xref: /openbmc/linux/fs/btrfs/ctree.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 
16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
17 		      *root, struct btrfs_path *path, int level);
18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
19 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
20 		      int data_size, int extend);
21 static int push_node_left(struct btrfs_trans_handle *trans,
22 			  struct btrfs_fs_info *fs_info,
23 			  struct extent_buffer *dst,
24 			  struct extent_buffer *src, int empty);
25 static int balance_node_right(struct btrfs_trans_handle *trans,
26 			      struct btrfs_fs_info *fs_info,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 struct btrfs_path *btrfs_alloc_path(void)
33 {
34 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
35 }
36 
37 /*
38  * set all locked nodes in the path to blocking locks.  This should
39  * be done before scheduling
40  */
41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42 {
43 	int i;
44 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 		if (!p->nodes[i] || !p->locks[i])
46 			continue;
47 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
48 		if (p->locks[i] == BTRFS_READ_LOCK)
49 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
50 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
51 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
52 	}
53 }
54 
55 /*
56  * reset all the locked nodes in the patch to spinning locks.
57  *
58  * held is used to keep lockdep happy, when lockdep is enabled
59  * we set held to a blocking lock before we go around and
60  * retake all the spinlocks in the path.  You can safely use NULL
61  * for held
62  */
63 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
64 					struct extent_buffer *held, int held_rw)
65 {
66 	int i;
67 
68 	if (held) {
69 		btrfs_set_lock_blocking_rw(held, held_rw);
70 		if (held_rw == BTRFS_WRITE_LOCK)
71 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
72 		else if (held_rw == BTRFS_READ_LOCK)
73 			held_rw = BTRFS_READ_LOCK_BLOCKING;
74 	}
75 	btrfs_set_path_blocking(p);
76 
77 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
78 		if (p->nodes[i] && p->locks[i]) {
79 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
80 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
81 				p->locks[i] = BTRFS_WRITE_LOCK;
82 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
83 				p->locks[i] = BTRFS_READ_LOCK;
84 		}
85 	}
86 
87 	if (held)
88 		btrfs_clear_lock_blocking_rw(held, held_rw);
89 }
90 
91 /* this also releases the path */
92 void btrfs_free_path(struct btrfs_path *p)
93 {
94 	if (!p)
95 		return;
96 	btrfs_release_path(p);
97 	kmem_cache_free(btrfs_path_cachep, p);
98 }
99 
100 /*
101  * path release drops references on the extent buffers in the path
102  * and it drops any locks held by this path
103  *
104  * It is safe to call this on paths that no locks or extent buffers held.
105  */
106 noinline void btrfs_release_path(struct btrfs_path *p)
107 {
108 	int i;
109 
110 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
111 		p->slots[i] = 0;
112 		if (!p->nodes[i])
113 			continue;
114 		if (p->locks[i]) {
115 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
116 			p->locks[i] = 0;
117 		}
118 		free_extent_buffer(p->nodes[i]);
119 		p->nodes[i] = NULL;
120 	}
121 }
122 
123 /*
124  * safely gets a reference on the root node of a tree.  A lock
125  * is not taken, so a concurrent writer may put a different node
126  * at the root of the tree.  See btrfs_lock_root_node for the
127  * looping required.
128  *
129  * The extent buffer returned by this has a reference taken, so
130  * it won't disappear.  It may stop being the root of the tree
131  * at any time because there are no locks held.
132  */
133 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
134 {
135 	struct extent_buffer *eb;
136 
137 	while (1) {
138 		rcu_read_lock();
139 		eb = rcu_dereference(root->node);
140 
141 		/*
142 		 * RCU really hurts here, we could free up the root node because
143 		 * it was COWed but we may not get the new root node yet so do
144 		 * the inc_not_zero dance and if it doesn't work then
145 		 * synchronize_rcu and try again.
146 		 */
147 		if (atomic_inc_not_zero(&eb->refs)) {
148 			rcu_read_unlock();
149 			break;
150 		}
151 		rcu_read_unlock();
152 		synchronize_rcu();
153 	}
154 	return eb;
155 }
156 
157 /* loop around taking references on and locking the root node of the
158  * tree until you end up with a lock on the root.  A locked buffer
159  * is returned, with a reference held.
160  */
161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
162 {
163 	struct extent_buffer *eb;
164 
165 	while (1) {
166 		eb = btrfs_root_node(root);
167 		btrfs_tree_lock(eb);
168 		if (eb == root->node)
169 			break;
170 		btrfs_tree_unlock(eb);
171 		free_extent_buffer(eb);
172 	}
173 	return eb;
174 }
175 
176 /* loop around taking references on and locking the root node of the
177  * tree until you end up with a lock on the root.  A locked buffer
178  * is returned, with a reference held.
179  */
180 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
181 {
182 	struct extent_buffer *eb;
183 
184 	while (1) {
185 		eb = btrfs_root_node(root);
186 		btrfs_tree_read_lock(eb);
187 		if (eb == root->node)
188 			break;
189 		btrfs_tree_read_unlock(eb);
190 		free_extent_buffer(eb);
191 	}
192 	return eb;
193 }
194 
195 /* cowonly root (everything not a reference counted cow subvolume), just get
196  * put onto a simple dirty list.  transaction.c walks this to make sure they
197  * get properly updated on disk.
198  */
199 static void add_root_to_dirty_list(struct btrfs_root *root)
200 {
201 	struct btrfs_fs_info *fs_info = root->fs_info;
202 
203 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
204 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
205 		return;
206 
207 	spin_lock(&fs_info->trans_lock);
208 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
209 		/* Want the extent tree to be the last on the list */
210 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
211 			list_move_tail(&root->dirty_list,
212 				       &fs_info->dirty_cowonly_roots);
213 		else
214 			list_move(&root->dirty_list,
215 				  &fs_info->dirty_cowonly_roots);
216 	}
217 	spin_unlock(&fs_info->trans_lock);
218 }
219 
220 /*
221  * used by snapshot creation to make a copy of a root for a tree with
222  * a given objectid.  The buffer with the new root node is returned in
223  * cow_ret, and this func returns zero on success or a negative error code.
224  */
225 int btrfs_copy_root(struct btrfs_trans_handle *trans,
226 		      struct btrfs_root *root,
227 		      struct extent_buffer *buf,
228 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
229 {
230 	struct btrfs_fs_info *fs_info = root->fs_info;
231 	struct extent_buffer *cow;
232 	int ret = 0;
233 	int level;
234 	struct btrfs_disk_key disk_key;
235 
236 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
237 		trans->transid != fs_info->running_transaction->transid);
238 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
239 		trans->transid != root->last_trans);
240 
241 	level = btrfs_header_level(buf);
242 	if (level == 0)
243 		btrfs_item_key(buf, &disk_key, 0);
244 	else
245 		btrfs_node_key(buf, &disk_key, 0);
246 
247 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
248 			&disk_key, level, buf->start, 0);
249 	if (IS_ERR(cow))
250 		return PTR_ERR(cow);
251 
252 	copy_extent_buffer_full(cow, buf);
253 	btrfs_set_header_bytenr(cow, cow->start);
254 	btrfs_set_header_generation(cow, trans->transid);
255 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
256 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
257 				     BTRFS_HEADER_FLAG_RELOC);
258 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
259 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
260 	else
261 		btrfs_set_header_owner(cow, new_root_objectid);
262 
263 	write_extent_buffer_fsid(cow, fs_info->fsid);
264 
265 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
266 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
267 		ret = btrfs_inc_ref(trans, root, cow, 1);
268 	else
269 		ret = btrfs_inc_ref(trans, root, cow, 0);
270 
271 	if (ret)
272 		return ret;
273 
274 	btrfs_mark_buffer_dirty(cow);
275 	*cow_ret = cow;
276 	return 0;
277 }
278 
279 enum mod_log_op {
280 	MOD_LOG_KEY_REPLACE,
281 	MOD_LOG_KEY_ADD,
282 	MOD_LOG_KEY_REMOVE,
283 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
284 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
285 	MOD_LOG_MOVE_KEYS,
286 	MOD_LOG_ROOT_REPLACE,
287 };
288 
289 struct tree_mod_root {
290 	u64 logical;
291 	u8 level;
292 };
293 
294 struct tree_mod_elem {
295 	struct rb_node node;
296 	u64 logical;
297 	u64 seq;
298 	enum mod_log_op op;
299 
300 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
301 	int slot;
302 
303 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
304 	u64 generation;
305 
306 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
307 	struct btrfs_disk_key key;
308 	u64 blockptr;
309 
310 	/* this is used for op == MOD_LOG_MOVE_KEYS */
311 	struct {
312 		int dst_slot;
313 		int nr_items;
314 	} move;
315 
316 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
317 	struct tree_mod_root old_root;
318 };
319 
320 /*
321  * Pull a new tree mod seq number for our operation.
322  */
323 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
324 {
325 	return atomic64_inc_return(&fs_info->tree_mod_seq);
326 }
327 
328 /*
329  * This adds a new blocker to the tree mod log's blocker list if the @elem
330  * passed does not already have a sequence number set. So when a caller expects
331  * to record tree modifications, it should ensure to set elem->seq to zero
332  * before calling btrfs_get_tree_mod_seq.
333  * Returns a fresh, unused tree log modification sequence number, even if no new
334  * blocker was added.
335  */
336 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
337 			   struct seq_list *elem)
338 {
339 	write_lock(&fs_info->tree_mod_log_lock);
340 	spin_lock(&fs_info->tree_mod_seq_lock);
341 	if (!elem->seq) {
342 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
343 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
344 	}
345 	spin_unlock(&fs_info->tree_mod_seq_lock);
346 	write_unlock(&fs_info->tree_mod_log_lock);
347 
348 	return elem->seq;
349 }
350 
351 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
352 			    struct seq_list *elem)
353 {
354 	struct rb_root *tm_root;
355 	struct rb_node *node;
356 	struct rb_node *next;
357 	struct seq_list *cur_elem;
358 	struct tree_mod_elem *tm;
359 	u64 min_seq = (u64)-1;
360 	u64 seq_putting = elem->seq;
361 
362 	if (!seq_putting)
363 		return;
364 
365 	spin_lock(&fs_info->tree_mod_seq_lock);
366 	list_del(&elem->list);
367 	elem->seq = 0;
368 
369 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
370 		if (cur_elem->seq < min_seq) {
371 			if (seq_putting > cur_elem->seq) {
372 				/*
373 				 * blocker with lower sequence number exists, we
374 				 * cannot remove anything from the log
375 				 */
376 				spin_unlock(&fs_info->tree_mod_seq_lock);
377 				return;
378 			}
379 			min_seq = cur_elem->seq;
380 		}
381 	}
382 	spin_unlock(&fs_info->tree_mod_seq_lock);
383 
384 	/*
385 	 * anything that's lower than the lowest existing (read: blocked)
386 	 * sequence number can be removed from the tree.
387 	 */
388 	write_lock(&fs_info->tree_mod_log_lock);
389 	tm_root = &fs_info->tree_mod_log;
390 	for (node = rb_first(tm_root); node; node = next) {
391 		next = rb_next(node);
392 		tm = rb_entry(node, struct tree_mod_elem, node);
393 		if (tm->seq > min_seq)
394 			continue;
395 		rb_erase(node, tm_root);
396 		kfree(tm);
397 	}
398 	write_unlock(&fs_info->tree_mod_log_lock);
399 }
400 
401 /*
402  * key order of the log:
403  *       node/leaf start address -> sequence
404  *
405  * The 'start address' is the logical address of the *new* root node
406  * for root replace operations, or the logical address of the affected
407  * block for all other operations.
408  *
409  * Note: must be called with write lock for fs_info::tree_mod_log_lock.
410  */
411 static noinline int
412 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
413 {
414 	struct rb_root *tm_root;
415 	struct rb_node **new;
416 	struct rb_node *parent = NULL;
417 	struct tree_mod_elem *cur;
418 
419 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
420 
421 	tm_root = &fs_info->tree_mod_log;
422 	new = &tm_root->rb_node;
423 	while (*new) {
424 		cur = rb_entry(*new, struct tree_mod_elem, node);
425 		parent = *new;
426 		if (cur->logical < tm->logical)
427 			new = &((*new)->rb_left);
428 		else if (cur->logical > tm->logical)
429 			new = &((*new)->rb_right);
430 		else if (cur->seq < tm->seq)
431 			new = &((*new)->rb_left);
432 		else if (cur->seq > tm->seq)
433 			new = &((*new)->rb_right);
434 		else
435 			return -EEXIST;
436 	}
437 
438 	rb_link_node(&tm->node, parent, new);
439 	rb_insert_color(&tm->node, tm_root);
440 	return 0;
441 }
442 
443 /*
444  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
445  * returns zero with the tree_mod_log_lock acquired. The caller must hold
446  * this until all tree mod log insertions are recorded in the rb tree and then
447  * write unlock fs_info::tree_mod_log_lock.
448  */
449 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
450 				    struct extent_buffer *eb) {
451 	smp_mb();
452 	if (list_empty(&(fs_info)->tree_mod_seq_list))
453 		return 1;
454 	if (eb && btrfs_header_level(eb) == 0)
455 		return 1;
456 
457 	write_lock(&fs_info->tree_mod_log_lock);
458 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
459 		write_unlock(&fs_info->tree_mod_log_lock);
460 		return 1;
461 	}
462 
463 	return 0;
464 }
465 
466 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
467 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
468 				    struct extent_buffer *eb)
469 {
470 	smp_mb();
471 	if (list_empty(&(fs_info)->tree_mod_seq_list))
472 		return 0;
473 	if (eb && btrfs_header_level(eb) == 0)
474 		return 0;
475 
476 	return 1;
477 }
478 
479 static struct tree_mod_elem *
480 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
481 		    enum mod_log_op op, gfp_t flags)
482 {
483 	struct tree_mod_elem *tm;
484 
485 	tm = kzalloc(sizeof(*tm), flags);
486 	if (!tm)
487 		return NULL;
488 
489 	tm->logical = eb->start;
490 	if (op != MOD_LOG_KEY_ADD) {
491 		btrfs_node_key(eb, &tm->key, slot);
492 		tm->blockptr = btrfs_node_blockptr(eb, slot);
493 	}
494 	tm->op = op;
495 	tm->slot = slot;
496 	tm->generation = btrfs_node_ptr_generation(eb, slot);
497 	RB_CLEAR_NODE(&tm->node);
498 
499 	return tm;
500 }
501 
502 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
503 		enum mod_log_op op, gfp_t flags)
504 {
505 	struct tree_mod_elem *tm;
506 	int ret;
507 
508 	if (!tree_mod_need_log(eb->fs_info, eb))
509 		return 0;
510 
511 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
512 	if (!tm)
513 		return -ENOMEM;
514 
515 	if (tree_mod_dont_log(eb->fs_info, eb)) {
516 		kfree(tm);
517 		return 0;
518 	}
519 
520 	ret = __tree_mod_log_insert(eb->fs_info, tm);
521 	write_unlock(&eb->fs_info->tree_mod_log_lock);
522 	if (ret)
523 		kfree(tm);
524 
525 	return ret;
526 }
527 
528 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
529 		int dst_slot, int src_slot, int nr_items)
530 {
531 	struct tree_mod_elem *tm = NULL;
532 	struct tree_mod_elem **tm_list = NULL;
533 	int ret = 0;
534 	int i;
535 	int locked = 0;
536 
537 	if (!tree_mod_need_log(eb->fs_info, eb))
538 		return 0;
539 
540 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
541 	if (!tm_list)
542 		return -ENOMEM;
543 
544 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
545 	if (!tm) {
546 		ret = -ENOMEM;
547 		goto free_tms;
548 	}
549 
550 	tm->logical = eb->start;
551 	tm->slot = src_slot;
552 	tm->move.dst_slot = dst_slot;
553 	tm->move.nr_items = nr_items;
554 	tm->op = MOD_LOG_MOVE_KEYS;
555 
556 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
557 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
558 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
559 		if (!tm_list[i]) {
560 			ret = -ENOMEM;
561 			goto free_tms;
562 		}
563 	}
564 
565 	if (tree_mod_dont_log(eb->fs_info, eb))
566 		goto free_tms;
567 	locked = 1;
568 
569 	/*
570 	 * When we override something during the move, we log these removals.
571 	 * This can only happen when we move towards the beginning of the
572 	 * buffer, i.e. dst_slot < src_slot.
573 	 */
574 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
575 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
576 		if (ret)
577 			goto free_tms;
578 	}
579 
580 	ret = __tree_mod_log_insert(eb->fs_info, tm);
581 	if (ret)
582 		goto free_tms;
583 	write_unlock(&eb->fs_info->tree_mod_log_lock);
584 	kfree(tm_list);
585 
586 	return 0;
587 free_tms:
588 	for (i = 0; i < nr_items; i++) {
589 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
590 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
591 		kfree(tm_list[i]);
592 	}
593 	if (locked)
594 		write_unlock(&eb->fs_info->tree_mod_log_lock);
595 	kfree(tm_list);
596 	kfree(tm);
597 
598 	return ret;
599 }
600 
601 static inline int
602 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
603 		       struct tree_mod_elem **tm_list,
604 		       int nritems)
605 {
606 	int i, j;
607 	int ret;
608 
609 	for (i = nritems - 1; i >= 0; i--) {
610 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
611 		if (ret) {
612 			for (j = nritems - 1; j > i; j--)
613 				rb_erase(&tm_list[j]->node,
614 					 &fs_info->tree_mod_log);
615 			return ret;
616 		}
617 	}
618 
619 	return 0;
620 }
621 
622 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
623 			 struct extent_buffer *new_root, int log_removal)
624 {
625 	struct btrfs_fs_info *fs_info = old_root->fs_info;
626 	struct tree_mod_elem *tm = NULL;
627 	struct tree_mod_elem **tm_list = NULL;
628 	int nritems = 0;
629 	int ret = 0;
630 	int i;
631 
632 	if (!tree_mod_need_log(fs_info, NULL))
633 		return 0;
634 
635 	if (log_removal && btrfs_header_level(old_root) > 0) {
636 		nritems = btrfs_header_nritems(old_root);
637 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
638 				  GFP_NOFS);
639 		if (!tm_list) {
640 			ret = -ENOMEM;
641 			goto free_tms;
642 		}
643 		for (i = 0; i < nritems; i++) {
644 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
645 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
646 			if (!tm_list[i]) {
647 				ret = -ENOMEM;
648 				goto free_tms;
649 			}
650 		}
651 	}
652 
653 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
654 	if (!tm) {
655 		ret = -ENOMEM;
656 		goto free_tms;
657 	}
658 
659 	tm->logical = new_root->start;
660 	tm->old_root.logical = old_root->start;
661 	tm->old_root.level = btrfs_header_level(old_root);
662 	tm->generation = btrfs_header_generation(old_root);
663 	tm->op = MOD_LOG_ROOT_REPLACE;
664 
665 	if (tree_mod_dont_log(fs_info, NULL))
666 		goto free_tms;
667 
668 	if (tm_list)
669 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
670 	if (!ret)
671 		ret = __tree_mod_log_insert(fs_info, tm);
672 
673 	write_unlock(&fs_info->tree_mod_log_lock);
674 	if (ret)
675 		goto free_tms;
676 	kfree(tm_list);
677 
678 	return ret;
679 
680 free_tms:
681 	if (tm_list) {
682 		for (i = 0; i < nritems; i++)
683 			kfree(tm_list[i]);
684 		kfree(tm_list);
685 	}
686 	kfree(tm);
687 
688 	return ret;
689 }
690 
691 static struct tree_mod_elem *
692 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
693 		      int smallest)
694 {
695 	struct rb_root *tm_root;
696 	struct rb_node *node;
697 	struct tree_mod_elem *cur = NULL;
698 	struct tree_mod_elem *found = NULL;
699 
700 	read_lock(&fs_info->tree_mod_log_lock);
701 	tm_root = &fs_info->tree_mod_log;
702 	node = tm_root->rb_node;
703 	while (node) {
704 		cur = rb_entry(node, struct tree_mod_elem, node);
705 		if (cur->logical < start) {
706 			node = node->rb_left;
707 		} else if (cur->logical > start) {
708 			node = node->rb_right;
709 		} else if (cur->seq < min_seq) {
710 			node = node->rb_left;
711 		} else if (!smallest) {
712 			/* we want the node with the highest seq */
713 			if (found)
714 				BUG_ON(found->seq > cur->seq);
715 			found = cur;
716 			node = node->rb_left;
717 		} else if (cur->seq > min_seq) {
718 			/* we want the node with the smallest seq */
719 			if (found)
720 				BUG_ON(found->seq < cur->seq);
721 			found = cur;
722 			node = node->rb_right;
723 		} else {
724 			found = cur;
725 			break;
726 		}
727 	}
728 	read_unlock(&fs_info->tree_mod_log_lock);
729 
730 	return found;
731 }
732 
733 /*
734  * this returns the element from the log with the smallest time sequence
735  * value that's in the log (the oldest log item). any element with a time
736  * sequence lower than min_seq will be ignored.
737  */
738 static struct tree_mod_elem *
739 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
740 			   u64 min_seq)
741 {
742 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
743 }
744 
745 /*
746  * this returns the element from the log with the largest time sequence
747  * value that's in the log (the most recent log item). any element with
748  * a time sequence lower than min_seq will be ignored.
749  */
750 static struct tree_mod_elem *
751 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
752 {
753 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
754 }
755 
756 static noinline int
757 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
758 		     struct extent_buffer *src, unsigned long dst_offset,
759 		     unsigned long src_offset, int nr_items)
760 {
761 	int ret = 0;
762 	struct tree_mod_elem **tm_list = NULL;
763 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
764 	int i;
765 	int locked = 0;
766 
767 	if (!tree_mod_need_log(fs_info, NULL))
768 		return 0;
769 
770 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
771 		return 0;
772 
773 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
774 			  GFP_NOFS);
775 	if (!tm_list)
776 		return -ENOMEM;
777 
778 	tm_list_add = tm_list;
779 	tm_list_rem = tm_list + nr_items;
780 	for (i = 0; i < nr_items; i++) {
781 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
782 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
783 		if (!tm_list_rem[i]) {
784 			ret = -ENOMEM;
785 			goto free_tms;
786 		}
787 
788 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
789 		    MOD_LOG_KEY_ADD, GFP_NOFS);
790 		if (!tm_list_add[i]) {
791 			ret = -ENOMEM;
792 			goto free_tms;
793 		}
794 	}
795 
796 	if (tree_mod_dont_log(fs_info, NULL))
797 		goto free_tms;
798 	locked = 1;
799 
800 	for (i = 0; i < nr_items; i++) {
801 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
802 		if (ret)
803 			goto free_tms;
804 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
805 		if (ret)
806 			goto free_tms;
807 	}
808 
809 	write_unlock(&fs_info->tree_mod_log_lock);
810 	kfree(tm_list);
811 
812 	return 0;
813 
814 free_tms:
815 	for (i = 0; i < nr_items * 2; i++) {
816 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
817 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
818 		kfree(tm_list[i]);
819 	}
820 	if (locked)
821 		write_unlock(&fs_info->tree_mod_log_lock);
822 	kfree(tm_list);
823 
824 	return ret;
825 }
826 
827 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
828 {
829 	struct tree_mod_elem **tm_list = NULL;
830 	int nritems = 0;
831 	int i;
832 	int ret = 0;
833 
834 	if (btrfs_header_level(eb) == 0)
835 		return 0;
836 
837 	if (!tree_mod_need_log(eb->fs_info, NULL))
838 		return 0;
839 
840 	nritems = btrfs_header_nritems(eb);
841 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
842 	if (!tm_list)
843 		return -ENOMEM;
844 
845 	for (i = 0; i < nritems; i++) {
846 		tm_list[i] = alloc_tree_mod_elem(eb, i,
847 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
848 		if (!tm_list[i]) {
849 			ret = -ENOMEM;
850 			goto free_tms;
851 		}
852 	}
853 
854 	if (tree_mod_dont_log(eb->fs_info, eb))
855 		goto free_tms;
856 
857 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
858 	write_unlock(&eb->fs_info->tree_mod_log_lock);
859 	if (ret)
860 		goto free_tms;
861 	kfree(tm_list);
862 
863 	return 0;
864 
865 free_tms:
866 	for (i = 0; i < nritems; i++)
867 		kfree(tm_list[i]);
868 	kfree(tm_list);
869 
870 	return ret;
871 }
872 
873 /*
874  * check if the tree block can be shared by multiple trees
875  */
876 int btrfs_block_can_be_shared(struct btrfs_root *root,
877 			      struct extent_buffer *buf)
878 {
879 	/*
880 	 * Tree blocks not in reference counted trees and tree roots
881 	 * are never shared. If a block was allocated after the last
882 	 * snapshot and the block was not allocated by tree relocation,
883 	 * we know the block is not shared.
