xref: /openbmc/linux/fs/btrfs/ctree.c (revision 6a551c11)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 		      *root, struct btrfs_key *ins_key,
33 		      struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct btrfs_root *root, struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct btrfs_root *root,
39 			      struct extent_buffer *dst_buf,
40 			      struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 		    int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 	return path;
51 }
52 
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 	int i;
60 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 		if (!p->nodes[i] || !p->locks[i])
62 			continue;
63 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 		if (p->locks[i] == BTRFS_READ_LOCK)
65 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 	}
69 }
70 
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 					struct extent_buffer *held, int held_rw)
81 {
82 	int i;
83 
84 	if (held) {
85 		btrfs_set_lock_blocking_rw(held, held_rw);
86 		if (held_rw == BTRFS_WRITE_LOCK)
87 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 		else if (held_rw == BTRFS_READ_LOCK)
89 			held_rw = BTRFS_READ_LOCK_BLOCKING;
90 	}
91 	btrfs_set_path_blocking(p);
92 
93 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 		if (p->nodes[i] && p->locks[i]) {
95 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 				p->locks[i] = BTRFS_WRITE_LOCK;
98 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 				p->locks[i] = BTRFS_READ_LOCK;
100 		}
101 	}
102 
103 	if (held)
104 		btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106 
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110 	if (!p)
111 		return;
112 	btrfs_release_path(p);
113 	kmem_cache_free(btrfs_path_cachep, p);
114 }
115 
116 /*
117  * path release drops references on the extent buffers in the path
118  * and it drops any locks held by this path
119  *
120  * It is safe to call this on paths that no locks or extent buffers held.
121  */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124 	int i;
125 
126 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127 		p->slots[i] = 0;
128 		if (!p->nodes[i])
129 			continue;
130 		if (p->locks[i]) {
131 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 			p->locks[i] = 0;
133 		}
134 		free_extent_buffer(p->nodes[i]);
135 		p->nodes[i] = NULL;
136 	}
137 }
138 
139 /*
140  * safely gets a reference on the root node of a tree.  A lock
141  * is not taken, so a concurrent writer may put a different node
142  * at the root of the tree.  See btrfs_lock_root_node for the
143  * looping required.
144  *
145  * The extent buffer returned by this has a reference taken, so
146  * it won't disappear.  It may stop being the root of the tree
147  * at any time because there are no locks held.
148  */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151 	struct extent_buffer *eb;
152 
153 	while (1) {
154 		rcu_read_lock();
155 		eb = rcu_dereference(root->node);
156 
157 		/*
158 		 * RCU really hurts here, we could free up the root node because
159 		 * it was COWed but we may not get the new root node yet so do
160 		 * the inc_not_zero dance and if it doesn't work then
161 		 * synchronize_rcu and try again.
162 		 */
163 		if (atomic_inc_not_zero(&eb->refs)) {
164 			rcu_read_unlock();
165 			break;
166 		}
167 		rcu_read_unlock();
168 		synchronize_rcu();
169 	}
170 	return eb;
171 }
172 
173 /* loop around taking references on and locking the root node of the
174  * tree until you end up with a lock on the root.  A locked buffer
175  * is returned, with a reference held.
176  */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179 	struct extent_buffer *eb;
180 
181 	while (1) {
182 		eb = btrfs_root_node(root);
183 		btrfs_tree_lock(eb);
184 		if (eb == root->node)
185 			break;
186 		btrfs_tree_unlock(eb);
187 		free_extent_buffer(eb);
188 	}
189 	return eb;
190 }
191 
192 /* loop around taking references on and locking the root node of the
193  * tree until you end up with a lock on the root.  A locked buffer
194  * is returned, with a reference held.
195  */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198 	struct extent_buffer *eb;
199 
200 	while (1) {
201 		eb = btrfs_root_node(root);
202 		btrfs_tree_read_lock(eb);
203 		if (eb == root->node)
204 			break;
205 		btrfs_tree_read_unlock(eb);
206 		free_extent_buffer(eb);
207 	}
208 	return eb;
209 }
210 
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212  * put onto a simple dirty list.  transaction.c walks this to make sure they
213  * get properly updated on disk.
214  */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 		return;
220 
221 	spin_lock(&root->fs_info->trans_lock);
222 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 		/* Want the extent tree to be the last on the list */
224 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 			list_move_tail(&root->dirty_list,
226 				       &root->fs_info->dirty_cowonly_roots);
227 		else
228 			list_move(&root->dirty_list,
229 				  &root->fs_info->dirty_cowonly_roots);
230 	}
231 	spin_unlock(&root->fs_info->trans_lock);
232 }
233 
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 		      struct btrfs_root *root,
241 		      struct extent_buffer *buf,
242 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244 	struct extent_buffer *cow;
245 	int ret = 0;
246 	int level;
247 	struct btrfs_disk_key disk_key;
248 
249 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 		trans->transid != root->fs_info->running_transaction->transid);
251 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 		trans->transid != root->last_trans);
253 
254 	level = btrfs_header_level(buf);
255 	if (level == 0)
256 		btrfs_item_key(buf, &disk_key, 0);
257 	else
258 		btrfs_node_key(buf, &disk_key, 0);
259 
260 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 			&disk_key, level, buf->start, 0);
262 	if (IS_ERR(cow))
263 		return PTR_ERR(cow);
264 
265 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 	btrfs_set_header_bytenr(cow, cow->start);
267 	btrfs_set_header_generation(cow, trans->transid);
268 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 				     BTRFS_HEADER_FLAG_RELOC);
271 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 	else
274 		btrfs_set_header_owner(cow, new_root_objectid);
275 
276 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277 			    BTRFS_FSID_SIZE);
278 
279 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 		ret = btrfs_inc_ref(trans, root, cow, 1);
282 	else
283 		ret = btrfs_inc_ref(trans, root, cow, 0);
284 
285 	if (ret)
286 		return ret;
287 
288 	btrfs_mark_buffer_dirty(cow);
289 	*cow_ret = cow;
290 	return 0;
291 }
292 
293 enum mod_log_op {
294 	MOD_LOG_KEY_REPLACE,
295 	MOD_LOG_KEY_ADD,
296 	MOD_LOG_KEY_REMOVE,
297 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 	MOD_LOG_MOVE_KEYS,
300 	MOD_LOG_ROOT_REPLACE,
301 };
302 
303 struct tree_mod_move {
304 	int dst_slot;
305 	int nr_items;
306 };
307 
308 struct tree_mod_root {
309 	u64 logical;
310 	u8 level;
311 };
312 
313 struct tree_mod_elem {
314 	struct rb_node node;
315 	u64 logical;
316 	u64 seq;
317 	enum mod_log_op op;
318 
319 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 	int slot;
321 
322 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 	u64 generation;
324 
325 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 	struct btrfs_disk_key key;
327 	u64 blockptr;
328 
329 	/* this is used for op == MOD_LOG_MOVE_KEYS */
330 	struct tree_mod_move move;
331 
332 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
333 	struct tree_mod_root old_root;
334 };
335 
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338 	read_lock(&fs_info->tree_mod_log_lock);
339 }
340 
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343 	read_unlock(&fs_info->tree_mod_log_lock);
344 }
345 
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348 	write_lock(&fs_info->tree_mod_log_lock);
349 }
350 
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353 	write_unlock(&fs_info->tree_mod_log_lock);
354 }
355 
356 /*
357  * Pull a new tree mod seq number for our operation.
358  */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361 	return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363 
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 			   struct seq_list *elem)
374 {
375 	tree_mod_log_write_lock(fs_info);
376 	spin_lock(&fs_info->tree_mod_seq_lock);
377 	if (!elem->seq) {
378 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 	}
381 	spin_unlock(&fs_info->tree_mod_seq_lock);
382 	tree_mod_log_write_unlock(fs_info);
383 
384 	return elem->seq;
385 }
386 
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 			    struct seq_list *elem)
389 {
390 	struct rb_root *tm_root;
391 	struct rb_node *node;
392 	struct rb_node *next;
393 	struct seq_list *cur_elem;
394 	struct tree_mod_elem *tm;
395 	u64 min_seq = (u64)-1;
396 	u64 seq_putting = elem->seq;
397 
398 	if (!seq_putting)
399 		return;
400 
401 	spin_lock(&fs_info->tree_mod_seq_lock);
402 	list_del(&elem->list);
403 	elem->seq = 0;
404 
405 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 		if (cur_elem->seq < min_seq) {
407 			if (seq_putting > cur_elem->seq) {
408 				/*
409 				 * blocker with lower sequence number exists, we
410 				 * cannot remove anything from the log
411 				 */
412 				spin_unlock(&fs_info->tree_mod_seq_lock);
413 				return;
414 			}
415 			min_seq = cur_elem->seq;
416 		}
417 	}
418 	spin_unlock(&fs_info->tree_mod_seq_lock);
419 
420 	/*
421 	 * anything that's lower than the lowest existing (read: blocked)
422 	 * sequence number can be removed from the tree.
423 	 */
424 	tree_mod_log_write_lock(fs_info);
425 	tm_root = &fs_info->tree_mod_log;
426 	for (node = rb_first(tm_root); node; node = next) {
427 		next = rb_next(node);
428 		tm = container_of(node, struct tree_mod_elem, node);
429 		if (tm->seq > min_seq)
430 			continue;
431 		rb_erase(node, tm_root);
432 		kfree(tm);
433 	}
434 	tree_mod_log_write_unlock(fs_info);
435 }
436 
437 /*
438  * key order of the log:
439  *       node/leaf start address -> sequence
440  *
441  * The 'start address' is the logical address of the *new* root node
442  * for root replace operations, or the logical address of the affected
443  * block for all other operations.
444  *
445  * Note: must be called with write lock (tree_mod_log_write_lock).
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 	struct rb_root *tm_root;
451 	struct rb_node **new;
452 	struct rb_node *parent = NULL;
453 	struct tree_mod_elem *cur;
454 
455 	BUG_ON(!tm);
456 
457 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458 
459 	tm_root = &fs_info->tree_mod_log;
460 	new = &tm_root->rb_node;
461 	while (*new) {
462 		cur = container_of(*new, struct tree_mod_elem, node);
463 		parent = *new;
464 		if (cur->logical < tm->logical)
465 			new = &((*new)->rb_left);
466 		else if (cur->logical > tm->logical)
467 			new = &((*new)->rb_right);
468 		else if (cur->seq < tm->seq)
469 			new = &((*new)->rb_left);
470 		else if (cur->seq > tm->seq)
471 			new = &((*new)->rb_right);
472 		else
473 			return -EEXIST;
474 	}
475 
476 	rb_link_node(&tm->node, parent, new);
477 	rb_insert_color(&tm->node, tm_root);
478 	return 0;
479 }
480 
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 				    struct extent_buffer *eb) {
489 	smp_mb();
490 	if (list_empty(&(fs_info)->tree_mod_seq_list))
491 		return 1;
492 	if (eb && btrfs_header_level(eb) == 0)
493 		return 1;
494 
495 	tree_mod_log_write_lock(fs_info);
496 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 		tree_mod_log_write_unlock(fs_info);
498 		return 1;
499 	}
500 
501 	return 0;
502 }
503 
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 				    struct extent_buffer *eb)
507 {
508 	smp_mb();
509 	if (list_empty(&(fs_info)->tree_mod_seq_list))
510 		return 0;
511 	if (eb && btrfs_header_level(eb) == 0)
512 		return 0;
513 
514 	return 1;
515 }
516 
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 		    enum mod_log_op op, gfp_t flags)
520 {
521 	struct tree_mod_elem *tm;
522 
523 	tm = kzalloc(sizeof(*tm), flags);
524 	if (!tm)
525 		return NULL;
526 
527 	tm->logical = eb->start;
528 	if (op != MOD_LOG_KEY_ADD) {
529 		btrfs_node_key(eb, &tm->key, slot);
530 		tm->blockptr = btrfs_node_blockptr(eb, slot);
531 	}
532 	tm->op = op;
533 	tm->slot = slot;
534 	tm->generation = btrfs_node_ptr_generation(eb, slot);
535 	RB_CLEAR_NODE(&tm->node);
536 
537 	return tm;
538 }
539 
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 			struct extent_buffer *eb, int slot,
543 			enum mod_log_op op, gfp_t flags)
544 {
545 	struct tree_mod_elem *tm;
546 	int ret;
547 
548 	if (!tree_mod_need_log(fs_info, eb))
549 		return 0;
550 
551 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 	if (!tm)
553 		return -ENOMEM;
554 
555 	if (tree_mod_dont_log(fs_info, eb)) {
556 		kfree(tm);
557 		return 0;
558 	}
559 
560 	ret = __tree_mod_log_insert(fs_info, tm);
561 	tree_mod_log_write_unlock(fs_info);
562 	if (ret)
563 		kfree(tm);
564 
565 	return ret;
566 }
567 
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 			 struct extent_buffer *eb, int dst_slot, int src_slot,
571 			 int nr_items, gfp_t flags)
572 {
573 	struct tree_mod_elem *tm = NULL;
574 	struct tree_mod_elem **tm_list = NULL;
575 	int ret = 0;
576 	int i;
577 	int locked = 0;
578 
579 	if (!tree_mod_need_log(fs_info, eb))
580 		return 0;
581 
582 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 	if (!tm_list)
584 		return -ENOMEM;
585 
586 	tm = kzalloc(sizeof(*tm), flags);
587 	if (!tm) {
588 		ret = -ENOMEM;
589 		goto free_tms;
590 	}
591 
592 	tm->logical = eb->start;
593 	tm->slot = src_slot;
594 	tm->move.dst_slot = dst_slot;
595 	tm->move.nr_items = nr_items;
596 	tm->op = MOD_LOG_MOVE_KEYS;
597 
598 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601 		if (!tm_list[i]) {
602 			ret = -ENOMEM;
603 			goto free_tms;
604 		}
605 	}
606 
607 	if (tree_mod_dont_log(fs_info, eb))
608 		goto free_tms;
609 	locked = 1;
610 
611 	/*
612 	 * When we override something during the move, we log these removals.
613 	 * This can only happen when we move towards the beginning of the
614 	 * buffer, i.e. dst_slot < src_slot.
615 	 */
616 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618 		if (ret)
619 			goto free_tms;
620 	}
621 
622 	ret = __tree_mod_log_insert(fs_info, tm);
623 	if (ret)
624 		goto free_tms;
625 	tree_mod_log_write_unlock(fs_info);
626 	kfree(tm_list);
627 
628 	return 0;
629 free_tms:
630 	for (i = 0; i < nr_items; i++) {
631 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 		kfree(tm_list[i]);
634 	}
635 	if (locked)
636 		tree_mod_log_write_unlock(fs_info);
637 	kfree(tm_list);
638 	kfree(tm);
639 
640 	return ret;
641 }
642 
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 		       struct tree_mod_elem **tm_list,
646 		       int nritems)
647 {
648 	int i, j;
649 	int ret;
650 
651 	for (i = nritems - 1; i >= 0; i--) {
652 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 		if (ret) {
654 			for (j = nritems - 1; j > i; j--)
655 				rb_erase(&tm_list[j]->node,
656 					 &fs_info->tree_mod_log);
657 			return ret;
658 		}
659 	}
660 
661 	return 0;
662 }
663 
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 			 struct extent_buffer *old_root,
667 			 struct extent_buffer *new_root, gfp_t flags,
668 			 int log_removal)
669 {
670 	struct tree_mod_elem *tm = NULL;
671 	struct tree_mod_elem **tm_list = NULL;
672 	int nritems = 0;
673 	int ret = 0;
674 	int i;
675 
676 	if (!tree_mod_need_log(fs_info, NULL))
677 		return 0;
678 
679 	if (log_removal && btrfs_header_level(old_root) > 0) {
680 		nritems = btrfs_header_nritems(old_root);
681 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 				  flags);
683 		if (!tm_list) {
684 			ret = -ENOMEM;
685 			goto free_tms;
686 		}
687 		for (i = 0; i < nritems; i++) {
688 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690 			if (!tm_list[i]) {
691 				ret = -ENOMEM;
692 				goto free_tms;
693 			}
694 		}
695 	}
696 
697 	tm = kzalloc(sizeof(*tm), flags);
698 	if (!tm) {
699 		ret = -ENOMEM;
700 		goto free_tms;
701 	}
702 
703 	tm->logical = new_root->start;
704 	tm->old_root.logical = old_root->start;
705 	tm->old_root.level = btrfs_header_level(old_root);
706 	tm->generation = btrfs_header_generation(old_root);
707 	tm->op = MOD_LOG_ROOT_REPLACE;
708 
709 	if (tree_mod_dont_log(fs_info, NULL))
710 		goto free_tms;
711 
712 	if (tm_list)
713 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 	if (!ret)
715 		ret = __tree_mod_log_insert(fs_info, tm);
716 
717 	tree_mod_log_write_unlock(fs_info);
718 	if (ret)
719 		goto free_tms;
720 	kfree(tm_list);
721 
722 	return ret;
723 
724 free_tms:
725 	if (tm_list) {
726 		for (i = 0; i < nritems; i++)
727 			kfree(tm_list[i]);
728 		kfree(tm_list);
729 	}
730 	kfree(tm);
731 
732 	return ret;
733 }
734 
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737 		      int smallest)
738 {
739 	struct rb_root *tm_root;
740 	struct rb_node *node;
741 	struct tree_mod_elem *cur = NULL;
742 	struct tree_mod_elem *found = NULL;
743 
744 	tree_mod_log_read_lock(fs_info);
745 	tm_root = &fs_info->tree_mod_log;
746 	node = tm_root->rb_node;
747 	while (node) {
748 		cur = container_of(node, struct tree_mod_elem, node);
749 		if (cur->logical < start) {
750 			node = node->rb_left;
751 		} else if (cur->logical > start) {
752 			node = node->rb_right;
753 		} else if (cur->seq < min_seq) {
754 			node = node->rb_left;
755 		} else if (!smallest) {
756 			/* we want the node with the highest seq */
757 			if (found)
758 				BUG_ON(found->seq > cur->seq);
759 			found = cur;
760 			node = node->rb_left;
761 		} else if (cur->seq > min_seq) {
762 			/* we want the node with the smallest seq */
763 			if (found)
764 				BUG_ON(found->seq < cur->seq);
765 			found = cur;
766 			node = node->rb_right;
767 		} else {
768 			found = cur;
769 			break;
770 		}
771 	}
772 	tree_mod_log_read_unlock(fs_info);
773 
774 	return found;
775 }
776 
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 			   u64 min_seq)
785 {
786 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788 
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799 
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 		     struct extent_buffer *src, unsigned long dst_offset,
803 		     unsigned long src_offset, int nr_items)
804 {
805 	int ret = 0;
806 	struct tree_mod_elem **tm_list = NULL;
807 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 	int i;
809 	int locked = 0;
810 
811 	if (!tree_mod_need_log(fs_info, NULL))
812 		return 0;
813 
814 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 		return 0;
816 
817 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 			  GFP_NOFS);
819 	if (!tm_list)
820 		return -ENOMEM;
821 
822 	tm_list_add = tm_list;
823 	tm_list_rem = tm_list + nr_items;
824 	for (i = 0; i < nr_items; i++) {
825 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 		if (!tm_list_rem[i]) {
828 			ret = -ENOMEM;
829 			goto free_tms;
830 		}
831 
832 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 		    MOD_LOG_KEY_ADD, GFP_NOFS);
834 		if (!tm_list_add[i]) {
835 			ret = -ENOMEM;
836 			goto free_tms;
837 		}
838 	}
839 
840 	if (tree_mod_dont_log(fs_info, NULL))
841 		goto free_tms;
842 	locked = 1;
843 
844 	for (i = 0; i < nr_items; i++) {
845 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 		if (ret)
847 			goto free_tms;
848 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 		if (ret)
850 			goto free_tms;
851 	}
852 
853 	tree_mod_log_write_unlock(fs_info);
854 	kfree(tm_list);
855 
856 	return 0;
857 
858 free_tms:
859 	for (i = 0; i < nr_items * 2; i++) {
860 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 		kfree(tm_list[i]);
863 	}
864 	if (locked)
865 		tree_mod_log_write_unlock(fs_info);
866 	kfree(tm_list);
867 
868 	return ret;
869 }
870 
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 		     int dst_offset, int src_offset, int nr_items)
874 {
875 	int ret;
876 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 				       nr_items, GFP_NOFS);
878 	BUG_ON(ret < 0);
879 }
880 
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 			  struct extent_buffer *eb, int slot, int atomic)
884 {
885 	int ret;
886 
887 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 					MOD_LOG_KEY_REPLACE,
889 					atomic ? GFP_ATOMIC : GFP_NOFS);
890 	BUG_ON(ret < 0);
891 }
892 
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 	struct tree_mod_elem **tm_list = NULL;
897 	int nritems = 0;
898 	int i;
899 	int ret = 0;
900 
901 	if (btrfs_header_level(eb) == 0)
902 		return 0;
903 
904 	if (!tree_mod_need_log(fs_info, NULL))
905 		return 0;
906 
907 	nritems = btrfs_header_nritems(eb);
908 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 	if (!tm_list)
910 		return -ENOMEM;
911 
912 	for (i = 0; i < nritems; i++) {
913 		tm_list[i] = alloc_tree_mod_elem(eb, i,
914 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 		if (!tm_list[i]) {
916 			ret = -ENOMEM;
917 			goto free_tms;
918 		}
919 	}
920 
921 	if (tree_mod_dont_log(fs_info, eb))
922 		goto free_tms;
923 
924 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 	tree_mod_log_write_unlock(fs_info);
926 	if (ret)
927 		goto free_tms;
928 	kfree(tm_list);
929 
930 	return 0;
931 
932 free_tms:
933 	for (i = 0; i < nritems; i++)
934 		kfree(tm_list[i]);
935 	kfree(tm_list);
936 
937 	return ret;
938 }
939 
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 			      struct extent_buffer *new_root_node,
943 			      int log_removal)
944 {
945 	int ret;
946 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 				       new_root_node, GFP_NOFS, log_removal);
948 	BUG_ON(ret < 0);
949 }
950 
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 			      struct extent_buffer *buf)
956 {
957 	/*
958 	 * Tree blocks not in reference counted trees and tree roots
959 	 * are never shared. If a block was allocated after the last
960 	 * snapshot and the block was not allocated by tree relocation,
961 	 * we know the block is not shared.
962 	 */
963 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 	    buf != root->node && buf != root->commit_root &&
965 	    (btrfs_header_generation(buf) <=
966 	     btrfs_root_last_snapshot(&root->root_item) ||
967 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 		return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 		return 1;
973 #endif
974 	return 0;
975 }
976 
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 				       struct btrfs_root *root,
979 				       struct extent_buffer *buf,
980 				       struct extent_buffer *cow,
981 				       int *last_ref)
982 {
983 	u64 refs;
984 	u64 owner;
985 	u64 flags;
986 	u64 new_flags = 0;
987 	int ret;
988 
989 	/*
990 	 * Backrefs update rules:
991 	 *
992 	 * Always use full backrefs for extent pointers in tree block
993 	 * allocated by tree relocation.
