1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char *name; 35 const char *driver; 36 } btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42 }; 43 44 int btrfs_super_csum_size(const struct btrfs_super_block *s) 45 { 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51 } 52 53 const char *btrfs_super_csum_name(u16 csum_type) 54 { 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57 } 58 59 /* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63 const char *btrfs_super_csum_driver(u16 csum_type) 64 { 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver ?: 67 btrfs_csums[csum_type].name; 68 } 69 70 size_t __const btrfs_get_num_csums(void) 71 { 72 return ARRAY_SIZE(btrfs_csums); 73 } 74 75 struct btrfs_path *btrfs_alloc_path(void) 76 { 77 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 78 } 79 80 /* this also releases the path */ 81 void btrfs_free_path(struct btrfs_path *p) 82 { 83 if (!p) 84 return; 85 btrfs_release_path(p); 86 kmem_cache_free(btrfs_path_cachep, p); 87 } 88 89 /* 90 * path release drops references on the extent buffers in the path 91 * and it drops any locks held by this path 92 * 93 * It is safe to call this on paths that no locks or extent buffers held. 94 */ 95 noinline void btrfs_release_path(struct btrfs_path *p) 96 { 97 int i; 98 99 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 100 p->slots[i] = 0; 101 if (!p->nodes[i]) 102 continue; 103 if (p->locks[i]) { 104 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 105 p->locks[i] = 0; 106 } 107 free_extent_buffer(p->nodes[i]); 108 p->nodes[i] = NULL; 109 } 110 } 111 112 /* 113 * safely gets a reference on the root node of a tree. A lock 114 * is not taken, so a concurrent writer may put a different node 115 * at the root of the tree. See btrfs_lock_root_node for the 116 * looping required. 117 * 118 * The extent buffer returned by this has a reference taken, so 119 * it won't disappear. It may stop being the root of the tree 120 * at any time because there are no locks held. 121 */ 122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 123 { 124 struct extent_buffer *eb; 125 126 while (1) { 127 rcu_read_lock(); 128 eb = rcu_dereference(root->node); 129 130 /* 131 * RCU really hurts here, we could free up the root node because 132 * it was COWed but we may not get the new root node yet so do 133 * the inc_not_zero dance and if it doesn't work then 134 * synchronize_rcu and try again. 135 */ 136 if (atomic_inc_not_zero(&eb->refs)) { 137 rcu_read_unlock(); 138 break; 139 } 140 rcu_read_unlock(); 141 synchronize_rcu(); 142 } 143 return eb; 144 } 145 146 /* loop around taking references on and locking the root node of the 147 * tree until you end up with a lock on the root. A locked buffer 148 * is returned, with a reference held. 149 */ 150 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 151 { 152 struct extent_buffer *eb; 153 154 while (1) { 155 eb = btrfs_root_node(root); 156 btrfs_tree_lock(eb); 157 if (eb == root->node) 158 break; 159 btrfs_tree_unlock(eb); 160 free_extent_buffer(eb); 161 } 162 return eb; 163 } 164 165 /* loop around taking references on and locking the root node of the 166 * tree until you end up with a lock on the root. A locked buffer 167 * is returned, with a reference held. 168 */ 169 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 170 { 171 struct extent_buffer *eb; 172 173 while (1) { 174 eb = btrfs_root_node(root); 175 btrfs_tree_read_lock(eb); 176 if (eb == root->node) 177 break; 178 btrfs_tree_read_unlock(eb); 179 free_extent_buffer(eb); 180 } 181 return eb; 182 } 183 184 /* cowonly root (everything not a reference counted cow subvolume), just get 185 * put onto a simple dirty list. transaction.c walks this to make sure they 186 * get properly updated on disk. 187 */ 188 static void add_root_to_dirty_list(struct btrfs_root *root) 189 { 190 struct btrfs_fs_info *fs_info = root->fs_info; 191 192 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 193 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 194 return; 195 196 spin_lock(&fs_info->trans_lock); 197 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 198 /* Want the extent tree to be the last on the list */ 199 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 200 list_move_tail(&root->dirty_list, 201 &fs_info->dirty_cowonly_roots); 202 else 203 list_move(&root->dirty_list, 204 &fs_info->dirty_cowonly_roots); 205 } 206 spin_unlock(&fs_info->trans_lock); 207 } 208 209 /* 210 * used by snapshot creation to make a copy of a root for a tree with 211 * a given objectid. The buffer with the new root node is returned in 212 * cow_ret, and this func returns zero on success or a negative error code. 213 */ 214 int btrfs_copy_root(struct btrfs_trans_handle *trans, 215 struct btrfs_root *root, 216 struct extent_buffer *buf, 217 struct extent_buffer **cow_ret, u64 new_root_objectid) 218 { 219 struct btrfs_fs_info *fs_info = root->fs_info; 220 struct extent_buffer *cow; 221 int ret = 0; 222 int level; 223 struct btrfs_disk_key disk_key; 224 225 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 226 trans->transid != fs_info->running_transaction->transid); 227 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 228 trans->transid != root->last_trans); 229 230 level = btrfs_header_level(buf); 231 if (level == 0) 232 btrfs_item_key(buf, &disk_key, 0); 233 else 234 btrfs_node_key(buf, &disk_key, 0); 235 236 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 237 &disk_key, level, buf->start, 0); 238 if (IS_ERR(cow)) 239 return PTR_ERR(cow); 240 241 copy_extent_buffer_full(cow, buf); 242 btrfs_set_header_bytenr(cow, cow->start); 243 btrfs_set_header_generation(cow, trans->transid); 244 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 245 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 246 BTRFS_HEADER_FLAG_RELOC); 247 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 248 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 249 else 250 btrfs_set_header_owner(cow, new_root_objectid); 251 252 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 253 254 WARN_ON(btrfs_header_generation(buf) > trans->transid); 255 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 256 ret = btrfs_inc_ref(trans, root, cow, 1); 257 else 258 ret = btrfs_inc_ref(trans, root, cow, 0); 259 260 if (ret) 261 return ret; 262 263 btrfs_mark_buffer_dirty(cow); 264 *cow_ret = cow; 265 return 0; 266 } 267 268 enum mod_log_op { 269 MOD_LOG_KEY_REPLACE, 270 MOD_LOG_KEY_ADD, 271 MOD_LOG_KEY_REMOVE, 272 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 273 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 274 MOD_LOG_MOVE_KEYS, 275 MOD_LOG_ROOT_REPLACE, 276 }; 277 278 struct tree_mod_root { 279 u64 logical; 280 u8 level; 281 }; 282 283 struct tree_mod_elem { 284 struct rb_node node; 285 u64 logical; 286 u64 seq; 287 enum mod_log_op op; 288 289 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 290 int slot; 291 292 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 293 u64 generation; 294 295 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 296 struct btrfs_disk_key key; 297 u64 blockptr; 298 299 /* this is used for op == MOD_LOG_MOVE_KEYS */ 300 struct { 301 int dst_slot; 302 int nr_items; 303 } move; 304 305 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 306 struct tree_mod_root old_root; 307 }; 308 309 /* 310 * Pull a new tree mod seq number for our operation. 311 */ 312 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 313 { 314 return atomic64_inc_return(&fs_info->tree_mod_seq); 315 } 316 317 /* 318 * This adds a new blocker to the tree mod log's blocker list if the @elem 319 * passed does not already have a sequence number set. So when a caller expects 320 * to record tree modifications, it should ensure to set elem->seq to zero 321 * before calling btrfs_get_tree_mod_seq. 322 * Returns a fresh, unused tree log modification sequence number, even if no new 323 * blocker was added. 324 */ 325 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 326 struct seq_list *elem) 327 { 328 write_lock(&fs_info->tree_mod_log_lock); 329 if (!elem->seq) { 330 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 331 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 332 } 333 write_unlock(&fs_info->tree_mod_log_lock); 334 335 return elem->seq; 336 } 337 338 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 339 struct seq_list *elem) 340 { 341 struct rb_root *tm_root; 342 struct rb_node *node; 343 struct rb_node *next; 344 struct seq_list *cur_elem; 345 struct tree_mod_elem *tm; 346 u64 min_seq = (u64)-1; 347 u64 seq_putting = elem->seq; 348 349 if (!seq_putting) 350 return; 351 352 write_lock(&fs_info->tree_mod_log_lock); 353 list_del(&elem->list); 354 elem->seq = 0; 355 356 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 357 if (cur_elem->seq < min_seq) { 358 if (seq_putting > cur_elem->seq) { 359 /* 360 * blocker with lower sequence number exists, we 361 * cannot remove anything from the log 362 */ 363 write_unlock(&fs_info->tree_mod_log_lock); 364 return; 365 } 366 min_seq = cur_elem->seq; 367 } 368 } 369 370 /* 371 * anything that's lower than the lowest existing (read: blocked) 372 * sequence number can be removed from the tree. 373 */ 374 tm_root = &fs_info->tree_mod_log; 375 for (node = rb_first(tm_root); node; node = next) { 376 next = rb_next(node); 377 tm = rb_entry(node, struct tree_mod_elem, node); 378 if (tm->seq >= min_seq) 379 continue; 380 rb_erase(node, tm_root); 381 kfree(tm); 382 } 383 write_unlock(&fs_info->tree_mod_log_lock); 384 } 385 386 /* 387 * key order of the log: 388 * node/leaf start address -> sequence 389 * 390 * The 'start address' is the logical address of the *new* root node 391 * for root replace operations, or the logical address of the affected 392 * block for all other operations. 393 */ 394 static noinline int 395 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 396 { 397 struct rb_root *tm_root; 398 struct rb_node **new; 399 struct rb_node *parent = NULL; 400 struct tree_mod_elem *cur; 401 402 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 403 404 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 405 406 tm_root = &fs_info->tree_mod_log; 407 new = &tm_root->rb_node; 408 while (*new) { 409 cur = rb_entry(*new, struct tree_mod_elem, node); 410 parent = *new; 411 if (cur->logical < tm->logical) 412 new = &((*new)->rb_left); 413 else if (cur->logical > tm->logical) 414 new = &((*new)->rb_right); 415 else if (cur->seq < tm->seq) 416 new = &((*new)->rb_left); 417 else if (cur->seq > tm->seq) 418 new = &((*new)->rb_right); 419 else 420 return -EEXIST; 421 } 422 423 rb_link_node(&tm->node, parent, new); 424 rb_insert_color(&tm->node, tm_root); 425 return 0; 426 } 427 428 /* 429 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 430 * returns zero with the tree_mod_log_lock acquired. The caller must hold 431 * this until all tree mod log insertions are recorded in the rb tree and then 432 * write unlock fs_info::tree_mod_log_lock. 433 */ 434 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 435 struct extent_buffer *eb) { 436 smp_mb(); 437 if (list_empty(&(fs_info)->tree_mod_seq_list)) 438 return 1; 439 if (eb && btrfs_header_level(eb) == 0) 440 return 1; 441 442 write_lock(&fs_info->tree_mod_log_lock); 443 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 444 write_unlock(&fs_info->tree_mod_log_lock); 445 return 1; 446 } 447 448 return 0; 449 } 450 451 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 452 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 453 struct extent_buffer *eb) 454 { 455 smp_mb(); 456 if (list_empty(&(fs_info)->tree_mod_seq_list)) 457 return 0; 458 if (eb && btrfs_header_level(eb) == 0) 459 return 0; 460 461 return 1; 462 } 463 464 static struct tree_mod_elem * 465 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 466 enum mod_log_op op, gfp_t flags) 467 { 468 struct tree_mod_elem *tm; 469 470 tm = kzalloc(sizeof(*tm), flags); 471 if (!tm) 472 return NULL; 473 474 tm->logical = eb->start; 475 if (op != MOD_LOG_KEY_ADD) { 476 btrfs_node_key(eb, &tm->key, slot); 477 tm->blockptr = btrfs_node_blockptr(eb, slot); 478 } 479 tm->op = op; 480 tm->slot = slot; 481 tm->generation = btrfs_node_ptr_generation(eb, slot); 482 RB_CLEAR_NODE(&tm->node); 483 484 return tm; 485 } 486 487 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 488 enum mod_log_op op, gfp_t flags) 489 { 490 struct tree_mod_elem *tm; 491 int ret; 492 493 if (!tree_mod_need_log(eb->fs_info, eb)) 494 return 0; 495 496 tm = alloc_tree_mod_elem(eb, slot, op, flags); 497 if (!tm) 498 return -ENOMEM; 499 500 if (tree_mod_dont_log(eb->fs_info, eb)) { 501 kfree(tm); 502 return 0; 503 } 504 505 ret = __tree_mod_log_insert(eb->fs_info, tm); 506 write_unlock(&eb->fs_info->tree_mod_log_lock); 507 if (ret) 508 kfree(tm); 509 510 return ret; 511 } 512 513 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 514 int dst_slot, int src_slot, int nr_items) 515 { 516 struct tree_mod_elem *tm = NULL; 517 struct tree_mod_elem **tm_list = NULL; 518 int ret = 0; 519 int i; 520 int locked = 0; 521 522 if (!tree_mod_need_log(eb->fs_info, eb)) 523 return 0; 524 525 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 526 if (!tm_list) 527 return -ENOMEM; 528 529 tm = kzalloc(sizeof(*tm), GFP_NOFS); 530 if (!tm) { 531 ret = -ENOMEM; 532 goto free_tms; 533 } 534 535 tm->logical = eb->start; 536 tm->slot = src_slot; 537 tm->move.dst_slot = dst_slot; 538 tm->move.nr_items = nr_items; 539 tm->op = MOD_LOG_MOVE_KEYS; 540 541 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 542 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 543 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 544 if (!tm_list[i]) { 545 ret = -ENOMEM; 546 goto free_tms; 547 } 548 } 549 550 if (tree_mod_dont_log(eb->fs_info, eb)) 551 goto free_tms; 552 locked = 1; 553 554 /* 555 * When we override something during the move, we log these removals. 556 * This can only happen when we move towards the beginning of the 557 * buffer, i.e. dst_slot < src_slot. 558 */ 559 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 560 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 561 if (ret) 562 goto free_tms; 563 } 564 565 ret = __tree_mod_log_insert(eb->fs_info, tm); 566 if (ret) 567 goto free_tms; 568 write_unlock(&eb->fs_info->tree_mod_log_lock); 569 kfree(tm_list); 570 571 return 0; 572 free_tms: 573 for (i = 0; i < nr_items; i++) { 574 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 575 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 576 kfree(tm_list[i]); 577 } 578 if (locked) 579 write_unlock(&eb->fs_info->tree_mod_log_lock); 580 kfree(tm_list); 581 kfree(tm); 582 583 return ret; 584 } 585 586 static inline int 587 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 588 struct tree_mod_elem **tm_list, 589 int nritems) 590 { 591 int i, j; 592 int ret; 593 594 for (i = nritems - 1; i >= 0; i--) { 595 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 596 if (ret) { 597 for (j = nritems - 1; j > i; j--) 598 rb_erase(&tm_list[j]->node, 599 &fs_info->tree_mod_log); 600 return ret; 601 } 602 } 603 604 return 0; 605 } 606 607 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 608 struct extent_buffer *new_root, int log_removal) 609 { 610 struct btrfs_fs_info *fs_info = old_root->fs_info; 611 struct tree_mod_elem *tm = NULL; 612 struct tree_mod_elem **tm_list = NULL; 613 int nritems = 0; 614 int ret = 0; 615 int i; 616 617 if (!tree_mod_need_log(fs_info, NULL)) 618 return 0; 619 620 if (log_removal && btrfs_header_level(old_root) > 0) { 621 nritems = btrfs_header_nritems(old_root); 622 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 623 GFP_NOFS); 624 if (!tm_list) { 625 ret = -ENOMEM; 626 goto free_tms; 627 } 628 for (i = 0; i < nritems; i++) { 629 tm_list[i] = alloc_tree_mod_elem(old_root, i, 630 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 631 if (!tm_list[i]) { 632 ret = -ENOMEM; 633 goto free_tms; 634 } 635 } 636 } 637 638 tm = kzalloc(sizeof(*tm), GFP_NOFS); 639 if (!tm) { 640 ret = -ENOMEM; 641 goto free_tms; 642 } 643 644 tm->logical = new_root->start; 645 tm->old_root.logical = old_root->start; 646 tm->old_root.level = btrfs_header_level(old_root); 647 tm->generation = btrfs_header_generation(old_root); 648 tm->op = MOD_LOG_ROOT_REPLACE; 649 650 if (tree_mod_dont_log(fs_info, NULL)) 651 goto free_tms; 652 653 if (tm_list) 654 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 655 if (!ret) 656 ret = __tree_mod_log_insert(fs_info, tm); 657 658 write_unlock(&fs_info->tree_mod_log_lock); 659 if (ret) 660 goto free_tms; 661 kfree(tm_list); 662 663 return ret; 664 665 free_tms: 666 if (tm_list) { 667 for (i = 0; i < nritems; i++) 668 kfree(tm_list[i]); 669 kfree(tm_list); 670 } 671 kfree(tm); 672 673 return ret; 674 } 675 676 static struct tree_mod_elem * 677 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 678 int smallest) 679 { 680 struct rb_root *tm_root; 681 struct rb_node *node; 682 struct tree_mod_elem *cur = NULL; 683 struct tree_mod_elem *found = NULL; 684 685 read_lock(&fs_info->tree_mod_log_lock); 686 tm_root = &fs_info->tree_mod_log; 687 node = tm_root->rb_node; 688 while (node) { 689 cur = rb_entry(node, struct tree_mod_elem, node); 690 if (cur->logical < start) { 691 node = node->rb_left; 692 } else if (cur->logical > start) { 693 node = node->rb_right; 694 } else if (cur->seq < min_seq) { 695 node = node->rb_left; 696 } else if (!smallest) { 697 /* we want the node with the highest seq */ 698 if (found) 699 BUG_ON(found->seq > cur->seq); 700 found = cur; 701 node = node->rb_left; 702 } else if (cur->seq > min_seq) { 703 /* we want the node with the smallest seq */ 704 if (found) 705 BUG_ON(found->seq < cur->seq); 706 found = cur; 707 node = node->rb_right; 708 } else { 709 found = cur; 710 break; 711 } 712 } 713 read_unlock(&fs_info->tree_mod_log_lock); 714 715 return found; 716 } 717 718 /* 719 * this returns the element from the log with the smallest time sequence 720 * value that's in the log (the oldest log item). any element with a time 721 * sequence lower than min_seq will be ignored. 722 */ 723 static struct tree_mod_elem * 724 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 725 u64 min_seq) 726 { 727 return __tree_mod_log_search(fs_info, start, min_seq, 1); 728 } 729 730 /* 731 * this returns the element from the log with the largest time sequence 732 * value that's in the log (the most recent log item). any element with 733 * a time sequence lower than min_seq will be ignored. 