1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 16 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 17 *root, struct btrfs_path *path, int level); 18 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 19 const struct btrfs_key *ins_key, struct btrfs_path *path, 20 int data_size, int extend); 21 static int push_node_left(struct btrfs_trans_handle *trans, 22 struct btrfs_fs_info *fs_info, 23 struct extent_buffer *dst, 24 struct extent_buffer *src, int empty); 25 static int balance_node_right(struct btrfs_trans_handle *trans, 26 struct btrfs_fs_info *fs_info, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 struct btrfs_path *btrfs_alloc_path(void) 33 { 34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 35 } 36 37 /* 38 * set all locked nodes in the path to blocking locks. This should 39 * be done before scheduling 40 */ 41 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 42 { 43 int i; 44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 45 if (!p->nodes[i] || !p->locks[i]) 46 continue; 47 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 48 if (p->locks[i] == BTRFS_READ_LOCK) 49 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 50 else if (p->locks[i] == BTRFS_WRITE_LOCK) 51 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 52 } 53 } 54 55 /* 56 * reset all the locked nodes in the patch to spinning locks. 57 * 58 * held is used to keep lockdep happy, when lockdep is enabled 59 * we set held to a blocking lock before we go around and 60 * retake all the spinlocks in the path. You can safely use NULL 61 * for held 62 */ 63 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 64 struct extent_buffer *held, int held_rw) 65 { 66 int i; 67 68 if (held) { 69 btrfs_set_lock_blocking_rw(held, held_rw); 70 if (held_rw == BTRFS_WRITE_LOCK) 71 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 72 else if (held_rw == BTRFS_READ_LOCK) 73 held_rw = BTRFS_READ_LOCK_BLOCKING; 74 } 75 btrfs_set_path_blocking(p); 76 77 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 78 if (p->nodes[i] && p->locks[i]) { 79 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 80 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 81 p->locks[i] = BTRFS_WRITE_LOCK; 82 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 83 p->locks[i] = BTRFS_READ_LOCK; 84 } 85 } 86 87 if (held) 88 btrfs_clear_lock_blocking_rw(held, held_rw); 89 } 90 91 /* this also releases the path */ 92 void btrfs_free_path(struct btrfs_path *p) 93 { 94 if (!p) 95 return; 96 btrfs_release_path(p); 97 kmem_cache_free(btrfs_path_cachep, p); 98 } 99 100 /* 101 * path release drops references on the extent buffers in the path 102 * and it drops any locks held by this path 103 * 104 * It is safe to call this on paths that no locks or extent buffers held. 105 */ 106 noinline void btrfs_release_path(struct btrfs_path *p) 107 { 108 int i; 109 110 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 111 p->slots[i] = 0; 112 if (!p->nodes[i]) 113 continue; 114 if (p->locks[i]) { 115 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 116 p->locks[i] = 0; 117 } 118 free_extent_buffer(p->nodes[i]); 119 p->nodes[i] = NULL; 120 } 121 } 122 123 /* 124 * safely gets a reference on the root node of a tree. A lock 125 * is not taken, so a concurrent writer may put a different node 126 * at the root of the tree. See btrfs_lock_root_node for the 127 * looping required. 128 * 129 * The extent buffer returned by this has a reference taken, so 130 * it won't disappear. It may stop being the root of the tree 131 * at any time because there are no locks held. 132 */ 133 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 134 { 135 struct extent_buffer *eb; 136 137 while (1) { 138 rcu_read_lock(); 139 eb = rcu_dereference(root->node); 140 141 /* 142 * RCU really hurts here, we could free up the root node because 143 * it was COWed but we may not get the new root node yet so do 144 * the inc_not_zero dance and if it doesn't work then 145 * synchronize_rcu and try again. 146 */ 147 if (atomic_inc_not_zero(&eb->refs)) { 148 rcu_read_unlock(); 149 break; 150 } 151 rcu_read_unlock(); 152 synchronize_rcu(); 153 } 154 return eb; 155 } 156 157 /* loop around taking references on and locking the root node of the 158 * tree until you end up with a lock on the root. A locked buffer 159 * is returned, with a reference held. 160 */ 161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 162 { 163 struct extent_buffer *eb; 164 165 while (1) { 166 eb = btrfs_root_node(root); 167 btrfs_tree_lock(eb); 168 if (eb == root->node) 169 break; 170 btrfs_tree_unlock(eb); 171 free_extent_buffer(eb); 172 } 173 return eb; 174 } 175 176 /* loop around taking references on and locking the root node of the 177 * tree until you end up with a lock on the root. A locked buffer 178 * is returned, with a reference held. 179 */ 180 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 181 { 182 struct extent_buffer *eb; 183 184 while (1) { 185 eb = btrfs_root_node(root); 186 btrfs_tree_read_lock(eb); 187 if (eb == root->node) 188 break; 189 btrfs_tree_read_unlock(eb); 190 free_extent_buffer(eb); 191 } 192 return eb; 193 } 194 195 /* cowonly root (everything not a reference counted cow subvolume), just get 196 * put onto a simple dirty list. transaction.c walks this to make sure they 197 * get properly updated on disk. 198 */ 199 static void add_root_to_dirty_list(struct btrfs_root *root) 200 { 201 struct btrfs_fs_info *fs_info = root->fs_info; 202 203 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 204 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 205 return; 206 207 spin_lock(&fs_info->trans_lock); 208 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 209 /* Want the extent tree to be the last on the list */ 210 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 211 list_move_tail(&root->dirty_list, 212 &fs_info->dirty_cowonly_roots); 213 else 214 list_move(&root->dirty_list, 215 &fs_info->dirty_cowonly_roots); 216 } 217 spin_unlock(&fs_info->trans_lock); 218 } 219 220 /* 221 * used by snapshot creation to make a copy of a root for a tree with 222 * a given objectid. The buffer with the new root node is returned in 223 * cow_ret, and this func returns zero on success or a negative error code. 224 */ 225 int btrfs_copy_root(struct btrfs_trans_handle *trans, 226 struct btrfs_root *root, 227 struct extent_buffer *buf, 228 struct extent_buffer **cow_ret, u64 new_root_objectid) 229 { 230 struct btrfs_fs_info *fs_info = root->fs_info; 231 struct extent_buffer *cow; 232 int ret = 0; 233 int level; 234 struct btrfs_disk_key disk_key; 235 236 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 237 trans->transid != fs_info->running_transaction->transid); 238 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 239 trans->transid != root->last_trans); 240 241 level = btrfs_header_level(buf); 242 if (level == 0) 243 btrfs_item_key(buf, &disk_key, 0); 244 else 245 btrfs_node_key(buf, &disk_key, 0); 246 247 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 248 &disk_key, level, buf->start, 0); 249 if (IS_ERR(cow)) 250 return PTR_ERR(cow); 251 252 copy_extent_buffer_full(cow, buf); 253 btrfs_set_header_bytenr(cow, cow->start); 254 btrfs_set_header_generation(cow, trans->transid); 255 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 256 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 257 BTRFS_HEADER_FLAG_RELOC); 258 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 259 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 260 else 261 btrfs_set_header_owner(cow, new_root_objectid); 262 263 write_extent_buffer_fsid(cow, fs_info->fsid); 264 265 WARN_ON(btrfs_header_generation(buf) > trans->transid); 266 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 267 ret = btrfs_inc_ref(trans, root, cow, 1); 268 else 269 ret = btrfs_inc_ref(trans, root, cow, 0); 270 271 if (ret) 272 return ret; 273 274 btrfs_mark_buffer_dirty(cow); 275 *cow_ret = cow; 276 return 0; 277 } 278 279 enum mod_log_op { 280 MOD_LOG_KEY_REPLACE, 281 MOD_LOG_KEY_ADD, 282 MOD_LOG_KEY_REMOVE, 283 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 284 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 285 MOD_LOG_MOVE_KEYS, 286 MOD_LOG_ROOT_REPLACE, 287 }; 288 289 struct tree_mod_root { 290 u64 logical; 291 u8 level; 292 }; 293 294 struct tree_mod_elem { 295 struct rb_node node; 296 u64 logical; 297 u64 seq; 298 enum mod_log_op op; 299 300 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 301 int slot; 302 303 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 304 u64 generation; 305 306 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 307 struct btrfs_disk_key key; 308 u64 blockptr; 309 310 /* this is used for op == MOD_LOG_MOVE_KEYS */ 311 struct { 312 int dst_slot; 313 int nr_items; 314 } move; 315 316 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 317 struct tree_mod_root old_root; 318 }; 319 320 /* 321 * Pull a new tree mod seq number for our operation. 322 */ 323 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 324 { 325 return atomic64_inc_return(&fs_info->tree_mod_seq); 326 } 327 328 /* 329 * This adds a new blocker to the tree mod log's blocker list if the @elem 330 * passed does not already have a sequence number set. So when a caller expects 331 * to record tree modifications, it should ensure to set elem->seq to zero 332 * before calling btrfs_get_tree_mod_seq. 333 * Returns a fresh, unused tree log modification sequence number, even if no new 334 * blocker was added. 335 */ 336 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 337 struct seq_list *elem) 338 { 339 write_lock(&fs_info->tree_mod_log_lock); 340 spin_lock(&fs_info->tree_mod_seq_lock); 341 if (!elem->seq) { 342 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 343 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 344 } 345 spin_unlock(&fs_info->tree_mod_seq_lock); 346 write_unlock(&fs_info->tree_mod_log_lock); 347 348 return elem->seq; 349 } 350 351 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 352 struct seq_list *elem) 353 { 354 struct rb_root *tm_root; 355 struct rb_node *node; 356 struct rb_node *next; 357 struct seq_list *cur_elem; 358 struct tree_mod_elem *tm; 359 u64 min_seq = (u64)-1; 360 u64 seq_putting = elem->seq; 361 362 if (!seq_putting) 363 return; 364 365 spin_lock(&fs_info->tree_mod_seq_lock); 366 list_del(&elem->list); 367 elem->seq = 0; 368 369 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 370 if (cur_elem->seq < min_seq) { 371 if (seq_putting > cur_elem->seq) { 372 /* 373 * blocker with lower sequence number exists, we 374 * cannot remove anything from the log 375 */ 376 spin_unlock(&fs_info->tree_mod_seq_lock); 377 return; 378 } 379 min_seq = cur_elem->seq; 380 } 381 } 382 spin_unlock(&fs_info->tree_mod_seq_lock); 383 384 /* 385 * anything that's lower than the lowest existing (read: blocked) 386 * sequence number can be removed from the tree. 387 */ 388 write_lock(&fs_info->tree_mod_log_lock); 389 tm_root = &fs_info->tree_mod_log; 390 for (node = rb_first(tm_root); node; node = next) { 391 next = rb_next(node); 392 tm = rb_entry(node, struct tree_mod_elem, node); 393 if (tm->seq > min_seq) 394 continue; 395 rb_erase(node, tm_root); 396 kfree(tm); 397 } 398 write_unlock(&fs_info->tree_mod_log_lock); 399 } 400 401 /* 402 * key order of the log: 403 * node/leaf start address -> sequence 404 * 405 * The 'start address' is the logical address of the *new* root node 406 * for root replace operations, or the logical address of the affected 407 * block for all other operations. 