items 3970 */ 3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3972 *root, struct btrfs_path *path, int min_data_size, 3973 int data_size, int empty, u32 max_slot) 3974 { 3975 struct extent_buffer *right = path->nodes[0]; 3976 struct extent_buffer *left; 3977 int slot; 3978 int free_space; 3979 u32 right_nritems; 3980 int ret = 0; 3981 3982 slot = path->slots[1]; 3983 if (slot == 0) 3984 return 1; 3985 if (!path->nodes[1]) 3986 return 1; 3987 3988 right_nritems = btrfs_header_nritems(right); 3989 if (right_nritems == 0) 3990 return 1; 3991 3992 btrfs_assert_tree_locked(path->nodes[1]); 3993 3994 left = read_node_slot(root, path->nodes[1], slot - 1); 3995 /* 3996 * slot - 1 is not valid or we fail to read the left node, 3997 * no big deal, just return. 3998 */ 3999 if (IS_ERR(left)) 4000 return 1; 4001 4002 btrfs_tree_lock(left); 4003 btrfs_set_lock_blocking(left); 4004 4005 free_space = btrfs_leaf_free_space(root, left); 4006 if (free_space < data_size) { 4007 ret = 1; 4008 goto out; 4009 } 4010 4011 /* cow and double check */ 4012 ret = btrfs_cow_block(trans, root, left, 4013 path->nodes[1], slot - 1, &left); 4014 if (ret) { 4015 /* we hit -ENOSPC, but it isn't fatal here */ 4016 if (ret == -ENOSPC) 4017 ret = 1; 4018 goto out; 4019 } 4020 4021 free_space = btrfs_leaf_free_space(root, left); 4022 if (free_space < data_size) { 4023 ret = 1; 4024 goto out; 4025 } 4026 4027 return __push_leaf_left(trans, root, path, min_data_size, 4028 empty, left, free_space, right_nritems, 4029 max_slot); 4030 out: 4031 btrfs_tree_unlock(left); 4032 free_extent_buffer(left); 4033 return ret; 4034 } 4035 4036 /* 4037 * split the path's leaf in two, making sure there is at least data_size 4038 * available for the resulting leaf level of the path. 4039 */ 4040 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4041 struct btrfs_root *root, 4042 struct btrfs_path *path, 4043 struct extent_buffer *l, 4044 struct extent_buffer *right, 4045 int slot, int mid, int nritems) 4046 { 4047 int data_copy_size; 4048 int rt_data_off; 4049 int i; 4050 struct btrfs_disk_key disk_key; 4051 struct btrfs_map_token token; 4052 4053 btrfs_init_map_token(&token); 4054 4055 nritems = nritems - mid; 4056 btrfs_set_header_nritems(right, nritems); 4057 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4058 4059 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4060 btrfs_item_nr_offset(mid), 4061 nritems * sizeof(struct btrfs_item)); 4062 4063 copy_extent_buffer(right, l, 4064 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4065 data_copy_size, btrfs_leaf_data(l) + 4066 leaf_data_end(root, l), data_copy_size); 4067 4068 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4069 btrfs_item_end_nr(l, mid); 4070 4071 for (i = 0; i < nritems; i++) { 4072 struct btrfs_item *item = btrfs_item_nr(i); 4073 u32 ioff; 4074 4075 ioff = btrfs_token_item_offset(right, item, &token); 4076 btrfs_set_token_item_offset(right, item, 4077 ioff + rt_data_off, &token); 4078 } 4079 4080 btrfs_set_header_nritems(l, mid); 4081 btrfs_item_key(right, &disk_key, 0); 4082 insert_ptr(trans, root, path, &disk_key, right->start, 4083 path->slots[1] + 1, 1); 4084 4085 btrfs_mark_buffer_dirty(right); 4086 btrfs_mark_buffer_dirty(l); 4087 BUG_ON(path->slots[0] != slot); 4088 4089 if (mid <= slot) { 4090 btrfs_tree_unlock(path->nodes[0]); 4091 free_extent_buffer(path->nodes[0]); 4092 path->nodes[0] = right; 4093 path->slots[0] -= mid; 4094 path->slots[1] += 1; 4095 } else { 4096 btrfs_tree_unlock(right); 4097 free_extent_buffer(right); 4098 } 4099 4100 BUG_ON(path->slots[0] < 0); 4101 } 4102 4103 /* 4104 * double splits happen when we need to insert a big item in the middle 4105 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4106 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4107 * A B C 4108 * 4109 * We avoid this by trying to push the items on either side of our target 4110 * into the adjacent leaves. If all goes well we can avoid the double split 4111 * completely. 4112 */ 4113 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4114 struct btrfs_root *root, 4115 struct btrfs_path *path, 4116 int data_size) 4117 { 4118 int ret; 4119 int progress = 0; 4120 int slot; 4121 u32 nritems; 4122 int space_needed = data_size; 4123 4124 slot = path->slots[0]; 4125 if (slot < btrfs_header_nritems(path->nodes[0])) 4126 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4127 4128 /* 4129 * try to push all the items after our slot into the 4130 * right leaf 4131 */ 4132 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4133 if (ret < 0) 4134 return ret; 4135 4136 if (ret == 0) 4137 progress++; 4138 4139 nritems = btrfs_header_nritems(path->nodes[0]); 4140 /* 4141 * our goal is to get our slot at the start or end of a leaf. If 4142 * we've done so we're done 4143 */ 4144 if (path->slots[0] == 0 || path->slots[0] == nritems) 4145 return 0; 4146 4147 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4148 return 0; 4149 4150 /* try to push all the items before our slot into the next leaf */ 4151 slot = path->slots[0]; 4152 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4153 if (ret < 0) 4154 return ret; 4155 4156 if (ret == 0) 4157 progress++; 4158 4159 if (progress) 4160 return 0; 4161 return 1; 4162 } 4163 4164 /* 4165 * split the path's leaf in two, making sure there is at least data_size 4166 * available for the resulting leaf level of the path. 4167 * 4168 * returns 0 if all went well and < 0 on failure. 4169 */ 4170 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4171 struct btrfs_root *root, 4172 struct btrfs_key *ins_key, 4173 struct btrfs_path *path, int data_size, 4174 int extend) 4175 { 4176 struct btrfs_disk_key disk_key; 4177 struct extent_buffer *l; 4178 u32 nritems; 4179 int mid; 4180 int slot; 4181 struct extent_buffer *right; 4182 struct btrfs_fs_info *fs_info = root->fs_info; 4183 int ret = 0; 4184 int wret; 4185 int split; 4186 int num_doubles = 0; 4187 int tried_avoid_double = 0; 4188 4189 l = path->nodes[0]; 4190 slot = path->slots[0]; 4191 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4192 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4193 return -EOVERFLOW; 4194 4195 /* first try to make some room by pushing left and right */ 4196 if (data_size && path->nodes[1]) { 4197 int space_needed = data_size; 4198 4199 if (slot < btrfs_header_nritems(l)) 4200 space_needed -= btrfs_leaf_free_space(root, l); 4201 4202 wret = push_leaf_right(trans, root, path, space_needed, 4203 space_needed, 0, 0); 4204 if (wret < 0) 4205 return wret; 4206 if (wret) { 4207 wret = push_leaf_left(trans, root, path, space_needed, 4208 space_needed, 0, (u32)-1); 4209 if (wret < 0) 4210 return wret; 4211 } 4212 l = path->nodes[0]; 4213 4214 /* did the pushes work? */ 4215 if (btrfs_leaf_free_space(root, l) >= data_size) 4216 return 0; 4217 } 4218 4219 if (!path->nodes[1]) { 4220 ret = insert_new_root(trans, root, path, 1); 4221 if (ret) 4222 return ret; 4223 } 4224 again: 4225 split = 1; 4226 l = path->nodes[0]; 4227 slot = path->slots[0]; 4228 