734 */ 735 static struct tree_mod_elem * 736 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 737 { 738 return __tree_mod_log_search(fs_info, start, min_seq, 0); 739 } 740 741 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 742 struct extent_buffer *src, unsigned long dst_offset, 743 unsigned long src_offset, int nr_items) 744 { 745 struct btrfs_fs_info *fs_info = dst->fs_info; 746 int ret = 0; 747 struct tree_mod_elem **tm_list = NULL; 748 struct tree_mod_elem **tm_list_add, **tm_list_rem; 749 int i; 750 int locked = 0; 751 752 if (!tree_mod_need_log(fs_info, NULL)) 753 return 0; 754 755 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 756 return 0; 757 758 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 759 GFP_NOFS); 760 if (!tm_list) 761 return -ENOMEM; 762 763 tm_list_add = tm_list; 764 tm_list_rem = tm_list + nr_items; 765 for (i = 0; i < nr_items; i++) { 766 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 767 MOD_LOG_KEY_REMOVE, GFP_NOFS); 768 if (!tm_list_rem[i]) { 769 ret = -ENOMEM; 770 goto free_tms; 771 } 772 773 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 774 MOD_LOG_KEY_ADD, GFP_NOFS); 775 if (!tm_list_add[i]) { 776 ret = -ENOMEM; 777 goto free_tms; 778 } 779 } 780 781 if (tree_mod_dont_log(fs_info, NULL)) 782 goto free_tms; 783 locked = 1; 784 785 for (i = 0; i < nr_items; i++) { 786 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 787 if (ret) 788 goto free_tms; 789 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 790 if (ret) 791 goto free_tms; 792 } 793 794 write_unlock(&fs_info->tree_mod_log_lock); 795 kfree(tm_list); 796 797 return 0; 798 799 free_tms: 800 for (i = 0; i < nr_items * 2; i++) { 801 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 802 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 803 kfree(tm_list[i]); 804 } 805 if (locked) 806 write_unlock(&fs_info->tree_mod_log_lock); 807 kfree(tm_list); 808 809 return ret; 810 } 811 812 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 813 { 814 struct tree_mod_elem **tm_list = NULL; 815 int nritems = 0; 816 int i; 817 int ret = 0; 818 819 if (btrfs_header_level(eb) == 0) 820 return 0; 821 822 if (!tree_mod_need_log(eb->fs_info, NULL)) 823 return 0; 824 825 nritems = btrfs_header_nritems(eb); 826 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 827 if (!tm_list) 828 return -ENOMEM; 829 830 for (i = 0; i < nritems; i++) { 831 tm_list[i] = alloc_tree_mod_elem(eb, i, 832 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 833 if (!tm_list[i]) { 834 ret = -ENOMEM; 835 goto free_tms; 836 } 837 } 838 839 if (tree_mod_dont_log(eb->fs_info, eb)) 840 goto free_tms; 841 842 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 843 write_unlock(&eb->fs_info->tree_mod_log_lock); 844 if (ret) 845 goto free_tms; 846 kfree(tm_list); 847 848 return 0; 849 850 free_tms: 851 for (i = 0; i < nritems; i++) 852 kfree(tm_list[i]); 853 kfree(tm_list); 854 855 return ret; 856 } 857 858 /* 859 * check if the tree block can be shared by multiple trees 860 */ 861 int btrfs_block_can_be_shared(struct btrfs_root *root, 862 struct extent_buffer *buf) 863 { 864 /* 865 * Tree blocks not in reference counted trees and tree roots 866 * are never shared. If a block was allocated after the last 867 * snapshot and the block was not allocated by tree relocation, 868 * we know the block is not shared. 869 */ 870 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 871 buf != root->node && buf != root->commit_root && 872 (btrfs_header_generation(buf) <= 873 btrfs_root_last_snapshot(&root->root_item) || 874 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 875 return 1; 876 877 return 0; 878 } 879 880 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 881 struct btrfs_root *root, 882 struct extent_buffer *buf, 883 struct extent_buffer *cow, 884 int *last_ref) 885 { 886 struct btrfs_fs_info *fs_info = root->fs_info; 887 u64 refs; 888 u64 owner; 889 u64 flags; 890 u64 new_flags = 0; 891 int ret; 892 893 /* 894 * Backrefs update rules: 895 * 896 * Always use full backrefs for extent pointers in tree block 897 * allocated by tree relocation. 898 * 899 * If a shared tree block is no longer referenced by its owner 900 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 901 * use full backrefs for extent pointers in tree block. 902 * 903 * If a tree block is been relocating 904 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 905 * use full backrefs for extent pointers in tree block. 906 * The reason for this is some operations (such as drop tree) 907 * are only allowed for blocks use full backrefs. 908 */ 909 910 if (btrfs_block_can_be_shared(root, buf)) { 911 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 912 btrfs_header_level(buf), 1, 913 &refs, &flags); 914 if (ret) 915 return ret; 916 if (refs == 0) { 917 ret = -EROFS; 918 btrfs_handle_fs_error(fs_info, ret, NULL); 919 return ret; 920 } 921 } else { 922 refs = 1; 923 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 924 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 925 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 926 else 927 flags = 0; 928 } 929 930 owner = btrfs_header_owner(buf); 931 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 932 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 933 934 if (refs > 1) { 935 if ((owner == root->root_key.objectid || 936 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 937 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 938 ret = btrfs_inc_ref(trans, root, buf, 1); 939 if (ret) 940 return ret; 941 942 if (root->root_key.objectid == 943 BTRFS_TREE_RELOC_OBJECTID) { 944 ret = btrfs_dec_ref(trans, root, buf, 0); 945 if (ret) 946 return ret; 947 ret = btrfs_inc_ref(trans, root, cow, 1); 948 if (ret) 949 return ret; 950 } 951 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 952 } else { 953 954 if (root->root_key.objectid == 955 BTRFS_TREE_RELOC_OBJECTID) 956 ret = btrfs_inc_ref(trans, root, cow, 1); 957 else 958 ret = btrfs_inc_ref(trans, root, cow, 0); 959 if (ret) 960 return ret; 961 } 962 if (new_flags != 0) { 963 int level = btrfs_header_level(buf); 964 965 ret = btrfs_set_disk_extent_flags(trans, 966 buf->start, 967 buf->len, 968 new_flags, level, 0); 969 if (ret) 970 return ret; 971 } 972 } else { 973 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 974 if (root->root_key.objectid == 975 BTRFS_TREE_RELOC_OBJECTID) 976 ret = btrfs_inc_ref(trans, root, cow, 1); 977 else 978 ret = btrfs_inc_ref(trans, root, cow, 0); 979 if (ret) 980 return ret; 981 ret = btrfs_dec_ref(trans, root, buf, 1); 982 if (ret) 983 return ret; 984 } 985 btrfs_clean_tree_block(buf); 986 *last_ref = 1; 987 } 988 return 0; 989 } 990 991 static struct extent_buffer *alloc_tree_block_no_bg_flush( 992 struct btrfs_trans_handle *trans, 993 struct btrfs_root *root, 994 u64 parent_start, 995 const struct btrfs_disk_key *disk_key, 996 int level, 997 u64 hint, 998 u64 empty_size) 999 { 1000 struct btrfs_fs_info *fs_info = root->fs_info; 1001 struct extent_buffer *ret; 1002 1003 /* 1004 * If we are COWing a node/leaf from the extent, chunk, device or free 1005 * space trees, make sure that we do not finish block group creation of 1006 * pending block groups. We do this to avoid a deadlock. 1007 * COWing can result in allocation of a new chunk, and flushing pending 1008 * block groups (btrfs_create_pending_block_groups()) can be triggered 1009 * when finishing allocation of a new chunk. Creation of a pending block 1010 * group modifies the extent, chunk, device and free space trees, 1011 * therefore we could deadlock with ourselves since we are holding a 1012 * lock on an extent buffer that btrfs_create_pending_block_groups() may 1013 * try to COW later. 1014 * For similar reasons, we also need to delay flushing pending block 1015 * groups when splitting a leaf or node, from one of those trees, since 1016 * we are holding a write lock on it and its parent or when inserting a 1017 * new root node for one of those trees. 1018 */ 1019 if (root == fs_info->extent_root || 1020 root == fs_info->chunk_root || 1021 root == fs_info->dev_root || 1022 root == fs_info->free_space_root) 1023 trans->can_flush_pending_bgs = false; 1024 1025 ret = btrfs_alloc_tree_block(trans, root, parent_start, 1026 root->root_key.objectid, disk_key, level, 1027 hint, empty_size); 1028 trans->can_flush_pending_bgs = true; 1029 1030 return ret; 1031 } 1032 1033 /* 1034 * does the dirty work in cow of a single block. The parent block (if 1035 * supplied) is updated to point to the new cow copy. The new buffer is marked 1036 * dirty and returned locked. If you modify the block it needs to be marked 1037 * dirty again. 1038 * 1039 * search_start -- an allocation hint for the new block 1040 * 1041 * empty_size -- a hint that you plan on doing more cow. This is the size in 1042 * bytes the allocator should try to find free next to the block it returns. 1043 * This is just a hint and may be ignored by the allocator. 1044 */ 1045 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1046 struct btrfs_root *root, 1047 struct extent_buffer *buf, 1048 struct extent_buffer *parent, int parent_slot, 1049 struct extent_buffer **cow_ret, 1050 u64 search_start, u64 empty_size) 1051 { 1052 struct btrfs_fs_info *fs_info = root->fs_info; 1053 struct btrfs_disk_key disk_key; 1054 struct extent_buffer *cow; 1055 int level, ret; 1056 int last_ref = 0; 1057 int unlock_orig = 0; 1058 u64 parent_start = 0; 1059 1060 if (*cow_ret == buf) 1061 unlock_orig = 1; 1062 1063 btrfs_assert_tree_locked(buf); 1064 1065 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1066 trans->transid != fs_info->running_transaction->transid); 1067 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1068 trans->transid != root->last_trans); 1069 1070 level = btrfs_header_level(buf); 1071 1072 if (level == 0) 1073 btrfs_item_key(buf, &disk_key, 0); 1074 else 1075 btrfs_node_key(buf, &disk_key, 0); 1076 1077 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1078 parent_start = parent->start; 1079 1080 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1081 level, search_start, empty_size); 1082 if (IS_ERR(cow)) 1083 return PTR_ERR(cow); 1084 1085 /* cow is set to blocking by btrfs_init_new_buffer */ 1086 1087 copy_extent_buffer_full(cow, buf); 1088 btrfs_set_header_bytenr(cow, cow->start); 1089 btrfs_set_header_generation(cow, trans->transid); 1090 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1091 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1092 BTRFS_HEADER_FLAG_RELOC); 1093 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1094 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1095 else 1096 btrfs_set_header_owner(cow, root->root_key.objectid); 1097 1098 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1099 1100 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1101 if (ret) { 1102 btrfs_abort_transaction(trans, ret); 1103 return ret; 1104 } 1105 1106 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1107 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1108 if (ret) { 1109 btrfs_abort_transaction(trans, ret); 1110 return ret; 1111 } 1112 } 1113 1114 if (buf == root->node) { 1115 WARN_ON(parent && parent != buf); 1116 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1117 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1118 parent_start = buf->start; 1119 1120 atomic_inc(&cow->refs); 1121 ret = tree_mod_log_insert_root(root->node, cow, 1); 1122 BUG_ON(ret < 0); 1123 rcu_assign_pointer(root->node, cow); 1124 1125 btrfs_free_tree_block(trans, root, buf, parent_start, 1126 last_ref); 1127 free_extent_buffer(buf); 1128 add_root_to_dirty_list(root); 1129 } else { 1130 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1131 tree_mod_log_insert_key(parent, parent_slot, 1132 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1133 btrfs_set_node_blockptr(parent, parent_slot, 1134 cow->start); 1135 btrfs_set_node_ptr_generation(parent, parent_slot, 1136 trans->transid); 1137 btrfs_mark_buffer_dirty(parent); 1138 if (last_ref) { 1139 ret = tree_mod_log_free_eb(buf); 1140 if (ret) { 1141 btrfs_abort_transaction(trans, ret); 1142 return ret; 1143 } 1144 } 1145 btrfs_free_tree_block(trans, root, buf, parent_start, 1146 last_ref); 1147 } 1148 if (unlock_orig) 1149 btrfs_tree_unlock(buf); 1150 free_extent_buffer_stale(buf); 1151 btrfs_mark_buffer_dirty(cow); 1152 *cow_ret = cow; 1153 return 0; 1154 } 1155 1156 /* 1157 * returns the logical address of the oldest predecessor of the given root. 1158 * entries older than time_seq are ignored. 1159 */ 1160 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1161 struct extent_buffer *eb_root, u64 time_seq) 1162 { 1163 struct tree_mod_elem *tm; 1164 struct tree_mod_elem *found = NULL; 1165 u64 root_logical = eb_root->start; 1166 int looped = 0; 1167 1168 if (!time_seq) 1169 return NULL; 1170 1171 /* 1172 * the very last operation that's logged for a root is the 1173 * replacement operation (if it is replaced at all). this has 1174 * the logical address of the *new* root, making it the very 1175 * first operation that's logged for this root. 1176 */ 1177 while (1) { 1178 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1179 time_seq); 1180 if (!looped && !tm) 1181 return NULL; 1182 /* 1183 * if there are no tree operation for the oldest root, we simply 1184 * return it. this should only happen if that (old) root is at 1185 * level 0. 1186 */ 1187 if (!tm) 1188 break; 1189 1190 /* 1191 * if there's an operation that's not a root replacement, we 1192 * found the oldest version of our root. normally, we'll find a 1193 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1194 */ 1195 if (tm->op != MOD_LOG_ROOT_REPLACE) 1196 break; 1197 1198 found = tm; 1199 root_logical = tm->old_root.logical; 1200 looped = 1; 1201 } 1202 1203 /* if there's no old root to return, return what we found instead */ 1204 if (!found) 1205 found = tm; 1206 1207 return found; 1208 } 1209 1210 /* 1211 * tm is a pointer to the first operation to rewind within eb. then, all 1212 * previous operations will be rewound (until we reach something older than 1213 * time_seq). 1214 */ 1215 static void 1216 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1217 u64 time_seq, struct tree_mod_elem *first_tm) 1218 { 1219 u32 n; 1220 struct rb_node *next; 1221 struct tree_mod_elem *tm = first_tm; 1222 unsigned long o_dst; 1223 unsigned long o_src; 1224 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1225 1226 n = btrfs_header_nritems(eb); 1227 read_lock(&fs_info->tree_mod_log_lock); 1228 while (tm && tm->seq >= time_seq) { 1229 /* 1230 * all the operations are recorded with the operator used for 1231 * the modification. as we're going backwards, we do the 1232 * opposite of each operation here. 1233 */ 1234 switch (tm->op) { 1235 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1236 BUG_ON(tm->slot < n); 1237 /* Fallthrough */ 1238 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1239 case MOD_LOG_KEY_REMOVE: 1240 btrfs_set_node_key(eb, &tm->key, tm->slot); 1241 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1242 btrfs_set_node_ptr_generation(eb, tm->slot, 1243 tm->generation); 1244 n++; 1245 break; 1246 case MOD_LOG_KEY_REPLACE: 1247 BUG_ON(tm->slot >= n); 1248 btrfs_set_node_key(eb, &tm->key, tm->slot); 1249 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1250 btrfs_set_node_ptr_generation(eb, tm->slot, 1251 tm->generation); 1252 break; 1253 case MOD_LOG_KEY_ADD: 1254 /* if a move operation is needed it's in the log */ 1255 n--; 1256 break; 1257 case MOD_LOG_MOVE_KEYS: 1258 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1259 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1260 memmove_extent_buffer(eb, o_dst, o_src, 1261 tm->move.nr_items * p_size); 1262 break; 1263 case MOD_LOG_ROOT_REPLACE: 1264 /* 1265 * this operation is special. for roots, this must be 1266 * handled explicitly before rewinding. 1267 * for non-roots, this operation may exist if the node 1268 * was a root: root A -> child B; then A gets empty and 1269 * B is promoted to the new root. in the mod log, we'll 1270 * have a root-replace operation for B, a tree block 1271 * that is no root. we simply ignore that operation. 1272 */ 1273 break; 1274 } 1275 next = rb_next(&tm->node); 1276 if (!next) 1277 break; 1278 tm = rb_entry(next, struct tree_mod_elem, node); 1279 if (tm->logical != first_tm->logical) 1280 break; 1281 } 1282 read_unlock(&fs_info->tree_mod_log_lock); 1283 btrfs_set_header_nritems(eb, n); 1284 } 1285 1286 /* 1287 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1288 * is returned. If rewind operations happen, a fresh buffer is returned. The 1289 * returned buffer is always read-locked. If the returned buffer is not the 1290 * input buffer, the lock on the input buffer is released and the input buffer 1291 * is freed (its refcount is decremented). 1292 */ 1293 static struct extent_buffer * 1294 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1295 struct extent_buffer *eb, u64 time_seq) 1296 { 1297 struct extent_buffer *eb_rewin; 1298 struct tree_mod_elem *tm; 1299 1300 if (!time_seq) 1301 return eb; 1302 1303 if (btrfs_header_level(eb) == 0) 1304 return eb; 1305 1306 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1307 if (!tm) 1308 return eb; 1309 1310 btrfs_set_path_blocking(path); 1311 btrfs_set_lock_blocking_read(eb); 1312 1313 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1314 BUG_ON(tm->slot != 0); 1315 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1316 if (!eb_rewin) { 1317 btrfs_tree_read_unlock_blocking(eb); 1318 free_extent_buffer(eb); 1319 return NULL; 1320 } 1321 btrfs_set_header_bytenr(eb_rewin, eb->start); 1322 btrfs_set_header_backref_rev(eb_rewin, 1323 btrfs_header_backref_rev(eb)); 1324 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1325 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1326 } else { 1327 eb_rewin = btrfs_clone_extent_buffer(eb); 1328 if (!eb_rewin) { 1329 btrfs_tree_read_unlock_blocking(eb); 1330 free_extent_buffer(eb); 1331 return NULL; 1332 } 1333 } 1334 1335 btrfs_tree_read_unlock_blocking(eb); 1336 free_extent_buffer(eb); 1337 1338 btrfs_tree_read_lock(eb_rewin); 1339 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1340 WARN_ON(btrfs_header_nritems(eb_rewin) > 1341 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1342 1343 return eb_rewin; 1344 } 1345 1346 /* 1347 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1348 * value. If there are no changes, the current root->root_node is returned. If 1349 * anything changed in between, there's a fresh buffer allocated on which the 1350 * rewind operations are done. In any case, the returned buffer is read locked. 1351 * Returns NULL on error (with no locks held). 1352 */ 1353 static inline struct extent_buffer * 1354 get_old_root(struct btrfs_root *root, u64 time_seq) 1355 { 1356 struct btrfs_fs_info *fs_info = root->fs_info; 1357 struct tree_mod_elem *tm; 1358 struct extent_buffer *eb = NULL; 1359 struct extent_buffer *eb_root; 1360 u64 eb_root_owner = 0; 1361 struct extent_buffer *old; 1362 struct tree_mod_root *old_root = NULL; 1363 u64 old_generation = 0; 1364 u64 logical; 1365 int level; 1366 1367 eb_root = btrfs_read_lock_root_node(root); 1368 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1369 if (!tm) 1370 return eb_root; 1371 1372 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1373 old_root = &tm->old_root; 1374 old_generation = tm->generation; 1375 logical = old_root->logical; 1376 level = old_root->level; 1377 } else { 1378 logical = eb_root->start; 1379 level = btrfs_header_level(eb_root); 1380 } 1381 1382 tm = tree_mod_log_search(fs_info, logical, time_seq); 1383 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1384 btrfs_tree_read_unlock(eb_root); 1385 free_extent_buffer(eb_root); 1386 old = read_tree_block(fs_info, logical, 0, level, NULL); 1387 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1388 if (!IS_ERR(old)) 1389 free_extent_buffer(old); 1390 btrfs_warn(fs_info, 1391 "failed to read tree block %llu from get_old_root", 1392 logical); 1393 } else { 1394 eb = btrfs_clone_extent_buffer(old); 1395 free_extent_buffer(old); 1396 } 1397 } else if (old_root) { 1398 eb_root_owner = btrfs_header_owner(eb_root); 1399 btrfs_tree_read_unlock(eb_root); 1400 free_extent_buffer(eb_root); 1401 eb = alloc_dummy_extent_buffer(fs_info, logical); 1402 } else { 1403 btrfs_set_lock_blocking_read(eb_root); 1404 eb = btrfs_clone_extent_buffer(eb_root); 1405 btrfs_tree_read_unlock_blocking(eb_root); 1406 free_extent_buffer(eb_root); 1407 } 1408 1409 if (!eb) 1410 return NULL; 1411 btrfs_tree_read_lock(eb); 1412 if (old_root) { 1413 btrfs_set_header_bytenr(eb, eb->start); 1414 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1415 btrfs_set_header_owner(eb, eb_root_owner); 1416 btrfs_set_header_level(eb, old_root->level); 1417 btrfs_set_header_generation(eb, old_generation); 1418 } 1419 if (tm) 1420 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1421 else 1422 WARN_ON(btrfs_header_level(eb) != 0); 1423 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1424 1425 return eb; 1426 } 1427 1428 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1429 { 1430 struct tree_mod_elem *tm; 1431 int level; 1432 struct extent_buffer *eb_root = btrfs_root_node(root); 1433 1434 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1435 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1436 level = tm->old_root.level; 1437 } else { 1438 level = btrfs_header_level(eb_root); 1439 } 1440 free_extent_buffer(eb_root); 1441 1442 return level; 1443 } 1444 1445 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1446 struct btrfs_root *root, 1447 struct extent_buffer *buf) 1448 { 1449 if (btrfs_is_testing(root->fs_info)) 1450 return 0; 1451 1452 /* Ensure we can see the FORCE_COW bit */ 1453 smp_mb__before_atomic(); 1454 1455 /* 1456 * We do not need to cow a block if 1457 * 1) this block is not created or changed in this transaction; 1458 * 2) this block does not belong to TREE_RELOC tree; 1459 * 3) the root is not forced COW. 1460 * 1461 * What is forced COW: 1462 * when we create snapshot during committing the transaction, 1463 * after we've finished copying src root, we must COW the shared 1464 * block to ensure the metadata consistency. 