408 * 409 * Note: must be called with write lock for fs_info::tree_mod_log_lock. 410 */ 411 static noinline int 412 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 413 { 414 struct rb_root *tm_root; 415 struct rb_node **new; 416 struct rb_node *parent = NULL; 417 struct tree_mod_elem *cur; 418 419 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 420 421 tm_root = &fs_info->tree_mod_log; 422 new = &tm_root->rb_node; 423 while (*new) { 424 cur = rb_entry(*new, struct tree_mod_elem, node); 425 parent = *new; 426 if (cur->logical < tm->logical) 427 new = &((*new)->rb_left); 428 else if (cur->logical > tm->logical) 429 new = &((*new)->rb_right); 430 else if (cur->seq < tm->seq) 431 new = &((*new)->rb_left); 432 else if (cur->seq > tm->seq) 433 new = &((*new)->rb_right); 434 else 435 return -EEXIST; 436 } 437 438 rb_link_node(&tm->node, parent, new); 439 rb_insert_color(&tm->node, tm_root); 440 return 0; 441 } 442 443 /* 444 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 445 * returns zero with the tree_mod_log_lock acquired. The caller must hold 446 * this until all tree mod log insertions are recorded in the rb tree and then 447 * write unlock fs_info::tree_mod_log_lock. 448 */ 449 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 450 struct extent_buffer *eb) { 451 smp_mb(); 452 if (list_empty(&(fs_info)->tree_mod_seq_list)) 453 return 1; 454 if (eb && btrfs_header_level(eb) == 0) 455 return 1; 456 457 write_lock(&fs_info->tree_mod_log_lock); 458 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 459 write_unlock(&fs_info->tree_mod_log_lock); 460 return 1; 461 } 462 463 return 0; 464 } 465 466 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 467 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 468 struct extent_buffer *eb) 469 { 470 smp_mb(); 471 if (list_empty(&(fs_info)->tree_mod_seq_list)) 472 return 0; 473 if (eb && btrfs_header_level(eb) == 0) 474 return 0; 475 476 return 1; 477 } 478 479 static struct tree_mod_elem * 480 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 481 enum mod_log_op op, gfp_t flags) 482 { 483 struct tree_mod_elem *tm; 484 485 tm = kzalloc(sizeof(*tm), flags); 486 if (!tm) 487 return NULL; 488 489 tm->logical = eb->start; 490 if (op != MOD_LOG_KEY_ADD) { 491 btrfs_node_key(eb, &tm->key, slot); 492 tm->blockptr = btrfs_node_blockptr(eb, slot); 493 } 494 tm->op = op; 495 tm->slot = slot; 496 tm->generation = btrfs_node_ptr_generation(eb, slot); 497 RB_CLEAR_NODE(&tm->node); 498 499 return tm; 500 } 501 502 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 503 enum mod_log_op op, gfp_t flags) 504 { 505 struct tree_mod_elem *tm; 506 int ret; 507 508 if (!tree_mod_need_log(eb->fs_info, eb)) 509 return 0; 510 511 tm = alloc_tree_mod_elem(eb, slot, op, flags); 512 if (!tm) 513 return -ENOMEM; 514 515 if (tree_mod_dont_log(eb->fs_info, eb)) { 516 kfree(tm); 517 return 0; 518 } 519 520 ret = __tree_mod_log_insert(eb->fs_info, tm); 521 write_unlock(&eb->fs_info->tree_mod_log_lock); 522 if (ret) 523 kfree(tm); 524 525 return ret; 526 } 527 528 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 529 int dst_slot, int src_slot, int nr_items) 530 { 531 struct tree_mod_elem *tm = NULL; 532 struct tree_mod_elem **tm_list = NULL; 533 int ret = 0; 534 int i; 535 int locked = 0; 536 537 if (!tree_mod_need_log(eb->fs_info, eb)) 538 return 0; 539 540 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 541 if (!tm_list) 542 return -ENOMEM; 543 544 tm = kzalloc(sizeof(*tm), GFP_NOFS); 545 if (!tm) { 546 ret = -ENOMEM; 547 goto free_tms; 548 } 549 550 tm->logical = eb->start; 551 tm->slot = src_slot; 552 tm->move.dst_slot = dst_slot; 553 tm->move.nr_items = nr_items; 554 tm->op = MOD_LOG_MOVE_KEYS; 555 556 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 557 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 558 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 559 if (!tm_list[i]) { 560 ret = -ENOMEM; 561 goto free_tms; 562 } 563 } 564 565 if (tree_mod_dont_log(eb->fs_info, eb)) 566 goto free_tms; 567 locked = 1; 568 569 /* 570 * When we override something during the move, we log these removals. 571 * This can only happen when we move towards the beginning of the 572 * buffer, i.e. dst_slot < src_slot. 573 */ 574 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 575 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 576 if (ret) 577 goto free_tms; 578 } 579 580 ret = __tree_mod_log_insert(eb->fs_info, tm); 581 if (ret) 582 goto free_tms; 583 write_unlock(&eb->fs_info->tree_mod_log_lock); 584 kfree(tm_list); 585 586 return 0; 587 free_tms: 588 for (i = 0; i < nr_items; i++) { 589 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 590 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 591 kfree(tm_list[i]); 592 } 593 if (locked) 594 write_unlock(&eb->fs_info->tree_mod_log_lock); 595 kfree(tm_list); 596 kfree(tm); 597 598 return ret; 599 } 600 601 static inline int 602 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 603 struct tree_mod_elem **tm_list, 604 int nritems) 605 { 606 int i, j; 607 int ret; 608 609 for (i = nritems - 1; i >= 0; i--) { 610 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 611 if (ret) { 612 for (j = nritems - 1; j > i; j--) 613 rb_erase(&tm_list[j]->node, 614 &fs_info->tree_mod_log); 615 return ret; 616 } 617 } 618 619 return 0; 620 } 621 622 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 623 struct extent_buffer *new_root, int log_removal) 624 { 625 struct btrfs_fs_info *fs_info = old_root->fs_info; 626 struct tree_mod_elem *tm = NULL; 627 struct tree_mod_elem **tm_list = NULL; 628 int nritems = 0; 629 int ret = 0; 630 int i; 631 632 if (!tree_mod_need_log(fs_info, NULL)) 633 return 0; 634 635 if (log_removal && btrfs_header_level(old_root) > 0) { 636 nritems = btrfs_header_nritems(old_root); 637 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 638 GFP_NOFS); 639 if (!tm_list) { 640 ret = -ENOMEM; 641 goto free_tms; 642 } 643 for (i = 0; i < nritems; i++) { 644 tm_list[i] = alloc_tree_mod_elem(old_root, i, 645 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 646 if (!tm_list[i]) { 647 ret = -ENOMEM; 648 goto free_tms; 649 } 650 } 651 } 652 653 tm = kzalloc(sizeof(*tm), GFP_NOFS); 654 if (!tm) { 655 ret = -ENOMEM; 656 goto free_tms; 657 } 658 659 tm->logical = new_root->start; 660 tm->old_root.logical = old_root->start; 661 tm->old_root.level = btrfs_header_level(old_root); 662 tm->generation = btrfs_header_generation(old_root); 663 tm->op = MOD_LOG_ROOT_REPLACE; 664 665 if (tree_mod_dont_log(fs_info, NULL)) 666 goto free_tms; 667 668 if (tm_list) 669 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 670 if (!ret) 671 ret = __tree_mod_log_insert(fs_info, tm); 672 673 write_unlock(&fs_info->tree_mod_log_lock); 674 if (ret) 675 goto free_tms; 676 kfree(tm_list); 677 678 return ret; 679 680 free_tms: 681 if (tm_list) { 682 for (i = 0; i < nritems; i++) 683 kfree(tm_list[i]); 684 kfree(tm_list); 685 } 686 kfree(tm); 687 688 return ret; 689 } 690 691 static struct tree_mod_elem * 692 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 693 int smallest) 694 { 695 struct rb_root *tm_root; 696 struct rb_node *node; 697 struct tree_mod_elem *cur = NULL; 698 struct tree_mod_elem *found = NULL; 699 700 read_lock(&fs_info->tree_mod_log_lock); 701 tm_root = &fs_info->tree_mod_log; 702 node = tm_root->rb_node; 703 while (node) { 704 cur = rb_entry(node, struct tree_mod_elem, node); 705 if (cur->logical < start) { 706 node = node->rb_left; 707 } else if (cur->logical > start) { 708 node = node->rb_right; 709 } else if (cur->seq < min_seq) { 710 node = node->rb_left; 711 } else if (!smallest) { 712 /* we want the node with the highest seq */ 713 if (found) 714 BUG_ON(found->seq > cur->seq); 715 found = cur; 716 node = node->rb_left; 717 } else if (cur->seq > min_seq) { 718 /* we want the node with the smallest seq */ 719 if (found) 720 BUG_ON(found->seq < cur->seq); 721 found = cur; 722 node = node->rb_right; 723 } else { 724 found = cur; 725 break; 726 } 727 } 728 read_unlock(&fs_info->tree_mod_log_lock); 729 730 return found; 731 } 732 733 /* 734 * this returns the element from the log with the smallest time sequence 735 * value that's in the log (the oldest log item). any element with a time 736 * sequence lower than min_seq will be ignored. 737 */ 738 static struct tree_mod_elem * 739 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 740 u64 min_seq) 741 { 742 return __tree_mod_log_search(fs_info, start, min_seq, 1); 743 } 744 745 /* 746 * this returns the element from the log with the largest time sequence 747 * value that's in the log (the most recent log item). any element with 748 * a time sequence lower than min_seq will be ignored. 749 */ 750 static struct tree_mod_elem * 751 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 752 { 753 return __tree_mod_log_search(fs_info, start, min_seq, 0); 754 } 755 756 static noinline int 757 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 758 struct extent_buffer *src, unsigned long dst_offset, 759 unsigned long src_offset, int nr_items) 760 { 761 int ret = 0; 762 struct tree_mod_elem **tm_list = NULL; 763 struct tree_mod_elem **tm_list_add, **tm_list_rem; 764 int i; 765 int locked = 0; 766 767 if (!tree_mod_need_log(fs_info, NULL)) 768 return 0; 769 770 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 771 return 0; 772 773 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 774 GFP_NOFS); 775 if (!tm_list) 776 return -ENOMEM; 777 778 tm_list_add = tm_list; 779 tm_list_rem = tm_list + nr_items; 780 for (i = 0; i < nr_items; i++) { 781 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 782 MOD_LOG_KEY_REMOVE, GFP_NOFS); 783 if (!tm_list_rem[i]) { 784 ret = -ENOMEM; 785 goto free_tms; 786 } 787 788 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 789 MOD_LOG_KEY_ADD, GFP_NOFS); 790 if (!tm_list_add[i]) { 791 ret = -ENOMEM; 792 goto free_tms; 793 } 794 } 795 796 if (tree_mod_dont_log(fs_info, NULL)) 797 goto free_tms; 798 locked = 1; 799 800 for (i = 0; i < nr_items; i++) { 801 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 802 if (ret) 803 goto free_tms; 804 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 805 if (ret) 806 goto free_tms; 807 } 808 809 write_unlock(&fs_info->tree_mod_log_lock); 810 kfree(tm_list); 811 812 return 0; 813 814 free_tms: 815 for (i = 0; i < nr_items * 2; i++) { 816 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 817 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 818 kfree(tm_list[i]); 819 } 820 if (locked) 821 write_unlock(&fs_info->tree_mod_log_lock); 822 kfree(tm_list); 823 824 return ret; 825 } 826 827 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 828 { 829 struct tree_mod_elem **tm_list = NULL; 830 int nritems = 0; 831 int i; 832 int ret = 0; 833 834 if (btrfs_header_level(eb) == 0) 835 return 0; 836 837 if (!tree_mod_need_log(eb->fs_info, NULL)) 838 return 0; 839 840 nritems = btrfs_header_nritems(eb); 841 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 842 if (!tm_list) 843 return -ENOMEM; 844 845 for (i = 0; i < nritems; i++) { 846 tm_list[i] = alloc_tree_mod_elem(eb, i, 847 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 848 if (!tm_list[i]) { 849 ret = -ENOMEM; 850 goto free_tms; 851 } 852 } 853 854 if (tree_mod_dont_log(eb->fs_info, eb)) 855 goto free_tms; 856 857 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 858 write_unlock(&eb->fs_info->tree_mod_log_lock); 859 if (ret) 860 goto free_tms; 861 kfree(tm_list); 862 863 return 0; 864 865 free_tms: 866 for (i = 0; i < nritems; i++) 867 kfree(tm_list[i]); 868 kfree(tm_list); 869 870 return ret; 871 } 872 873 /* 874 * check if the tree block can be shared by multiple trees 875 */ 876 int btrfs_block_can_be_shared(struct btrfs_root *root, 877 struct extent_buffer *buf) 878 { 879 /* 880 * Tree blocks not in reference counted trees and tree roots 881 * are never shared. If a block was allocated after the last 882 * snapshot and the block was not allocated by tree relocation, 883 * we know the block is not shared. 