nritems = btrfs_header_nritems(l); 4229 mid = (nritems + 1) / 2; 4230 4231 if (mid <= slot) { 4232 if (nritems == 1 || 4233 leaf_space_used(l, mid, nritems - mid) + data_size > 4234 BTRFS_LEAF_DATA_SIZE(root)) { 4235 if (slot >= nritems) { 4236 split = 0; 4237 } else { 4238 mid = slot; 4239 if (mid != nritems && 4240 leaf_space_used(l, mid, nritems - mid) + 4241 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4242 if (data_size && !tried_avoid_double) 4243 goto push_for_double; 4244 split = 2; 4245 } 4246 } 4247 } 4248 } else { 4249 if (leaf_space_used(l, 0, mid) + data_size > 4250 BTRFS_LEAF_DATA_SIZE(root)) { 4251 if (!extend && data_size && slot == 0) { 4252 split = 0; 4253 } else if ((extend || !data_size) && slot == 0) { 4254 mid = 1; 4255 } else { 4256 mid = slot; 4257 if (mid != nritems && 4258 leaf_space_used(l, mid, nritems - mid) + 4259 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4260 if (data_size && !tried_avoid_double) 4261 goto push_for_double; 4262 split = 2; 4263 } 4264 } 4265 } 4266 } 4267 4268 if (split == 0) 4269 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4270 else 4271 btrfs_item_key(l, &disk_key, mid); 4272 4273 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4274 &disk_key, 0, l->start, 0); 4275 if (IS_ERR(right)) 4276 return PTR_ERR(right); 4277 4278 root_add_used(root, root->nodesize); 4279 4280 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4281 btrfs_set_header_bytenr(right, right->start); 4282 btrfs_set_header_generation(right, trans->transid); 4283 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4284 btrfs_set_header_owner(right, root->root_key.objectid); 4285 btrfs_set_header_level(right, 0); 4286 write_extent_buffer(right, fs_info->fsid, 4287 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4288 4289 write_extent_buffer(right, fs_info->chunk_tree_uuid, 4290 btrfs_header_chunk_tree_uuid(right), 4291 BTRFS_UUID_SIZE); 4292 4293 if (split == 0) { 4294 if (mid <= slot) { 4295 btrfs_set_header_nritems(right, 0); 4296 insert_ptr(trans, root, path, &disk_key, right->start, 4297 path->slots[1] + 1, 1); 4298 btrfs_tree_unlock(path->nodes[0]); 4299 free_extent_buffer(path->nodes[0]); 4300 path->nodes[0] = right; 4301 path->slots[0] = 0; 4302 path->slots[1] += 1; 4303 } else { 4304 btrfs_set_header_nritems(right, 0); 4305 insert_ptr(trans, root, path, &disk_key, right->start, 4306 path->slots[1], 1); 4307 btrfs_tree_unlock(path->nodes[0]); 4308 free_extent_buffer(path->nodes[0]); 4309 path->nodes[0] = right; 4310 path->slots[0] = 0; 4311 if (path->slots[1] == 0) 4312 fixup_low_keys(fs_info, path, &disk_key, 1); 4313 } 4314 /* 4315 * We create a new leaf 'right' for the required ins_len and 4316 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4317 * the content of ins_len to 'right'. 4318 */ 4319 return ret; 4320 } 4321 4322 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4323 4324 if (split == 2) { 4325 BUG_ON(num_doubles != 0); 4326 num_doubles++; 4327 goto again; 4328 } 4329 4330 return 0; 4331 4332 push_for_double: 4333 push_for_double_split(trans, root, path, data_size); 4334 tried_avoid_double = 1; 4335 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4336 return 0; 4337 goto again; 4338 } 4339 4340 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4341 struct btrfs_root *root, 4342 struct btrfs_path *path, int ins_len) 4343 { 4344 struct btrfs_key key; 4345 struct extent_buffer *leaf; 4346 struct btrfs_file_extent_item *fi; 4347 u64 extent_len = 0; 4348 u32 item_size; 4349 int ret; 4350 4351 leaf = path->nodes[0]; 4352 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4353 4354 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4355 key.type != BTRFS_EXTENT_CSUM_KEY); 4356 4357 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4358 return 0; 4359 4360 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4361 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4362 fi = btrfs_item_ptr(leaf, path->slots[0], 4363 struct btrfs_file_extent_item); 4364 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4365 } 4366 btrfs_release_path(path); 4367 4368 path->keep_locks = 1; 4369 path->search_for_split = 1; 4370 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4371 path->search_for_split = 0; 4372 if (ret > 0) 4373 ret = -EAGAIN; 4374 if (ret < 0) 4375 goto err; 4376 4377 ret = -EAGAIN; 4378 leaf = path->nodes[0]; 4379 /* if our item isn't there, return now */ 4380 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4381 goto err; 4382 4383 /* the leaf has changed, it now has room. return now */ 4384 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4385 goto err; 4386 4387 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4388 fi = btrfs_item_ptr(leaf, path->slots[0], 4389 struct btrfs_file_extent_item); 4390 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4391 goto err; 4392 } 4393 4394 btrfs_set_path_blocking(path); 4395 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4396 if (ret) 4397 goto err; 4398 4399 path->keep_locks = 0; 4400 btrfs_unlock_up_safe(path, 1); 4401 return 0; 4402 err: 4403 path->keep_locks = 0; 4404 return ret; 4405 } 4406 4407 static noinline int split_item(struct btrfs_trans_handle *trans, 4408 struct btrfs_root *root, 4409 struct btrfs_path *path, 4410 struct btrfs_key *new_key, 4411 unsigned long split_offset) 4412 { 4413 struct extent_buffer *leaf; 4414 struct btrfs_item *item; 4415 struct btrfs_item *new_item; 4416 int slot; 4417 char *buf; 4418 u32 nritems; 4419 u32 item_size; 4420 u32 orig_offset; 4421 struct btrfs_disk_key disk_key; 4422 4423 leaf = path->nodes[0]; 4424 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4425 4426 btrfs_set_path_blocking(path); 4427 4428 item = btrfs_item_nr(path->slots[0]); 4429 orig_offset = btrfs_item_offset(leaf, item); 4430 item_size = btrfs_item_size(leaf, item); 4431 4432 buf = kmalloc(item_size, GFP_NOFS); 4433 if (!buf) 4434 return -ENOMEM; 4435 4436 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4437 path->slots[0]), item_size); 4438 4439 slot = path->slots[0] + 1; 4440 nritems = btrfs_header_nritems(leaf); 4441 if (slot != nritems) { 4442 /* shift the items */ 4443 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4444 btrfs_item_nr_offset(slot), 4445 (nritems - slot) * sizeof(struct btrfs_item)); 4446 } 4447 4448 btrfs_cpu_key_to_disk(&disk_key, new_key); 4449 btrfs_set_item_key(leaf, &disk_key, slot); 4450 4451 new_item = btrfs_item_nr(slot); 4452 4453 btrfs_set_item_offset(leaf, new_item, orig_offset); 4454 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4455 4456 btrfs_set_item_offset(leaf, item, 4457 orig_offset + item_size - split_offset); 4458 btrfs_set_item_size(leaf, item, split_offset); 4459 4460 btrfs_set_header_nritems(leaf, nritems + 1); 4461 4462 /* write the data for the start of the original item */ 4463 write_extent_buffer(leaf, buf, 4464 btrfs_item_ptr_offset(leaf, path->slots[0]), 4465 split_offset); 4466 4467 /* write the data for the new item */ 4468 write_extent_buffer(leaf, buf + split_offset, 4469 btrfs_item_ptr_offset(leaf, slot), 4470 item_size - split_offset); 4471 btrfs_mark_buffer_dirty(leaf); 4472 4473 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4474 kfree(buf); 4475 return 0; 4476 } 4477 4478 /* 4479 * This function splits a single item into two items, 4480 * giving 'new_key' to the new item and splitting the 4481 * old one at split_offset (from the start of the item). 