1465 */ 1466 if (btrfs_header_generation(buf) == trans->transid && 1467 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1468 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1469 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1470 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1471 return 0; 1472 return 1; 1473 } 1474 1475 /* 1476 * cows a single block, see __btrfs_cow_block for the real work. 1477 * This version of it has extra checks so that a block isn't COWed more than 1478 * once per transaction, as long as it hasn't been written yet 1479 */ 1480 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1481 struct btrfs_root *root, struct extent_buffer *buf, 1482 struct extent_buffer *parent, int parent_slot, 1483 struct extent_buffer **cow_ret) 1484 { 1485 struct btrfs_fs_info *fs_info = root->fs_info; 1486 u64 search_start; 1487 int ret; 1488 1489 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1490 btrfs_err(fs_info, 1491 "COW'ing blocks on a fs root that's being dropped"); 1492 1493 if (trans->transaction != fs_info->running_transaction) 1494 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1495 trans->transid, 1496 fs_info->running_transaction->transid); 1497 1498 if (trans->transid != fs_info->generation) 1499 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1500 trans->transid, fs_info->generation); 1501 1502 if (!should_cow_block(trans, root, buf)) { 1503 trans->dirty = true; 1504 *cow_ret = buf; 1505 return 0; 1506 } 1507 1508 search_start = buf->start & ~((u64)SZ_1G - 1); 1509 1510 if (parent) 1511 btrfs_set_lock_blocking_write(parent); 1512 btrfs_set_lock_blocking_write(buf); 1513 1514 /* 1515 * Before CoWing this block for later modification, check if it's 1516 * the subtree root and do the delayed subtree trace if needed. 1517 * 1518 * Also We don't care about the error, as it's handled internally. 1519 */ 1520 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1521 ret = __btrfs_cow_block(trans, root, buf, parent, 1522 parent_slot, cow_ret, search_start, 0); 1523 1524 trace_btrfs_cow_block(root, buf, *cow_ret); 1525 1526 return ret; 1527 } 1528 1529 /* 1530 * helper function for defrag to decide if two blocks pointed to by a 1531 * node are actually close by 1532 */ 1533 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1534 { 1535 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1536 return 1; 1537 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1538 return 1; 1539 return 0; 1540 } 1541 1542 /* 1543 * compare two keys in a memcmp fashion 1544 */ 1545 static int comp_keys(const struct btrfs_disk_key *disk, 1546 const struct btrfs_key *k2) 1547 { 1548 struct btrfs_key k1; 1549 1550 btrfs_disk_key_to_cpu(&k1, disk); 1551 1552 return btrfs_comp_cpu_keys(&k1, k2); 1553 } 1554 1555 /* 1556 * same as comp_keys only with two btrfs_key's 1557 */ 1558 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1559 { 1560 if (k1->objectid > k2->objectid) 1561 return 1; 1562 if (k1->objectid < k2->objectid) 1563 return -1; 1564 if (k1->type > k2->type) 1565 return 1; 1566 if (k1->type < k2->type) 1567 return -1; 1568 if (k1->offset > k2->offset) 1569 return 1; 1570 if (k1->offset < k2->offset) 1571 return -1; 1572 return 0; 1573 } 1574 1575 /* 1576 * this is used by the defrag code to go through all the 1577 * leaves pointed to by a node and reallocate them so that 1578 * disk order is close to key order 1579 */ 1580 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1581 struct btrfs_root *root, struct extent_buffer *parent, 1582 int start_slot, u64 *last_ret, 1583 struct btrfs_key *progress) 1584 { 1585 struct btrfs_fs_info *fs_info = root->fs_info; 1586 struct extent_buffer *cur; 1587 u64 blocknr; 1588 u64 gen; 1589 u64 search_start = *last_ret; 1590 u64 last_block = 0; 1591 u64 other; 1592 u32 parent_nritems; 1593 int end_slot; 1594 int i; 1595 int err = 0; 1596 int parent_level; 1597 int uptodate; 1598 u32 blocksize; 1599 int progress_passed = 0; 1600 struct btrfs_disk_key disk_key; 1601 1602 parent_level = btrfs_header_level(parent); 1603 1604 WARN_ON(trans->transaction != fs_info->running_transaction); 1605 WARN_ON(trans->transid != fs_info->generation); 1606 1607 parent_nritems = btrfs_header_nritems(parent); 1608 blocksize = fs_info->nodesize; 1609 end_slot = parent_nritems - 1; 1610 1611 if (parent_nritems <= 1) 1612 return 0; 1613 1614 btrfs_set_lock_blocking_write(parent); 1615 1616 for (i = start_slot; i <= end_slot; i++) { 1617 struct btrfs_key first_key; 1618 int close = 1; 1619 1620 btrfs_node_key(parent, &disk_key, i); 1621 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1622 continue; 1623 1624 progress_passed = 1; 1625 blocknr = btrfs_node_blockptr(parent, i); 1626 gen = btrfs_node_ptr_generation(parent, i); 1627 btrfs_node_key_to_cpu(parent, &first_key, i); 1628 if (last_block == 0) 1629 last_block = blocknr; 1630 1631 if (i > 0) { 1632 other = btrfs_node_blockptr(parent, i - 1); 1633 close = close_blocks(blocknr, other, blocksize); 1634 } 1635 if (!close && i < end_slot) { 1636 other = btrfs_node_blockptr(parent, i + 1); 1637 close = close_blocks(blocknr, other, blocksize); 1638 } 1639 if (close) { 1640 last_block = blocknr; 1641 continue; 1642 } 1643 1644 cur = find_extent_buffer(fs_info, blocknr); 1645 if (cur) 1646 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1647 else 1648 uptodate = 0; 1649 if (!cur || !uptodate) { 1650 if (!cur) { 1651 cur = read_tree_block(fs_info, blocknr, gen, 1652 parent_level - 1, 1653 &first_key); 1654 if (IS_ERR(cur)) { 1655 return PTR_ERR(cur); 1656 } else if (!extent_buffer_uptodate(cur)) { 1657 free_extent_buffer(cur); 1658 return -EIO; 1659 } 1660 } else if (!uptodate) { 1661 err = btrfs_read_buffer(cur, gen, 1662 parent_level - 1,&first_key); 1663 if (err) { 1664 free_extent_buffer(cur); 1665 return err; 1666 } 1667 } 1668 } 1669 if (search_start == 0) 1670 search_start = last_block; 1671 1672 btrfs_tree_lock(cur); 1673 btrfs_set_lock_blocking_write(cur); 1674 err = __btrfs_cow_block(trans, root, cur, parent, i, 1675 &cur, search_start, 1676 min(16 * blocksize, 1677 (end_slot - i) * blocksize)); 1678 if (err) { 1679 btrfs_tree_unlock(cur); 1680 free_extent_buffer(cur); 1681 break; 1682 } 1683 search_start = cur->start; 1684 last_block = cur->start; 1685 *last_ret = search_start; 1686 btrfs_tree_unlock(cur); 1687 free_extent_buffer(cur); 1688 } 1689 return err; 1690 } 1691 1692 /* 1693 * search for key in the extent_buffer. The items start at offset p, 1694 * and they are item_size apart. There are 'max' items in p. 1695 * 1696 * the slot in the array is returned via slot, and it points to 1697 * the place where you would insert key if it is not found in 1698 * the array. 1699 * 1700 * slot may point to max if the key is bigger than all of the keys 1701 */ 1702 static noinline int generic_bin_search(struct extent_buffer *eb, 1703 unsigned long p, int item_size, 1704 const struct btrfs_key *key, 1705 int max, int *slot) 1706 { 1707 int low = 0; 1708 int high = max; 1709 int mid; 1710 int ret; 1711 struct btrfs_disk_key *tmp = NULL; 1712 struct btrfs_disk_key unaligned; 1713 unsigned long offset; 1714 char *kaddr = NULL; 1715 unsigned long map_start = 0; 1716 unsigned long map_len = 0; 1717 int err; 1718 1719 if (low > high) { 1720 btrfs_err(eb->fs_info, 1721 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1722 __func__, low, high, eb->start, 1723 btrfs_header_owner(eb), btrfs_header_level(eb)); 1724 return -EINVAL; 1725 } 1726 1727 while (low < high) { 1728 mid = (low + high) / 2; 1729 offset = p + mid * item_size; 1730 1731 if (!kaddr || offset < map_start || 1732 (offset + sizeof(struct btrfs_disk_key)) > 1733 map_start + map_len) { 1734 1735 err = map_private_extent_buffer(eb, offset, 1736 sizeof(struct btrfs_disk_key), 1737 &kaddr, &map_start, &map_len); 1738 1739 if (!err) { 1740 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1741 map_start); 1742 } else if (err == 1) { 1743 read_extent_buffer(eb, &unaligned, 1744 offset, sizeof(unaligned)); 1745 tmp = &unaligned; 1746 } else { 1747 return err; 1748 } 1749 1750 } else { 1751 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1752 map_start); 1753 } 1754 ret = comp_keys(tmp, key); 1755 1756 if (ret < 0) 1757 low = mid + 1; 1758 else if (ret > 0) 1759 high = mid; 1760 else { 1761 *slot = mid; 1762 return 0; 1763 } 1764 } 1765 *slot = low; 1766 return 1; 1767 } 1768 1769 /* 1770 * simple bin_search frontend that does the right thing for 1771 * leaves vs nodes 1772 */ 1773 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1774 int level, int *slot) 1775 { 1776 if (level == 0) 1777 return generic_bin_search(eb, 1778 offsetof(struct btrfs_leaf, items), 1779 sizeof(struct btrfs_item), 1780 key, btrfs_header_nritems(eb), 1781 slot); 1782 else 1783 return generic_bin_search(eb, 1784 offsetof(struct btrfs_node, ptrs), 1785 sizeof(struct btrfs_key_ptr), 1786 key, btrfs_header_nritems(eb), 1787 slot); 1788 } 1789 1790 static void root_add_used(struct btrfs_root *root, u32 size) 1791 { 1792 spin_lock(&root->accounting_lock); 1793 btrfs_set_root_used(&root->root_item, 1794 btrfs_root_used(&root->root_item) + size); 1795 spin_unlock(&root->accounting_lock); 1796 } 1797 1798 static void root_sub_used(struct btrfs_root *root, u32 size) 1799 { 1800 spin_lock(&root->accounting_lock); 1801 btrfs_set_root_used(&root->root_item, 1802 btrfs_root_used(&root->root_item) - size); 1803 spin_unlock(&root->accounting_lock); 1804 } 1805 1806 /* given a node and slot number, this reads the blocks it points to. The 1807 * extent buffer is returned with a reference taken (but unlocked). 1808 */ 1809 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1810 int slot) 1811 { 1812 int level = btrfs_header_level(parent); 1813 struct extent_buffer *eb; 1814 struct btrfs_key first_key; 1815 1816 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1817 return ERR_PTR(-ENOENT); 1818 1819 BUG_ON(level == 0); 1820 1821 btrfs_node_key_to_cpu(parent, &first_key, slot); 1822 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1823 btrfs_node_ptr_generation(parent, slot), 1824 level - 1, &first_key); 1825 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1826 free_extent_buffer(eb); 1827 eb = ERR_PTR(-EIO); 1828 } 1829 1830 return eb; 1831 } 1832 1833 /* 1834 * node level balancing, used to make sure nodes are in proper order for 1835 * item deletion. We balance from the top down, so we have to make sure 1836 * that a deletion won't leave an node completely empty later on. 1837 */ 1838 static noinline int balance_level(struct btrfs_trans_handle *trans, 1839 struct btrfs_root *root, 1840 struct btrfs_path *path, int level) 1841 { 1842 struct btrfs_fs_info *fs_info = root->fs_info; 1843 struct extent_buffer *right = NULL; 1844 struct extent_buffer *mid; 1845 struct extent_buffer *left = NULL; 1846 struct extent_buffer *parent = NULL; 1847 int ret = 0; 1848 int wret; 1849 int pslot; 1850 int orig_slot = path->slots[level]; 1851 u64 orig_ptr; 1852 1853 ASSERT(level > 0); 1854 1855 mid = path->nodes[level]; 1856 1857 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1858 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1859 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1860 1861 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1862 1863 if (level < BTRFS_MAX_LEVEL - 1) { 1864 parent = path->nodes[level + 1]; 1865 pslot = path->slots[level + 1]; 1866 } 1867 1868 /* 1869 * deal with the case where there is only one pointer in the root 1870 * by promoting the node below to a root 1871 */ 1872 if (!parent) { 1873 struct extent_buffer *child; 1874 1875 if (btrfs_header_nritems(mid) != 1) 1876 return 0; 1877 1878 /* promote the child to a root */ 1879 child = btrfs_read_node_slot(mid, 0); 1880 if (IS_ERR(child)) { 1881 ret = PTR_ERR(child); 1882 btrfs_handle_fs_error(fs_info, ret, NULL); 1883 goto enospc; 1884 } 1885 1886 btrfs_tree_lock(child); 1887 btrfs_set_lock_blocking_write(child); 1888 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1889 if (ret) { 1890 btrfs_tree_unlock(child); 1891 free_extent_buffer(child); 1892 goto enospc; 1893 } 1894 1895 ret = tree_mod_log_insert_root(root->node, child, 1); 1896 BUG_ON(ret < 0); 1897 rcu_assign_pointer(root->node, child); 1898 1899 add_root_to_dirty_list(root); 1900 btrfs_tree_unlock(child); 1901 1902 path->locks[level] = 0; 1903 path->nodes[level] = NULL; 1904 btrfs_clean_tree_block(mid); 1905 btrfs_tree_unlock(mid); 1906 /* once for the path */ 1907 free_extent_buffer(mid); 1908 1909 root_sub_used(root, mid->len); 1910 btrfs_free_tree_block(trans, root, mid, 0, 1); 1911 /* once for the root ptr */ 1912 free_extent_buffer_stale(mid); 1913 return 0; 1914 } 1915 if (btrfs_header_nritems(mid) > 1916 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1917 return 0; 1918 1919 left = btrfs_read_node_slot(parent, pslot - 1); 1920 if (IS_ERR(left)) 1921 left = NULL; 1922 1923 if (left) { 1924 btrfs_tree_lock(left); 1925 btrfs_set_lock_blocking_write(left); 1926 wret = btrfs_cow_block(trans, root, left, 1927 parent, pslot - 1, &left); 1928 if (wret) { 1929 ret = wret; 1930 goto enospc; 1931 } 1932 } 1933 1934 right = btrfs_read_node_slot(parent, pslot + 1); 1935 if (IS_ERR(right)) 1936 right = NULL; 1937 1938 if (right) { 1939 btrfs_tree_lock(right); 1940 btrfs_set_lock_blocking_write(right); 1941 wret = btrfs_cow_block(trans, root, right, 1942 parent, pslot + 1, &right); 1943 if (wret) { 1944 ret = wret; 1945 goto enospc; 1946 } 1947 } 1948 1949 /* first, try to make some room in the middle buffer */ 1950 if (left) { 1951 orig_slot += btrfs_header_nritems(left); 1952 wret = push_node_left(trans, left, mid, 1); 1953 if (wret < 0) 1954 ret = wret; 1955 } 1956 1957 /* 1958 * then try to empty the right most buffer into the middle 1959 */ 1960 if (right) { 1961 wret = push_node_left(trans, mid, right, 1); 1962 if (wret < 0 && wret != -ENOSPC) 1963 ret = wret; 1964 if (btrfs_header_nritems(right) == 0) { 1965 btrfs_clean_tree_block(right); 1966 btrfs_tree_unlock(right); 1967 del_ptr(root, path, level + 1, pslot + 1); 1968 root_sub_used(root, right->len); 1969 btrfs_free_tree_block(trans, root, right, 0, 1); 1970 free_extent_buffer_stale(right); 1971 right = NULL; 1972 } else { 1973 struct btrfs_disk_key right_key; 1974 btrfs_node_key(right, &right_key, 0); 1975 ret = tree_mod_log_insert_key(parent, pslot + 1, 1976 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1977 BUG_ON(ret < 0); 1978 btrfs_set_node_key(parent, &right_key, pslot + 1); 1979 btrfs_mark_buffer_dirty(parent); 1980 } 1981 } 1982 if (btrfs_header_nritems(mid) == 1) { 1983 /* 1984 * we're not allowed to leave a node with one item in the 1985 * tree during a delete. A deletion from lower in the tree 1986 * could try to delete the only pointer in this node. 1987 * So, pull some keys from the left. 1988 * There has to be a left pointer at this point because 1989 * otherwise we would have pulled some pointers from the 1990 * right 1991 */ 1992 if (!left) { 1993 ret = -EROFS; 1994 btrfs_handle_fs_error(fs_info, ret, NULL); 1995 goto enospc; 1996 } 1997 wret = balance_node_right(trans, mid, left); 1998 if (wret < 0) { 1999 ret = wret; 2000 goto enospc; 2001 } 2002 if (wret == 1) { 2003 wret = push_node_left(trans, left, mid, 1); 2004 if (wret < 0) 2005 ret = wret; 2006 } 2007 BUG_ON(wret == 1); 2008 } 2009 if (btrfs_header_nritems(mid) == 0) { 2010 btrfs_clean_tree_block(mid); 2011 btrfs_tree_unlock(mid); 2012 del_ptr(root, path, level + 1, pslot); 2013 root_sub_used(root, mid->len); 2014 btrfs_free_tree_block(trans, root, mid, 0, 1); 2015 free_extent_buffer_stale(mid); 2016 mid = NULL; 2017 } else { 2018 /* update the parent key to reflect our changes */ 2019 struct btrfs_disk_key mid_key; 2020 btrfs_node_key(mid, &mid_key, 0); 2021 ret = tree_mod_log_insert_key(parent, pslot, 2022 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2023 BUG_ON(ret < 0); 2024 btrfs_set_node_key(parent, &mid_key, pslot); 2025 btrfs_mark_buffer_dirty(parent); 2026 } 2027 2028 /* update the path */ 2029 if (left) { 2030 if (btrfs_header_nritems(left) > orig_slot) { 2031 atomic_inc(&left->refs); 2032 /* left was locked after cow */ 2033 path->nodes[level] = left; 2034 path->slots[level + 1] -= 1; 2035 path->slots[level] = orig_slot; 2036 if (mid) { 2037 btrfs_tree_unlock(mid); 2038 free_extent_buffer(mid); 2039 } 2040 } else { 2041 orig_slot -= btrfs_header_nritems(left); 2042 path->slots[level] = orig_slot; 2043 } 2044 } 2045 /* double check we haven't messed things up */ 2046 if (orig_ptr != 2047 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2048 BUG(); 2049 enospc: 2050 if (right) { 2051 btrfs_tree_unlock(right); 2052 free_extent_buffer(right); 2053 } 2054 if (left) { 2055 if (path->nodes[level] != left) 2056 btrfs_tree_unlock(left); 2057 free_extent_buffer(left); 2058 } 2059 return ret; 2060 } 2061 2062 /* Node balancing for insertion. Here we only split or push nodes around 2063 * when they are completely full. This is also done top down, so we 2064 * have to be pessimistic. 