994 	 *
995 	 * If a shared tree block is no longer referenced by its owner
996 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 	 * use full backrefs for extent pointers in tree block.
998 	 *
999 	 * If a tree block is been relocating
1000 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 	 * use full backrefs for extent pointers in tree block.
1002 	 * The reason for this is some operations (such as drop tree)
1003 	 * are only allowed for blocks use full backrefs.
1004 	 */
1005 
1006 	if (btrfs_block_can_be_shared(root, buf)) {
1007 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 					       btrfs_header_level(buf), 1,
1009 					       &refs, &flags);
1010 		if (ret)
1011 			return ret;
1012 		if (refs == 0) {
1013 			ret = -EROFS;
1014 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015 			return ret;
1016 		}
1017 	} else {
1018 		refs = 1;
1019 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 		else
1023 			flags = 0;
1024 	}
1025 
1026 	owner = btrfs_header_owner(buf);
1027 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029 
1030 	if (refs > 1) {
1031 		if ((owner == root->root_key.objectid ||
1032 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 			ret = btrfs_inc_ref(trans, root, buf, 1);
1035 			BUG_ON(ret); /* -ENOMEM */
1036 
1037 			if (root->root_key.objectid ==
1038 			    BTRFS_TREE_RELOC_OBJECTID) {
1039 				ret = btrfs_dec_ref(trans, root, buf, 0);
1040 				BUG_ON(ret); /* -ENOMEM */
1041 				ret = btrfs_inc_ref(trans, root, cow, 1);
1042 				BUG_ON(ret); /* -ENOMEM */
1043 			}
1044 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 		} else {
1046 
1047 			if (root->root_key.objectid ==
1048 			    BTRFS_TREE_RELOC_OBJECTID)
1049 				ret = btrfs_inc_ref(trans, root, cow, 1);
1050 			else
1051 				ret = btrfs_inc_ref(trans, root, cow, 0);
1052 			BUG_ON(ret); /* -ENOMEM */
1053 		}
1054 		if (new_flags != 0) {
1055 			int level = btrfs_header_level(buf);
1056 
1057 			ret = btrfs_set_disk_extent_flags(trans, root,
1058 							  buf->start,
1059 							  buf->len,
1060 							  new_flags, level, 0);
1061 			if (ret)
1062 				return ret;
1063 		}
1064 	} else {
1065 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 			if (root->root_key.objectid ==
1067 			    BTRFS_TREE_RELOC_OBJECTID)
1068 				ret = btrfs_inc_ref(trans, root, cow, 1);
1069 			else
1070 				ret = btrfs_inc_ref(trans, root, cow, 0);
1071 			BUG_ON(ret); /* -ENOMEM */
1072 			ret = btrfs_dec_ref(trans, root, buf, 1);
1073 			BUG_ON(ret); /* -ENOMEM */
1074 		}
1075 		clean_tree_block(trans, root->fs_info, buf);
1076 		*last_ref = 1;
1077 	}
1078 	return 0;
1079 }
1080 
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 			     struct btrfs_root *root,
1095 			     struct extent_buffer *buf,
1096 			     struct extent_buffer *parent, int parent_slot,
1097 			     struct extent_buffer **cow_ret,
1098 			     u64 search_start, u64 empty_size)
1099 {
1100 	struct btrfs_disk_key disk_key;
1101 	struct extent_buffer *cow;
1102 	int level, ret;
1103 	int last_ref = 0;
1104 	int unlock_orig = 0;
1105 	u64 parent_start;
1106 
1107 	if (*cow_ret == buf)
1108 		unlock_orig = 1;
1109 
1110 	btrfs_assert_tree_locked(buf);
1111 
1112 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 		trans->transid != root->fs_info->running_transaction->transid);
1114 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 		trans->transid != root->last_trans);
1116 
1117 	level = btrfs_header_level(buf);
1118 
1119 	if (level == 0)
1120 		btrfs_item_key(buf, &disk_key, 0);
1121 	else
1122 		btrfs_node_key(buf, &disk_key, 0);
1123 
1124 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 		if (parent)
1126 			parent_start = parent->start;
1127 		else
1128 			parent_start = 0;
1129 	} else
1130 		parent_start = 0;
1131 
1132 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 			root->root_key.objectid, &disk_key, level,
1134 			search_start, empty_size);
1135 	if (IS_ERR(cow))
1136 		return PTR_ERR(cow);
1137 
1138 	/* cow is set to blocking by btrfs_init_new_buffer */
1139 
1140 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 	btrfs_set_header_bytenr(cow, cow->start);
1142 	btrfs_set_header_generation(cow, trans->transid);
1143 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 				     BTRFS_HEADER_FLAG_RELOC);
1146 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 	else
1149 		btrfs_set_header_owner(cow, root->root_key.objectid);
1150 
1151 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 			    BTRFS_FSID_SIZE);
1153 
1154 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 	if (ret) {
1156 		btrfs_abort_transaction(trans, root, ret);
1157 		return ret;
1158 	}
1159 
1160 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 		if (ret) {
1163 			btrfs_abort_transaction(trans, root, ret);
1164 			return ret;
1165 		}
1166 	}
1167 
1168 	if (buf == root->node) {
1169 		WARN_ON(parent && parent != buf);
1170 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 			parent_start = buf->start;
1173 		else
1174 			parent_start = 0;
1175 
1176 		extent_buffer_get(cow);
1177 		tree_mod_log_set_root_pointer(root, cow, 1);
1178 		rcu_assign_pointer(root->node, cow);
1179 
1180 		btrfs_free_tree_block(trans, root, buf, parent_start,
1181 				      last_ref);
1182 		free_extent_buffer(buf);
1183 		add_root_to_dirty_list(root);
1184 	} else {
1185 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 			parent_start = parent->start;
1187 		else
1188 			parent_start = 0;
1189 
1190 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 		btrfs_set_node_blockptr(parent, parent_slot,
1194 					cow->start);
1195 		btrfs_set_node_ptr_generation(parent, parent_slot,
1196 					      trans->transid);
1197 		btrfs_mark_buffer_dirty(parent);
1198 		if (last_ref) {
1199 			ret = tree_mod_log_free_eb(root->fs_info, buf);
1200 			if (ret) {
1201 				btrfs_abort_transaction(trans, root, ret);
1202 				return ret;
1203 			}
1204 		}
1205 		btrfs_free_tree_block(trans, root, buf, parent_start,
1206 				      last_ref);
1207 	}
1208 	if (unlock_orig)
1209 		btrfs_tree_unlock(buf);
1210 	free_extent_buffer_stale(buf);
1211 	btrfs_mark_buffer_dirty(cow);
1212 	*cow_ret = cow;
1213 	return 0;
1214 }
1215 
1216 /*
1217  * returns the logical address of the oldest predecessor of the given root.
1218  * entries older than time_seq are ignored.
1219  */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 			   struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224 	struct tree_mod_elem *tm;
1225 	struct tree_mod_elem *found = NULL;
1226 	u64 root_logical = eb_root->start;
1227 	int looped = 0;
1228 
1229 	if (!time_seq)
1230 		return NULL;
1231 
1232 	/*
1233 	 * the very last operation that's logged for a root is the
1234 	 * replacement operation (if it is replaced at all). this has
1235 	 * the logical address of the *new* root, making it the very
1236 	 * first operation that's logged for this root.
1237 	 */
1238 	while (1) {
1239 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 						time_seq);
1241 		if (!looped && !tm)
1242 			return NULL;
1243 		/*
1244 		 * if there are no tree operation for the oldest root, we simply
1245 		 * return it. this should only happen if that (old) root is at
1246 		 * level 0.
1247 		 */
1248 		if (!tm)
1249 			break;
1250 
1251 		/*
1252 		 * if there's an operation that's not a root replacement, we
1253 		 * found the oldest version of our root. normally, we'll find a
1254 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 		 */
1256 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 			break;
1258 
1259 		found = tm;
1260 		root_logical = tm->old_root.logical;
1261 		looped = 1;
1262 	}
1263 
1264 	/* if there's no old root to return, return what we found instead */
1265 	if (!found)
1266 		found = tm;
1267 
1268 	return found;
1269 }
1270 
1271 /*
1272  * tm is a pointer to the first operation to rewind within eb. then, all
1273  * previous operations will be rewound (until we reach something older than
1274  * time_seq).
1275  */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 		      u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280 	u32 n;
1281 	struct rb_node *next;
1282 	struct tree_mod_elem *tm = first_tm;
1283 	unsigned long o_dst;
1284 	unsigned long o_src;
1285 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286 
1287 	n = btrfs_header_nritems(eb);
1288 	tree_mod_log_read_lock(fs_info);
1289 	while (tm && tm->seq >= time_seq) {
1290 		/*
1291 		 * all the operations are recorded with the operator used for
1292 		 * the modification. as we're going backwards, we do the
1293 		 * opposite of each operation here.
1294 		 */
1295 		switch (tm->op) {
1296 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 			BUG_ON(tm->slot < n);
1298 			/* Fallthrough */
1299 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 		case MOD_LOG_KEY_REMOVE:
1301 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 			btrfs_set_node_ptr_generation(eb, tm->slot,
1304 						      tm->generation);
1305 			n++;
1306 			break;
1307 		case MOD_LOG_KEY_REPLACE:
1308 			BUG_ON(tm->slot >= n);
1309 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 			btrfs_set_node_ptr_generation(eb, tm->slot,
1312 						      tm->generation);
1313 			break;
1314 		case MOD_LOG_KEY_ADD:
1315 			/* if a move operation is needed it's in the log */
1316 			n--;
1317 			break;
1318 		case MOD_LOG_MOVE_KEYS:
1319 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 			memmove_extent_buffer(eb, o_dst, o_src,
1322 					      tm->move.nr_items * p_size);
1323 			break;
1324 		case MOD_LOG_ROOT_REPLACE:
1325 			/*
1326 			 * this operation is special. for roots, this must be
1327 			 * handled explicitly before rewinding.
1328 			 * for non-roots, this operation may exist if the node
1329 			 * was a root: root A -> child B; then A gets empty and
1330 			 * B is promoted to the new root. in the mod log, we'll
1331 			 * have a root-replace operation for B, a tree block
1332 			 * that is no root. we simply ignore that operation.
1333 			 */
1334 			break;
1335 		}
1336 		next = rb_next(&tm->node);
1337 		if (!next)
1338 			break;
1339 		tm = container_of(next, struct tree_mod_elem, node);
1340 		if (tm->logical != first_tm->logical)
1341 			break;
1342 	}
1343 	tree_mod_log_read_unlock(fs_info);
1344 	btrfs_set_header_nritems(eb, n);
1345 }
1346 
1347 /*
1348  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349  * is returned. If rewind operations happen, a fresh buffer is returned. The
1350  * returned buffer is always read-locked. If the returned buffer is not the
1351  * input buffer, the lock on the input buffer is released and the input buffer
1352  * is freed (its refcount is decremented).
1353  */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 		    struct extent_buffer *eb, u64 time_seq)
1357 {
1358 	struct extent_buffer *eb_rewin;
1359 	struct tree_mod_elem *tm;
1360 
1361 	if (!time_seq)
1362 		return eb;
1363 
1364 	if (btrfs_header_level(eb) == 0)
1365 		return eb;
1366 
1367 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 	if (!tm)
1369 		return eb;
1370 
1371 	btrfs_set_path_blocking(path);
1372 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373 
1374 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 		BUG_ON(tm->slot != 0);
1376 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377 						eb->len);
1378 		if (!eb_rewin) {
1379 			btrfs_tree_read_unlock_blocking(eb);
1380 			free_extent_buffer(eb);
1381 			return NULL;
1382 		}
1383 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1384 		btrfs_set_header_backref_rev(eb_rewin,
1385 					     btrfs_header_backref_rev(eb));
1386 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388 	} else {
1389 		eb_rewin = btrfs_clone_extent_buffer(eb);
1390 		if (!eb_rewin) {
1391 			btrfs_tree_read_unlock_blocking(eb);
1392 			free_extent_buffer(eb);
1393 			return NULL;
1394 		}
1395 	}
1396 
1397 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398 	btrfs_tree_read_unlock_blocking(eb);
1399 	free_extent_buffer(eb);
1400 
1401 	extent_buffer_get(eb_rewin);
1402 	btrfs_tree_read_lock(eb_rewin);
1403 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1405 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406 
1407 	return eb_rewin;
1408 }
1409 
1410 /*
1411  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412  * value. If there are no changes, the current root->root_node is returned. If
1413  * anything changed in between, there's a fresh buffer allocated on which the
1414  * rewind operations are done. In any case, the returned buffer is read locked.
1415  * Returns NULL on error (with no locks held).
1416  */
1417 static inline struct extent_buffer *
1418 get_old_root(struct btrfs_root *root, u64 time_seq)
1419 {
1420 	struct tree_mod_elem *tm;
1421 	struct extent_buffer *eb = NULL;
1422 	struct extent_buffer *eb_root;
1423 	struct extent_buffer *old;
1424 	struct tree_mod_root *old_root = NULL;
1425 	u64 old_generation = 0;
1426 	u64 logical;
1427 
1428 	eb_root = btrfs_read_lock_root_node(root);
1429 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430 	if (!tm)
1431 		return eb_root;
1432 
1433 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434 		old_root = &tm->old_root;
1435 		old_generation = tm->generation;
1436 		logical = old_root->logical;
1437 	} else {
1438 		logical = eb_root->start;
1439 	}
1440 
1441 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443 		btrfs_tree_read_unlock(eb_root);
1444 		free_extent_buffer(eb_root);
1445 		old = read_tree_block(root, logical, 0);
1446 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447 			if (!IS_ERR(old))
1448 				free_extent_buffer(old);
1449 			btrfs_warn(root->fs_info,
1450 				"failed to read tree block %llu from get_old_root", logical);
1451 		} else {
1452 			eb = btrfs_clone_extent_buffer(old);
1453 			free_extent_buffer(old);
1454 		}
1455 	} else if (old_root) {
1456 		btrfs_tree_read_unlock(eb_root);
1457 		free_extent_buffer(eb_root);
1458 		eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459 					root->nodesize);
1460 	} else {
1461 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462 		eb = btrfs_clone_extent_buffer(eb_root);
1463 		btrfs_tree_read_unlock_blocking(eb_root);
1464 		free_extent_buffer(eb_root);
1465 	}
1466 
1467 	if (!eb)
1468 		return NULL;
1469 	extent_buffer_get(eb);
1470 	btrfs_tree_read_lock(eb);
1471 	if (old_root) {
1472 		btrfs_set_header_bytenr(eb, eb->start);
1473 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475 		btrfs_set_header_level(eb, old_root->level);
1476 		btrfs_set_header_generation(eb, old_generation);
1477 	}
1478 	if (tm)
1479 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480 	else
1481 		WARN_ON(btrfs_header_level(eb) != 0);
1482 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483 
1484 	return eb;
1485 }
1486 
1487 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488 {
1489 	struct tree_mod_elem *tm;
1490 	int level;
1491 	struct extent_buffer *eb_root = btrfs_root_node(root);
1492 
1493 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495 		level = tm->old_root.level;
1496 	} else {
1497 		level = btrfs_header_level(eb_root);
1498 	}
1499 	free_extent_buffer(eb_root);
1500 
1501 	return level;
1502 }
1503 
1504 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505 				   struct btrfs_root *root,
1506 				   struct extent_buffer *buf)
1507 {
1508 	if (btrfs_test_is_dummy_root(root))
1509 		return 0;
1510 
1511 	/* ensure we can see the force_cow */
1512 	smp_rmb();
1513 
1514 	/*
1515 	 * We do not need to cow a block if
1516 	 * 1) this block is not created or changed in this transaction;
1517 	 * 2) this block does not belong to TREE_RELOC tree;
1518 	 * 3) the root is not forced COW.
1519 	 *
1520 	 * What is forced COW:
1521 	 *    when we create snapshot during committing the transaction,
1522 	 *    after we've finished coping src root, we must COW the shared
1523 	 *    block to ensure the metadata consistency.
1524 	 */
1525 	if (btrfs_header_generation(buf) == trans->transid &&
1526 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530 		return 0;
1531 	return 1;
1532 }
1533 
1534 /*
1535  * cows a single block, see __btrfs_cow_block for the real work.
1536  * This version of it has extra checks so that a block isn't COWed more than
1537  * once per transaction, as long as it hasn't been written yet
1538  */
1539 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540 		    struct btrfs_root *root, struct extent_buffer *buf,
1541 		    struct extent_buffer *parent, int parent_slot,
1542 		    struct extent_buffer **cow_ret)
1543 {
1544 	u64 search_start;
1545 	int ret;
1546 
1547 	if (trans->transaction != root->fs_info->running_transaction)
1548 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549 		       trans->transid,
1550 		       root->fs_info->running_transaction->transid);
1551 
1552 	if (trans->transid != root->fs_info->generation)
1553 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554 		       trans->transid, root->fs_info->generation);
1555 
1556 	if (!should_cow_block(trans, root, buf)) {
1557 		trans->dirty = true;
1558 		*cow_ret = buf;
1559 		return 0;
1560 	}
1561 
1562 	search_start = buf->start & ~((u64)SZ_1G - 1);
1563 
1564 	if (parent)
1565 		btrfs_set_lock_blocking(parent);
1566 	btrfs_set_lock_blocking(buf);
1567 
1568 	ret = __btrfs_cow_block(trans, root, buf, parent,
1569 				 parent_slot, cow_ret, search_start, 0);
1570 
1571 	trace_btrfs_cow_block(root, buf, *cow_ret);
1572 
1573 	return ret;
1574 }
1575 
1576 /*
1577  * helper function for defrag to decide if two blocks pointed to by a
1578  * node are actually close by
1579  */
1580 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1581 {
1582 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1583 		return 1;
1584 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1585 		return 1;
1586 	return 0;
1587 }
1588 
1589 /*
1590  * compare two keys in a memcmp fashion
1591  */
1592 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1593 {
1594 	struct btrfs_key k1;
1595 
1596 	btrfs_disk_key_to_cpu(&k1, disk);
1597 
1598 	return btrfs_comp_cpu_keys(&k1, k2);
1599 }
1600 
1601 /*
1602  * same as comp_keys only with two btrfs_key's
1603  */
1604 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1605 {
1606 	if (k1->objectid > k2->objectid)
1607 		return 1;
1608 	if (k1->objectid < k2->objectid)
1609 		return -1;
1610 	if (k1->type > k2->type)
1611 		return 1;
1612 	if (k1->type < k2->type)
1613 		return -1;
1614 	if (k1->offset > k2->offset)
1615 		return 1;
1616 	if (k1->offset < k2->offset)
1617 		return -1;
1618 	return 0;
1619 }
1620 
1621 /*
1622  * this is used by the defrag code to go through all the
1623  * leaves pointed to by a node and reallocate them so that
1624  * disk order is close to key order
1625  */
1626 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627 		       struct btrfs_root *root, struct extent_buffer *parent,
1628 		       int start_slot, u64 *last_ret,
1629 		       struct btrfs_key *progress)
1630 {
1631 	struct extent_buffer *cur;
1632 	u64 blocknr;
1633 	u64 gen;
1634 	u64 search_start = *last_ret;
1635 	u64 last_block = 0;
1636 	u64 other;
1637 	u32 parent_nritems;
1638 	int end_slot;
1639 	int i;
1640 	int err = 0;
1641 	int parent_level;
1642 	int uptodate;
1643 	u32 blocksize;
1644 	int progress_passed = 0;
1645 	struct btrfs_disk_key disk_key;
1646 
1647 	parent_level = btrfs_header_level(parent);
1648 
1649 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650 	WARN_ON(trans->transid != root->fs_info->generation);
1651 
1652 	parent_nritems = btrfs_header_nritems(parent);
1653 	blocksize = root->nodesize;
1654 	end_slot = parent_nritems - 1;
1655 
1656 	if (parent_nritems <= 1)
1657 		return 0;
1658 
1659 	btrfs_set_lock_blocking(parent);
1660 
1661 	for (i = start_slot; i <= end_slot; i++) {
1662 		int close = 1;
1663 
1664 		btrfs_node_key(parent, &disk_key, i);
1665 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1666 			continue;
1667 
1668 		progress_passed = 1;
1669 		blocknr = btrfs_node_blockptr(parent, i);
1670 		gen = btrfs_node_ptr_generation(parent, i);
1671 		if (last_block == 0)
1672 			last_block = blocknr;
1673 
1674 		if (i > 0) {
1675 			other = btrfs_node_blockptr(parent, i - 1);
1676 			close = close_blocks(blocknr, other, blocksize);
1677 		}
1678 		if (!close && i < end_slot) {
1679 			other = btrfs_node_blockptr(parent, i + 1);
1680 			close = close_blocks(blocknr, other, blocksize);
1681 		}
1682 		if (close) {
1683 			last_block = blocknr;
1684 			continue;
1685 		}
1686 
1687 		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1688 		if (cur)
1689 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1690 		else
1691 			uptodate = 0;
1692 		if (!cur || !uptodate) {
1693 			if (!cur) {
1694 				cur = read_tree_block(root, blocknr, gen);
1695 				if (IS_ERR(cur)) {
1696 					return PTR_ERR(cur);
1697 				} else if (!extent_buffer_uptodate(cur)) {
1698 					free_extent_buffer(cur);
1699 					return -EIO;
1700 				}
1701 			} else if (!uptodate) {
1702 				err = btrfs_read_buffer(cur, gen);
1703 				if (err) {
1704 					free_extent_buffer(cur);
1705 					return err;
1706 				}
1707 			}
1708 		}
1709 		if (search_start == 0)
1710 			search_start = last_block;
1711 
1712 		btrfs_tree_lock(cur);
1713 		btrfs_set_lock_blocking(cur);
1714 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1715 					&cur, search_start,
1716 					min(16 * blocksize,
1717 					    (end_slot - i) * blocksize));
1718 		if (err) {
1719 			btrfs_tree_unlock(cur);
1720 			free_extent_buffer(cur);
1721 			break;
1722 		}
1723 		search_start = cur->start;
1724 		last_block = cur->start;
1725 		*last_ret = search_start;
1726 		btrfs_tree_unlock(cur);
1727 		free_extent_buffer(cur);
1728 	}
1729 	return err;
1730 }
1731 
1732 /*
1733  * The leaf data grows from end-to-front in the node.