884 */ 885 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 886 buf != root->node && buf != root->commit_root && 887 (btrfs_header_generation(buf) <= 888 btrfs_root_last_snapshot(&root->root_item) || 889 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 890 return 1; 891 892 return 0; 893 } 894 895 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 896 struct btrfs_root *root, 897 struct extent_buffer *buf, 898 struct extent_buffer *cow, 899 int *last_ref) 900 { 901 struct btrfs_fs_info *fs_info = root->fs_info; 902 u64 refs; 903 u64 owner; 904 u64 flags; 905 u64 new_flags = 0; 906 int ret; 907 908 /* 909 * Backrefs update rules: 910 * 911 * Always use full backrefs for extent pointers in tree block 912 * allocated by tree relocation. 913 * 914 * If a shared tree block is no longer referenced by its owner 915 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 916 * use full backrefs for extent pointers in tree block. 917 * 918 * If a tree block is been relocating 919 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 920 * use full backrefs for extent pointers in tree block. 921 * The reason for this is some operations (such as drop tree) 922 * are only allowed for blocks use full backrefs. 923 */ 924 925 if (btrfs_block_can_be_shared(root, buf)) { 926 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 927 btrfs_header_level(buf), 1, 928 &refs, &flags); 929 if (ret) 930 return ret; 931 if (refs == 0) { 932 ret = -EROFS; 933 btrfs_handle_fs_error(fs_info, ret, NULL); 934 return ret; 935 } 936 } else { 937 refs = 1; 938 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 939 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 940 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 941 else 942 flags = 0; 943 } 944 945 owner = btrfs_header_owner(buf); 946 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 947 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 948 949 if (refs > 1) { 950 if ((owner == root->root_key.objectid || 951 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 952 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 953 ret = btrfs_inc_ref(trans, root, buf, 1); 954 if (ret) 955 return ret; 956 957 if (root->root_key.objectid == 958 BTRFS_TREE_RELOC_OBJECTID) { 959 ret = btrfs_dec_ref(trans, root, buf, 0); 960 if (ret) 961 return ret; 962 ret = btrfs_inc_ref(trans, root, cow, 1); 963 if (ret) 964 return ret; 965 } 966 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 967 } else { 968 969 if (root->root_key.objectid == 970 BTRFS_TREE_RELOC_OBJECTID) 971 ret = btrfs_inc_ref(trans, root, cow, 1); 972 else 973 ret = btrfs_inc_ref(trans, root, cow, 0); 974 if (ret) 975 return ret; 976 } 977 if (new_flags != 0) { 978 int level = btrfs_header_level(buf); 979 980 ret = btrfs_set_disk_extent_flags(trans, fs_info, 981 buf->start, 982 buf->len, 983 new_flags, level, 0); 984 if (ret) 985 return ret; 986 } 987 } else { 988 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 989 if (root->root_key.objectid == 990 BTRFS_TREE_RELOC_OBJECTID) 991 ret = btrfs_inc_ref(trans, root, cow, 1); 992 else 993 ret = btrfs_inc_ref(trans, root, cow, 0); 994 if (ret) 995 return ret; 996 ret = btrfs_dec_ref(trans, root, buf, 1); 997 if (ret) 998 return ret; 999 } 1000 clean_tree_block(fs_info, buf); 1001 *last_ref = 1; 1002 } 1003 return 0; 1004 } 1005 1006 /* 1007 * does the dirty work in cow of a single block. The parent block (if 1008 * supplied) is updated to point to the new cow copy. The new buffer is marked 1009 * dirty and returned locked. If you modify the block it needs to be marked 1010 * dirty again. 1011 * 1012 * search_start -- an allocation hint for the new block 1013 * 1014 * empty_size -- a hint that you plan on doing more cow. This is the size in 1015 * bytes the allocator should try to find free next to the block it returns. 1016 * This is just a hint and may be ignored by the allocator. 1017 */ 1018 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1019 struct btrfs_root *root, 1020 struct extent_buffer *buf, 1021 struct extent_buffer *parent, int parent_slot, 1022 struct extent_buffer **cow_ret, 1023 u64 search_start, u64 empty_size) 1024 { 1025 struct btrfs_fs_info *fs_info = root->fs_info; 1026 struct btrfs_disk_key disk_key; 1027 struct extent_buffer *cow; 1028 int level, ret; 1029 int last_ref = 0; 1030 int unlock_orig = 0; 1031 u64 parent_start = 0; 1032 1033 if (*cow_ret == buf) 1034 unlock_orig = 1; 1035 1036 btrfs_assert_tree_locked(buf); 1037 1038 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1039 trans->transid != fs_info->running_transaction->transid); 1040 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1041 trans->transid != root->last_trans); 1042 1043 level = btrfs_header_level(buf); 1044 1045 if (level == 0) 1046 btrfs_item_key(buf, &disk_key, 0); 1047 else 1048 btrfs_node_key(buf, &disk_key, 0); 1049 1050 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1051 parent_start = parent->start; 1052 1053 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1054 root->root_key.objectid, &disk_key, level, 1055 search_start, empty_size); 1056 if (IS_ERR(cow)) 1057 return PTR_ERR(cow); 1058 1059 /* cow is set to blocking by btrfs_init_new_buffer */ 1060 1061 copy_extent_buffer_full(cow, buf); 1062 btrfs_set_header_bytenr(cow, cow->start); 1063 btrfs_set_header_generation(cow, trans->transid); 1064 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1065 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1066 BTRFS_HEADER_FLAG_RELOC); 1067 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1068 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1069 else 1070 btrfs_set_header_owner(cow, root->root_key.objectid); 1071 1072 write_extent_buffer_fsid(cow, fs_info->fsid); 1073 1074 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1075 if (ret) { 1076 btrfs_abort_transaction(trans, ret); 1077 return ret; 1078 } 1079 1080 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1081 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1082 if (ret) { 1083 btrfs_abort_transaction(trans, ret); 1084 return ret; 1085 } 1086 } 1087 1088 if (buf == root->node) { 1089 WARN_ON(parent && parent != buf); 1090 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1091 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1092 parent_start = buf->start; 1093 1094 extent_buffer_get(cow); 1095 ret = tree_mod_log_insert_root(root->node, cow, 1); 1096 BUG_ON(ret < 0); 1097 rcu_assign_pointer(root->node, cow); 1098 1099 btrfs_free_tree_block(trans, root, buf, parent_start, 1100 last_ref); 1101 free_extent_buffer(buf); 1102 add_root_to_dirty_list(root); 1103 } else { 1104 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1105 tree_mod_log_insert_key(parent, parent_slot, 1106 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1107 btrfs_set_node_blockptr(parent, parent_slot, 1108 cow->start); 1109 btrfs_set_node_ptr_generation(parent, parent_slot, 1110 trans->transid); 1111 btrfs_mark_buffer_dirty(parent); 1112 if (last_ref) { 1113 ret = tree_mod_log_free_eb(buf); 1114 if (ret) { 1115 btrfs_abort_transaction(trans, ret); 1116 return ret; 1117 } 1118 } 1119 btrfs_free_tree_block(trans, root, buf, parent_start, 1120 last_ref); 1121 } 1122 if (unlock_orig) 1123 btrfs_tree_unlock(buf); 1124 free_extent_buffer_stale(buf); 1125 btrfs_mark_buffer_dirty(cow); 1126 *cow_ret = cow; 1127 return 0; 1128 } 1129 1130 /* 1131 * returns the logical address of the oldest predecessor of the given root. 1132 * entries older than time_seq are ignored. 1133 */ 1134 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1135 struct extent_buffer *eb_root, u64 time_seq) 1136 { 1137 struct tree_mod_elem *tm; 1138 struct tree_mod_elem *found = NULL; 1139 u64 root_logical = eb_root->start; 1140 int looped = 0; 1141 1142 if (!time_seq) 1143 return NULL; 1144 1145 /* 1146 * the very last operation that's logged for a root is the 1147 * replacement operation (if it is replaced at all). this has 1148 * the logical address of the *new* root, making it the very 1149 * first operation that's logged for this root. 1150 */ 1151 while (1) { 1152 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1153 time_seq); 1154 if (!looped && !tm) 1155 return NULL; 1156 /* 1157 * if there are no tree operation for the oldest root, we simply 1158 * return it. this should only happen if that (old) root is at 1159 * level 0. 1160 */ 1161 if (!tm) 1162 break; 1163 1164 /* 1165 * if there's an operation that's not a root replacement, we 1166 * found the oldest version of our root. normally, we'll find a 1167 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1168 */ 1169 if (tm->op != MOD_LOG_ROOT_REPLACE) 1170 break; 1171 1172 found = tm; 1173 root_logical = tm->old_root.logical; 1174 looped = 1; 1175 } 1176 1177 /* if there's no old root to return, return what we found instead */ 1178 if (!found) 1179 found = tm; 1180 1181 return found; 1182 } 1183 1184 /* 1185 * tm is a pointer to the first operation to rewind within eb. then, all 1186 * previous operations will be rewound (until we reach something older than 1187 * time_seq). 1188 */ 1189 static void 1190 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1191 u64 time_seq, struct tree_mod_elem *first_tm) 1192 { 1193 u32 n; 1194 struct rb_node *next; 1195 struct tree_mod_elem *tm = first_tm; 1196 unsigned long o_dst; 1197 unsigned long o_src; 1198 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1199 1200 n = btrfs_header_nritems(eb); 1201 read_lock(&fs_info->tree_mod_log_lock); 1202 while (tm && tm->seq >= time_seq) { 1203 /* 1204 * all the operations are recorded with the operator used for 1205 * the modification. as we're going backwards, we do the 1206 * opposite of each operation here. 1207 */ 1208 switch (tm->op) { 1209 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1210 BUG_ON(tm->slot < n); 1211 /* Fallthrough */ 1212 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1213 case MOD_LOG_KEY_REMOVE: 1214 btrfs_set_node_key(eb, &tm->key, tm->slot); 1215 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1216 btrfs_set_node_ptr_generation(eb, tm->slot, 1217 tm->generation); 1218 n++; 1219 break; 1220 case MOD_LOG_KEY_REPLACE: 1221 BUG_ON(tm->slot >= n); 1222 btrfs_set_node_key(eb, &tm->key, tm->slot); 1223 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1224 btrfs_set_node_ptr_generation(eb, tm->slot, 1225 tm->generation); 1226 break; 1227 case MOD_LOG_KEY_ADD: 1228 /* if a move operation is needed it's in the log */ 1229 n--; 1230 break; 1231 case MOD_LOG_MOVE_KEYS: 1232 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1233 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1234 memmove_extent_buffer(eb, o_dst, o_src, 1235 tm->move.nr_items * p_size); 1236 break; 1237 case MOD_LOG_ROOT_REPLACE: 1238 /* 1239 * this operation is special. for roots, this must be 1240 * handled explicitly before rewinding. 