4482 * 4483 * The path may be released by this operation. After 4484 * the split, the path is pointing to the old item. The 4485 * new item is going to be in the same node as the old one. 4486 * 4487 * Note, the item being split must be smaller enough to live alone on 4488 * a tree block with room for one extra struct btrfs_item 4489 * 4490 * This allows us to split the item in place, keeping a lock on the 4491 * leaf the entire time. 4492 */ 4493 int btrfs_split_item(struct btrfs_trans_handle *trans, 4494 struct btrfs_root *root, 4495 struct btrfs_path *path, 4496 struct btrfs_key *new_key, 4497 unsigned long split_offset) 4498 { 4499 int ret; 4500 ret = setup_leaf_for_split(trans, root, path, 4501 sizeof(struct btrfs_item)); 4502 if (ret) 4503 return ret; 4504 4505 ret = split_item(trans, root, path, new_key, split_offset); 4506 return ret; 4507 } 4508 4509 /* 4510 * This function duplicate a item, giving 'new_key' to the new item. 4511 * It guarantees both items live in the same tree leaf and the new item 4512 * is contiguous with the original item. 4513 * 4514 * This allows us to split file extent in place, keeping a lock on the 4515 * leaf the entire time. 4516 */ 4517 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4518 struct btrfs_root *root, 4519 struct btrfs_path *path, 4520 struct btrfs_key *new_key) 4521 { 4522 struct extent_buffer *leaf; 4523 int ret; 4524 u32 item_size; 4525 4526 leaf = path->nodes[0]; 4527 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4528 ret = setup_leaf_for_split(trans, root, path, 4529 item_size + sizeof(struct btrfs_item)); 4530 if (ret) 4531 return ret; 4532 4533 path->slots[0]++; 4534 setup_items_for_insert(root, path, new_key, &item_size, 4535 item_size, item_size + 4536 sizeof(struct btrfs_item), 1); 4537 leaf = path->nodes[0]; 4538 memcpy_extent_buffer(leaf, 4539 btrfs_item_ptr_offset(leaf, path->slots[0]), 4540 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4541 item_size); 4542 return 0; 4543 } 4544 4545 /* 4546 * make the item pointed to by the path smaller. new_size indicates 4547 * how small to make it, and from_end tells us if we just chop bytes 4548 * off the end of the item or if we shift the item to chop bytes off 4549 * the front. 4550 */ 4551 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4552 u32 new_size, int from_end) 4553 { 4554 int slot; 4555 struct extent_buffer *leaf; 4556 struct btrfs_item *item; 4557 u32 nritems; 4558 unsigned int data_end; 4559 unsigned int old_data_start; 4560 unsigned int old_size; 4561 unsigned int size_diff; 4562 int i; 4563 struct btrfs_map_token token; 4564 4565 btrfs_init_map_token(&token); 4566 4567 leaf = path->nodes[0]; 4568 slot = path->slots[0]; 4569 4570 old_size = btrfs_item_size_nr(leaf, slot); 4571 if (old_size == new_size) 4572 return; 4573 4574 nritems = btrfs_header_nritems(leaf); 4575 data_end = leaf_data_end(root, leaf); 4576 4577 old_data_start = btrfs_item_offset_nr(leaf, slot); 4578 4579 size_diff = old_size - new_size; 4580 4581 BUG_ON(slot < 0); 4582 BUG_ON(slot >= nritems); 4583 4584 /* 4585 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4586 */ 4587 /* first correct the data pointers */ 4588 for (i = slot; i < nritems; i++) { 4589 u32 ioff; 4590 item = btrfs_item_nr(i); 4591 4592 ioff = btrfs_token_item_offset(leaf, item, &token); 4593 btrfs_set_token_item_offset(leaf, item, 4594 ioff + size_diff, &token); 4595 } 4596 4597 /* shift the data */ 4598 if (from_end) { 4599 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4600 data_end + size_diff, btrfs_leaf_data(leaf) + 4601 data_end, old_data_start + new_size - data_end); 4602 } else { 4603 struct btrfs_disk_key disk_key; 4604 u64 offset; 4605 4606 btrfs_item_key(leaf, &disk_key, slot); 4607 4608 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4609 unsigned long ptr; 4610 struct btrfs_file_extent_item *fi; 4611 4612 fi = btrfs_item_ptr(leaf, slot, 4613 struct btrfs_file_extent_item); 4614 fi = (struct btrfs_file_extent_item *)( 4615 (unsigned long)fi - size_diff); 4616 4617 if (btrfs_file_extent_type(leaf, fi) == 4618 BTRFS_FILE_EXTENT_INLINE) { 4619 ptr = btrfs_item_ptr_offset(leaf, slot); 4620 memmove_extent_buffer(leaf, ptr, 4621 (unsigned long)fi, 4622 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4623 } 4624 } 4625 4626 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4627 data_end + size_diff, btrfs_leaf_data(leaf) + 4628 data_end, old_data_start - data_end); 4629 4630 offset = btrfs_disk_key_offset(&disk_key); 4631 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4632 btrfs_set_item_key(leaf, &disk_key, slot); 4633 if (slot == 0) 4634 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4635 } 4636 4637 item = btrfs_item_nr(slot); 4638 btrfs_set_item_size(leaf, item, new_size); 4639 btrfs_mark_buffer_dirty(leaf); 4640 4641 if (btrfs_leaf_free_space(root, leaf) < 0) { 4642 btrfs_print_leaf(root, leaf); 4643 BUG(); 4644 } 4645 } 4646 4647 /* 4648 * make the item pointed to by the path bigger, data_size is the added size. 4649 */ 4650 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4651 u32 data_size) 4652 { 4653 int slot; 4654 struct extent_buffer *leaf; 4655 struct btrfs_item *item; 4656 u32 nritems; 4657 unsigned int data_end; 4658 unsigned int old_data; 4659 unsigned int old_size; 4660 int i; 4661 struct btrfs_map_token token; 4662 4663 btrfs_init_map_token(&token); 4664 4665 leaf = path->nodes[0]; 4666 4667 nritems = btrfs_header_nritems(leaf); 4668 data_end = leaf_data_end(root, leaf); 4669 4670 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4671 btrfs_print_leaf(root, leaf); 4672 BUG(); 4673 } 4674 slot = path->slots[0]; 4675 old_data = btrfs_item_end_nr(leaf, slot); 4676 4677 BUG_ON(slot < 0); 4678 if (slot >= nritems) { 4679 btrfs_print_leaf(root, leaf); 4680 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4681 slot, nritems); 4682 BUG_ON(1); 4683 } 4684 4685 /* 4686 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4687 */ 4688 /* first correct the data pointers */ 4689 for (i = slot; i < nritems; i++) { 4690 u32 ioff; 4691 item = btrfs_item_nr(i); 4692 4693 ioff = btrfs_token_item_offset(leaf, item, &token); 4694 btrfs_set_token_item_offset(leaf, item, 4695 ioff - data_size, &token); 4696 } 4697 4698 /* shift the data */ 4699 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4700 data_end - data_size, btrfs_leaf_data(leaf) + 4701 data_end, old_data - data_end); 4702 4703 data_end = old_data; 4704 old_size = btrfs_item_size_nr(leaf, slot); 4705 item = btrfs_item_nr(slot); 4706 btrfs_set_item_size(leaf, item, old_size + data_size); 4707 btrfs_mark_buffer_dirty(leaf); 4708 