1734  * this returns the address of the start of the last item,
1735  * which is the stop of the leaf data stack
1736  */
1737 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738 					 struct extent_buffer *leaf)
1739 {
1740 	u32 nr = btrfs_header_nritems(leaf);
1741 	if (nr == 0)
1742 		return BTRFS_LEAF_DATA_SIZE(root);
1743 	return btrfs_item_offset_nr(leaf, nr - 1);
1744 }
1745 
1746 
1747 /*
1748  * search for key in the extent_buffer.  The items start at offset p,
1749  * and they are item_size apart.  There are 'max' items in p.
1750  *
1751  * the slot in the array is returned via slot, and it points to
1752  * the place where you would insert key if it is not found in
1753  * the array.
1754  *
1755  * slot may point to max if the key is bigger than all of the keys
1756  */
1757 static noinline int generic_bin_search(struct extent_buffer *eb,
1758 				       unsigned long p,
1759 				       int item_size, struct btrfs_key *key,
1760 				       int max, int *slot)
1761 {
1762 	int low = 0;
1763 	int high = max;
1764 	int mid;
1765 	int ret;
1766 	struct btrfs_disk_key *tmp = NULL;
1767 	struct btrfs_disk_key unaligned;
1768 	unsigned long offset;
1769 	char *kaddr = NULL;
1770 	unsigned long map_start = 0;
1771 	unsigned long map_len = 0;
1772 	int err;
1773 
1774 	while (low < high) {
1775 		mid = (low + high) / 2;
1776 		offset = p + mid * item_size;
1777 
1778 		if (!kaddr || offset < map_start ||
1779 		    (offset + sizeof(struct btrfs_disk_key)) >
1780 		    map_start + map_len) {
1781 
1782 			err = map_private_extent_buffer(eb, offset,
1783 						sizeof(struct btrfs_disk_key),
1784 						&kaddr, &map_start, &map_len);
1785 
1786 			if (!err) {
1787 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1788 							map_start);
1789 			} else if (err == 1) {
1790 				read_extent_buffer(eb, &unaligned,
1791 						   offset, sizeof(unaligned));
1792 				tmp = &unaligned;
1793 			} else {
1794 				return err;
1795 			}
1796 
1797 		} else {
1798 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1799 							map_start);
1800 		}
1801 		ret = comp_keys(tmp, key);
1802 
1803 		if (ret < 0)
1804 			low = mid + 1;
1805 		else if (ret > 0)
1806 			high = mid;
1807 		else {
1808 			*slot = mid;
1809 			return 0;
1810 		}
1811 	}
1812 	*slot = low;
1813 	return 1;
1814 }
1815 
1816 /*
1817  * simple bin_search frontend that does the right thing for
1818  * leaves vs nodes
1819  */
1820 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1821 		      int level, int *slot)
1822 {
1823 	if (level == 0)
1824 		return generic_bin_search(eb,
1825 					  offsetof(struct btrfs_leaf, items),
1826 					  sizeof(struct btrfs_item),
1827 					  key, btrfs_header_nritems(eb),
1828 					  slot);
1829 	else
1830 		return generic_bin_search(eb,
1831 					  offsetof(struct btrfs_node, ptrs),
1832 					  sizeof(struct btrfs_key_ptr),
1833 					  key, btrfs_header_nritems(eb),
1834 					  slot);
1835 }
1836 
1837 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1838 		     int level, int *slot)
1839 {
1840 	return bin_search(eb, key, level, slot);
1841 }
1842 
1843 static void root_add_used(struct btrfs_root *root, u32 size)
1844 {
1845 	spin_lock(&root->accounting_lock);
1846 	btrfs_set_root_used(&root->root_item,
1847 			    btrfs_root_used(&root->root_item) + size);
1848 	spin_unlock(&root->accounting_lock);
1849 }
1850 
1851 static void root_sub_used(struct btrfs_root *root, u32 size)
1852 {
1853 	spin_lock(&root->accounting_lock);
1854 	btrfs_set_root_used(&root->root_item,
1855 			    btrfs_root_used(&root->root_item) - size);
1856 	spin_unlock(&root->accounting_lock);
1857 }
1858 
1859 /* given a node and slot number, this reads the blocks it points to.  The
1860  * extent buffer is returned with a reference taken (but unlocked).
1861  * NULL is returned on error.
1862  */
1863 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1864 				   struct extent_buffer *parent, int slot)
1865 {
1866 	int level = btrfs_header_level(parent);
1867 	struct extent_buffer *eb;
1868 
1869 	if (slot < 0)
1870 		return NULL;
1871 	if (slot >= btrfs_header_nritems(parent))
1872 		return NULL;
1873 
1874 	BUG_ON(level == 0);
1875 
1876 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1877 			     btrfs_node_ptr_generation(parent, slot));
1878 	if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1879 		if (!IS_ERR(eb))
1880 			free_extent_buffer(eb);
1881 		eb = NULL;
1882 	}
1883 
1884 	return eb;
1885 }
1886 
1887 /*
1888  * node level balancing, used to make sure nodes are in proper order for
1889  * item deletion.  We balance from the top down, so we have to make sure
1890  * that a deletion won't leave an node completely empty later on.
1891  */
1892 static noinline int balance_level(struct btrfs_trans_handle *trans,
1893 			 struct btrfs_root *root,
1894 			 struct btrfs_path *path, int level)
1895 {
1896 	struct extent_buffer *right = NULL;
1897 	struct extent_buffer *mid;
1898 	struct extent_buffer *left = NULL;
1899 	struct extent_buffer *parent = NULL;
1900 	int ret = 0;
1901 	int wret;
1902 	int pslot;
1903 	int orig_slot = path->slots[level];
1904 	u64 orig_ptr;
1905 
1906 	if (level == 0)
1907 		return 0;
1908 
1909 	mid = path->nodes[level];
1910 
1911 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1912 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1913 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1914 
1915 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1916 
1917 	if (level < BTRFS_MAX_LEVEL - 1) {
1918 		parent = path->nodes[level + 1];
1919 		pslot = path->slots[level + 1];
1920 	}
1921 
1922 	/*
1923 	 * deal with the case where there is only one pointer in the root
1924 	 * by promoting the node below to a root
1925 	 */
1926 	if (!parent) {
1927 		struct extent_buffer *child;
1928 
1929 		if (btrfs_header_nritems(mid) != 1)
1930 			return 0;
1931 
1932 		/* promote the child to a root */
1933 		child = read_node_slot(root, mid, 0);
1934 		if (!child) {
1935 			ret = -EROFS;
1936 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
1937 			goto enospc;
1938 		}
1939 
1940 		btrfs_tree_lock(child);
1941 		btrfs_set_lock_blocking(child);
1942 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1943 		if (ret) {
1944 			btrfs_tree_unlock(child);
1945 			free_extent_buffer(child);
1946 			goto enospc;
1947 		}
1948 
1949 		tree_mod_log_set_root_pointer(root, child, 1);
1950 		rcu_assign_pointer(root->node, child);
1951 
1952 		add_root_to_dirty_list(root);
1953 		btrfs_tree_unlock(child);
1954 
1955 		path->locks[level] = 0;
1956 		path->nodes[level] = NULL;
1957 		clean_tree_block(trans, root->fs_info, mid);
1958 		btrfs_tree_unlock(mid);
1959 		/* once for the path */
1960 		free_extent_buffer(mid);
1961 
1962 		root_sub_used(root, mid->len);
1963 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1964 		/* once for the root ptr */
1965 		free_extent_buffer_stale(mid);
1966 		return 0;
1967 	}
1968 	if (btrfs_header_nritems(mid) >
1969 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1970 		return 0;
1971 
1972 	left = read_node_slot(root, parent, pslot - 1);
1973 	if (left) {
1974 		btrfs_tree_lock(left);
1975 		btrfs_set_lock_blocking(left);
1976 		wret = btrfs_cow_block(trans, root, left,
1977 				       parent, pslot - 1, &left);
1978 		if (wret) {
1979 			ret = wret;
1980 			goto enospc;
1981 		}
1982 	}
1983 	right = read_node_slot(root, parent, pslot + 1);
1984 	if (right) {
1985 		btrfs_tree_lock(right);
1986 		btrfs_set_lock_blocking(right);
1987 		wret = btrfs_cow_block(trans, root, right,
1988 				       parent, pslot + 1, &right);
1989 		if (wret) {
1990 			ret = wret;
1991 			goto enospc;
1992 		}
1993 	}
1994 
1995 	/* first, try to make some room in the middle buffer */
1996 	if (left) {
1997 		orig_slot += btrfs_header_nritems(left);
1998 		wret = push_node_left(trans, root, left, mid, 1);
1999 		if (wret < 0)
2000 			ret = wret;
2001 	}
2002 
2003 	/*
2004 	 * then try to empty the right most buffer into the middle
2005 	 */
2006 	if (right) {
2007 		wret = push_node_left(trans, root, mid, right, 1);
2008 		if (wret < 0 && wret != -ENOSPC)
2009 			ret = wret;
2010 		if (btrfs_header_nritems(right) == 0) {
2011 			clean_tree_block(trans, root->fs_info, right);
2012 			btrfs_tree_unlock(right);
2013 			del_ptr(root, path, level + 1, pslot + 1);
2014 			root_sub_used(root, right->len);
2015 			btrfs_free_tree_block(trans, root, right, 0, 1);
2016 			free_extent_buffer_stale(right);
2017 			right = NULL;
2018 		} else {
2019 			struct btrfs_disk_key right_key;
2020 			btrfs_node_key(right, &right_key, 0);
2021 			tree_mod_log_set_node_key(root->fs_info, parent,
2022 						  pslot + 1, 0);
2023 			btrfs_set_node_key(parent, &right_key, pslot + 1);
2024 			btrfs_mark_buffer_dirty(parent);
2025 		}
2026 	}
2027 	if (btrfs_header_nritems(mid) == 1) {
2028 		/*
2029 		 * we're not allowed to leave a node with one item in the
2030 		 * tree during a delete.  A deletion from lower in the tree
2031 		 * could try to delete the only pointer in this node.
2032 		 * So, pull some keys from the left.
2033 		 * There has to be a left pointer at this point because
2034 		 * otherwise we would have pulled some pointers from the
2035 		 * right
2036 		 */
2037 		if (!left) {
2038 			ret = -EROFS;
2039 			btrfs_handle_fs_error(root->fs_info, ret, NULL);
2040 			goto enospc;
2041 		}
2042 		wret = balance_node_right(trans, root, mid, left);
2043 		if (wret < 0) {
2044 			ret = wret;
2045 			goto enospc;
2046 		}
2047 		if (wret == 1) {
2048 			wret = push_node_left(trans, root, left, mid, 1);
2049 			if (wret < 0)
2050 				ret = wret;
2051 		}
2052 		BUG_ON(wret == 1);
2053 	}
2054 	if (btrfs_header_nritems(mid) == 0) {
2055 		clean_tree_block(trans, root->fs_info, mid);
2056 		btrfs_tree_unlock(mid);
2057 		del_ptr(root, path, level + 1, pslot);
2058 		root_sub_used(root, mid->len);
2059 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2060 		free_extent_buffer_stale(mid);
2061 		mid = NULL;
2062 	} else {
2063 		/* update the parent key to reflect our changes */
2064 		struct btrfs_disk_key mid_key;
2065 		btrfs_node_key(mid, &mid_key, 0);
2066 		tree_mod_log_set_node_key(root->fs_info, parent,
2067 					  pslot, 0);
2068 		btrfs_set_node_key(parent, &mid_key, pslot);
2069 		btrfs_mark_buffer_dirty(parent);
2070 	}
2071 
2072 	/* update the path */
2073 	if (left) {
2074 		if (btrfs_header_nritems(left) > orig_slot) {
2075 			extent_buffer_get(left);
2076 			/* left was locked after cow */
2077 			path->nodes[level] = left;
2078 			path->slots[level + 1] -= 1;
2079 			path->slots[level] = orig_slot;
2080 			if (mid) {
2081 				btrfs_tree_unlock(mid);
2082 				free_extent_buffer(mid);
2083 			}
2084 		} else {
2085 			orig_slot -= btrfs_header_nritems(left);
2086 			path->slots[level] = orig_slot;
2087 		}
2088 	}
2089 	/* double check we haven't messed things up */
2090 	if (orig_ptr !=
2091 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2092 		BUG();
2093 enospc:
2094 	if (right) {
2095 		btrfs_tree_unlock(right);
2096 		free_extent_buffer(right);
2097 	}
2098 	if (left) {
2099 		if (path->nodes[level] != left)
2100 			btrfs_tree_unlock(left);
2101 		free_extent_buffer(left);
2102 	}
2103 	return ret;
2104 }
2105 
2106 /* Node balancing for insertion.  Here we only split or push nodes around
2107  * when they are completely full.  This is also done top down, so we
2108  * have to be pessimistic.
2109  */
2110 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2111 					  struct btrfs_root *root,
2112 					  struct btrfs_path *path, int level)
2113 {
2114 	struct extent_buffer *right = NULL;
2115 	struct extent_buffer *mid;
2116 	struct extent_buffer *left = NULL;
2117 	struct extent_buffer *parent = NULL;
2118 	int ret = 0;
2119 	int wret;
2120 	int pslot;
2121 	int orig_slot = path->slots[level];
2122 
2123 	if (level == 0)
2124 		return 1;
2125 
2126 	mid = path->nodes[level];
2127 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2128 
2129 	if (level < BTRFS_MAX_LEVEL - 1) {
2130 		parent = path->nodes[level + 1];
2131 		pslot = path->slots[level + 1];
2132 	}
2133 
2134 	if (!parent)
2135 		return 1;
2136 
2137 	left = read_node_slot(root, parent, pslot - 1);
2138 
2139 	/* first, try to make some room in the middle buffer */
2140 	if (left) {
2141 		u32 left_nr;
2142 
2143 		btrfs_tree_lock(left);
2144 		btrfs_set_lock_blocking(left);
2145 
2146 		left_nr = btrfs_header_nritems(left);
2147 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2148 			wret = 1;
2149 		} else {
2150 			ret = btrfs_cow_block(trans, root, left, parent,
2151 					      pslot - 1, &left);
2152 			if (ret)
2153 				wret = 1;
2154 			else {
2155 				wret = push_node_left(trans, root,
2156 						      left, mid, 0);
2157 			}
2158 		}
2159 		if (wret < 0)
2160 			ret = wret;
2161 		if (wret == 0) {
2162 			struct btrfs_disk_key disk_key;
2163 			orig_slot += left_nr;
2164 			btrfs_node_key(mid, &disk_key, 0);
2165 			tree_mod_log_set_node_key(root->fs_info, parent,
2166 						  pslot, 0);
2167 			btrfs_set_node_key(parent, &disk_key, pslot);
2168 			btrfs_mark_buffer_dirty(parent);
2169 			if (btrfs_header_nritems(left) > orig_slot) {
2170 				path->nodes[level] = left;
2171 				path->slots[level + 1] -= 1;
2172 				path->slots[level] = orig_slot;
2173 				btrfs_tree_unlock(mid);
2174 				free_extent_buffer(mid);
2175 			} else {
2176 				orig_slot -=
2177 					btrfs_header_nritems(left);
2178 				path->slots[level] = orig_slot;
2179 				btrfs_tree_unlock(left);
2180 				free_extent_buffer(left);
2181 			}
2182 			return 0;
2183 		}
2184 		btrfs_tree_unlock(left);
2185 		free_extent_buffer(left);
2186 	}
2187 	right = read_node_slot(root, parent, pslot + 1);
2188 
2189 	/*
2190 	 * then try to empty the right most buffer into the middle
2191 	 */
2192 	if (right) {
2193 		u32 right_nr;
2194 
2195 		btrfs_tree_lock(right);
2196 		btrfs_set_lock_blocking(right);
2197 
2198 		right_nr = btrfs_header_nritems(right);
2199 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2200 			wret = 1;
2201 		} else {
2202 			ret = btrfs_cow_block(trans, root, right,
2203 					      parent, pslot + 1,
2204 					      &right);
2205 			if (ret)
2206 				wret = 1;
2207 			else {
2208 				wret = balance_node_right(trans, root,
2209 							  right, mid);
2210 			}
2211 		}
2212 		if (wret < 0)
2213 			ret = wret;
2214 		if (wret == 0) {
2215 			struct btrfs_disk_key disk_key;
2216 
2217 			btrfs_node_key(right, &disk_key, 0);
2218 			tree_mod_log_set_node_key(root->fs_info, parent,
2219 						  pslot + 1, 0);
2220 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2221 			btrfs_mark_buffer_dirty(parent);
2222 
2223 			if (btrfs_header_nritems(mid) <= orig_slot) {
2224 				path->nodes[level] = right;
2225 				path->slots[level + 1] += 1;
2226 				path->slots[level] = orig_slot -
2227 					btrfs_header_nritems(mid);
2228 				btrfs_tree_unlock(mid);
2229 				free_extent_buffer(mid);
2230 			} else {
2231 				btrfs_tree_unlock(right);
2232 				free_extent_buffer(right);
2233 			}
2234 			return 0;
2235 		}
2236 		btrfs_tree_unlock(right);
2237 		free_extent_buffer(right);
2238 	}
2239 	return 1;
2240 }
2241 
2242 /*
2243  * readahead one full node of leaves, finding things that are close
2244  * to the block in 'slot', and triggering ra on them.
2245  */
2246 static void reada_for_search(struct btrfs_root *root,
2247 			     struct btrfs_path *path,
2248 			     int level, int slot, u64 objectid)
2249 {
2250 	struct extent_buffer *node;
2251 	struct btrfs_disk_key disk_key;
2252 	u32 nritems;
2253 	u64 search;
2254 	u64 target;
2255 	u64 nread = 0;
2256 	u64 gen;
2257 	struct extent_buffer *eb;
2258 	u32 nr;
2259 	u32 blocksize;
2260 	u32 nscan = 0;
2261 
2262 	if (level != 1)
2263 		return;
2264 
2265 	if (!path->nodes[level])
2266 		return;
2267 
2268 	node = path->nodes[level];
2269 
2270 	search = btrfs_node_blockptr(node, slot);
2271 	blocksize = root->nodesize;
2272 	eb = btrfs_find_tree_block(root->fs_info, search);
2273 	if (eb) {
2274 		free_extent_buffer(eb);
2275 		return;
2276 	}
2277 
2278 	target = search;
2279 
2280 	nritems = btrfs_header_nritems(node);
2281 	nr = slot;
2282 
2283 	while (1) {
2284 		if (path->reada == READA_BACK) {
2285 			if (nr == 0)
2286 				break;
2287 			nr--;
2288 		} else if (path->reada == READA_FORWARD) {
2289 			nr++;
2290 			if (nr >= nritems)
2291 				break;
2292 		}
2293 		if (path->reada == READA_BACK && objectid) {
2294 			btrfs_node_key(node, &disk_key, nr);
2295 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2296 				break;
2297 		}
2298 		search = btrfs_node_blockptr(node, nr);
2299 		if ((search <= target && target - search <= 65536) ||
2300 		    (search > target && search - target <= 65536)) {
2301 			gen = btrfs_node_ptr_generation(node, nr);
2302 			readahead_tree_block(root, search);
2303 			nread += blocksize;
2304 		}
2305 		nscan++;
2306 		if ((nread > 65536 || nscan > 32))
2307 			break;
2308 	}
2309 }
2310 
2311 static noinline void reada_for_balance(struct btrfs_root *root,
2312 				       struct btrfs_path *path, int level)
2313 {
2314 	int slot;
2315 	int nritems;
2316 	struct extent_buffer *parent;
2317 	struct extent_buffer *eb;
2318 	u64 gen;
2319 	u64 block1 = 0;
2320 	u64 block2 = 0;
2321 
2322 	parent = path->nodes[level + 1];
2323 	if (!parent)
2324 		return;
2325 
2326 	nritems = btrfs_header_nritems(parent);
2327 	slot = path->slots[level + 1];
2328 
2329 	if (slot > 0) {
2330 		block1 = btrfs_node_blockptr(parent, slot - 1);
2331 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2332 		eb = btrfs_find_tree_block(root->fs_info, block1);
2333 		/*
2334 		 * if we get -eagain from btrfs_buffer_uptodate, we
2335 		 * don't want to return eagain here.  That will loop
2336 		 * forever
2337 		 */
2338 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2339 			block1 = 0;
2340 		free_extent_buffer(eb);
2341 	}
2342 	if (slot + 1 < nritems) {
2343 		block2 = btrfs_node_blockptr(parent, slot + 1);
2344 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2345 		eb = btrfs_find_tree_block(root->fs_info, block2);
2346 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2347 			block2 = 0;
2348 		free_extent_buffer(eb);
2349 	}
2350 
2351 	if (block1)
2352 		readahead_tree_block(root, block1);
2353 	if (block2)
2354 		readahead_tree_block(root, block2);
2355 }
2356 
2357 
2358 /*
2359  * when we walk down the tree, it is usually safe to unlock the higher layers
2360  * in the tree.  The exceptions are when our path goes through slot 0, because
2361  * operations on the tree might require changing key pointers higher up in the
2362  * tree.
2363  *
2364  * callers might also have set path->keep_locks, which tells this code to keep
2365  * the lock if the path points to the last slot in the block.  This is part of
2366  * walking through the tree, and selecting the next slot in the higher block.
2367  *
2368  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2369  * if lowest_unlock is 1, level 0 won't be unlocked
2370  */
2371 static noinline void unlock_up(struct btrfs_path *path, int level,
2372 			       int lowest_unlock, int min_write_lock_level,
2373 			       int *write_lock_level)
2374 {
2375 	int i;
2376 	int skip_level = level;
2377 	int no_skips = 0;
2378 	struct extent_buffer *t;
2379 
2380 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2381 		if (!path->nodes[i])
2382 			break;
2383 		if (!path->locks[i])
2384 			break;
2385 		if (!no_skips && path->slots[i] == 0) {
2386 			skip_level = i + 1;
2387 			continue;
2388 		}
2389 		if (!no_skips && path->keep_locks) {
2390 			u32 nritems;
2391 			t = path->nodes[i];
2392 			nritems = btrfs_header_nritems(t);
2393 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2394 				skip_level = i + 1;
2395 				continue;
2396 			}
2397 		}
2398 		if (skip_level < i && i >= lowest_unlock)
2399 			no_skips = 1;
2400 
2401 		t = path->nodes[i];
2402 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2403 			btrfs_tree_unlock_rw(t, path->locks[i]);
2404 			path->locks[i] = 0;
2405 			if (write_lock_level &&
2406 			    i > min_write_lock_level &&
2407 			    i <= *write_lock_level) {
2408 				*write_lock_level = i - 1;
2409 			}
2410 		}
2411 	}
2412 }
2413 
2414 /*
2415  * This releases any locks held in the path starting at level and
2416  * going all the way up to the root.
2417  *
2418  * btrfs_search_slot will keep the lock held on higher nodes in a few
2419  * corner cases, such as COW of the block at slot zero in the node.  This
2420  * ignores those rules, and it should only be called when there are no
2421  * more updates to be done higher up in the tree.