2065 */ 2066 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2067 struct btrfs_root *root, 2068 struct btrfs_path *path, int level) 2069 { 2070 struct btrfs_fs_info *fs_info = root->fs_info; 2071 struct extent_buffer *right = NULL; 2072 struct extent_buffer *mid; 2073 struct extent_buffer *left = NULL; 2074 struct extent_buffer *parent = NULL; 2075 int ret = 0; 2076 int wret; 2077 int pslot; 2078 int orig_slot = path->slots[level]; 2079 2080 if (level == 0) 2081 return 1; 2082 2083 mid = path->nodes[level]; 2084 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2085 2086 if (level < BTRFS_MAX_LEVEL - 1) { 2087 parent = path->nodes[level + 1]; 2088 pslot = path->slots[level + 1]; 2089 } 2090 2091 if (!parent) 2092 return 1; 2093 2094 left = btrfs_read_node_slot(parent, pslot - 1); 2095 if (IS_ERR(left)) 2096 left = NULL; 2097 2098 /* first, try to make some room in the middle buffer */ 2099 if (left) { 2100 u32 left_nr; 2101 2102 btrfs_tree_lock(left); 2103 btrfs_set_lock_blocking_write(left); 2104 2105 left_nr = btrfs_header_nritems(left); 2106 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2107 wret = 1; 2108 } else { 2109 ret = btrfs_cow_block(trans, root, left, parent, 2110 pslot - 1, &left); 2111 if (ret) 2112 wret = 1; 2113 else { 2114 wret = push_node_left(trans, left, mid, 0); 2115 } 2116 } 2117 if (wret < 0) 2118 ret = wret; 2119 if (wret == 0) { 2120 struct btrfs_disk_key disk_key; 2121 orig_slot += left_nr; 2122 btrfs_node_key(mid, &disk_key, 0); 2123 ret = tree_mod_log_insert_key(parent, pslot, 2124 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2125 BUG_ON(ret < 0); 2126 btrfs_set_node_key(parent, &disk_key, pslot); 2127 btrfs_mark_buffer_dirty(parent); 2128 if (btrfs_header_nritems(left) > orig_slot) { 2129 path->nodes[level] = left; 2130 path->slots[level + 1] -= 1; 2131 path->slots[level] = orig_slot; 2132 btrfs_tree_unlock(mid); 2133 free_extent_buffer(mid); 2134 } else { 2135 orig_slot -= 2136 btrfs_header_nritems(left); 2137 path->slots[level] = orig_slot; 2138 btrfs_tree_unlock(left); 2139 free_extent_buffer(left); 2140 } 2141 return 0; 2142 } 2143 btrfs_tree_unlock(left); 2144 free_extent_buffer(left); 2145 } 2146 right = btrfs_read_node_slot(parent, pslot + 1); 2147 if (IS_ERR(right)) 2148 right = NULL; 2149 2150 /* 2151 * then try to empty the right most buffer into the middle 2152 */ 2153 if (right) { 2154 u32 right_nr; 2155 2156 btrfs_tree_lock(right); 2157 btrfs_set_lock_blocking_write(right); 2158 2159 right_nr = btrfs_header_nritems(right); 2160 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2161 wret = 1; 2162 } else { 2163 ret = btrfs_cow_block(trans, root, right, 2164 parent, pslot + 1, 2165 &right); 2166 if (ret) 2167 wret = 1; 2168 else { 2169 wret = balance_node_right(trans, right, mid); 2170 } 2171 } 2172 if (wret < 0) 2173 ret = wret; 2174 if (wret == 0) { 2175 struct btrfs_disk_key disk_key; 2176 2177 btrfs_node_key(right, &disk_key, 0); 2178 ret = tree_mod_log_insert_key(parent, pslot + 1, 2179 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2180 BUG_ON(ret < 0); 2181 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2182 btrfs_mark_buffer_dirty(parent); 2183 2184 if (btrfs_header_nritems(mid) <= orig_slot) { 2185 path->nodes[level] = right; 2186 path->slots[level + 1] += 1; 2187 path->slots[level] = orig_slot - 2188 btrfs_header_nritems(mid); 2189 btrfs_tree_unlock(mid); 2190 free_extent_buffer(mid); 2191 } else { 2192 btrfs_tree_unlock(right); 2193 free_extent_buffer(right); 2194 } 2195 return 0; 2196 } 2197 btrfs_tree_unlock(right); 2198 free_extent_buffer(right); 2199 } 2200 return 1; 2201 } 2202 2203 /* 2204 * readahead one full node of leaves, finding things that are close 2205 * to the block in 'slot', and triggering ra on them. 2206 */ 2207 static void reada_for_search(struct btrfs_fs_info *fs_info, 2208 struct btrfs_path *path, 2209 int level, int slot, u64 objectid) 2210 { 2211 struct extent_buffer *node; 2212 struct btrfs_disk_key disk_key; 2213 u32 nritems; 2214 u64 search; 2215 u64 target; 2216 u64 nread = 0; 2217 struct extent_buffer *eb; 2218 u32 nr; 2219 u32 blocksize; 2220 u32 nscan = 0; 2221 2222 if (level != 1) 2223 return; 2224 2225 if (!path->nodes[level]) 2226 return; 2227 2228 node = path->nodes[level]; 2229 2230 search = btrfs_node_blockptr(node, slot); 2231 blocksize = fs_info->nodesize; 2232 eb = find_extent_buffer(fs_info, search); 2233 if (eb) { 2234 free_extent_buffer(eb); 2235 return; 2236 } 2237 2238 target = search; 2239 2240 nritems = btrfs_header_nritems(node); 2241 nr = slot; 2242 2243 while (1) { 2244 if (path->reada == READA_BACK) { 2245 if (nr == 0) 2246 break; 2247 nr--; 2248 } else if (path->reada == READA_FORWARD) { 2249 nr++; 2250 if (nr >= nritems) 2251 break; 2252 } 2253 if (path->reada == READA_BACK && objectid) { 2254 btrfs_node_key(node, &disk_key, nr); 2255 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2256 break; 2257 } 2258 search = btrfs_node_blockptr(node, nr); 2259 if ((search <= target && target - search <= 65536) || 2260 (search > target && search - target <= 65536)) { 2261 readahead_tree_block(fs_info, search); 2262 nread += blocksize; 2263 } 2264 nscan++; 2265 if ((nread > 65536 || nscan > 32)) 2266 break; 2267 } 2268 } 2269 2270 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2271 struct btrfs_path *path, int level) 2272 { 2273 int slot; 2274 int nritems; 2275 struct extent_buffer *parent; 2276 struct extent_buffer *eb; 2277 u64 gen; 2278 u64 block1 = 0; 2279 u64 block2 = 0; 2280 2281 parent = path->nodes[level + 1]; 2282 if (!parent) 2283 return; 2284 2285 nritems = btrfs_header_nritems(parent); 2286 slot = path->slots[level + 1]; 2287 2288 if (slot > 0) { 2289 block1 = btrfs_node_blockptr(parent, slot - 1); 2290 gen = btrfs_node_ptr_generation(parent, slot - 1); 2291 eb = find_extent_buffer(fs_info, block1); 2292 /* 2293 * if we get -eagain from btrfs_buffer_uptodate, we 2294 * don't want to return eagain here. That will loop 2295 * forever 2296 */ 2297 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2298 block1 = 0; 2299 free_extent_buffer(eb); 2300 } 2301 if (slot + 1 < nritems) { 2302 block2 = btrfs_node_blockptr(parent, slot + 1); 2303 gen = btrfs_node_ptr_generation(parent, slot + 1); 2304 eb = find_extent_buffer(fs_info, block2); 2305 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2306 block2 = 0; 2307 free_extent_buffer(eb); 2308 } 2309 2310 if (block1) 2311 readahead_tree_block(fs_info, block1); 2312 if (block2) 2313 readahead_tree_block(fs_info, block2); 2314 } 2315 2316 2317 /* 2318 * when we walk down the tree, it is usually safe to unlock the higher layers 2319 * in the tree. The exceptions are when our path goes through slot 0, because 2320 * operations on the tree might require changing key pointers higher up in the 2321 * tree. 2322 * 2323 * callers might also have set path->keep_locks, which tells this code to keep 2324 * the lock if the path points to the last slot in the block. This is part of 2325 * walking through the tree, and selecting the next slot in the higher block. 2326 * 2327 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2328 * if lowest_unlock is 1, level 0 won't be unlocked 2329 */ 2330 static noinline void unlock_up(struct btrfs_path *path, int level, 2331 int lowest_unlock, int min_write_lock_level, 2332 int *write_lock_level) 2333 { 2334 int i; 2335 int skip_level = level; 2336 int no_skips = 0; 2337 struct extent_buffer *t; 2338 2339 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2340 if (!path->nodes[i]) 2341 break; 2342 if (!path->locks[i]) 2343 break; 2344 if (!no_skips && path->slots[i] == 0) { 2345 skip_level = i + 1; 2346 continue; 2347 } 2348 if (!no_skips && path->keep_locks) { 2349 u32 nritems; 2350 t = path->nodes[i]; 2351 nritems = btrfs_header_nritems(t); 2352 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2353 skip_level = i + 1; 2354 continue; 2355 } 2356 } 2357 if (skip_level < i && i >= lowest_unlock) 2358 no_skips = 1; 2359 2360 t = path->nodes[i]; 2361 if (i >= lowest_unlock && i > skip_level) { 2362 btrfs_tree_unlock_rw(t, path->locks[i]); 2363 path->locks[i] = 0; 2364 if (write_lock_level && 2365 i > min_write_lock_level && 2366 i <= *write_lock_level) { 2367 *write_lock_level = i - 1; 2368 } 2369 } 2370 } 2371 } 2372 2373 /* 2374 * helper function for btrfs_search_slot. The goal is to find a block 2375 * in cache without setting the path to blocking. If we find the block 2376 * we return zero and the path is unchanged. 2377 * 2378 * If we can't find the block, we set the path blocking and do some 2379 * reada. -EAGAIN is returned and the search must be repeated. 2380 */ 2381 static int 2382 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2383 struct extent_buffer **eb_ret, int level, int slot, 2384 const struct btrfs_key *key) 2385 { 2386 struct btrfs_fs_info *fs_info = root->fs_info; 2387 u64 blocknr; 2388 u64 gen; 2389 struct extent_buffer *b = *eb_ret; 2390 struct extent_buffer *tmp; 2391 struct btrfs_key first_key; 2392 int ret; 2393 int parent_level; 2394 2395 blocknr = btrfs_node_blockptr(b, slot); 2396 gen = btrfs_node_ptr_generation(b, slot); 2397 parent_level = btrfs_header_level(b); 2398 btrfs_node_key_to_cpu(b, &first_key, slot); 2399 2400 tmp = find_extent_buffer(fs_info, blocknr); 2401 if (tmp) { 2402 /* first we do an atomic uptodate check */ 2403 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2404 /* 2405 * Do extra check for first_key, eb can be stale due to 2406 * being cached, read from scrub, or have multiple 2407 * parents (shared tree blocks). 2408 */ 2409 if (btrfs_verify_level_key(tmp, 2410 parent_level - 1, &first_key, gen)) { 2411 free_extent_buffer(tmp); 2412 return -EUCLEAN; 2413 } 2414 *eb_ret = tmp; 2415 return 0; 2416 } 2417 2418 /* the pages were up to date, but we failed 2419 * the generation number check. Do a full 2420 * read for the generation number that is correct. 2421 * We must do this without dropping locks so 2422 * we can trust our generation number 2423 */ 2424 btrfs_set_path_blocking(p); 2425 2426 /* now we're allowed to do a blocking uptodate check */ 2427 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2428 if (!ret) { 2429 *eb_ret = tmp; 2430 return 0; 2431 } 2432 free_extent_buffer(tmp); 2433 btrfs_release_path(p); 2434 return -EIO; 2435 } 2436 2437 /* 2438 * reduce lock contention at high levels 2439 * of the btree by dropping locks before 2440 * we read. Don't release the lock on the current 2441 * level because we need to walk this node to figure 2442 * out which blocks to read. 2443 */ 2444 btrfs_unlock_up_safe(p, level + 1); 2445 btrfs_set_path_blocking(p); 2446 2447 if (p->reada != READA_NONE) 2448 reada_for_search(fs_info, p, level, slot, key->objectid); 2449 2450 ret = -EAGAIN; 2451 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2452 &first_key); 2453 if (!IS_ERR(tmp)) { 2454 /* 2455 * If the read above didn't mark this buffer up to date, 2456 * it will never end up being up to date. Set ret to EIO now 2457 * and give up so that our caller doesn't loop forever 2458 * on our EAGAINs. 2459 */ 2460 if (!extent_buffer_uptodate(tmp)) 2461 ret = -EIO; 2462 free_extent_buffer(tmp); 2463 } else { 2464 ret = PTR_ERR(tmp); 2465 } 2466 2467 btrfs_release_path(p); 2468 return ret; 2469 } 2470 2471 /* 2472 * helper function for btrfs_search_slot. This does all of the checks 2473 * for node-level blocks and does any balancing required based on 2474 * the ins_len. 2475 * 2476 * If no extra work was required, zero is returned. If we had to 2477 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2478 * start over 2479 */ 2480 static int 2481 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2482 struct btrfs_root *root, struct btrfs_path *p, 2483 struct extent_buffer *b, int level, int ins_len, 2484 int *write_lock_level) 2485 { 2486 struct btrfs_fs_info *fs_info = root->fs_info; 2487 int ret; 2488 2489 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2490 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2491 int sret; 2492 2493 if (*write_lock_level < level + 1) { 2494 *write_lock_level = level + 1; 2495 btrfs_release_path(p); 2496 goto again; 2497 } 2498 2499 btrfs_set_path_blocking(p); 2500 reada_for_balance(fs_info, p, level); 2501 sret = split_node(trans, root, p, level); 2502 2503 BUG_ON(sret > 0); 2504 if (sret) { 2505 ret = sret; 2506 goto done; 2507 } 2508 b = p->nodes[level]; 2509 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2510 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2511 int sret; 2512 2513 if (*write_lock_level < level + 1) { 2514 *write_lock_level = level + 1; 2515 btrfs_release_path(p); 2516 goto again; 2517 } 2518 2519 btrfs_set_path_blocking(p); 2520 reada_for_balance(fs_info, p, level); 2521 sret = balance_level(trans, root, p, level); 2522 2523 if (sret) { 2524 ret = sret; 2525 goto done; 2526 } 2527 b = p->nodes[level]; 2528 if (!b) { 2529 btrfs_release_path(p); 2530 goto again; 2531 } 2532 BUG_ON(btrfs_header_nritems(b) == 1); 2533 } 2534 return 0; 2535 2536 again: 2537 ret = -EAGAIN; 2538 done: 2539 return ret; 2540 } 2541 2542 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2543 int level, int *prev_cmp, int *slot) 2544 { 2545 if (*prev_cmp != 0) { 2546 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2547 return *prev_cmp; 2548 } 2549 2550 *slot = 0; 2551 2552 return 0; 2553 } 2554 2555 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2556 u64 iobjectid, u64 ioff, u8 key_type, 2557 struct btrfs_key *found_key) 2558 { 2559 int ret; 2560 struct btrfs_key key; 2561 struct extent_buffer *eb; 2562 2563 ASSERT(path); 2564 ASSERT(found_key); 2565 2566 key.type = key_type; 2567 key.objectid = iobjectid; 2568 key.offset = ioff; 2569 2570 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2571 if (ret < 0) 2572 return ret; 2573 2574 eb = path->nodes[0]; 2575 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2576 ret = btrfs_next_leaf(fs_root, path); 2577 if (ret) 2578 return ret; 2579 eb = path->nodes[0]; 2580 } 2581 2582 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2583 if (found_key->type != key.type || 2584 found_key->objectid != key.objectid) 2585 return 1; 2586 2587 return 0; 2588 } 2589 2590 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2591 struct btrfs_path *p, 2592 int write_lock_level) 2593 { 2594 struct btrfs_fs_info *fs_info = root->fs_info; 2595 struct extent_buffer *b; 2596 int root_lock; 2597 int level = 0; 2598 2599 /* We try very hard to do read locks on the root */ 2600 root_lock = BTRFS_READ_LOCK; 2601 2602 if (p->search_commit_root) { 2603 /* 2604 * The commit roots are read only so we always do read locks, 2605 * and we always must hold the commit_root_sem when doing 2606 * searches on them, the only exception is send where we don't 2607 * want to block transaction commits for a long time, so 2608 * we need to clone the commit root in order to avoid races 2609 * with transaction commits that create a snapshot of one of 2610 * the roots used by a send operation. 2611 */ 2612 if (p->need_commit_sem) { 2613 down_read(&fs_info->commit_root_sem); 2614 b = btrfs_clone_extent_buffer(root->commit_root); 2615 up_read(&fs_info->commit_root_sem); 2616 if (!b) 2617 return ERR_PTR(-ENOMEM); 2618 2619 } else { 2620 b = root->commit_root; 2621 atomic_inc(&b->refs); 2622 } 2623 level = btrfs_header_level(b); 2624 /* 2625 * Ensure that all callers have set skip_locking when 2626 * p->search_commit_root = 1. 2627 */ 2628 ASSERT(p->skip_locking == 1); 2629 2630 goto out; 2631 } 2632 2633 if (p->skip_locking) { 2634 b = btrfs_root_node(root); 2635 level = btrfs_header_level(b); 2636 goto out; 2637 } 2638 2639 /* 2640 * If the level is set to maximum, we can skip trying to get the read 2641 * lock. 2642 */ 2643 if (write_lock_level < BTRFS_MAX_LEVEL) { 2644 /* 2645 * We don't know the level of the root node until we actually 2646 * have it read locked 2647 */ 2648 b = btrfs_read_lock_root_node(root); 2649 level = btrfs_header_level(b); 2650 if (level > write_lock_level) 2651 goto out; 2652 2653 /* Whoops, must trade for write lock */ 2654 btrfs_tree_read_unlock(b); 2655 free_extent_buffer(b); 2656 } 2657 2658 b = btrfs_lock_root_node(root); 2659 root_lock = BTRFS_WRITE_LOCK; 2660 2661 /* The level might have changed, check again */ 2662 level = btrfs_header_level(b); 2663 2664 out: 2665 p->nodes[level] = b; 2666 if (!p->skip_locking) 2667 p->locks[level] = root_lock; 2668 /* 2669 * Callers are responsible for dropping b's references. 2670 */ 2671 return b; 2672 } 2673 2674 2675 /* 2676 * btrfs_search_slot - look for a key in a tree and perform necessary 2677 * modifications to preserve tree invariants. 2678 * 2679 * @trans: Handle of transaction, used when modifying the tree 2680 * @p: Holds all btree nodes along the search path 2681 * @root: The root node of the tree 2682 * @key: The key we are looking for 2683 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2684 * deletions it's -1. 0 for plain searches 2685 * @cow: boolean should CoW operations be performed. Must always be 1 2686 * when modifying the tree. 2687 * 2688 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2689 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2690 * 2691 * If @key is found, 0 is returned and you can find the item in the leaf level 2692 * of the path (level 0) 2693 * 2694 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2695 * points to the slot where it should be inserted 2696 * 2697 * If an error is encountered while searching the tree a negative error number 2698 * is returned 2699 */ 2700 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2701 const struct btrfs_key *key, struct btrfs_path *p, 2702 int ins_len, int cow) 2703 { 2704 struct extent_buffer *b; 2705 int slot; 2706 int ret; 2707 int err; 2708 int level; 2709 int lowest_unlock = 1; 2710 /* everything at write_lock_level or lower must be write locked */ 2711 int write_lock_level = 0; 2712 u8 lowest_level = 0; 2713 int min_write_lock_level; 2714 int prev_cmp; 2715 2716 lowest_level = p->lowest_level; 2717 WARN_ON(lowest_level && ins_len > 0); 2718 WARN_ON(p->nodes[0] != NULL); 2719 BUG_ON(!cow && ins_len); 2720 2721 if (ins_len < 0) { 2722 lowest_unlock = 2; 2723 2724 /* when we are removing items, we might have to go up to level 2725 * two as we update tree pointers Make sure we keep write 2726 * for those levels as well 2727 */ 2728 write_lock_level = 2; 2729 } else if (ins_len > 0) { 2730 /* 2731 * for inserting items, make sure we have a write lock on 2732 * level 1 so we can update keys 2733 */ 2734 write_lock_level = 1; 2735 } 2736 2737 if (!cow) 2738 write_lock_level = -1; 2739 2740 if (cow && (p->keep_locks || p->lowest_level)) 2741 write_lock_level = BTRFS_MAX_LEVEL; 2742 2743 min_write_lock_level = write_lock_level; 2744 2745 again: 2746 prev_cmp = -1; 2747 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2748 if (IS_ERR(b)) { 2749 ret = PTR_ERR(b); 2750 goto done; 2751 } 2752 2753 while (b) { 2754 int dec = 0; 2755 2756 level = btrfs_header_level(b); 2757 2758 if (cow) { 2759 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2760 2761 /* 2762 * if we don't really need to cow this block 2763 * then we don't want to set the path blocking, 2764 * so we test it here 2765 */ 2766 if (!should_cow_block(trans, root, b)) { 2767 trans->dirty = true; 2768 goto cow_done; 2769 } 2770 2771 /* 2772 * must have write locks on this node and the 2773 * parent 2774 */ 2775 if (level > write_lock_level || 2776 (level + 1 > write_lock_level && 2777 level + 1 < BTRFS_MAX_LEVEL && 2778 p->nodes[level + 1])) { 2779 write_lock_level = level + 1; 2780 btrfs_release_path(p); 2781 goto again; 2782 } 2783 2784 btrfs_set_path_blocking(p); 2785 if (last_level) 2786 err = btrfs_cow_block(trans, root, b, NULL, 0, 2787 &b); 2788 else 2789 err = btrfs_cow_block(trans, root, b, 2790 p->nodes[level + 1], 2791 p->slots[level + 1], &b); 2792 if (err) { 2793 ret = err; 2794 goto done; 2795 } 2796 } 2797 cow_done: 2798 p->nodes[level] = b; 2799 /* 2800 * Leave path with blocking locks to avoid massive 2801 * lock context switch, this is made on purpose. 2802 */ 2803 2804 /* 2805 * we have a lock on b and as long as we aren't changing 2806 * the tree, there is no way to for the items in b to change. 2807 * It is safe to drop the lock on our parent before we 2808 * go through the expensive btree search on b. 2809 * 2810 * If we're inserting or deleting (ins_len != 0), then we might 2811 * be changing slot zero, which may require changing the parent. 