4709 if (btrfs_leaf_free_space(root, leaf) < 0) { 4710 btrfs_print_leaf(root, leaf); 4711 BUG(); 4712 } 4713 } 4714 4715 /* 4716 * this is a helper for btrfs_insert_empty_items, the main goal here is 4717 * to save stack depth by doing the bulk of the work in a function 4718 * that doesn't call btrfs_search_slot 4719 */ 4720 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4721 struct btrfs_key *cpu_key, u32 *data_size, 4722 u32 total_data, u32 total_size, int nr) 4723 { 4724 struct btrfs_item *item; 4725 int i; 4726 u32 nritems; 4727 unsigned int data_end; 4728 struct btrfs_disk_key disk_key; 4729 struct extent_buffer *leaf; 4730 int slot; 4731 struct btrfs_map_token token; 4732 4733 if (path->slots[0] == 0) { 4734 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4735 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4736 } 4737 btrfs_unlock_up_safe(path, 1); 4738 4739 btrfs_init_map_token(&token); 4740 4741 leaf = path->nodes[0]; 4742 slot = path->slots[0]; 4743 4744 nritems = btrfs_header_nritems(leaf); 4745 data_end = leaf_data_end(root, leaf); 4746 4747 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4748 btrfs_print_leaf(root, leaf); 4749 btrfs_crit(root->fs_info, 4750 "not enough freespace need %u have %d", 4751 total_size, btrfs_leaf_free_space(root, leaf)); 4752 BUG(); 4753 } 4754 4755 if (slot != nritems) { 4756 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4757 4758 if (old_data < data_end) { 4759 btrfs_print_leaf(root, leaf); 4760 btrfs_crit(root->fs_info, 4761 "slot %d old_data %d data_end %d", 4762 slot, old_data, data_end); 4763 BUG_ON(1); 4764 } 4765 /* 4766 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4767 */ 4768 /* first correct the data pointers */ 4769 for (i = slot; i < nritems; i++) { 4770 u32 ioff; 4771 4772 item = btrfs_item_nr(i); 4773 ioff = btrfs_token_item_offset(leaf, item, &token); 4774 btrfs_set_token_item_offset(leaf, item, 4775 ioff - total_data, &token); 4776 } 4777 /* shift the items */ 4778 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4779 btrfs_item_nr_offset(slot), 4780 (nritems - slot) * sizeof(struct btrfs_item)); 4781 4782 /* shift the data */ 4783 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4784 data_end - total_data, btrfs_leaf_data(leaf) + 4785 data_end, old_data - data_end); 4786 data_end = old_data; 4787 } 4788 4789 /* setup the item for the new data */ 4790 for (i = 0; i < nr; i++) { 4791 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4792 btrfs_set_item_key(leaf, &disk_key, slot + i); 4793 item = btrfs_item_nr(slot + i); 4794 btrfs_set_token_item_offset(leaf, item, 4795 data_end - data_size[i], &token); 4796 data_end -= data_size[i]; 4797 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4798 } 4799 4800 btrfs_set_header_nritems(leaf, nritems + nr); 4801 btrfs_mark_buffer_dirty(leaf); 4802 4803 if (btrfs_leaf_free_space(root, leaf) < 0) { 4804 btrfs_print_leaf(root, leaf); 4805 BUG(); 4806 } 4807 } 4808 4809 /* 4810 * Given a key and some data, insert items into the tree. 4811 * This does all the path init required, making room in the tree if needed. 4812 */ 4813 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4814 struct btrfs_root *root, 4815 struct btrfs_path *path, 4816 struct btrfs_key *cpu_key, u32 *data_size, 4817 int nr) 4818 { 4819 int ret = 0; 4820 int slot; 4821 int i; 4822 u32 total_size = 0; 4823 u32 total_data = 0; 4824 4825 for (i = 0; i < nr; i++) 4826 total_data += data_size[i]; 4827 4828 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4829 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4830 if (ret == 0) 4831 return -EEXIST; 4832 if (ret < 0) 4833 return ret; 4834 4835 slot = path->slots[0]; 4836 BUG_ON(slot < 0); 4837 4838 setup_items_for_insert(root, path, cpu_key, data_size, 4839 total_data, total_size, nr); 4840 return 0; 4841 } 4842 4843 /* 4844 * Given a key and some data, insert an item into the tree. 4845 * This does all the path init required, making room in the tree if needed. 4846 */ 4847 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4848 *root, struct btrfs_key *cpu_key, void *data, u32 4849 data_size) 4850 { 4851 int ret = 0; 4852 struct btrfs_path *path; 4853 struct extent_buffer *leaf; 4854 unsigned long ptr; 4855 4856 path = btrfs_alloc_path(); 4857 if (!path) 4858 return -ENOMEM; 4859 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4860 if (!ret) { 4861 leaf = path->nodes[0]; 4862 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4863 write_extent_buffer(leaf, data, ptr, data_size); 4864 btrfs_mark_buffer_dirty(leaf); 4865 } 4866 btrfs_free_path(path); 4867 return ret; 4868 } 4869 4870 /* 4871 * delete the pointer from a given node. 4872 * 4873 * the tree should have been previously balanced so the deletion does not 4874 * empty a node. 4875 */ 4876 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4877 int level, int slot) 4878 { 4879 struct extent_buffer *parent = path->nodes[level]; 4880 u32 nritems; 4881 int ret; 4882 4883 nritems = btrfs_header_nritems(parent); 4884 if (slot != nritems - 1) { 4885 if (level) 4886 tree_mod_log_eb_move(root->fs_info, parent, slot, 4887 slot + 1, nritems - slot - 1); 4888 memmove_extent_buffer(parent, 4889 btrfs_node_key_ptr_offset(slot), 4890 btrfs_node_key_ptr_offset(slot + 1), 4891 sizeof(struct btrfs_key_ptr) * 4892 (nritems - slot - 1)); 4893 } else if (level) { 4894 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4895 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4896 BUG_ON(ret < 0); 4897 } 4898 4899 nritems--; 4900 btrfs_set_header_nritems(parent, nritems); 4901 if (nritems == 0 && parent == root->node) { 4902 BUG_ON(btrfs_header_level(root->node) != 1); 4903 /* just turn the root into a leaf and break */ 4904 btrfs_set_header_level(root->node, 0); 4905 } else if (slot == 0) { 4906 struct btrfs_disk_key disk_key; 4907 4908 btrfs_node_key(parent, &disk_key, 0); 4909 fixup_low_keys(root->fs_info, path, &disk_key, level + 1); 4910 } 4911 btrfs_mark_buffer_dirty(parent); 4912 } 4913 4914 /* 4915 * a helper function to delete the leaf pointed to by path->slots[1] and 4916 * path->nodes[1]. 4917 * 4918 * This deletes the pointer in path->nodes[1] and frees the leaf 4919 * block extent. zero is returned if it all worked out, < 0 otherwise. 4920 * 4921 * The path must have already been setup for deleting the leaf, including 4922 * all the proper balancing. path->nodes[1] must be locked. 