1241 * for non-roots, this operation may exist if the node 1242 * was a root: root A -> child B; then A gets empty and 1243 * B is promoted to the new root. in the mod log, we'll 1244 * have a root-replace operation for B, a tree block 1245 * that is no root. we simply ignore that operation. 1246 */ 1247 break; 1248 } 1249 next = rb_next(&tm->node); 1250 if (!next) 1251 break; 1252 tm = rb_entry(next, struct tree_mod_elem, node); 1253 if (tm->logical != first_tm->logical) 1254 break; 1255 } 1256 read_unlock(&fs_info->tree_mod_log_lock); 1257 btrfs_set_header_nritems(eb, n); 1258 } 1259 1260 /* 1261 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1262 * is returned. If rewind operations happen, a fresh buffer is returned. The 1263 * returned buffer is always read-locked. If the returned buffer is not the 1264 * input buffer, the lock on the input buffer is released and the input buffer 1265 * is freed (its refcount is decremented). 1266 */ 1267 static struct extent_buffer * 1268 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1269 struct extent_buffer *eb, u64 time_seq) 1270 { 1271 struct extent_buffer *eb_rewin; 1272 struct tree_mod_elem *tm; 1273 1274 if (!time_seq) 1275 return eb; 1276 1277 if (btrfs_header_level(eb) == 0) 1278 return eb; 1279 1280 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1281 if (!tm) 1282 return eb; 1283 1284 btrfs_set_path_blocking(path); 1285 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1286 1287 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1288 BUG_ON(tm->slot != 0); 1289 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1290 if (!eb_rewin) { 1291 btrfs_tree_read_unlock_blocking(eb); 1292 free_extent_buffer(eb); 1293 return NULL; 1294 } 1295 btrfs_set_header_bytenr(eb_rewin, eb->start); 1296 btrfs_set_header_backref_rev(eb_rewin, 1297 btrfs_header_backref_rev(eb)); 1298 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1299 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1300 } else { 1301 eb_rewin = btrfs_clone_extent_buffer(eb); 1302 if (!eb_rewin) { 1303 btrfs_tree_read_unlock_blocking(eb); 1304 free_extent_buffer(eb); 1305 return NULL; 1306 } 1307 } 1308 1309 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1310 btrfs_tree_read_unlock_blocking(eb); 1311 free_extent_buffer(eb); 1312 1313 extent_buffer_get(eb_rewin); 1314 btrfs_tree_read_lock(eb_rewin); 1315 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1316 WARN_ON(btrfs_header_nritems(eb_rewin) > 1317 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1318 1319 return eb_rewin; 1320 } 1321 1322 /* 1323 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1324 * value. If there are no changes, the current root->root_node is returned. If 1325 * anything changed in between, there's a fresh buffer allocated on which the 1326 * rewind operations are done. In any case, the returned buffer is read locked. 1327 * Returns NULL on error (with no locks held). 1328 */ 1329 static inline struct extent_buffer * 1330 get_old_root(struct btrfs_root *root, u64 time_seq) 1331 { 1332 struct btrfs_fs_info *fs_info = root->fs_info; 1333 struct tree_mod_elem *tm; 1334 struct extent_buffer *eb = NULL; 1335 struct extent_buffer *eb_root; 1336 struct extent_buffer *old; 1337 struct tree_mod_root *old_root = NULL; 1338 u64 old_generation = 0; 1339 u64 logical; 1340 int level; 1341 1342 eb_root = btrfs_read_lock_root_node(root); 1343 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1344 if (!tm) 1345 return eb_root; 1346 1347 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1348 old_root = &tm->old_root; 1349 old_generation = tm->generation; 1350 logical = old_root->logical; 1351 level = old_root->level; 1352 } else { 1353 logical = eb_root->start; 1354 level = btrfs_header_level(eb_root); 1355 } 1356 1357 tm = tree_mod_log_search(fs_info, logical, time_seq); 1358 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1359 btrfs_tree_read_unlock(eb_root); 1360 free_extent_buffer(eb_root); 1361 old = read_tree_block(fs_info, logical, 0, level, NULL); 1362 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1363 if (!IS_ERR(old)) 1364 free_extent_buffer(old); 1365 btrfs_warn(fs_info, 1366 "failed to read tree block %llu from get_old_root", 1367 logical); 1368 } else { 1369 eb = btrfs_clone_extent_buffer(old); 1370 free_extent_buffer(old); 1371 } 1372 } else if (old_root) { 1373 btrfs_tree_read_unlock(eb_root); 1374 free_extent_buffer(eb_root); 1375 eb = alloc_dummy_extent_buffer(fs_info, logical); 1376 } else { 1377 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1378 eb = btrfs_clone_extent_buffer(eb_root); 1379 btrfs_tree_read_unlock_blocking(eb_root); 1380 free_extent_buffer(eb_root); 1381 } 1382 1383 if (!eb) 1384 return NULL; 1385 extent_buffer_get(eb); 1386 btrfs_tree_read_lock(eb); 1387 if (old_root) { 1388 btrfs_set_header_bytenr(eb, eb->start); 1389 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1390 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1391 btrfs_set_header_level(eb, old_root->level); 1392 btrfs_set_header_generation(eb, old_generation); 1393 } 1394 if (tm) 1395 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1396 else 1397 WARN_ON(btrfs_header_level(eb) != 0); 1398 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1399 1400 return eb; 1401 } 1402 1403 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1404 { 1405 struct tree_mod_elem *tm; 1406 int level; 1407 struct extent_buffer *eb_root = btrfs_root_node(root); 1408 1409 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1410 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1411 level = tm->old_root.level; 1412 } else { 1413 level = btrfs_header_level(eb_root); 1414 } 1415 free_extent_buffer(eb_root); 1416 1417 return level; 1418 } 1419 1420 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1421 struct btrfs_root *root, 1422 struct extent_buffer *buf) 1423 { 1424 if (btrfs_is_testing(root->fs_info)) 1425 return 0; 1426 1427 /* Ensure we can see the FORCE_COW bit */ 1428 smp_mb__before_atomic(); 1429 1430 /* 1431 * We do not need to cow a block if 1432 * 1) this block is not created or changed in this transaction; 1433 * 2) this block does not belong to TREE_RELOC tree; 1434 * 3) the root is not forced COW. 1435 * 1436 * What is forced COW: 1437 * when we create snapshot during committing the transaction, 1438 * after we've finished coping src root, we must COW the shared 1439 * block to ensure the metadata consistency. 1440 */ 1441 if (btrfs_header_generation(buf) == trans->transid && 1442 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1443 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1444 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1445 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1446 return 0; 1447 return 1; 1448 } 1449 1450 /* 1451 * cows a single block, see __btrfs_cow_block for the real work. 1452 * This version of it has extra checks so that a block isn't COWed more than 1453 * once per transaction, as long as it hasn't been written yet 1454 */ 1455 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1456 struct btrfs_root *root, struct extent_buffer *buf, 1457 struct extent_buffer *parent, int parent_slot, 1458 struct extent_buffer **cow_ret) 1459 { 1460 struct btrfs_fs_info *fs_info = root->fs_info; 1461 u64 search_start; 1462 int ret; 1463 1464 if (trans->transaction != fs_info->running_transaction) 1465 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1466 trans->transid, 1467 fs_info->running_transaction->transid); 1468 1469 if (trans->transid != fs_info->generation) 1470 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1471 trans->transid, fs_info->generation); 1472 1473 if (!should_cow_block(trans, root, buf)) { 1474 trans->dirty = true; 1475 *cow_ret = buf; 1476 return 0; 1477 } 1478 1479 search_start = buf->start & ~((u64)SZ_1G - 1); 1480 1481 if (parent) 1482 btrfs_set_lock_blocking(parent); 1483 btrfs_set_lock_blocking(buf); 1484 1485 ret = __btrfs_cow_block(trans, root, buf, parent, 1486 parent_slot, cow_ret, search_start, 0); 1487 1488 trace_btrfs_cow_block(root, buf, *cow_ret); 1489 1490 return ret; 1491 } 1492 1493 /* 1494 * helper function for defrag to decide if two blocks pointed to by a 1495 * node are actually close by 1496 */ 1497 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1498 { 1499 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1500 return 1; 1501 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1502 return 1; 1503 return 0; 1504 } 1505 1506 /* 1507 * compare two keys in a memcmp fashion 1508 */ 1509 static int comp_keys(const struct btrfs_disk_key *disk, 1510 const struct btrfs_key *k2) 1511 { 1512 struct btrfs_key k1; 1513 1514 btrfs_disk_key_to_cpu(&k1, disk); 1515 1516 return btrfs_comp_cpu_keys(&k1, k2); 1517 } 1518 1519 /* 1520 * same as comp_keys only with two btrfs_key's 1521 */ 1522 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1523 { 1524 if (k1->objectid > k2->objectid) 1525 return 1; 1526 if (k1->objectid < k2->objectid) 1527 return -1; 1528 if (k1->type > k2->type) 1529 return 1; 1530 if (k1->type < k2->type) 1531 return -1; 1532 if (k1->offset > k2->offset) 1533 return 1; 1534 if (k1->offset < k2->offset) 1535 return -1; 1536 return 0; 1537 } 1538 1539 /* 1540 * this is used by the defrag code to go through all the 1541 * leaves pointed to by a node and reallocate them so that 1542 * disk order is close to key order 1543 */ 1544 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1545 struct btrfs_root *root, struct extent_buffer *parent, 1546 int start_slot, u64 *last_ret, 1547 struct btrfs_key *progress) 1548 { 1549 struct btrfs_fs_info *fs_info = root->fs_info; 1550 struct extent_buffer *cur; 1551 u64 blocknr; 1552 u64 gen; 1553 u64 search_start = *last_ret; 1554 u64 last_block = 0; 1555 u64 other; 1556 u32 parent_nritems; 1557 int end_slot; 1558 int i; 1559 int err = 0; 1560 int parent_level; 1561 int uptodate; 1562 u32 blocksize; 1563 int progress_passed = 0; 1564 struct btrfs_disk_key disk_key; 1565 1566 parent_level = btrfs_header_level(parent); 1567 1568 WARN_ON(trans->transaction != fs_info->running_transaction); 1569 WARN_ON(trans->transid != fs_info->generation); 1570 1571 parent_nritems = btrfs_header_nritems(parent); 1572 blocksize = fs_info->nodesize; 1573 end_slot = parent_nritems - 1; 1574 1575 if (parent_nritems <= 1) 1576 return 0; 1577 1578 btrfs_set_lock_blocking(parent); 1579 1580 for (i = start_slot; i <= end_slot; i++) { 1581 struct btrfs_key first_key; 1582 int close = 1; 1583 1584 btrfs_node_key(parent, &disk_key, i); 1585 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1586 continue; 1587 1588 progress_passed = 1; 1589 blocknr = btrfs_node_blockptr(parent, i); 1590 gen = btrfs_node_ptr_generation(parent, i); 1591 btrfs_node_key_to_cpu(parent, &first_key, i); 1592 if (last_block == 0) 1593 last_block = blocknr; 1594 1595 if (i > 0) { 1596 other = btrfs_node_blockptr(parent, i - 1); 1597 close = close_blocks(blocknr, other, blocksize); 1598 } 1599 if (!close && i < end_slot) { 1600 other = btrfs_node_blockptr(parent, i + 1); 1601 close = close_blocks(blocknr, other, blocksize); 1602 } 1603 if (close) { 1604 last_block = blocknr; 1605 continue; 1606 } 1607 1608 cur = find_extent_buffer(fs_info, blocknr); 1609 if (cur) 1610 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1611 else 1612 uptodate = 0; 1613 if (!cur || !uptodate) { 1614 if (!cur) { 1615 cur = read_tree_block(fs_info, blocknr, gen, 1616 parent_level - 1, 1617 &first_key); 1618 if (IS_ERR(cur)) { 1619 return PTR_ERR(cur); 1620 } else if (!extent_buffer_uptodate(cur)) { 1621 free_extent_buffer(cur); 1622 return -EIO; 1623 } 1624 } else if (!uptodate) { 1625 err = btrfs_read_buffer(cur, gen, 1626 parent_level - 1,&first_key); 1627 if (err) { 1628 free_extent_buffer(cur); 1629 return err; 1630 } 1631 } 1632 } 1633 if (search_start == 0) 1634 search_start = last_block; 1635 1636 btrfs_tree_lock(cur); 1637 btrfs_set_lock_blocking(cur); 1638 err = __btrfs_cow_block(trans, root, cur, parent, i, 1639 &cur, search_start, 1640 min(16 * blocksize, 1641 (end_slot - i) * blocksize)); 1642 if (err) { 1643 btrfs_tree_unlock(cur); 1644 free_extent_buffer(cur); 1645 break; 1646 } 1647 search_start = cur->start; 1648 last_block = cur->start; 1649 *last_ret = search_start; 1650 btrfs_tree_unlock(cur); 1651 free_extent_buffer(cur); 1652 } 1653 return err; 1654 } 1655 1656 /* 1657 * search for key in the extent_buffer. The items start at offset p, 1658 * and they are item_size apart. There are 'max' items in p. 1659 * 1660 * the slot in the array is returned via slot, and it points to 1661 * the place where you would insert key if it is not found in 1662 * the array. 