2422  */
2423 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2424 {
2425 	int i;
2426 
2427 	if (path->keep_locks)
2428 		return;
2429 
2430 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2431 		if (!path->nodes[i])
2432 			continue;
2433 		if (!path->locks[i])
2434 			continue;
2435 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2436 		path->locks[i] = 0;
2437 	}
2438 }
2439 
2440 /*
2441  * helper function for btrfs_search_slot.  The goal is to find a block
2442  * in cache without setting the path to blocking.  If we find the block
2443  * we return zero and the path is unchanged.
2444  *
2445  * If we can't find the block, we set the path blocking and do some
2446  * reada.  -EAGAIN is returned and the search must be repeated.
2447  */
2448 static int
2449 read_block_for_search(struct btrfs_trans_handle *trans,
2450 		       struct btrfs_root *root, struct btrfs_path *p,
2451 		       struct extent_buffer **eb_ret, int level, int slot,
2452 		       struct btrfs_key *key, u64 time_seq)
2453 {
2454 	u64 blocknr;
2455 	u64 gen;
2456 	struct extent_buffer *b = *eb_ret;
2457 	struct extent_buffer *tmp;
2458 	int ret;
2459 
2460 	blocknr = btrfs_node_blockptr(b, slot);
2461 	gen = btrfs_node_ptr_generation(b, slot);
2462 
2463 	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2464 	if (tmp) {
2465 		/* first we do an atomic uptodate check */
2466 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2467 			*eb_ret = tmp;
2468 			return 0;
2469 		}
2470 
2471 		/* the pages were up to date, but we failed
2472 		 * the generation number check.  Do a full
2473 		 * read for the generation number that is correct.
2474 		 * We must do this without dropping locks so
2475 		 * we can trust our generation number
2476 		 */
2477 		btrfs_set_path_blocking(p);
2478 
2479 		/* now we're allowed to do a blocking uptodate check */
2480 		ret = btrfs_read_buffer(tmp, gen);
2481 		if (!ret) {
2482 			*eb_ret = tmp;
2483 			return 0;
2484 		}
2485 		free_extent_buffer(tmp);
2486 		btrfs_release_path(p);
2487 		return -EIO;
2488 	}
2489 
2490 	/*
2491 	 * reduce lock contention at high levels
2492 	 * of the btree by dropping locks before
2493 	 * we read.  Don't release the lock on the current
2494 	 * level because we need to walk this node to figure
2495 	 * out which blocks to read.
2496 	 */
2497 	btrfs_unlock_up_safe(p, level + 1);
2498 	btrfs_set_path_blocking(p);
2499 
2500 	free_extent_buffer(tmp);
2501 	if (p->reada != READA_NONE)
2502 		reada_for_search(root, p, level, slot, key->objectid);
2503 
2504 	btrfs_release_path(p);
2505 
2506 	ret = -EAGAIN;
2507 	tmp = read_tree_block(root, blocknr, 0);
2508 	if (!IS_ERR(tmp)) {
2509 		/*
2510 		 * If the read above didn't mark this buffer up to date,
2511 		 * it will never end up being up to date.  Set ret to EIO now
2512 		 * and give up so that our caller doesn't loop forever
2513 		 * on our EAGAINs.
2514 		 */
2515 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2516 			ret = -EIO;
2517 		free_extent_buffer(tmp);
2518 	} else {
2519 		ret = PTR_ERR(tmp);
2520 	}
2521 	return ret;
2522 }
2523 
2524 /*
2525  * helper function for btrfs_search_slot.  This does all of the checks
2526  * for node-level blocks and does any balancing required based on
2527  * the ins_len.
2528  *
2529  * If no extra work was required, zero is returned.  If we had to
2530  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2531  * start over
2532  */
2533 static int
2534 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2535 		       struct btrfs_root *root, struct btrfs_path *p,
2536 		       struct extent_buffer *b, int level, int ins_len,
2537 		       int *write_lock_level)
2538 {
2539 	int ret;
2540 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2541 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2542 		int sret;
2543 
2544 		if (*write_lock_level < level + 1) {
2545 			*write_lock_level = level + 1;
2546 			btrfs_release_path(p);
2547 			goto again;
2548 		}
2549 
2550 		btrfs_set_path_blocking(p);
2551 		reada_for_balance(root, p, level);
2552 		sret = split_node(trans, root, p, level);
2553 		btrfs_clear_path_blocking(p, NULL, 0);
2554 
2555 		BUG_ON(sret > 0);
2556 		if (sret) {
2557 			ret = sret;
2558 			goto done;
2559 		}
2560 		b = p->nodes[level];
2561 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2562 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2563 		int sret;
2564 
2565 		if (*write_lock_level < level + 1) {
2566 			*write_lock_level = level + 1;
2567 			btrfs_release_path(p);
2568 			goto again;
2569 		}
2570 
2571 		btrfs_set_path_blocking(p);
2572 		reada_for_balance(root, p, level);
2573 		sret = balance_level(trans, root, p, level);
2574 		btrfs_clear_path_blocking(p, NULL, 0);
2575 
2576 		if (sret) {
2577 			ret = sret;
2578 			goto done;
2579 		}
2580 		b = p->nodes[level];
2581 		if (!b) {
2582 			btrfs_release_path(p);
2583 			goto again;
2584 		}
2585 		BUG_ON(btrfs_header_nritems(b) == 1);
2586 	}
2587 	return 0;
2588 
2589 again:
2590 	ret = -EAGAIN;
2591 done:
2592 	return ret;
2593 }
2594 
2595 static void key_search_validate(struct extent_buffer *b,
2596 				struct btrfs_key *key,
2597 				int level)
2598 {
2599 #ifdef CONFIG_BTRFS_ASSERT
2600 	struct btrfs_disk_key disk_key;
2601 
2602 	btrfs_cpu_key_to_disk(&disk_key, key);
2603 
2604 	if (level == 0)
2605 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2606 		    offsetof(struct btrfs_leaf, items[0].key),
2607 		    sizeof(disk_key)));
2608 	else
2609 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2610 		    offsetof(struct btrfs_node, ptrs[0].key),
2611 		    sizeof(disk_key)));
2612 #endif
2613 }
2614 
2615 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2616 		      int level, int *prev_cmp, int *slot)
2617 {
2618 	if (*prev_cmp != 0) {
2619 		*prev_cmp = bin_search(b, key, level, slot);
2620 		return *prev_cmp;
2621 	}
2622 
2623 	key_search_validate(b, key, level);
2624 	*slot = 0;
2625 
2626 	return 0;
2627 }
2628 
2629 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2630 		u64 iobjectid, u64 ioff, u8 key_type,
2631 		struct btrfs_key *found_key)
2632 {
2633 	int ret;
2634 	struct btrfs_key key;
2635 	struct extent_buffer *eb;
2636 
2637 	ASSERT(path);
2638 	ASSERT(found_key);
2639 
2640 	key.type = key_type;
2641 	key.objectid = iobjectid;
2642 	key.offset = ioff;
2643 
2644 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2645 	if (ret < 0)
2646 		return ret;
2647 
2648 	eb = path->nodes[0];
2649 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2650 		ret = btrfs_next_leaf(fs_root, path);
2651 		if (ret)
2652 			return ret;
2653 		eb = path->nodes[0];
2654 	}
2655 
2656 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2657 	if (found_key->type != key.type ||
2658 			found_key->objectid != key.objectid)
2659 		return 1;
2660 
2661 	return 0;
2662 }
2663 
2664 /*
2665  * look for key in the tree.  path is filled in with nodes along the way
2666  * if key is found, we return zero and you can find the item in the leaf
2667  * level of the path (level 0)
2668  *
2669  * If the key isn't found, the path points to the slot where it should
2670  * be inserted, and 1 is returned.  If there are other errors during the
2671  * search a negative error number is returned.
2672  *
2673  * if ins_len > 0, nodes and leaves will be split as we walk down the
2674  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2675  * possible)
2676  */
2677 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2678 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2679 		      ins_len, int cow)
2680 {
2681 	struct extent_buffer *b;
2682 	int slot;
2683 	int ret;
2684 	int err;
2685 	int level;
2686 	int lowest_unlock = 1;
2687 	int root_lock;
2688 	/* everything at write_lock_level or lower must be write locked */
2689 	int write_lock_level = 0;
2690 	u8 lowest_level = 0;
2691 	int min_write_lock_level;
2692 	int prev_cmp;
2693 
2694 	lowest_level = p->lowest_level;
2695 	WARN_ON(lowest_level && ins_len > 0);
2696 	WARN_ON(p->nodes[0] != NULL);
2697 	BUG_ON(!cow && ins_len);
2698 
2699 	if (ins_len < 0) {
2700 		lowest_unlock = 2;
2701 
2702 		/* when we are removing items, we might have to go up to level
2703 		 * two as we update tree pointers  Make sure we keep write
2704 		 * for those levels as well
2705 		 */
2706 		write_lock_level = 2;
2707 	} else if (ins_len > 0) {
2708 		/*
2709 		 * for inserting items, make sure we have a write lock on
2710 		 * level 1 so we can update keys
2711 		 */
2712 		write_lock_level = 1;
2713 	}
2714 
2715 	if (!cow)
2716 		write_lock_level = -1;
2717 
2718 	if (cow && (p->keep_locks || p->lowest_level))
2719 		write_lock_level = BTRFS_MAX_LEVEL;
2720 
2721 	min_write_lock_level = write_lock_level;
2722 
2723 again:
2724 	prev_cmp = -1;
2725 	/*
2726 	 * we try very hard to do read locks on the root
2727 	 */
2728 	root_lock = BTRFS_READ_LOCK;
2729 	level = 0;
2730 	if (p->search_commit_root) {
2731 		/*
2732 		 * the commit roots are read only
2733 		 * so we always do read locks
2734 		 */
2735 		if (p->need_commit_sem)
2736 			down_read(&root->fs_info->commit_root_sem);
2737 		b = root->commit_root;
2738 		extent_buffer_get(b);
2739 		level = btrfs_header_level(b);
2740 		if (p->need_commit_sem)
2741 			up_read(&root->fs_info->commit_root_sem);
2742 		if (!p->skip_locking)
2743 			btrfs_tree_read_lock(b);
2744 	} else {
2745 		if (p->skip_locking) {
2746 			b = btrfs_root_node(root);
2747 			level = btrfs_header_level(b);
2748 		} else {
2749 			/* we don't know the level of the root node
2750 			 * until we actually have it read locked
2751 			 */
2752 			b = btrfs_read_lock_root_node(root);
2753 			level = btrfs_header_level(b);
2754 			if (level <= write_lock_level) {
2755 				/* whoops, must trade for write lock */
2756 				btrfs_tree_read_unlock(b);
2757 				free_extent_buffer(b);
2758 				b = btrfs_lock_root_node(root);
2759 				root_lock = BTRFS_WRITE_LOCK;
2760 
2761 				/* the level might have changed, check again */
2762 				level = btrfs_header_level(b);
2763 			}
2764 		}
2765 	}
2766 	p->nodes[level] = b;
2767 	if (!p->skip_locking)
2768 		p->locks[level] = root_lock;
2769 
2770 	while (b) {
2771 		level = btrfs_header_level(b);
2772 
2773 		/*
2774 		 * setup the path here so we can release it under lock
2775 		 * contention with the cow code
2776 		 */
2777 		if (cow) {
2778 			/*
2779 			 * if we don't really need to cow this block
2780 			 * then we don't want to set the path blocking,
2781 			 * so we test it here
2782 			 */
2783 			if (!should_cow_block(trans, root, b)) {
2784 				trans->dirty = true;
2785 				goto cow_done;
2786 			}
2787 
2788 			/*
2789 			 * must have write locks on this node and the
2790 			 * parent
2791 			 */
2792 			if (level > write_lock_level ||
2793 			    (level + 1 > write_lock_level &&
2794 			    level + 1 < BTRFS_MAX_LEVEL &&
2795 			    p->nodes[level + 1])) {
2796 				write_lock_level = level + 1;
2797 				btrfs_release_path(p);
2798 				goto again;
2799 			}
2800 
2801 			btrfs_set_path_blocking(p);
2802 			err = btrfs_cow_block(trans, root, b,
2803 					      p->nodes[level + 1],
2804 					      p->slots[level + 1], &b);
2805 			if (err) {
2806 				ret = err;
2807 				goto done;
2808 			}
2809 		}
2810 cow_done:
2811 		p->nodes[level] = b;
2812 		btrfs_clear_path_blocking(p, NULL, 0);
2813 
2814 		/*
2815 		 * we have a lock on b and as long as we aren't changing
2816 		 * the tree, there is no way to for the items in b to change.
2817 		 * It is safe to drop the lock on our parent before we
2818 		 * go through the expensive btree search on b.
2819 		 *
2820 		 * If we're inserting or deleting (ins_len != 0), then we might
2821 		 * be changing slot zero, which may require changing the parent.
2822 		 * So, we can't drop the lock until after we know which slot
2823 		 * we're operating on.
2824 		 */
2825 		if (!ins_len && !p->keep_locks) {
2826 			int u = level + 1;
2827 
2828 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2829 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2830 				p->locks[u] = 0;
2831 			}
2832 		}
2833 
2834 		ret = key_search(b, key, level, &prev_cmp, &slot);
2835 		if (ret < 0)
2836 			goto done;
2837 
2838 		if (level != 0) {
2839 			int dec = 0;
2840 			if (ret && slot > 0) {
2841 				dec = 1;
2842 				slot -= 1;
2843 			}
2844 			p->slots[level] = slot;
2845 			err = setup_nodes_for_search(trans, root, p, b, level,
2846 					     ins_len, &write_lock_level);
2847 			if (err == -EAGAIN)
2848 				goto again;
2849 			if (err) {
2850 				ret = err;
2851 				goto done;
2852 			}
2853 			b = p->nodes[level];
2854 			slot = p->slots[level];
2855 
2856 			/*
2857 			 * slot 0 is special, if we change the key
2858 			 * we have to update the parent pointer
2859 			 * which means we must have a write lock
2860 			 * on the parent
2861 			 */
2862 			if (slot == 0 && ins_len &&
2863 			    write_lock_level < level + 1) {
2864 				write_lock_level = level + 1;
2865 				btrfs_release_path(p);
2866 				goto again;
2867 			}
2868 
2869 			unlock_up(p, level, lowest_unlock,
2870 				  min_write_lock_level, &write_lock_level);
2871 
2872 			if (level == lowest_level) {
2873 				if (dec)
2874 					p->slots[level]++;
2875 				goto done;
2876 			}
2877 
2878 			err = read_block_for_search(trans, root, p,
2879 						    &b, level, slot, key, 0);
2880 			if (err == -EAGAIN)
2881 				goto again;
2882 			if (err) {
2883 				ret = err;
2884 				goto done;
2885 			}
2886 
2887 			if (!p->skip_locking) {
2888 				level = btrfs_header_level(b);
2889 				if (level <= write_lock_level) {
2890 					err = btrfs_try_tree_write_lock(b);
2891 					if (!err) {
2892 						btrfs_set_path_blocking(p);
2893 						btrfs_tree_lock(b);
2894 						btrfs_clear_path_blocking(p, b,
2895 								  BTRFS_WRITE_LOCK);
2896 					}
2897 					p->locks[level] = BTRFS_WRITE_LOCK;
2898 				} else {
2899 					err = btrfs_tree_read_lock_atomic(b);
2900 					if (!err) {
2901 						btrfs_set_path_blocking(p);
2902 						btrfs_tree_read_lock(b);
2903 						btrfs_clear_path_blocking(p, b,
2904 								  BTRFS_READ_LOCK);
2905 					}
2906 					p->locks[level] = BTRFS_READ_LOCK;
2907 				}
2908 				p->nodes[level] = b;
2909 			}
2910 		} else {
2911 			p->slots[level] = slot;
2912 			if (ins_len > 0 &&
2913 			    btrfs_leaf_free_space(root, b) < ins_len) {
2914 				if (write_lock_level < 1) {
2915 					write_lock_level = 1;
2916 					btrfs_release_path(p);
2917 					goto again;
2918 				}
2919 
2920 				btrfs_set_path_blocking(p);
2921 				err = split_leaf(trans, root, key,
2922 						 p, ins_len, ret == 0);
2923 				btrfs_clear_path_blocking(p, NULL, 0);
2924 
2925 				BUG_ON(err > 0);
2926 				if (err) {
2927 					ret = err;
2928 					goto done;
2929 				}
2930 			}
2931 			if (!p->search_for_split)
2932 				unlock_up(p, level, lowest_unlock,
2933 					  min_write_lock_level, &write_lock_level);
2934 			goto done;
2935 		}
2936 	}
2937 	ret = 1;
2938 done:
2939 	/*
2940 	 * we don't really know what they plan on doing with the path
2941 	 * from here on, so for now just mark it as blocking
2942 	 */
2943 	if (!p->leave_spinning)
2944 		btrfs_set_path_blocking(p);
2945 	if (ret < 0 && !p->skip_release_on_error)
2946 		btrfs_release_path(p);
2947 	return ret;
2948 }
2949 
2950 /*
2951  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2952  * current state of the tree together with the operations recorded in the tree
2953  * modification log to search for the key in a previous version of this tree, as
2954  * denoted by the time_seq parameter.
2955  *
2956  * Naturally, there is no support for insert, delete or cow operations.
2957  *
2958  * The resulting path and return value will be set up as if we called
2959  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2960  */
2961 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2962 			  struct btrfs_path *p, u64 time_seq)
2963 {
2964 	struct extent_buffer *b;
2965 	int slot;
2966 	int ret;
2967 	int err;
2968 	int level;
2969 	int lowest_unlock = 1;
2970 	u8 lowest_level = 0;
2971 	int prev_cmp = -1;
2972 
2973 	lowest_level = p->lowest_level;
2974 	WARN_ON(p->nodes[0] != NULL);
2975 
2976 	if (p->search_commit_root) {
2977 		BUG_ON(time_seq);
2978 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2979 	}
2980 
2981 again:
2982 	b = get_old_root(root, time_seq);
2983 	level = btrfs_header_level(b);
2984 	p->locks[level] = BTRFS_READ_LOCK;
2985 
2986 	while (b) {
2987 		level = btrfs_header_level(b);
2988 		p->nodes[level] = b;
2989 		btrfs_clear_path_blocking(p, NULL, 0);
2990 
2991 		/*
2992 		 * we have a lock on b and as long as we aren't changing
2993 		 * the tree, there is no way to for the items in b to change.
2994 		 * It is safe to drop the lock on our parent before we
2995 		 * go through the expensive btree search on b.
2996 		 */
2997 		btrfs_unlock_up_safe(p, level + 1);
2998 
2999 		/*
3000 		 * Since we can unwind ebs we want to do a real search every
3001 		 * time.
3002 		 */
3003 		prev_cmp = -1;
3004 		ret = key_search(b, key, level, &prev_cmp, &slot);
3005 
3006 		if (level != 0) {
3007 			int dec = 0;
3008 			if (ret && slot > 0) {
3009 				dec = 1;
3010 				slot -= 1;
3011 			}
3012 			p->slots[level] = slot;
3013 			unlock_up(p, level, lowest_unlock, 0, NULL);
3014 
3015 			if (level == lowest_level) {
3016 				if (dec)
3017 					p->slots[level]++;
3018 				goto done;
3019 			}
3020 
3021 			err = read_block_for_search(NULL, root, p, &b, level,
3022 						    slot, key, time_seq);
3023 			if (err == -EAGAIN)
3024 				goto again;
3025 			if (err) {
3026 				ret = err;
3027 				goto done;
3028 			}
3029 
3030 			level = btrfs_header_level(b);
3031 			err = btrfs_tree_read_lock_atomic(b);
3032 			if (!err) {
3033 				btrfs_set_path_blocking(p);
3034 				btrfs_tree_read_lock(b);
3035 				btrfs_clear_path_blocking(p, b,
3036 							  BTRFS_READ_LOCK);
3037 			}
3038 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3039 			if (!b) {
3040 				ret = -ENOMEM;
3041 				goto done;
3042 			}
3043 			p->locks[level] = BTRFS_READ_LOCK;
3044 			p->nodes[level] = b;
3045 		} else {
3046 			p->slots[level] = slot;
3047 			unlock_up(p, level, lowest_unlock, 0, NULL);
3048 			goto done;
3049 		}
3050 	}
3051 	ret = 1;
3052 done:
3053 	if (!p->leave_spinning)
3054 		btrfs_set_path_blocking(p);
3055 	if (ret < 0)
3056 		btrfs_release_path(p);
3057 
3058 	return ret;
3059 }
3060 
3061 /*
3062  * helper to use instead of search slot if no exact match is needed but
3063  * instead the next or previous item should be returned.
3064  * When find_higher is true, the next higher item is returned, the next lower
3065  * otherwise.
3066  * When return_any and find_higher are both true, and no higher item is found,
3067  * return the next lower instead.
3068  * When return_any is true and find_higher is false, and no lower item is found,
3069  * return the next higher instead.
3070  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3071  * < 0 on error
3072  */
3073 int btrfs_search_slot_for_read(struct btrfs_root *root,
3074 			       struct btrfs_key *key, struct btrfs_path *p,
3075 			       int find_higher, int return_any)
3076 {
3077 	int ret;
3078 	struct extent_buffer *leaf;
3079 
3080 again:
3081 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3082 	if (ret <= 0)
3083 		return ret;
3084 	/*
3085 	 * a return value of 1 means the path is at the position where the
3086 	 * item should be inserted. Normally this is the next bigger item,
3087 	 * but in case the previous item is the last in a leaf, path points
3088 	 * to the first free slot in the previous leaf, i.e. at an invalid
3089 	 * item.
3090 	 */
3091 	leaf = p->nodes[0];
3092 
3093 	if (find_higher) {
3094 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3095 			ret = btrfs_next_leaf(root, p);
3096 			if (ret <= 0)
3097 				return ret;
3098 			if (!return_any)
3099 				return 1;
3100 			/*
3101 			 * no higher item found, return the next
3102 			 * lower instead
3103 			 */
3104 			return_any = 0;
3105 			find_higher = 0;
3106 			btrfs_release_path(p);
3107 			goto again;
3108 		}
3109 	} else {
3110 		if (p->slots[0] == 0) {
3111 			ret = btrfs_prev_leaf(root, p);
3112 			if (ret < 0)
3113 				return ret;
3114 			if (!ret) {
3115 				leaf = p->nodes[0];
3116 				if (p->slots[0] == btrfs_header_nritems(leaf))
3117 					p->slots[0]--;
3118 				return 0;
3119 			}
3120 			if (!return_any)
3121 				return 1;
3122 			/*
3123 			 * no lower item found, return the next
3124 			 * higher instead
3125 			 */
3126 			return_any = 0;
3127 			find_higher = 1;
3128 			btrfs_release_path(p);
3129 			goto again;
3130 		} else {
3131 			--p->slots[0];
3132 		}
3133 	}
3134 	return 0;
3135 }
3136 
3137 /*
3138  * adjust the pointers going up the tree, starting at level
3139  * making sure the right key of each node is points to 'key'.