884 	 */
885 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
886 	    buf != root->node && buf != root->commit_root &&
887 	    (btrfs_header_generation(buf) <=
888 	     btrfs_root_last_snapshot(&root->root_item) ||
889 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
890 		return 1;
891 
892 	return 0;
893 }
894 
895 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
896 				       struct btrfs_root *root,
897 				       struct extent_buffer *buf,
898 				       struct extent_buffer *cow,
899 				       int *last_ref)
900 {
901 	struct btrfs_fs_info *fs_info = root->fs_info;
902 	u64 refs;
903 	u64 owner;
904 	u64 flags;
905 	u64 new_flags = 0;
906 	int ret;
907 
908 	/*
909 	 * Backrefs update rules:
910 	 *
911 	 * Always use full backrefs for extent pointers in tree block
912 	 * allocated by tree relocation.
913 	 *
914 	 * If a shared tree block is no longer referenced by its owner
915 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
916 	 * use full backrefs for extent pointers in tree block.
917 	 *
918 	 * If a tree block is been relocating
919 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
920 	 * use full backrefs for extent pointers in tree block.
921 	 * The reason for this is some operations (such as drop tree)
922 	 * are only allowed for blocks use full backrefs.
923 	 */
924 
925 	if (btrfs_block_can_be_shared(root, buf)) {
926 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
927 					       btrfs_header_level(buf), 1,
928 					       &refs, &flags);
929 		if (ret)
930 			return ret;
931 		if (refs == 0) {
932 			ret = -EROFS;
933 			btrfs_handle_fs_error(fs_info, ret, NULL);
934 			return ret;
935 		}
936 	} else {
937 		refs = 1;
938 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
939 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
940 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
941 		else
942 			flags = 0;
943 	}
944 
945 	owner = btrfs_header_owner(buf);
946 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
947 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
948 
949 	if (refs > 1) {
950 		if ((owner == root->root_key.objectid ||
951 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
952 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
953 			ret = btrfs_inc_ref(trans, root, buf, 1);
954 			if (ret)
955 				return ret;
956 
957 			if (root->root_key.objectid ==
958 			    BTRFS_TREE_RELOC_OBJECTID) {
959 				ret = btrfs_dec_ref(trans, root, buf, 0);
960 				if (ret)
961 					return ret;
962 				ret = btrfs_inc_ref(trans, root, cow, 1);
963 				if (ret)
964 					return ret;
965 			}
966 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
967 		} else {
968 
969 			if (root->root_key.objectid ==
970 			    BTRFS_TREE_RELOC_OBJECTID)
971 				ret = btrfs_inc_ref(trans, root, cow, 1);
972 			else
973 				ret = btrfs_inc_ref(trans, root, cow, 0);
974 			if (ret)
975 				return ret;
976 		}
977 		if (new_flags != 0) {
978 			int level = btrfs_header_level(buf);
979 
980 			ret = btrfs_set_disk_extent_flags(trans, fs_info,
981 							  buf->start,
982 							  buf->len,
983 							  new_flags, level, 0);
984 			if (ret)
985 				return ret;
986 		}
987 	} else {
988 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
989 			if (root->root_key.objectid ==
990 			    BTRFS_TREE_RELOC_OBJECTID)
991 				ret = btrfs_inc_ref(trans, root, cow, 1);
992 			else
993 				ret = btrfs_inc_ref(trans, root, cow, 0);
994 			if (ret)
995 				return ret;
996 			ret = btrfs_dec_ref(trans, root, buf, 1);
997 			if (ret)
998 				return ret;
999 		}
1000 		clean_tree_block(fs_info, buf);
1001 		*last_ref = 1;
1002 	}
1003 	return 0;
1004 }
1005 
1006 /*
1007  * does the dirty work in cow of a single block.  The parent block (if
1008  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1009  * dirty and returned locked.  If you modify the block it needs to be marked
1010  * dirty again.
1011  *
1012  * search_start -- an allocation hint for the new block
1013  *
1014  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1015  * bytes the allocator should try to find free next to the block it returns.
1016  * This is just a hint and may be ignored by the allocator.
1017  */
1018 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1019 			     struct btrfs_root *root,
1020 			     struct extent_buffer *buf,
1021 			     struct extent_buffer *parent, int parent_slot,
1022 			     struct extent_buffer **cow_ret,
1023 			     u64 search_start, u64 empty_size)
1024 {
1025 	struct btrfs_fs_info *fs_info = root->fs_info;
1026 	struct btrfs_disk_key disk_key;
1027 	struct extent_buffer *cow;
1028 	int level, ret;
1029 	int last_ref = 0;
1030 	int unlock_orig = 0;
1031 	u64 parent_start = 0;
1032 
1033 	if (*cow_ret == buf)
1034 		unlock_orig = 1;
1035 
1036 	btrfs_assert_tree_locked(buf);
1037 
1038 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1039 		trans->transid != fs_info->running_transaction->transid);
1040 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1041 		trans->transid != root->last_trans);
1042 
1043 	level = btrfs_header_level(buf);
1044 
1045 	if (level == 0)
1046 		btrfs_item_key(buf, &disk_key, 0);
1047 	else
1048 		btrfs_node_key(buf, &disk_key, 0);
1049 
1050 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1051 		parent_start = parent->start;
1052 
1053 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1054 			root->root_key.objectid, &disk_key, level,
1055 			search_start, empty_size);
1056 	if (IS_ERR(cow))
1057 		return PTR_ERR(cow);
1058 
1059 	/* cow is set to blocking by btrfs_init_new_buffer */
1060 
1061 	copy_extent_buffer_full(cow, buf);
1062 	btrfs_set_header_bytenr(cow, cow->start);
1063 	btrfs_set_header_generation(cow, trans->transid);
1064 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1065 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1066 				     BTRFS_HEADER_FLAG_RELOC);
1067 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1068 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1069 	else
1070 		btrfs_set_header_owner(cow, root->root_key.objectid);
1071 
1072 	write_extent_buffer_fsid(cow, fs_info->fsid);
1073 
1074 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1075 	if (ret) {
1076 		btrfs_abort_transaction(trans, ret);
1077 		return ret;
1078 	}
1079 
1080 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1081 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1082 		if (ret) {
1083 			btrfs_abort_transaction(trans, ret);
1084 			return ret;
1085 		}
1086 	}
1087 
1088 	if (buf == root->node) {
1089 		WARN_ON(parent && parent != buf);
1090 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1091 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1092 			parent_start = buf->start;
1093 
1094 		extent_buffer_get(cow);
1095 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1096 		BUG_ON(ret < 0);
1097 		rcu_assign_pointer(root->node, cow);
1098 
1099 		btrfs_free_tree_block(trans, root, buf, parent_start,
1100 				      last_ref);
1101 		free_extent_buffer(buf);
1102 		add_root_to_dirty_list(root);
1103 	} else {
1104 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1105 		tree_mod_log_insert_key(parent, parent_slot,
1106 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1107 		btrfs_set_node_blockptr(parent, parent_slot,
1108 					cow->start);
1109 		btrfs_set_node_ptr_generation(parent, parent_slot,
1110 					      trans->transid);
1111 		btrfs_mark_buffer_dirty(parent);
1112 		if (last_ref) {
1113 			ret = tree_mod_log_free_eb(buf);
1114 			if (ret) {
1115 				btrfs_abort_transaction(trans, ret);
1116 				return ret;
1117 			}
1118 		}
1119 		btrfs_free_tree_block(trans, root, buf, parent_start,
1120 				      last_ref);
1121 	}
1122 	if (unlock_orig)
1123 		btrfs_tree_unlock(buf);
1124 	free_extent_buffer_stale(buf);
1125 	btrfs_mark_buffer_dirty(cow);
1126 	*cow_ret = cow;
1127 	return 0;
1128 }
1129 
1130 /*
1131  * returns the logical address of the oldest predecessor of the given root.
1132  * entries older than time_seq are ignored.
1133  */
1134 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1135 		struct extent_buffer *eb_root, u64 time_seq)
1136 {
1137 	struct tree_mod_elem *tm;
1138 	struct tree_mod_elem *found = NULL;
1139 	u64 root_logical = eb_root->start;
1140 	int looped = 0;
1141 
1142 	if (!time_seq)
1143 		return NULL;
1144 
1145 	/*
1146 	 * the very last operation that's logged for a root is the
1147 	 * replacement operation (if it is replaced at all). this has
1148 	 * the logical address of the *new* root, making it the very
1149 	 * first operation that's logged for this root.
1150 	 */
1151 	while (1) {
1152 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1153 						time_seq);
1154 		if (!looped && !tm)
1155 			return NULL;
1156 		/*
1157 		 * if there are no tree operation for the oldest root, we simply
1158 		 * return it. this should only happen if that (old) root is at
1159 		 * level 0.
1160 		 */
1161 		if (!tm)
1162 			break;
1163 
1164 		/*
1165 		 * if there's an operation that's not a root replacement, we
1166 		 * found the oldest version of our root. normally, we'll find a
1167 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1168 		 */
1169 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1170 			break;
1171 
1172 		found = tm;
1173 		root_logical = tm->old_root.logical;
1174 		looped = 1;
1175 	}
1176 
1177 	/* if there's no old root to return, return what we found instead */
1178 	if (!found)
1179 		found = tm;
1180 
1181 	return found;
1182 }
1183 
1184 /*
1185  * tm is a pointer to the first operation to rewind within eb. then, all
1186  * previous operations will be rewound (until we reach something older than
1187  * time_seq).
1188  */
1189 static void
1190 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1191 		      u64 time_seq, struct tree_mod_elem *first_tm)
1192 {
1193 	u32 n;
1194 	struct rb_node *next;
1195 	struct tree_mod_elem *tm = first_tm;
1196 	unsigned long o_dst;
1197 	unsigned long o_src;
1198 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1199 
1200 	n = btrfs_header_nritems(eb);
1201 	read_lock(&fs_info->tree_mod_log_lock);
1202 	while (tm && tm->seq >= time_seq) {
1203 		/*
1204 		 * all the operations are recorded with the operator used for
1205 		 * the modification. as we're going backwards, we do the
1206 		 * opposite of each operation here.
1207 		 */
1208 		switch (tm->op) {
1209 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1210 			BUG_ON(tm->slot < n);
1211 			/* Fallthrough */
1212 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1213 		case MOD_LOG_KEY_REMOVE:
1214 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1215 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1216 			btrfs_set_node_ptr_generation(eb, tm->slot,
1217 						      tm->generation);
1218 			n++;
1219 			break;
1220 		case MOD_LOG_KEY_REPLACE:
1221 			BUG_ON(tm->slot >= n);
1222 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1223 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1224 			btrfs_set_node_ptr_generation(eb, tm->slot,
1225 						      tm->generation);
1226 			break;
1227 		case MOD_LOG_KEY_ADD:
1228 			/* if a move operation is needed it's in the log */
1229 			n--;
1230 			break;
1231 		case MOD_LOG_MOVE_KEYS:
1232 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1233 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1234 			memmove_extent_buffer(eb, o_dst, o_src,
1235 					      tm->move.nr_items * p_size);
1236 			break;
1237 		case MOD_LOG_ROOT_REPLACE:
1238 			/*
1239 			 * this operation is special. for roots, this must be
1240 			 * handled explicitly before rewinding.
1241 			 * for non-roots, this operation may exist if the node
1242 			 * was a root: root A -> child B; then A gets empty and
1243 			 * B is promoted to the new root. in the mod log, we'll
1244 			 * have a root-replace operation for B, a tree block
1245 			 * that is no root. we simply ignore that operation.
1246 			 */
1247 			break;
1248 		}
1249 		next = rb_next(&tm->node);
1250 		if (!next)
1251 			break;
1252 		tm = rb_entry(next, struct tree_mod_elem, node);
1253 		if (tm->logical != first_tm->logical)
1254 			break;
1255 	}
1256 	read_unlock(&fs_info->tree_mod_log_lock);
1257 	btrfs_set_header_nritems(eb, n);
1258 }
1259 
1260 /*
1261  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1262  * is returned. If rewind operations happen, a fresh buffer is returned. The
1263  * returned buffer is always read-locked. If the returned buffer is not the
1264  * input buffer, the lock on the input buffer is released and the input buffer
1265  * is freed (its refcount is decremented).
1266  */
1267 static struct extent_buffer *
1268 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1269 		    struct extent_buffer *eb, u64 time_seq)
1270 {
1271 	struct extent_buffer *eb_rewin;
1272 	struct tree_mod_elem *tm;
1273 
1274 	if (!time_seq)
1275 		return eb;
1276 
1277 	if (btrfs_header_level(eb) == 0)
1278 		return eb;
1279 
1280 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1281 	if (!tm)
1282 		return eb;
1283 
1284 	btrfs_set_path_blocking(path);
1285 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1286 
1287 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1288 		BUG_ON(tm->slot != 0);
1289 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1290 		if (!eb_rewin) {
1291 			btrfs_tree_read_unlock_blocking(eb);
1292 			free_extent_buffer(eb);
1293 			return NULL;
1294 		}
1295 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1296 		btrfs_set_header_backref_rev(eb_rewin,
1297 					     btrfs_header_backref_rev(eb));
1298 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1299 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1300 	} else {
1301 		eb_rewin = btrfs_clone_extent_buffer(eb);
1302 		if (!eb_rewin) {
1303 			btrfs_tree_read_unlock_blocking(eb);
1304 			free_extent_buffer(eb);
1305 			return NULL;
1306 		}
1307 	}
1308 
1309 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1310 	btrfs_tree_read_unlock_blocking(eb);
1311 	free_extent_buffer(eb);
1312 
1313 	extent_buffer_get(eb_rewin);
1314 	btrfs_tree_read_lock(eb_rewin);
1315 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1316 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1317 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1318 
1319 	return eb_rewin;
1320 }
1321 
1322 /*
1323  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1324  * value. If there are no changes, the current root->root_node is returned. If
1325  * anything changed in between, there's a fresh buffer allocated on which the
1326  * rewind operations are done. In any case, the returned buffer is read locked.
1327  * Returns NULL on error (with no locks held).
1328  */
1329 static inline struct extent_buffer *
1330 get_old_root(struct btrfs_root *root, u64 time_seq)
1331 {
1332 	struct btrfs_fs_info *fs_info = root->fs_info;
1333 	struct tree_mod_elem *tm;
1334 	struct extent_buffer *eb = NULL;
1335 	struct extent_buffer *eb_root;
1336 	struct extent_buffer *old;
1337 	struct tree_mod_root *old_root = NULL;
1338 	u64 old_generation = 0;
1339 	u64 logical;
1340 	int level;
1341 
1342 	eb_root = btrfs_read_lock_root_node(root);
1343 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1344 	if (!tm)
1345 		return eb_root;
1346 
1347 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1348 		old_root = &tm->old_root;
1349 		old_generation = tm->generation;
1350 		logical = old_root->logical;
1351 		level = old_root->level;
1352 	} else {
1353 		logical = eb_root->start;
1354 		level = btrfs_header_level(eb_root);
1355 	}
1356 
1357 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1358 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1359 		btrfs_tree_read_unlock(eb_root);
1360 		free_extent_buffer(eb_root);
1361 		old = read_tree_block(fs_info, logical, 0, level, NULL);
1362 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1363 			if (!IS_ERR(old))
1364 				free_extent_buffer(old);
1365 			btrfs_warn(fs_info,
1366 				   "failed to read tree block %llu from get_old_root",
1367 				   logical);
1368 		} else {
1369 			eb = btrfs_clone_extent_buffer(old);
1370 			free_extent_buffer(old);
1371 		}
1372 	} else if (old_root) {
1373 		btrfs_tree_read_unlock(eb_root);
1374 		free_extent_buffer(eb_root);
1375 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1376 	} else {
1377 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1378 		eb = btrfs_clone_extent_buffer(eb_root);
1379 		btrfs_tree_read_unlock_blocking(eb_root);
1380 		free_extent_buffer(eb_root);
1381 	}
1382 
1383 	if (!eb)
1384 		return NULL;
1385 	extent_buffer_get(eb);
1386 	btrfs_tree_read_lock(eb);
1387 	if (old_root) {
1388 		btrfs_set_header_bytenr(eb, eb->start);
1389 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1390 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1391 		btrfs_set_header_level(eb, old_root->level);
1392 		btrfs_set_header_generation(eb, old_generation);
1393 	}
1394 	if (tm)
1395 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1396 	else
1397 		WARN_ON(btrfs_header_level(eb) != 0);
1398 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1399 
1400 	return eb;
1401 }
1402 
1403 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1404 {
1405 	struct tree_mod_elem *tm;
1406 	int level;
1407 	struct extent_buffer *eb_root = btrfs_root_node(root);
1408 
1409 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1410 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1411 		level = tm->old_root.level;
1412 	} else {
1413 		level = btrfs_header_level(eb_root);
1414 	}
1415 	free_extent_buffer(eb_root);
1416 
1417 	return level;
1418 }
1419 
1420 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1421 				   struct btrfs_root *root,
1422 				   struct extent_buffer *buf)
1423 {
1424 	if (btrfs_is_testing(root->fs_info))
1425 		return 0;
1426 
1427 	/* Ensure we can see the FORCE_COW bit */
1428 	smp_mb__before_atomic();
1429 
1430 	/*
1431 	 * We do not need to cow a block if
1432 	 * 1) this block is not created or changed in this transaction;
1433 	 * 2) this block does not belong to TREE_RELOC tree;
1434 	 * 3) the root is not forced COW.
1435 	 *
1436 	 * What is forced COW:
1437 	 *    when we create snapshot during committing the transaction,
1438 	 *    after we've finished coping src root, we must COW the shared
1439 	 *    block to ensure the metadata consistency.
1440 	 */
1441 	if (btrfs_header_generation(buf) == trans->transid &&
1442 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1443 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1444 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1445 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1446 		return 0;
1447 	return 1;
1448 }
1449 
1450 /*
1451  * cows a single block, see __btrfs_cow_block for the real work.
1452  * This version of it has extra checks so that a block isn't COWed more than
1453  * once per transaction, as long as it hasn't been written yet
1454  */
1455 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1456 		    struct btrfs_root *root, struct extent_buffer *buf,
1457 		    struct extent_buffer *parent, int parent_slot,
1458 		    struct extent_buffer **cow_ret)
1459 {
1460 	struct btrfs_fs_info *fs_info = root->fs_info;
1461 	u64 search_start;
1462 	int ret;
1463 
1464 	if (trans->transaction != fs_info->running_transaction)
1465 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1466 		       trans->transid,
1467 		       fs_info->running_transaction->transid);
1468 
1469 	if (trans->transid != fs_info->generation)
1470 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1471 		       trans->transid, fs_info->generation);
1472 
1473 	if (!should_cow_block(trans, root, buf)) {
1474 		trans->dirty = true;
1475 		*cow_ret = buf;
1476 		return 0;
1477 	}
1478 
1479 	search_start = buf->start & ~((u64)SZ_1G - 1);
1480 
1481 	if (parent)
1482 		btrfs_set_lock_blocking(parent);
1483 	btrfs_set_lock_blocking(buf);
1484 
1485 	ret = __btrfs_cow_block(trans, root, buf, parent,
1486 				 parent_slot, cow_ret, search_start, 0);
1487 
1488 	trace_btrfs_cow_block(root, buf, *cow_ret);
1489 
1490 	return ret;
1491 }
1492 
1493 /*
1494  * helper function for defrag to decide if two blocks pointed to by a
1495  * node are actually close by
1496  */
1497 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1498 {
1499 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1500 		return 1;
1501 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1502 		return 1;
1503 	return 0;
1504 }
1505 
1506 /*
1507  * compare two keys in a memcmp fashion
1508  */
1509 static int comp_keys(const struct btrfs_disk_key *disk,
1510 		     const struct btrfs_key *k2)
1511 {
1512 	struct btrfs_key k1;
1513 
1514 	btrfs_disk_key_to_cpu(&k1, disk);
1515 
1516 	return btrfs_comp_cpu_keys(&k1, k2);
1517 }
1518 
1519 /*
1520  * same as comp_keys only with two btrfs_key's
1521  */
1522 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1523 {
1524 	if (k1->objectid > k2->objectid)
1525 		return 1;
1526 	if (k1->objectid < k2->objectid)
1527 		return -1;
1528 	if (k1->type > k2->type)
1529 		return 1;
1530 	if (k1->type < k2->type)
1531 		return -1;
1532 	if (k1->offset > k2->offset)
1533 		return 1;
1534 	if (k1->offset < k2->offset)
1535 		return -1;
1536 	return 0;
1537 }
1538 
1539 /*
1540  * this is used by the defrag code to go through all the
1541  * leaves pointed to by a node and reallocate them so that
1542  * disk order is close to key order
1543  */
1544 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1545 		       struct btrfs_root *root, struct extent_buffer *parent,
1546 		       int start_slot, u64 *last_ret,
1547 		       struct btrfs_key *progress)
1548 {
1549 	struct btrfs_fs_info *fs_info = root->fs_info;
1550 	struct extent_buffer *cur;
1551 	u64 blocknr;
1552 	u64 gen;
1553 	u64 search_start = *last_ret;
1554 	u64 last_block = 0;
1555 	u64 other;
1556 	u32 parent_nritems;
1557 	int end_slot;
1558 	int i;
1559 	int err = 0;
1560 	int parent_level;
1561 	int uptodate;
1562 	u32 blocksize;
1563 	int progress_passed = 0;
1564 	struct btrfs_disk_key disk_key;
1565 
1566 	parent_level = btrfs_header_level(parent);
1567 
1568 	WARN_ON(trans->transaction != fs_info->running_transaction);
1569 	WARN_ON(trans->transid != fs_info->generation);
1570 
1571 	parent_nritems = btrfs_header_nritems(parent);
1572 	blocksize = fs_info->nodesize;
1573 	end_slot = parent_nritems - 1;
1574 
1575 	if (parent_nritems <= 1)
1576 		return 0;
1577 
1578 	btrfs_set_lock_blocking(parent);
1579 
1580 	for (i = start_slot; i <= end_slot; i++) {
1581 		struct btrfs_key first_key;
1582 		int close = 1;
1583 
1584 		btrfs_node_key(parent, &disk_key, i);
1585 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1586 			continue;
1587 
1588 		progress_passed = 1;
1589 		blocknr = btrfs_node_blockptr(parent, i);
1590 		gen = btrfs_node_ptr_generation(parent, i);
1591 		btrfs_node_key_to_cpu(parent, &first_key, i);
1592 		if (last_block == 0)
1593 			last_block = blocknr;
1594 
1595 		if (i > 0) {
1596 			other = btrfs_node_blockptr(parent, i - 1);
1597 			close = close_blocks(blocknr, other, blocksize);
1598 		}
1599 		if (!close && i < end_slot) {
1600 			other = btrfs_node_blockptr(parent, i + 1);
1601 			close = close_blocks(blocknr, other, blocksize);
1602 		}
1603 		if (close) {
1604 			last_block = blocknr;
1605 			continue;
1606 		}
1607 
1608 		cur = find_extent_buffer(fs_info, blocknr);
1609 		if (cur)
1610 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1611 		else
1612 			uptodate = 0;
1613 		if (!cur || !uptodate) {
1614 			if (!cur) {
1615 				cur = read_tree_block(fs_info, blocknr, gen,
1616 						      parent_level - 1,
1617 						      &first_key);
1618 				if (IS_ERR(cur)) {
1619 					return PTR_ERR(cur);
1620 				} else if (!extent_buffer_uptodate(cur)) {
1621 					free_extent_buffer(cur);
1622 					return -EIO;
1623 				}
1624 			} else if (!uptodate) {
1625 				err = btrfs_read_buffer(cur, gen,
1626 						parent_level - 1,&first_key);
1627 				if (err) {
1628 					free_extent_buffer(cur);
1629 					return err;
1630 				}
1631 			}
1632 		}
1633 		if (search_start == 0)
1634 			search_start = last_block;
1635 
1636 		btrfs_tree_lock(cur);
1637 		btrfs_set_lock_blocking(cur);
1638 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1639 					&cur, search_start,
1640 					min(16 * blocksize,
1641 					    (end_slot - i) * blocksize));
1642 		if (err) {
1643 			btrfs_tree_unlock(cur);
1644 			free_extent_buffer(cur);
1645 			break;
1646 		}
1647 		search_start = cur->start;
1648 		last_block = cur->start;
1649 		*last_ret = search_start;
1650 		btrfs_tree_unlock(cur);
1651 		free_extent_buffer(cur);
1652 	}
1653 	return err;
1654 }
1655 
1656 /*
1657  * search for key in the extent_buffer.  The items start at offset p,
1658  * and they are item_size apart.  There are 'max' items in p.