2812 * So, we can't drop the lock until after we know which slot 2813 * we're operating on. 2814 */ 2815 if (!ins_len && !p->keep_locks) { 2816 int u = level + 1; 2817 2818 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2819 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2820 p->locks[u] = 0; 2821 } 2822 } 2823 2824 ret = key_search(b, key, level, &prev_cmp, &slot); 2825 if (ret < 0) 2826 goto done; 2827 2828 if (level == 0) { 2829 p->slots[level] = slot; 2830 if (ins_len > 0 && 2831 btrfs_leaf_free_space(b) < ins_len) { 2832 if (write_lock_level < 1) { 2833 write_lock_level = 1; 2834 btrfs_release_path(p); 2835 goto again; 2836 } 2837 2838 btrfs_set_path_blocking(p); 2839 err = split_leaf(trans, root, key, 2840 p, ins_len, ret == 0); 2841 2842 BUG_ON(err > 0); 2843 if (err) { 2844 ret = err; 2845 goto done; 2846 } 2847 } 2848 if (!p->search_for_split) 2849 unlock_up(p, level, lowest_unlock, 2850 min_write_lock_level, NULL); 2851 goto done; 2852 } 2853 if (ret && slot > 0) { 2854 dec = 1; 2855 slot--; 2856 } 2857 p->slots[level] = slot; 2858 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2859 &write_lock_level); 2860 if (err == -EAGAIN) 2861 goto again; 2862 if (err) { 2863 ret = err; 2864 goto done; 2865 } 2866 b = p->nodes[level]; 2867 slot = p->slots[level]; 2868 2869 /* 2870 * Slot 0 is special, if we change the key we have to update 2871 * the parent pointer which means we must have a write lock on 2872 * the parent 2873 */ 2874 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2875 write_lock_level = level + 1; 2876 btrfs_release_path(p); 2877 goto again; 2878 } 2879 2880 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2881 &write_lock_level); 2882 2883 if (level == lowest_level) { 2884 if (dec) 2885 p->slots[level]++; 2886 goto done; 2887 } 2888 2889 err = read_block_for_search(root, p, &b, level, slot, key); 2890 if (err == -EAGAIN) 2891 goto again; 2892 if (err) { 2893 ret = err; 2894 goto done; 2895 } 2896 2897 if (!p->skip_locking) { 2898 level = btrfs_header_level(b); 2899 if (level <= write_lock_level) { 2900 if (!btrfs_try_tree_write_lock(b)) { 2901 btrfs_set_path_blocking(p); 2902 btrfs_tree_lock(b); 2903 } 2904 p->locks[level] = BTRFS_WRITE_LOCK; 2905 } else { 2906 if (!btrfs_tree_read_lock_atomic(b)) { 2907 btrfs_set_path_blocking(p); 2908 btrfs_tree_read_lock(b); 2909 } 2910 p->locks[level] = BTRFS_READ_LOCK; 2911 } 2912 p->nodes[level] = b; 2913 } 2914 } 2915 ret = 1; 2916 done: 2917 /* 2918 * we don't really know what they plan on doing with the path 2919 * from here on, so for now just mark it as blocking 2920 */ 2921 if (!p->leave_spinning) 2922 btrfs_set_path_blocking(p); 2923 if (ret < 0 && !p->skip_release_on_error) 2924 btrfs_release_path(p); 2925 return ret; 2926 } 2927 2928 /* 2929 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2930 * current state of the tree together with the operations recorded in the tree 2931 * modification log to search for the key in a previous version of this tree, as 2932 * denoted by the time_seq parameter. 2933 * 2934 * Naturally, there is no support for insert, delete or cow operations. 2935 * 2936 * The resulting path and return value will be set up as if we called 2937 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2938 */ 2939 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2940 struct btrfs_path *p, u64 time_seq) 2941 { 2942 struct btrfs_fs_info *fs_info = root->fs_info; 2943 struct extent_buffer *b; 2944 int slot; 2945 int ret; 2946 int err; 2947 int level; 2948 int lowest_unlock = 1; 2949 u8 lowest_level = 0; 2950 int prev_cmp = -1; 2951 2952 lowest_level = p->lowest_level; 2953 WARN_ON(p->nodes[0] != NULL); 2954 2955 if (p->search_commit_root) { 2956 BUG_ON(time_seq); 2957 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2958 } 2959 2960 again: 2961 b = get_old_root(root, time_seq); 2962 if (!b) { 2963 ret = -EIO; 2964 goto done; 2965 } 2966 level = btrfs_header_level(b); 2967 p->locks[level] = BTRFS_READ_LOCK; 2968 2969 while (b) { 2970 int dec = 0; 2971 2972 level = btrfs_header_level(b); 2973 p->nodes[level] = b; 2974 2975 /* 2976 * we have a lock on b and as long as we aren't changing 2977 * the tree, there is no way to for the items in b to change. 2978 * It is safe to drop the lock on our parent before we 2979 * go through the expensive btree search on b. 2980 */ 2981 btrfs_unlock_up_safe(p, level + 1); 2982 2983 /* 2984 * Since we can unwind ebs we want to do a real search every 2985 * time. 2986 */ 2987 prev_cmp = -1; 2988 ret = key_search(b, key, level, &prev_cmp, &slot); 2989 if (ret < 0) 2990 goto done; 2991 2992 if (level == 0) { 2993 p->slots[level] = slot; 2994 unlock_up(p, level, lowest_unlock, 0, NULL); 2995 goto done; 2996 } 2997 2998 if (ret && slot > 0) { 2999 dec = 1; 3000 slot--; 3001 } 3002 p->slots[level] = slot; 3003 unlock_up(p, level, lowest_unlock, 0, NULL); 3004 3005 if (level == lowest_level) { 3006 if (dec) 3007 p->slots[level]++; 3008 goto done; 3009 } 3010 3011 err = read_block_for_search(root, p, &b, level, slot, key); 3012 if (err == -EAGAIN) 3013 goto again; 3014 if (err) { 3015 ret = err; 3016 goto done; 3017 } 3018 3019 level = btrfs_header_level(b); 3020 if (!btrfs_tree_read_lock_atomic(b)) { 3021 btrfs_set_path_blocking(p); 3022 btrfs_tree_read_lock(b); 3023 } 3024 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3025 if (!b) { 3026 ret = -ENOMEM; 3027 goto done; 3028 } 3029 p->locks[level] = BTRFS_READ_LOCK; 3030 p->nodes[level] = b; 3031 } 3032 ret = 1; 3033 done: 3034 if (!p->leave_spinning) 3035 btrfs_set_path_blocking(p); 3036 if (ret < 0) 3037 btrfs_release_path(p); 3038 3039 return ret; 3040 } 3041 3042 /* 3043 * helper to use instead of search slot if no exact match is needed but 3044 * instead the next or previous item should be returned. 3045 * When find_higher is true, the next higher item is returned, the next lower 3046 * otherwise. 3047 * When return_any and find_higher are both true, and no higher item is found, 3048 * return the next lower instead. 3049 * When return_any is true and find_higher is false, and no lower item is found, 3050 * return the next higher instead. 3051 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3052 * < 0 on error 3053 */ 3054 int btrfs_search_slot_for_read(struct btrfs_root *root, 3055 const struct btrfs_key *key, 3056 struct btrfs_path *p, int find_higher, 3057 int return_any) 3058 { 3059 int ret; 3060 struct extent_buffer *leaf; 3061 3062 again: 3063 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3064 if (ret <= 0) 3065 return ret; 3066 /* 3067 * a return value of 1 means the path is at the position where the 3068 * item should be inserted. Normally this is the next bigger item, 3069 * but in case the previous item is the last in a leaf, path points 3070 * to the first free slot in the previous leaf, i.e. at an invalid 3071 * item. 3072 */ 3073 leaf = p->nodes[0]; 3074 3075 if (find_higher) { 3076 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3077 ret = btrfs_next_leaf(root, p); 3078 if (ret <= 0) 3079 return ret; 3080 if (!return_any) 3081 return 1; 3082 /* 3083 * no higher item found, return the next 3084 * lower instead 3085 */ 3086 return_any = 0; 3087 find_higher = 0; 3088 btrfs_release_path(p); 3089 goto again; 3090 } 3091 } else { 3092 if (p->slots[0] == 0) { 3093 ret = btrfs_prev_leaf(root, p); 3094 if (ret < 0) 3095 return ret; 3096 if (!ret) { 3097 leaf = p->nodes[0]; 3098 if (p->slots[0] == btrfs_header_nritems(leaf)) 3099 p->slots[0]--; 3100 return 0; 3101 } 3102 if (!return_any) 3103 return 1; 3104 /* 3105 * no lower item found, return the next 3106 * higher instead 3107 */ 3108 return_any = 0; 3109 find_higher = 1; 3110 btrfs_release_path(p); 3111 goto again; 3112 } else { 3113 --p->slots[0]; 3114 } 3115 } 3116 return 0; 3117 } 3118 3119 /* 3120 * adjust the pointers going up the tree, starting at level 3121 * making sure the right key of each node is points to 'key'. 3122 * This is used after shifting pointers to the left, so it stops 3123 * fixing up pointers when a given leaf/node is not in slot 0 of the 3124 * higher levels 3125 * 3126 */ 3127 static void fixup_low_keys(struct btrfs_path *path, 3128 struct btrfs_disk_key *key, int level) 3129 { 3130 int i; 3131 struct extent_buffer *t; 3132 int ret; 3133 3134 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3135 int tslot = path->slots[i]; 3136 3137 if (!path->nodes[i]) 3138 break; 3139 t = path->nodes[i]; 3140 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3141 GFP_ATOMIC); 3142 BUG_ON(ret < 0); 3143 btrfs_set_node_key(t, key, tslot); 3144 btrfs_mark_buffer_dirty(path->nodes[i]); 3145 if (tslot != 0) 3146 break; 3147 } 3148 } 3149 3150 /* 3151 * update item key. 3152 * 3153 * This function isn't completely safe. It's the caller's responsibility 3154 * that the new key won't break the order 3155 */ 3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3157 struct btrfs_path *path, 3158 const struct btrfs_key *new_key) 3159 { 3160 struct btrfs_disk_key disk_key; 3161 struct extent_buffer *eb; 3162 int slot; 3163 3164 eb = path->nodes[0]; 3165 slot = path->slots[0]; 3166 if (slot > 0) { 3167 btrfs_item_key(eb, &disk_key, slot - 1); 3168 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3169 btrfs_crit(fs_info, 3170 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3171 slot, btrfs_disk_key_objectid(&disk_key), 3172 btrfs_disk_key_type(&disk_key), 3173 btrfs_disk_key_offset(&disk_key), 3174 new_key->objectid, new_key->type, 3175 new_key->offset); 3176 btrfs_print_leaf(eb); 3177 BUG(); 3178 } 3179 } 3180 if (slot < btrfs_header_nritems(eb) - 1) { 3181 btrfs_item_key(eb, &disk_key, slot + 1); 3182 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3183 btrfs_crit(fs_info, 3184 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3185 slot, btrfs_disk_key_objectid(&disk_key), 3186 btrfs_disk_key_type(&disk_key), 3187 btrfs_disk_key_offset(&disk_key), 3188 new_key->objectid, new_key->type, 3189 new_key->offset); 3190 btrfs_print_leaf(eb); 3191 BUG(); 3192 } 3193 } 3194 3195 btrfs_cpu_key_to_disk(&disk_key, new_key); 3196 btrfs_set_item_key(eb, &disk_key, slot); 3197 btrfs_mark_buffer_dirty(eb); 3198 if (slot == 0) 3199 fixup_low_keys(path, &disk_key, 1); 3200 } 3201 3202 /* 3203 * try to push data from one node into the next node left in the 3204 * tree. 3205 * 3206 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3207 * error, and > 0 if there was no room in the left hand block. 3208 */ 3209 static int push_node_left(struct btrfs_trans_handle *trans, 3210 struct extent_buffer *dst, 3211 struct extent_buffer *src, int empty) 3212 { 3213 struct btrfs_fs_info *fs_info = trans->fs_info; 3214 int push_items = 0; 3215 int src_nritems; 3216 int dst_nritems; 3217 int ret = 0; 3218 3219 src_nritems = btrfs_header_nritems(src); 3220 dst_nritems = btrfs_header_nritems(dst); 3221 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3222 WARN_ON(btrfs_header_generation(src) != trans->transid); 3223 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3224 3225 if (!empty && src_nritems <= 8) 3226 return 1; 3227 3228 if (push_items <= 0) 3229 return 1; 3230 3231 if (empty) { 3232 push_items = min(src_nritems, push_items); 3233 if (push_items < src_nritems) { 3234 /* leave at least 8 pointers in the node if 3235 * we aren't going to empty it 3236 */ 3237 if (src_nritems - push_items < 8) { 3238 if (push_items <= 8) 3239 return 1; 3240 push_items -= 8; 3241 } 3242 } 3243 } else 3244 push_items = min(src_nritems - 8, push_items); 3245 3246 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3247 if (ret) { 3248 btrfs_abort_transaction(trans, ret); 3249 return ret; 3250 } 3251 copy_extent_buffer(dst, src, 3252 btrfs_node_key_ptr_offset(dst_nritems), 3253 btrfs_node_key_ptr_offset(0), 3254 push_items * sizeof(struct btrfs_key_ptr)); 3255 3256 if (push_items < src_nritems) { 3257 /* 3258 * Don't call tree_mod_log_insert_move here, key removal was 3259 * already fully logged by tree_mod_log_eb_copy above. 3260 */ 3261 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3262 btrfs_node_key_ptr_offset(push_items), 3263 (src_nritems - push_items) * 3264 sizeof(struct btrfs_key_ptr)); 3265 } 3266 btrfs_set_header_nritems(src, src_nritems - push_items); 3267 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3268 btrfs_mark_buffer_dirty(src); 3269 btrfs_mark_buffer_dirty(dst); 3270 3271 return ret; 3272 } 3273 3274 /* 3275 * try to push data from one node into the next node right in the 3276 * tree. 3277 * 3278 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3279 * error, and > 0 if there was no room in the right hand block. 3280 * 3281 * this will only push up to 1/2 the contents of the left node over 3282 */ 3283 static int balance_node_right(struct btrfs_trans_handle *trans, 3284 struct extent_buffer *dst, 3285 struct extent_buffer *src) 3286 { 3287 struct btrfs_fs_info *fs_info = trans->fs_info; 3288 int push_items = 0; 3289 int max_push; 3290 int src_nritems; 3291 int dst_nritems; 3292 int ret = 0; 3293 3294 WARN_ON(btrfs_header_generation(src) != trans->transid); 3295 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3296 3297 src_nritems = btrfs_header_nritems(src); 3298 dst_nritems = btrfs_header_nritems(dst); 3299 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3300 if (push_items <= 0) 3301 return 1; 3302 3303 if (src_nritems < 4) 3304 return 1; 3305 3306 max_push = src_nritems / 2 + 1; 3307 /* don't try to empty the node */ 3308 if (max_push >= src_nritems) 3309 return 1; 3310 3311 if (max_push < push_items) 3312 push_items = max_push; 3313 3314 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3315 BUG_ON(ret < 0); 3316 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3317 btrfs_node_key_ptr_offset(0), 3318 (dst_nritems) * 3319 sizeof(struct btrfs_key_ptr)); 3320 3321 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3322 push_items); 3323 if (ret) { 3324 btrfs_abort_transaction(trans, ret); 3325 return ret; 3326 } 3327 copy_extent_buffer(dst, src, 3328 btrfs_node_key_ptr_offset(0), 3329 btrfs_node_key_ptr_offset(src_nritems - push_items), 3330 push_items * sizeof(struct btrfs_key_ptr)); 3331 3332 btrfs_set_header_nritems(src, src_nritems - push_items); 3333 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3334 3335 btrfs_mark_buffer_dirty(src); 3336 btrfs_mark_buffer_dirty(dst); 3337 3338 return ret; 3339 } 3340 3341 /* 3342 * helper function to insert a new root level in the tree. 3343 * A new node is allocated, and a single item is inserted to 3344 * point to the existing root 3345 * 3346 * returns zero on success or < 0 on failure. 3347 */ 3348 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3349 struct btrfs_root *root, 3350 struct btrfs_path *path, int level) 3351 { 3352 struct btrfs_fs_info *fs_info = root->fs_info; 3353 u64 lower_gen; 3354 struct extent_buffer *lower; 3355 struct extent_buffer *c; 3356 struct extent_buffer *old; 3357 struct btrfs_disk_key lower_key; 3358 int ret; 3359 3360 BUG_ON(path->nodes[level]); 3361 BUG_ON(path->nodes[level-1] != root->node); 3362 3363 lower = path->nodes[level-1]; 3364 if (level == 1) 3365 btrfs_item_key(lower, &lower_key, 0); 3366 else 3367 btrfs_node_key(lower, &lower_key, 0); 3368 3369 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3370 root->node->start, 0); 3371 if (IS_ERR(c)) 3372 return PTR_ERR(c); 3373 3374 root_add_used(root, fs_info->nodesize); 3375 3376 btrfs_set_header_nritems(c, 1); 3377 btrfs_set_node_key(c, &lower_key, 0); 3378 btrfs_set_node_blockptr(c, 0, lower->start); 3379 lower_gen = btrfs_header_generation(lower); 3380 WARN_ON(lower_gen != trans->transid); 3381 3382 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3383 3384 btrfs_mark_buffer_dirty(c); 3385 3386 old = root->node; 3387 ret = tree_mod_log_insert_root(root->node, c, 0); 3388 BUG_ON(ret < 0); 3389 rcu_assign_pointer(root->node, c); 3390 3391 /* the super has an extra ref to root->node */ 3392 free_extent_buffer(old); 3393 3394 add_root_to_dirty_list(root); 3395 atomic_inc(&c->refs); 3396 path->nodes[level] = c; 3397 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3398 path->slots[level] = 0; 3399 return 0; 3400 } 3401 3402 /* 3403 * worker function to insert a single pointer in a node. 3404 * the node should have enough room for the pointer already 3405 * 3406 * slot and level indicate where you want the key to go, and 3407 * blocknr is the block the key points to. 3408 */ 3409 static void insert_ptr(struct btrfs_trans_handle *trans, 3410 struct btrfs_path *path, 3411 struct btrfs_disk_key *key, u64 bytenr, 3412 int slot, int level) 3413 { 3414 struct extent_buffer *lower; 3415 int nritems; 3416 int ret; 3417 3418 BUG_ON(!path->nodes[level]); 3419 btrfs_assert_tree_locked(path->nodes[level]); 3420 lower = path->nodes[level]; 3421 nritems = btrfs_header_nritems(lower); 3422 BUG_ON(slot > nritems); 3423 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3424 if (slot != nritems) { 3425 if (level) { 3426 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3427 nritems - slot); 3428 BUG_ON(ret < 0); 3429 } 3430 memmove_extent_buffer(lower, 3431 btrfs_node_key_ptr_offset(slot + 1), 3432 btrfs_node_key_ptr_offset(slot), 3433 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3434 } 3435 if (level) { 3436 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3437 GFP_NOFS); 3438 BUG_ON(ret < 0); 3439 } 3440 btrfs_set_node_key(lower, key, slot); 3441 btrfs_set_node_blockptr(lower, slot, bytenr); 3442 WARN_ON(trans->transid == 0); 3443 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3444 btrfs_set_header_nritems(lower, nritems + 1); 3445 btrfs_mark_buffer_dirty(lower); 3446 } 3447 3448 /* 3449 * split the node at the specified level in path in two. 3450 * The path is corrected to point to the appropriate node after the split 3451 * 3452 * Before splitting this tries to make some room in the node by pushing 3453 * left and right, if either one works, it returns right away. 3454 * 3455 * returns 0 on success and < 0 on failure 3456 */ 3457 static noinline int split_node(struct btrfs_trans_handle *trans, 3458 struct btrfs_root *root, 3459 struct btrfs_path *path, int level) 3460 { 3461 struct btrfs_fs_info *fs_info = root->fs_info; 3462 struct extent_buffer *c; 3463 struct extent_buffer *split; 3464 struct btrfs_disk_key disk_key; 3465 int mid; 3466 int ret; 3467 u32 c_nritems; 3468 3469 c = path->nodes[level]; 3470 WARN_ON(btrfs_header_generation(c) != trans->transid); 3471 if (c == root->node) { 3472 /* 3473 * trying to split the root, lets make a new one 3474 * 3475 * tree mod log: We don't log_removal old root in 3476 * insert_new_root, because that root buffer will be kept as a 3477 * normal node. We are going to log removal of half of the 3478 * elements below with tree_mod_log_eb_copy. We're holding a 3479 * tree lock on the buffer, which is why we cannot race with 3480 * other tree_mod_log users. 