3140  * This is used after shifting pointers to the left, so it stops
3141  * fixing up pointers when a given leaf/node is not in slot 0 of the
3142  * higher levels
3143  *
3144  */
3145 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3146 			   struct btrfs_path *path,
3147 			   struct btrfs_disk_key *key, int level)
3148 {
3149 	int i;
3150 	struct extent_buffer *t;
3151 
3152 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3153 		int tslot = path->slots[i];
3154 		if (!path->nodes[i])
3155 			break;
3156 		t = path->nodes[i];
3157 		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3158 		btrfs_set_node_key(t, key, tslot);
3159 		btrfs_mark_buffer_dirty(path->nodes[i]);
3160 		if (tslot != 0)
3161 			break;
3162 	}
3163 }
3164 
3165 /*
3166  * update item key.
3167  *
3168  * This function isn't completely safe. It's the caller's responsibility
3169  * that the new key won't break the order
3170  */
3171 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3172 			     struct btrfs_path *path,
3173 			     struct btrfs_key *new_key)
3174 {
3175 	struct btrfs_disk_key disk_key;
3176 	struct extent_buffer *eb;
3177 	int slot;
3178 
3179 	eb = path->nodes[0];
3180 	slot = path->slots[0];
3181 	if (slot > 0) {
3182 		btrfs_item_key(eb, &disk_key, slot - 1);
3183 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3184 	}
3185 	if (slot < btrfs_header_nritems(eb) - 1) {
3186 		btrfs_item_key(eb, &disk_key, slot + 1);
3187 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3188 	}
3189 
3190 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3191 	btrfs_set_item_key(eb, &disk_key, slot);
3192 	btrfs_mark_buffer_dirty(eb);
3193 	if (slot == 0)
3194 		fixup_low_keys(fs_info, path, &disk_key, 1);
3195 }
3196 
3197 /*
3198  * try to push data from one node into the next node left in the
3199  * tree.
3200  *
3201  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3202  * error, and > 0 if there was no room in the left hand block.
3203  */
3204 static int push_node_left(struct btrfs_trans_handle *trans,
3205 			  struct btrfs_root *root, struct extent_buffer *dst,
3206 			  struct extent_buffer *src, int empty)
3207 {
3208 	int push_items = 0;
3209 	int src_nritems;
3210 	int dst_nritems;
3211 	int ret = 0;
3212 
3213 	src_nritems = btrfs_header_nritems(src);
3214 	dst_nritems = btrfs_header_nritems(dst);
3215 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3216 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3217 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3218 
3219 	if (!empty && src_nritems <= 8)
3220 		return 1;
3221 
3222 	if (push_items <= 0)
3223 		return 1;
3224 
3225 	if (empty) {
3226 		push_items = min(src_nritems, push_items);
3227 		if (push_items < src_nritems) {
3228 			/* leave at least 8 pointers in the node if
3229 			 * we aren't going to empty it
3230 			 */
3231 			if (src_nritems - push_items < 8) {
3232 				if (push_items <= 8)
3233 					return 1;
3234 				push_items -= 8;
3235 			}
3236 		}
3237 	} else
3238 		push_items = min(src_nritems - 8, push_items);
3239 
3240 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3241 				   push_items);
3242 	if (ret) {
3243 		btrfs_abort_transaction(trans, root, ret);
3244 		return ret;
3245 	}
3246 	copy_extent_buffer(dst, src,
3247 			   btrfs_node_key_ptr_offset(dst_nritems),
3248 			   btrfs_node_key_ptr_offset(0),
3249 			   push_items * sizeof(struct btrfs_key_ptr));
3250 
3251 	if (push_items < src_nritems) {
3252 		/*
3253 		 * don't call tree_mod_log_eb_move here, key removal was already
3254 		 * fully logged by tree_mod_log_eb_copy above.
3255 		 */
3256 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3257 				      btrfs_node_key_ptr_offset(push_items),
3258 				      (src_nritems - push_items) *
3259 				      sizeof(struct btrfs_key_ptr));
3260 	}
3261 	btrfs_set_header_nritems(src, src_nritems - push_items);
3262 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3263 	btrfs_mark_buffer_dirty(src);
3264 	btrfs_mark_buffer_dirty(dst);
3265 
3266 	return ret;
3267 }
3268 
3269 /*
3270  * try to push data from one node into the next node right in the
3271  * tree.
3272  *
3273  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3274  * error, and > 0 if there was no room in the right hand block.
3275  *
3276  * this will  only push up to 1/2 the contents of the left node over
3277  */
3278 static int balance_node_right(struct btrfs_trans_handle *trans,
3279 			      struct btrfs_root *root,
3280 			      struct extent_buffer *dst,
3281 			      struct extent_buffer *src)
3282 {
3283 	int push_items = 0;
3284 	int max_push;
3285 	int src_nritems;
3286 	int dst_nritems;
3287 	int ret = 0;
3288 
3289 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3290 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3291 
3292 	src_nritems = btrfs_header_nritems(src);
3293 	dst_nritems = btrfs_header_nritems(dst);
3294 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3295 	if (push_items <= 0)
3296 		return 1;
3297 
3298 	if (src_nritems < 4)
3299 		return 1;
3300 
3301 	max_push = src_nritems / 2 + 1;
3302 	/* don't try to empty the node */
3303 	if (max_push >= src_nritems)
3304 		return 1;
3305 
3306 	if (max_push < push_items)
3307 		push_items = max_push;
3308 
3309 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3310 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3311 				      btrfs_node_key_ptr_offset(0),
3312 				      (dst_nritems) *
3313 				      sizeof(struct btrfs_key_ptr));
3314 
3315 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3316 				   src_nritems - push_items, push_items);
3317 	if (ret) {
3318 		btrfs_abort_transaction(trans, root, ret);
3319 		return ret;
3320 	}
3321 	copy_extent_buffer(dst, src,
3322 			   btrfs_node_key_ptr_offset(0),
3323 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3324 			   push_items * sizeof(struct btrfs_key_ptr));
3325 
3326 	btrfs_set_header_nritems(src, src_nritems - push_items);
3327 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3328 
3329 	btrfs_mark_buffer_dirty(src);
3330 	btrfs_mark_buffer_dirty(dst);
3331 
3332 	return ret;
3333 }
3334 
3335 /*
3336  * helper function to insert a new root level in the tree.
3337  * A new node is allocated, and a single item is inserted to
3338  * point to the existing root
3339  *
3340  * returns zero on success or < 0 on failure.
3341  */
3342 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3343 			   struct btrfs_root *root,
3344 			   struct btrfs_path *path, int level)
3345 {
3346 	u64 lower_gen;
3347 	struct extent_buffer *lower;
3348 	struct extent_buffer *c;
3349 	struct extent_buffer *old;
3350 	struct btrfs_disk_key lower_key;
3351 
3352 	BUG_ON(path->nodes[level]);
3353 	BUG_ON(path->nodes[level-1] != root->node);
3354 
3355 	lower = path->nodes[level-1];
3356 	if (level == 1)
3357 		btrfs_item_key(lower, &lower_key, 0);
3358 	else
3359 		btrfs_node_key(lower, &lower_key, 0);
3360 
3361 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3362 				   &lower_key, level, root->node->start, 0);
3363 	if (IS_ERR(c))
3364 		return PTR_ERR(c);
3365 
3366 	root_add_used(root, root->nodesize);
3367 
3368 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3369 	btrfs_set_header_nritems(c, 1);
3370 	btrfs_set_header_level(c, level);
3371 	btrfs_set_header_bytenr(c, c->start);
3372 	btrfs_set_header_generation(c, trans->transid);
3373 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3374 	btrfs_set_header_owner(c, root->root_key.objectid);
3375 
3376 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3377 			    BTRFS_FSID_SIZE);
3378 
3379 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3380 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3381 
3382 	btrfs_set_node_key(c, &lower_key, 0);
3383 	btrfs_set_node_blockptr(c, 0, lower->start);
3384 	lower_gen = btrfs_header_generation(lower);
3385 	WARN_ON(lower_gen != trans->transid);
3386 
3387 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3388 
3389 	btrfs_mark_buffer_dirty(c);
3390 
3391 	old = root->node;
3392 	tree_mod_log_set_root_pointer(root, c, 0);
3393 	rcu_assign_pointer(root->node, c);
3394 
3395 	/* the super has an extra ref to root->node */
3396 	free_extent_buffer(old);
3397 
3398 	add_root_to_dirty_list(root);
3399 	extent_buffer_get(c);
3400 	path->nodes[level] = c;
3401 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3402 	path->slots[level] = 0;
3403 	return 0;
3404 }
3405 
3406 /*
3407  * worker function to insert a single pointer in a node.
3408  * the node should have enough room for the pointer already
3409  *
3410  * slot and level indicate where you want the key to go, and
3411  * blocknr is the block the key points to.
3412  */
3413 static void insert_ptr(struct btrfs_trans_handle *trans,
3414 		       struct btrfs_root *root, struct btrfs_path *path,
3415 		       struct btrfs_disk_key *key, u64 bytenr,
3416 		       int slot, int level)
3417 {
3418 	struct extent_buffer *lower;
3419 	int nritems;
3420 	int ret;
3421 
3422 	BUG_ON(!path->nodes[level]);
3423 	btrfs_assert_tree_locked(path->nodes[level]);
3424 	lower = path->nodes[level];
3425 	nritems = btrfs_header_nritems(lower);
3426 	BUG_ON(slot > nritems);
3427 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3428 	if (slot != nritems) {
3429 		if (level)
3430 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3431 					     slot, nritems - slot);
3432 		memmove_extent_buffer(lower,
3433 			      btrfs_node_key_ptr_offset(slot + 1),
3434 			      btrfs_node_key_ptr_offset(slot),
3435 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3436 	}
3437 	if (level) {
3438 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3439 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3440 		BUG_ON(ret < 0);
3441 	}
3442 	btrfs_set_node_key(lower, key, slot);
3443 	btrfs_set_node_blockptr(lower, slot, bytenr);
3444 	WARN_ON(trans->transid == 0);
3445 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3446 	btrfs_set_header_nritems(lower, nritems + 1);
3447 	btrfs_mark_buffer_dirty(lower);
3448 }
3449 
3450 /*
3451  * split the node at the specified level in path in two.
3452  * The path is corrected to point to the appropriate node after the split
3453  *
3454  * Before splitting this tries to make some room in the node by pushing
3455  * left and right, if either one works, it returns right away.
3456  *
3457  * returns 0 on success and < 0 on failure
3458  */
3459 static noinline int split_node(struct btrfs_trans_handle *trans,
3460 			       struct btrfs_root *root,
3461 			       struct btrfs_path *path, int level)
3462 {
3463 	struct extent_buffer *c;
3464 	struct extent_buffer *split;
3465 	struct btrfs_disk_key disk_key;
3466 	int mid;
3467 	int ret;
3468 	u32 c_nritems;
3469 
3470 	c = path->nodes[level];
3471 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3472 	if (c == root->node) {
3473 		/*
3474 		 * trying to split the root, lets make a new one
3475 		 *
3476 		 * tree mod log: We don't log_removal old root in
3477 		 * insert_new_root, because that root buffer will be kept as a
3478 		 * normal node. We are going to log removal of half of the
3479 		 * elements below with tree_mod_log_eb_copy. We're holding a
3480 		 * tree lock on the buffer, which is why we cannot race with
3481 		 * other tree_mod_log users.
3482 		 */
3483 		ret = insert_new_root(trans, root, path, level + 1);
3484 		if (ret)
3485 			return ret;
3486 	} else {
3487 		ret = push_nodes_for_insert(trans, root, path, level);
3488 		c = path->nodes[level];
3489 		if (!ret && btrfs_header_nritems(c) <
3490 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3491 			return 0;
3492 		if (ret < 0)
3493 			return ret;
3494 	}
3495 
3496 	c_nritems = btrfs_header_nritems(c);
3497 	mid = (c_nritems + 1) / 2;
3498 	btrfs_node_key(c, &disk_key, mid);
3499 
3500 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3501 			&disk_key, level, c->start, 0);
3502 	if (IS_ERR(split))
3503 		return PTR_ERR(split);
3504 
3505 	root_add_used(root, root->nodesize);
3506 
3507 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3508 	btrfs_set_header_level(split, btrfs_header_level(c));
3509 	btrfs_set_header_bytenr(split, split->start);
3510 	btrfs_set_header_generation(split, trans->transid);
3511 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3512 	btrfs_set_header_owner(split, root->root_key.objectid);
3513 	write_extent_buffer(split, root->fs_info->fsid,
3514 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3515 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3516 			    btrfs_header_chunk_tree_uuid(split),
3517 			    BTRFS_UUID_SIZE);
3518 
3519 	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3520 				   mid, c_nritems - mid);
3521 	if (ret) {
3522 		btrfs_abort_transaction(trans, root, ret);
3523 		return ret;
3524 	}
3525 	copy_extent_buffer(split, c,
3526 			   btrfs_node_key_ptr_offset(0),
3527 			   btrfs_node_key_ptr_offset(mid),
3528 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3529 	btrfs_set_header_nritems(split, c_nritems - mid);
3530 	btrfs_set_header_nritems(c, mid);
3531 	ret = 0;
3532 
3533 	btrfs_mark_buffer_dirty(c);
3534 	btrfs_mark_buffer_dirty(split);
3535 
3536 	insert_ptr(trans, root, path, &disk_key, split->start,
3537 		   path->slots[level + 1] + 1, level + 1);
3538 
3539 	if (path->slots[level] >= mid) {
3540 		path->slots[level] -= mid;
3541 		btrfs_tree_unlock(c);
3542 		free_extent_buffer(c);
3543 		path->nodes[level] = split;
3544 		path->slots[level + 1] += 1;
3545 	} else {
3546 		btrfs_tree_unlock(split);
3547 		free_extent_buffer(split);
3548 	}
3549 	return ret;
3550 }
3551 
3552 /*
3553  * how many bytes are required to store the items in a leaf.  start
3554  * and nr indicate which items in the leaf to check.  This totals up the
3555  * space used both by the item structs and the item data
3556  */
3557 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3558 {
3559 	struct btrfs_item *start_item;
3560 	struct btrfs_item *end_item;
3561 	struct btrfs_map_token token;
3562 	int data_len;
3563 	int nritems = btrfs_header_nritems(l);
3564 	int end = min(nritems, start + nr) - 1;
3565 
3566 	if (!nr)
3567 		return 0;
3568 	btrfs_init_map_token(&token);
3569 	start_item = btrfs_item_nr(start);
3570 	end_item = btrfs_item_nr(end);
3571 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3572 		btrfs_token_item_size(l, start_item, &token);
3573 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3574 	data_len += sizeof(struct btrfs_item) * nr;
3575 	WARN_ON(data_len < 0);
3576 	return data_len;
3577 }
3578 
3579 /*
3580  * The space between the end of the leaf items and
3581  * the start of the leaf data.  IOW, how much room
3582  * the leaf has left for both items and data
3583  */
3584 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3585 				   struct extent_buffer *leaf)
3586 {
3587 	int nritems = btrfs_header_nritems(leaf);
3588 	int ret;
3589 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3590 	if (ret < 0) {
3591 		btrfs_crit(root->fs_info,
3592 			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3593 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3594 		       leaf_space_used(leaf, 0, nritems), nritems);
3595 	}
3596 	return ret;
3597 }
3598 
3599 /*
3600  * min slot controls the lowest index we're willing to push to the
3601  * right.  We'll push up to and including min_slot, but no lower
3602  */
3603 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3604 				      struct btrfs_root *root,
3605 				      struct btrfs_path *path,
3606 				      int data_size, int empty,
3607 				      struct extent_buffer *right,
3608 				      int free_space, u32 left_nritems,
3609 				      u32 min_slot)
3610 {
3611 	struct extent_buffer *left = path->nodes[0];
3612 	struct extent_buffer *upper = path->nodes[1];
3613 	struct btrfs_map_token token;
3614 	struct btrfs_disk_key disk_key;
3615 	int slot;
3616 	u32 i;
3617 	int push_space = 0;
3618 	int push_items = 0;
3619 	struct btrfs_item *item;
3620 	u32 nr;
3621 	u32 right_nritems;
3622 	u32 data_end;
3623 	u32 this_item_size;
3624 
3625 	btrfs_init_map_token(&token);
3626 
3627 	if (empty)
3628 		nr = 0;
3629 	else
3630 		nr = max_t(u32, 1, min_slot);
3631 
3632 	if (path->slots[0] >= left_nritems)
3633 		push_space += data_size;
3634 
3635 	slot = path->slots[1];
3636 	i = left_nritems - 1;
3637 	while (i >= nr) {
3638 		item = btrfs_item_nr(i);
3639 
3640 		if (!empty && push_items > 0) {
3641 			if (path->slots[0] > i)
3642 				break;
3643 			if (path->slots[0] == i) {
3644 				int space = btrfs_leaf_free_space(root, left);
3645 				if (space + push_space * 2 > free_space)
3646 					break;
3647 			}
3648 		}
3649 
3650 		if (path->slots[0] == i)
3651 			push_space += data_size;
3652 
3653 		this_item_size = btrfs_item_size(left, item);
3654 		if (this_item_size + sizeof(*item) + push_space > free_space)
3655 			break;
3656 
3657 		push_items++;
3658 		push_space += this_item_size + sizeof(*item);
3659 		if (i == 0)
3660 			break;
3661 		i--;
3662 	}
3663 
3664 	if (push_items == 0)
3665 		goto out_unlock;
3666 
3667 	WARN_ON(!empty && push_items == left_nritems);
3668 
3669 	/* push left to right */
3670 	right_nritems = btrfs_header_nritems(right);
3671 
3672 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3673 	push_space -= leaf_data_end(root, left);
3674 
3675 	/* make room in the right data area */
3676 	data_end = leaf_data_end(root, right);
3677 	memmove_extent_buffer(right,
3678 			      btrfs_leaf_data(right) + data_end - push_space,
3679 			      btrfs_leaf_data(right) + data_end,
3680 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3681 
3682 	/* copy from the left data area */
3683 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3684 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3685 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3686 		     push_space);
3687 
3688 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3689 			      btrfs_item_nr_offset(0),
3690 			      right_nritems * sizeof(struct btrfs_item));
3691 
3692 	/* copy the items from left to right */
3693 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3694 		   btrfs_item_nr_offset(left_nritems - push_items),
3695 		   push_items * sizeof(struct btrfs_item));
3696 
3697 	/* update the item pointers */
3698 	right_nritems += push_items;
3699 	btrfs_set_header_nritems(right, right_nritems);
3700 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3701 	for (i = 0; i < right_nritems; i++) {
3702 		item = btrfs_item_nr(i);
3703 		push_space -= btrfs_token_item_size(right, item, &token);
3704 		btrfs_set_token_item_offset(right, item, push_space, &token);
3705 	}
3706 
3707 	left_nritems -= push_items;
3708 	btrfs_set_header_nritems(left, left_nritems);
3709 
3710 	if (left_nritems)
3711 		btrfs_mark_buffer_dirty(left);
3712 	else
3713 		clean_tree_block(trans, root->fs_info, left);
3714 
3715 	btrfs_mark_buffer_dirty(right);
3716 
3717 	btrfs_item_key(right, &disk_key, 0);
3718 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3719 	btrfs_mark_buffer_dirty(upper);
3720 
3721 	/* then fixup the leaf pointer in the path */
3722 	if (path->slots[0] >= left_nritems) {
3723 		path->slots[0] -= left_nritems;
3724 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3725 			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3726 		btrfs_tree_unlock(path->nodes[0]);
3727 		free_extent_buffer(path->nodes[0]);
3728 		path->nodes[0] = right;
3729 		path->slots[1] += 1;
3730 	} else {
3731 		btrfs_tree_unlock(right);
3732 		free_extent_buffer(right);
3733 	}
3734 	return 0;
3735 
3736 out_unlock:
3737 	btrfs_tree_unlock(right);
3738 	free_extent_buffer(right);
3739 	return 1;
3740 }
3741 
3742 /*
3743  * push some data in the path leaf to the right, trying to free up at
3744  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3745  *
3746  * returns 1 if the push failed because the other node didn't have enough
3747  * room, 0 if everything worked out and < 0 if there were major errors.