1659  *
1660  * the slot in the array is returned via slot, and it points to
1661  * the place where you would insert key if it is not found in
1662  * the array.
1663  *
1664  * slot may point to max if the key is bigger than all of the keys
1665  */
1666 static noinline int generic_bin_search(struct extent_buffer *eb,
1667 				       unsigned long p, int item_size,
1668 				       const struct btrfs_key *key,
1669 				       int max, int *slot)
1670 {
1671 	int low = 0;
1672 	int high = max;
1673 	int mid;
1674 	int ret;
1675 	struct btrfs_disk_key *tmp = NULL;
1676 	struct btrfs_disk_key unaligned;
1677 	unsigned long offset;
1678 	char *kaddr = NULL;
1679 	unsigned long map_start = 0;
1680 	unsigned long map_len = 0;
1681 	int err;
1682 
1683 	if (low > high) {
1684 		btrfs_err(eb->fs_info,
1685 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1686 			  __func__, low, high, eb->start,
1687 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1688 		return -EINVAL;
1689 	}
1690 
1691 	while (low < high) {
1692 		mid = (low + high) / 2;
1693 		offset = p + mid * item_size;
1694 
1695 		if (!kaddr || offset < map_start ||
1696 		    (offset + sizeof(struct btrfs_disk_key)) >
1697 		    map_start + map_len) {
1698 
1699 			err = map_private_extent_buffer(eb, offset,
1700 						sizeof(struct btrfs_disk_key),
1701 						&kaddr, &map_start, &map_len);
1702 
1703 			if (!err) {
1704 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1705 							map_start);
1706 			} else if (err == 1) {
1707 				read_extent_buffer(eb, &unaligned,
1708 						   offset, sizeof(unaligned));
1709 				tmp = &unaligned;
1710 			} else {
1711 				return err;
1712 			}
1713 
1714 		} else {
1715 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1716 							map_start);
1717 		}
1718 		ret = comp_keys(tmp, key);
1719 
1720 		if (ret < 0)
1721 			low = mid + 1;
1722 		else if (ret > 0)
1723 			high = mid;
1724 		else {
1725 			*slot = mid;
1726 			return 0;
1727 		}
1728 	}
1729 	*slot = low;
1730 	return 1;
1731 }
1732 
1733 /*
1734  * simple bin_search frontend that does the right thing for
1735  * leaves vs nodes
1736  */
1737 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1738 		     int level, int *slot)
1739 {
1740 	if (level == 0)
1741 		return generic_bin_search(eb,
1742 					  offsetof(struct btrfs_leaf, items),
1743 					  sizeof(struct btrfs_item),
1744 					  key, btrfs_header_nritems(eb),
1745 					  slot);
1746 	else
1747 		return generic_bin_search(eb,
1748 					  offsetof(struct btrfs_node, ptrs),
1749 					  sizeof(struct btrfs_key_ptr),
1750 					  key, btrfs_header_nritems(eb),
1751 					  slot);
1752 }
1753 
1754 static void root_add_used(struct btrfs_root *root, u32 size)
1755 {
1756 	spin_lock(&root->accounting_lock);
1757 	btrfs_set_root_used(&root->root_item,
1758 			    btrfs_root_used(&root->root_item) + size);
1759 	spin_unlock(&root->accounting_lock);
1760 }
1761 
1762 static void root_sub_used(struct btrfs_root *root, u32 size)
1763 {
1764 	spin_lock(&root->accounting_lock);
1765 	btrfs_set_root_used(&root->root_item,
1766 			    btrfs_root_used(&root->root_item) - size);
1767 	spin_unlock(&root->accounting_lock);
1768 }
1769 
1770 /* given a node and slot number, this reads the blocks it points to.  The
1771  * extent buffer is returned with a reference taken (but unlocked).
1772  */
1773 static noinline struct extent_buffer *
1774 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent,
1775 	       int slot)
1776 {
1777 	int level = btrfs_header_level(parent);
1778 	struct extent_buffer *eb;
1779 	struct btrfs_key first_key;
1780 
1781 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1782 		return ERR_PTR(-ENOENT);
1783 
1784 	BUG_ON(level == 0);
1785 
1786 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1787 	eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot),
1788 			     btrfs_node_ptr_generation(parent, slot),
1789 			     level - 1, &first_key);
1790 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1791 		free_extent_buffer(eb);
1792 		eb = ERR_PTR(-EIO);
1793 	}
1794 
1795 	return eb;
1796 }
1797 
1798 /*
1799  * node level balancing, used to make sure nodes are in proper order for
1800  * item deletion.  We balance from the top down, so we have to make sure
1801  * that a deletion won't leave an node completely empty later on.
1802  */
1803 static noinline int balance_level(struct btrfs_trans_handle *trans,
1804 			 struct btrfs_root *root,
1805 			 struct btrfs_path *path, int level)
1806 {
1807 	struct btrfs_fs_info *fs_info = root->fs_info;
1808 	struct extent_buffer *right = NULL;
1809 	struct extent_buffer *mid;
1810 	struct extent_buffer *left = NULL;
1811 	struct extent_buffer *parent = NULL;
1812 	int ret = 0;
1813 	int wret;
1814 	int pslot;
1815 	int orig_slot = path->slots[level];
1816 	u64 orig_ptr;
1817 
1818 	if (level == 0)
1819 		return 0;
1820 
1821 	mid = path->nodes[level];
1822 
1823 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1824 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1825 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1826 
1827 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1828 
1829 	if (level < BTRFS_MAX_LEVEL - 1) {
1830 		parent = path->nodes[level + 1];
1831 		pslot = path->slots[level + 1];
1832 	}
1833 
1834 	/*
1835 	 * deal with the case where there is only one pointer in the root
1836 	 * by promoting the node below to a root
1837 	 */
1838 	if (!parent) {
1839 		struct extent_buffer *child;
1840 
1841 		if (btrfs_header_nritems(mid) != 1)
1842 			return 0;
1843 
1844 		/* promote the child to a root */
1845 		child = read_node_slot(fs_info, mid, 0);
1846 		if (IS_ERR(child)) {
1847 			ret = PTR_ERR(child);
1848 			btrfs_handle_fs_error(fs_info, ret, NULL);
1849 			goto enospc;
1850 		}
1851 
1852 		btrfs_tree_lock(child);
1853 		btrfs_set_lock_blocking(child);
1854 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1855 		if (ret) {
1856 			btrfs_tree_unlock(child);
1857 			free_extent_buffer(child);
1858 			goto enospc;
1859 		}
1860 
1861 		ret = tree_mod_log_insert_root(root->node, child, 1);
1862 		BUG_ON(ret < 0);
1863 		rcu_assign_pointer(root->node, child);
1864 
1865 		add_root_to_dirty_list(root);
1866 		btrfs_tree_unlock(child);
1867 
1868 		path->locks[level] = 0;
1869 		path->nodes[level] = NULL;
1870 		clean_tree_block(fs_info, mid);
1871 		btrfs_tree_unlock(mid);
1872 		/* once for the path */
1873 		free_extent_buffer(mid);
1874 
1875 		root_sub_used(root, mid->len);
1876 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1877 		/* once for the root ptr */
1878 		free_extent_buffer_stale(mid);
1879 		return 0;
1880 	}
1881 	if (btrfs_header_nritems(mid) >
1882 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1883 		return 0;
1884 
1885 	left = read_node_slot(fs_info, parent, pslot - 1);
1886 	if (IS_ERR(left))
1887 		left = NULL;
1888 
1889 	if (left) {
1890 		btrfs_tree_lock(left);
1891 		btrfs_set_lock_blocking(left);
1892 		wret = btrfs_cow_block(trans, root, left,
1893 				       parent, pslot - 1, &left);
1894 		if (wret) {
1895 			ret = wret;
1896 			goto enospc;
1897 		}
1898 	}
1899 
1900 	right = read_node_slot(fs_info, parent, pslot + 1);
1901 	if (IS_ERR(right))
1902 		right = NULL;
1903 
1904 	if (right) {
1905 		btrfs_tree_lock(right);
1906 		btrfs_set_lock_blocking(right);
1907 		wret = btrfs_cow_block(trans, root, right,
1908 				       parent, pslot + 1, &right);
1909 		if (wret) {
1910 			ret = wret;
1911 			goto enospc;
1912 		}
1913 	}
1914 
1915 	/* first, try to make some room in the middle buffer */
1916 	if (left) {
1917 		orig_slot += btrfs_header_nritems(left);
1918 		wret = push_node_left(trans, fs_info, left, mid, 1);
1919 		if (wret < 0)
1920 			ret = wret;
1921 	}
1922 
1923 	/*
1924 	 * then try to empty the right most buffer into the middle
1925 	 */
1926 	if (right) {
1927 		wret = push_node_left(trans, fs_info, mid, right, 1);
1928 		if (wret < 0 && wret != -ENOSPC)
1929 			ret = wret;
1930 		if (btrfs_header_nritems(right) == 0) {
1931 			clean_tree_block(fs_info, right);
1932 			btrfs_tree_unlock(right);
1933 			del_ptr(root, path, level + 1, pslot + 1);
1934 			root_sub_used(root, right->len);
1935 			btrfs_free_tree_block(trans, root, right, 0, 1);
1936 			free_extent_buffer_stale(right);
1937 			right = NULL;
1938 		} else {
1939 			struct btrfs_disk_key right_key;
1940 			btrfs_node_key(right, &right_key, 0);
1941 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1942 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1943 			BUG_ON(ret < 0);
1944 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1945 			btrfs_mark_buffer_dirty(parent);
1946 		}
1947 	}
1948 	if (btrfs_header_nritems(mid) == 1) {
1949 		/*
1950 		 * we're not allowed to leave a node with one item in the
1951 		 * tree during a delete.  A deletion from lower in the tree
1952 		 * could try to delete the only pointer in this node.
1953 		 * So, pull some keys from the left.
1954 		 * There has to be a left pointer at this point because
1955 		 * otherwise we would have pulled some pointers from the
1956 		 * right
1957 		 */
1958 		if (!left) {
1959 			ret = -EROFS;
1960 			btrfs_handle_fs_error(fs_info, ret, NULL);
1961 			goto enospc;
1962 		}
1963 		wret = balance_node_right(trans, fs_info, mid, left);
1964 		if (wret < 0) {
1965 			ret = wret;
1966 			goto enospc;
1967 		}
1968 		if (wret == 1) {
1969 			wret = push_node_left(trans, fs_info, left, mid, 1);
1970 			if (wret < 0)
1971 				ret = wret;
1972 		}
1973 		BUG_ON(wret == 1);
1974 	}
1975 	if (btrfs_header_nritems(mid) == 0) {
1976 		clean_tree_block(fs_info, mid);
1977 		btrfs_tree_unlock(mid);
1978 		del_ptr(root, path, level + 1, pslot);
1979 		root_sub_used(root, mid->len);
1980 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1981 		free_extent_buffer_stale(mid);
1982 		mid = NULL;
1983 	} else {
1984 		/* update the parent key to reflect our changes */
1985 		struct btrfs_disk_key mid_key;
1986 		btrfs_node_key(mid, &mid_key, 0);
1987 		ret = tree_mod_log_insert_key(parent, pslot,
1988 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1989 		BUG_ON(ret < 0);
1990 		btrfs_set_node_key(parent, &mid_key, pslot);
1991 		btrfs_mark_buffer_dirty(parent);
1992 	}
1993 
1994 	/* update the path */
1995 	if (left) {
1996 		if (btrfs_header_nritems(left) > orig_slot) {
1997 			extent_buffer_get(left);
1998 			/* left was locked after cow */
1999 			path->nodes[level] = left;
2000 			path->slots[level + 1] -= 1;
2001 			path->slots[level] = orig_slot;
2002 			if (mid) {
2003 				btrfs_tree_unlock(mid);
2004 				free_extent_buffer(mid);
2005 			}
2006 		} else {
2007 			orig_slot -= btrfs_header_nritems(left);
2008 			path->slots[level] = orig_slot;
2009 		}
2010 	}
2011 	/* double check we haven't messed things up */
2012 	if (orig_ptr !=
2013 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2014 		BUG();
2015 enospc:
2016 	if (right) {
2017 		btrfs_tree_unlock(right);
2018 		free_extent_buffer(right);
2019 	}
2020 	if (left) {
2021 		if (path->nodes[level] != left)
2022 			btrfs_tree_unlock(left);
2023 		free_extent_buffer(left);
2024 	}
2025 	return ret;
2026 }
2027 
2028 /* Node balancing for insertion.  Here we only split or push nodes around
2029  * when they are completely full.  This is also done top down, so we
2030  * have to be pessimistic.
2031  */
2032 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2033 					  struct btrfs_root *root,
2034 					  struct btrfs_path *path, int level)
2035 {
2036 	struct btrfs_fs_info *fs_info = root->fs_info;
2037 	struct extent_buffer *right = NULL;
2038 	struct extent_buffer *mid;
2039 	struct extent_buffer *left = NULL;
2040 	struct extent_buffer *parent = NULL;
2041 	int ret = 0;
2042 	int wret;
2043 	int pslot;
2044 	int orig_slot = path->slots[level];
2045 
2046 	if (level == 0)
2047 		return 1;
2048 
2049 	mid = path->nodes[level];
2050 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2051 
2052 	if (level < BTRFS_MAX_LEVEL - 1) {
2053 		parent = path->nodes[level + 1];
2054 		pslot = path->slots[level + 1];
2055 	}
2056 
2057 	if (!parent)
2058 		return 1;
2059 
2060 	left = read_node_slot(fs_info, parent, pslot - 1);
2061 	if (IS_ERR(left))
2062 		left = NULL;
2063 
2064 	/* first, try to make some room in the middle buffer */
2065 	if (left) {
2066 		u32 left_nr;
2067 
2068 		btrfs_tree_lock(left);
2069 		btrfs_set_lock_blocking(left);
2070 
2071 		left_nr = btrfs_header_nritems(left);
2072 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2073 			wret = 1;
2074 		} else {
2075 			ret = btrfs_cow_block(trans, root, left, parent,
2076 					      pslot - 1, &left);
2077 			if (ret)
2078 				wret = 1;
2079 			else {
2080 				wret = push_node_left(trans, fs_info,
2081 						      left, mid, 0);
2082 			}
2083 		}
2084 		if (wret < 0)
2085 			ret = wret;
2086 		if (wret == 0) {
2087 			struct btrfs_disk_key disk_key;
2088 			orig_slot += left_nr;
2089 			btrfs_node_key(mid, &disk_key, 0);
2090 			ret = tree_mod_log_insert_key(parent, pslot,
2091 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2092 			BUG_ON(ret < 0);
2093 			btrfs_set_node_key(parent, &disk_key, pslot);
2094 			btrfs_mark_buffer_dirty(parent);
2095 			if (btrfs_header_nritems(left) > orig_slot) {
2096 				path->nodes[level] = left;
2097 				path->slots[level + 1] -= 1;
2098 				path->slots[level] = orig_slot;
2099 				btrfs_tree_unlock(mid);
2100 				free_extent_buffer(mid);
2101 			} else {
2102 				orig_slot -=
2103 					btrfs_header_nritems(left);
2104 				path->slots[level] = orig_slot;
2105 				btrfs_tree_unlock(left);
2106 				free_extent_buffer(left);
2107 			}
2108 			return 0;
2109 		}
2110 		btrfs_tree_unlock(left);
2111 		free_extent_buffer(left);
2112 	}
2113 	right = read_node_slot(fs_info, parent, pslot + 1);
2114 	if (IS_ERR(right))
2115 		right = NULL;
2116 
2117 	/*
2118 	 * then try to empty the right most buffer into the middle
2119 	 */
2120 	if (right) {
2121 		u32 right_nr;
2122 
2123 		btrfs_tree_lock(right);
2124 		btrfs_set_lock_blocking(right);
2125 
2126 		right_nr = btrfs_header_nritems(right);
2127 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2128 			wret = 1;
2129 		} else {
2130 			ret = btrfs_cow_block(trans, root, right,
2131 					      parent, pslot + 1,
2132 					      &right);
2133 			if (ret)
2134 				wret = 1;
2135 			else {
2136 				wret = balance_node_right(trans, fs_info,
2137 							  right, mid);
2138 			}
2139 		}
2140 		if (wret < 0)
2141 			ret = wret;
2142 		if (wret == 0) {
2143 			struct btrfs_disk_key disk_key;
2144 
2145 			btrfs_node_key(right, &disk_key, 0);
2146 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2147 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2148 			BUG_ON(ret < 0);
2149 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2150 			btrfs_mark_buffer_dirty(parent);
2151 
2152 			if (btrfs_header_nritems(mid) <= orig_slot) {
2153 				path->nodes[level] = right;
2154 				path->slots[level + 1] += 1;
2155 				path->slots[level] = orig_slot -
2156 					btrfs_header_nritems(mid);
2157 				btrfs_tree_unlock(mid);
2158 				free_extent_buffer(mid);
2159 			} else {
2160 				btrfs_tree_unlock(right);
2161 				free_extent_buffer(right);
2162 			}
2163 			return 0;
2164 		}
2165 		btrfs_tree_unlock(right);
2166 		free_extent_buffer(right);
2167 	}
2168 	return 1;
2169 }
2170 
2171 /*
2172  * readahead one full node of leaves, finding things that are close
2173  * to the block in 'slot', and triggering ra on them.
2174  */
2175 static void reada_for_search(struct btrfs_fs_info *fs_info,
2176 			     struct btrfs_path *path,
2177 			     int level, int slot, u64 objectid)
2178 {
2179 	struct extent_buffer *node;
2180 	struct btrfs_disk_key disk_key;
2181 	u32 nritems;
2182 	u64 search;
2183 	u64 target;
2184 	u64 nread = 0;
2185 	struct extent_buffer *eb;
2186 	u32 nr;
2187 	u32 blocksize;
2188 	u32 nscan = 0;
2189 
2190 	if (level != 1)
2191 		return;
2192 
2193 	if (!path->nodes[level])
2194 		return;
2195 
2196 	node = path->nodes[level];
2197 
2198 	search = btrfs_node_blockptr(node, slot);
2199 	blocksize = fs_info->nodesize;
2200 	eb = find_extent_buffer(fs_info, search);
2201 	if (eb) {
2202 		free_extent_buffer(eb);
2203 		return;
2204 	}
2205 
2206 	target = search;
2207 
2208 	nritems = btrfs_header_nritems(node);
2209 	nr = slot;
2210 
2211 	while (1) {
2212 		if (path->reada == READA_BACK) {
2213 			if (nr == 0)
2214 				break;
2215 			nr--;
2216 		} else if (path->reada == READA_FORWARD) {
2217 			nr++;
2218 			if (nr >= nritems)
2219 				break;
2220 		}
2221 		if (path->reada == READA_BACK && objectid) {
2222 			btrfs_node_key(node, &disk_key, nr);
2223 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2224 				break;
2225 		}
2226 		search = btrfs_node_blockptr(node, nr);
2227 		if ((search <= target && target - search <= 65536) ||
2228 		    (search > target && search - target <= 65536)) {
2229 			readahead_tree_block(fs_info, search);
2230 			nread += blocksize;
2231 		}
2232 		nscan++;
2233 		if ((nread > 65536 || nscan > 32))
2234 			break;
2235 	}
2236 }
2237 
2238 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2239 				       struct btrfs_path *path, int level)
2240 {
2241 	int slot;
2242 	int nritems;
2243 	struct extent_buffer *parent;
2244 	struct extent_buffer *eb;
2245 	u64 gen;
2246 	u64 block1 = 0;
2247 	u64 block2 = 0;
2248 
2249 	parent = path->nodes[level + 1];
2250 	if (!parent)
2251 		return;
2252 
2253 	nritems = btrfs_header_nritems(parent);
2254 	slot = path->slots[level + 1];
2255 
2256 	if (slot > 0) {
2257 		block1 = btrfs_node_blockptr(parent, slot - 1);
2258 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2259 		eb = find_extent_buffer(fs_info, block1);
2260 		/*
2261 		 * if we get -eagain from btrfs_buffer_uptodate, we
2262 		 * don't want to return eagain here.  That will loop
2263 		 * forever
2264 		 */
2265 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2266 			block1 = 0;
2267 		free_extent_buffer(eb);
2268 	}
2269 	if (slot + 1 < nritems) {
2270 		block2 = btrfs_node_blockptr(parent, slot + 1);
2271 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2272 		eb = find_extent_buffer(fs_info, block2);
2273 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2274 			block2 = 0;
2275 		free_extent_buffer(eb);
2276 	}
2277 
2278 	if (block1)
2279 		readahead_tree_block(fs_info, block1);
2280 	if (block2)
2281 		readahead_tree_block(fs_info, block2);
2282 }
2283 
2284 
2285 /*
2286  * when we walk down the tree, it is usually safe to unlock the higher layers
2287  * in the tree.  The exceptions are when our path goes through slot 0, because
2288  * operations on the tree might require changing key pointers higher up in the
2289  * tree.
2290  *
2291  * callers might also have set path->keep_locks, which tells this code to keep
2292  * the lock if the path points to the last slot in the block.  This is part of
2293  * walking through the tree, and selecting the next slot in the higher block.