1663 * 1664 * slot may point to max if the key is bigger than all of the keys 1665 */ 1666 static noinline int generic_bin_search(struct extent_buffer *eb, 1667 unsigned long p, int item_size, 1668 const struct btrfs_key *key, 1669 int max, int *slot) 1670 { 1671 int low = 0; 1672 int high = max; 1673 int mid; 1674 int ret; 1675 struct btrfs_disk_key *tmp = NULL; 1676 struct btrfs_disk_key unaligned; 1677 unsigned long offset; 1678 char *kaddr = NULL; 1679 unsigned long map_start = 0; 1680 unsigned long map_len = 0; 1681 int err; 1682 1683 if (low > high) { 1684 btrfs_err(eb->fs_info, 1685 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1686 __func__, low, high, eb->start, 1687 btrfs_header_owner(eb), btrfs_header_level(eb)); 1688 return -EINVAL; 1689 } 1690 1691 while (low < high) { 1692 mid = (low + high) / 2; 1693 offset = p + mid * item_size; 1694 1695 if (!kaddr || offset < map_start || 1696 (offset + sizeof(struct btrfs_disk_key)) > 1697 map_start + map_len) { 1698 1699 err = map_private_extent_buffer(eb, offset, 1700 sizeof(struct btrfs_disk_key), 1701 &kaddr, &map_start, &map_len); 1702 1703 if (!err) { 1704 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1705 map_start); 1706 } else if (err == 1) { 1707 read_extent_buffer(eb, &unaligned, 1708 offset, sizeof(unaligned)); 1709 tmp = &unaligned; 1710 } else { 1711 return err; 1712 } 1713 1714 } else { 1715 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1716 map_start); 1717 } 1718 ret = comp_keys(tmp, key); 1719 1720 if (ret < 0) 1721 low = mid + 1; 1722 else if (ret > 0) 1723 high = mid; 1724 else { 1725 *slot = mid; 1726 return 0; 1727 } 1728 } 1729 *slot = low; 1730 return 1; 1731 } 1732 1733 /* 1734 * simple bin_search frontend that does the right thing for 1735 * leaves vs nodes 1736 */ 1737 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1738 int level, int *slot) 1739 { 1740 if (level == 0) 1741 return generic_bin_search(eb, 1742 offsetof(struct btrfs_leaf, items), 1743 sizeof(struct btrfs_item), 1744 key, btrfs_header_nritems(eb), 1745 slot); 1746 else 1747 return generic_bin_search(eb, 1748 offsetof(struct btrfs_node, ptrs), 1749 sizeof(struct btrfs_key_ptr), 1750 key, btrfs_header_nritems(eb), 1751 slot); 1752 } 1753 1754 static void root_add_used(struct btrfs_root *root, u32 size) 1755 { 1756 spin_lock(&root->accounting_lock); 1757 btrfs_set_root_used(&root->root_item, 1758 btrfs_root_used(&root->root_item) + size); 1759 spin_unlock(&root->accounting_lock); 1760 } 1761 1762 static void root_sub_used(struct btrfs_root *root, u32 size) 1763 { 1764 spin_lock(&root->accounting_lock); 1765 btrfs_set_root_used(&root->root_item, 1766 btrfs_root_used(&root->root_item) - size); 1767 spin_unlock(&root->accounting_lock); 1768 } 1769 1770 /* given a node and slot number, this reads the blocks it points to. The 1771 * extent buffer is returned with a reference taken (but unlocked). 1772 */ 1773 static noinline struct extent_buffer * 1774 read_node_slot(struct btrfs_fs_info *fs_info, struct extent_buffer *parent, 1775 int slot) 1776 { 1777 int level = btrfs_header_level(parent); 1778 struct extent_buffer *eb; 1779 struct btrfs_key first_key; 1780 1781 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1782 return ERR_PTR(-ENOENT); 1783 1784 BUG_ON(level == 0); 1785 1786 btrfs_node_key_to_cpu(parent, &first_key, slot); 1787 eb = read_tree_block(fs_info, btrfs_node_blockptr(parent, slot), 1788 btrfs_node_ptr_generation(parent, slot), 1789 level - 1, &first_key); 1790 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1791 free_extent_buffer(eb); 1792 eb = ERR_PTR(-EIO); 1793 } 1794 1795 return eb; 1796 } 1797 1798 /* 1799 * node level balancing, used to make sure nodes are in proper order for 1800 * item deletion. We balance from the top down, so we have to make sure 1801 * that a deletion won't leave an node completely empty later on. 1802 */ 1803 static noinline int balance_level(struct btrfs_trans_handle *trans, 1804 struct btrfs_root *root, 1805 struct btrfs_path *path, int level) 1806 { 1807 struct btrfs_fs_info *fs_info = root->fs_info; 1808 struct extent_buffer *right = NULL; 1809 struct extent_buffer *mid; 1810 struct extent_buffer *left = NULL; 1811 struct extent_buffer *parent = NULL; 1812 int ret = 0; 1813 int wret; 1814 int pslot; 1815 int orig_slot = path->slots[level]; 1816 u64 orig_ptr; 1817 1818 if (level == 0) 1819 return 0; 1820 1821 mid = path->nodes[level]; 1822 1823 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1824 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1825 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1826 1827 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1828 1829 if (level < BTRFS_MAX_LEVEL - 1) { 1830 parent = path->nodes[level + 1]; 1831 pslot = path->slots[level + 1]; 1832 } 1833 1834 /* 1835 * deal with the case where there is only one pointer in the root 1836 * by promoting the node below to a root 1837 */ 1838 if (!parent) { 1839 struct extent_buffer *child; 1840 1841 if (btrfs_header_nritems(mid) != 1) 1842 return 0; 1843 1844 /* promote the child to a root */ 1845 child = read_node_slot(fs_info, mid, 0); 1846 if (IS_ERR(child)) { 1847 ret = PTR_ERR(child); 1848 btrfs_handle_fs_error(fs_info, ret, NULL); 1849 goto enospc; 1850 } 1851 1852 btrfs_tree_lock(child); 1853 btrfs_set_lock_blocking(child); 1854 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1855 if (ret) { 1856 btrfs_tree_unlock(child); 1857 free_extent_buffer(child); 1858 goto enospc; 1859 } 1860 1861 ret = tree_mod_log_insert_root(root->node, child, 1); 1862 BUG_ON(ret < 0); 1863 rcu_assign_pointer(root->node, child); 1864 1865 add_root_to_dirty_list(root); 1866 btrfs_tree_unlock(child); 1867 1868 path->locks[level] = 0; 1869 path->nodes[level] = NULL; 1870 clean_tree_block(fs_info, mid); 1871 btrfs_tree_unlock(mid); 1872 /* once for the path */ 1873 free_extent_buffer(mid); 1874 1875 root_sub_used(root, mid->len); 1876 btrfs_free_tree_block(trans, root, mid, 0, 1); 1877 /* once for the root ptr */ 1878 free_extent_buffer_stale(mid); 1879 return 0; 1880 } 1881 if (btrfs_header_nritems(mid) > 1882 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1883 return 0; 1884 1885 left = read_node_slot(fs_info, parent, pslot - 1); 1886 if (IS_ERR(left)) 1887 left = NULL; 1888 1889 if (left) { 1890 btrfs_tree_lock(left); 1891 btrfs_set_lock_blocking(left); 1892 wret = btrfs_cow_block(trans, root, left, 1893 parent, pslot - 1, &left); 1894 if (wret) { 1895 ret = wret; 1896 goto enospc; 1897 } 1898 } 1899 1900 right = read_node_slot(fs_info, parent, pslot + 1); 1901 if (IS_ERR(right)) 1902 right = NULL; 1903 1904 if (right) { 1905 btrfs_tree_lock(right); 1906 btrfs_set_lock_blocking(right); 1907 wret = btrfs_cow_block(trans, root, right, 1908 parent, pslot + 1, &right); 1909 if (wret) { 1910 ret = wret; 1911 goto enospc; 1912 } 1913 } 1914 1915 /* first, try to make some room in the middle buffer */ 1916 if (left) { 1917 orig_slot += btrfs_header_nritems(left); 1918 wret = push_node_left(trans, fs_info, left, mid, 1); 1919 if (wret < 0) 1920 ret = wret; 1921 } 1922 1923 /* 1924 * then try to empty the right most buffer into the middle 1925 */ 1926 if (right) { 1927 wret = push_node_left(trans, fs_info, mid, right, 1); 1928 if (wret < 0 && wret != -ENOSPC) 1929 ret = wret; 1930 if (btrfs_header_nritems(right) == 0) { 1931 clean_tree_block(fs_info, right); 1932 btrfs_tree_unlock(right); 1933 del_ptr(root, path, level + 1, pslot + 1); 1934 root_sub_used(root, right->len); 1935 btrfs_free_tree_block(trans, root, right, 0, 1); 1936 free_extent_buffer_stale(right); 1937 right = NULL; 1938 } else { 1939 struct btrfs_disk_key right_key; 1940 btrfs_node_key(right, &right_key, 0); 1941 ret = tree_mod_log_insert_key(parent, pslot + 1, 1942 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1943 BUG_ON(ret < 0); 1944 btrfs_set_node_key(parent, &right_key, pslot + 1); 1945 btrfs_mark_buffer_dirty(parent); 1946 } 1947 } 1948 if (btrfs_header_nritems(mid) == 1) { 1949 /* 1950 * we're not allowed to leave a node with one item in the 1951 * tree during a delete. A deletion from lower in the tree 1952 * could try to delete the only pointer in this node. 1953 * So, pull some keys from the left. 1954 * There has to be a left pointer at this point because 1955 * otherwise we would have pulled some pointers from the 1956 * right 1957 */ 1958 if (!left) { 1959 ret = -EROFS; 1960 btrfs_handle_fs_error(fs_info, ret, NULL); 1961 goto enospc; 1962 } 1963 wret = balance_node_right(trans, fs_info, mid, left); 1964 if (wret < 0) { 1965 ret = wret; 1966 goto enospc; 1967 } 1968 if (wret == 1) { 1969 wret = push_node_left(trans, fs_info, left, mid, 1); 1970 if (wret < 0) 1971 ret = wret; 1972 } 1973 BUG_ON(wret == 1); 1974 } 1975 if (btrfs_header_nritems(mid) == 0) { 1976 clean_tree_block(fs_info, mid); 1977 btrfs_tree_unlock(mid); 1978 del_ptr(root, path, level + 1, pslot); 1979 root_sub_used(root, mid->len); 1980 btrfs_free_tree_block(trans, root, mid, 0, 1); 1981 free_extent_buffer_stale(mid); 1982 mid = NULL; 1983 } else { 1984 /* update the parent key to reflect our changes */ 1985 struct btrfs_disk_key mid_key; 1986 btrfs_node_key(mid, &mid_key, 0); 1987 ret = tree_mod_log_insert_key(parent, pslot, 1988 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1989 BUG_ON(ret < 0); 1990 btrfs_set_node_key(parent, &mid_key, pslot); 1991 btrfs_mark_buffer_dirty(parent); 1992 } 1993 1994 /* update the path */ 1995 if (left) { 1996 if (btrfs_header_nritems(left) > orig_slot) { 1997 extent_buffer_get(left); 1998 /* left was locked after cow */ 1999 path->nodes[level] = left; 2000 path->slots[level + 1] -= 1; 2001 path->slots[level] = orig_slot; 2002 if (mid) { 2003 btrfs_tree_unlock(mid); 2004 free_extent_buffer(mid); 2005 } 2006 } else { 2007 orig_slot -= btrfs_header_nritems(left); 2008 path->slots[level] = orig_slot; 2009 } 2010 } 2011 /* double check we haven't messed things up */ 2012 if (orig_ptr != 2013 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2014 BUG(); 2015 enospc: 2016 if (right) { 2017 btrfs_tree_unlock(right); 2018 free_extent_buffer(right); 2019 } 2020 if (left) { 2021 if (path->nodes[level] != left) 2022 btrfs_tree_unlock(left); 2023 free_extent_buffer(left); 2024 } 2025 return ret; 2026 } 2027 2028 /* Node balancing for insertion. Here we only split or push nodes around 2029 * when they are completely full. This is also done top down, so we 2030 * have to be pessimistic. 