3481 */ 3482 ret = insert_new_root(trans, root, path, level + 1); 3483 if (ret) 3484 return ret; 3485 } else { 3486 ret = push_nodes_for_insert(trans, root, path, level); 3487 c = path->nodes[level]; 3488 if (!ret && btrfs_header_nritems(c) < 3489 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3490 return 0; 3491 if (ret < 0) 3492 return ret; 3493 } 3494 3495 c_nritems = btrfs_header_nritems(c); 3496 mid = (c_nritems + 1) / 2; 3497 btrfs_node_key(c, &disk_key, mid); 3498 3499 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3500 c->start, 0); 3501 if (IS_ERR(split)) 3502 return PTR_ERR(split); 3503 3504 root_add_used(root, fs_info->nodesize); 3505 ASSERT(btrfs_header_level(c) == level); 3506 3507 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3508 if (ret) { 3509 btrfs_abort_transaction(trans, ret); 3510 return ret; 3511 } 3512 copy_extent_buffer(split, c, 3513 btrfs_node_key_ptr_offset(0), 3514 btrfs_node_key_ptr_offset(mid), 3515 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3516 btrfs_set_header_nritems(split, c_nritems - mid); 3517 btrfs_set_header_nritems(c, mid); 3518 ret = 0; 3519 3520 btrfs_mark_buffer_dirty(c); 3521 btrfs_mark_buffer_dirty(split); 3522 3523 insert_ptr(trans, path, &disk_key, split->start, 3524 path->slots[level + 1] + 1, level + 1); 3525 3526 if (path->slots[level] >= mid) { 3527 path->slots[level] -= mid; 3528 btrfs_tree_unlock(c); 3529 free_extent_buffer(c); 3530 path->nodes[level] = split; 3531 path->slots[level + 1] += 1; 3532 } else { 3533 btrfs_tree_unlock(split); 3534 free_extent_buffer(split); 3535 } 3536 return ret; 3537 } 3538 3539 /* 3540 * how many bytes are required to store the items in a leaf. start 3541 * and nr indicate which items in the leaf to check. This totals up the 3542 * space used both by the item structs and the item data 3543 */ 3544 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3545 { 3546 struct btrfs_item *start_item; 3547 struct btrfs_item *end_item; 3548 struct btrfs_map_token token; 3549 int data_len; 3550 int nritems = btrfs_header_nritems(l); 3551 int end = min(nritems, start + nr) - 1; 3552 3553 if (!nr) 3554 return 0; 3555 btrfs_init_map_token(&token, l); 3556 start_item = btrfs_item_nr(start); 3557 end_item = btrfs_item_nr(end); 3558 data_len = btrfs_token_item_offset(l, start_item, &token) + 3559 btrfs_token_item_size(l, start_item, &token); 3560 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3561 data_len += sizeof(struct btrfs_item) * nr; 3562 WARN_ON(data_len < 0); 3563 return data_len; 3564 } 3565 3566 /* 3567 * The space between the end of the leaf items and 3568 * the start of the leaf data. IOW, how much room 3569 * the leaf has left for both items and data 3570 */ 3571 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3572 { 3573 struct btrfs_fs_info *fs_info = leaf->fs_info; 3574 int nritems = btrfs_header_nritems(leaf); 3575 int ret; 3576 3577 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3578 if (ret < 0) { 3579 btrfs_crit(fs_info, 3580 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3581 ret, 3582 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3583 leaf_space_used(leaf, 0, nritems), nritems); 3584 } 3585 return ret; 3586 } 3587 3588 /* 3589 * min slot controls the lowest index we're willing to push to the 3590 * right. We'll push up to and including min_slot, but no lower 3591 */ 3592 static noinline int __push_leaf_right(struct btrfs_path *path, 3593 int data_size, int empty, 3594 struct extent_buffer *right, 3595 int free_space, u32 left_nritems, 3596 u32 min_slot) 3597 { 3598 struct btrfs_fs_info *fs_info = right->fs_info; 3599 struct extent_buffer *left = path->nodes[0]; 3600 struct extent_buffer *upper = path->nodes[1]; 3601 struct btrfs_map_token token; 3602 struct btrfs_disk_key disk_key; 3603 int slot; 3604 u32 i; 3605 int push_space = 0; 3606 int push_items = 0; 3607 struct btrfs_item *item; 3608 u32 nr; 3609 u32 right_nritems; 3610 u32 data_end; 3611 u32 this_item_size; 3612 3613 if (empty) 3614 nr = 0; 3615 else 3616 nr = max_t(u32, 1, min_slot); 3617 3618 if (path->slots[0] >= left_nritems) 3619 push_space += data_size; 3620 3621 slot = path->slots[1]; 3622 i = left_nritems - 1; 3623 while (i >= nr) { 3624 item = btrfs_item_nr(i); 3625 3626 if (!empty && push_items > 0) { 3627 if (path->slots[0] > i) 3628 break; 3629 if (path->slots[0] == i) { 3630 int space = btrfs_leaf_free_space(left); 3631 3632 if (space + push_space * 2 > free_space) 3633 break; 3634 } 3635 } 3636 3637 if (path->slots[0] == i) 3638 push_space += data_size; 3639 3640 this_item_size = btrfs_item_size(left, item); 3641 if (this_item_size + sizeof(*item) + push_space > free_space) 3642 break; 3643 3644 push_items++; 3645 push_space += this_item_size + sizeof(*item); 3646 if (i == 0) 3647 break; 3648 i--; 3649 } 3650 3651 if (push_items == 0) 3652 goto out_unlock; 3653 3654 WARN_ON(!empty && push_items == left_nritems); 3655 3656 /* push left to right */ 3657 right_nritems = btrfs_header_nritems(right); 3658 3659 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3660 push_space -= leaf_data_end(left); 3661 3662 /* make room in the right data area */ 3663 data_end = leaf_data_end(right); 3664 memmove_extent_buffer(right, 3665 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3666 BTRFS_LEAF_DATA_OFFSET + data_end, 3667 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3668 3669 /* copy from the left data area */ 3670 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3671 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3672 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3673 push_space); 3674 3675 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3676 btrfs_item_nr_offset(0), 3677 right_nritems * sizeof(struct btrfs_item)); 3678 3679 /* copy the items from left to right */ 3680 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3681 btrfs_item_nr_offset(left_nritems - push_items), 3682 push_items * sizeof(struct btrfs_item)); 3683 3684 /* update the item pointers */ 3685 btrfs_init_map_token(&token, right); 3686 right_nritems += push_items; 3687 btrfs_set_header_nritems(right, right_nritems); 3688 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3689 for (i = 0; i < right_nritems; i++) { 3690 item = btrfs_item_nr(i); 3691 push_space -= btrfs_token_item_size(right, item, &token); 3692 btrfs_set_token_item_offset(right, item, push_space, &token); 3693 } 3694 3695 left_nritems -= push_items; 3696 btrfs_set_header_nritems(left, left_nritems); 3697 3698 if (left_nritems) 3699 btrfs_mark_buffer_dirty(left); 3700 else 3701 btrfs_clean_tree_block(left); 3702 3703 btrfs_mark_buffer_dirty(right); 3704 3705 btrfs_item_key(right, &disk_key, 0); 3706 btrfs_set_node_key(upper, &disk_key, slot + 1); 3707 btrfs_mark_buffer_dirty(upper); 3708 3709 /* then fixup the leaf pointer in the path */ 3710 if (path->slots[0] >= left_nritems) { 3711 path->slots[0] -= left_nritems; 3712 if (btrfs_header_nritems(path->nodes[0]) == 0) 3713 btrfs_clean_tree_block(path->nodes[0]); 3714 btrfs_tree_unlock(path->nodes[0]); 3715 free_extent_buffer(path->nodes[0]); 3716 path->nodes[0] = right; 3717 path->slots[1] += 1; 3718 } else { 3719 btrfs_tree_unlock(right); 3720 free_extent_buffer(right); 3721 } 3722 return 0; 3723 3724 out_unlock: 3725 btrfs_tree_unlock(right); 3726 free_extent_buffer(right); 3727 return 1; 3728 } 3729 3730 /* 3731 * push some data in the path leaf to the right, trying to free up at 3732 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3733 * 3734 * returns 1 if the push failed because the other node didn't have enough 3735 * room, 0 if everything worked out and < 0 if there were major errors. 3736 * 3737 * this will push starting from min_slot to the end of the leaf. It won't 3738 * push any slot lower than min_slot 3739 */ 3740 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3741 *root, struct btrfs_path *path, 3742 int min_data_size, int data_size, 3743 int empty, u32 min_slot) 3744 { 3745 struct extent_buffer *left = path->nodes[0]; 3746 struct extent_buffer *right; 3747 struct extent_buffer *upper; 3748 int slot; 3749 int free_space; 3750 u32 left_nritems; 3751 int ret; 3752 3753 if (!path->nodes[1]) 3754 return 1; 3755 3756 slot = path->slots[1]; 3757 upper = path->nodes[1]; 3758 if (slot >= btrfs_header_nritems(upper) - 1) 3759 return 1; 3760 3761 btrfs_assert_tree_locked(path->nodes[1]); 3762 3763 right = btrfs_read_node_slot(upper, slot + 1); 3764 /* 3765 * slot + 1 is not valid or we fail to read the right node, 3766 * no big deal, just return. 3767 */ 3768 if (IS_ERR(right)) 3769 return 1; 3770 3771 btrfs_tree_lock(right); 3772 btrfs_set_lock_blocking_write(right); 3773 3774 free_space = btrfs_leaf_free_space(right); 3775 if (free_space < data_size) 3776 goto out_unlock; 3777 3778 /* cow and double check */ 3779 ret = btrfs_cow_block(trans, root, right, upper, 3780 slot + 1, &right); 3781 if (ret) 3782 goto out_unlock; 3783 3784 free_space = btrfs_leaf_free_space(right); 3785 if (free_space < data_size) 3786 goto out_unlock; 3787 3788 left_nritems = btrfs_header_nritems(left); 3789 if (left_nritems == 0) 3790 goto out_unlock; 3791 3792 if (path->slots[0] == left_nritems && !empty) { 3793 /* Key greater than all keys in the leaf, right neighbor has 3794 * enough room for it and we're not emptying our leaf to delete 3795 * it, therefore use right neighbor to insert the new item and 3796 * no need to touch/dirty our left leaf. */ 3797 btrfs_tree_unlock(left); 3798 free_extent_buffer(left); 3799 path->nodes[0] = right; 3800 path->slots[0] = 0; 3801 path->slots[1]++; 3802 return 0; 3803 } 3804 3805 return __push_leaf_right(path, min_data_size, empty, 3806 right, free_space, left_nritems, min_slot); 3807 out_unlock: 3808 btrfs_tree_unlock(right); 3809 free_extent_buffer(right); 3810 return 1; 3811 } 3812 3813 /* 3814 * push some data in the path leaf to the left, trying to free up at 3815 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3816 * 3817 * max_slot can put a limit on how far into the leaf we'll push items. The 3818 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3819 * items 3820 */ 3821 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3822 int empty, struct extent_buffer *left, 3823 int free_space, u32 right_nritems, 3824 u32 max_slot) 3825 { 3826 struct btrfs_fs_info *fs_info = left->fs_info; 3827 struct btrfs_disk_key disk_key; 3828 struct extent_buffer *right = path->nodes[0]; 3829 int i; 3830 int push_space = 0; 3831 int push_items = 0; 3832 struct btrfs_item *item; 3833 u32 old_left_nritems; 3834 u32 nr; 3835 int ret = 0; 3836 u32 this_item_size; 3837 u32 old_left_item_size; 3838 struct btrfs_map_token token; 3839 3840 if (empty) 3841 nr = min(right_nritems, max_slot); 3842 else 3843 nr = min(right_nritems - 1, max_slot); 3844 3845 for (i = 0; i < nr; i++) { 3846 item = btrfs_item_nr(i); 3847 3848 if (!empty && push_items > 0) { 3849 if (path->slots[0] < i) 3850 break; 3851 if (path->slots[0] == i) { 3852 int space = btrfs_leaf_free_space(right); 3853 3854 if (space + push_space * 2 > free_space) 3855 break; 3856 } 3857 } 3858 3859 if (path->slots[0] == i) 3860 push_space += data_size; 3861 3862 this_item_size = btrfs_item_size(right, item); 3863 if (this_item_size + sizeof(*item) + push_space > free_space) 3864 break; 3865 3866 push_items++; 3867 push_space += this_item_size + sizeof(*item); 3868 } 3869 3870 if (push_items == 0) { 3871 ret = 1; 3872 goto out; 3873 } 3874 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3875 3876 /* push data from right to left */ 3877 copy_extent_buffer(left, right, 3878 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3879 btrfs_item_nr_offset(0), 3880 push_items * sizeof(struct btrfs_item)); 3881 3882 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3883 btrfs_item_offset_nr(right, push_items - 1); 3884 3885 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3886 leaf_data_end(left) - push_space, 3887 BTRFS_LEAF_DATA_OFFSET + 3888 btrfs_item_offset_nr(right, push_items - 1), 3889 push_space); 3890 old_left_nritems = btrfs_header_nritems(left); 3891 BUG_ON(old_left_nritems <= 0); 3892 3893 btrfs_init_map_token(&token, left); 3894 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3895 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3896 u32 ioff; 3897 3898 item = btrfs_item_nr(i); 3899 3900 ioff = btrfs_token_item_offset(left, item, &token); 3901 btrfs_set_token_item_offset(left, item, 3902 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3903 &token); 3904 } 3905 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3906 3907 /* fixup right node */ 3908 if (push_items > right_nritems) 3909 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3910 right_nritems); 3911 3912 if (push_items < right_nritems) { 3913 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3914 leaf_data_end(right); 3915 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3916 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3917 BTRFS_LEAF_DATA_OFFSET + 3918 leaf_data_end(right), push_space); 3919 3920 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3921 btrfs_item_nr_offset(push_items), 3922 (btrfs_header_nritems(right) - push_items) * 3923 sizeof(struct btrfs_item)); 3924 } 3925 3926 btrfs_init_map_token(&token, right); 3927 right_nritems -= push_items; 3928 btrfs_set_header_nritems(right, right_nritems); 3929 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3930 for (i = 0; i < right_nritems; i++) { 3931 item = btrfs_item_nr(i); 3932 3933 push_space = push_space - btrfs_token_item_size(right, 3934 item, &token); 3935 btrfs_set_token_item_offset(right, item, push_space, &token); 3936 } 3937 3938 btrfs_mark_buffer_dirty(left); 3939 if (right_nritems) 3940 btrfs_mark_buffer_dirty(right); 3941 else 3942 btrfs_clean_tree_block(right); 3943 3944 btrfs_item_key(right, &disk_key, 0); 3945 fixup_low_keys(path, &disk_key, 1); 3946 3947 /* then fixup the leaf pointer in the path */ 3948 if (path->slots[0] < push_items) { 3949 path->slots[0] += old_left_nritems; 3950 btrfs_tree_unlock(path->nodes[0]); 3951 free_extent_buffer(path->nodes[0]); 3952 path->nodes[0] = left; 3953 path->slots[1] -= 1; 3954 } else { 3955 btrfs_tree_unlock(left); 3956 free_extent_buffer(left); 3957 path->slots[0] -= push_items; 3958 } 3959 BUG_ON(path->slots[0] < 0); 3960 return ret; 3961 out: 3962 btrfs_tree_unlock(left); 3963 free_extent_buffer(left); 3964 return ret; 3965 } 3966 3967 /* 3968 * push some data in the path leaf to the left, trying to free up at 3969 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3970 * 3971 * max_slot can put a limit on how far into the leaf we'll push items. The 3972 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3973 * items 3974 */ 3975 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3976 *root, struct btrfs_path *path, int min_data_size, 3977 int data_size, int empty, u32 max_slot) 3978 { 3979 struct extent_buffer *right = path->nodes[0]; 3980 struct extent_buffer *left; 3981 int slot; 3982 int free_space; 3983 u32 right_nritems; 3984 int ret = 0; 3985 3986 slot = path->slots[1]; 3987 if (slot == 0) 3988 return 1; 3989 if (!path->nodes[1]) 3990 return 1; 3991 3992 right_nritems = btrfs_header_nritems(right); 3993 if (right_nritems == 0) 3994 return 1; 3995 3996 btrfs_assert_tree_locked(path->nodes[1]); 3997 3998 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3999 /* 4000 * slot - 1 is not valid or we fail to read the left node, 4001 * no big deal, just return. 4002 */ 4003 if (IS_ERR(left)) 4004 return 1; 4005 4006 btrfs_tree_lock(left); 4007 btrfs_set_lock_blocking_write(left); 4008 4009 free_space = btrfs_leaf_free_space(left); 4010 if (free_space < data_size) { 4011 ret = 1; 4012 goto out; 4013 } 4014 4015 /* cow and double check */ 4016 ret = btrfs_cow_block(trans, root, left, 4017 path->nodes[1], slot - 1, &left); 4018 if (ret) { 4019 /* we hit -ENOSPC, but it isn't fatal here */ 4020 if (ret == -ENOSPC) 4021 ret = 1; 4022 goto out; 4023 } 4024 4025 free_space = btrfs_leaf_free_space(left); 4026 if (free_space < data_size) { 4027 ret = 1; 4028 goto out; 4029 } 4030 4031 return __push_leaf_left(path, min_data_size, 4032 empty, left, free_space, right_nritems, 4033 max_slot); 4034 out: 4035 btrfs_tree_unlock(left); 4036 free_extent_buffer(left); 4037 return ret; 4038 } 4039 4040 /* 4041 * split the path's leaf in two, making sure there is at least data_size 4042 * available for the resulting leaf level of the path. 4043 */ 4044 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4045 struct btrfs_path *path, 4046 struct extent_buffer *l, 4047 struct extent_buffer *right, 4048 int slot, int mid, int nritems) 4049 { 4050 struct btrfs_fs_info *fs_info = trans->fs_info; 4051 int data_copy_size; 4052 int rt_data_off; 4053 int i; 4054 struct btrfs_disk_key disk_key; 4055 struct btrfs_map_token token; 4056 4057 nritems = nritems - mid; 4058 btrfs_set_header_nritems(right, nritems); 4059 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4060 4061 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4062 btrfs_item_nr_offset(mid), 4063 nritems * sizeof(struct btrfs_item)); 4064 4065 copy_extent_buffer(right, l, 4066 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4067 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4068 leaf_data_end(l), data_copy_size); 4069 4070 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4071 4072 btrfs_init_map_token(&token, right); 4073 for (i = 0; i < nritems; i++) { 4074 struct btrfs_item *item = btrfs_item_nr(i); 4075 u32 ioff; 4076 4077 ioff = btrfs_token_item_offset(right, item, &token); 4078 btrfs_set_token_item_offset(right, item, 4079 ioff + rt_data_off, &token); 4080 } 4081 4082 btrfs_set_header_nritems(l, mid); 4083 btrfs_item_key(right, &disk_key, 0); 4084 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4085 4086 btrfs_mark_buffer_dirty(right); 4087 btrfs_mark_buffer_dirty(l); 4088 BUG_ON(path->slots[0] != slot); 4089 4090 if (mid <= slot) { 4091 btrfs_tree_unlock(path->nodes[0]); 4092 free_extent_buffer(path->nodes[0]); 4093 path->nodes[0] = right; 4094 path->slots[0] -= mid; 4095 path->slots[1] += 1; 4096 } else { 4097 btrfs_tree_unlock(right); 4098 free_extent_buffer(right); 4099 } 4100 4101 BUG_ON(path->slots[0] < 0); 4102 } 4103 4104 /* 4105 * double splits happen when we need to insert a big item in the middle 4106 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4107 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4108 * A B C 4109 * 4110 * We avoid this by trying to push the items on either side of our target 4111 * into the adjacent leaves. If all goes well we can avoid the double split 4112 * completely. 4113 */ 4114 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4115 struct btrfs_root *root, 4116 struct btrfs_path *path, 4117 int data_size) 4118 { 4119 int ret; 4120 int progress = 0; 4121 int slot; 4122 u32 nritems; 4123 int space_needed = data_size; 4124 4125 slot = path->slots[0]; 4126 if (slot < btrfs_header_nritems(path->nodes[0])) 4127 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4128 4129 /* 4130 * try to push all the items after our slot into the 4131 * right leaf 4132 */ 4133 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4134 if (ret < 0) 4135 return ret; 4136 4137 if (ret == 0) 4138 progress++; 4139 4140 nritems = btrfs_header_nritems(path->nodes[0]); 4141 /* 4142 * our goal is to get our slot at the start or end of a leaf. If 4143 * we've done so we're done 4144 */ 4145 if (path->slots[0] == 0 || path->slots[0] == nritems) 4146 return 0; 4147 4148 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4149 return 0; 4150 4151 /* try to push all the items before our slot into the next leaf */ 4152 slot = path->slots[0]; 4153 space_needed = data_size; 4154 if (slot > 0) 4155 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4156 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4157 if (ret < 0) 4158 return ret; 4159 4160 if (ret == 0) 4161 progress++; 4162 4163 if (progress) 4164 return 0; 4165 return 1; 4166 } 4167 4168 /* 4169 * split the path's leaf in two, making sure there is at least data_size 4170 * available for the resulting leaf level of the path. 4171 * 4172 * returns 0 if all went well and < 0 on failure. 