2294  *
2295  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2296  * if lowest_unlock is 1, level 0 won't be unlocked
2297  */
2298 static noinline void unlock_up(struct btrfs_path *path, int level,
2299 			       int lowest_unlock, int min_write_lock_level,
2300 			       int *write_lock_level)
2301 {
2302 	int i;
2303 	int skip_level = level;
2304 	int no_skips = 0;
2305 	struct extent_buffer *t;
2306 
2307 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2308 		if (!path->nodes[i])
2309 			break;
2310 		if (!path->locks[i])
2311 			break;
2312 		if (!no_skips && path->slots[i] == 0) {
2313 			skip_level = i + 1;
2314 			continue;
2315 		}
2316 		if (!no_skips && path->keep_locks) {
2317 			u32 nritems;
2318 			t = path->nodes[i];
2319 			nritems = btrfs_header_nritems(t);
2320 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2321 				skip_level = i + 1;
2322 				continue;
2323 			}
2324 		}
2325 		if (skip_level < i && i >= lowest_unlock)
2326 			no_skips = 1;
2327 
2328 		t = path->nodes[i];
2329 		if (i >= lowest_unlock && i > skip_level) {
2330 			btrfs_tree_unlock_rw(t, path->locks[i]);
2331 			path->locks[i] = 0;
2332 			if (write_lock_level &&
2333 			    i > min_write_lock_level &&
2334 			    i <= *write_lock_level) {
2335 				*write_lock_level = i - 1;
2336 			}
2337 		}
2338 	}
2339 }
2340 
2341 /*
2342  * This releases any locks held in the path starting at level and
2343  * going all the way up to the root.
2344  *
2345  * btrfs_search_slot will keep the lock held on higher nodes in a few
2346  * corner cases, such as COW of the block at slot zero in the node.  This
2347  * ignores those rules, and it should only be called when there are no
2348  * more updates to be done higher up in the tree.
2349  */
2350 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2351 {
2352 	int i;
2353 
2354 	if (path->keep_locks)
2355 		return;
2356 
2357 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2358 		if (!path->nodes[i])
2359 			continue;
2360 		if (!path->locks[i])
2361 			continue;
2362 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2363 		path->locks[i] = 0;
2364 	}
2365 }
2366 
2367 /*
2368  * helper function for btrfs_search_slot.  The goal is to find a block
2369  * in cache without setting the path to blocking.  If we find the block
2370  * we return zero and the path is unchanged.
2371  *
2372  * If we can't find the block, we set the path blocking and do some
2373  * reada.  -EAGAIN is returned and the search must be repeated.
2374  */
2375 static int
2376 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2377 		      struct extent_buffer **eb_ret, int level, int slot,
2378 		      const struct btrfs_key *key)
2379 {
2380 	struct btrfs_fs_info *fs_info = root->fs_info;
2381 	u64 blocknr;
2382 	u64 gen;
2383 	struct extent_buffer *b = *eb_ret;
2384 	struct extent_buffer *tmp;
2385 	struct btrfs_key first_key;
2386 	int ret;
2387 	int parent_level;
2388 
2389 	blocknr = btrfs_node_blockptr(b, slot);
2390 	gen = btrfs_node_ptr_generation(b, slot);
2391 	parent_level = btrfs_header_level(b);
2392 	btrfs_node_key_to_cpu(b, &first_key, slot);
2393 
2394 	tmp = find_extent_buffer(fs_info, blocknr);
2395 	if (tmp) {
2396 		/* first we do an atomic uptodate check */
2397 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2398 			*eb_ret = tmp;
2399 			return 0;
2400 		}
2401 
2402 		/* the pages were up to date, but we failed
2403 		 * the generation number check.  Do a full
2404 		 * read for the generation number that is correct.
2405 		 * We must do this without dropping locks so
2406 		 * we can trust our generation number
2407 		 */
2408 		btrfs_set_path_blocking(p);
2409 
2410 		/* now we're allowed to do a blocking uptodate check */
2411 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2412 		if (!ret) {
2413 			*eb_ret = tmp;
2414 			return 0;
2415 		}
2416 		free_extent_buffer(tmp);
2417 		btrfs_release_path(p);
2418 		return -EIO;
2419 	}
2420 
2421 	/*
2422 	 * reduce lock contention at high levels
2423 	 * of the btree by dropping locks before
2424 	 * we read.  Don't release the lock on the current
2425 	 * level because we need to walk this node to figure
2426 	 * out which blocks to read.
2427 	 */
2428 	btrfs_unlock_up_safe(p, level + 1);
2429 	btrfs_set_path_blocking(p);
2430 
2431 	if (p->reada != READA_NONE)
2432 		reada_for_search(fs_info, p, level, slot, key->objectid);
2433 
2434 	ret = -EAGAIN;
2435 	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2436 			      &first_key);
2437 	if (!IS_ERR(tmp)) {
2438 		/*
2439 		 * If the read above didn't mark this buffer up to date,
2440 		 * it will never end up being up to date.  Set ret to EIO now
2441 		 * and give up so that our caller doesn't loop forever
2442 		 * on our EAGAINs.
2443 		 */
2444 		if (!extent_buffer_uptodate(tmp))
2445 			ret = -EIO;
2446 		free_extent_buffer(tmp);
2447 	} else {
2448 		ret = PTR_ERR(tmp);
2449 	}
2450 
2451 	btrfs_release_path(p);
2452 	return ret;
2453 }
2454 
2455 /*
2456  * helper function for btrfs_search_slot.  This does all of the checks
2457  * for node-level blocks and does any balancing required based on
2458  * the ins_len.
2459  *
2460  * If no extra work was required, zero is returned.  If we had to
2461  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2462  * start over
2463  */
2464 static int
2465 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2466 		       struct btrfs_root *root, struct btrfs_path *p,
2467 		       struct extent_buffer *b, int level, int ins_len,
2468 		       int *write_lock_level)
2469 {
2470 	struct btrfs_fs_info *fs_info = root->fs_info;
2471 	int ret;
2472 
2473 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2474 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2475 		int sret;
2476 
2477 		if (*write_lock_level < level + 1) {
2478 			*write_lock_level = level + 1;
2479 			btrfs_release_path(p);
2480 			goto again;
2481 		}
2482 
2483 		btrfs_set_path_blocking(p);
2484 		reada_for_balance(fs_info, p, level);
2485 		sret = split_node(trans, root, p, level);
2486 		btrfs_clear_path_blocking(p, NULL, 0);
2487 
2488 		BUG_ON(sret > 0);
2489 		if (sret) {
2490 			ret = sret;
2491 			goto done;
2492 		}
2493 		b = p->nodes[level];
2494 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2495 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2496 		int sret;
2497 
2498 		if (*write_lock_level < level + 1) {
2499 			*write_lock_level = level + 1;
2500 			btrfs_release_path(p);
2501 			goto again;
2502 		}
2503 
2504 		btrfs_set_path_blocking(p);
2505 		reada_for_balance(fs_info, p, level);
2506 		sret = balance_level(trans, root, p, level);
2507 		btrfs_clear_path_blocking(p, NULL, 0);
2508 
2509 		if (sret) {
2510 			ret = sret;
2511 			goto done;
2512 		}
2513 		b = p->nodes[level];
2514 		if (!b) {
2515 			btrfs_release_path(p);
2516 			goto again;
2517 		}
2518 		BUG_ON(btrfs_header_nritems(b) == 1);
2519 	}
2520 	return 0;
2521 
2522 again:
2523 	ret = -EAGAIN;
2524 done:
2525 	return ret;
2526 }
2527 
2528 static void key_search_validate(struct extent_buffer *b,
2529 				const struct btrfs_key *key,
2530 				int level)
2531 {
2532 #ifdef CONFIG_BTRFS_ASSERT
2533 	struct btrfs_disk_key disk_key;
2534 
2535 	btrfs_cpu_key_to_disk(&disk_key, key);
2536 
2537 	if (level == 0)
2538 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2539 		    offsetof(struct btrfs_leaf, items[0].key),
2540 		    sizeof(disk_key)));
2541 	else
2542 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2543 		    offsetof(struct btrfs_node, ptrs[0].key),
2544 		    sizeof(disk_key)));
2545 #endif
2546 }
2547 
2548 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2549 		      int level, int *prev_cmp, int *slot)
2550 {
2551 	if (*prev_cmp != 0) {
2552 		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2553 		return *prev_cmp;
2554 	}
2555 
2556 	key_search_validate(b, key, level);
2557 	*slot = 0;
2558 
2559 	return 0;
2560 }
2561 
2562 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2563 		u64 iobjectid, u64 ioff, u8 key_type,
2564 		struct btrfs_key *found_key)
2565 {
2566 	int ret;
2567 	struct btrfs_key key;
2568 	struct extent_buffer *eb;
2569 
2570 	ASSERT(path);
2571 	ASSERT(found_key);
2572 
2573 	key.type = key_type;
2574 	key.objectid = iobjectid;
2575 	key.offset = ioff;
2576 
2577 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2578 	if (ret < 0)
2579 		return ret;
2580 
2581 	eb = path->nodes[0];
2582 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2583 		ret = btrfs_next_leaf(fs_root, path);
2584 		if (ret)
2585 			return ret;
2586 		eb = path->nodes[0];
2587 	}
2588 
2589 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2590 	if (found_key->type != key.type ||
2591 			found_key->objectid != key.objectid)
2592 		return 1;
2593 
2594 	return 0;
2595 }
2596 
2597 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2598 							struct btrfs_path *p,
2599 							int write_lock_level)
2600 {
2601 	struct btrfs_fs_info *fs_info = root->fs_info;
2602 	struct extent_buffer *b;
2603 	int root_lock;
2604 	int level = 0;
2605 
2606 	/* We try very hard to do read locks on the root */
2607 	root_lock = BTRFS_READ_LOCK;
2608 
2609 	if (p->search_commit_root) {
2610 		/* The commit roots are read only so we always do read locks */
2611 		if (p->need_commit_sem)
2612 			down_read(&fs_info->commit_root_sem);
2613 		b = root->commit_root;
2614 		extent_buffer_get(b);
2615 		level = btrfs_header_level(b);
2616 		if (p->need_commit_sem)
2617 			up_read(&fs_info->commit_root_sem);
2618 		/*
2619 		 * Ensure that all callers have set skip_locking when
2620 		 * p->search_commit_root = 1.
2621 		 */
2622 		ASSERT(p->skip_locking == 1);
2623 
2624 		goto out;
2625 	}
2626 
2627 	if (p->skip_locking) {
2628 		b = btrfs_root_node(root);
2629 		level = btrfs_header_level(b);
2630 		goto out;
2631 	}
2632 
2633 	/*
2634 	 * If the level is set to maximum, we can skip trying to get the read
2635 	 * lock.
2636 	 */
2637 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2638 		/*
2639 		 * We don't know the level of the root node until we actually
2640 		 * have it read locked
2641 		 */
2642 		b = btrfs_read_lock_root_node(root);
2643 		level = btrfs_header_level(b);
2644 		if (level > write_lock_level)
2645 			goto out;
2646 
2647 		/* Whoops, must trade for write lock */
2648 		btrfs_tree_read_unlock(b);
2649 		free_extent_buffer(b);
2650 	}
2651 
2652 	b = btrfs_lock_root_node(root);
2653 	root_lock = BTRFS_WRITE_LOCK;
2654 
2655 	/* The level might have changed, check again */
2656 	level = btrfs_header_level(b);
2657 
2658 out:
2659 	p->nodes[level] = b;
2660 	if (!p->skip_locking)
2661 		p->locks[level] = root_lock;
2662 	/*
2663 	 * Callers are responsible for dropping b's references.
2664 	 */
2665 	return b;
2666 }
2667 
2668 
2669 /*
2670  * btrfs_search_slot - look for a key in a tree and perform necessary
2671  * modifications to preserve tree invariants.
2672  *
2673  * @trans:	Handle of transaction, used when modifying the tree
2674  * @p:		Holds all btree nodes along the search path
2675  * @root:	The root node of the tree
2676  * @key:	The key we are looking for
2677  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2678  *		deletions it's -1. 0 for plain searches
2679  * @cow:	boolean should CoW operations be performed. Must always be 1
2680  *		when modifying the tree.
2681  *
2682  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2683  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2684  *
2685  * If @key is found, 0 is returned and you can find the item in the leaf level
2686  * of the path (level 0)
2687  *
2688  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2689  * points to the slot where it should be inserted
2690  *
2691  * If an error is encountered while searching the tree a negative error number
2692  * is returned
2693  */
2694 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2695 		      const struct btrfs_key *key, struct btrfs_path *p,
2696 		      int ins_len, int cow)
2697 {
2698 	struct btrfs_fs_info *fs_info = root->fs_info;
2699 	struct extent_buffer *b;
2700 	int slot;
2701 	int ret;
2702 	int err;
2703 	int level;
2704 	int lowest_unlock = 1;
2705 	/* everything at write_lock_level or lower must be write locked */
2706 	int write_lock_level = 0;
2707 	u8 lowest_level = 0;
2708 	int min_write_lock_level;
2709 	int prev_cmp;
2710 
2711 	lowest_level = p->lowest_level;
2712 	WARN_ON(lowest_level && ins_len > 0);
2713 	WARN_ON(p->nodes[0] != NULL);
2714 	BUG_ON(!cow && ins_len);
2715 
2716 	if (ins_len < 0) {
2717 		lowest_unlock = 2;
2718 
2719 		/* when we are removing items, we might have to go up to level
2720 		 * two as we update tree pointers  Make sure we keep write
2721 		 * for those levels as well
2722 		 */
2723 		write_lock_level = 2;
2724 	} else if (ins_len > 0) {
2725 		/*
2726 		 * for inserting items, make sure we have a write lock on
2727 		 * level 1 so we can update keys
2728 		 */
2729 		write_lock_level = 1;
2730 	}
2731 
2732 	if (!cow)
2733 		write_lock_level = -1;
2734 
2735 	if (cow && (p->keep_locks || p->lowest_level))
2736 		write_lock_level = BTRFS_MAX_LEVEL;
2737 
2738 	min_write_lock_level = write_lock_level;
2739 
2740 again:
2741 	prev_cmp = -1;
2742 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2743 
2744 	while (b) {
2745 		level = btrfs_header_level(b);
2746 
2747 		/*
2748 		 * setup the path here so we can release it under lock
2749 		 * contention with the cow code
2750 		 */
2751 		if (cow) {
2752 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2753 
2754 			/*
2755 			 * if we don't really need to cow this block
2756 			 * then we don't want to set the path blocking,
2757 			 * so we test it here
2758 			 */
2759 			if (!should_cow_block(trans, root, b)) {
2760 				trans->dirty = true;
2761 				goto cow_done;
2762 			}
2763 
2764 			/*
2765 			 * must have write locks on this node and the
2766 			 * parent
2767 			 */
2768 			if (level > write_lock_level ||
2769 			    (level + 1 > write_lock_level &&
2770 			    level + 1 < BTRFS_MAX_LEVEL &&
2771 			    p->nodes[level + 1])) {
2772 				write_lock_level = level + 1;
2773 				btrfs_release_path(p);
2774 				goto again;
2775 			}
2776 
2777 			btrfs_set_path_blocking(p);
2778 			if (last_level)
2779 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2780 						      &b);
2781 			else
2782 				err = btrfs_cow_block(trans, root, b,
2783 						      p->nodes[level + 1],
2784 						      p->slots[level + 1], &b);
2785 			if (err) {
2786 				ret = err;
2787 				goto done;
2788 			}
2789 		}
2790 cow_done:
2791 		p->nodes[level] = b;
2792 		btrfs_clear_path_blocking(p, NULL, 0);
2793 
2794 		/*
2795 		 * we have a lock on b and as long as we aren't changing
2796 		 * the tree, there is no way to for the items in b to change.
2797 		 * It is safe to drop the lock on our parent before we
2798 		 * go through the expensive btree search on b.
2799 		 *
2800 		 * If we're inserting or deleting (ins_len != 0), then we might
2801 		 * be changing slot zero, which may require changing the parent.
2802 		 * So, we can't drop the lock until after we know which slot
2803 		 * we're operating on.
2804 		 */
2805 		if (!ins_len && !p->keep_locks) {
2806 			int u = level + 1;
2807 
2808 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2809 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2810 				p->locks[u] = 0;
2811 			}
2812 		}
2813 
2814 		ret = key_search(b, key, level, &prev_cmp, &slot);
2815 		if (ret < 0)
2816 			goto done;
2817 
2818 		if (level != 0) {
2819 			int dec = 0;
2820 			if (ret && slot > 0) {
2821 				dec = 1;
2822 				slot -= 1;
2823 			}
2824 			p->slots[level] = slot;
2825 			err = setup_nodes_for_search(trans, root, p, b, level,
2826 					     ins_len, &write_lock_level);
2827 			if (err == -EAGAIN)
2828 				goto again;
2829 			if (err) {
2830 				ret = err;
2831 				goto done;
2832 			}
2833 			b = p->nodes[level];
2834 			slot = p->slots[level];
2835 
2836 			/*
2837 			 * slot 0 is special, if we change the key
2838 			 * we have to update the parent pointer
2839 			 * which means we must have a write lock
2840 			 * on the parent
2841 			 */
2842 			if (slot == 0 && ins_len &&
2843 			    write_lock_level < level + 1) {
2844 				write_lock_level = level + 1;
2845 				btrfs_release_path(p);
2846 				goto again;
2847 			}
2848 
2849 			unlock_up(p, level, lowest_unlock,
2850 				  min_write_lock_level, &write_lock_level);
2851 
2852 			if (level == lowest_level) {
2853 				if (dec)
2854 					p->slots[level]++;
2855 				goto done;
2856 			}
2857 
2858 			err = read_block_for_search(root, p, &b, level,
2859 						    slot, key);
2860 			if (err == -EAGAIN)
2861 				goto again;
2862 			if (err) {
2863 				ret = err;
2864 				goto done;
2865 			}
2866 
2867 			if (!p->skip_locking) {
2868 				level = btrfs_header_level(b);
2869 				if (level <= write_lock_level) {
2870 					err = btrfs_try_tree_write_lock(b);
2871 					if (!err) {
2872 						btrfs_set_path_blocking(p);
2873 						btrfs_tree_lock(b);
2874 						btrfs_clear_path_blocking(p, b,
2875 								  BTRFS_WRITE_LOCK);
2876 					}
2877 					p->locks[level] = BTRFS_WRITE_LOCK;
2878 				} else {
2879 					err = btrfs_tree_read_lock_atomic(b);
2880 					if (!err) {
2881 						btrfs_set_path_blocking(p);
2882 						btrfs_tree_read_lock(b);
2883 						btrfs_clear_path_blocking(p, b,
2884 								  BTRFS_READ_LOCK);
2885 					}
2886 					p->locks[level] = BTRFS_READ_LOCK;
2887 				}
2888 				p->nodes[level] = b;
2889 			}
2890 		} else {
2891 			p->slots[level] = slot;
2892 			if (ins_len > 0 &&
2893 			    btrfs_leaf_free_space(fs_info, b) < ins_len) {
2894 				if (write_lock_level < 1) {
2895 					write_lock_level = 1;
2896 					btrfs_release_path(p);
2897 					goto again;
2898 				}
2899 
2900 				btrfs_set_path_blocking(p);
2901 				err = split_leaf(trans, root, key,
2902 						 p, ins_len, ret == 0);
2903 				btrfs_clear_path_blocking(p, NULL, 0);
2904 
2905 				BUG_ON(err > 0);
2906 				if (err) {
2907 					ret = err;
2908 					goto done;
2909 				}
2910 			}
2911 			if (!p->search_for_split)
2912 				unlock_up(p, level, lowest_unlock,
2913 					  min_write_lock_level, &write_lock_level);
2914 			goto done;
2915 		}
2916 	}
2917 	ret = 1;
2918 done:
2919 	/*
2920 	 * we don't really know what they plan on doing with the path
2921 	 * from here on, so for now just mark it as blocking
2922 	 */
2923 	if (!p->leave_spinning)
2924 		btrfs_set_path_blocking(p);
2925 	if (ret < 0 && !p->skip_release_on_error)
2926 		btrfs_release_path(p);
2927 	return ret;
2928 }
2929 
2930 /*
2931  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2932  * current state of the tree together with the operations recorded in the tree
2933  * modification log to search for the key in a previous version of this tree, as
2934  * denoted by the time_seq parameter.
2935  *
2936  * Naturally, there is no support for insert, delete or cow operations.
2937  *
2938  * The resulting path and return value will be set up as if we called
2939  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2940  */
2941 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2942 			  struct btrfs_path *p, u64 time_seq)
2943 {
2944 	struct btrfs_fs_info *fs_info = root->fs_info;
2945 	struct extent_buffer *b;
2946 	int slot;
2947 	int ret;
2948 	int err;
2949 	int level;
2950 	int lowest_unlock = 1;
2951 	u8 lowest_level = 0;
2952 	int prev_cmp = -1;
2953 
2954 	lowest_level = p->lowest_level;
2955 	WARN_ON(p->nodes[0] != NULL);
2956 
2957 	if (p->search_commit_root) {
2958 		BUG_ON(time_seq);
2959 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2960 	}
2961 
2962 again:
2963 	b = get_old_root(root, time_seq);
2964 	level = btrfs_header_level(b);
2965 	p->locks[level] = BTRFS_READ_LOCK;
2966 
2967 	while (b) {
2968 		level = btrfs_header_level(b);
2969 		p->nodes[level] = b;
2970 		btrfs_clear_path_blocking(p, NULL, 0);
2971 
2972 		/*
2973 		 * we have a lock on b and as long as we aren't changing
2974 		 * the tree, there is no way to for the items in b to change.
2975 		 * It is safe to drop the lock on our parent before we
2976 		 * go through the expensive btree search on b.
2977 		 */
2978 		btrfs_unlock_up_safe(p, level + 1);
2979 
2980 		/*
2981 		 * Since we can unwind ebs we want to do a real search every
2982 		 * time.
2983 		 */
2984 		prev_cmp = -1;
2985 		ret = key_search(b, key, level, &prev_cmp, &slot);
2986 
2987 		if (level != 0) {
2988 			int dec = 0;
2989 			if (ret && slot > 0) {
2990 				dec = 1;
2991 				slot -= 1;
2992 			}
2993 			p->slots[level] = slot;
2994 			unlock_up(p, level, lowest_unlock, 0, NULL);
2995 
2996 			if (level == lowest_level) {
2997 				if (dec)
2998 					p->slots[level]++;
2999 				goto done;
3000 			}
3001 
3002 			err = read_block_for_search(root, p, &b, level,
3003 						    slot, key);
3004 			if (err == -EAGAIN)
3005 				goto again;
3006 			if (err) {
3007 				ret = err;
3008 				goto done;
3009 			}
3010 
3011 			level = btrfs_header_level(b);
3012 			err = btrfs_tree_read_lock_atomic(b);
3013 			if (!err) {
3014 				btrfs_set_path_blocking(p);
3015 				btrfs_tree_read_lock(b);
3016 				btrfs_clear_path_blocking(p, b,
3017 							  BTRFS_READ_LOCK);
3018 			}
3019 			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3020 			if (!b) {
3021 				ret = -ENOMEM;
3022 				goto done;
3023 			}
3024 			p->locks[level] = BTRFS_READ_LOCK;
3025 			p->nodes[level] = b;
3026 		} else {
3027 			p->slots[level] = slot;
3028 			unlock_up(p, level, lowest_unlock, 0, NULL);
3029 			goto done;
3030 		}
3031 	}
3032 	ret = 1;
3033 done:
3034 	if (!p->leave_spinning)
3035 		btrfs_set_path_blocking(p);
3036 	if (ret < 0)
3037 		btrfs_release_path(p);
3038 
3039 	return ret;
3040 }
3041 
3042 /*
3043  * helper to use instead of search slot if no exact match is needed but
3044  * instead the next or previous item should be returned.
3045  * When find_higher is true, the next higher item is returned, the next lower
3046  * otherwise.