2031 */ 2032 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2033 struct btrfs_root *root, 2034 struct btrfs_path *path, int level) 2035 { 2036 struct btrfs_fs_info *fs_info = root->fs_info; 2037 struct extent_buffer *right = NULL; 2038 struct extent_buffer *mid; 2039 struct extent_buffer *left = NULL; 2040 struct extent_buffer *parent = NULL; 2041 int ret = 0; 2042 int wret; 2043 int pslot; 2044 int orig_slot = path->slots[level]; 2045 2046 if (level == 0) 2047 return 1; 2048 2049 mid = path->nodes[level]; 2050 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2051 2052 if (level < BTRFS_MAX_LEVEL - 1) { 2053 parent = path->nodes[level + 1]; 2054 pslot = path->slots[level + 1]; 2055 } 2056 2057 if (!parent) 2058 return 1; 2059 2060 left = read_node_slot(fs_info, parent, pslot - 1); 2061 if (IS_ERR(left)) 2062 left = NULL; 2063 2064 /* first, try to make some room in the middle buffer */ 2065 if (left) { 2066 u32 left_nr; 2067 2068 btrfs_tree_lock(left); 2069 btrfs_set_lock_blocking(left); 2070 2071 left_nr = btrfs_header_nritems(left); 2072 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2073 wret = 1; 2074 } else { 2075 ret = btrfs_cow_block(trans, root, left, parent, 2076 pslot - 1, &left); 2077 if (ret) 2078 wret = 1; 2079 else { 2080 wret = push_node_left(trans, fs_info, 2081 left, mid, 0); 2082 } 2083 } 2084 if (wret < 0) 2085 ret = wret; 2086 if (wret == 0) { 2087 struct btrfs_disk_key disk_key; 2088 orig_slot += left_nr; 2089 btrfs_node_key(mid, &disk_key, 0); 2090 ret = tree_mod_log_insert_key(parent, pslot, 2091 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2092 BUG_ON(ret < 0); 2093 btrfs_set_node_key(parent, &disk_key, pslot); 2094 btrfs_mark_buffer_dirty(parent); 2095 if (btrfs_header_nritems(left) > orig_slot) { 2096 path->nodes[level] = left; 2097 path->slots[level + 1] -= 1; 2098 path->slots[level] = orig_slot; 2099 btrfs_tree_unlock(mid); 2100 free_extent_buffer(mid); 2101 } else { 2102 orig_slot -= 2103 btrfs_header_nritems(left); 2104 path->slots[level] = orig_slot; 2105 btrfs_tree_unlock(left); 2106 free_extent_buffer(left); 2107 } 2108 return 0; 2109 } 2110 btrfs_tree_unlock(left); 2111 free_extent_buffer(left); 2112 } 2113 right = read_node_slot(fs_info, parent, pslot + 1); 2114 if (IS_ERR(right)) 2115 right = NULL; 2116 2117 /* 2118 * then try to empty the right most buffer into the middle 2119 */ 2120 if (right) { 2121 u32 right_nr; 2122 2123 btrfs_tree_lock(right); 2124 btrfs_set_lock_blocking(right); 2125 2126 right_nr = btrfs_header_nritems(right); 2127 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2128 wret = 1; 2129 } else { 2130 ret = btrfs_cow_block(trans, root, right, 2131 parent, pslot + 1, 2132 &right); 2133 if (ret) 2134 wret = 1; 2135 else { 2136 wret = balance_node_right(trans, fs_info, 2137 right, mid); 2138 } 2139 } 2140 if (wret < 0) 2141 ret = wret; 2142 if (wret == 0) { 2143 struct btrfs_disk_key disk_key; 2144 2145 btrfs_node_key(right, &disk_key, 0); 2146 ret = tree_mod_log_insert_key(parent, pslot + 1, 2147 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2148 BUG_ON(ret < 0); 2149 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2150 btrfs_mark_buffer_dirty(parent); 2151 2152 if (btrfs_header_nritems(mid) <= orig_slot) { 2153 path->nodes[level] = right; 2154 path->slots[level + 1] += 1; 2155 path->slots[level] = orig_slot - 2156 btrfs_header_nritems(mid); 2157 btrfs_tree_unlock(mid); 2158 free_extent_buffer(mid); 2159 } else { 2160 btrfs_tree_unlock(right); 2161 free_extent_buffer(right); 2162 } 2163 return 0; 2164 } 2165 btrfs_tree_unlock(right); 2166 free_extent_buffer(right); 2167 } 2168 return 1; 2169 } 2170 2171 /* 2172 * readahead one full node of leaves, finding things that are close 2173 * to the block in 'slot', and triggering ra on them. 2174 */ 2175 static void reada_for_search(struct btrfs_fs_info *fs_info, 2176 struct btrfs_path *path, 2177 int level, int slot, u64 objectid) 2178 { 2179 struct extent_buffer *node; 2180 struct btrfs_disk_key disk_key; 2181 u32 nritems; 2182 u64 search; 2183 u64 target; 2184 u64 nread = 0; 2185 struct extent_buffer *eb; 2186 u32 nr; 2187 u32 blocksize; 2188 u32 nscan = 0; 2189 2190 if (level != 1) 2191 return; 2192 2193 if (!path->nodes[level]) 2194 return; 2195 2196 node = path->nodes[level]; 2197 2198 search = btrfs_node_blockptr(node, slot); 2199 blocksize = fs_info->nodesize; 2200 eb = find_extent_buffer(fs_info, search); 2201 if (eb) { 2202 free_extent_buffer(eb); 2203 return; 2204 } 2205 2206 target = search; 2207 2208 nritems = btrfs_header_nritems(node); 2209 nr = slot; 2210 2211 while (1) { 2212 if (path->reada == READA_BACK) { 2213 if (nr == 0) 2214 break; 2215 nr--; 2216 } else if (path->reada == READA_FORWARD) { 2217 nr++; 2218 if (nr >= nritems) 2219 break; 2220 } 2221 if (path->reada == READA_BACK && objectid) { 2222 btrfs_node_key(node, &disk_key, nr); 2223 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2224 break; 2225 } 2226 search = btrfs_node_blockptr(node, nr); 2227 if ((search <= target && target - search <= 65536) || 2228 (search > target && search - target <= 65536)) { 2229 readahead_tree_block(fs_info, search); 2230 nread += blocksize; 2231 } 2232 nscan++; 2233 if ((nread > 65536 || nscan > 32)) 2234 break; 2235 } 2236 } 2237 2238 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2239 struct btrfs_path *path, int level) 2240 { 2241 int slot; 2242 int nritems; 2243 struct extent_buffer *parent; 2244 struct extent_buffer *eb; 2245 u64 gen; 2246 u64 block1 = 0; 2247 u64 block2 = 0; 2248 2249 parent = path->nodes[level + 1]; 2250 if (!parent) 2251 return; 2252 2253 nritems = btrfs_header_nritems(parent); 2254 slot = path->slots[level + 1]; 2255 2256 if (slot > 0) { 2257 block1 = btrfs_node_blockptr(parent, slot - 1); 2258 gen = btrfs_node_ptr_generation(parent, slot - 1); 2259 eb = find_extent_buffer(fs_info, block1); 2260 /* 2261 * if we get -eagain from btrfs_buffer_uptodate, we 2262 * don't want to return eagain here. That will loop 2263 * forever 2264 */ 2265 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2266 block1 = 0; 2267 free_extent_buffer(eb); 2268 } 2269 if (slot + 1 < nritems) { 2270 block2 = btrfs_node_blockptr(parent, slot + 1); 2271 gen = btrfs_node_ptr_generation(parent, slot + 1); 2272 eb = find_extent_buffer(fs_info, block2); 2273 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2274 block2 = 0; 2275 free_extent_buffer(eb); 2276 } 2277 2278 if (block1) 2279 readahead_tree_block(fs_info, block1); 2280 if (block2) 2281 readahead_tree_block(fs_info, block2); 2282 } 2283 2284 2285 /* 2286 * when we walk down the tree, it is usually safe to unlock the higher layers 2287 * in the tree. The exceptions are when our path goes through slot 0, because 2288 * operations on the tree might require changing key pointers higher up in the 2289 * tree. 2290 * 2291 * callers might also have set path->keep_locks, which tells this code to keep 2292 * the lock if the path points to the last slot in the block. This is part of 2293 * walking through the tree, and selecting the next slot in the higher block. 2294 * 2295 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2296 * if lowest_unlock is 1, level 0 won't be unlocked 2297 */ 2298 static noinline void unlock_up(struct btrfs_path *path, int level, 2299 int lowest_unlock, int min_write_lock_level, 2300 int *write_lock_level) 2301 { 2302 int i; 2303 int skip_level = level; 2304 int no_skips = 0; 2305 struct extent_buffer *t; 2306 2307 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2308 if (!path->nodes[i]) 2309 break; 2310 if (!path->locks[i]) 2311 break; 2312 if (!no_skips && path->slots[i] == 0) { 2313 skip_level = i + 1; 2314 continue; 2315 } 2316 if (!no_skips && path->keep_locks) { 2317 u32 nritems; 2318 t = path->nodes[i]; 2319 nritems = btrfs_header_nritems(t); 2320 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2321 skip_level = i + 1; 2322 continue; 2323 } 2324 } 2325 if (skip_level < i && i >= lowest_unlock) 2326 no_skips = 1; 2327 2328 t = path->nodes[i]; 2329 if (i >= lowest_unlock && i > skip_level) { 2330 btrfs_tree_unlock_rw(t, path->locks[i]); 2331 path->locks[i] = 0; 2332 if (write_lock_level && 2333 i > min_write_lock_level && 2334 i <= *write_lock_level) { 2335 *write_lock_level = i - 1; 2336 } 2337 } 2338 } 2339 } 2340 2341 /* 2342 * This releases any locks held in the path starting at level and 2343 * going all the way up to the root. 2344 * 2345 * btrfs_search_slot will keep the lock held on higher nodes in a few 2346 * corner cases, such as COW of the block at slot zero in the node. This 2347 * ignores those rules, and it should only be called when there are no 2348 * more updates to be done higher up in the tree. 2349 */ 2350 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2351 { 2352 int i; 2353 2354 if (path->keep_locks) 2355 return; 2356 2357 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2358 if (!path->nodes[i]) 2359 continue; 2360 if (!path->locks[i]) 2361 continue; 2362 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2363 path->locks[i] = 0; 2364 } 2365 } 2366 2367 /* 2368 * helper function for btrfs_search_slot. The goal is to find a block 2369 * in cache without setting the path to blocking. If we find the block 2370 * we return zero and the path is unchanged. 2371 * 2372 * If we can't find the block, we set the path blocking and do some 2373 * reada. -EAGAIN is returned and the search must be repeated. 2374 */ 2375 static int 2376 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2377 struct extent_buffer **eb_ret, int level, int slot, 2378 const struct btrfs_key *key) 2379 { 2380 struct btrfs_fs_info *fs_info = root->fs_info; 2381 u64 blocknr; 2382 u64 gen; 2383 struct extent_buffer *b = *eb_ret; 2384 struct extent_buffer *tmp; 2385 struct btrfs_key first_key; 2386 int ret; 2387 int parent_level; 2388 2389 blocknr = btrfs_node_blockptr(b, slot); 2390 gen = btrfs_node_ptr_generation(b, slot); 2391 parent_level = btrfs_header_level(b); 2392 btrfs_node_key_to_cpu(b, &first_key, slot); 2393 2394 tmp = find_extent_buffer(fs_info, blocknr); 2395 if (tmp) { 2396 /* first we do an atomic uptodate check */ 2397 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2398 *eb_ret = tmp; 2399 return 0; 2400 } 2401 2402 /* the pages were up to date, but we failed 2403 * the generation number check. Do a full 2404 * read for the generation number that is correct. 