3748  *
3749  * this will push starting from min_slot to the end of the leaf.  It won't
3750  * push any slot lower than min_slot
3751  */
3752 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3753 			   *root, struct btrfs_path *path,
3754 			   int min_data_size, int data_size,
3755 			   int empty, u32 min_slot)
3756 {
3757 	struct extent_buffer *left = path->nodes[0];
3758 	struct extent_buffer *right;
3759 	struct extent_buffer *upper;
3760 	int slot;
3761 	int free_space;
3762 	u32 left_nritems;
3763 	int ret;
3764 
3765 	if (!path->nodes[1])
3766 		return 1;
3767 
3768 	slot = path->slots[1];
3769 	upper = path->nodes[1];
3770 	if (slot >= btrfs_header_nritems(upper) - 1)
3771 		return 1;
3772 
3773 	btrfs_assert_tree_locked(path->nodes[1]);
3774 
3775 	right = read_node_slot(root, upper, slot + 1);
3776 	if (right == NULL)
3777 		return 1;
3778 
3779 	btrfs_tree_lock(right);
3780 	btrfs_set_lock_blocking(right);
3781 
3782 	free_space = btrfs_leaf_free_space(root, right);
3783 	if (free_space < data_size)
3784 		goto out_unlock;
3785 
3786 	/* cow and double check */
3787 	ret = btrfs_cow_block(trans, root, right, upper,
3788 			      slot + 1, &right);
3789 	if (ret)
3790 		goto out_unlock;
3791 
3792 	free_space = btrfs_leaf_free_space(root, right);
3793 	if (free_space < data_size)
3794 		goto out_unlock;
3795 
3796 	left_nritems = btrfs_header_nritems(left);
3797 	if (left_nritems == 0)
3798 		goto out_unlock;
3799 
3800 	if (path->slots[0] == left_nritems && !empty) {
3801 		/* Key greater than all keys in the leaf, right neighbor has
3802 		 * enough room for it and we're not emptying our leaf to delete
3803 		 * it, therefore use right neighbor to insert the new item and
3804 		 * no need to touch/dirty our left leaft. */
3805 		btrfs_tree_unlock(left);
3806 		free_extent_buffer(left);
3807 		path->nodes[0] = right;
3808 		path->slots[0] = 0;
3809 		path->slots[1]++;
3810 		return 0;
3811 	}
3812 
3813 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3814 				right, free_space, left_nritems, min_slot);
3815 out_unlock:
3816 	btrfs_tree_unlock(right);
3817 	free_extent_buffer(right);
3818 	return 1;
3819 }
3820 
3821 /*
3822  * push some data in the path leaf to the left, trying to free up at
3823  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3824  *
3825  * max_slot can put a limit on how far into the leaf we'll push items.  The
3826  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3827  * items
3828  */
3829 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3830 				     struct btrfs_root *root,
3831 				     struct btrfs_path *path, int data_size,
3832 				     int empty, struct extent_buffer *left,
3833 				     int free_space, u32 right_nritems,
3834 				     u32 max_slot)
3835 {
3836 	struct btrfs_disk_key disk_key;
3837 	struct extent_buffer *right = path->nodes[0];
3838 	int i;
3839 	int push_space = 0;
3840 	int push_items = 0;
3841 	struct btrfs_item *item;
3842 	u32 old_left_nritems;
3843 	u32 nr;
3844 	int ret = 0;
3845 	u32 this_item_size;
3846 	u32 old_left_item_size;
3847 	struct btrfs_map_token token;
3848 
3849 	btrfs_init_map_token(&token);
3850 
3851 	if (empty)
3852 		nr = min(right_nritems, max_slot);
3853 	else
3854 		nr = min(right_nritems - 1, max_slot);
3855 
3856 	for (i = 0; i < nr; i++) {
3857 		item = btrfs_item_nr(i);
3858 
3859 		if (!empty && push_items > 0) {
3860 			if (path->slots[0] < i)
3861 				break;
3862 			if (path->slots[0] == i) {
3863 				int space = btrfs_leaf_free_space(root, right);
3864 				if (space + push_space * 2 > free_space)
3865 					break;
3866 			}
3867 		}
3868 
3869 		if (path->slots[0] == i)
3870 			push_space += data_size;
3871 
3872 		this_item_size = btrfs_item_size(right, item);
3873 		if (this_item_size + sizeof(*item) + push_space > free_space)
3874 			break;
3875 
3876 		push_items++;
3877 		push_space += this_item_size + sizeof(*item);
3878 	}
3879 
3880 	if (push_items == 0) {
3881 		ret = 1;
3882 		goto out;
3883 	}
3884 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3885 
3886 	/* push data from right to left */
3887 	copy_extent_buffer(left, right,
3888 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3889 			   btrfs_item_nr_offset(0),
3890 			   push_items * sizeof(struct btrfs_item));
3891 
3892 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3893 		     btrfs_item_offset_nr(right, push_items - 1);
3894 
3895 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3896 		     leaf_data_end(root, left) - push_space,
3897 		     btrfs_leaf_data(right) +
3898 		     btrfs_item_offset_nr(right, push_items - 1),
3899 		     push_space);
3900 	old_left_nritems = btrfs_header_nritems(left);
3901 	BUG_ON(old_left_nritems <= 0);
3902 
3903 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3904 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3905 		u32 ioff;
3906 
3907 		item = btrfs_item_nr(i);
3908 
3909 		ioff = btrfs_token_item_offset(left, item, &token);
3910 		btrfs_set_token_item_offset(left, item,
3911 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3912 		      &token);
3913 	}
3914 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3915 
3916 	/* fixup right node */
3917 	if (push_items > right_nritems)
3918 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3919 		       right_nritems);
3920 
3921 	if (push_items < right_nritems) {
3922 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3923 						  leaf_data_end(root, right);
3924 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3925 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3926 				      btrfs_leaf_data(right) +
3927 				      leaf_data_end(root, right), push_space);
3928 
3929 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3930 			      btrfs_item_nr_offset(push_items),
3931 			     (btrfs_header_nritems(right) - push_items) *
3932 			     sizeof(struct btrfs_item));
3933 	}
3934 	right_nritems -= push_items;
3935 	btrfs_set_header_nritems(right, right_nritems);
3936 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3937 	for (i = 0; i < right_nritems; i++) {
3938 		item = btrfs_item_nr(i);
3939 
3940 		push_space = push_space - btrfs_token_item_size(right,
3941 								item, &token);
3942 		btrfs_set_token_item_offset(right, item, push_space, &token);
3943 	}
3944 
3945 	btrfs_mark_buffer_dirty(left);
3946 	if (right_nritems)
3947 		btrfs_mark_buffer_dirty(right);
3948 	else
3949 		clean_tree_block(trans, root->fs_info, right);
3950 
3951 	btrfs_item_key(right, &disk_key, 0);
3952 	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3953 
3954 	/* then fixup the leaf pointer in the path */
3955 	if (path->slots[0] < push_items) {
3956 		path->slots[0] += old_left_nritems;
3957 		btrfs_tree_unlock(path->nodes[0]);
3958 		free_extent_buffer(path->nodes[0]);
3959 		path->nodes[0] = left;
3960 		path->slots[1] -= 1;
3961 	} else {
3962 		btrfs_tree_unlock(left);
3963 		free_extent_buffer(left);
3964 		path->slots[0] -= push_items;
3965 	}
3966 	BUG_ON(path->slots[0] < 0);
3967 	return ret;
3968 out:
3969 	btrfs_tree_unlock(left);
3970 	free_extent_buffer(left);
3971 	return ret;
3972 }
3973 
3974 /*
3975  * push some data in the path leaf to the left, trying to free up at
3976  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3977  *
3978  * max_slot can put a limit on how far into the leaf we'll push items.  The
3979  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3980  * items
3981  */
3982 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3983 			  *root, struct btrfs_path *path, int min_data_size,
3984 			  int data_size, int empty, u32 max_slot)
3985 {
3986 	struct extent_buffer *right = path->nodes[0];
3987 	struct extent_buffer *left;
3988 	int slot;
3989 	int free_space;
3990 	u32 right_nritems;
3991 	int ret = 0;
3992 
3993 	slot = path->slots[1];
3994 	if (slot == 0)
3995 		return 1;
3996 	if (!path->nodes[1])
3997 		return 1;
3998 
3999 	right_nritems = btrfs_header_nritems(right);
4000 	if (right_nritems == 0)
4001 		return 1;
4002 
4003 	btrfs_assert_tree_locked(path->nodes[1]);
4004 
4005 	left = read_node_slot(root, path->nodes[1], slot - 1);
4006 	if (left == NULL)
4007 		return 1;
4008 
4009 	btrfs_tree_lock(left);
4010 	btrfs_set_lock_blocking(left);
4011 
4012 	free_space = btrfs_leaf_free_space(root, left);
4013 	if (free_space < data_size) {
4014 		ret = 1;
4015 		goto out;
4016 	}
4017 
4018 	/* cow and double check */
4019 	ret = btrfs_cow_block(trans, root, left,
4020 			      path->nodes[1], slot - 1, &left);
4021 	if (ret) {
4022 		/* we hit -ENOSPC, but it isn't fatal here */
4023 		if (ret == -ENOSPC)
4024 			ret = 1;
4025 		goto out;
4026 	}
4027 
4028 	free_space = btrfs_leaf_free_space(root, left);
4029 	if (free_space < data_size) {
4030 		ret = 1;
4031 		goto out;
4032 	}
4033 
4034 	return __push_leaf_left(trans, root, path, min_data_size,
4035 			       empty, left, free_space, right_nritems,
4036 			       max_slot);
4037 out:
4038 	btrfs_tree_unlock(left);
4039 	free_extent_buffer(left);
4040 	return ret;
4041 }
4042 
4043 /*
4044  * split the path's leaf in two, making sure there is at least data_size
4045  * available for the resulting leaf level of the path.
4046  */
4047 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4048 				    struct btrfs_root *root,
4049 				    struct btrfs_path *path,
4050 				    struct extent_buffer *l,
4051 				    struct extent_buffer *right,
4052 				    int slot, int mid, int nritems)
4053 {
4054 	int data_copy_size;
4055 	int rt_data_off;
4056 	int i;
4057 	struct btrfs_disk_key disk_key;
4058 	struct btrfs_map_token token;
4059 
4060 	btrfs_init_map_token(&token);
4061 
4062 	nritems = nritems - mid;
4063 	btrfs_set_header_nritems(right, nritems);
4064 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4065 
4066 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4067 			   btrfs_item_nr_offset(mid),
4068 			   nritems * sizeof(struct btrfs_item));
4069 
4070 	copy_extent_buffer(right, l,
4071 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4072 		     data_copy_size, btrfs_leaf_data(l) +
4073 		     leaf_data_end(root, l), data_copy_size);
4074 
4075 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4076 		      btrfs_item_end_nr(l, mid);
4077 
4078 	for (i = 0; i < nritems; i++) {
4079 		struct btrfs_item *item = btrfs_item_nr(i);
4080 		u32 ioff;
4081 
4082 		ioff = btrfs_token_item_offset(right, item, &token);
4083 		btrfs_set_token_item_offset(right, item,
4084 					    ioff + rt_data_off, &token);
4085 	}
4086 
4087 	btrfs_set_header_nritems(l, mid);
4088 	btrfs_item_key(right, &disk_key, 0);
4089 	insert_ptr(trans, root, path, &disk_key, right->start,
4090 		   path->slots[1] + 1, 1);
4091 
4092 	btrfs_mark_buffer_dirty(right);
4093 	btrfs_mark_buffer_dirty(l);
4094 	BUG_ON(path->slots[0] != slot);
4095 
4096 	if (mid <= slot) {
4097 		btrfs_tree_unlock(path->nodes[0]);
4098 		free_extent_buffer(path->nodes[0]);
4099 		path->nodes[0] = right;
4100 		path->slots[0] -= mid;
4101 		path->slots[1] += 1;
4102 	} else {
4103 		btrfs_tree_unlock(right);
4104 		free_extent_buffer(right);
4105 	}
4106 
4107 	BUG_ON(path->slots[0] < 0);
4108 }
4109 
4110 /*
4111  * double splits happen when we need to insert a big item in the middle
4112  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4113  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4114  *          A                 B                 C
4115  *
4116  * We avoid this by trying to push the items on either side of our target
4117  * into the adjacent leaves.  If all goes well we can avoid the double split
4118  * completely.
4119  */
4120 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4121 					  struct btrfs_root *root,
4122 					  struct btrfs_path *path,
4123 					  int data_size)
4124 {
4125 	int ret;
4126 	int progress = 0;
4127 	int slot;
4128 	u32 nritems;
4129 	int space_needed = data_size;
4130 
4131 	slot = path->slots[0];
4132 	if (slot < btrfs_header_nritems(path->nodes[0]))
4133 		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4134 
4135 	/*
4136 	 * try to push all the items after our slot into the
4137 	 * right leaf
4138 	 */
4139 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4140 	if (ret < 0)
4141 		return ret;
4142 
4143 	if (ret == 0)
4144 		progress++;
4145 
4146 	nritems = btrfs_header_nritems(path->nodes[0]);
4147 	/*
4148 	 * our goal is to get our slot at the start or end of a leaf.  If
4149 	 * we've done so we're done
4150 	 */
4151 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4152 		return 0;
4153 
4154 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4155 		return 0;
4156 
4157 	/* try to push all the items before our slot into the next leaf */
4158 	slot = path->slots[0];
4159 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4160 	if (ret < 0)
4161 		return ret;
4162 
4163 	if (ret == 0)
4164 		progress++;
4165 
4166 	if (progress)
4167 		return 0;
4168 	return 1;
4169 }
4170 
4171 /*
4172  * split the path's leaf in two, making sure there is at least data_size
4173  * available for the resulting leaf level of the path.
4174  *
4175  * returns 0 if all went well and < 0 on failure.
4176  */
4177 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4178 			       struct btrfs_root *root,
4179 			       struct btrfs_key *ins_key,
4180 			       struct btrfs_path *path, int data_size,
4181 			       int extend)
4182 {
4183 	struct btrfs_disk_key disk_key;
4184 	struct extent_buffer *l;
4185 	u32 nritems;
4186 	int mid;
4187 	int slot;
4188 	struct extent_buffer *right;
4189 	struct btrfs_fs_info *fs_info = root->fs_info;
4190 	int ret = 0;
4191 	int wret;
4192 	int split;
4193 	int num_doubles = 0;
4194 	int tried_avoid_double = 0;
4195 
4196 	l = path->nodes[0];
4197 	slot = path->slots[0];
4198 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4199 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4200 		return -EOVERFLOW;
4201 
4202 	/* first try to make some room by pushing left and right */
4203 	if (data_size && path->nodes[1]) {
4204 		int space_needed = data_size;
4205 
4206 		if (slot < btrfs_header_nritems(l))
4207 			space_needed -= btrfs_leaf_free_space(root, l);
4208 
4209 		wret = push_leaf_right(trans, root, path, space_needed,
4210 				       space_needed, 0, 0);
4211 		if (wret < 0)
4212 			return wret;
4213 		if (wret) {
4214 			wret = push_leaf_left(trans, root, path, space_needed,
4215 					      space_needed, 0, (u32)-1);
4216 			if (wret < 0)
4217 				return wret;
4218 		}
4219 		l = path->nodes[0];
4220 
4221 		/* did the pushes work? */
4222 		if (btrfs_leaf_free_space(root, l) >= data_size)
4223 			return 0;
4224 	}
4225 
4226 	if (!path->nodes[1]) {
4227 		ret = insert_new_root(trans, root, path, 1);
4228 		if (ret)
4229 			return ret;
4230 	}
4231 again:
4232 	split = 1;
4233 	l = path->nodes[0];
4234 	slot = path->slots[0];
4235 	nritems = btrfs_header_nritems(l);
4236 	mid = (nritems + 1) / 2;
4237 
4238 	if (mid <= slot) {
4239 		if (nritems == 1 ||
4240 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4241 			BTRFS_LEAF_DATA_SIZE(root)) {
4242 			if (slot >= nritems) {
4243 				split = 0;
4244 			} else {
4245 				mid = slot;
4246 				if (mid != nritems &&
4247 				    leaf_space_used(l, mid, nritems - mid) +
4248 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4249 					if (data_size && !tried_avoid_double)
4250 						goto push_for_double;
4251 					split = 2;
4252 				}
4253 			}
4254 		}
4255 	} else {
4256 		if (leaf_space_used(l, 0, mid) + data_size >
4257 			BTRFS_LEAF_DATA_SIZE(root)) {
4258 			if (!extend && data_size && slot == 0) {
4259 				split = 0;
4260 			} else if ((extend || !data_size) && slot == 0) {
4261 				mid = 1;
4262 			} else {
4263 				mid = slot;
4264 				if (mid != nritems &&
4265 				    leaf_space_used(l, mid, nritems - mid) +
4266 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4267 					if (data_size && !tried_avoid_double)
4268 						goto push_for_double;
4269 					split = 2;
4270 				}
4271 			}
4272 		}
4273 	}
4274 
4275 	if (split == 0)
4276 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4277 	else
4278 		btrfs_item_key(l, &disk_key, mid);
4279 
4280 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4281 			&disk_key, 0, l->start, 0);
4282 	if (IS_ERR(right))
4283 		return PTR_ERR(right);
4284 
4285 	root_add_used(root, root->nodesize);
4286 
4287 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4288 	btrfs_set_header_bytenr(right, right->start);
4289 	btrfs_set_header_generation(right, trans->transid);
4290 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4291 	btrfs_set_header_owner(right, root->root_key.objectid);
4292 	btrfs_set_header_level(right, 0);
4293 	write_extent_buffer(right, fs_info->fsid,
4294 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4295 
4296 	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4297 			    btrfs_header_chunk_tree_uuid(right),
4298 			    BTRFS_UUID_SIZE);
4299 
4300 	if (split == 0) {
4301 		if (mid <= slot) {
4302 			btrfs_set_header_nritems(right, 0);
4303 			insert_ptr(trans, root, path, &disk_key, right->start,
4304 				   path->slots[1] + 1, 1);
4305 			btrfs_tree_unlock(path->nodes[0]);
4306 			free_extent_buffer(path->nodes[0]);
4307 			path->nodes[0] = right;
4308 			path->slots[0] = 0;
4309 			path->slots[1] += 1;
4310 		} else {
4311 			btrfs_set_header_nritems(right, 0);
4312 			insert_ptr(trans, root, path, &disk_key, right->start,
4313 					  path->slots[1], 1);
4314 			btrfs_tree_unlock(path->nodes[0]);
4315 			free_extent_buffer(path->nodes[0]);
4316 			path->nodes[0] = right;
4317 			path->slots[0] = 0;
4318 			if (path->slots[1] == 0)
4319 				fixup_low_keys(fs_info, path, &disk_key, 1);
4320 		}
4321 		btrfs_mark_buffer_dirty(right);
4322 		return ret;
4323 	}
4324 
4325 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4326 
4327 	if (split == 2) {
4328 		BUG_ON(num_doubles != 0);
4329 		num_doubles++;
4330 		goto again;
4331 	}
4332 
4333 	return 0;
4334 
4335 push_for_double:
4336 	push_for_double_split(trans, root, path, data_size);
4337 	tried_avoid_double = 1;
4338 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4339 		return 0;
4340 	goto again;
4341 }
4342 
4343 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4344 					 struct btrfs_root *root,
4345 					 struct btrfs_path *path, int ins_len)
4346 {
4347 	struct btrfs_key key;
4348 	struct extent_buffer *leaf;
4349 	struct btrfs_file_extent_item *fi;
4350 	u64 extent_len = 0;
4351 	u32 item_size;
4352 	int ret;
4353 
4354 	leaf = path->nodes[0];
4355 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4356 
4357 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4358 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4359 
4360 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4361 		return 0;
4362 
4363 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4364 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4365 		fi = btrfs_item_ptr(leaf, path->slots[0],
4366 				    struct btrfs_file_extent_item);
4367 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4368 	}
4369 	btrfs_release_path(path);
4370 
4371 	path->keep_locks = 1;
4372 	path->search_for_split = 1;
4373 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4374 	path->search_for_split = 0;
4375 	if (ret > 0)
4376 		ret = -EAGAIN;
4377 	if (ret < 0)
4378 		goto err;
4379 
4380 	ret = -EAGAIN;
4381 	leaf = path->nodes[0];
4382 	/* if our item isn't there, return now */
4383 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4384 		goto err;
4385 
4386 	/* the leaf has  changed, it now has room.  return now */
4387 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4388 		goto err;
4389 
4390 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4391 		fi = btrfs_item_ptr(leaf, path->slots[0],
4392 				    struct btrfs_file_extent_item);
4393 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4394 			goto err;
4395 	}
4396 
4397 	btrfs_set_path_blocking(path);
4398 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4399 	if (ret)
4400 		goto err;
4401 
4402 	path->keep_locks = 0;
4403 	btrfs_unlock_up_safe(path, 1);
4404 	return 0;
4405 err:
4406 	path->keep_locks = 0;
4407 	return ret;
4408 }
4409 
4410 static noinline int split_item(struct btrfs_trans_handle *trans,
4411 			       struct btrfs_root *root,
4412 			       struct btrfs_path *path,
4413 			       struct btrfs_key *new_key,
4414 			       unsigned long split_offset)
4415 {
4416 	struct extent_buffer *leaf;
4417 	struct btrfs_item *item;
4418 	struct btrfs_item *new_item;
4419 	int slot;
4420 	char *buf;
4421 	u32 nritems;
4422 	u32 item_size;
4423 	u32 orig_offset;
4424 	struct btrfs_disk_key disk_key;
4425 
4426 	leaf = path->nodes[0];
4427 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4428 
4429 	btrfs_set_path_blocking(path);
4430 
4431 	item = btrfs_item_nr(path->slots[0]);
4432 	orig_offset = btrfs_item_offset(leaf, item);
4433 	item_size = btrfs_item_size(leaf, item);
4434 
4435 	buf = kmalloc(item_size, GFP_NOFS);
4436 	if (!buf)
4437 		return -ENOMEM;
4438 
4439 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4440 			    path->slots[0]), item_size);
4441 
4442 	slot = path->slots[0] + 1;
4443 	nritems = btrfs_header_nritems(leaf);
4444 	if (slot != nritems) {
4445 		/* shift the items */
4446 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4447 				btrfs_item_nr_offset(slot),
4448 				(nritems - slot) * sizeof(struct btrfs_item));
4449 	}
4450 
4451 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4452 	btrfs_set_item_key(leaf, &disk_key, slot);
4453 
4454 	new_item = btrfs_item_nr(slot);
4455 
4456 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4457 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4458 
4459 	btrfs_set_item_offset(leaf, item,
4460 			      orig_offset + item_size - split_offset);
4461 	btrfs_set_item_size(leaf, item, split_offset);
4462 
4463 	btrfs_set_header_nritems(leaf, nritems + 1);
4464 
4465 	/* write the data for the start of the original item */
4466 	write_extent_buffer(leaf, buf,
4467 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4468 			    split_offset);
4469 
4470 	/* write the data for the new item */
4471 	write_extent_buffer(leaf, buf + split_offset,
4472 			    btrfs_item_ptr_offset(leaf, slot),
4473 			    item_size - split_offset);
4474 	btrfs_mark_buffer_dirty(leaf);
4475 
4476 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4477 	kfree(buf);
4478 	return 0;
4479 }
4480 
4481 /*
4482  * This function splits a single item into two items,
4483  * giving 'new_key' to the new item and splitting the
4484  * old one at split_offset (from the start of the item).
4485  *
4486  * The path may be released by this operation.  After
4487  * the split, the path is pointing to the old item.  The
4488  * new item is going to be in the same node as the old one.
4489  *
4490  * Note, the item being split must be smaller enough to live alone on
4491  * a tree block with room for one extra struct btrfs_item
4492  *
4493  * This allows us to split the item in place, keeping a lock on the
4494  * leaf the entire time.
4495  */
4496 int btrfs_split_item(struct btrfs_trans_handle *trans,
4497 		     struct btrfs_root *root,
4498 		     struct btrfs_path *path,
4499 		     struct btrfs_key *new_key,
4500 		     unsigned long split_offset)
4501 {
4502 	int ret;
4503 	ret = setup_leaf_for_split(trans, root, path,
4504 				   sizeof(struct btrfs_item));
4505 	if (ret)
4506 		return ret;
4507 
4508 	ret = split_item(trans, root, path, new_key, split_offset);
4509 	return ret;
4510 }
4511 
4512 /*
4513  * This function duplicate a item, giving 'new_key' to the new item.
4514  * It guarantees both items live in the same tree leaf and the new item
4515  * is contiguous with the original item.
4516  *
4517  * This allows us to split file extent in place, keeping a lock on the
4518  * leaf the entire time.