4923 */ 4924 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4925 struct btrfs_root *root, 4926 struct btrfs_path *path, 4927 struct extent_buffer *leaf) 4928 { 4929 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4930 del_ptr(root, path, 1, path->slots[1]); 4931 4932 /* 4933 * btrfs_free_extent is expensive, we want to make sure we 4934 * aren't holding any locks when we call it 4935 */ 4936 btrfs_unlock_up_safe(path, 0); 4937 4938 root_sub_used(root, leaf->len); 4939 4940 extent_buffer_get(leaf); 4941 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4942 free_extent_buffer_stale(leaf); 4943 } 4944 /* 4945 * delete the item at the leaf level in path. If that empties 4946 * the leaf, remove it from the tree 4947 */ 4948 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4949 struct btrfs_path *path, int slot, int nr) 4950 { 4951 struct extent_buffer *leaf; 4952 struct btrfs_item *item; 4953 u32 last_off; 4954 u32 dsize = 0; 4955 int ret = 0; 4956 int wret; 4957 int i; 4958 u32 nritems; 4959 struct btrfs_map_token token; 4960 4961 btrfs_init_map_token(&token); 4962 4963 leaf = path->nodes[0]; 4964 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4965 4966 for (i = 0; i < nr; i++) 4967 dsize += btrfs_item_size_nr(leaf, slot + i); 4968 4969 nritems = btrfs_header_nritems(leaf); 4970 4971 if (slot + nr != nritems) { 4972 int data_end = leaf_data_end(root, leaf); 4973 4974 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4975 data_end + dsize, 4976 btrfs_leaf_data(leaf) + data_end, 4977 last_off - data_end); 4978 4979 for (i = slot + nr; i < nritems; i++) { 4980 u32 ioff; 4981 4982 item = btrfs_item_nr(i); 4983 ioff = btrfs_token_item_offset(leaf, item, &token); 4984 btrfs_set_token_item_offset(leaf, item, 4985 ioff + dsize, &token); 4986 } 4987 4988 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4989 btrfs_item_nr_offset(slot + nr), 4990 sizeof(struct btrfs_item) * 4991 (nritems - slot - nr)); 4992 } 4993 btrfs_set_header_nritems(leaf, nritems - nr); 4994 nritems -= nr; 4995 4996 /* delete the leaf if we've emptied it */ 4997 if (nritems == 0) { 4998 if (leaf == root->node) { 4999 btrfs_set_header_level(leaf, 0); 5000 } else { 5001 btrfs_set_path_blocking(path); 5002 clean_tree_block(trans, root->fs_info, leaf); 5003 btrfs_del_leaf(trans, root, path, leaf); 5004 } 5005 } else { 5006 int used = leaf_space_used(leaf, 0, nritems); 5007 if (slot == 0) { 5008 struct btrfs_disk_key disk_key; 5009 5010 btrfs_item_key(leaf, &disk_key, 0); 5011 fixup_low_keys(root->fs_info, path, &disk_key, 1); 5012 } 5013 5014 /* delete the leaf if it is mostly empty */ 5015 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5016 /* push_leaf_left fixes the path. 5017 * make sure the path still points to our leaf 5018 * for possible call to del_ptr below 5019 */ 5020 slot = path->slots[1]; 5021 extent_buffer_get(leaf); 5022 5023 btrfs_set_path_blocking(path); 5024 wret = push_leaf_left(trans, root, path, 1, 1, 5025 1, (u32)-1); 5026 if (wret < 0 && wret != -ENOSPC) 5027 ret = wret; 5028 5029 if (path->nodes[0] == leaf && 5030 btrfs_header_nritems(leaf)) { 5031 wret = push_leaf_right(trans, root, path, 1, 5032 1, 1, 0); 5033 if (wret < 0 && wret != -ENOSPC) 5034 ret = wret; 5035 } 5036 5037 if (btrfs_header_nritems(leaf) == 0) { 5038 path->slots[1] = slot; 5039 btrfs_del_leaf(trans, root, path, leaf); 5040 free_extent_buffer(leaf); 5041 ret = 0; 5042 } else { 5043 /* if we're still in the path, make sure 5044 * we're dirty. Otherwise, one of the 5045 * push_leaf functions must have already 5046 * dirtied this buffer 5047 */ 5048 if (path->nodes[0] == leaf) 5049 btrfs_mark_buffer_dirty(leaf); 5050 free_extent_buffer(leaf); 5051 } 5052 } else { 5053 btrfs_mark_buffer_dirty(leaf); 5054 } 5055 } 5056 return ret; 5057 } 5058 5059 /* 5060 * search the tree again to find a leaf with lesser keys 5061 * returns 0 if it found something or 1 if there are no lesser leaves. 5062 * returns < 0 on io errors. 5063 * 5064 * This may release the path, and so you may lose any locks held at the 5065 * time you call it. 5066 */ 5067 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5068 { 5069 struct btrfs_key key; 5070 struct btrfs_disk_key found_key; 5071 int ret; 5072 5073 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5074 5075 if (key.offset > 0) { 5076 key.offset--; 5077 } else if (key.type > 0) { 5078 key.type--; 5079 key.offset = (u64)-1; 5080 } else if (key.objectid > 0) { 5081 key.objectid--; 5082 key.type = (u8)-1; 5083 key.offset = (u64)-1; 5084 } else { 5085 return 1; 5086 } 5087 5088 btrfs_release_path(path); 5089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5090 if (ret < 0) 5091 return ret; 5092 btrfs_item_key(path->nodes[0], &found_key, 0); 5093 ret = comp_keys(&found_key, &key); 5094 /* 5095 * We might have had an item with the previous key in the tree right 5096 * before we released our path. And after we released our path, that 5097 * item might have been pushed to the first slot (0) of the leaf we 5098 * were holding due to a tree balance. Alternatively, an item with the 5099 * previous key can exist as the only element of a leaf (big fat item). 5100 * Therefore account for these 2 cases, so that our callers (like 5101 * btrfs_previous_item) don't miss an existing item with a key matching 5102 * the previous key we computed above. 5103 */ 5104 if (ret <= 0) 5105 return 0; 5106 return 1; 5107 } 5108 5109 /* 5110 * A helper function to walk down the tree starting at min_key, and looking 5111 * for nodes or leaves that are have a minimum transaction id. 5112 * This is used by the btree defrag code, and tree logging 5113 * 5114 * This does not cow, but it does stuff the starting key it finds back 5115 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5116 * key and get a writable path. 5117 * 5118 * This does lock as it descends, and path->keep_locks should be set 5119 * to 1 by the caller. 5120 * 5121 * This honors path->lowest_level to prevent descent past a given level 5122 * of the tree. 5123 * 5124 * min_trans indicates the oldest transaction that you are interested 5125 * in walking through. Any nodes or leaves older than min_trans are 5126 * skipped over (without reading them). 5127 * 5128 * returns zero if something useful was found, < 0 on error and 1 if there 5129 * was nothing in the tree that matched the search criteria. 5130 */ 5131 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5132 struct btrfs_path *path, 5133 u64 min_trans) 5134 { 5135 struct extent_buffer *cur; 5136 struct btrfs_key found_key; 5137 int slot; 5138 int sret; 5139 u32 nritems; 5140 int level; 5141 int ret = 1; 5142 int keep_locks = path->keep_locks; 5143 5144 path->keep_locks = 1; 5145 again: 5146 cur = btrfs_read_lock_root_node(root); 5147 level = btrfs_header_level(cur); 5148 WARN_ON(path->nodes[level]); 5149 path->nodes[level] = cur; 5150 path->locks[level] = BTRFS_READ_LOCK; 5151 5152 if (btrfs_header_generation(cur) < min_trans) { 5153 ret = 1; 5154 goto out; 5155 } 5156 while (1) { 5157 nritems = btrfs_header_nritems(cur); 5158 level = btrfs_header_level(cur); 5159 sret = bin_search(cur, min_key, level, &slot); 5160 5161 /* at the lowest level, we're done, setup the path and exit */ 5162 if (level == path->lowest_level) { 5163 if (slot >= nritems) 5164 goto find_next_key; 5165 ret = 0; 5166 path->slots[level] = slot; 5167 btrfs_item_key_to_cpu(cur, &found_key, slot); 5168 goto out; 5169 } 5170 if (sret && slot > 0) 5171 slot--; 5172 /* 5173 * check this node pointer against the min_trans parameters. 