3047  * When return_any and find_higher are both true, and no higher item is found,
3048  * return the next lower instead.
3049  * When return_any is true and find_higher is false, and no lower item is found,
3050  * return the next higher instead.
3051  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3052  * < 0 on error
3053  */
3054 int btrfs_search_slot_for_read(struct btrfs_root *root,
3055 			       const struct btrfs_key *key,
3056 			       struct btrfs_path *p, int find_higher,
3057 			       int return_any)
3058 {
3059 	int ret;
3060 	struct extent_buffer *leaf;
3061 
3062 again:
3063 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3064 	if (ret <= 0)
3065 		return ret;
3066 	/*
3067 	 * a return value of 1 means the path is at the position where the
3068 	 * item should be inserted. Normally this is the next bigger item,
3069 	 * but in case the previous item is the last in a leaf, path points
3070 	 * to the first free slot in the previous leaf, i.e. at an invalid
3071 	 * item.
3072 	 */
3073 	leaf = p->nodes[0];
3074 
3075 	if (find_higher) {
3076 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3077 			ret = btrfs_next_leaf(root, p);
3078 			if (ret <= 0)
3079 				return ret;
3080 			if (!return_any)
3081 				return 1;
3082 			/*
3083 			 * no higher item found, return the next
3084 			 * lower instead
3085 			 */
3086 			return_any = 0;
3087 			find_higher = 0;
3088 			btrfs_release_path(p);
3089 			goto again;
3090 		}
3091 	} else {
3092 		if (p->slots[0] == 0) {
3093 			ret = btrfs_prev_leaf(root, p);
3094 			if (ret < 0)
3095 				return ret;
3096 			if (!ret) {
3097 				leaf = p->nodes[0];
3098 				if (p->slots[0] == btrfs_header_nritems(leaf))
3099 					p->slots[0]--;
3100 				return 0;
3101 			}
3102 			if (!return_any)
3103 				return 1;
3104 			/*
3105 			 * no lower item found, return the next
3106 			 * higher instead
3107 			 */
3108 			return_any = 0;
3109 			find_higher = 1;
3110 			btrfs_release_path(p);
3111 			goto again;
3112 		} else {
3113 			--p->slots[0];
3114 		}
3115 	}
3116 	return 0;
3117 }
3118 
3119 /*
3120  * adjust the pointers going up the tree, starting at level
3121  * making sure the right key of each node is points to 'key'.
3122  * This is used after shifting pointers to the left, so it stops
3123  * fixing up pointers when a given leaf/node is not in slot 0 of the
3124  * higher levels
3125  *
3126  */
3127 static void fixup_low_keys(struct btrfs_path *path,
3128 			   struct btrfs_disk_key *key, int level)
3129 {
3130 	int i;
3131 	struct extent_buffer *t;
3132 	int ret;
3133 
3134 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3135 		int tslot = path->slots[i];
3136 
3137 		if (!path->nodes[i])
3138 			break;
3139 		t = path->nodes[i];
3140 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3141 				GFP_ATOMIC);
3142 		BUG_ON(ret < 0);
3143 		btrfs_set_node_key(t, key, tslot);
3144 		btrfs_mark_buffer_dirty(path->nodes[i]);
3145 		if (tslot != 0)
3146 			break;
3147 	}
3148 }
3149 
3150 /*
3151  * update item key.
3152  *
3153  * This function isn't completely safe. It's the caller's responsibility
3154  * that the new key won't break the order
3155  */
3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3157 			     struct btrfs_path *path,
3158 			     const struct btrfs_key *new_key)
3159 {
3160 	struct btrfs_disk_key disk_key;
3161 	struct extent_buffer *eb;
3162 	int slot;
3163 
3164 	eb = path->nodes[0];
3165 	slot = path->slots[0];
3166 	if (slot > 0) {
3167 		btrfs_item_key(eb, &disk_key, slot - 1);
3168 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3169 	}
3170 	if (slot < btrfs_header_nritems(eb) - 1) {
3171 		btrfs_item_key(eb, &disk_key, slot + 1);
3172 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3173 	}
3174 
3175 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3176 	btrfs_set_item_key(eb, &disk_key, slot);
3177 	btrfs_mark_buffer_dirty(eb);
3178 	if (slot == 0)
3179 		fixup_low_keys(path, &disk_key, 1);
3180 }
3181 
3182 /*
3183  * try to push data from one node into the next node left in the
3184  * tree.
3185  *
3186  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3187  * error, and > 0 if there was no room in the left hand block.
3188  */
3189 static int push_node_left(struct btrfs_trans_handle *trans,
3190 			  struct btrfs_fs_info *fs_info,
3191 			  struct extent_buffer *dst,
3192 			  struct extent_buffer *src, int empty)
3193 {
3194 	int push_items = 0;
3195 	int src_nritems;
3196 	int dst_nritems;
3197 	int ret = 0;
3198 
3199 	src_nritems = btrfs_header_nritems(src);
3200 	dst_nritems = btrfs_header_nritems(dst);
3201 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3202 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3203 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3204 
3205 	if (!empty && src_nritems <= 8)
3206 		return 1;
3207 
3208 	if (push_items <= 0)
3209 		return 1;
3210 
3211 	if (empty) {
3212 		push_items = min(src_nritems, push_items);
3213 		if (push_items < src_nritems) {
3214 			/* leave at least 8 pointers in the node if
3215 			 * we aren't going to empty it
3216 			 */
3217 			if (src_nritems - push_items < 8) {
3218 				if (push_items <= 8)
3219 					return 1;
3220 				push_items -= 8;
3221 			}
3222 		}
3223 	} else
3224 		push_items = min(src_nritems - 8, push_items);
3225 
3226 	ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0,
3227 				   push_items);
3228 	if (ret) {
3229 		btrfs_abort_transaction(trans, ret);
3230 		return ret;
3231 	}
3232 	copy_extent_buffer(dst, src,
3233 			   btrfs_node_key_ptr_offset(dst_nritems),
3234 			   btrfs_node_key_ptr_offset(0),
3235 			   push_items * sizeof(struct btrfs_key_ptr));
3236 
3237 	if (push_items < src_nritems) {
3238 		/*
3239 		 * Don't call tree_mod_log_insert_move here, key removal was
3240 		 * already fully logged by tree_mod_log_eb_copy above.
3241 		 */
3242 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3243 				      btrfs_node_key_ptr_offset(push_items),
3244 				      (src_nritems - push_items) *
3245 				      sizeof(struct btrfs_key_ptr));
3246 	}
3247 	btrfs_set_header_nritems(src, src_nritems - push_items);
3248 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3249 	btrfs_mark_buffer_dirty(src);
3250 	btrfs_mark_buffer_dirty(dst);
3251 
3252 	return ret;
3253 }
3254 
3255 /*
3256  * try to push data from one node into the next node right in the
3257  * tree.
3258  *
3259  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3260  * error, and > 0 if there was no room in the right hand block.
3261  *
3262  * this will  only push up to 1/2 the contents of the left node over
3263  */
3264 static int balance_node_right(struct btrfs_trans_handle *trans,
3265 			      struct btrfs_fs_info *fs_info,
3266 			      struct extent_buffer *dst,
3267 			      struct extent_buffer *src)
3268 {
3269 	int push_items = 0;
3270 	int max_push;
3271 	int src_nritems;
3272 	int dst_nritems;
3273 	int ret = 0;
3274 
3275 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3276 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3277 
3278 	src_nritems = btrfs_header_nritems(src);
3279 	dst_nritems = btrfs_header_nritems(dst);
3280 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3281 	if (push_items <= 0)
3282 		return 1;
3283 
3284 	if (src_nritems < 4)
3285 		return 1;
3286 
3287 	max_push = src_nritems / 2 + 1;
3288 	/* don't try to empty the node */
3289 	if (max_push >= src_nritems)
3290 		return 1;
3291 
3292 	if (max_push < push_items)
3293 		push_items = max_push;
3294 
3295 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3296 	BUG_ON(ret < 0);
3297 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3298 				      btrfs_node_key_ptr_offset(0),
3299 				      (dst_nritems) *
3300 				      sizeof(struct btrfs_key_ptr));
3301 
3302 	ret = tree_mod_log_eb_copy(fs_info, dst, src, 0,
3303 				   src_nritems - push_items, push_items);
3304 	if (ret) {
3305 		btrfs_abort_transaction(trans, ret);
3306 		return ret;
3307 	}
3308 	copy_extent_buffer(dst, src,
3309 			   btrfs_node_key_ptr_offset(0),
3310 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3311 			   push_items * sizeof(struct btrfs_key_ptr));
3312 
3313 	btrfs_set_header_nritems(src, src_nritems - push_items);
3314 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3315 
3316 	btrfs_mark_buffer_dirty(src);
3317 	btrfs_mark_buffer_dirty(dst);
3318 
3319 	return ret;
3320 }
3321 
3322 /*
3323  * helper function to insert a new root level in the tree.
3324  * A new node is allocated, and a single item is inserted to
3325  * point to the existing root
3326  *
3327  * returns zero on success or < 0 on failure.
3328  */
3329 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3330 			   struct btrfs_root *root,
3331 			   struct btrfs_path *path, int level)
3332 {
3333 	struct btrfs_fs_info *fs_info = root->fs_info;
3334 	u64 lower_gen;
3335 	struct extent_buffer *lower;
3336 	struct extent_buffer *c;
3337 	struct extent_buffer *old;
3338 	struct btrfs_disk_key lower_key;
3339 	int ret;
3340 
3341 	BUG_ON(path->nodes[level]);
3342 	BUG_ON(path->nodes[level-1] != root->node);
3343 
3344 	lower = path->nodes[level-1];
3345 	if (level == 1)
3346 		btrfs_item_key(lower, &lower_key, 0);
3347 	else
3348 		btrfs_node_key(lower, &lower_key, 0);
3349 
3350 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3351 				   &lower_key, level, root->node->start, 0);
3352 	if (IS_ERR(c))
3353 		return PTR_ERR(c);
3354 
3355 	root_add_used(root, fs_info->nodesize);
3356 
3357 	btrfs_set_header_nritems(c, 1);
3358 	btrfs_set_node_key(c, &lower_key, 0);
3359 	btrfs_set_node_blockptr(c, 0, lower->start);
3360 	lower_gen = btrfs_header_generation(lower);
3361 	WARN_ON(lower_gen != trans->transid);
3362 
3363 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3364 
3365 	btrfs_mark_buffer_dirty(c);
3366 
3367 	old = root->node;
3368 	ret = tree_mod_log_insert_root(root->node, c, 0);
3369 	BUG_ON(ret < 0);
3370 	rcu_assign_pointer(root->node, c);
3371 
3372 	/* the super has an extra ref to root->node */
3373 	free_extent_buffer(old);
3374 
3375 	add_root_to_dirty_list(root);
3376 	extent_buffer_get(c);
3377 	path->nodes[level] = c;
3378 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3379 	path->slots[level] = 0;
3380 	return 0;
3381 }
3382 
3383 /*
3384  * worker function to insert a single pointer in a node.
3385  * the node should have enough room for the pointer already
3386  *
3387  * slot and level indicate where you want the key to go, and
3388  * blocknr is the block the key points to.
3389  */
3390 static void insert_ptr(struct btrfs_trans_handle *trans,
3391 		       struct btrfs_fs_info *fs_info, struct btrfs_path *path,
3392 		       struct btrfs_disk_key *key, u64 bytenr,
3393 		       int slot, int level)
3394 {
3395 	struct extent_buffer *lower;
3396 	int nritems;
3397 	int ret;
3398 
3399 	BUG_ON(!path->nodes[level]);
3400 	btrfs_assert_tree_locked(path->nodes[level]);
3401 	lower = path->nodes[level];
3402 	nritems = btrfs_header_nritems(lower);
3403 	BUG_ON(slot > nritems);
3404 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info));
3405 	if (slot != nritems) {
3406 		if (level) {
3407 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3408 					nritems - slot);
3409 			BUG_ON(ret < 0);
3410 		}
3411 		memmove_extent_buffer(lower,
3412 			      btrfs_node_key_ptr_offset(slot + 1),
3413 			      btrfs_node_key_ptr_offset(slot),
3414 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3415 	}
3416 	if (level) {
3417 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3418 				GFP_NOFS);
3419 		BUG_ON(ret < 0);
3420 	}
3421 	btrfs_set_node_key(lower, key, slot);
3422 	btrfs_set_node_blockptr(lower, slot, bytenr);
3423 	WARN_ON(trans->transid == 0);
3424 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3425 	btrfs_set_header_nritems(lower, nritems + 1);
3426 	btrfs_mark_buffer_dirty(lower);
3427 }
3428 
3429 /*
3430  * split the node at the specified level in path in two.
3431  * The path is corrected to point to the appropriate node after the split
3432  *
3433  * Before splitting this tries to make some room in the node by pushing
3434  * left and right, if either one works, it returns right away.
3435  *
3436  * returns 0 on success and < 0 on failure
3437  */
3438 static noinline int split_node(struct btrfs_trans_handle *trans,
3439 			       struct btrfs_root *root,
3440 			       struct btrfs_path *path, int level)
3441 {
3442 	struct btrfs_fs_info *fs_info = root->fs_info;
3443 	struct extent_buffer *c;
3444 	struct extent_buffer *split;
3445 	struct btrfs_disk_key disk_key;
3446 	int mid;
3447 	int ret;
3448 	u32 c_nritems;
3449 
3450 	c = path->nodes[level];
3451 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3452 	if (c == root->node) {
3453 		/*
3454 		 * trying to split the root, lets make a new one
3455 		 *
3456 		 * tree mod log: We don't log_removal old root in
3457 		 * insert_new_root, because that root buffer will be kept as a
3458 		 * normal node. We are going to log removal of half of the
3459 		 * elements below with tree_mod_log_eb_copy. We're holding a
3460 		 * tree lock on the buffer, which is why we cannot race with
3461 		 * other tree_mod_log users.
3462 		 */
3463 		ret = insert_new_root(trans, root, path, level + 1);
3464 		if (ret)
3465 			return ret;
3466 	} else {
3467 		ret = push_nodes_for_insert(trans, root, path, level);
3468 		c = path->nodes[level];
3469 		if (!ret && btrfs_header_nritems(c) <
3470 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3471 			return 0;
3472 		if (ret < 0)
3473 			return ret;
3474 	}
3475 
3476 	c_nritems = btrfs_header_nritems(c);
3477 	mid = (c_nritems + 1) / 2;
3478 	btrfs_node_key(c, &disk_key, mid);
3479 
3480 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3481 			&disk_key, level, c->start, 0);
3482 	if (IS_ERR(split))
3483 		return PTR_ERR(split);
3484 
3485 	root_add_used(root, fs_info->nodesize);
3486 	ASSERT(btrfs_header_level(c) == level);
3487 
3488 	ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid);
3489 	if (ret) {
3490 		btrfs_abort_transaction(trans, ret);
3491 		return ret;
3492 	}
3493 	copy_extent_buffer(split, c,
3494 			   btrfs_node_key_ptr_offset(0),
3495 			   btrfs_node_key_ptr_offset(mid),
3496 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3497 	btrfs_set_header_nritems(split, c_nritems - mid);
3498 	btrfs_set_header_nritems(c, mid);
3499 	ret = 0;
3500 
3501 	btrfs_mark_buffer_dirty(c);
3502 	btrfs_mark_buffer_dirty(split);
3503 
3504 	insert_ptr(trans, fs_info, path, &disk_key, split->start,
3505 		   path->slots[level + 1] + 1, level + 1);
3506 
3507 	if (path->slots[level] >= mid) {
3508 		path->slots[level] -= mid;
3509 		btrfs_tree_unlock(c);
3510 		free_extent_buffer(c);
3511 		path->nodes[level] = split;
3512 		path->slots[level + 1] += 1;
3513 	} else {
3514 		btrfs_tree_unlock(split);
3515 		free_extent_buffer(split);
3516 	}
3517 	return ret;
3518 }
3519 
3520 /*
3521  * how many bytes are required to store the items in a leaf.  start
3522  * and nr indicate which items in the leaf to check.  This totals up the
3523  * space used both by the item structs and the item data
3524  */
3525 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3526 {
3527 	struct btrfs_item *start_item;
3528 	struct btrfs_item *end_item;
3529 	struct btrfs_map_token token;
3530 	int data_len;
3531 	int nritems = btrfs_header_nritems(l);
3532 	int end = min(nritems, start + nr) - 1;
3533 
3534 	if (!nr)
3535 		return 0;
3536 	btrfs_init_map_token(&token);
3537 	start_item = btrfs_item_nr(start);
3538 	end_item = btrfs_item_nr(end);
3539 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3540 		btrfs_token_item_size(l, start_item, &token);
3541 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3542 	data_len += sizeof(struct btrfs_item) * nr;
3543 	WARN_ON(data_len < 0);
3544 	return data_len;
3545 }
3546 
3547 /*
3548  * The space between the end of the leaf items and
3549  * the start of the leaf data.  IOW, how much room
3550  * the leaf has left for both items and data
3551  */
3552 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
3553 				   struct extent_buffer *leaf)
3554 {
3555 	int nritems = btrfs_header_nritems(leaf);
3556 	int ret;
3557 
3558 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3559 	if (ret < 0) {
3560 		btrfs_crit(fs_info,
3561 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3562 			   ret,
3563 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3564 			   leaf_space_used(leaf, 0, nritems), nritems);
3565 	}
3566 	return ret;
3567 }
3568 
3569 /*
3570  * min slot controls the lowest index we're willing to push to the
3571  * right.  We'll push up to and including min_slot, but no lower
3572  */
3573 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info,
3574 				      struct btrfs_path *path,
3575 				      int data_size, int empty,
3576 				      struct extent_buffer *right,
3577 				      int free_space, u32 left_nritems,
3578 				      u32 min_slot)
3579 {
3580 	struct extent_buffer *left = path->nodes[0];
3581 	struct extent_buffer *upper = path->nodes[1];
3582 	struct btrfs_map_token token;
3583 	struct btrfs_disk_key disk_key;
3584 	int slot;
3585 	u32 i;
3586 	int push_space = 0;
3587 	int push_items = 0;
3588 	struct btrfs_item *item;
3589 	u32 nr;
3590 	u32 right_nritems;
3591 	u32 data_end;
3592 	u32 this_item_size;
3593 
3594 	btrfs_init_map_token(&token);
3595 
3596 	if (empty)
3597 		nr = 0;
3598 	else
3599 		nr = max_t(u32, 1, min_slot);
3600 
3601 	if (path->slots[0] >= left_nritems)
3602 		push_space += data_size;
3603 
3604 	slot = path->slots[1];
3605 	i = left_nritems - 1;
3606 	while (i >= nr) {
3607 		item = btrfs_item_nr(i);
3608 
3609 		if (!empty && push_items > 0) {
3610 			if (path->slots[0] > i)
3611 				break;
3612 			if (path->slots[0] == i) {
3613 				int space = btrfs_leaf_free_space(fs_info, left);
3614 				if (space + push_space * 2 > free_space)
3615 					break;
3616 			}
3617 		}
3618 
3619 		if (path->slots[0] == i)
3620 			push_space += data_size;
3621 
3622 		this_item_size = btrfs_item_size(left, item);
3623 		if (this_item_size + sizeof(*item) + push_space > free_space)
3624 			break;
3625 
3626 		push_items++;
3627 		push_space += this_item_size + sizeof(*item);
3628 		if (i == 0)
3629 			break;
3630 		i--;
3631 	}
3632 
3633 	if (push_items == 0)
3634 		goto out_unlock;
3635 
3636 	WARN_ON(!empty && push_items == left_nritems);
3637 
3638 	/* push left to right */
3639 	right_nritems = btrfs_header_nritems(right);
3640 
3641 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3642 	push_space -= leaf_data_end(fs_info, left);
3643 
3644 	/* make room in the right data area */
3645 	data_end = leaf_data_end(fs_info, right);
3646 	memmove_extent_buffer(right,
3647 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3648 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3649 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3650 
3651 	/* copy from the left data area */
3652 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3653 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3654 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left),
3655 		     push_space);
3656 
3657 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3658 			      btrfs_item_nr_offset(0),
3659 			      right_nritems * sizeof(struct btrfs_item));
3660 
3661 	/* copy the items from left to right */
3662 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3663 		   btrfs_item_nr_offset(left_nritems - push_items),
3664 		   push_items * sizeof(struct btrfs_item));
3665 
3666 	/* update the item pointers */
3667 	right_nritems += push_items;
3668 	btrfs_set_header_nritems(right, right_nritems);
3669 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3670 	for (i = 0; i < right_nritems; i++) {
3671 		item = btrfs_item_nr(i);
3672 		push_space -= btrfs_token_item_size(right, item, &token);
3673 		btrfs_set_token_item_offset(right, item, push_space, &token);
3674 	}
3675 
3676 	left_nritems -= push_items;
3677 	btrfs_set_header_nritems(left, left_nritems);
3678 
3679 	if (left_nritems)
3680 		btrfs_mark_buffer_dirty(left);
3681 	else
3682 		clean_tree_block(fs_info, left);
3683 
3684 	btrfs_mark_buffer_dirty(right);
3685 
3686 	btrfs_item_key(right, &disk_key, 0);
3687 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3688 	btrfs_mark_buffer_dirty(upper);
3689 
3690 	/* then fixup the leaf pointer in the path */
3691 	if (path->slots[0] >= left_nritems) {
3692 		path->slots[0] -= left_nritems;
3693 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3694 			clean_tree_block(fs_info, path->nodes[0]);
3695 		btrfs_tree_unlock(path->nodes[0]);
3696 		free_extent_buffer(path->nodes[0]);
3697 		path->nodes[0] = right;
3698 		path->slots[1] += 1;
3699 	} else {
3700 		btrfs_tree_unlock(right);
3701 		free_extent_buffer(right);
3702 	}
3703 	return 0;
3704 
3705 out_unlock:
3706 	btrfs_tree_unlock(right);
3707 	free_extent_buffer(right);
3708 	return 1;
3709 }
3710 
3711 /*
3712  * push some data in the path leaf to the right, trying to free up at
3713  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3714  *
3715  * returns 1 if the push failed because the other node didn't have enough
3716  * room, 0 if everything worked out and < 0 if there were major errors.
3717  *
3718  * this will push starting from min_slot to the end of the leaf.  It won't
3719  * push any slot lower than min_slot
3720  */
3721 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3722 			   *root, struct btrfs_path *path,
3723 			   int min_data_size, int data_size,
3724 			   int empty, u32 min_slot)
3725 {
3726 	struct btrfs_fs_info *fs_info = root->fs_info;
3727 	struct extent_buffer *left = path->nodes[0];
3728 	struct extent_buffer *right;
3729 	struct extent_buffer *upper;
3730 	int slot;
3731 	int free_space;
3732 	u32 left_nritems;
3733 	int ret;
3734 
3735 	if (!path->nodes[1])
3736 		return 1;
3737 
3738 	slot = path->slots[1];
3739 	upper = path->nodes[1];
3740 	if (slot >= btrfs_header_nritems(upper) - 1)
3741 		return 1;
3742 
3743 	btrfs_assert_tree_locked(path->nodes[1]);
3744 
3745 	right = read_node_slot(fs_info, upper, slot + 1);
3746 	/*
3747 	 * slot + 1 is not valid or we fail to read the right node,
3748 	 * no big deal, just return.