4519  */
4520 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4521 			 struct btrfs_root *root,
4522 			 struct btrfs_path *path,
4523 			 struct btrfs_key *new_key)
4524 {
4525 	struct extent_buffer *leaf;
4526 	int ret;
4527 	u32 item_size;
4528 
4529 	leaf = path->nodes[0];
4530 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4531 	ret = setup_leaf_for_split(trans, root, path,
4532 				   item_size + sizeof(struct btrfs_item));
4533 	if (ret)
4534 		return ret;
4535 
4536 	path->slots[0]++;
4537 	setup_items_for_insert(root, path, new_key, &item_size,
4538 			       item_size, item_size +
4539 			       sizeof(struct btrfs_item), 1);
4540 	leaf = path->nodes[0];
4541 	memcpy_extent_buffer(leaf,
4542 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4543 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4544 			     item_size);
4545 	return 0;
4546 }
4547 
4548 /*
4549  * make the item pointed to by the path smaller.  new_size indicates
4550  * how small to make it, and from_end tells us if we just chop bytes
4551  * off the end of the item or if we shift the item to chop bytes off
4552  * the front.
4553  */
4554 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4555 			 u32 new_size, int from_end)
4556 {
4557 	int slot;
4558 	struct extent_buffer *leaf;
4559 	struct btrfs_item *item;
4560 	u32 nritems;
4561 	unsigned int data_end;
4562 	unsigned int old_data_start;
4563 	unsigned int old_size;
4564 	unsigned int size_diff;
4565 	int i;
4566 	struct btrfs_map_token token;
4567 
4568 	btrfs_init_map_token(&token);
4569 
4570 	leaf = path->nodes[0];
4571 	slot = path->slots[0];
4572 
4573 	old_size = btrfs_item_size_nr(leaf, slot);
4574 	if (old_size == new_size)
4575 		return;
4576 
4577 	nritems = btrfs_header_nritems(leaf);
4578 	data_end = leaf_data_end(root, leaf);
4579 
4580 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4581 
4582 	size_diff = old_size - new_size;
4583 
4584 	BUG_ON(slot < 0);
4585 	BUG_ON(slot >= nritems);
4586 
4587 	/*
4588 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4589 	 */
4590 	/* first correct the data pointers */
4591 	for (i = slot; i < nritems; i++) {
4592 		u32 ioff;
4593 		item = btrfs_item_nr(i);
4594 
4595 		ioff = btrfs_token_item_offset(leaf, item, &token);
4596 		btrfs_set_token_item_offset(leaf, item,
4597 					    ioff + size_diff, &token);
4598 	}
4599 
4600 	/* shift the data */
4601 	if (from_end) {
4602 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4603 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4604 			      data_end, old_data_start + new_size - data_end);
4605 	} else {
4606 		struct btrfs_disk_key disk_key;
4607 		u64 offset;
4608 
4609 		btrfs_item_key(leaf, &disk_key, slot);
4610 
4611 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4612 			unsigned long ptr;
4613 			struct btrfs_file_extent_item *fi;
4614 
4615 			fi = btrfs_item_ptr(leaf, slot,
4616 					    struct btrfs_file_extent_item);
4617 			fi = (struct btrfs_file_extent_item *)(
4618 			     (unsigned long)fi - size_diff);
4619 
4620 			if (btrfs_file_extent_type(leaf, fi) ==
4621 			    BTRFS_FILE_EXTENT_INLINE) {
4622 				ptr = btrfs_item_ptr_offset(leaf, slot);
4623 				memmove_extent_buffer(leaf, ptr,
4624 				      (unsigned long)fi,
4625 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4626 			}
4627 		}
4628 
4629 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4630 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4631 			      data_end, old_data_start - data_end);
4632 
4633 		offset = btrfs_disk_key_offset(&disk_key);
4634 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4635 		btrfs_set_item_key(leaf, &disk_key, slot);
4636 		if (slot == 0)
4637 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4638 	}
4639 
4640 	item = btrfs_item_nr(slot);
4641 	btrfs_set_item_size(leaf, item, new_size);
4642 	btrfs_mark_buffer_dirty(leaf);
4643 
4644 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4645 		btrfs_print_leaf(root, leaf);
4646 		BUG();
4647 	}
4648 }
4649 
4650 /*
4651  * make the item pointed to by the path bigger, data_size is the added size.
4652  */
4653 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4654 		       u32 data_size)
4655 {
4656 	int slot;
4657 	struct extent_buffer *leaf;
4658 	struct btrfs_item *item;
4659 	u32 nritems;
4660 	unsigned int data_end;
4661 	unsigned int old_data;
4662 	unsigned int old_size;
4663 	int i;
4664 	struct btrfs_map_token token;
4665 
4666 	btrfs_init_map_token(&token);
4667 
4668 	leaf = path->nodes[0];
4669 
4670 	nritems = btrfs_header_nritems(leaf);
4671 	data_end = leaf_data_end(root, leaf);
4672 
4673 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4674 		btrfs_print_leaf(root, leaf);
4675 		BUG();
4676 	}
4677 	slot = path->slots[0];
4678 	old_data = btrfs_item_end_nr(leaf, slot);
4679 
4680 	BUG_ON(slot < 0);
4681 	if (slot >= nritems) {
4682 		btrfs_print_leaf(root, leaf);
4683 		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4684 		       slot, nritems);
4685 		BUG_ON(1);
4686 	}
4687 
4688 	/*
4689 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4690 	 */
4691 	/* first correct the data pointers */
4692 	for (i = slot; i < nritems; i++) {
4693 		u32 ioff;
4694 		item = btrfs_item_nr(i);
4695 
4696 		ioff = btrfs_token_item_offset(leaf, item, &token);
4697 		btrfs_set_token_item_offset(leaf, item,
4698 					    ioff - data_size, &token);
4699 	}
4700 
4701 	/* shift the data */
4702 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4703 		      data_end - data_size, btrfs_leaf_data(leaf) +
4704 		      data_end, old_data - data_end);
4705 
4706 	data_end = old_data;
4707 	old_size = btrfs_item_size_nr(leaf, slot);
4708 	item = btrfs_item_nr(slot);
4709 	btrfs_set_item_size(leaf, item, old_size + data_size);
4710 	btrfs_mark_buffer_dirty(leaf);
4711 
4712 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4713 		btrfs_print_leaf(root, leaf);
4714 		BUG();
4715 	}
4716 }
4717 
4718 /*
4719  * this is a helper for btrfs_insert_empty_items, the main goal here is
4720  * to save stack depth by doing the bulk of the work in a function
4721  * that doesn't call btrfs_search_slot
4722  */
4723 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4724 			    struct btrfs_key *cpu_key, u32 *data_size,
4725 			    u32 total_data, u32 total_size, int nr)
4726 {
4727 	struct btrfs_item *item;
4728 	int i;
4729 	u32 nritems;
4730 	unsigned int data_end;
4731 	struct btrfs_disk_key disk_key;
4732 	struct extent_buffer *leaf;
4733 	int slot;
4734 	struct btrfs_map_token token;
4735 
4736 	if (path->slots[0] == 0) {
4737 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4738 		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4739 	}
4740 	btrfs_unlock_up_safe(path, 1);
4741 
4742 	btrfs_init_map_token(&token);
4743 
4744 	leaf = path->nodes[0];
4745 	slot = path->slots[0];
4746 
4747 	nritems = btrfs_header_nritems(leaf);
4748 	data_end = leaf_data_end(root, leaf);
4749 
4750 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4751 		btrfs_print_leaf(root, leaf);
4752 		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4753 		       total_size, btrfs_leaf_free_space(root, leaf));
4754 		BUG();
4755 	}
4756 
4757 	if (slot != nritems) {
4758 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4759 
4760 		if (old_data < data_end) {
4761 			btrfs_print_leaf(root, leaf);
4762 			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4763 			       slot, old_data, data_end);
4764 			BUG_ON(1);
4765 		}
4766 		/*
4767 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4768 		 */
4769 		/* first correct the data pointers */
4770 		for (i = slot; i < nritems; i++) {
4771 			u32 ioff;
4772 
4773 			item = btrfs_item_nr( i);
4774 			ioff = btrfs_token_item_offset(leaf, item, &token);
4775 			btrfs_set_token_item_offset(leaf, item,
4776 						    ioff - total_data, &token);
4777 		}
4778 		/* shift the items */
4779 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4780 			      btrfs_item_nr_offset(slot),
4781 			      (nritems - slot) * sizeof(struct btrfs_item));
4782 
4783 		/* shift the data */
4784 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4785 			      data_end - total_data, btrfs_leaf_data(leaf) +
4786 			      data_end, old_data - data_end);
4787 		data_end = old_data;
4788 	}
4789 
4790 	/* setup the item for the new data */
4791 	for (i = 0; i < nr; i++) {
4792 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4793 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4794 		item = btrfs_item_nr(slot + i);
4795 		btrfs_set_token_item_offset(leaf, item,
4796 					    data_end - data_size[i], &token);
4797 		data_end -= data_size[i];
4798 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4799 	}
4800 
4801 	btrfs_set_header_nritems(leaf, nritems + nr);
4802 	btrfs_mark_buffer_dirty(leaf);
4803 
4804 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4805 		btrfs_print_leaf(root, leaf);
4806 		BUG();
4807 	}
4808 }
4809 
4810 /*
4811  * Given a key and some data, insert items into the tree.
4812  * This does all the path init required, making room in the tree if needed.
4813  */
4814 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4815 			    struct btrfs_root *root,
4816 			    struct btrfs_path *path,
4817 			    struct btrfs_key *cpu_key, u32 *data_size,
4818 			    int nr)
4819 {
4820 	int ret = 0;
4821 	int slot;
4822 	int i;
4823 	u32 total_size = 0;
4824 	u32 total_data = 0;
4825 
4826 	for (i = 0; i < nr; i++)
4827 		total_data += data_size[i];
4828 
4829 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4830 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4831 	if (ret == 0)
4832 		return -EEXIST;
4833 	if (ret < 0)
4834 		return ret;
4835 
4836 	slot = path->slots[0];
4837 	BUG_ON(slot < 0);
4838 
4839 	setup_items_for_insert(root, path, cpu_key, data_size,
4840 			       total_data, total_size, nr);
4841 	return 0;
4842 }
4843 
4844 /*
4845  * Given a key and some data, insert an item into the tree.
4846  * This does all the path init required, making room in the tree if needed.
4847  */
4848 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4849 		      *root, struct btrfs_key *cpu_key, void *data, u32
4850 		      data_size)
4851 {
4852 	int ret = 0;
4853 	struct btrfs_path *path;
4854 	struct extent_buffer *leaf;
4855 	unsigned long ptr;
4856 
4857 	path = btrfs_alloc_path();
4858 	if (!path)
4859 		return -ENOMEM;
4860 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4861 	if (!ret) {
4862 		leaf = path->nodes[0];
4863 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4864 		write_extent_buffer(leaf, data, ptr, data_size);
4865 		btrfs_mark_buffer_dirty(leaf);
4866 	}
4867 	btrfs_free_path(path);
4868 	return ret;
4869 }
4870 
4871 /*
4872  * delete the pointer from a given node.
4873  *
4874  * the tree should have been previously balanced so the deletion does not
4875  * empty a node.
4876  */
4877 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4878 		    int level, int slot)
4879 {
4880 	struct extent_buffer *parent = path->nodes[level];
4881 	u32 nritems;
4882 	int ret;
4883 
4884 	nritems = btrfs_header_nritems(parent);
4885 	if (slot != nritems - 1) {
4886 		if (level)
4887 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4888 					     slot + 1, nritems - slot - 1);
4889 		memmove_extent_buffer(parent,
4890 			      btrfs_node_key_ptr_offset(slot),
4891 			      btrfs_node_key_ptr_offset(slot + 1),
4892 			      sizeof(struct btrfs_key_ptr) *
4893 			      (nritems - slot - 1));
4894 	} else if (level) {
4895 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4896 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4897 		BUG_ON(ret < 0);
4898 	}
4899 
4900 	nritems--;
4901 	btrfs_set_header_nritems(parent, nritems);
4902 	if (nritems == 0 && parent == root->node) {
4903 		BUG_ON(btrfs_header_level(root->node) != 1);
4904 		/* just turn the root into a leaf and break */
4905 		btrfs_set_header_level(root->node, 0);
4906 	} else if (slot == 0) {
4907 		struct btrfs_disk_key disk_key;
4908 
4909 		btrfs_node_key(parent, &disk_key, 0);
4910 		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4911 	}
4912 	btrfs_mark_buffer_dirty(parent);
4913 }
4914 
4915 /*
4916  * a helper function to delete the leaf pointed to by path->slots[1] and
4917  * path->nodes[1].
4918  *
4919  * This deletes the pointer in path->nodes[1] and frees the leaf
4920  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4921  *
4922  * The path must have already been setup for deleting the leaf, including
4923  * all the proper balancing.  path->nodes[1] must be locked.
4924  */
4925 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4926 				    struct btrfs_root *root,
4927 				    struct btrfs_path *path,
4928 				    struct extent_buffer *leaf)
4929 {
4930 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4931 	del_ptr(root, path, 1, path->slots[1]);
4932 
4933 	/*
4934 	 * btrfs_free_extent is expensive, we want to make sure we
4935 	 * aren't holding any locks when we call it
4936 	 */
4937 	btrfs_unlock_up_safe(path, 0);
4938 
4939 	root_sub_used(root, leaf->len);
4940 
4941 	extent_buffer_get(leaf);
4942 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4943 	free_extent_buffer_stale(leaf);
4944 }
4945 /*
4946  * delete the item at the leaf level in path.  If that empties
4947  * the leaf, remove it from the tree
4948  */
4949 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4950 		    struct btrfs_path *path, int slot, int nr)
4951 {
4952 	struct extent_buffer *leaf;
4953 	struct btrfs_item *item;
4954 	u32 last_off;
4955 	u32 dsize = 0;
4956 	int ret = 0;
4957 	int wret;
4958 	int i;
4959 	u32 nritems;
4960 	struct btrfs_map_token token;
4961 
4962 	btrfs_init_map_token(&token);
4963 
4964 	leaf = path->nodes[0];
4965 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4966 
4967 	for (i = 0; i < nr; i++)
4968 		dsize += btrfs_item_size_nr(leaf, slot + i);
4969 
4970 	nritems = btrfs_header_nritems(leaf);
4971 
4972 	if (slot + nr != nritems) {
4973 		int data_end = leaf_data_end(root, leaf);
4974 
4975 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4976 			      data_end + dsize,
4977 			      btrfs_leaf_data(leaf) + data_end,
4978 			      last_off - data_end);
4979 
4980 		for (i = slot + nr; i < nritems; i++) {
4981 			u32 ioff;
4982 
4983 			item = btrfs_item_nr(i);
4984 			ioff = btrfs_token_item_offset(leaf, item, &token);
4985 			btrfs_set_token_item_offset(leaf, item,
4986 						    ioff + dsize, &token);
4987 		}
4988 
4989 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4990 			      btrfs_item_nr_offset(slot + nr),
4991 			      sizeof(struct btrfs_item) *
4992 			      (nritems - slot - nr));
4993 	}
4994 	btrfs_set_header_nritems(leaf, nritems - nr);
4995 	nritems -= nr;
4996 
4997 	/* delete the leaf if we've emptied it */
4998 	if (nritems == 0) {
4999 		if (leaf == root->node) {
5000 			btrfs_set_header_level(leaf, 0);
5001 		} else {
5002 			btrfs_set_path_blocking(path);
5003 			clean_tree_block(trans, root->fs_info, leaf);
5004 			btrfs_del_leaf(trans, root, path, leaf);
5005 		}
5006 	} else {
5007 		int used = leaf_space_used(leaf, 0, nritems);
5008 		if (slot == 0) {
5009 			struct btrfs_disk_key disk_key;
5010 
5011 			btrfs_item_key(leaf, &disk_key, 0);
5012 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
5013 		}
5014 
5015 		/* delete the leaf if it is mostly empty */
5016 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5017 			/* push_leaf_left fixes the path.
5018 			 * make sure the path still points to our leaf
5019 			 * for possible call to del_ptr below
5020 			 */
5021 			slot = path->slots[1];
5022 			extent_buffer_get(leaf);
5023 
5024 			btrfs_set_path_blocking(path);
5025 			wret = push_leaf_left(trans, root, path, 1, 1,
5026 					      1, (u32)-1);
5027 			if (wret < 0 && wret != -ENOSPC)
5028 				ret = wret;
5029 
5030 			if (path->nodes[0] == leaf &&
5031 			    btrfs_header_nritems(leaf)) {
5032 				wret = push_leaf_right(trans, root, path, 1,
5033 						       1, 1, 0);
5034 				if (wret < 0 && wret != -ENOSPC)
5035 					ret = wret;
5036 			}
5037 
5038 			if (btrfs_header_nritems(leaf) == 0) {
5039 				path->slots[1] = slot;
5040 				btrfs_del_leaf(trans, root, path, leaf);
5041 				free_extent_buffer(leaf);
5042 				ret = 0;
5043 			} else {
5044 				/* if we're still in the path, make sure
5045 				 * we're dirty.  Otherwise, one of the
5046 				 * push_leaf functions must have already
5047 				 * dirtied this buffer
5048 				 */
5049 				if (path->nodes[0] == leaf)
5050 					btrfs_mark_buffer_dirty(leaf);
5051 				free_extent_buffer(leaf);
5052 			}
5053 		} else {
5054 			btrfs_mark_buffer_dirty(leaf);
5055 		}
5056 	}
5057 	return ret;
5058 }
5059 
5060 /*
5061  * search the tree again to find a leaf with lesser keys
5062  * returns 0 if it found something or 1 if there are no lesser leaves.
5063  * returns < 0 on io errors.
5064  *
5065  * This may release the path, and so you may lose any locks held at the
5066  * time you call it.
5067  */
5068 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5069 {
5070 	struct btrfs_key key;
5071 	struct btrfs_disk_key found_key;
5072 	int ret;
5073 
5074 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5075 
5076 	if (key.offset > 0) {
5077 		key.offset--;
5078 	} else if (key.type > 0) {
5079 		key.type--;
5080 		key.offset = (u64)-1;
5081 	} else if (key.objectid > 0) {
5082 		key.objectid--;
5083 		key.type = (u8)-1;
5084 		key.offset = (u64)-1;
5085 	} else {
5086 		return 1;
5087 	}
5088 
5089 	btrfs_release_path(path);
5090 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5091 	if (ret < 0)
5092 		return ret;
5093 	btrfs_item_key(path->nodes[0], &found_key, 0);
5094 	ret = comp_keys(&found_key, &key);
5095 	/*
5096 	 * We might have had an item with the previous key in the tree right
5097 	 * before we released our path. And after we released our path, that
5098 	 * item might have been pushed to the first slot (0) of the leaf we
5099 	 * were holding due to a tree balance. Alternatively, an item with the
5100 	 * previous key can exist as the only element of a leaf (big fat item).
5101 	 * Therefore account for these 2 cases, so that our callers (like
5102 	 * btrfs_previous_item) don't miss an existing item with a key matching
5103 	 * the previous key we computed above.
5104 	 */
5105 	if (ret <= 0)
5106 		return 0;
5107 	return 1;
5108 }
5109 
5110 /*
5111  * A helper function to walk down the tree starting at min_key, and looking
5112  * for nodes or leaves that are have a minimum transaction id.
5113  * This is used by the btree defrag code, and tree logging
5114  *
5115  * This does not cow, but it does stuff the starting key it finds back
5116  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5117  * key and get a writable path.
5118  *
5119  * This does lock as it descends, and path->keep_locks should be set
5120  * to 1 by the caller.
5121  *
5122  * This honors path->lowest_level to prevent descent past a given level
5123  * of the tree.
5124  *
5125  * min_trans indicates the oldest transaction that you are interested
5126  * in walking through.  Any nodes or leaves older than min_trans are
5127  * skipped over (without reading them).
5128  *
5129  * returns zero if something useful was found, < 0 on error and 1 if there
5130  * was nothing in the tree that matched the search criteria.
5131  */
5132 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5133 			 struct btrfs_path *path,
5134 			 u64 min_trans)
5135 {
5136 	struct extent_buffer *cur;
5137 	struct btrfs_key found_key;
5138 	int slot;
5139 	int sret;
5140 	u32 nritems;
5141 	int level;
5142 	int ret = 1;
5143 	int keep_locks = path->keep_locks;
5144 
5145 	path->keep_locks = 1;
5146 again:
5147 	cur = btrfs_read_lock_root_node(root);
5148 	level = btrfs_header_level(cur);
5149 	WARN_ON(path->nodes[level]);
5150 	path->nodes[level] = cur;
5151 	path->locks[level] = BTRFS_READ_LOCK;
5152 
5153 	if (btrfs_header_generation(cur) < min_trans) {
5154 		ret = 1;
5155 		goto out;
5156 	}
5157 	while (1) {
5158 		nritems = btrfs_header_nritems(cur);
5159 		level = btrfs_header_level(cur);
5160 		sret = bin_search(cur, min_key, level, &slot);
5161 
5162 		/* at the lowest level, we're done, setup the path and exit */
5163 		if (level == path->lowest_level) {
5164 			if (slot >= nritems)
5165 				goto find_next_key;
5166 			ret = 0;
5167 			path->slots[level] = slot;
5168 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5169 			goto out;
5170 		}
5171 		if (sret && slot > 0)
5172 			slot--;
5173 		/*
5174 		 * check this node pointer against the min_trans parameters.
5175 		 * If it is too old, old, skip to the next one.
5176 		 */
5177 		while (slot < nritems) {
5178 			u64 gen;
5179 
5180 			gen = btrfs_node_ptr_generation(cur, slot);
5181 			if (gen < min_trans) {
5182 				slot++;
5183 				continue;
5184 			}
5185 			break;
5186 		}
5187 find_next_key:
5188 		/*
5189 		 * we didn't find a candidate key in this node, walk forward
5190 		 * and find another one
5191 		 */
5192 		if (slot >= nritems) {
5193 			path->slots[level] = slot;
5194 			btrfs_set_path_blocking(path);
5195 			sret = btrfs_find_next_key(root, path, min_key, level,
5196 						  min_trans);
5197 			if (sret == 0) {
5198 				btrfs_release_path(path);
5199 				goto again;
5200 			} else {
5201 				goto out;
5202 			}
5203 		}
5204 		/* save our key for returning back */
5205 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5206 		path->slots[level] = slot;
5207 		if (level == path->lowest_level) {
5208 			ret = 0;
5209 			goto out;
5210 		}
5211 		btrfs_set_path_blocking(path);
5212 		cur = read_node_slot(root, cur, slot);
5213 		BUG_ON(!cur); /* -ENOMEM */
5214 
5215 		btrfs_tree_read_lock(cur);
5216 
5217 		path->locks[level - 1] = BTRFS_READ_LOCK;
5218 		path->nodes[level - 1] = cur;
5219 		unlock_up(path, level, 1, 0, NULL);
5220 		btrfs_clear_path_blocking(path, NULL, 0);
5221 	}
5222 out:
5223 	path->keep_locks = keep_locks;
5224 	if (ret == 0) {
5225 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5226 		btrfs_set_path_blocking(path);
5227 		memcpy(min_key, &found_key, sizeof(found_key));
5228 	}
5229 	return ret;
5230 }
5231 
5232 static void tree_move_down(struct btrfs_root *root,
5233 			   struct btrfs_path *path,
5234 			   int *level, int root_level)
5235 {
5236 	BUG_ON(*level == 0);
5237 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5238 					path->slots[*level]);
5239 	path->slots[*level - 1] = 0;
5240 	(*level)--;
5241 }
5242 
5243 static int tree_move_next_or_upnext(struct btrfs_root *root,
5244 				    struct btrfs_path *path,
5245 				    int *level, int root_level)
5246 {
5247 	int ret = 0;
5248 	int nritems;
5249 	nritems = btrfs_header_nritems(path->nodes[*level]);
5250 
5251 	path->slots[*level]++;
5252 
5253 	while (path->slots[*level] >= nritems) {
5254 		if (*level == root_level)
5255 			return -1;
5256 
5257 		/* move upnext */
5258 		path->slots[*level] = 0;
5259 		free_extent_buffer(path->nodes[*level]);
5260 		path->nodes[*level] = NULL;
5261 		(*level)++;
5262 		path->slots[*level]++;
5263 
5264 		nritems = btrfs_header_nritems(path->nodes[*level]);
5265 		ret = 1;
5266 	}
5267 	return ret;
5268 }
5269 
5270 /*
5271  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5272  * or down.