5174 * If it is too old, old, skip to the next one. 5175 */ 5176 while (slot < nritems) { 5177 u64 gen; 5178 5179 gen = btrfs_node_ptr_generation(cur, slot); 5180 if (gen < min_trans) { 5181 slot++; 5182 continue; 5183 } 5184 break; 5185 } 5186 find_next_key: 5187 /* 5188 * we didn't find a candidate key in this node, walk forward 5189 * and find another one 5190 */ 5191 if (slot >= nritems) { 5192 path->slots[level] = slot; 5193 btrfs_set_path_blocking(path); 5194 sret = btrfs_find_next_key(root, path, min_key, level, 5195 min_trans); 5196 if (sret == 0) { 5197 btrfs_release_path(path); 5198 goto again; 5199 } else { 5200 goto out; 5201 } 5202 } 5203 /* save our key for returning back */ 5204 btrfs_node_key_to_cpu(cur, &found_key, slot); 5205 path->slots[level] = slot; 5206 if (level == path->lowest_level) { 5207 ret = 0; 5208 goto out; 5209 } 5210 btrfs_set_path_blocking(path); 5211 cur = read_node_slot(root, cur, slot); 5212 if (IS_ERR(cur)) { 5213 ret = PTR_ERR(cur); 5214 goto out; 5215 } 5216 5217 btrfs_tree_read_lock(cur); 5218 5219 path->locks[level - 1] = BTRFS_READ_LOCK; 5220 path->nodes[level - 1] = cur; 5221 unlock_up(path, level, 1, 0, NULL); 5222 btrfs_clear_path_blocking(path, NULL, 0); 5223 } 5224 out: 5225 path->keep_locks = keep_locks; 5226 if (ret == 0) { 5227 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5228 btrfs_set_path_blocking(path); 5229 memcpy(min_key, &found_key, sizeof(found_key)); 5230 } 5231 return ret; 5232 } 5233 5234 static int tree_move_down(struct btrfs_root *root, 5235 struct btrfs_path *path, 5236 int *level, int root_level) 5237 { 5238 struct extent_buffer *eb; 5239 5240 BUG_ON(*level == 0); 5241 eb = read_node_slot(root, path->nodes[*level], path->slots[*level]); 5242 if (IS_ERR(eb)) 5243 return PTR_ERR(eb); 5244 5245 path->nodes[*level - 1] = eb; 5246 path->slots[*level - 1] = 0; 5247 (*level)--; 5248 return 0; 5249 } 5250 5251 static int tree_move_next_or_upnext(struct btrfs_root *root, 5252 struct btrfs_path *path, 5253 int *level, int root_level) 5254 { 5255 int ret = 0; 5256 int nritems; 5257 nritems = btrfs_header_nritems(path->nodes[*level]); 5258 5259 path->slots[*level]++; 5260 5261 while (path->slots[*level] >= nritems) { 5262 if (*level == root_level) 5263 return -1; 5264 5265 /* move upnext */ 5266 path->slots[*level] = 0; 5267 free_extent_buffer(path->nodes[*level]); 5268 path->nodes[*level] = NULL; 5269 (*level)++; 5270 path->slots[*level]++; 5271 5272 nritems = btrfs_header_nritems(path->nodes[*level]); 5273 ret = 1; 5274 } 5275 return ret; 5276 } 5277 5278 /* 5279 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5280 * or down. 5281 */ 5282 static int tree_advance(struct btrfs_root *root, 5283 struct btrfs_path *path, 5284 int *level, int root_level, 5285 int allow_down, 5286 struct btrfs_key *key) 5287 { 5288 int ret; 5289 5290 if (*level == 0 || !allow_down) { 5291 ret = tree_move_next_or_upnext(root, path, level, root_level); 5292 } else { 5293 ret = tree_move_down(root, path, level, root_level); 5294 } 5295 if (ret >= 0) { 5296 if (*level == 0) 5297 btrfs_item_key_to_cpu(path->nodes[*level], key, 5298 path->slots[*level]); 5299 else 5300 btrfs_node_key_to_cpu(path->nodes[*level], key, 5301 path->slots[*level]); 5302 } 5303 return ret; 5304 } 5305 5306 static int tree_compare_item(struct btrfs_root *left_root, 5307 struct btrfs_path *left_path, 5308 struct btrfs_path *right_path, 5309 char *tmp_buf) 5310 { 5311 int cmp; 5312 int len1, len2; 5313 unsigned long off1, off2; 5314 5315 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5316 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5317 if (len1 != len2) 5318 return 1; 5319 5320 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5321 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5322 right_path->slots[0]); 5323 5324 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5325 5326 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5327 if (cmp) 5328 return 1; 5329 return 0; 5330 } 5331 5332 #define ADVANCE 1 5333 #define ADVANCE_ONLY_NEXT -1 5334 5335 /* 5336 * This function compares two trees and calls the provided callback for 5337 * every changed/new/deleted item it finds. 5338 * If shared tree blocks are encountered, whole subtrees are skipped, making 5339 * the compare pretty fast on snapshotted subvolumes. 5340 * 5341 * This currently works on commit roots only. As commit roots are read only, 5342 * we don't do any locking. The commit roots are protected with transactions. 5343 * Transactions are ended and rejoined when a commit is tried in between. 5344 * 5345 * This function checks for modifications done to the trees while comparing. 5346 * If it detects a change, it aborts immediately. 5347 */ 5348 int btrfs_compare_trees(struct btrfs_root *left_root, 5349 struct btrfs_root *right_root, 5350 btrfs_changed_cb_t changed_cb, void *ctx) 5351 { 5352 int ret; 5353 int cmp; 5354 struct btrfs_path *left_path = NULL; 5355 struct btrfs_path *right_path = NULL; 5356 struct btrfs_key left_key; 5357 struct btrfs_key right_key; 5358 char *tmp_buf = NULL; 5359 int left_root_level; 5360 int right_root_level; 5361 int left_level; 5362 int right_level; 5363 int left_end_reached; 5364 int right_end_reached; 5365 int advance_left; 5366 int advance_right; 5367 u64 left_blockptr; 5368 u64 right_blockptr; 5369 u64 left_gen; 5370 u64 right_gen; 5371 5372 left_path = btrfs_alloc_path(); 5373 if (!left_path) { 5374 ret = -ENOMEM; 5375 goto out; 5376 } 5377 right_path = btrfs_alloc_path(); 5378 if (!right_path) { 5379 ret = -ENOMEM; 5380 goto out; 5381 } 5382 5383 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN); 5384 if (!tmp_buf) { 5385 tmp_buf = vmalloc(left_root->nodesize); 5386 if (!tmp_buf) { 5387 ret = -ENOMEM; 5388 goto out; 5389 } 5390 } 5391 5392 left_path->search_commit_root = 1; 5393 left_path->skip_locking = 1; 5394 right_path->search_commit_root = 1; 5395 right_path->skip_locking = 1; 5396 5397 /* 5398 * Strategy: Go to the first items of both trees. Then do 5399 * 5400 * If both trees are at level 0 5401 * Compare keys of current items 5402 * If left < right treat left item as new, advance left tree 5403 * and repeat 5404 * If left > right treat right item as deleted, advance right tree 5405 * and repeat 5406 * If left == right do deep compare of items, treat as changed if 5407 * needed, advance both trees and repeat 5408 * If both trees are at the same level but not at level 0 5409 * Compare keys of current nodes/leafs 5410 * If left < right advance left tree and repeat 5411 * If left > right advance right tree and repeat 5412 * If left == right compare blockptrs of the next nodes/leafs 5413 * If they match advance both trees but stay at the same level 5414 * and repeat 5415 * If they don't match advance both trees while allowing to go 5416 * deeper and repeat 5417 * If tree levels are different 5418 * Advance the tree that needs it and repeat 5419 * 5420 * Advancing a tree means: 5421 * If we are at level 0, try to go to the next slot. If that's not 5422 * possible, go one level up and repeat. Stop when we found a level 5423 * where we could go to the next slot. We may at this point be on a 5424 * node or a leaf. 5425 * 5426 * If we are not at level 0 and not on shared tree blocks, go one 5427 * level deeper. 