3749 	 */
3750 	if (IS_ERR(right))
3751 		return 1;
3752 
3753 	btrfs_tree_lock(right);
3754 	btrfs_set_lock_blocking(right);
3755 
3756 	free_space = btrfs_leaf_free_space(fs_info, right);
3757 	if (free_space < data_size)
3758 		goto out_unlock;
3759 
3760 	/* cow and double check */
3761 	ret = btrfs_cow_block(trans, root, right, upper,
3762 			      slot + 1, &right);
3763 	if (ret)
3764 		goto out_unlock;
3765 
3766 	free_space = btrfs_leaf_free_space(fs_info, right);
3767 	if (free_space < data_size)
3768 		goto out_unlock;
3769 
3770 	left_nritems = btrfs_header_nritems(left);
3771 	if (left_nritems == 0)
3772 		goto out_unlock;
3773 
3774 	if (path->slots[0] == left_nritems && !empty) {
3775 		/* Key greater than all keys in the leaf, right neighbor has
3776 		 * enough room for it and we're not emptying our leaf to delete
3777 		 * it, therefore use right neighbor to insert the new item and
3778 		 * no need to touch/dirty our left leaft. */
3779 		btrfs_tree_unlock(left);
3780 		free_extent_buffer(left);
3781 		path->nodes[0] = right;
3782 		path->slots[0] = 0;
3783 		path->slots[1]++;
3784 		return 0;
3785 	}
3786 
3787 	return __push_leaf_right(fs_info, path, min_data_size, empty,
3788 				right, free_space, left_nritems, min_slot);
3789 out_unlock:
3790 	btrfs_tree_unlock(right);
3791 	free_extent_buffer(right);
3792 	return 1;
3793 }
3794 
3795 /*
3796  * push some data in the path leaf to the left, trying to free up at
3797  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3798  *
3799  * max_slot can put a limit on how far into the leaf we'll push items.  The
3800  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3801  * items
3802  */
3803 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info,
3804 				     struct btrfs_path *path, int data_size,
3805 				     int empty, struct extent_buffer *left,
3806 				     int free_space, u32 right_nritems,
3807 				     u32 max_slot)
3808 {
3809 	struct btrfs_disk_key disk_key;
3810 	struct extent_buffer *right = path->nodes[0];
3811 	int i;
3812 	int push_space = 0;
3813 	int push_items = 0;
3814 	struct btrfs_item *item;
3815 	u32 old_left_nritems;
3816 	u32 nr;
3817 	int ret = 0;
3818 	u32 this_item_size;
3819 	u32 old_left_item_size;
3820 	struct btrfs_map_token token;
3821 
3822 	btrfs_init_map_token(&token);
3823 
3824 	if (empty)
3825 		nr = min(right_nritems, max_slot);
3826 	else
3827 		nr = min(right_nritems - 1, max_slot);
3828 
3829 	for (i = 0; i < nr; i++) {
3830 		item = btrfs_item_nr(i);
3831 
3832 		if (!empty && push_items > 0) {
3833 			if (path->slots[0] < i)
3834 				break;
3835 			if (path->slots[0] == i) {
3836 				int space = btrfs_leaf_free_space(fs_info, right);
3837 				if (space + push_space * 2 > free_space)
3838 					break;
3839 			}
3840 		}
3841 
3842 		if (path->slots[0] == i)
3843 			push_space += data_size;
3844 
3845 		this_item_size = btrfs_item_size(right, item);
3846 		if (this_item_size + sizeof(*item) + push_space > free_space)
3847 			break;
3848 
3849 		push_items++;
3850 		push_space += this_item_size + sizeof(*item);
3851 	}
3852 
3853 	if (push_items == 0) {
3854 		ret = 1;
3855 		goto out;
3856 	}
3857 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3858 
3859 	/* push data from right to left */
3860 	copy_extent_buffer(left, right,
3861 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3862 			   btrfs_item_nr_offset(0),
3863 			   push_items * sizeof(struct btrfs_item));
3864 
3865 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3866 		     btrfs_item_offset_nr(right, push_items - 1);
3867 
3868 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3869 		     leaf_data_end(fs_info, left) - push_space,
3870 		     BTRFS_LEAF_DATA_OFFSET +
3871 		     btrfs_item_offset_nr(right, push_items - 1),
3872 		     push_space);
3873 	old_left_nritems = btrfs_header_nritems(left);
3874 	BUG_ON(old_left_nritems <= 0);
3875 
3876 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3877 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3878 		u32 ioff;
3879 
3880 		item = btrfs_item_nr(i);
3881 
3882 		ioff = btrfs_token_item_offset(left, item, &token);
3883 		btrfs_set_token_item_offset(left, item,
3884 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3885 		      &token);
3886 	}
3887 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3888 
3889 	/* fixup right node */
3890 	if (push_items > right_nritems)
3891 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3892 		       right_nritems);
3893 
3894 	if (push_items < right_nritems) {
3895 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3896 						  leaf_data_end(fs_info, right);
3897 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3898 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3899 				      BTRFS_LEAF_DATA_OFFSET +
3900 				      leaf_data_end(fs_info, right), push_space);
3901 
3902 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3903 			      btrfs_item_nr_offset(push_items),
3904 			     (btrfs_header_nritems(right) - push_items) *
3905 			     sizeof(struct btrfs_item));
3906 	}
3907 	right_nritems -= push_items;
3908 	btrfs_set_header_nritems(right, right_nritems);
3909 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3910 	for (i = 0; i < right_nritems; i++) {
3911 		item = btrfs_item_nr(i);
3912 
3913 		push_space = push_space - btrfs_token_item_size(right,
3914 								item, &token);
3915 		btrfs_set_token_item_offset(right, item, push_space, &token);
3916 	}
3917 
3918 	btrfs_mark_buffer_dirty(left);
3919 	if (right_nritems)
3920 		btrfs_mark_buffer_dirty(right);
3921 	else
3922 		clean_tree_block(fs_info, right);
3923 
3924 	btrfs_item_key(right, &disk_key, 0);
3925 	fixup_low_keys(path, &disk_key, 1);
3926 
3927 	/* then fixup the leaf pointer in the path */
3928 	if (path->slots[0] < push_items) {
3929 		path->slots[0] += old_left_nritems;
3930 		btrfs_tree_unlock(path->nodes[0]);
3931 		free_extent_buffer(path->nodes[0]);
3932 		path->nodes[0] = left;
3933 		path->slots[1] -= 1;
3934 	} else {
3935 		btrfs_tree_unlock(left);
3936 		free_extent_buffer(left);
3937 		path->slots[0] -= push_items;
3938 	}
3939 	BUG_ON(path->slots[0] < 0);
3940 	return ret;
3941 out:
3942 	btrfs_tree_unlock(left);
3943 	free_extent_buffer(left);
3944 	return ret;
3945 }
3946 
3947 /*
3948  * push some data in the path leaf to the left, trying to free up at
3949  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3950  *
3951  * max_slot can put a limit on how far into the leaf we'll push items.  The
3952  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3953  * items
3954  */
3955 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3956 			  *root, struct btrfs_path *path, int min_data_size,
3957 			  int data_size, int empty, u32 max_slot)
3958 {
3959 	struct btrfs_fs_info *fs_info = root->fs_info;
3960 	struct extent_buffer *right = path->nodes[0];
3961 	struct extent_buffer *left;
3962 	int slot;
3963 	int free_space;
3964 	u32 right_nritems;
3965 	int ret = 0;
3966 
3967 	slot = path->slots[1];
3968 	if (slot == 0)
3969 		return 1;
3970 	if (!path->nodes[1])
3971 		return 1;
3972 
3973 	right_nritems = btrfs_header_nritems(right);
3974 	if (right_nritems == 0)
3975 		return 1;
3976 
3977 	btrfs_assert_tree_locked(path->nodes[1]);
3978 
3979 	left = read_node_slot(fs_info, path->nodes[1], slot - 1);
3980 	/*
3981 	 * slot - 1 is not valid or we fail to read the left node,
3982 	 * no big deal, just return.
3983 	 */
3984 	if (IS_ERR(left))
3985 		return 1;
3986 
3987 	btrfs_tree_lock(left);
3988 	btrfs_set_lock_blocking(left);
3989 
3990 	free_space = btrfs_leaf_free_space(fs_info, left);
3991 	if (free_space < data_size) {
3992 		ret = 1;
3993 		goto out;
3994 	}
3995 
3996 	/* cow and double check */
3997 	ret = btrfs_cow_block(trans, root, left,
3998 			      path->nodes[1], slot - 1, &left);
3999 	if (ret) {
4000 		/* we hit -ENOSPC, but it isn't fatal here */
4001 		if (ret == -ENOSPC)
4002 			ret = 1;
4003 		goto out;
4004 	}
4005 
4006 	free_space = btrfs_leaf_free_space(fs_info, left);
4007 	if (free_space < data_size) {
4008 		ret = 1;
4009 		goto out;
4010 	}
4011 
4012 	return __push_leaf_left(fs_info, path, min_data_size,
4013 			       empty, left, free_space, right_nritems,
4014 			       max_slot);
4015 out:
4016 	btrfs_tree_unlock(left);
4017 	free_extent_buffer(left);
4018 	return ret;
4019 }
4020 
4021 /*
4022  * split the path's leaf in two, making sure there is at least data_size
4023  * available for the resulting leaf level of the path.
4024  */
4025 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4026 				    struct btrfs_fs_info *fs_info,
4027 				    struct btrfs_path *path,
4028 				    struct extent_buffer *l,
4029 				    struct extent_buffer *right,
4030 				    int slot, int mid, int nritems)
4031 {
4032 	int data_copy_size;
4033 	int rt_data_off;
4034 	int i;
4035 	struct btrfs_disk_key disk_key;
4036 	struct btrfs_map_token token;
4037 
4038 	btrfs_init_map_token(&token);
4039 
4040 	nritems = nritems - mid;
4041 	btrfs_set_header_nritems(right, nritems);
4042 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l);
4043 
4044 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4045 			   btrfs_item_nr_offset(mid),
4046 			   nritems * sizeof(struct btrfs_item));
4047 
4048 	copy_extent_buffer(right, l,
4049 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4050 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4051 		     leaf_data_end(fs_info, l), data_copy_size);
4052 
4053 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4054 
4055 	for (i = 0; i < nritems; i++) {
4056 		struct btrfs_item *item = btrfs_item_nr(i);
4057 		u32 ioff;
4058 
4059 		ioff = btrfs_token_item_offset(right, item, &token);
4060 		btrfs_set_token_item_offset(right, item,
4061 					    ioff + rt_data_off, &token);
4062 	}
4063 
4064 	btrfs_set_header_nritems(l, mid);
4065 	btrfs_item_key(right, &disk_key, 0);
4066 	insert_ptr(trans, fs_info, path, &disk_key, right->start,
4067 		   path->slots[1] + 1, 1);
4068 
4069 	btrfs_mark_buffer_dirty(right);
4070 	btrfs_mark_buffer_dirty(l);
4071 	BUG_ON(path->slots[0] != slot);
4072 
4073 	if (mid <= slot) {
4074 		btrfs_tree_unlock(path->nodes[0]);
4075 		free_extent_buffer(path->nodes[0]);
4076 		path->nodes[0] = right;
4077 		path->slots[0] -= mid;
4078 		path->slots[1] += 1;
4079 	} else {
4080 		btrfs_tree_unlock(right);
4081 		free_extent_buffer(right);
4082 	}
4083 
4084 	BUG_ON(path->slots[0] < 0);
4085 }
4086 
4087 /*
4088  * double splits happen when we need to insert a big item in the middle
4089  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4090  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4091  *          A                 B                 C
4092  *
4093  * We avoid this by trying to push the items on either side of our target
4094  * into the adjacent leaves.  If all goes well we can avoid the double split
4095  * completely.
4096  */
4097 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4098 					  struct btrfs_root *root,
4099 					  struct btrfs_path *path,
4100 					  int data_size)
4101 {
4102 	struct btrfs_fs_info *fs_info = root->fs_info;
4103 	int ret;
4104 	int progress = 0;
4105 	int slot;
4106 	u32 nritems;
4107 	int space_needed = data_size;
4108 
4109 	slot = path->slots[0];
4110 	if (slot < btrfs_header_nritems(path->nodes[0]))
4111 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4112 
4113 	/*
4114 	 * try to push all the items after our slot into the
4115 	 * right leaf
4116 	 */
4117 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4118 	if (ret < 0)
4119 		return ret;
4120 
4121 	if (ret == 0)
4122 		progress++;
4123 
4124 	nritems = btrfs_header_nritems(path->nodes[0]);
4125 	/*
4126 	 * our goal is to get our slot at the start or end of a leaf.  If
4127 	 * we've done so we're done
4128 	 */
4129 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4130 		return 0;
4131 
4132 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4133 		return 0;
4134 
4135 	/* try to push all the items before our slot into the next leaf */
4136 	slot = path->slots[0];
4137 	space_needed = data_size;
4138 	if (slot > 0)
4139 		space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]);
4140 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4141 	if (ret < 0)
4142 		return ret;
4143 
4144 	if (ret == 0)
4145 		progress++;
4146 
4147 	if (progress)
4148 		return 0;
4149 	return 1;
4150 }
4151 
4152 /*
4153  * split the path's leaf in two, making sure there is at least data_size
4154  * available for the resulting leaf level of the path.
4155  *
4156  * returns 0 if all went well and < 0 on failure.
4157  */
4158 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4159 			       struct btrfs_root *root,
4160 			       const struct btrfs_key *ins_key,
4161 			       struct btrfs_path *path, int data_size,
4162 			       int extend)
4163 {
4164 	struct btrfs_disk_key disk_key;
4165 	struct extent_buffer *l;
4166 	u32 nritems;
4167 	int mid;
4168 	int slot;
4169 	struct extent_buffer *right;
4170 	struct btrfs_fs_info *fs_info = root->fs_info;
4171 	int ret = 0;
4172 	int wret;
4173 	int split;
4174 	int num_doubles = 0;
4175 	int tried_avoid_double = 0;
4176 
4177 	l = path->nodes[0];
4178 	slot = path->slots[0];
4179 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4180 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4181 		return -EOVERFLOW;
4182 
4183 	/* first try to make some room by pushing left and right */
4184 	if (data_size && path->nodes[1]) {
4185 		int space_needed = data_size;
4186 
4187 		if (slot < btrfs_header_nritems(l))
4188 			space_needed -= btrfs_leaf_free_space(fs_info, l);
4189 
4190 		wret = push_leaf_right(trans, root, path, space_needed,
4191 				       space_needed, 0, 0);
4192 		if (wret < 0)
4193 			return wret;
4194 		if (wret) {
4195 			space_needed = data_size;
4196 			if (slot > 0)
4197 				space_needed -= btrfs_leaf_free_space(fs_info,
4198 								      l);
4199 			wret = push_leaf_left(trans, root, path, space_needed,
4200 					      space_needed, 0, (u32)-1);
4201 			if (wret < 0)
4202 				return wret;
4203 		}
4204 		l = path->nodes[0];
4205 
4206 		/* did the pushes work? */
4207 		if (btrfs_leaf_free_space(fs_info, l) >= data_size)
4208 			return 0;
4209 	}
4210 
4211 	if (!path->nodes[1]) {
4212 		ret = insert_new_root(trans, root, path, 1);
4213 		if (ret)
4214 			return ret;
4215 	}
4216 again:
4217 	split = 1;
4218 	l = path->nodes[0];
4219 	slot = path->slots[0];
4220 	nritems = btrfs_header_nritems(l);
4221 	mid = (nritems + 1) / 2;
4222 
4223 	if (mid <= slot) {
4224 		if (nritems == 1 ||
4225 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4226 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4227 			if (slot >= nritems) {
4228 				split = 0;
4229 			} else {
4230 				mid = slot;
4231 				if (mid != nritems &&
4232 				    leaf_space_used(l, mid, nritems - mid) +
4233 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4234 					if (data_size && !tried_avoid_double)
4235 						goto push_for_double;
4236 					split = 2;
4237 				}
4238 			}
4239 		}
4240 	} else {
4241 		if (leaf_space_used(l, 0, mid) + data_size >
4242 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4243 			if (!extend && data_size && slot == 0) {
4244 				split = 0;
4245 			} else if ((extend || !data_size) && slot == 0) {
4246 				mid = 1;
4247 			} else {
4248 				mid = slot;
4249 				if (mid != nritems &&
4250 				    leaf_space_used(l, mid, nritems - mid) +
4251 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4252 					if (data_size && !tried_avoid_double)
4253 						goto push_for_double;
4254 					split = 2;
4255 				}
4256 			}
4257 		}
4258 	}
4259 
4260 	if (split == 0)
4261 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4262 	else
4263 		btrfs_item_key(l, &disk_key, mid);
4264 
4265 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4266 			&disk_key, 0, l->start, 0);
4267 	if (IS_ERR(right))
4268 		return PTR_ERR(right);
4269 
4270 	root_add_used(root, fs_info->nodesize);
4271 
4272 	if (split == 0) {
4273 		if (mid <= slot) {
4274 			btrfs_set_header_nritems(right, 0);
4275 			insert_ptr(trans, fs_info, path, &disk_key,
4276 				   right->start, path->slots[1] + 1, 1);
4277 			btrfs_tree_unlock(path->nodes[0]);
4278 			free_extent_buffer(path->nodes[0]);
4279 			path->nodes[0] = right;
4280 			path->slots[0] = 0;
4281 			path->slots[1] += 1;
4282 		} else {
4283 			btrfs_set_header_nritems(right, 0);
4284 			insert_ptr(trans, fs_info, path, &disk_key,
4285 				   right->start, path->slots[1], 1);
4286 			btrfs_tree_unlock(path->nodes[0]);
4287 			free_extent_buffer(path->nodes[0]);
4288 			path->nodes[0] = right;
4289 			path->slots[0] = 0;
4290 			if (path->slots[1] == 0)
4291 				fixup_low_keys(path, &disk_key, 1);
4292 		}
4293 		/*
4294 		 * We create a new leaf 'right' for the required ins_len and
4295 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4296 		 * the content of ins_len to 'right'.
4297 		 */
4298 		return ret;
4299 	}
4300 
4301 	copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems);
4302 
4303 	if (split == 2) {
4304 		BUG_ON(num_doubles != 0);
4305 		num_doubles++;
4306 		goto again;
4307 	}
4308 
4309 	return 0;
4310 
4311 push_for_double:
4312 	push_for_double_split(trans, root, path, data_size);
4313 	tried_avoid_double = 1;
4314 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size)
4315 		return 0;
4316 	goto again;
4317 }
4318 
4319 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4320 					 struct btrfs_root *root,
4321 					 struct btrfs_path *path, int ins_len)
4322 {
4323 	struct btrfs_fs_info *fs_info = root->fs_info;
4324 	struct btrfs_key key;
4325 	struct extent_buffer *leaf;
4326 	struct btrfs_file_extent_item *fi;
4327 	u64 extent_len = 0;
4328 	u32 item_size;
4329 	int ret;
4330 
4331 	leaf = path->nodes[0];
4332 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4333 
4334 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4335 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4336 
4337 	if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len)
4338 		return 0;
4339 
4340 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4341 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4342 		fi = btrfs_item_ptr(leaf, path->slots[0],
4343 				    struct btrfs_file_extent_item);
4344 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4345 	}
4346 	btrfs_release_path(path);
4347 
4348 	path->keep_locks = 1;
4349 	path->search_for_split = 1;
4350 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4351 	path->search_for_split = 0;
4352 	if (ret > 0)
4353 		ret = -EAGAIN;
4354 	if (ret < 0)
4355 		goto err;
4356 
4357 	ret = -EAGAIN;
4358 	leaf = path->nodes[0];
4359 	/* if our item isn't there, return now */
4360 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4361 		goto err;
4362 
4363 	/* the leaf has  changed, it now has room.  return now */
4364 	if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len)
4365 		goto err;
4366 
4367 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4368 		fi = btrfs_item_ptr(leaf, path->slots[0],
4369 				    struct btrfs_file_extent_item);
4370 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4371 			goto err;
4372 	}
4373 
4374 	btrfs_set_path_blocking(path);
4375 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4376 	if (ret)
4377 		goto err;
4378 
4379 	path->keep_locks = 0;
4380 	btrfs_unlock_up_safe(path, 1);
4381 	return 0;
4382 err:
4383 	path->keep_locks = 0;
4384 	return ret;
4385 }
4386 
4387 static noinline int split_item(struct btrfs_fs_info *fs_info,
4388 			       struct btrfs_path *path,
4389 			       const struct btrfs_key *new_key,
4390 			       unsigned long split_offset)
4391 {
4392 	struct extent_buffer *leaf;
4393 	struct btrfs_item *item;
4394 	struct btrfs_item *new_item;
4395 	int slot;
4396 	char *buf;
4397 	u32 nritems;
4398 	u32 item_size;
4399 	u32 orig_offset;
4400 	struct btrfs_disk_key disk_key;
4401 
4402 	leaf = path->nodes[0];
4403 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item));
4404 
4405 	btrfs_set_path_blocking(path);
4406 
4407 	item = btrfs_item_nr(path->slots[0]);
4408 	orig_offset = btrfs_item_offset(leaf, item);
4409 	item_size = btrfs_item_size(leaf, item);
4410 
4411 	buf = kmalloc(item_size, GFP_NOFS);
4412 	if (!buf)
4413 		return -ENOMEM;
4414 
4415 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4416 			    path->slots[0]), item_size);
4417 
4418 	slot = path->slots[0] + 1;
4419 	nritems = btrfs_header_nritems(leaf);
4420 	if (slot != nritems) {
4421 		/* shift the items */
4422 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4423 				btrfs_item_nr_offset(slot),
4424 				(nritems - slot) * sizeof(struct btrfs_item));
4425 	}
4426 
4427 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4428 	btrfs_set_item_key(leaf, &disk_key, slot);
4429 
4430 	new_item = btrfs_item_nr(slot);
4431 
4432 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4433 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4434 
4435 	btrfs_set_item_offset(leaf, item,
4436 			      orig_offset + item_size - split_offset);
4437 	btrfs_set_item_size(leaf, item, split_offset);
4438 
4439 	btrfs_set_header_nritems(leaf, nritems + 1);
4440 
4441 	/* write the data for the start of the original item */
4442 	write_extent_buffer(leaf, buf,
4443 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4444 			    split_offset);
4445 
4446 	/* write the data for the new item */
4447 	write_extent_buffer(leaf, buf + split_offset,
4448 			    btrfs_item_ptr_offset(leaf, slot),
4449 			    item_size - split_offset);
4450 	btrfs_mark_buffer_dirty(leaf);
4451 
4452 	BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0);
4453 	kfree(buf);
4454 	return 0;
4455 }
4456 
4457 /*
4458  * This function splits a single item into two items,
4459  * giving 'new_key' to the new item and splitting the
4460  * old one at split_offset (from the start of the item).
4461  *
4462  * The path may be released by this operation.  After
4463  * the split, the path is pointing to the old item.  The
4464  * new item is going to be in the same node as the old one.
4465  *
4466  * Note, the item being split must be smaller enough to live alone on
4467  * a tree block with room for one extra struct btrfs_item
4468  *
4469  * This allows us to split the item in place, keeping a lock on the
4470  * leaf the entire time.
4471  */
4472 int btrfs_split_item(struct btrfs_trans_handle *trans,
4473 		     struct btrfs_root *root,
4474 		     struct btrfs_path *path,
4475 		     const struct btrfs_key *new_key,
4476 		     unsigned long split_offset)
4477 {
4478 	int ret;
4479 	ret = setup_leaf_for_split(trans, root, path,
4480 				   sizeof(struct btrfs_item));
4481 	if (ret)
4482 		return ret;
4483 
4484 	ret = split_item(root->fs_info, path, new_key, split_offset);
4485 	return ret;
4486 }
4487 
4488 /*
4489  * This function duplicate a item, giving 'new_key' to the new item.