4173 */ 4174 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4175 struct btrfs_root *root, 4176 const struct btrfs_key *ins_key, 4177 struct btrfs_path *path, int data_size, 4178 int extend) 4179 { 4180 struct btrfs_disk_key disk_key; 4181 struct extent_buffer *l; 4182 u32 nritems; 4183 int mid; 4184 int slot; 4185 struct extent_buffer *right; 4186 struct btrfs_fs_info *fs_info = root->fs_info; 4187 int ret = 0; 4188 int wret; 4189 int split; 4190 int num_doubles = 0; 4191 int tried_avoid_double = 0; 4192 4193 l = path->nodes[0]; 4194 slot = path->slots[0]; 4195 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4196 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4197 return -EOVERFLOW; 4198 4199 /* first try to make some room by pushing left and right */ 4200 if (data_size && path->nodes[1]) { 4201 int space_needed = data_size; 4202 4203 if (slot < btrfs_header_nritems(l)) 4204 space_needed -= btrfs_leaf_free_space(l); 4205 4206 wret = push_leaf_right(trans, root, path, space_needed, 4207 space_needed, 0, 0); 4208 if (wret < 0) 4209 return wret; 4210 if (wret) { 4211 space_needed = data_size; 4212 if (slot > 0) 4213 space_needed -= btrfs_leaf_free_space(l); 4214 wret = push_leaf_left(trans, root, path, space_needed, 4215 space_needed, 0, (u32)-1); 4216 if (wret < 0) 4217 return wret; 4218 } 4219 l = path->nodes[0]; 4220 4221 /* did the pushes work? */ 4222 if (btrfs_leaf_free_space(l) >= data_size) 4223 return 0; 4224 } 4225 4226 if (!path->nodes[1]) { 4227 ret = insert_new_root(trans, root, path, 1); 4228 if (ret) 4229 return ret; 4230 } 4231 again: 4232 split = 1; 4233 l = path->nodes[0]; 4234 slot = path->slots[0]; 4235 nritems = btrfs_header_nritems(l); 4236 mid = (nritems + 1) / 2; 4237 4238 if (mid <= slot) { 4239 if (nritems == 1 || 4240 leaf_space_used(l, mid, nritems - mid) + data_size > 4241 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4242 if (slot >= nritems) { 4243 split = 0; 4244 } else { 4245 mid = slot; 4246 if (mid != nritems && 4247 leaf_space_used(l, mid, nritems - mid) + 4248 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4249 if (data_size && !tried_avoid_double) 4250 goto push_for_double; 4251 split = 2; 4252 } 4253 } 4254 } 4255 } else { 4256 if (leaf_space_used(l, 0, mid) + data_size > 4257 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4258 if (!extend && data_size && slot == 0) { 4259 split = 0; 4260 } else if ((extend || !data_size) && slot == 0) { 4261 mid = 1; 4262 } else { 4263 mid = slot; 4264 if (mid != nritems && 4265 leaf_space_used(l, mid, nritems - mid) + 4266 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4267 if (data_size && !tried_avoid_double) 4268 goto push_for_double; 4269 split = 2; 4270 } 4271 } 4272 } 4273 } 4274 4275 if (split == 0) 4276 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4277 else 4278 btrfs_item_key(l, &disk_key, mid); 4279 4280 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4281 l->start, 0); 4282 if (IS_ERR(right)) 4283 return PTR_ERR(right); 4284 4285 root_add_used(root, fs_info->nodesize); 4286 4287 if (split == 0) { 4288 if (mid <= slot) { 4289 btrfs_set_header_nritems(right, 0); 4290 insert_ptr(trans, path, &disk_key, 4291 right->start, path->slots[1] + 1, 1); 4292 btrfs_tree_unlock(path->nodes[0]); 4293 free_extent_buffer(path->nodes[0]); 4294 path->nodes[0] = right; 4295 path->slots[0] = 0; 4296 path->slots[1] += 1; 4297 } else { 4298 btrfs_set_header_nritems(right, 0); 4299 insert_ptr(trans, path, &disk_key, 4300 right->start, path->slots[1], 1); 4301 btrfs_tree_unlock(path->nodes[0]); 4302 free_extent_buffer(path->nodes[0]); 4303 path->nodes[0] = right; 4304 path->slots[0] = 0; 4305 if (path->slots[1] == 0) 4306 fixup_low_keys(path, &disk_key, 1); 4307 } 4308 /* 4309 * We create a new leaf 'right' for the required ins_len and 4310 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4311 * the content of ins_len to 'right'. 4312 */ 4313 return ret; 4314 } 4315 4316 copy_for_split(trans, path, l, right, slot, mid, nritems); 4317 4318 if (split == 2) { 4319 BUG_ON(num_doubles != 0); 4320 num_doubles++; 4321 goto again; 4322 } 4323 4324 return 0; 4325 4326 push_for_double: 4327 push_for_double_split(trans, root, path, data_size); 4328 tried_avoid_double = 1; 4329 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4330 return 0; 4331 goto again; 4332 } 4333 4334 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4335 struct btrfs_root *root, 4336 struct btrfs_path *path, int ins_len) 4337 { 4338 struct btrfs_key key; 4339 struct extent_buffer *leaf; 4340 struct btrfs_file_extent_item *fi; 4341 u64 extent_len = 0; 4342 u32 item_size; 4343 int ret; 4344 4345 leaf = path->nodes[0]; 4346 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4347 4348 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4349 key.type != BTRFS_EXTENT_CSUM_KEY); 4350 4351 if (btrfs_leaf_free_space(leaf) >= ins_len) 4352 return 0; 4353 4354 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4355 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4356 fi = btrfs_item_ptr(leaf, path->slots[0], 4357 struct btrfs_file_extent_item); 4358 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4359 } 4360 btrfs_release_path(path); 4361 4362 path->keep_locks = 1; 4363 path->search_for_split = 1; 4364 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4365 path->search_for_split = 0; 4366 if (ret > 0) 4367 ret = -EAGAIN; 4368 if (ret < 0) 4369 goto err; 4370 4371 ret = -EAGAIN; 4372 leaf = path->nodes[0]; 4373 /* if our item isn't there, return now */ 4374 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4375 goto err; 4376 4377 /* the leaf has changed, it now has room. return now */ 4378 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4379 goto err; 4380 4381 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4382 fi = btrfs_item_ptr(leaf, path->slots[0], 4383 struct btrfs_file_extent_item); 4384 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4385 goto err; 4386 } 4387 4388 btrfs_set_path_blocking(path); 4389 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4390 if (ret) 4391 goto err; 4392 4393 path->keep_locks = 0; 4394 btrfs_unlock_up_safe(path, 1); 4395 return 0; 4396 err: 4397 path->keep_locks = 0; 4398 return ret; 4399 } 4400 4401 static noinline int split_item(struct btrfs_path *path, 4402 const struct btrfs_key *new_key, 4403 unsigned long split_offset) 4404 { 4405 struct extent_buffer *leaf; 4406 struct btrfs_item *item; 4407 struct btrfs_item *new_item; 4408 int slot; 4409 char *buf; 4410 u32 nritems; 4411 u32 item_size; 4412 u32 orig_offset; 4413 struct btrfs_disk_key disk_key; 4414 4415 leaf = path->nodes[0]; 4416 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4417 4418 btrfs_set_path_blocking(path); 4419 4420 item = btrfs_item_nr(path->slots[0]); 4421 orig_offset = btrfs_item_offset(leaf, item); 4422 item_size = btrfs_item_size(leaf, item); 4423 4424 buf = kmalloc(item_size, GFP_NOFS); 4425 if (!buf) 4426 return -ENOMEM; 4427 4428 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4429 path->slots[0]), item_size); 4430 4431 slot = path->slots[0] + 1; 4432 nritems = btrfs_header_nritems(leaf); 4433 if (slot != nritems) { 4434 /* shift the items */ 4435 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4436 btrfs_item_nr_offset(slot), 4437 (nritems - slot) * sizeof(struct btrfs_item)); 4438 } 4439 4440 btrfs_cpu_key_to_disk(&disk_key, new_key); 4441 btrfs_set_item_key(leaf, &disk_key, slot); 4442 4443 new_item = btrfs_item_nr(slot); 4444 4445 btrfs_set_item_offset(leaf, new_item, orig_offset); 4446 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4447 4448 btrfs_set_item_offset(leaf, item, 4449 orig_offset + item_size - split_offset); 4450 btrfs_set_item_size(leaf, item, split_offset); 4451 4452 btrfs_set_header_nritems(leaf, nritems + 1); 4453 4454 /* write the data for the start of the original item */ 4455 write_extent_buffer(leaf, buf, 4456 btrfs_item_ptr_offset(leaf, path->slots[0]), 4457 split_offset); 4458 4459 /* write the data for the new item */ 4460 write_extent_buffer(leaf, buf + split_offset, 4461 btrfs_item_ptr_offset(leaf, slot), 4462 item_size - split_offset); 4463 btrfs_mark_buffer_dirty(leaf); 4464 4465 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4466 kfree(buf); 4467 return 0; 4468 } 4469 4470 /* 4471 * This function splits a single item into two items, 4472 * giving 'new_key' to the new item and splitting the 4473 * old one at split_offset (from the start of the item). 4474 * 4475 * The path may be released by this operation. After 4476 * the split, the path is pointing to the old item. The 4477 * new item is going to be in the same node as the old one. 4478 * 4479 * Note, the item being split must be smaller enough to live alone on 4480 * a tree block with room for one extra struct btrfs_item 4481 * 4482 * This allows us to split the item in place, keeping a lock on the 4483 * leaf the entire time. 4484 */ 4485 int btrfs_split_item(struct btrfs_trans_handle *trans, 4486 struct btrfs_root *root, 4487 struct btrfs_path *path, 4488 const struct btrfs_key *new_key, 4489 unsigned long split_offset) 4490 { 4491 int ret; 4492 ret = setup_leaf_for_split(trans, root, path, 4493 sizeof(struct btrfs_item)); 4494 if (ret) 4495 return ret; 4496 4497 ret = split_item(path, new_key, split_offset); 4498 return ret; 4499 } 4500 4501 /* 4502 * This function duplicate a item, giving 'new_key' to the new item. 4503 * It guarantees both items live in the same tree leaf and the new item 4504 * is contiguous with the original item. 4505 * 4506 * This allows us to split file extent in place, keeping a lock on the 4507 * leaf the entire time. 4508 */ 4509 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4510 struct btrfs_root *root, 4511 struct btrfs_path *path, 4512 const struct btrfs_key *new_key) 4513 { 4514 struct extent_buffer *leaf; 4515 int ret; 4516 u32 item_size; 4517 4518 leaf = path->nodes[0]; 4519 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4520 ret = setup_leaf_for_split(trans, root, path, 4521 item_size + sizeof(struct btrfs_item)); 4522 if (ret) 4523 return ret; 4524 4525 path->slots[0]++; 4526 setup_items_for_insert(root, path, new_key, &item_size, 4527 item_size, item_size + 4528 sizeof(struct btrfs_item), 1); 4529 leaf = path->nodes[0]; 4530 memcpy_extent_buffer(leaf, 4531 btrfs_item_ptr_offset(leaf, path->slots[0]), 4532 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4533 item_size); 4534 return 0; 4535 } 4536 4537 /* 4538 * make the item pointed to by the path smaller. new_size indicates 4539 * how small to make it, and from_end tells us if we just chop bytes 4540 * off the end of the item or if we shift the item to chop bytes off 4541 * the front. 4542 */ 4543 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4544 { 4545 int slot; 4546 struct extent_buffer *leaf; 4547 struct btrfs_item *item; 4548 u32 nritems; 4549 unsigned int data_end; 4550 unsigned int old_data_start; 4551 unsigned int old_size; 4552 unsigned int size_diff; 4553 int i; 4554 struct btrfs_map_token token; 4555 4556 leaf = path->nodes[0]; 4557 slot = path->slots[0]; 4558 4559 old_size = btrfs_item_size_nr(leaf, slot); 4560 if (old_size == new_size) 4561 return; 4562 4563 nritems = btrfs_header_nritems(leaf); 4564 data_end = leaf_data_end(leaf); 4565 4566 old_data_start = btrfs_item_offset_nr(leaf, slot); 4567 4568 size_diff = old_size - new_size; 4569 4570 BUG_ON(slot < 0); 4571 BUG_ON(slot >= nritems); 4572 4573 /* 4574 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4575 */ 4576 /* first correct the data pointers */ 4577 btrfs_init_map_token(&token, leaf); 4578 for (i = slot; i < nritems; i++) { 4579 u32 ioff; 4580 item = btrfs_item_nr(i); 4581 4582 ioff = btrfs_token_item_offset(leaf, item, &token); 4583 btrfs_set_token_item_offset(leaf, item, 4584 ioff + size_diff, &token); 4585 } 4586 4587 /* shift the data */ 4588 if (from_end) { 4589 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4590 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4591 data_end, old_data_start + new_size - data_end); 4592 } else { 4593 struct btrfs_disk_key disk_key; 4594 u64 offset; 4595 4596 btrfs_item_key(leaf, &disk_key, slot); 4597 4598 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4599 unsigned long ptr; 4600 struct btrfs_file_extent_item *fi; 4601 4602 fi = btrfs_item_ptr(leaf, slot, 4603 struct btrfs_file_extent_item); 4604 fi = (struct btrfs_file_extent_item *)( 4605 (unsigned long)fi - size_diff); 4606 4607 if (btrfs_file_extent_type(leaf, fi) == 4608 BTRFS_FILE_EXTENT_INLINE) { 4609 ptr = btrfs_item_ptr_offset(leaf, slot); 4610 memmove_extent_buffer(leaf, ptr, 4611 (unsigned long)fi, 4612 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4613 } 4614 } 4615 4616 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4617 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4618 data_end, old_data_start - data_end); 4619 4620 offset = btrfs_disk_key_offset(&disk_key); 4621 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4622 btrfs_set_item_key(leaf, &disk_key, slot); 4623 if (slot == 0) 4624 fixup_low_keys(path, &disk_key, 1); 4625 } 4626 4627 item = btrfs_item_nr(slot); 4628 btrfs_set_item_size(leaf, item, new_size); 4629 btrfs_mark_buffer_dirty(leaf); 4630 4631 if (btrfs_leaf_free_space(leaf) < 0) { 4632 btrfs_print_leaf(leaf); 4633 BUG(); 4634 } 4635 } 4636 4637 /* 4638 * make the item pointed to by the path bigger, data_size is the added size. 4639 */ 4640 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4641 { 4642 int slot; 4643 struct extent_buffer *leaf; 4644 struct btrfs_item *item; 4645 u32 nritems; 4646 unsigned int data_end; 4647 unsigned int old_data; 4648 unsigned int old_size; 4649 int i; 4650 struct btrfs_map_token token; 4651 4652 leaf = path->nodes[0]; 4653 4654 nritems = btrfs_header_nritems(leaf); 4655 data_end = leaf_data_end(leaf); 4656 4657 if (btrfs_leaf_free_space(leaf) < data_size) { 4658 btrfs_print_leaf(leaf); 4659 BUG(); 4660 } 4661 slot = path->slots[0]; 4662 old_data = btrfs_item_end_nr(leaf, slot); 4663 4664 BUG_ON(slot < 0); 4665 if (slot >= nritems) { 4666 btrfs_print_leaf(leaf); 4667 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4668 slot, nritems); 4669 BUG(); 4670 } 4671 4672 /* 4673 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4674 */ 4675 /* first correct the data pointers */ 4676 btrfs_init_map_token(&token, leaf); 4677 for (i = slot; i < nritems; i++) { 4678 u32 ioff; 4679 item = btrfs_item_nr(i); 4680 4681 ioff = btrfs_token_item_offset(leaf, item, &token); 4682 btrfs_set_token_item_offset(leaf, item, 4683 ioff - data_size, &token); 4684 } 4685 4686 /* shift the data */ 4687 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4688 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4689 data_end, old_data - data_end); 4690 4691 data_end = old_data; 4692 old_size = btrfs_item_size_nr(leaf, slot); 4693 item = btrfs_item_nr(slot); 4694 btrfs_set_item_size(leaf, item, old_size + data_size); 4695 btrfs_mark_buffer_dirty(leaf); 4696 4697 if (btrfs_leaf_free_space(leaf) < 0) { 4698 btrfs_print_leaf(leaf); 4699 BUG(); 4700 } 4701 } 4702 4703 /* 4704 * this is a helper for btrfs_insert_empty_items, the main goal here is 4705 * to save stack depth by doing the bulk of the work in a function 4706 * that doesn't call btrfs_search_slot 4707 */ 4708 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4709 const struct btrfs_key *cpu_key, u32 *data_size, 4710 u32 total_data, u32 total_size, int nr) 4711 { 4712 struct btrfs_fs_info *fs_info = root->fs_info; 4713 struct btrfs_item *item; 4714 int i; 4715 u32 nritems; 4716 unsigned int data_end; 4717 struct btrfs_disk_key disk_key; 4718 struct extent_buffer *leaf; 4719 int slot; 4720 struct btrfs_map_token token; 4721 4722 if (path->slots[0] == 0) { 4723 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4724 fixup_low_keys(path, &disk_key, 1); 4725 } 4726 btrfs_unlock_up_safe(path, 1); 4727 4728 leaf = path->nodes[0]; 4729 slot = path->slots[0]; 4730 4731 nritems = btrfs_header_nritems(leaf); 4732 data_end = leaf_data_end(leaf); 4733 4734 if (btrfs_leaf_free_space(leaf) < total_size) { 4735 btrfs_print_leaf(leaf); 4736 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4737 total_size, btrfs_leaf_free_space(leaf)); 4738 BUG(); 4739 } 4740 4741 btrfs_init_map_token(&token, leaf); 4742 if (slot != nritems) { 4743 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4744 4745 if (old_data < data_end) { 4746 btrfs_print_leaf(leaf); 4747 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4748 slot, old_data, data_end); 4749 BUG(); 4750 } 4751 /* 4752 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4753 */ 4754 /* first correct the data pointers */ 4755 for (i = slot; i < nritems; i++) { 4756 u32 ioff; 4757 4758 item = btrfs_item_nr(i); 4759 ioff = btrfs_token_item_offset(leaf, item, &token); 4760 btrfs_set_token_item_offset(leaf, item, 4761 ioff - total_data, &token); 4762 } 4763 /* shift the items */ 4764 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4765 btrfs_item_nr_offset(slot), 4766 (nritems - slot) * sizeof(struct btrfs_item)); 4767 4768 /* shift the data */ 4769 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4770 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4771 data_end, old_data - data_end); 4772 data_end = old_data; 4773 } 4774 4775 /* setup the item for the new data */ 4776 for (i = 0; i < nr; i++) { 4777 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4778 btrfs_set_item_key(leaf, &disk_key, slot + i); 4779 item = btrfs_item_nr(slot + i); 4780 btrfs_set_token_item_offset(leaf, item, 4781 data_end - data_size[i], &token); 4782 data_end -= data_size[i]; 4783 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4784 } 4785 4786 btrfs_set_header_nritems(leaf, nritems + nr); 4787 btrfs_mark_buffer_dirty(leaf); 4788 4789 if (btrfs_leaf_free_space(leaf) < 0) { 4790 btrfs_print_leaf(leaf); 4791 BUG(); 4792 } 4793 } 4794 4795 /* 4796 * Given a key and some data, insert items into the tree. 4797 * This does all the path init required, making room in the tree if needed. 4798 */ 4799 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4800 struct btrfs_root *root, 4801 struct btrfs_path *path, 4802 const struct btrfs_key *cpu_key, u32 *data_size, 4803 int nr) 4804 { 4805 int ret = 0; 4806 int slot; 4807 int i; 4808 u32 total_size = 0; 4809 u32 total_data = 0; 4810 4811 for (i = 0; i < nr; i++) 4812 total_data += data_size[i]; 4813 4814 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4815 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4816 if (ret == 0) 4817 return -EEXIST; 4818 if (ret < 0) 4819 return ret; 4820 4821 slot = path->slots[0]; 4822 BUG_ON(slot < 0); 4823 4824 setup_items_for_insert(root, path, cpu_key, data_size, 4825 total_data, total_size, nr); 4826 return 0; 4827 } 4828 4829 /* 4830 * Given a key and some data, insert an item into the tree. 4831 * This does all the path init required, making room in the tree if needed. 