2405 * We must do this without dropping locks so 2406 * we can trust our generation number 2407 */ 2408 btrfs_set_path_blocking(p); 2409 2410 /* now we're allowed to do a blocking uptodate check */ 2411 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2412 if (!ret) { 2413 *eb_ret = tmp; 2414 return 0; 2415 } 2416 free_extent_buffer(tmp); 2417 btrfs_release_path(p); 2418 return -EIO; 2419 } 2420 2421 /* 2422 * reduce lock contention at high levels 2423 * of the btree by dropping locks before 2424 * we read. Don't release the lock on the current 2425 * level because we need to walk this node to figure 2426 * out which blocks to read. 2427 */ 2428 btrfs_unlock_up_safe(p, level + 1); 2429 btrfs_set_path_blocking(p); 2430 2431 if (p->reada != READA_NONE) 2432 reada_for_search(fs_info, p, level, slot, key->objectid); 2433 2434 ret = -EAGAIN; 2435 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2436 &first_key); 2437 if (!IS_ERR(tmp)) { 2438 /* 2439 * If the read above didn't mark this buffer up to date, 2440 * it will never end up being up to date. Set ret to EIO now 2441 * and give up so that our caller doesn't loop forever 2442 * on our EAGAINs. 2443 */ 2444 if (!extent_buffer_uptodate(tmp)) 2445 ret = -EIO; 2446 free_extent_buffer(tmp); 2447 } else { 2448 ret = PTR_ERR(tmp); 2449 } 2450 2451 btrfs_release_path(p); 2452 return ret; 2453 } 2454 2455 /* 2456 * helper function for btrfs_search_slot. This does all of the checks 2457 * for node-level blocks and does any balancing required based on 2458 * the ins_len. 2459 * 2460 * If no extra work was required, zero is returned. If we had to 2461 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2462 * start over 2463 */ 2464 static int 2465 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2466 struct btrfs_root *root, struct btrfs_path *p, 2467 struct extent_buffer *b, int level, int ins_len, 2468 int *write_lock_level) 2469 { 2470 struct btrfs_fs_info *fs_info = root->fs_info; 2471 int ret; 2472 2473 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2474 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2475 int sret; 2476 2477 if (*write_lock_level < level + 1) { 2478 *write_lock_level = level + 1; 2479 btrfs_release_path(p); 2480 goto again; 2481 } 2482 2483 btrfs_set_path_blocking(p); 2484 reada_for_balance(fs_info, p, level); 2485 sret = split_node(trans, root, p, level); 2486 btrfs_clear_path_blocking(p, NULL, 0); 2487 2488 BUG_ON(sret > 0); 2489 if (sret) { 2490 ret = sret; 2491 goto done; 2492 } 2493 b = p->nodes[level]; 2494 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2495 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2496 int sret; 2497 2498 if (*write_lock_level < level + 1) { 2499 *write_lock_level = level + 1; 2500 btrfs_release_path(p); 2501 goto again; 2502 } 2503 2504 btrfs_set_path_blocking(p); 2505 reada_for_balance(fs_info, p, level); 2506 sret = balance_level(trans, root, p, level); 2507 btrfs_clear_path_blocking(p, NULL, 0); 2508 2509 if (sret) { 2510 ret = sret; 2511 goto done; 2512 } 2513 b = p->nodes[level]; 2514 if (!b) { 2515 btrfs_release_path(p); 2516 goto again; 2517 } 2518 BUG_ON(btrfs_header_nritems(b) == 1); 2519 } 2520 return 0; 2521 2522 again: 2523 ret = -EAGAIN; 2524 done: 2525 return ret; 2526 } 2527 2528 static void key_search_validate(struct extent_buffer *b, 2529 const struct btrfs_key *key, 2530 int level) 2531 { 2532 #ifdef CONFIG_BTRFS_ASSERT 2533 struct btrfs_disk_key disk_key; 2534 2535 btrfs_cpu_key_to_disk(&disk_key, key); 2536 2537 if (level == 0) 2538 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2539 offsetof(struct btrfs_leaf, items[0].key), 2540 sizeof(disk_key))); 2541 else 2542 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2543 offsetof(struct btrfs_node, ptrs[0].key), 2544 sizeof(disk_key))); 2545 #endif 2546 } 2547 2548 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2549 int level, int *prev_cmp, int *slot) 2550 { 2551 if (*prev_cmp != 0) { 2552 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2553 return *prev_cmp; 2554 } 2555 2556 key_search_validate(b, key, level); 2557 *slot = 0; 2558 2559 return 0; 2560 } 2561 2562 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2563 u64 iobjectid, u64 ioff, u8 key_type, 2564 struct btrfs_key *found_key) 2565 { 2566 int ret; 2567 struct btrfs_key key; 2568 struct extent_buffer *eb; 2569 2570 ASSERT(path); 2571 ASSERT(found_key); 2572 2573 key.type = key_type; 2574 key.objectid = iobjectid; 2575 key.offset = ioff; 2576 2577 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2578 if (ret < 0) 2579 return ret; 2580 2581 eb = path->nodes[0]; 2582 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2583 ret = btrfs_next_leaf(fs_root, path); 2584 if (ret) 2585 return ret; 2586 eb = path->nodes[0]; 2587 } 2588 2589 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2590 if (found_key->type != key.type || 2591 found_key->objectid != key.objectid) 2592 return 1; 2593 2594 return 0; 2595 } 2596 2597 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2598 struct btrfs_path *p, 2599 int write_lock_level) 2600 { 2601 struct btrfs_fs_info *fs_info = root->fs_info; 2602 struct extent_buffer *b; 2603 int root_lock; 2604 int level = 0; 2605 2606 /* We try very hard to do read locks on the root */ 2607 root_lock = BTRFS_READ_LOCK; 2608 2609 if (p->search_commit_root) { 2610 /* The commit roots are read only so we always do read locks */ 2611 if (p->need_commit_sem) 2612 down_read(&fs_info->commit_root_sem); 2613 b = root->commit_root; 2614 extent_buffer_get(b); 2615 level = btrfs_header_level(b); 2616 if (p->need_commit_sem) 2617 up_read(&fs_info->commit_root_sem); 2618 /* 2619 * Ensure that all callers have set skip_locking when 2620 * p->search_commit_root = 1. 2621 */ 2622 ASSERT(p->skip_locking == 1); 2623 2624 goto out; 2625 } 2626 2627 if (p->skip_locking) { 2628 b = btrfs_root_node(root); 2629 level = btrfs_header_level(b); 2630 goto out; 2631 } 2632 2633 /* 2634 * If the level is set to maximum, we can skip trying to get the read 2635 * lock. 2636 */ 2637 if (write_lock_level < BTRFS_MAX_LEVEL) { 2638 /* 2639 * We don't know the level of the root node until we actually 2640 * have it read locked 2641 */ 2642 b = btrfs_read_lock_root_node(root); 2643 level = btrfs_header_level(b); 2644 if (level > write_lock_level) 2645 goto out; 2646 2647 /* Whoops, must trade for write lock */ 2648 btrfs_tree_read_unlock(b); 2649 free_extent_buffer(b); 2650 } 2651 2652 b = btrfs_lock_root_node(root); 2653 root_lock = BTRFS_WRITE_LOCK; 2654 2655 /* The level might have changed, check again */ 2656 level = btrfs_header_level(b); 2657 2658 out: 2659 p->nodes[level] = b; 2660 if (!p->skip_locking) 2661 p->locks[level] = root_lock; 2662 /* 2663 * Callers are responsible for dropping b's references. 2664 */ 2665 return b; 2666 } 2667 2668 2669 /* 2670 * btrfs_search_slot - look for a key in a tree and perform necessary 2671 * modifications to preserve tree invariants. 2672 * 2673 * @trans: Handle of transaction, used when modifying the tree 2674 * @p: Holds all btree nodes along the search path 2675 * @root: The root node of the tree 2676 * @key: The key we are looking for 2677 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2678 * deletions it's -1. 0 for plain searches 2679 * @cow: boolean should CoW operations be performed. Must always be 1 2680 * when modifying the tree. 2681 * 2682 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2683 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2684 * 2685 * If @key is found, 0 is returned and you can find the item in the leaf level 2686 * of the path (level 0) 2687 * 2688 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2689 * points to the slot where it should be inserted 2690 * 2691 * If an error is encountered while searching the tree a negative error number 2692 * is returned 2693 */ 2694 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2695 const struct btrfs_key *key, struct btrfs_path *p, 2696 int ins_len, int cow) 2697 { 2698 struct btrfs_fs_info *fs_info = root->fs_info; 2699 struct extent_buffer *b; 2700 int slot; 2701 int ret; 2702 int err; 2703 int level; 2704 int lowest_unlock = 1; 2705 /* everything at write_lock_level or lower must be write locked */ 2706 int write_lock_level = 0; 2707 u8 lowest_level = 0; 2708 int min_write_lock_level; 2709 int prev_cmp; 2710 2711 lowest_level = p->lowest_level; 2712 WARN_ON(lowest_level && ins_len > 0); 2713 WARN_ON(p->nodes[0] != NULL); 2714 BUG_ON(!cow && ins_len); 2715 2716 if (ins_len < 0) { 2717 lowest_unlock = 2; 2718 2719 /* when we are removing items, we might have to go up to level 2720 * two as we update tree pointers Make sure we keep write 2721 * for those levels as well 2722 */ 2723 write_lock_level = 2; 2724 } else if (ins_len > 0) { 2725 /* 2726 * for inserting items, make sure we have a write lock on 2727 * level 1 so we can update keys 2728 */ 2729 write_lock_level = 1; 2730 } 2731 2732 if (!cow) 2733 write_lock_level = -1; 2734 2735 if (cow && (p->keep_locks || p->lowest_level)) 2736 write_lock_level = BTRFS_MAX_LEVEL; 2737 2738 min_write_lock_level = write_lock_level; 2739 2740 again: 2741 prev_cmp = -1; 2742 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2743 2744 while (b) { 2745 level = btrfs_header_level(b); 2746 2747 /* 2748 * setup the path here so we can release it under lock 2749 * contention with the cow code 2750 */ 2751 if (cow) { 2752 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2753 2754 /* 2755 * if we don't really need to cow this block 2756 * then we don't want to set the path blocking, 2757 * so we test it here 2758 */ 2759 if (!should_cow_block(trans, root, b)) { 2760 trans->dirty = true; 2761 goto cow_done; 2762 } 2763 2764 /* 2765 * must have write locks on this node and the 2766 * parent 2767 */ 2768 if (level > write_lock_level || 2769 (level + 1 > write_lock_level && 2770 level + 1 < BTRFS_MAX_LEVEL && 2771 p->nodes[level + 1])) { 2772 write_lock_level = level + 1; 2773 btrfs_release_path(p); 2774 goto again; 2775 } 2776 2777 btrfs_set_path_blocking(p); 2778 if (last_level) 2779 err = btrfs_cow_block(trans, root, b, NULL, 0, 2780 &b); 2781 else 2782 err = btrfs_cow_block(trans, root, b, 2783 p->nodes[level + 1], 2784 p->slots[level + 1], &b); 2785 if (err) { 2786 ret = err; 2787 goto done; 2788 } 2789 } 2790 cow_done: 2791 p->nodes[level] = b; 2792 btrfs_clear_path_blocking(p, NULL, 0); 2793 2794 /* 2795 * we have a lock on b and as long as we aren't changing 2796 * the tree, there is no way to for the items in b to change. 2797 * It is safe to drop the lock on our parent before we 2798 * go through the expensive btree search on b. 2799 * 2800 * If we're inserting or deleting (ins_len != 0), then we might 2801 * be changing slot zero, which may require changing the parent. 