4490  * It guarantees both items live in the same tree leaf and the new item
4491  * is contiguous with the original item.
4492  *
4493  * This allows us to split file extent in place, keeping a lock on the
4494  * leaf the entire time.
4495  */
4496 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4497 			 struct btrfs_root *root,
4498 			 struct btrfs_path *path,
4499 			 const struct btrfs_key *new_key)
4500 {
4501 	struct extent_buffer *leaf;
4502 	int ret;
4503 	u32 item_size;
4504 
4505 	leaf = path->nodes[0];
4506 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4507 	ret = setup_leaf_for_split(trans, root, path,
4508 				   item_size + sizeof(struct btrfs_item));
4509 	if (ret)
4510 		return ret;
4511 
4512 	path->slots[0]++;
4513 	setup_items_for_insert(root, path, new_key, &item_size,
4514 			       item_size, item_size +
4515 			       sizeof(struct btrfs_item), 1);
4516 	leaf = path->nodes[0];
4517 	memcpy_extent_buffer(leaf,
4518 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4519 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4520 			     item_size);
4521 	return 0;
4522 }
4523 
4524 /*
4525  * make the item pointed to by the path smaller.  new_size indicates
4526  * how small to make it, and from_end tells us if we just chop bytes
4527  * off the end of the item or if we shift the item to chop bytes off
4528  * the front.
4529  */
4530 void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
4531 			 struct btrfs_path *path, u32 new_size, int from_end)
4532 {
4533 	int slot;
4534 	struct extent_buffer *leaf;
4535 	struct btrfs_item *item;
4536 	u32 nritems;
4537 	unsigned int data_end;
4538 	unsigned int old_data_start;
4539 	unsigned int old_size;
4540 	unsigned int size_diff;
4541 	int i;
4542 	struct btrfs_map_token token;
4543 
4544 	btrfs_init_map_token(&token);
4545 
4546 	leaf = path->nodes[0];
4547 	slot = path->slots[0];
4548 
4549 	old_size = btrfs_item_size_nr(leaf, slot);
4550 	if (old_size == new_size)
4551 		return;
4552 
4553 	nritems = btrfs_header_nritems(leaf);
4554 	data_end = leaf_data_end(fs_info, leaf);
4555 
4556 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4557 
4558 	size_diff = old_size - new_size;
4559 
4560 	BUG_ON(slot < 0);
4561 	BUG_ON(slot >= nritems);
4562 
4563 	/*
4564 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4565 	 */
4566 	/* first correct the data pointers */
4567 	for (i = slot; i < nritems; i++) {
4568 		u32 ioff;
4569 		item = btrfs_item_nr(i);
4570 
4571 		ioff = btrfs_token_item_offset(leaf, item, &token);
4572 		btrfs_set_token_item_offset(leaf, item,
4573 					    ioff + size_diff, &token);
4574 	}
4575 
4576 	/* shift the data */
4577 	if (from_end) {
4578 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4579 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4580 			      data_end, old_data_start + new_size - data_end);
4581 	} else {
4582 		struct btrfs_disk_key disk_key;
4583 		u64 offset;
4584 
4585 		btrfs_item_key(leaf, &disk_key, slot);
4586 
4587 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4588 			unsigned long ptr;
4589 			struct btrfs_file_extent_item *fi;
4590 
4591 			fi = btrfs_item_ptr(leaf, slot,
4592 					    struct btrfs_file_extent_item);
4593 			fi = (struct btrfs_file_extent_item *)(
4594 			     (unsigned long)fi - size_diff);
4595 
4596 			if (btrfs_file_extent_type(leaf, fi) ==
4597 			    BTRFS_FILE_EXTENT_INLINE) {
4598 				ptr = btrfs_item_ptr_offset(leaf, slot);
4599 				memmove_extent_buffer(leaf, ptr,
4600 				      (unsigned long)fi,
4601 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4602 			}
4603 		}
4604 
4605 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4606 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4607 			      data_end, old_data_start - data_end);
4608 
4609 		offset = btrfs_disk_key_offset(&disk_key);
4610 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4611 		btrfs_set_item_key(leaf, &disk_key, slot);
4612 		if (slot == 0)
4613 			fixup_low_keys(path, &disk_key, 1);
4614 	}
4615 
4616 	item = btrfs_item_nr(slot);
4617 	btrfs_set_item_size(leaf, item, new_size);
4618 	btrfs_mark_buffer_dirty(leaf);
4619 
4620 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4621 		btrfs_print_leaf(leaf);
4622 		BUG();
4623 	}
4624 }
4625 
4626 /*
4627  * make the item pointed to by the path bigger, data_size is the added size.
4628  */
4629 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
4630 		       u32 data_size)
4631 {
4632 	int slot;
4633 	struct extent_buffer *leaf;
4634 	struct btrfs_item *item;
4635 	u32 nritems;
4636 	unsigned int data_end;
4637 	unsigned int old_data;
4638 	unsigned int old_size;
4639 	int i;
4640 	struct btrfs_map_token token;
4641 
4642 	btrfs_init_map_token(&token);
4643 
4644 	leaf = path->nodes[0];
4645 
4646 	nritems = btrfs_header_nritems(leaf);
4647 	data_end = leaf_data_end(fs_info, leaf);
4648 
4649 	if (btrfs_leaf_free_space(fs_info, leaf) < data_size) {
4650 		btrfs_print_leaf(leaf);
4651 		BUG();
4652 	}
4653 	slot = path->slots[0];
4654 	old_data = btrfs_item_end_nr(leaf, slot);
4655 
4656 	BUG_ON(slot < 0);
4657 	if (slot >= nritems) {
4658 		btrfs_print_leaf(leaf);
4659 		btrfs_crit(fs_info, "slot %d too large, nritems %d",
4660 			   slot, nritems);
4661 		BUG_ON(1);
4662 	}
4663 
4664 	/*
4665 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4666 	 */
4667 	/* first correct the data pointers */
4668 	for (i = slot; i < nritems; i++) {
4669 		u32 ioff;
4670 		item = btrfs_item_nr(i);
4671 
4672 		ioff = btrfs_token_item_offset(leaf, item, &token);
4673 		btrfs_set_token_item_offset(leaf, item,
4674 					    ioff - data_size, &token);
4675 	}
4676 
4677 	/* shift the data */
4678 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4679 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4680 		      data_end, old_data - data_end);
4681 
4682 	data_end = old_data;
4683 	old_size = btrfs_item_size_nr(leaf, slot);
4684 	item = btrfs_item_nr(slot);
4685 	btrfs_set_item_size(leaf, item, old_size + data_size);
4686 	btrfs_mark_buffer_dirty(leaf);
4687 
4688 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4689 		btrfs_print_leaf(leaf);
4690 		BUG();
4691 	}
4692 }
4693 
4694 /*
4695  * this is a helper for btrfs_insert_empty_items, the main goal here is
4696  * to save stack depth by doing the bulk of the work in a function
4697  * that doesn't call btrfs_search_slot
4698  */
4699 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4700 			    const struct btrfs_key *cpu_key, u32 *data_size,
4701 			    u32 total_data, u32 total_size, int nr)
4702 {
4703 	struct btrfs_fs_info *fs_info = root->fs_info;
4704 	struct btrfs_item *item;
4705 	int i;
4706 	u32 nritems;
4707 	unsigned int data_end;
4708 	struct btrfs_disk_key disk_key;
4709 	struct extent_buffer *leaf;
4710 	int slot;
4711 	struct btrfs_map_token token;
4712 
4713 	if (path->slots[0] == 0) {
4714 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4715 		fixup_low_keys(path, &disk_key, 1);
4716 	}
4717 	btrfs_unlock_up_safe(path, 1);
4718 
4719 	btrfs_init_map_token(&token);
4720 
4721 	leaf = path->nodes[0];
4722 	slot = path->slots[0];
4723 
4724 	nritems = btrfs_header_nritems(leaf);
4725 	data_end = leaf_data_end(fs_info, leaf);
4726 
4727 	if (btrfs_leaf_free_space(fs_info, leaf) < total_size) {
4728 		btrfs_print_leaf(leaf);
4729 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4730 			   total_size, btrfs_leaf_free_space(fs_info, leaf));
4731 		BUG();
4732 	}
4733 
4734 	if (slot != nritems) {
4735 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4736 
4737 		if (old_data < data_end) {
4738 			btrfs_print_leaf(leaf);
4739 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4740 				   slot, old_data, data_end);
4741 			BUG_ON(1);
4742 		}
4743 		/*
4744 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4745 		 */
4746 		/* first correct the data pointers */
4747 		for (i = slot; i < nritems; i++) {
4748 			u32 ioff;
4749 
4750 			item = btrfs_item_nr(i);
4751 			ioff = btrfs_token_item_offset(leaf, item, &token);
4752 			btrfs_set_token_item_offset(leaf, item,
4753 						    ioff - total_data, &token);
4754 		}
4755 		/* shift the items */
4756 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4757 			      btrfs_item_nr_offset(slot),
4758 			      (nritems - slot) * sizeof(struct btrfs_item));
4759 
4760 		/* shift the data */
4761 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4762 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4763 			      data_end, old_data - data_end);
4764 		data_end = old_data;
4765 	}
4766 
4767 	/* setup the item for the new data */
4768 	for (i = 0; i < nr; i++) {
4769 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4770 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4771 		item = btrfs_item_nr(slot + i);
4772 		btrfs_set_token_item_offset(leaf, item,
4773 					    data_end - data_size[i], &token);
4774 		data_end -= data_size[i];
4775 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4776 	}
4777 
4778 	btrfs_set_header_nritems(leaf, nritems + nr);
4779 	btrfs_mark_buffer_dirty(leaf);
4780 
4781 	if (btrfs_leaf_free_space(fs_info, leaf) < 0) {
4782 		btrfs_print_leaf(leaf);
4783 		BUG();
4784 	}
4785 }
4786 
4787 /*
4788  * Given a key and some data, insert items into the tree.
4789  * This does all the path init required, making room in the tree if needed.
4790  */
4791 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4792 			    struct btrfs_root *root,
4793 			    struct btrfs_path *path,
4794 			    const struct btrfs_key *cpu_key, u32 *data_size,
4795 			    int nr)
4796 {
4797 	int ret = 0;
4798 	int slot;
4799 	int i;
4800 	u32 total_size = 0;
4801 	u32 total_data = 0;
4802 
4803 	for (i = 0; i < nr; i++)
4804 		total_data += data_size[i];
4805 
4806 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4807 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4808 	if (ret == 0)
4809 		return -EEXIST;
4810 	if (ret < 0)
4811 		return ret;
4812 
4813 	slot = path->slots[0];
4814 	BUG_ON(slot < 0);
4815 
4816 	setup_items_for_insert(root, path, cpu_key, data_size,
4817 			       total_data, total_size, nr);
4818 	return 0;
4819 }
4820 
4821 /*
4822  * Given a key and some data, insert an item into the tree.
4823  * This does all the path init required, making room in the tree if needed.
4824  */
4825 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4826 		      const struct btrfs_key *cpu_key, void *data,
4827 		      u32 data_size)
4828 {
4829 	int ret = 0;
4830 	struct btrfs_path *path;
4831 	struct extent_buffer *leaf;
4832 	unsigned long ptr;
4833 
4834 	path = btrfs_alloc_path();
4835 	if (!path)
4836 		return -ENOMEM;
4837 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4838 	if (!ret) {
4839 		leaf = path->nodes[0];
4840 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4841 		write_extent_buffer(leaf, data, ptr, data_size);
4842 		btrfs_mark_buffer_dirty(leaf);
4843 	}
4844 	btrfs_free_path(path);
4845 	return ret;
4846 }
4847 
4848 /*
4849  * delete the pointer from a given node.
4850  *
4851  * the tree should have been previously balanced so the deletion does not
4852  * empty a node.
4853  */
4854 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4855 		    int level, int slot)
4856 {
4857 	struct extent_buffer *parent = path->nodes[level];
4858 	u32 nritems;
4859 	int ret;
4860 
4861 	nritems = btrfs_header_nritems(parent);
4862 	if (slot != nritems - 1) {
4863 		if (level) {
4864 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4865 					nritems - slot - 1);
4866 			BUG_ON(ret < 0);
4867 		}
4868 		memmove_extent_buffer(parent,
4869 			      btrfs_node_key_ptr_offset(slot),
4870 			      btrfs_node_key_ptr_offset(slot + 1),
4871 			      sizeof(struct btrfs_key_ptr) *
4872 			      (nritems - slot - 1));
4873 	} else if (level) {
4874 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4875 				GFP_NOFS);
4876 		BUG_ON(ret < 0);
4877 	}
4878 
4879 	nritems--;
4880 	btrfs_set_header_nritems(parent, nritems);
4881 	if (nritems == 0 && parent == root->node) {
4882 		BUG_ON(btrfs_header_level(root->node) != 1);
4883 		/* just turn the root into a leaf and break */
4884 		btrfs_set_header_level(root->node, 0);
4885 	} else if (slot == 0) {
4886 		struct btrfs_disk_key disk_key;
4887 
4888 		btrfs_node_key(parent, &disk_key, 0);
4889 		fixup_low_keys(path, &disk_key, level + 1);
4890 	}
4891 	btrfs_mark_buffer_dirty(parent);
4892 }
4893 
4894 /*
4895  * a helper function to delete the leaf pointed to by path->slots[1] and
4896  * path->nodes[1].
4897  *
4898  * This deletes the pointer in path->nodes[1] and frees the leaf
4899  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4900  *
4901  * The path must have already been setup for deleting the leaf, including
4902  * all the proper balancing.  path->nodes[1] must be locked.
4903  */
4904 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4905 				    struct btrfs_root *root,
4906 				    struct btrfs_path *path,
4907 				    struct extent_buffer *leaf)
4908 {
4909 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4910 	del_ptr(root, path, 1, path->slots[1]);
4911 
4912 	/*
4913 	 * btrfs_free_extent is expensive, we want to make sure we
4914 	 * aren't holding any locks when we call it
4915 	 */
4916 	btrfs_unlock_up_safe(path, 0);
4917 
4918 	root_sub_used(root, leaf->len);
4919 
4920 	extent_buffer_get(leaf);
4921 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4922 	free_extent_buffer_stale(leaf);
4923 }
4924 /*
4925  * delete the item at the leaf level in path.  If that empties
4926  * the leaf, remove it from the tree
4927  */
4928 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4929 		    struct btrfs_path *path, int slot, int nr)
4930 {
4931 	struct btrfs_fs_info *fs_info = root->fs_info;
4932 	struct extent_buffer *leaf;
4933 	struct btrfs_item *item;
4934 	u32 last_off;
4935 	u32 dsize = 0;
4936 	int ret = 0;
4937 	int wret;
4938 	int i;
4939 	u32 nritems;
4940 	struct btrfs_map_token token;
4941 
4942 	btrfs_init_map_token(&token);
4943 
4944 	leaf = path->nodes[0];
4945 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4946 
4947 	for (i = 0; i < nr; i++)
4948 		dsize += btrfs_item_size_nr(leaf, slot + i);
4949 
4950 	nritems = btrfs_header_nritems(leaf);
4951 
4952 	if (slot + nr != nritems) {
4953 		int data_end = leaf_data_end(fs_info, leaf);
4954 
4955 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4956 			      data_end + dsize,
4957 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4958 			      last_off - data_end);
4959 
4960 		for (i = slot + nr; i < nritems; i++) {
4961 			u32 ioff;
4962 
4963 			item = btrfs_item_nr(i);
4964 			ioff = btrfs_token_item_offset(leaf, item, &token);
4965 			btrfs_set_token_item_offset(leaf, item,
4966 						    ioff + dsize, &token);
4967 		}
4968 
4969 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4970 			      btrfs_item_nr_offset(slot + nr),
4971 			      sizeof(struct btrfs_item) *
4972 			      (nritems - slot - nr));
4973 	}
4974 	btrfs_set_header_nritems(leaf, nritems - nr);
4975 	nritems -= nr;
4976 
4977 	/* delete the leaf if we've emptied it */
4978 	if (nritems == 0) {
4979 		if (leaf == root->node) {
4980 			btrfs_set_header_level(leaf, 0);
4981 		} else {
4982 			btrfs_set_path_blocking(path);
4983 			clean_tree_block(fs_info, leaf);
4984 			btrfs_del_leaf(trans, root, path, leaf);
4985 		}
4986 	} else {
4987 		int used = leaf_space_used(leaf, 0, nritems);
4988 		if (slot == 0) {
4989 			struct btrfs_disk_key disk_key;
4990 
4991 			btrfs_item_key(leaf, &disk_key, 0);
4992 			fixup_low_keys(path, &disk_key, 1);
4993 		}
4994 
4995 		/* delete the leaf if it is mostly empty */
4996 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4997 			/* push_leaf_left fixes the path.
4998 			 * make sure the path still points to our leaf
4999 			 * for possible call to del_ptr below
5000 			 */
5001 			slot = path->slots[1];
5002 			extent_buffer_get(leaf);
5003 
5004 			btrfs_set_path_blocking(path);
5005 			wret = push_leaf_left(trans, root, path, 1, 1,
5006 					      1, (u32)-1);
5007 			if (wret < 0 && wret != -ENOSPC)
5008 				ret = wret;
5009 
5010 			if (path->nodes[0] == leaf &&
5011 			    btrfs_header_nritems(leaf)) {
5012 				wret = push_leaf_right(trans, root, path, 1,
5013 						       1, 1, 0);
5014 				if (wret < 0 && wret != -ENOSPC)
5015 					ret = wret;
5016 			}
5017 
5018 			if (btrfs_header_nritems(leaf) == 0) {
5019 				path->slots[1] = slot;
5020 				btrfs_del_leaf(trans, root, path, leaf);
5021 				free_extent_buffer(leaf);
5022 				ret = 0;
5023 			} else {
5024 				/* if we're still in the path, make sure
5025 				 * we're dirty.  Otherwise, one of the
5026 				 * push_leaf functions must have already
5027 				 * dirtied this buffer
5028 				 */
5029 				if (path->nodes[0] == leaf)
5030 					btrfs_mark_buffer_dirty(leaf);
5031 				free_extent_buffer(leaf);
5032 			}
5033 		} else {
5034 			btrfs_mark_buffer_dirty(leaf);
5035 		}
5036 	}
5037 	return ret;
5038 }
5039 
5040 /*
5041  * search the tree again to find a leaf with lesser keys
5042  * returns 0 if it found something or 1 if there are no lesser leaves.
5043  * returns < 0 on io errors.
5044  *
5045  * This may release the path, and so you may lose any locks held at the
5046  * time you call it.
5047  */
5048 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5049 {
5050 	struct btrfs_key key;
5051 	struct btrfs_disk_key found_key;
5052 	int ret;
5053 
5054 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5055 
5056 	if (key.offset > 0) {
5057 		key.offset--;
5058 	} else if (key.type > 0) {
5059 		key.type--;
5060 		key.offset = (u64)-1;
5061 	} else if (key.objectid > 0) {
5062 		key.objectid--;
5063 		key.type = (u8)-1;
5064 		key.offset = (u64)-1;
5065 	} else {
5066 		return 1;
5067 	}
5068 
5069 	btrfs_release_path(path);
5070 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5071 	if (ret < 0)
5072 		return ret;
5073 	btrfs_item_key(path->nodes[0], &found_key, 0);
5074 	ret = comp_keys(&found_key, &key);
5075 	/*
5076 	 * We might have had an item with the previous key in the tree right
5077 	 * before we released our path. And after we released our path, that
5078 	 * item might have been pushed to the first slot (0) of the leaf we
5079 	 * were holding due to a tree balance. Alternatively, an item with the
5080 	 * previous key can exist as the only element of a leaf (big fat item).
5081 	 * Therefore account for these 2 cases, so that our callers (like
5082 	 * btrfs_previous_item) don't miss an existing item with a key matching
5083 	 * the previous key we computed above.
5084 	 */
5085 	if (ret <= 0)
5086 		return 0;
5087 	return 1;
5088 }
5089 
5090 /*
5091  * A helper function to walk down the tree starting at min_key, and looking
5092  * for nodes or leaves that are have a minimum transaction id.
5093  * This is used by the btree defrag code, and tree logging
5094  *
5095  * This does not cow, but it does stuff the starting key it finds back
5096  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5097  * key and get a writable path.
5098  *
5099  * This honors path->lowest_level to prevent descent past a given level
5100  * of the tree.
5101  *
5102  * min_trans indicates the oldest transaction that you are interested
5103  * in walking through.  Any nodes or leaves older than min_trans are
5104  * skipped over (without reading them).
5105  *
5106  * returns zero if something useful was found, < 0 on error and 1 if there
5107  * was nothing in the tree that matched the search criteria.
5108  */
5109 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5110 			 struct btrfs_path *path,
5111 			 u64 min_trans)
5112 {
5113 	struct btrfs_fs_info *fs_info = root->fs_info;
5114 	struct extent_buffer *cur;
5115 	struct btrfs_key found_key;
5116 	int slot;
5117 	int sret;
5118 	u32 nritems;
5119 	int level;
5120 	int ret = 1;
5121 	int keep_locks = path->keep_locks;
5122 
5123 	path->keep_locks = 1;
5124 again:
5125 	cur = btrfs_read_lock_root_node(root);
5126 	level = btrfs_header_level(cur);
5127 	WARN_ON(path->nodes[level]);
5128 	path->nodes[level] = cur;
5129 	path->locks[level] = BTRFS_READ_LOCK;
5130 
5131 	if (btrfs_header_generation(cur) < min_trans) {
5132 		ret = 1;
5133 		goto out;
5134 	}
5135 	while (1) {
5136 		nritems = btrfs_header_nritems(cur);
5137 		level = btrfs_header_level(cur);
5138 		sret = btrfs_bin_search(cur, min_key, level, &slot);
5139 
5140 		/* at the lowest level, we're done, setup the path and exit */
5141 		if (level == path->lowest_level) {
5142 			if (slot >= nritems)
5143 				goto find_next_key;
5144 			ret = 0;
5145 			path->slots[level] = slot;
5146 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5147 			goto out;
5148 		}
5149 		if (sret && slot > 0)
5150 			slot--;
5151 		/*
5152 		 * check this node pointer against the min_trans parameters.
5153 		 * If it is too old, old, skip to the next one.