4832 */ 4833 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4834 const struct btrfs_key *cpu_key, void *data, 4835 u32 data_size) 4836 { 4837 int ret = 0; 4838 struct btrfs_path *path; 4839 struct extent_buffer *leaf; 4840 unsigned long ptr; 4841 4842 path = btrfs_alloc_path(); 4843 if (!path) 4844 return -ENOMEM; 4845 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4846 if (!ret) { 4847 leaf = path->nodes[0]; 4848 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4849 write_extent_buffer(leaf, data, ptr, data_size); 4850 btrfs_mark_buffer_dirty(leaf); 4851 } 4852 btrfs_free_path(path); 4853 return ret; 4854 } 4855 4856 /* 4857 * delete the pointer from a given node. 4858 * 4859 * the tree should have been previously balanced so the deletion does not 4860 * empty a node. 4861 */ 4862 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4863 int level, int slot) 4864 { 4865 struct extent_buffer *parent = path->nodes[level]; 4866 u32 nritems; 4867 int ret; 4868 4869 nritems = btrfs_header_nritems(parent); 4870 if (slot != nritems - 1) { 4871 if (level) { 4872 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4873 nritems - slot - 1); 4874 BUG_ON(ret < 0); 4875 } 4876 memmove_extent_buffer(parent, 4877 btrfs_node_key_ptr_offset(slot), 4878 btrfs_node_key_ptr_offset(slot + 1), 4879 sizeof(struct btrfs_key_ptr) * 4880 (nritems - slot - 1)); 4881 } else if (level) { 4882 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4883 GFP_NOFS); 4884 BUG_ON(ret < 0); 4885 } 4886 4887 nritems--; 4888 btrfs_set_header_nritems(parent, nritems); 4889 if (nritems == 0 && parent == root->node) { 4890 BUG_ON(btrfs_header_level(root->node) != 1); 4891 /* just turn the root into a leaf and break */ 4892 btrfs_set_header_level(root->node, 0); 4893 } else if (slot == 0) { 4894 struct btrfs_disk_key disk_key; 4895 4896 btrfs_node_key(parent, &disk_key, 0); 4897 fixup_low_keys(path, &disk_key, level + 1); 4898 } 4899 btrfs_mark_buffer_dirty(parent); 4900 } 4901 4902 /* 4903 * a helper function to delete the leaf pointed to by path->slots[1] and 4904 * path->nodes[1]. 4905 * 4906 * This deletes the pointer in path->nodes[1] and frees the leaf 4907 * block extent. zero is returned if it all worked out, < 0 otherwise. 4908 * 4909 * The path must have already been setup for deleting the leaf, including 4910 * all the proper balancing. path->nodes[1] must be locked. 4911 */ 4912 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4913 struct btrfs_root *root, 4914 struct btrfs_path *path, 4915 struct extent_buffer *leaf) 4916 { 4917 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4918 del_ptr(root, path, 1, path->slots[1]); 4919 4920 /* 4921 * btrfs_free_extent is expensive, we want to make sure we 4922 * aren't holding any locks when we call it 4923 */ 4924 btrfs_unlock_up_safe(path, 0); 4925 4926 root_sub_used(root, leaf->len); 4927 4928 atomic_inc(&leaf->refs); 4929 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4930 free_extent_buffer_stale(leaf); 4931 } 4932 /* 4933 * delete the item at the leaf level in path. If that empties 4934 * the leaf, remove it from the tree 4935 */ 4936 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4937 struct btrfs_path *path, int slot, int nr) 4938 { 4939 struct btrfs_fs_info *fs_info = root->fs_info; 4940 struct extent_buffer *leaf; 4941 struct btrfs_item *item; 4942 u32 last_off; 4943 u32 dsize = 0; 4944 int ret = 0; 4945 int wret; 4946 int i; 4947 u32 nritems; 4948 4949 leaf = path->nodes[0]; 4950 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4951 4952 for (i = 0; i < nr; i++) 4953 dsize += btrfs_item_size_nr(leaf, slot + i); 4954 4955 nritems = btrfs_header_nritems(leaf); 4956 4957 if (slot + nr != nritems) { 4958 int data_end = leaf_data_end(leaf); 4959 struct btrfs_map_token token; 4960 4961 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4962 data_end + dsize, 4963 BTRFS_LEAF_DATA_OFFSET + data_end, 4964 last_off - data_end); 4965 4966 btrfs_init_map_token(&token, leaf); 4967 for (i = slot + nr; i < nritems; i++) { 4968 u32 ioff; 4969 4970 item = btrfs_item_nr(i); 4971 ioff = btrfs_token_item_offset(leaf, item, &token); 4972 btrfs_set_token_item_offset(leaf, item, 4973 ioff + dsize, &token); 4974 } 4975 4976 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4977 btrfs_item_nr_offset(slot + nr), 4978 sizeof(struct btrfs_item) * 4979 (nritems - slot - nr)); 4980 } 4981 btrfs_set_header_nritems(leaf, nritems - nr); 4982 nritems -= nr; 4983 4984 /* delete the leaf if we've emptied it */ 4985 if (nritems == 0) { 4986 if (leaf == root->node) { 4987 btrfs_set_header_level(leaf, 0); 4988 } else { 4989 btrfs_set_path_blocking(path); 4990 btrfs_clean_tree_block(leaf); 4991 btrfs_del_leaf(trans, root, path, leaf); 4992 } 4993 } else { 4994 int used = leaf_space_used(leaf, 0, nritems); 4995 if (slot == 0) { 4996 struct btrfs_disk_key disk_key; 4997 4998 btrfs_item_key(leaf, &disk_key, 0); 4999 fixup_low_keys(path, &disk_key, 1); 5000 } 5001 5002 /* delete the leaf if it is mostly empty */ 5003 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5004 /* push_leaf_left fixes the path. 5005 * make sure the path still points to our leaf 5006 * for possible call to del_ptr below 5007 */ 5008 slot = path->slots[1]; 5009 atomic_inc(&leaf->refs); 5010 5011 btrfs_set_path_blocking(path); 5012 wret = push_leaf_left(trans, root, path, 1, 1, 5013 1, (u32)-1); 5014 if (wret < 0 && wret != -ENOSPC) 5015 ret = wret; 5016 5017 if (path->nodes[0] == leaf && 5018 btrfs_header_nritems(leaf)) { 5019 wret = push_leaf_right(trans, root, path, 1, 5020 1, 1, 0); 5021 if (wret < 0 && wret != -ENOSPC) 5022 ret = wret; 5023 } 5024 5025 if (btrfs_header_nritems(leaf) == 0) { 5026 path->slots[1] = slot; 5027 btrfs_del_leaf(trans, root, path, leaf); 5028 free_extent_buffer(leaf); 5029 ret = 0; 5030 } else { 5031 /* if we're still in the path, make sure 5032 * we're dirty. Otherwise, one of the 5033 * push_leaf functions must have already 5034 * dirtied this buffer 5035 */ 5036 if (path->nodes[0] == leaf) 5037 btrfs_mark_buffer_dirty(leaf); 5038 free_extent_buffer(leaf); 5039 } 5040 } else { 5041 btrfs_mark_buffer_dirty(leaf); 5042 } 5043 } 5044 return ret; 5045 } 5046 5047 /* 5048 * search the tree again to find a leaf with lesser keys 5049 * returns 0 if it found something or 1 if there are no lesser leaves. 5050 * returns < 0 on io errors. 5051 * 5052 * This may release the path, and so you may lose any locks held at the 5053 * time you call it. 5054 */ 5055 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5056 { 5057 struct btrfs_key key; 5058 struct btrfs_disk_key found_key; 5059 int ret; 5060 5061 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5062 5063 if (key.offset > 0) { 5064 key.offset--; 5065 } else if (key.type > 0) { 5066 key.type--; 5067 key.offset = (u64)-1; 5068 } else if (key.objectid > 0) { 5069 key.objectid--; 5070 key.type = (u8)-1; 5071 key.offset = (u64)-1; 5072 } else { 5073 return 1; 5074 } 5075 5076 btrfs_release_path(path); 5077 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5078 if (ret < 0) 5079 return ret; 5080 btrfs_item_key(path->nodes[0], &found_key, 0); 5081 ret = comp_keys(&found_key, &key); 5082 /* 5083 * We might have had an item with the previous key in the tree right 5084 * before we released our path. And after we released our path, that 5085 * item might have been pushed to the first slot (0) of the leaf we 5086 * were holding due to a tree balance. Alternatively, an item with the 5087 * previous key can exist as the only element of a leaf (big fat item). 5088 * Therefore account for these 2 cases, so that our callers (like 5089 * btrfs_previous_item) don't miss an existing item with a key matching 5090 * the previous key we computed above. 5091 */ 5092 if (ret <= 0) 5093 return 0; 5094 return 1; 5095 } 5096 5097 /* 5098 * A helper function to walk down the tree starting at min_key, and looking 5099 * for nodes or leaves that are have a minimum transaction id. 5100 * This is used by the btree defrag code, and tree logging 5101 * 5102 * This does not cow, but it does stuff the starting key it finds back 5103 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5104 * key and get a writable path. 5105 * 5106 * This honors path->lowest_level to prevent descent past a given level 5107 * of the tree. 5108 * 5109 * min_trans indicates the oldest transaction that you are interested 5110 * in walking through. Any nodes or leaves older than min_trans are 5111 * skipped over (without reading them). 5112 * 5113 * returns zero if something useful was found, < 0 on error and 1 if there 5114 * was nothing in the tree that matched the search criteria. 5115 */ 5116 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5117 struct btrfs_path *path, 5118 u64 min_trans) 5119 { 5120 struct extent_buffer *cur; 5121 struct btrfs_key found_key; 5122 int slot; 5123 int sret; 5124 u32 nritems; 5125 int level; 5126 int ret = 1; 5127 int keep_locks = path->keep_locks; 5128 5129 path->keep_locks = 1; 5130 again: 5131 cur = btrfs_read_lock_root_node(root); 5132 level = btrfs_header_level(cur); 5133 WARN_ON(path->nodes[level]); 5134 path->nodes[level] = cur; 5135 path->locks[level] = BTRFS_READ_LOCK; 5136 5137 if (btrfs_header_generation(cur) < min_trans) { 5138 ret = 1; 5139 goto out; 5140 } 5141 while (1) { 5142 nritems = btrfs_header_nritems(cur); 5143 level = btrfs_header_level(cur); 5144 sret = btrfs_bin_search(cur, min_key, level, &slot); 5145 if (sret < 0) { 5146 ret = sret; 5147 goto out; 5148 } 5149 5150 /* at the lowest level, we're done, setup the path and exit */ 5151 if (level == path->lowest_level) { 5152 if (slot >= nritems) 5153 goto find_next_key; 5154 ret = 0; 5155 path->slots[level] = slot; 5156 btrfs_item_key_to_cpu(cur, &found_key, slot); 5157 goto out; 5158 } 5159 if (sret && slot > 0) 5160 slot--; 5161 /* 5162 * check this node pointer against the min_trans parameters. 5163 * If it is too old, old, skip to the next one. 5164 */ 5165 while (slot < nritems) { 5166 u64 gen; 5167 5168 gen = btrfs_node_ptr_generation(cur, slot); 5169 if (gen < min_trans) { 5170 slot++; 5171 continue; 5172 } 5173 break; 5174 } 5175 find_next_key: 5176 /* 5177 * we didn't find a candidate key in this node, walk forward 5178 * and find another one 5179 */ 5180 if (slot >= nritems) { 5181 path->slots[level] = slot; 5182 btrfs_set_path_blocking(path); 5183 sret = btrfs_find_next_key(root, path, min_key, level, 5184 min_trans); 5185 if (sret == 0) { 5186 btrfs_release_path(path); 5187 goto again; 5188 } else { 5189 goto out; 5190 } 5191 } 5192 /* save our key for returning back */ 5193 btrfs_node_key_to_cpu(cur, &found_key, slot); 5194 path->slots[level] = slot; 5195 if (level == path->lowest_level) { 5196 ret = 0; 5197 goto out; 5198 } 5199 btrfs_set_path_blocking(path); 5200 cur = btrfs_read_node_slot(cur, slot); 5201 if (IS_ERR(cur)) { 5202 ret = PTR_ERR(cur); 5203 goto out; 5204 } 5205 5206 btrfs_tree_read_lock(cur); 5207 5208 path->locks[level - 1] = BTRFS_READ_LOCK; 5209 path->nodes[level - 1] = cur; 5210 unlock_up(path, level, 1, 0, NULL); 5211 } 5212 out: 5213 path->keep_locks = keep_locks; 5214 if (ret == 0) { 5215 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5216 btrfs_set_path_blocking(path); 5217 memcpy(min_key, &found_key, sizeof(found_key)); 5218 } 5219 return ret; 5220 } 5221 5222 /* 5223 * this is similar to btrfs_next_leaf, but does not try to preserve 5224 * and fixup the path. It looks for and returns the next key in the 5225 * tree based on the current path and the min_trans parameters. 5226 * 5227 * 0 is returned if another key is found, < 0 if there are any errors 5228 * and 1 is returned if there are no higher keys in the tree 5229 * 5230 * path->keep_locks should be set to 1 on the search made before 5231 * calling this function. 5232 */ 5233 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5234 struct btrfs_key *key, int level, u64 min_trans) 5235 { 5236 int slot; 5237 struct extent_buffer *c; 5238 5239 WARN_ON(!path->keep_locks && !path->skip_locking); 5240 while (level < BTRFS_MAX_LEVEL) { 5241 if (!path->nodes[level]) 5242 return 1; 5243 5244 slot = path->slots[level] + 1; 5245 c = path->nodes[level]; 5246 next: 5247 if (slot >= btrfs_header_nritems(c)) { 5248 int ret; 5249 int orig_lowest; 5250 struct btrfs_key cur_key; 5251 if (level + 1 >= BTRFS_MAX_LEVEL || 5252 !path->nodes[level + 1]) 5253 return 1; 5254 5255 if (path->locks[level + 1] || path->skip_locking) { 5256 level++; 5257 continue; 5258 } 5259 5260 slot = btrfs_header_nritems(c) - 1; 5261 if (level == 0) 5262 btrfs_item_key_to_cpu(c, &cur_key, slot); 5263 else 5264 btrfs_node_key_to_cpu(c, &cur_key, slot); 5265 5266 orig_lowest = path->lowest_level; 5267 btrfs_release_path(path); 5268 path->lowest_level = level; 5269 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5270 0, 0); 5271 path->lowest_level = orig_lowest; 5272 if (ret < 0) 5273 return ret; 5274 5275 c = path->nodes[level]; 5276 slot = path->slots[level]; 5277 if (ret == 0) 5278 slot++; 5279 goto next; 5280 } 5281 5282 if (level == 0) 5283 btrfs_item_key_to_cpu(c, key, slot); 5284 else { 5285 u64 gen = btrfs_node_ptr_generation(c, slot); 5286 5287 if (gen < min_trans) { 5288 slot++; 5289 goto next; 5290 } 5291 btrfs_node_key_to_cpu(c, key, slot); 5292 } 5293 return 0; 5294 } 5295 return 1; 5296 } 5297 5298 /* 5299 * search the tree again to find a leaf with greater keys 5300 * returns 0 if it found something or 1 if there are no greater leaves. 5301 * returns < 0 on io errors. 5302 */ 5303 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5304 { 5305 return btrfs_next_old_leaf(root, path, 0); 5306 } 5307 5308 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5309 u64 time_seq) 5310 { 5311 int slot; 5312 int level; 5313 struct extent_buffer *c; 5314 struct extent_buffer *next; 5315 struct btrfs_key key; 5316 u32 nritems; 5317 int ret; 5318 int old_spinning = path->leave_spinning; 5319 int next_rw_lock = 0; 5320 5321 nritems = btrfs_header_nritems(path->nodes[0]); 5322 if (nritems == 0) 5323 return 1; 5324 5325 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5326 again: 5327 level = 1; 5328 next = NULL; 5329 next_rw_lock = 0; 5330 btrfs_release_path(path); 5331 5332 path->keep_locks = 1; 5333 path->leave_spinning = 1; 5334 5335 if (time_seq) 5336 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5337 else 5338 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5339 path->keep_locks = 0; 5340 5341 if (ret < 0) 5342 return ret; 5343 5344 nritems = btrfs_header_nritems(path->nodes[0]); 5345 /* 5346 * by releasing the path above we dropped all our locks. A balance 5347 * could have added more items next to the key that used to be 5348 * at the very end of the block. So, check again here and 5349 * advance the path if there are now more items available. 5350 */ 5351 if (nritems > 0 && path->slots[0] < nritems - 1) { 5352 if (ret == 0) 5353 path->slots[0]++; 5354 ret = 0; 5355 goto done; 5356 } 5357 /* 5358 * So the above check misses one case: 5359 * - after releasing the path above, someone has removed the item that 5360 * used to be at the very end of the block, and balance between leafs 5361 * gets another one with bigger key.offset to replace it. 5362 * 5363 * This one should be returned as well, or we can get leaf corruption 5364 * later(esp. in __btrfs_drop_extents()). 5365 * 5366 * And a bit more explanation about this check, 5367 * with ret > 0, the key isn't found, the path points to the slot 5368 * where it should be inserted, so the path->slots[0] item must be the 5369 * bigger one. 5370 */ 5371 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5372 ret = 0; 5373 goto done; 5374 } 5375 5376 while (level < BTRFS_MAX_LEVEL) { 5377 if (!path->nodes[level]) { 5378 ret = 1; 5379 goto done; 5380 } 5381 5382 slot = path->slots[level] + 1; 5383 c = path->nodes[level]; 5384 if (slot >= btrfs_header_nritems(c)) { 5385 level++; 5386 if (level == BTRFS_MAX_LEVEL) { 5387 ret = 1; 5388 goto done; 5389 } 5390 continue; 5391 } 5392 5393 if (next) { 5394 btrfs_tree_unlock_rw(next, next_rw_lock); 5395 free_extent_buffer(next); 5396 } 5397 5398 next = c; 5399 next_rw_lock = path->locks[level]; 5400 ret = read_block_for_search(root, path, &next, level, 5401 slot, &key); 5402 if (ret == -EAGAIN) 5403 goto again; 5404 5405 if (ret < 0) { 5406 btrfs_release_path(path); 5407 goto done; 5408 } 5409 5410 if (!path->skip_locking) { 5411 ret = btrfs_try_tree_read_lock(next); 5412 if (!ret && time_seq) { 5413 /* 5414 * If we don't get the lock, we may be racing 5415 * with push_leaf_left, holding that lock while 5416 * itself waiting for the leaf we've currently 5417 * locked. To solve this situation, we give up 5418 * on our lock and cycle. 5419 */ 5420 free_extent_buffer(next); 5421 btrfs_release_path(path); 5422 cond_resched(); 5423 goto again; 5424 } 5425 if (!ret) { 5426 btrfs_set_path_blocking(path); 5427 btrfs_tree_read_lock(next); 5428 } 5429 next_rw_lock = BTRFS_READ_LOCK; 5430 } 5431 break; 5432 } 5433 path->slots[level] = slot; 5434 while (1) { 5435 level--; 5436 c = path->nodes[level]; 5437 if (path->locks[level]) 5438 btrfs_tree_unlock_rw(c, path->locks[level]); 5439 5440 free_extent_buffer(c); 5441 path->nodes[level] = next; 5442 path->slots[level] = 0; 5443 if (!path->skip_locking) 5444 path->locks[level] = next_rw_lock; 5445 if (!level) 5446 break; 5447 5448 ret = read_block_for_search(root, path, &next, level, 5449 0, &key); 5450 if (ret == -EAGAIN) 5451 goto again; 5452 5453 if (ret < 0) { 5454 btrfs_release_path(path); 5455 goto done; 5456 } 5457 5458 if (!path->skip_locking) { 5459 ret = btrfs_try_tree_read_lock(next); 5460 if (!ret) { 5461 btrfs_set_path_blocking(path); 5462 btrfs_tree_read_lock(next); 5463 } 5464 next_rw_lock = BTRFS_READ_LOCK; 5465 } 5466 } 5467 ret = 0; 5468 done: 5469 unlock_up(path, 0, 1, 0, NULL); 5470 path->leave_spinning = old_spinning; 5471 if (!old_spinning) 5472 btrfs_set_path_blocking(path); 5473 5474 return ret; 5475 } 5476 5477 /* 5478 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5479 * searching until it gets past min_objectid or finds an item of 'type' 5480 * 5481 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5482 */ 5483 int btrfs_previous_item(struct btrfs_root *root, 5484 struct btrfs_path *path, u64 min_objectid, 5485 int type) 5486 { 5487 struct btrfs_key found_key; 5488 struct extent_buffer *leaf; 5489 u32 nritems; 5490 int ret; 5491 5492 while (1) { 5493 if (path->slots[0] == 0) { 5494 btrfs_set_path_blocking(path); 5495 ret = btrfs_prev_leaf(root, path); 5496 if (ret != 0) 5497 return ret; 5498 } else { 5499 path->slots[0]--; 5500 } 5501 leaf = path->nodes[0]; 5502 nritems = btrfs_header_nritems(leaf); 5503 if (nritems == 0) 5504 return 1; 5505 if (path->slots[0] == nritems) 5506 path->slots[0]--; 5507 5508 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5509 if (found_key.objectid < min_objectid) 5510 break; 5511 if (found_key.type == type) 5512 return 0; 5513 if (found_key.objectid == min_objectid && 5514 found_key.type < type) 5515 break; 5516 } 5517 return 1; 5518 } 5519 5520 /* 5521 * search in extent tree to find a previous Metadata/Data extent item with 5522 * min objecitd. 5523 * 5524 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5525 */ 5526 int btrfs_previous_extent_item(struct btrfs_root *root, 5527 struct btrfs_path *path, u64 min_objectid) 5528 { 5529 struct btrfs_key found_key; 5530 struct extent_buffer *leaf; 5531 u32 nritems; 5532 int ret; 5533 5534 while (1) { 5535 if (path->slots[0] == 0) { 5536 btrfs_set_path_blocking(path); 5537 ret = btrfs_prev_leaf(root, path); 5538 if (ret != 0) 5539 return ret; 5540 } else { 5541 path->slots[0]--; 5542 } 5543 leaf = path->nodes[0]; 5544 nritems = btrfs_header_nritems(leaf); 5545 if (nritems == 0) 5546 return 1; 5547 if (path->slots[0] == nritems) 5548 path->slots[0]--; 5549 5550 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5551 if (found_key.objectid < min_objectid) 5552 break; 5553 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5554 found_key.type == BTRFS_METADATA_ITEM_KEY) 5555 return 0; 5556 if (found_key.objectid == min_objectid && 5557 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5558 break; 5559 } 5560 return 1; 5561 } 5562