5273  */
5274 static int tree_advance(struct btrfs_root *root,
5275 			struct btrfs_path *path,
5276 			int *level, int root_level,
5277 			int allow_down,
5278 			struct btrfs_key *key)
5279 {
5280 	int ret;
5281 
5282 	if (*level == 0 || !allow_down) {
5283 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5284 	} else {
5285 		tree_move_down(root, path, level, root_level);
5286 		ret = 0;
5287 	}
5288 	if (ret >= 0) {
5289 		if (*level == 0)
5290 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5291 					path->slots[*level]);
5292 		else
5293 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5294 					path->slots[*level]);
5295 	}
5296 	return ret;
5297 }
5298 
5299 static int tree_compare_item(struct btrfs_root *left_root,
5300 			     struct btrfs_path *left_path,
5301 			     struct btrfs_path *right_path,
5302 			     char *tmp_buf)
5303 {
5304 	int cmp;
5305 	int len1, len2;
5306 	unsigned long off1, off2;
5307 
5308 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5309 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5310 	if (len1 != len2)
5311 		return 1;
5312 
5313 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5314 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5315 				right_path->slots[0]);
5316 
5317 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5318 
5319 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5320 	if (cmp)
5321 		return 1;
5322 	return 0;
5323 }
5324 
5325 #define ADVANCE 1
5326 #define ADVANCE_ONLY_NEXT -1
5327 
5328 /*
5329  * This function compares two trees and calls the provided callback for
5330  * every changed/new/deleted item it finds.
5331  * If shared tree blocks are encountered, whole subtrees are skipped, making
5332  * the compare pretty fast on snapshotted subvolumes.
5333  *
5334  * This currently works on commit roots only. As commit roots are read only,
5335  * we don't do any locking. The commit roots are protected with transactions.
5336  * Transactions are ended and rejoined when a commit is tried in between.
5337  *
5338  * This function checks for modifications done to the trees while comparing.
5339  * If it detects a change, it aborts immediately.
5340  */
5341 int btrfs_compare_trees(struct btrfs_root *left_root,
5342 			struct btrfs_root *right_root,
5343 			btrfs_changed_cb_t changed_cb, void *ctx)
5344 {
5345 	int ret;
5346 	int cmp;
5347 	struct btrfs_path *left_path = NULL;
5348 	struct btrfs_path *right_path = NULL;
5349 	struct btrfs_key left_key;
5350 	struct btrfs_key right_key;
5351 	char *tmp_buf = NULL;
5352 	int left_root_level;
5353 	int right_root_level;
5354 	int left_level;
5355 	int right_level;
5356 	int left_end_reached;
5357 	int right_end_reached;
5358 	int advance_left;
5359 	int advance_right;
5360 	u64 left_blockptr;
5361 	u64 right_blockptr;
5362 	u64 left_gen;
5363 	u64 right_gen;
5364 
5365 	left_path = btrfs_alloc_path();
5366 	if (!left_path) {
5367 		ret = -ENOMEM;
5368 		goto out;
5369 	}
5370 	right_path = btrfs_alloc_path();
5371 	if (!right_path) {
5372 		ret = -ENOMEM;
5373 		goto out;
5374 	}
5375 
5376 	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5377 	if (!tmp_buf) {
5378 		tmp_buf = vmalloc(left_root->nodesize);
5379 		if (!tmp_buf) {
5380 			ret = -ENOMEM;
5381 			goto out;
5382 		}
5383 	}
5384 
5385 	left_path->search_commit_root = 1;
5386 	left_path->skip_locking = 1;
5387 	right_path->search_commit_root = 1;
5388 	right_path->skip_locking = 1;
5389 
5390 	/*
5391 	 * Strategy: Go to the first items of both trees. Then do
5392 	 *
5393 	 * If both trees are at level 0
5394 	 *   Compare keys of current items
5395 	 *     If left < right treat left item as new, advance left tree
5396 	 *       and repeat
5397 	 *     If left > right treat right item as deleted, advance right tree
5398 	 *       and repeat
5399 	 *     If left == right do deep compare of items, treat as changed if
5400 	 *       needed, advance both trees and repeat
5401 	 * If both trees are at the same level but not at level 0
5402 	 *   Compare keys of current nodes/leafs
5403 	 *     If left < right advance left tree and repeat
5404 	 *     If left > right advance right tree and repeat
5405 	 *     If left == right compare blockptrs of the next nodes/leafs
5406 	 *       If they match advance both trees but stay at the same level
5407 	 *         and repeat
5408 	 *       If they don't match advance both trees while allowing to go
5409 	 *         deeper and repeat
5410 	 * If tree levels are different
5411 	 *   Advance the tree that needs it and repeat
5412 	 *
5413 	 * Advancing a tree means:
5414 	 *   If we are at level 0, try to go to the next slot. If that's not
5415 	 *   possible, go one level up and repeat. Stop when we found a level
5416 	 *   where we could go to the next slot. We may at this point be on a
5417 	 *   node or a leaf.
5418 	 *
5419 	 *   If we are not at level 0 and not on shared tree blocks, go one
5420 	 *   level deeper.
5421 	 *
5422 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5423 	 *   the right if possible or go up and right.
5424 	 */
5425 
5426 	down_read(&left_root->fs_info->commit_root_sem);
5427 	left_level = btrfs_header_level(left_root->commit_root);
5428 	left_root_level = left_level;
5429 	left_path->nodes[left_level] = left_root->commit_root;
5430 	extent_buffer_get(left_path->nodes[left_level]);
5431 
5432 	right_level = btrfs_header_level(right_root->commit_root);
5433 	right_root_level = right_level;
5434 	right_path->nodes[right_level] = right_root->commit_root;
5435 	extent_buffer_get(right_path->nodes[right_level]);
5436 	up_read(&left_root->fs_info->commit_root_sem);
5437 
5438 	if (left_level == 0)
5439 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5440 				&left_key, left_path->slots[left_level]);
5441 	else
5442 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5443 				&left_key, left_path->slots[left_level]);
5444 	if (right_level == 0)
5445 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5446 				&right_key, right_path->slots[right_level]);
5447 	else
5448 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5449 				&right_key, right_path->slots[right_level]);
5450 
5451 	left_end_reached = right_end_reached = 0;
5452 	advance_left = advance_right = 0;
5453 
5454 	while (1) {
5455 		if (advance_left && !left_end_reached) {
5456 			ret = tree_advance(left_root, left_path, &left_level,
5457 					left_root_level,
5458 					advance_left != ADVANCE_ONLY_NEXT,
5459 					&left_key);
5460 			if (ret < 0)
5461 				left_end_reached = ADVANCE;
5462 			advance_left = 0;
5463 		}
5464 		if (advance_right && !right_end_reached) {
5465 			ret = tree_advance(right_root, right_path, &right_level,
5466 					right_root_level,
5467 					advance_right != ADVANCE_ONLY_NEXT,
5468 					&right_key);
5469 			if (ret < 0)
5470 				right_end_reached = ADVANCE;
5471 			advance_right = 0;
5472 		}
5473 
5474 		if (left_end_reached && right_end_reached) {
5475 			ret = 0;
5476 			goto out;
5477 		} else if (left_end_reached) {
5478 			if (right_level == 0) {
5479 				ret = changed_cb(left_root, right_root,
5480 						left_path, right_path,
5481 						&right_key,
5482 						BTRFS_COMPARE_TREE_DELETED,
5483 						ctx);
5484 				if (ret < 0)
5485 					goto out;
5486 			}
5487 			advance_right = ADVANCE;
5488 			continue;
5489 		} else if (right_end_reached) {
5490 			if (left_level == 0) {
5491 				ret = changed_cb(left_root, right_root,
5492 						left_path, right_path,
5493 						&left_key,
5494 						BTRFS_COMPARE_TREE_NEW,
5495 						ctx);
5496 				if (ret < 0)
5497 					goto out;
5498 			}
5499 			advance_left = ADVANCE;
5500 			continue;
5501 		}
5502 
5503 		if (left_level == 0 && right_level == 0) {
5504 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5505 			if (cmp < 0) {
5506 				ret = changed_cb(left_root, right_root,
5507 						left_path, right_path,
5508 						&left_key,
5509 						BTRFS_COMPARE_TREE_NEW,
5510 						ctx);
5511 				if (ret < 0)
5512 					goto out;
5513 				advance_left = ADVANCE;
5514 			} else if (cmp > 0) {
5515 				ret = changed_cb(left_root, right_root,
5516 						left_path, right_path,
5517 						&right_key,
5518 						BTRFS_COMPARE_TREE_DELETED,
5519 						ctx);
5520 				if (ret < 0)
5521 					goto out;
5522 				advance_right = ADVANCE;
5523 			} else {
5524 				enum btrfs_compare_tree_result result;
5525 
5526 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5527 				ret = tree_compare_item(left_root, left_path,
5528 						right_path, tmp_buf);
5529 				if (ret)
5530 					result = BTRFS_COMPARE_TREE_CHANGED;
5531 				else
5532 					result = BTRFS_COMPARE_TREE_SAME;
5533 				ret = changed_cb(left_root, right_root,
5534 						 left_path, right_path,
5535 						 &left_key, result, ctx);
5536 				if (ret < 0)
5537 					goto out;
5538 				advance_left = ADVANCE;
5539 				advance_right = ADVANCE;
5540 			}
5541 		} else if (left_level == right_level) {
5542 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5543 			if (cmp < 0) {
5544 				advance_left = ADVANCE;
5545 			} else if (cmp > 0) {
5546 				advance_right = ADVANCE;
5547 			} else {
5548 				left_blockptr = btrfs_node_blockptr(
5549 						left_path->nodes[left_level],
5550 						left_path->slots[left_level]);
5551 				right_blockptr = btrfs_node_blockptr(
5552 						right_path->nodes[right_level],
5553 						right_path->slots[right_level]);
5554 				left_gen = btrfs_node_ptr_generation(
5555 						left_path->nodes[left_level],
5556 						left_path->slots[left_level]);
5557 				right_gen = btrfs_node_ptr_generation(
5558 						right_path->nodes[right_level],
5559 						right_path->slots[right_level]);
5560 				if (left_blockptr == right_blockptr &&
5561 				    left_gen == right_gen) {
5562 					/*
5563 					 * As we're on a shared block, don't
5564 					 * allow to go deeper.
5565 					 */
5566 					advance_left = ADVANCE_ONLY_NEXT;
5567 					advance_right = ADVANCE_ONLY_NEXT;
5568 				} else {
5569 					advance_left = ADVANCE;
5570 					advance_right = ADVANCE;
5571 				}
5572 			}
5573 		} else if (left_level < right_level) {
5574 			advance_right = ADVANCE;
5575 		} else {
5576 			advance_left = ADVANCE;
5577 		}
5578 	}
5579 
5580 out:
5581 	btrfs_free_path(left_path);
5582 	btrfs_free_path(right_path);
5583 	kvfree(tmp_buf);
5584 	return ret;
5585 }
5586 
5587 /*
5588  * this is similar to btrfs_next_leaf, but does not try to preserve
5589  * and fixup the path.  It looks for and returns the next key in the
5590  * tree based on the current path and the min_trans parameters.
5591  *
5592  * 0 is returned if another key is found, < 0 if there are any errors
5593  * and 1 is returned if there are no higher keys in the tree
5594  *
5595  * path->keep_locks should be set to 1 on the search made before
5596  * calling this function.
5597  */
5598 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5599 			struct btrfs_key *key, int level, u64 min_trans)
5600 {
5601 	int slot;
5602 	struct extent_buffer *c;
5603 
5604 	WARN_ON(!path->keep_locks);
5605 	while (level < BTRFS_MAX_LEVEL) {
5606 		if (!path->nodes[level])
5607 			return 1;
5608 
5609 		slot = path->slots[level] + 1;
5610 		c = path->nodes[level];
5611 next:
5612 		if (slot >= btrfs_header_nritems(c)) {
5613 			int ret;
5614 			int orig_lowest;
5615 			struct btrfs_key cur_key;
5616 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5617 			    !path->nodes[level + 1])
5618 				return 1;
5619 
5620 			if (path->locks[level + 1]) {
5621 				level++;
5622 				continue;
5623 			}
5624 
5625 			slot = btrfs_header_nritems(c) - 1;
5626 			if (level == 0)
5627 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5628 			else
5629 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5630 
5631 			orig_lowest = path->lowest_level;
5632 			btrfs_release_path(path);
5633 			path->lowest_level = level;
5634 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5635 						0, 0);
5636 			path->lowest_level = orig_lowest;
5637 			if (ret < 0)
5638 				return ret;
5639 
5640 			c = path->nodes[level];
5641 			slot = path->slots[level];
5642 			if (ret == 0)
5643 				slot++;
5644 			goto next;
5645 		}
5646 
5647 		if (level == 0)
5648 			btrfs_item_key_to_cpu(c, key, slot);
5649 		else {
5650 			u64 gen = btrfs_node_ptr_generation(c, slot);
5651 
5652 			if (gen < min_trans) {
5653 				slot++;
5654 				goto next;
5655 			}
5656 			btrfs_node_key_to_cpu(c, key, slot);
5657 		}
5658 		return 0;
5659 	}
5660 	return 1;
5661 }
5662 
5663 /*
5664  * search the tree again to find a leaf with greater keys
5665  * returns 0 if it found something or 1 if there are no greater leaves.
5666  * returns < 0 on io errors.
5667  */
5668 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5669 {
5670 	return btrfs_next_old_leaf(root, path, 0);
5671 }
5672 
5673 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5674 			u64 time_seq)
5675 {
5676 	int slot;
5677 	int level;
5678 	struct extent_buffer *c;
5679 	struct extent_buffer *next;
5680 	struct btrfs_key key;
5681 	u32 nritems;
5682 	int ret;
5683 	int old_spinning = path->leave_spinning;
5684 	int next_rw_lock = 0;
5685 
5686 	nritems = btrfs_header_nritems(path->nodes[0]);
5687 	if (nritems == 0)
5688 		return 1;
5689 
5690 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5691 again:
5692 	level = 1;
5693 	next = NULL;
5694 	next_rw_lock = 0;
5695 	btrfs_release_path(path);
5696 
5697 	path->keep_locks = 1;
5698 	path->leave_spinning = 1;
5699 
5700 	if (time_seq)
5701 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5702 	else
5703 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5704 	path->keep_locks = 0;
5705 
5706 	if (ret < 0)
5707 		return ret;
5708 
5709 	nritems = btrfs_header_nritems(path->nodes[0]);
5710 	/*
5711 	 * by releasing the path above we dropped all our locks.  A balance
5712 	 * could have added more items next to the key that used to be
5713 	 * at the very end of the block.  So, check again here and
5714 	 * advance the path if there are now more items available.
5715 	 */
5716 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5717 		if (ret == 0)
5718 			path->slots[0]++;
5719 		ret = 0;
5720 		goto done;
5721 	}
5722 	/*
5723 	 * So the above check misses one case:
5724 	 * - after releasing the path above, someone has removed the item that
5725 	 *   used to be at the very end of the block, and balance between leafs
5726 	 *   gets another one with bigger key.offset to replace it.
5727 	 *
5728 	 * This one should be returned as well, or we can get leaf corruption
5729 	 * later(esp. in __btrfs_drop_extents()).
5730 	 *
5731 	 * And a bit more explanation about this check,
5732 	 * with ret > 0, the key isn't found, the path points to the slot
5733 	 * where it should be inserted, so the path->slots[0] item must be the
5734 	 * bigger one.
5735 	 */
5736 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5737 		ret = 0;
5738 		goto done;
5739 	}
5740 
5741 	while (level < BTRFS_MAX_LEVEL) {
5742 		if (!path->nodes[level]) {
5743 			ret = 1;
5744 			goto done;
5745 		}
5746 
5747 		slot = path->slots[level] + 1;
5748 		c = path->nodes[level];
5749 		if (slot >= btrfs_header_nritems(c)) {
5750 			level++;
5751 			if (level == BTRFS_MAX_LEVEL) {
5752 				ret = 1;
5753 				goto done;
5754 			}
5755 			continue;
5756 		}
5757 
5758 		if (next) {
5759 			btrfs_tree_unlock_rw(next, next_rw_lock);
5760 			free_extent_buffer(next);
5761 		}
5762 
5763 		next = c;
5764 		next_rw_lock = path->locks[level];
5765 		ret = read_block_for_search(NULL, root, path, &next, level,
5766 					    slot, &key, 0);
5767 		if (ret == -EAGAIN)
5768 			goto again;
5769 
5770 		if (ret < 0) {
5771 			btrfs_release_path(path);
5772 			goto done;
5773 		}
5774 
5775 		if (!path->skip_locking) {
5776 			ret = btrfs_try_tree_read_lock(next);
5777 			if (!ret && time_seq) {
5778 				/*
5779 				 * If we don't get the lock, we may be racing
5780 				 * with push_leaf_left, holding that lock while
5781 				 * itself waiting for the leaf we've currently
5782 				 * locked. To solve this situation, we give up
5783 				 * on our lock and cycle.
5784 				 */
5785 				free_extent_buffer(next);
5786 				btrfs_release_path(path);
5787 				cond_resched();
5788 				goto again;
5789 			}
5790 			if (!ret) {
5791 				btrfs_set_path_blocking(path);
5792 				btrfs_tree_read_lock(next);
5793 				btrfs_clear_path_blocking(path, next,
5794 							  BTRFS_READ_LOCK);
5795 			}
5796 			next_rw_lock = BTRFS_READ_LOCK;
5797 		}
5798 		break;
5799 	}
5800 	path->slots[level] = slot;
5801 	while (1) {
5802 		level--;
5803 		c = path->nodes[level];
5804 		if (path->locks[level])
5805 			btrfs_tree_unlock_rw(c, path->locks[level]);
5806 
5807 		free_extent_buffer(c);
5808 		path->nodes[level] = next;
5809 		path->slots[level] = 0;
5810 		if (!path->skip_locking)
5811 			path->locks[level] = next_rw_lock;
5812 		if (!level)
5813 			break;
5814 
5815 		ret = read_block_for_search(NULL, root, path, &next, level,
5816 					    0, &key, 0);
5817 		if (ret == -EAGAIN)
5818 			goto again;
5819 
5820 		if (ret < 0) {
5821 			btrfs_release_path(path);
5822 			goto done;
5823 		}
5824 
5825 		if (!path->skip_locking) {
5826 			ret = btrfs_try_tree_read_lock(next);
5827 			if (!ret) {
5828 				btrfs_set_path_blocking(path);
5829 				btrfs_tree_read_lock(next);
5830 				btrfs_clear_path_blocking(path, next,
5831 							  BTRFS_READ_LOCK);
5832 			}
5833 			next_rw_lock = BTRFS_READ_LOCK;
5834 		}
5835 	}
5836 	ret = 0;
5837 done:
5838 	unlock_up(path, 0, 1, 0, NULL);
5839 	path->leave_spinning = old_spinning;
5840 	if (!old_spinning)
5841 		btrfs_set_path_blocking(path);
5842 
5843 	return ret;
5844 }
5845 
5846 /*
5847  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5848  * searching until it gets past min_objectid or finds an item of 'type'
5849  *
5850  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5851  */
5852 int btrfs_previous_item(struct btrfs_root *root,
5853 			struct btrfs_path *path, u64 min_objectid,
5854 			int type)
5855 {
5856 	struct btrfs_key found_key;
5857 	struct extent_buffer *leaf;
5858 	u32 nritems;
5859 	int ret;
5860 
5861 	while (1) {
5862 		if (path->slots[0] == 0) {
5863 			btrfs_set_path_blocking(path);
5864 			ret = btrfs_prev_leaf(root, path);
5865 			if (ret != 0)
5866 				return ret;
5867 		} else {
5868 			path->slots[0]--;
5869 		}
5870 		leaf = path->nodes[0];
5871 		nritems = btrfs_header_nritems(leaf);
5872 		if (nritems == 0)
5873 			return 1;
5874 		if (path->slots[0] == nritems)
5875 			path->slots[0]--;
5876 
5877 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5878 		if (found_key.objectid < min_objectid)
5879 			break;
5880 		if (found_key.type == type)
5881 			return 0;
5882 		if (found_key.objectid == min_objectid &&
5883 		    found_key.type < type)
5884 			break;
5885 	}
5886 	return 1;
5887 }
5888 
5889 /*
5890  * search in extent tree to find a previous Metadata/Data extent item with
5891  * min objecitd.
5892  *
5893  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5894  */
5895 int btrfs_previous_extent_item(struct btrfs_root *root,
5896 			struct btrfs_path *path, u64 min_objectid)
5897 {
5898 	struct btrfs_key found_key;
5899 	struct extent_buffer *leaf;
5900 	u32 nritems;
5901 	int ret;
5902 
5903 	while (1) {
5904 		if (path->slots[0] == 0) {
5905 			btrfs_set_path_blocking(path);
5906 			ret = btrfs_prev_leaf(root, path);
5907 			if (ret != 0)
5908 				return ret;
5909 		} else {
5910 			path->slots[0]--;
5911 		}
5912 		leaf = path->nodes[0];
5913 		nritems = btrfs_header_nritems(leaf);
5914 		if (nritems == 0)
5915 			return 1;
5916 		if (path->slots[0] == nritems)
5917 			path->slots[0]--;
5918 
5919 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5920 		if (found_key.objectid < min_objectid)
5921 			break;
5922 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5923 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5924 			return 0;
5925 		if (found_key.objectid == min_objectid &&
5926 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5927 			break;
5928 	}
5929 	return 1;
5930 }
5931