5154 		 */
5155 		while (slot < nritems) {
5156 			u64 gen;
5157 
5158 			gen = btrfs_node_ptr_generation(cur, slot);
5159 			if (gen < min_trans) {
5160 				slot++;
5161 				continue;
5162 			}
5163 			break;
5164 		}
5165 find_next_key:
5166 		/*
5167 		 * we didn't find a candidate key in this node, walk forward
5168 		 * and find another one
5169 		 */
5170 		if (slot >= nritems) {
5171 			path->slots[level] = slot;
5172 			btrfs_set_path_blocking(path);
5173 			sret = btrfs_find_next_key(root, path, min_key, level,
5174 						  min_trans);
5175 			if (sret == 0) {
5176 				btrfs_release_path(path);
5177 				goto again;
5178 			} else {
5179 				goto out;
5180 			}
5181 		}
5182 		/* save our key for returning back */
5183 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5184 		path->slots[level] = slot;
5185 		if (level == path->lowest_level) {
5186 			ret = 0;
5187 			goto out;
5188 		}
5189 		btrfs_set_path_blocking(path);
5190 		cur = read_node_slot(fs_info, cur, slot);
5191 		if (IS_ERR(cur)) {
5192 			ret = PTR_ERR(cur);
5193 			goto out;
5194 		}
5195 
5196 		btrfs_tree_read_lock(cur);
5197 
5198 		path->locks[level - 1] = BTRFS_READ_LOCK;
5199 		path->nodes[level - 1] = cur;
5200 		unlock_up(path, level, 1, 0, NULL);
5201 		btrfs_clear_path_blocking(path, NULL, 0);
5202 	}
5203 out:
5204 	path->keep_locks = keep_locks;
5205 	if (ret == 0) {
5206 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5207 		btrfs_set_path_blocking(path);
5208 		memcpy(min_key, &found_key, sizeof(found_key));
5209 	}
5210 	return ret;
5211 }
5212 
5213 static int tree_move_down(struct btrfs_fs_info *fs_info,
5214 			   struct btrfs_path *path,
5215 			   int *level)
5216 {
5217 	struct extent_buffer *eb;
5218 
5219 	BUG_ON(*level == 0);
5220 	eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]);
5221 	if (IS_ERR(eb))
5222 		return PTR_ERR(eb);
5223 
5224 	path->nodes[*level - 1] = eb;
5225 	path->slots[*level - 1] = 0;
5226 	(*level)--;
5227 	return 0;
5228 }
5229 
5230 static int tree_move_next_or_upnext(struct btrfs_path *path,
5231 				    int *level, int root_level)
5232 {
5233 	int ret = 0;
5234 	int nritems;
5235 	nritems = btrfs_header_nritems(path->nodes[*level]);
5236 
5237 	path->slots[*level]++;
5238 
5239 	while (path->slots[*level] >= nritems) {
5240 		if (*level == root_level)
5241 			return -1;
5242 
5243 		/* move upnext */
5244 		path->slots[*level] = 0;
5245 		free_extent_buffer(path->nodes[*level]);
5246 		path->nodes[*level] = NULL;
5247 		(*level)++;
5248 		path->slots[*level]++;
5249 
5250 		nritems = btrfs_header_nritems(path->nodes[*level]);
5251 		ret = 1;
5252 	}
5253 	return ret;
5254 }
5255 
5256 /*
5257  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5258  * or down.
5259  */
5260 static int tree_advance(struct btrfs_fs_info *fs_info,
5261 			struct btrfs_path *path,
5262 			int *level, int root_level,
5263 			int allow_down,
5264 			struct btrfs_key *key)
5265 {
5266 	int ret;
5267 
5268 	if (*level == 0 || !allow_down) {
5269 		ret = tree_move_next_or_upnext(path, level, root_level);
5270 	} else {
5271 		ret = tree_move_down(fs_info, path, level);
5272 	}
5273 	if (ret >= 0) {
5274 		if (*level == 0)
5275 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5276 					path->slots[*level]);
5277 		else
5278 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5279 					path->slots[*level]);
5280 	}
5281 	return ret;
5282 }
5283 
5284 static int tree_compare_item(struct btrfs_path *left_path,
5285 			     struct btrfs_path *right_path,
5286 			     char *tmp_buf)
5287 {
5288 	int cmp;
5289 	int len1, len2;
5290 	unsigned long off1, off2;
5291 
5292 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5293 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5294 	if (len1 != len2)
5295 		return 1;
5296 
5297 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5298 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5299 				right_path->slots[0]);
5300 
5301 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5302 
5303 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5304 	if (cmp)
5305 		return 1;
5306 	return 0;
5307 }
5308 
5309 #define ADVANCE 1
5310 #define ADVANCE_ONLY_NEXT -1
5311 
5312 /*
5313  * This function compares two trees and calls the provided callback for
5314  * every changed/new/deleted item it finds.
5315  * If shared tree blocks are encountered, whole subtrees are skipped, making
5316  * the compare pretty fast on snapshotted subvolumes.
5317  *
5318  * This currently works on commit roots only. As commit roots are read only,
5319  * we don't do any locking. The commit roots are protected with transactions.
5320  * Transactions are ended and rejoined when a commit is tried in between.
5321  *
5322  * This function checks for modifications done to the trees while comparing.
5323  * If it detects a change, it aborts immediately.
5324  */
5325 int btrfs_compare_trees(struct btrfs_root *left_root,
5326 			struct btrfs_root *right_root,
5327 			btrfs_changed_cb_t changed_cb, void *ctx)
5328 {
5329 	struct btrfs_fs_info *fs_info = left_root->fs_info;
5330 	int ret;
5331 	int cmp;
5332 	struct btrfs_path *left_path = NULL;
5333 	struct btrfs_path *right_path = NULL;
5334 	struct btrfs_key left_key;
5335 	struct btrfs_key right_key;
5336 	char *tmp_buf = NULL;
5337 	int left_root_level;
5338 	int right_root_level;
5339 	int left_level;
5340 	int right_level;
5341 	int left_end_reached;
5342 	int right_end_reached;
5343 	int advance_left;
5344 	int advance_right;
5345 	u64 left_blockptr;
5346 	u64 right_blockptr;
5347 	u64 left_gen;
5348 	u64 right_gen;
5349 
5350 	left_path = btrfs_alloc_path();
5351 	if (!left_path) {
5352 		ret = -ENOMEM;
5353 		goto out;
5354 	}
5355 	right_path = btrfs_alloc_path();
5356 	if (!right_path) {
5357 		ret = -ENOMEM;
5358 		goto out;
5359 	}
5360 
5361 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5362 	if (!tmp_buf) {
5363 		ret = -ENOMEM;
5364 		goto out;
5365 	}
5366 
5367 	left_path->search_commit_root = 1;
5368 	left_path->skip_locking = 1;
5369 	right_path->search_commit_root = 1;
5370 	right_path->skip_locking = 1;
5371 
5372 	/*
5373 	 * Strategy: Go to the first items of both trees. Then do
5374 	 *
5375 	 * If both trees are at level 0
5376 	 *   Compare keys of current items
5377 	 *     If left < right treat left item as new, advance left tree
5378 	 *       and repeat
5379 	 *     If left > right treat right item as deleted, advance right tree
5380 	 *       and repeat
5381 	 *     If left == right do deep compare of items, treat as changed if
5382 	 *       needed, advance both trees and repeat
5383 	 * If both trees are at the same level but not at level 0
5384 	 *   Compare keys of current nodes/leafs
5385 	 *     If left < right advance left tree and repeat
5386 	 *     If left > right advance right tree and repeat
5387 	 *     If left == right compare blockptrs of the next nodes/leafs
5388 	 *       If they match advance both trees but stay at the same level
5389 	 *         and repeat
5390 	 *       If they don't match advance both trees while allowing to go
5391 	 *         deeper and repeat
5392 	 * If tree levels are different
5393 	 *   Advance the tree that needs it and repeat
5394 	 *
5395 	 * Advancing a tree means:
5396 	 *   If we are at level 0, try to go to the next slot. If that's not
5397 	 *   possible, go one level up and repeat. Stop when we found a level
5398 	 *   where we could go to the next slot. We may at this point be on a
5399 	 *   node or a leaf.
5400 	 *
5401 	 *   If we are not at level 0 and not on shared tree blocks, go one
5402 	 *   level deeper.
5403 	 *
5404 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5405 	 *   the right if possible or go up and right.
5406 	 */
5407 
5408 	down_read(&fs_info->commit_root_sem);
5409 	left_level = btrfs_header_level(left_root->commit_root);
5410 	left_root_level = left_level;
5411 	left_path->nodes[left_level] =
5412 			btrfs_clone_extent_buffer(left_root->commit_root);
5413 	if (!left_path->nodes[left_level]) {
5414 		up_read(&fs_info->commit_root_sem);
5415 		ret = -ENOMEM;
5416 		goto out;
5417 	}
5418 	extent_buffer_get(left_path->nodes[left_level]);
5419 
5420 	right_level = btrfs_header_level(right_root->commit_root);
5421 	right_root_level = right_level;
5422 	right_path->nodes[right_level] =
5423 			btrfs_clone_extent_buffer(right_root->commit_root);
5424 	if (!right_path->nodes[right_level]) {
5425 		up_read(&fs_info->commit_root_sem);
5426 		ret = -ENOMEM;
5427 		goto out;
5428 	}
5429 	extent_buffer_get(right_path->nodes[right_level]);
5430 	up_read(&fs_info->commit_root_sem);
5431 
5432 	if (left_level == 0)
5433 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5434 				&left_key, left_path->slots[left_level]);
5435 	else
5436 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5437 				&left_key, left_path->slots[left_level]);
5438 	if (right_level == 0)
5439 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5440 				&right_key, right_path->slots[right_level]);
5441 	else
5442 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5443 				&right_key, right_path->slots[right_level]);
5444 
5445 	left_end_reached = right_end_reached = 0;
5446 	advance_left = advance_right = 0;
5447 
5448 	while (1) {
5449 		if (advance_left && !left_end_reached) {
5450 			ret = tree_advance(fs_info, left_path, &left_level,
5451 					left_root_level,
5452 					advance_left != ADVANCE_ONLY_NEXT,
5453 					&left_key);
5454 			if (ret == -1)
5455 				left_end_reached = ADVANCE;
5456 			else if (ret < 0)
5457 				goto out;
5458 			advance_left = 0;
5459 		}
5460 		if (advance_right && !right_end_reached) {
5461 			ret = tree_advance(fs_info, right_path, &right_level,
5462 					right_root_level,
5463 					advance_right != ADVANCE_ONLY_NEXT,
5464 					&right_key);
5465 			if (ret == -1)
5466 				right_end_reached = ADVANCE;
5467 			else if (ret < 0)
5468 				goto out;
5469 			advance_right = 0;
5470 		}
5471 
5472 		if (left_end_reached && right_end_reached) {
5473 			ret = 0;
5474 			goto out;
5475 		} else if (left_end_reached) {
5476 			if (right_level == 0) {
5477 				ret = changed_cb(left_path, right_path,
5478 						&right_key,
5479 						BTRFS_COMPARE_TREE_DELETED,
5480 						ctx);
5481 				if (ret < 0)
5482 					goto out;
5483 			}
5484 			advance_right = ADVANCE;
5485 			continue;
5486 		} else if (right_end_reached) {
5487 			if (left_level == 0) {
5488 				ret = changed_cb(left_path, right_path,
5489 						&left_key,
5490 						BTRFS_COMPARE_TREE_NEW,
5491 						ctx);
5492 				if (ret < 0)
5493 					goto out;
5494 			}
5495 			advance_left = ADVANCE;
5496 			continue;
5497 		}
5498 
5499 		if (left_level == 0 && right_level == 0) {
5500 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5501 			if (cmp < 0) {
5502 				ret = changed_cb(left_path, right_path,
5503 						&left_key,
5504 						BTRFS_COMPARE_TREE_NEW,
5505 						ctx);
5506 				if (ret < 0)
5507 					goto out;
5508 				advance_left = ADVANCE;
5509 			} else if (cmp > 0) {
5510 				ret = changed_cb(left_path, right_path,
5511 						&right_key,
5512 						BTRFS_COMPARE_TREE_DELETED,
5513 						ctx);
5514 				if (ret < 0)
5515 					goto out;
5516 				advance_right = ADVANCE;
5517 			} else {
5518 				enum btrfs_compare_tree_result result;
5519 
5520 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5521 				ret = tree_compare_item(left_path, right_path,
5522 							tmp_buf);
5523 				if (ret)
5524 					result = BTRFS_COMPARE_TREE_CHANGED;
5525 				else
5526 					result = BTRFS_COMPARE_TREE_SAME;
5527 				ret = changed_cb(left_path, right_path,
5528 						 &left_key, result, ctx);
5529 				if (ret < 0)
5530 					goto out;
5531 				advance_left = ADVANCE;
5532 				advance_right = ADVANCE;
5533 			}
5534 		} else if (left_level == right_level) {
5535 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5536 			if (cmp < 0) {
5537 				advance_left = ADVANCE;
5538 			} else if (cmp > 0) {
5539 				advance_right = ADVANCE;
5540 			} else {
5541 				left_blockptr = btrfs_node_blockptr(
5542 						left_path->nodes[left_level],
5543 						left_path->slots[left_level]);
5544 				right_blockptr = btrfs_node_blockptr(
5545 						right_path->nodes[right_level],
5546 						right_path->slots[right_level]);
5547 				left_gen = btrfs_node_ptr_generation(
5548 						left_path->nodes[left_level],
5549 						left_path->slots[left_level]);
5550 				right_gen = btrfs_node_ptr_generation(
5551 						right_path->nodes[right_level],
5552 						right_path->slots[right_level]);
5553 				if (left_blockptr == right_blockptr &&
5554 				    left_gen == right_gen) {
5555 					/*
5556 					 * As we're on a shared block, don't
5557 					 * allow to go deeper.
5558 					 */
5559 					advance_left = ADVANCE_ONLY_NEXT;
5560 					advance_right = ADVANCE_ONLY_NEXT;
5561 				} else {
5562 					advance_left = ADVANCE;
5563 					advance_right = ADVANCE;
5564 				}
5565 			}
5566 		} else if (left_level < right_level) {
5567 			advance_right = ADVANCE;
5568 		} else {
5569 			advance_left = ADVANCE;
5570 		}
5571 	}
5572 
5573 out:
5574 	btrfs_free_path(left_path);
5575 	btrfs_free_path(right_path);
5576 	kvfree(tmp_buf);
5577 	return ret;
5578 }
5579 
5580 /*
5581  * this is similar to btrfs_next_leaf, but does not try to preserve
5582  * and fixup the path.  It looks for and returns the next key in the
5583  * tree based on the current path and the min_trans parameters.
5584  *
5585  * 0 is returned if another key is found, < 0 if there are any errors
5586  * and 1 is returned if there are no higher keys in the tree
5587  *
5588  * path->keep_locks should be set to 1 on the search made before
5589  * calling this function.
5590  */
5591 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5592 			struct btrfs_key *key, int level, u64 min_trans)
5593 {
5594 	int slot;
5595 	struct extent_buffer *c;
5596 
5597 	WARN_ON(!path->keep_locks);
5598 	while (level < BTRFS_MAX_LEVEL) {
5599 		if (!path->nodes[level])
5600 			return 1;
5601 
5602 		slot = path->slots[level] + 1;
5603 		c = path->nodes[level];
5604 next:
5605 		if (slot >= btrfs_header_nritems(c)) {
5606 			int ret;
5607 			int orig_lowest;
5608 			struct btrfs_key cur_key;
5609 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5610 			    !path->nodes[level + 1])
5611 				return 1;
5612 
5613 			if (path->locks[level + 1]) {
5614 				level++;
5615 				continue;
5616 			}
5617 
5618 			slot = btrfs_header_nritems(c) - 1;
5619 			if (level == 0)
5620 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5621 			else
5622 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5623 
5624 			orig_lowest = path->lowest_level;
5625 			btrfs_release_path(path);
5626 			path->lowest_level = level;
5627 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5628 						0, 0);
5629 			path->lowest_level = orig_lowest;
5630 			if (ret < 0)
5631 				return ret;
5632 
5633 			c = path->nodes[level];
5634 			slot = path->slots[level];
5635 			if (ret == 0)
5636 				slot++;
5637 			goto next;
5638 		}
5639 
5640 		if (level == 0)
5641 			btrfs_item_key_to_cpu(c, key, slot);
5642 		else {
5643 			u64 gen = btrfs_node_ptr_generation(c, slot);
5644 
5645 			if (gen < min_trans) {
5646 				slot++;
5647 				goto next;
5648 			}
5649 			btrfs_node_key_to_cpu(c, key, slot);
5650 		}
5651 		return 0;
5652 	}
5653 	return 1;
5654 }
5655 
5656 /*
5657  * search the tree again to find a leaf with greater keys
5658  * returns 0 if it found something or 1 if there are no greater leaves.
5659  * returns < 0 on io errors.
5660  */
5661 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5662 {
5663 	return btrfs_next_old_leaf(root, path, 0);
5664 }
5665 
5666 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5667 			u64 time_seq)
5668 {
5669 	int slot;
5670 	int level;
5671 	struct extent_buffer *c;
5672 	struct extent_buffer *next;
5673 	struct btrfs_key key;
5674 	u32 nritems;
5675 	int ret;
5676 	int old_spinning = path->leave_spinning;
5677 	int next_rw_lock = 0;
5678 
5679 	nritems = btrfs_header_nritems(path->nodes[0]);
5680 	if (nritems == 0)
5681 		return 1;
5682 
5683 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5684 again:
5685 	level = 1;
5686 	next = NULL;
5687 	next_rw_lock = 0;
5688 	btrfs_release_path(path);
5689 
5690 	path->keep_locks = 1;
5691 	path->leave_spinning = 1;
5692 
5693 	if (time_seq)
5694 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5695 	else
5696 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5697 	path->keep_locks = 0;
5698 
5699 	if (ret < 0)
5700 		return ret;
5701 
5702 	nritems = btrfs_header_nritems(path->nodes[0]);
5703 	/*
5704 	 * by releasing the path above we dropped all our locks.  A balance
5705 	 * could have added more items next to the key that used to be
5706 	 * at the very end of the block.  So, check again here and
5707 	 * advance the path if there are now more items available.
5708 	 */
5709 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5710 		if (ret == 0)
5711 			path->slots[0]++;
5712 		ret = 0;
5713 		goto done;
5714 	}
5715 	/*
5716 	 * So the above check misses one case:
5717 	 * - after releasing the path above, someone has removed the item that
5718 	 *   used to be at the very end of the block, and balance between leafs
5719 	 *   gets another one with bigger key.offset to replace it.
5720 	 *
5721 	 * This one should be returned as well, or we can get leaf corruption
5722 	 * later(esp. in __btrfs_drop_extents()).
5723 	 *
5724 	 * And a bit more explanation about this check,
5725 	 * with ret > 0, the key isn't found, the path points to the slot
5726 	 * where it should be inserted, so the path->slots[0] item must be the
5727 	 * bigger one.
5728 	 */
5729 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5730 		ret = 0;
5731 		goto done;
5732 	}
5733 
5734 	while (level < BTRFS_MAX_LEVEL) {
5735 		if (!path->nodes[level]) {
5736 			ret = 1;
5737 			goto done;
5738 		}
5739 
5740 		slot = path->slots[level] + 1;
5741 		c = path->nodes[level];
5742 		if (slot >= btrfs_header_nritems(c)) {
5743 			level++;
5744 			if (level == BTRFS_MAX_LEVEL) {
5745 				ret = 1;
5746 				goto done;
5747 			}
5748 			continue;
5749 		}
5750 
5751 		if (next) {
5752 			btrfs_tree_unlock_rw(next, next_rw_lock);
5753 			free_extent_buffer(next);
5754 		}
5755 
5756 		next = c;
5757 		next_rw_lock = path->locks[level];
5758 		ret = read_block_for_search(root, path, &next, level,
5759 					    slot, &key);
5760 		if (ret == -EAGAIN)
5761 			goto again;
5762 
5763 		if (ret < 0) {
5764 			btrfs_release_path(path);
5765 			goto done;
5766 		}
5767 
5768 		if (!path->skip_locking) {
5769 			ret = btrfs_try_tree_read_lock(next);
5770 			if (!ret && time_seq) {
5771 				/*
5772 				 * If we don't get the lock, we may be racing
5773 				 * with push_leaf_left, holding that lock while
5774 				 * itself waiting for the leaf we've currently
5775 				 * locked. To solve this situation, we give up
5776 				 * on our lock and cycle.
5777 				 */
5778 				free_extent_buffer(next);
5779 				btrfs_release_path(path);
5780 				cond_resched();
5781 				goto again;
5782 			}
5783 			if (!ret) {
5784 				btrfs_set_path_blocking(path);
5785 				btrfs_tree_read_lock(next);
5786 				btrfs_clear_path_blocking(path, next,
5787 							  BTRFS_READ_LOCK);
5788 			}
5789 			next_rw_lock = BTRFS_READ_LOCK;
5790 		}
5791 		break;
5792 	}
5793 	path->slots[level] = slot;
5794 	while (1) {
5795 		level--;
5796 		c = path->nodes[level];
5797 		if (path->locks[level])
5798 			btrfs_tree_unlock_rw(c, path->locks[level]);
5799 
5800 		free_extent_buffer(c);
5801 		path->nodes[level] = next;
5802 		path->slots[level] = 0;
5803 		if (!path->skip_locking)
5804 			path->locks[level] = next_rw_lock;
5805 		if (!level)
5806 			break;
5807 
5808 		ret = read_block_for_search(root, path, &next, level,
5809 					    0, &key);
5810 		if (ret == -EAGAIN)
5811 			goto again;
5812 
5813 		if (ret < 0) {
5814 			btrfs_release_path(path);
5815 			goto done;
5816 		}
5817 
5818 		if (!path->skip_locking) {
5819 			ret = btrfs_try_tree_read_lock(next);
5820 			if (!ret) {
5821 				btrfs_set_path_blocking(path);
5822 				btrfs_tree_read_lock(next);
5823 				btrfs_clear_path_blocking(path, next,
5824 							  BTRFS_READ_LOCK);
5825 			}
5826 			next_rw_lock = BTRFS_READ_LOCK;
5827 		}
5828 	}
5829 	ret = 0;
5830 done:
5831 	unlock_up(path, 0, 1, 0, NULL);
5832 	path->leave_spinning = old_spinning;
5833 	if (!old_spinning)
5834 		btrfs_set_path_blocking(path);
5835 
5836 	return ret;
5837 }
5838 
5839 /*
5840  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5841  * searching until it gets past min_objectid or finds an item of 'type'
5842  *
5843  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5844  */
5845 int btrfs_previous_item(struct btrfs_root *root,
5846 			struct btrfs_path *path, u64 min_objectid,
5847 			int type)
5848 {
5849 	struct btrfs_key found_key;
5850 	struct extent_buffer *leaf;
5851 	u32 nritems;
5852 	int ret;
5853 
5854 	while (1) {
5855 		if (path->slots[0] == 0) {
5856 			btrfs_set_path_blocking(path);
5857 			ret = btrfs_prev_leaf(root, path);
5858 			if (ret != 0)
5859 				return ret;
5860 		} else {
5861 			path->slots[0]--;
5862 		}
5863 		leaf = path->nodes[0];
5864 		nritems = btrfs_header_nritems(leaf);
5865 		if (nritems == 0)
5866 			return 1;
5867 		if (path->slots[0] == nritems)
5868 			path->slots[0]--;
5869 
5870 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5871 		if (found_key.objectid < min_objectid)
5872 			break;
5873 		if (found_key.type == type)
5874 			return 0;
5875 		if (found_key.objectid == min_objectid &&
5876 		    found_key.type < type)
5877 			break;
5878 	}
5879 	return 1;
5880 }
5881 
5882 /*
5883  * search in extent tree to find a previous Metadata/Data extent item with
5884  * min objecitd.
5885  *
5886  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5887  */
5888 int btrfs_previous_extent_item(struct btrfs_root *root,
5889 			struct btrfs_path *path, u64 min_objectid)
5890 {
5891 	struct btrfs_key found_key;
5892 	struct extent_buffer *leaf;
5893 	u32 nritems;
5894 	int ret;
5895 
5896 	while (1) {
5897 		if (path->slots[0] == 0) {
5898 			btrfs_set_path_blocking(path);
5899 			ret = btrfs_prev_leaf(root, path);
5900 			if (ret != 0)
5901 				return ret;
5902 		} else {
5903 			path->slots[0]--;
5904 		}
5905 		leaf = path->nodes[0];
5906 		nritems = btrfs_header_nritems(leaf);
5907 		if (nritems == 0)
5908 			return 1;
5909 		if (path->slots[0] == nritems)
5910 			path->slots[0]--;
5911 
5912 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5913 		if (found_key.objectid < min_objectid)
5914 			break;
5915 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5916 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5917 			return 0;
5918 		if (found_key.objectid == min_objectid &&
5919 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5920 			break;
5921 	}
5922 	return 1;
5923 }
5924