5428 * 5429 * If we are not at level 0 and on shared tree blocks, go one slot to 5430 * the right if possible or go up and right. 5431 */ 5432 5433 down_read(&left_root->fs_info->commit_root_sem); 5434 left_level = btrfs_header_level(left_root->commit_root); 5435 left_root_level = left_level; 5436 left_path->nodes[left_level] = left_root->commit_root; 5437 extent_buffer_get(left_path->nodes[left_level]); 5438 5439 right_level = btrfs_header_level(right_root->commit_root); 5440 right_root_level = right_level; 5441 right_path->nodes[right_level] = right_root->commit_root; 5442 extent_buffer_get(right_path->nodes[right_level]); 5443 up_read(&left_root->fs_info->commit_root_sem); 5444 5445 if (left_level == 0) 5446 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5447 &left_key, left_path->slots[left_level]); 5448 else 5449 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5450 &left_key, left_path->slots[left_level]); 5451 if (right_level == 0) 5452 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5453 &right_key, right_path->slots[right_level]); 5454 else 5455 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5456 &right_key, right_path->slots[right_level]); 5457 5458 left_end_reached = right_end_reached = 0; 5459 advance_left = advance_right = 0; 5460 5461 while (1) { 5462 if (advance_left && !left_end_reached) { 5463 ret = tree_advance(left_root, left_path, &left_level, 5464 left_root_level, 5465 advance_left != ADVANCE_ONLY_NEXT, 5466 &left_key); 5467 if (ret == -1) 5468 left_end_reached = ADVANCE; 5469 else if (ret < 0) 5470 goto out; 5471 advance_left = 0; 5472 } 5473 if (advance_right && !right_end_reached) { 5474 ret = tree_advance(right_root, right_path, &right_level, 5475 right_root_level, 5476 advance_right != ADVANCE_ONLY_NEXT, 5477 &right_key); 5478 if (ret == -1) 5479 right_end_reached = ADVANCE; 5480 else if (ret < 0) 5481 goto out; 5482 advance_right = 0; 5483 } 5484 5485 if (left_end_reached && right_end_reached) { 5486 ret = 0; 5487 goto out; 5488 } else if (left_end_reached) { 5489 if (right_level == 0) { 5490 ret = changed_cb(left_root, right_root, 5491 left_path, right_path, 5492 &right_key, 5493 BTRFS_COMPARE_TREE_DELETED, 5494 ctx); 5495 if (ret < 0) 5496 goto out; 5497 } 5498 advance_right = ADVANCE; 5499 continue; 5500 } else if (right_end_reached) { 5501 if (left_level == 0) { 5502 ret = changed_cb(left_root, right_root, 5503 left_path, right_path, 5504 &left_key, 5505 BTRFS_COMPARE_TREE_NEW, 5506 ctx); 5507 if (ret < 0) 5508 goto out; 5509 } 5510 advance_left = ADVANCE; 5511 continue; 5512 } 5513 5514 if (left_level == 0 && right_level == 0) { 5515 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5516 if (cmp < 0) { 5517 ret = changed_cb(left_root, right_root, 5518 left_path, right_path, 5519 &left_key, 5520 BTRFS_COMPARE_TREE_NEW, 5521 ctx); 5522 if (ret < 0) 5523 goto out; 5524 advance_left = ADVANCE; 5525 } else if (cmp > 0) { 5526 ret = changed_cb(left_root, right_root, 5527 left_path, right_path, 5528 &right_key, 5529 BTRFS_COMPARE_TREE_DELETED, 5530 ctx); 5531 if (ret < 0) 5532 goto out; 5533 advance_right = ADVANCE; 5534 } else { 5535 enum btrfs_compare_tree_result result; 5536 5537 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5538 ret = tree_compare_item(left_root, left_path, 5539 right_path, tmp_buf); 5540 if (ret) 5541 result = BTRFS_COMPARE_TREE_CHANGED; 5542 else 5543 result = BTRFS_COMPARE_TREE_SAME; 5544 ret = changed_cb(left_root, right_root, 5545 left_path, right_path, 5546 &left_key, result, ctx); 5547 if (ret < 0) 5548 goto out; 5549 advance_left = ADVANCE; 5550 advance_right = ADVANCE; 5551 } 5552 } else if (left_level == right_level) { 5553 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5554 if (cmp < 0) { 5555 advance_left = ADVANCE; 5556 } else if (cmp > 0) { 5557 advance_right = ADVANCE; 5558 } else { 5559 left_blockptr = btrfs_node_blockptr( 5560 left_path->nodes[left_level], 5561 left_path->slots[left_level]); 5562 right_blockptr = btrfs_node_blockptr( 5563 right_path->nodes[right_level], 5564 right_path->slots[right_level]); 5565 left_gen = btrfs_node_ptr_generation( 5566 left_path->nodes[left_level], 5567 left_path->slots[left_level]); 5568 right_gen = btrfs_node_ptr_generation( 5569 right_path->nodes[right_level], 5570 right_path->slots[right_level]); 5571 if (left_blockptr == right_blockptr && 5572 left_gen == right_gen) { 5573 /* 5574 * As we're on a shared block, don't 5575 * allow to go deeper. 5576 */ 5577 advance_left = ADVANCE_ONLY_NEXT; 5578 advance_right = ADVANCE_ONLY_NEXT; 5579 } else { 5580 advance_left = ADVANCE; 5581 advance_right = ADVANCE; 5582 } 5583 } 5584 } else if (left_level < right_level) { 5585 advance_right = ADVANCE; 5586 } else { 5587 advance_left = ADVANCE; 5588 } 5589 } 5590 5591 out: 5592 btrfs_free_path(left_path); 5593 btrfs_free_path(right_path); 5594 kvfree(tmp_buf); 5595 return ret; 5596 } 5597 5598 /* 5599 * this is similar to btrfs_next_leaf, but does not try to preserve 5600 * and fixup the path. It looks for and returns the next key in the 5601 * tree based on the current path and the min_trans parameters. 5602 * 5603 * 0 is returned if another key is found, < 0 if there are any errors 5604 * and 1 is returned if there are no higher keys in the tree 5605 * 5606 * path->keep_locks should be set to 1 on the search made before 5607 * calling this function. 5608 */ 5609 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5610 struct btrfs_key *key, int level, u64 min_trans) 5611 { 5612 int slot; 5613 struct extent_buffer *c; 5614 5615 WARN_ON(!path->keep_locks); 5616 while (level < BTRFS_MAX_LEVEL) { 5617 if (!path->nodes[level]) 5618 return 1; 5619 5620 slot = path->slots[level] + 1; 5621 c = path->nodes[level]; 5622 next: 5623 if (slot >= btrfs_header_nritems(c)) { 5624 int ret; 5625 int orig_lowest; 5626 struct btrfs_key cur_key; 5627 if (level + 1 >= BTRFS_MAX_LEVEL || 5628 !path->nodes[level + 1]) 5629 return 1; 5630 5631 if (path->locks[level + 1]) { 5632 level++; 5633 continue; 5634 } 5635 5636 slot = btrfs_header_nritems(c) - 1; 5637 if (level == 0) 5638 btrfs_item_key_to_cpu(c, &cur_key, slot); 5639 else 5640 btrfs_node_key_to_cpu(c, &cur_key, slot); 5641 5642 orig_lowest = path->lowest_level; 5643 btrfs_release_path(path); 5644 path->lowest_level = level; 5645 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5646 0, 0); 5647 path->lowest_level = orig_lowest; 5648 if (ret < 0) 5649 return ret; 5650 5651 c = path->nodes[level]; 5652 slot = path->slots[level]; 5653 if (ret == 0) 5654 slot++; 5655 goto next; 5656 } 5657 5658 if (level == 0) 5659 btrfs_item_key_to_cpu(c, key, slot); 5660 else { 5661 u64 gen = btrfs_node_ptr_generation(c, slot); 5662 5663 if (gen < min_trans) { 5664 slot++; 5665 goto next; 5666 } 5667 btrfs_node_key_to_cpu(c, key, slot); 5668 } 5669 return 0; 5670 } 5671 return 1; 5672 } 5673 5674 /* 5675 * search the tree again to find a leaf with greater keys 5676 * returns 0 if it found something or 1 if there are no greater leaves. 5677 * returns < 0 on io errors. 5678 */ 5679 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5680 { 5681 return btrfs_next_old_leaf(root, path, 0); 5682 } 5683 5684 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5685 u64 time_seq) 5686 { 5687 int slot; 5688 int level; 5689 struct extent_buffer *c; 5690 struct extent_buffer *next; 5691 struct btrfs_key key; 5692 u32 nritems; 5693 int ret; 5694 int old_spinning = path->leave_spinning; 5695 int next_rw_lock = 0; 5696 5697 nritems = btrfs_header_nritems(path->nodes[0]); 5698 if (nritems == 0) 5699 return 1; 5700 5701 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5702 again: 5703 level = 1; 5704 next = NULL; 5705 next_rw_lock = 0; 5706 btrfs_release_path(path); 5707 5708 path->keep_locks = 1; 5709 path->leave_spinning = 1; 5710 5711 if (time_seq) 5712 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5713 else 5714 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5715 path->keep_locks = 0; 5716 5717 if (ret < 0) 5718 return ret; 5719 5720 nritems = btrfs_header_nritems(path->nodes[0]); 5721 /* 5722 * by releasing the path above we dropped all our locks. A balance 5723 * could have added more items next to the key that used to be 5724 * at the very end of the block. So, check again here and 5725 * advance the path if there are now more items available. 5726 */ 5727 if (nritems > 0 && path->slots[0] < nritems - 1) { 5728 if (ret == 0) 5729 path->slots[0]++; 5730 ret = 0; 5731 goto done; 5732 } 5733 /* 5734 * So the above check misses one case: 5735 * - after releasing the path above, someone has removed the item that 5736 * used to be at the very end of the block, and balance between leafs 5737 * gets another one with bigger key.offset to replace it. 5738 * 5739 * This one should be returned as well, or we can get leaf corruption 5740 * later(esp. in __btrfs_drop_extents()). 5741 * 5742 * And a bit more explanation about this check, 5743 * with ret > 0, the key isn't found, the path points to the slot 5744 * where it should be inserted, so the path->slots[0] item must be the 5745 * bigger one. 5746 */ 5747 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5748 ret = 0; 5749 goto done; 5750 } 5751 5752 while (level < BTRFS_MAX_LEVEL) { 5753 if (!path->nodes[level]) { 5754 ret = 1; 5755 goto done; 5756 } 5757 5758 slot = path->slots[level] + 1; 5759 c = path->nodes[level]; 5760 if (slot >= btrfs_header_nritems(c)) { 5761 level++; 5762 if (level == BTRFS_MAX_LEVEL) { 5763 ret = 1; 5764 goto done; 5765 } 5766 continue; 5767 } 5768 5769 if (next) { 5770 btrfs_tree_unlock_rw(next, next_rw_lock); 5771 free_extent_buffer(next); 5772 } 5773 5774 next = c; 5775 next_rw_lock = path->locks[level]; 5776 ret = read_block_for_search(NULL, root, path, &next, level, 5777 slot, &key, 0); 5778 if (ret == -EAGAIN) 5779 goto again; 5780 5781 if (ret < 0) { 5782 btrfs_release_path(path); 5783 goto done; 5784 } 5785 5786 if (!path->skip_locking) { 5787 ret = btrfs_try_tree_read_lock(next); 5788 if (!ret && time_seq) { 5789 /* 5790 * If we don't get the lock, we may be racing 5791 * with push_leaf_left, holding that lock while 5792 * itself waiting for the leaf we've currently 5793 * locked. To solve this situation, we give up 5794 * on our lock and cycle. 5795 */ 5796 free_extent_buffer(next); 5797 btrfs_release_path(path); 5798 cond_resched(); 5799 goto again; 5800 } 5801 if (!ret) { 5802 btrfs_set_path_blocking(path); 5803 btrfs_tree_read_lock(next); 5804 btrfs_clear_path_blocking(path, next, 5805 BTRFS_READ_LOCK); 5806 } 5807 next_rw_lock = BTRFS_READ_LOCK; 5808 } 5809 break; 5810 } 5811 path->slots[level] = slot; 5812 while (1) { 5813 level--; 5814 c = path->nodes[level]; 5815 if (path->locks[level]) 5816 btrfs_tree_unlock_rw(c, path->locks[level]); 5817 5818 free_extent_buffer(c); 5819 path->nodes[level] = next; 5820 path->slots[level] = 0; 5821 if (!path->skip_locking) 5822 path->locks[level] = next_rw_lock; 5823 if (!level) 5824 break; 5825 5826 ret = read_block_for_search(NULL, root, path, &next, level, 5827 0, &key, 0); 5828 if (ret == -EAGAIN) 5829 goto again; 5830 5831 if (ret < 0) { 5832 btrfs_release_path(path); 5833 goto done; 5834 } 5835 5836 if (!path->skip_locking) { 5837 ret = btrfs_try_tree_read_lock(next); 5838 if (!ret) { 5839 btrfs_set_path_blocking(path); 5840 btrfs_tree_read_lock(next); 5841 btrfs_clear_path_blocking(path, next, 5842 BTRFS_READ_LOCK); 5843 } 5844 next_rw_lock = BTRFS_READ_LOCK; 5845 } 5846 } 5847 ret = 0; 5848 done: 5849 unlock_up(path, 0, 1, 0, NULL); 5850 path->leave_spinning = old_spinning; 5851 if (!old_spinning) 5852 btrfs_set_path_blocking(path); 5853 5854 return ret; 5855 } 5856 5857 /* 5858 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5859 * searching until it gets past min_objectid or finds an item of 'type' 5860 * 5861 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5862 */ 5863 int btrfs_previous_item(struct btrfs_root *root, 5864 struct btrfs_path *path, u64 min_objectid, 5865 int type) 5866 { 5867 struct btrfs_key found_key; 5868 struct extent_buffer *leaf; 5869 u32 nritems; 5870 int ret; 5871 5872 while (1) { 5873 if (path->slots[0] == 0) { 5874 btrfs_set_path_blocking(path); 5875 ret = btrfs_prev_leaf(root, path); 5876 if (ret != 0) 5877 return ret; 5878 } else { 5879 path->slots[0]--; 5880 } 5881 leaf = path->nodes[0]; 5882 nritems = btrfs_header_nritems(leaf); 5883 if (nritems == 0) 5884 return 1; 5885 if (path->slots[0] == nritems) 5886 path->slots[0]--; 5887 5888 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5889 if (found_key.objectid < min_objectid) 5890 break; 5891 if (found_key.type == type) 5892 return 0; 5893 if (found_key.objectid == min_objectid && 5894 found_key.type < type) 5895 break; 5896 } 5897 return 1; 5898 } 5899 5900 /* 5901 * search in extent tree to find a previous Metadata/Data extent item with 5902 * min objecitd. 5903 * 5904 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5905 */ 5906 int btrfs_previous_extent_item(struct btrfs_root *root, 5907 struct btrfs_path *path, u64 min_objectid) 5908 { 5909 struct btrfs_key found_key; 5910 struct extent_buffer *leaf; 5911 u32 nritems; 5912 int ret; 5913 5914 while (1) { 5915 if (path->slots[0] == 0) { 5916 btrfs_set_path_blocking(path); 5917 ret = btrfs_prev_leaf(root, path); 5918 if (ret != 0) 5919 return ret; 5920 } else { 5921 path->slots[0]--; 5922 } 5923 leaf = path->nodes[0]; 5924 nritems = btrfs_header_nritems(leaf); 5925 if (nritems == 0) 5926 return 1; 5927 if (path->slots[0] == nritems) 5928 path->slots[0]--; 5929 5930 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5931 if (found_key.objectid < min_objectid) 5932 break; 5933 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5934 found_key.type == BTRFS_METADATA_ITEM_KEY) 5935 return 0; 5936 if (found_key.objectid == min_objectid && 5937 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5938 break; 5939 } 5940 return 1; 5941 } 5942