2802 * So, we can't drop the lock until after we know which slot 2803 * we're operating on. 2804 */ 2805 if (!ins_len && !p->keep_locks) { 2806 int u = level + 1; 2807 2808 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2809 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2810 p->locks[u] = 0; 2811 } 2812 } 2813 2814 ret = key_search(b, key, level, &prev_cmp, &slot); 2815 if (ret < 0) 2816 goto done; 2817 2818 if (level != 0) { 2819 int dec = 0; 2820 if (ret && slot > 0) { 2821 dec = 1; 2822 slot -= 1; 2823 } 2824 p->slots[level] = slot; 2825 err = setup_nodes_for_search(trans, root, p, b, level, 2826 ins_len, &write_lock_level); 2827 if (err == -EAGAIN) 2828 goto again; 2829 if (err) { 2830 ret = err; 2831 goto done; 2832 } 2833 b = p->nodes[level]; 2834 slot = p->slots[level]; 2835 2836 /* 2837 * slot 0 is special, if we change the key 2838 * we have to update the parent pointer 2839 * which means we must have a write lock 2840 * on the parent 2841 */ 2842 if (slot == 0 && ins_len && 2843 write_lock_level < level + 1) { 2844 write_lock_level = level + 1; 2845 btrfs_release_path(p); 2846 goto again; 2847 } 2848 2849 unlock_up(p, level, lowest_unlock, 2850 min_write_lock_level, &write_lock_level); 2851 2852 if (level == lowest_level) { 2853 if (dec) 2854 p->slots[level]++; 2855 goto done; 2856 } 2857 2858 err = read_block_for_search(root, p, &b, level, 2859 slot, key); 2860 if (err == -EAGAIN) 2861 goto again; 2862 if (err) { 2863 ret = err; 2864 goto done; 2865 } 2866 2867 if (!p->skip_locking) { 2868 level = btrfs_header_level(b); 2869 if (level <= write_lock_level) { 2870 err = btrfs_try_tree_write_lock(b); 2871 if (!err) { 2872 btrfs_set_path_blocking(p); 2873 btrfs_tree_lock(b); 2874 btrfs_clear_path_blocking(p, b, 2875 BTRFS_WRITE_LOCK); 2876 } 2877 p->locks[level] = BTRFS_WRITE_LOCK; 2878 } else { 2879 err = btrfs_tree_read_lock_atomic(b); 2880 if (!err) { 2881 btrfs_set_path_blocking(p); 2882 btrfs_tree_read_lock(b); 2883 btrfs_clear_path_blocking(p, b, 2884 BTRFS_READ_LOCK); 2885 } 2886 p->locks[level] = BTRFS_READ_LOCK; 2887 } 2888 p->nodes[level] = b; 2889 } 2890 } else { 2891 p->slots[level] = slot; 2892 if (ins_len > 0 && 2893 btrfs_leaf_free_space(fs_info, b) < ins_len) { 2894 if (write_lock_level < 1) { 2895 write_lock_level = 1; 2896 btrfs_release_path(p); 2897 goto again; 2898 } 2899 2900 btrfs_set_path_blocking(p); 2901 err = split_leaf(trans, root, key, 2902 p, ins_len, ret == 0); 2903 btrfs_clear_path_blocking(p, NULL, 0); 2904 2905 BUG_ON(err > 0); 2906 if (err) { 2907 ret = err; 2908 goto done; 2909 } 2910 } 2911 if (!p->search_for_split) 2912 unlock_up(p, level, lowest_unlock, 2913 min_write_lock_level, &write_lock_level); 2914 goto done; 2915 } 2916 } 2917 ret = 1; 2918 done: 2919 /* 2920 * we don't really know what they plan on doing with the path 2921 * from here on, so for now just mark it as blocking 2922 */ 2923 if (!p->leave_spinning) 2924 btrfs_set_path_blocking(p); 2925 if (ret < 0 && !p->skip_release_on_error) 2926 btrfs_release_path(p); 2927 return ret; 2928 } 2929 2930 /* 2931 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2932 * current state of the tree together with the operations recorded in the tree 2933 * modification log to search for the key in a previous version of this tree, as 2934 * denoted by the time_seq parameter. 2935 * 2936 * Naturally, there is no support for insert, delete or cow operations. 2937 * 2938 * The resulting path and return value will be set up as if we called 2939 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2940 */ 2941 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2942 struct btrfs_path *p, u64 time_seq) 2943 { 2944 struct btrfs_fs_info *fs_info = root->fs_info; 2945 struct extent_buffer *b; 2946 int slot; 2947 int ret; 2948 int err; 2949 int level; 2950 int lowest_unlock = 1; 2951 u8 lowest_level = 0; 2952 int prev_cmp = -1; 2953 2954 lowest_level = p->lowest_level; 2955 WARN_ON(p->nodes[0] != NULL); 2956 2957 if (p->search_commit_root) { 2958 BUG_ON(time_seq); 2959 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2960 } 2961 2962 again: 2963 b = get_old_root(root, time_seq); 2964 level = btrfs_header_level(b); 2965 p->locks[level] = BTRFS_READ_LOCK; 2966 2967 while (b) { 2968 level = btrfs_header_level(b); 2969 p->nodes[level] = b; 2970 btrfs_clear_path_blocking(p, NULL, 0); 2971 2972 /* 2973 * we have a lock on b and as long as we aren't changing 2974 * the tree, there is no way to for the items in b to change. 2975 * It is safe to drop the lock on our parent before we 2976 * go through the expensive btree search on b. 2977 */ 2978 btrfs_unlock_up_safe(p, level + 1); 2979 2980 /* 2981 * Since we can unwind ebs we want to do a real search every 2982 * time. 2983 */ 2984 prev_cmp = -1; 2985 ret = key_search(b, key, level, &prev_cmp, &slot); 2986 2987 if (level != 0) { 2988 int dec = 0; 2989 if (ret && slot > 0) { 2990 dec = 1; 2991 slot -= 1; 2992 } 2993 p->slots[level] = slot; 2994 unlock_up(p, level, lowest_unlock, 0, NULL); 2995 2996 if (level == lowest_level) { 2997 if (dec) 2998 p->slots[level]++; 2999 goto done; 3000 } 3001 3002 err = read_block_for_search(root, p, &b, level, 3003 slot, key); 3004 if (err == -EAGAIN) 3005 goto again; 3006 if (err) { 3007 ret = err; 3008 goto done; 3009 } 3010 3011 level = btrfs_header_level(b); 3012 err = btrfs_tree_read_lock_atomic(b); 3013 if (!err) { 3014 btrfs_set_path_blocking(p); 3015 btrfs_tree_read_lock(b); 3016 btrfs_clear_path_blocking(p, b, 3017 BTRFS_READ_LOCK); 3018 } 3019 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3020 if (!b) { 3021 ret = -ENOMEM; 3022 goto done; 3023 } 3024 p->locks[level] = BTRFS_READ_LOCK; 3025 p->nodes[level] = b; 3026 } else { 3027 p->slots[level] = slot; 3028 unlock_up(p, level, lowest_unlock, 0, NULL); 3029 goto done; 3030 } 3031 } 3032 ret = 1; 3033 done: 3034 if (!p->leave_spinning) 3035 btrfs_set_path_blocking(p); 3036 if (ret < 0) 3037 btrfs_release_path(p); 3038 3039 return ret; 3040 } 3041 3042 /* 3043 * helper to use instead of search slot if no exact match is needed but 3044 * instead the next or previous item should be returned. 3045 * When find_higher is true, the next higher item is returned, the next lower 3046 * otherwise. 3047 * When return_any and find_higher are both true, and no higher item is found, 3048 * return the next lower instead. 3049 * When return_any is true and find_higher is false, and no lower item is found, 3050 * return the next higher instead. 3051 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3052 * < 0 on error 3053 */ 3054 int btrfs_search_slot_for_read(struct btrfs_root *root, 3055 const struct btrfs_key *key, 3056 struct btrfs_path *p, int find_higher, 3057 int return_any) 3058 { 3059 int ret; 3060 struct extent_buffer *leaf; 3061 3062 again: 3063 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3064 if (ret <= 0) 3065 return ret; 3066 /* 3067 * a return value of 1 means the path is at the position where the 3068 * item should be inserted. Normally this is the next bigger item, 3069 * but in case the previous item is the last in a leaf, path points 3070 * to the first free slot in the previous leaf, i.e. at an invalid 3071 * item. 3072 */ 3073 leaf = p->nodes[0]; 3074 3075 if (find_higher) { 3076 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3077 ret = btrfs_next_leaf(root, p); 3078 if (ret <= 0) 3079 return ret; 3080 if (!return_any) 3081 return 1; 3082 /* 3083 * no higher item found, return the next 3084 * lower instead 3085 */ 3086 return_any = 0; 3087 find_higher = 0; 3088 btrfs_release_path(p); 3089 goto again; 3090 } 3091 } else { 3092 if (p->slots[0] == 0) { 3093 ret = btrfs_prev_leaf(root, p); 3094 if (ret < 0) 3095 return ret; 3096 if (!ret) { 3097 leaf = p->nodes[0]; 3098 if (p->slots[0] == btrfs_header_nritems(leaf)) 3099 p->slots[0]--; 3100 return 0; 3101 } 3102 if (!return_any) 3103 return 1; 3104 /* 3105 * no lower item found, return the next 3106 * higher instead 3107 */ 3108 return_any = 0; 3109 find_higher = 1; 3110 btrfs_release_path(p); 3111 goto again; 3112 } else { 3113 --p->slots[0]; 3114 } 3115 } 3116 return 0; 3117 } 3118 3119 /* 3120 * adjust the pointers going up the tree, starting at level 3121 * making sure the right key of each node is points to 'key'. 3122 * This is used after shifting pointers to the left, so it stops 3123 * fixing up pointers when a given leaf/node is not in slot 0 of the 3124 * higher levels 3125 * 3126 */ 3127 static void fixup_low_keys(struct btrfs_path *path, 3128 struct btrfs_disk_key *key, int level) 3129 { 3130 int i; 3131 struct extent_buffer *t; 3132 int ret; 3133 3134 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3135 int tslot = path->slots[i]; 3136 3137 if (!path->nodes[i]) 3138 break; 3139 t = path->nodes[i]; 3140 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3141 GFP_ATOMIC); 3142 BUG_ON(ret < 0); 3143 btrfs_set_node_key(t, key, tslot); 3144 btrfs_mark_buffer_dirty(path->nodes[i]); 3145 if (tslot != 0) 3146 break; 3147 } 3148 } 3149 3150 /* 3151 * update item key. 3152 * 3153 * This function isn't completely safe. It's the caller's responsibility 3154 * that the new key won't break the order 3155 */ 3156 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3157 struct btrfs_path *path, 3158 const struct btrfs_key *new_key) 3159 { 3160 struct btrfs_disk_key disk_key; 3161 struct extent_buffer *eb; 3162 int slot; 3163 3164 eb = path->nodes[0]; 3165 slot = path->slots[0]; 3166 if (slot > 0) { 3167 btrfs_item_key(eb, &disk_key, slot - 1); 3168 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3169 } 3170 if (slot < btrfs_header_nritems(eb) - 1) { 3171 btrfs_item_key(eb, &disk_key, slot + 1); 3172 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3173 } 3174 3175 btrfs_cpu_key_to_disk(&disk_key, new_key); 3176 btrfs_set_item_key(eb, &disk_key, slot); 3177 btrfs_mark_buffer_dirty(eb); 3178 if (slot == 0) 3179 fixup_low_keys(path, &disk_key, 1); 3180 } 3181 3182 /* 3183 * try to push data from one node into the next node left in the 3184 * tree. 3185 * 3186 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3187 * error, and > 0 if there was no room in the left hand block. 3188 */ 3189 static int push_node_left(struct btrfs_trans_handle *trans, 3190 struct btrfs_fs_info *fs_info, 3191 struct extent_buffer *dst, 3192 struct extent_buffer *src, int empty) 3193 { 3194 int push_items = 0; 3195 int src_nritems; 3196 int dst_nritems; 3197 int ret = 0; 3198 3199 src_nritems = btrfs_header_nritems(src); 3200 dst_nritems = btrfs_header_nritems(dst); 3201 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3202 WARN_ON(btrfs_header_generation(src) != trans->transid); 3203 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3204 3205 if (!empty && src_nritems <= 8) 3206 return 1; 3207 3208 if (push_items <= 0) 3209 return 1; 3210 3211 if (empty) { 3212 push_items = min(src_nritems, push_items); 3213 if (push_items < src_nritems) { 3214 /* leave at least 8 pointers in the node if 3215 * we aren't going to empty it 3216 */ 3217 if (src_nritems - push_items < 8) { 3218 if (push_items <= 8) 3219 return 1; 3220 push_items -= 8; 3221 } 3222 } 3223 } else 3224 push_items = min(src_nritems - 8, push_items); 3225 3226 ret = tree_mod_log_eb_copy(fs_info, dst, src, dst_nritems, 0, 3227 push_items); 3228 if (ret) { 3229 btrfs_abort_transaction(trans, ret); 3230 return ret; 3231 } 3232 copy_extent_buffer(dst, src, 3233 btrfs_node_key_ptr_offset(dst_nritems), 3234 btrfs_node_key_ptr_offset(0), 3235 push_items * sizeof(struct btrfs_key_ptr)); 3236 3237 if (push_items < src_nritems) { 3238 /* 3239 * Don't call tree_mod_log_insert_move here, key removal was 3240 * already fully logged by tree_mod_log_eb_copy above. 3241 */ 3242 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3243 btrfs_node_key_ptr_offset(push_items), 3244 (src_nritems - push_items) * 3245 sizeof(struct btrfs_key_ptr)); 3246 } 3247 btrfs_set_header_nritems(src, src_nritems - push_items); 3248 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3249 btrfs_mark_buffer_dirty(src); 3250 btrfs_mark_buffer_dirty(dst); 3251 3252 return ret; 3253 } 3254 3255 /* 3256 * try to push data from one node into the next node right in the 3257 * tree. 3258 * 3259 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3260 * error, and > 0 if there was no room in the right hand block. 3261 * 3262 * this will only push up to 1/2 the contents of the left node over 3263 */ 3264 static int balance_node_right(struct btrfs_trans_handle *trans, 3265 struct btrfs_fs_info *fs_info, 3266 struct extent_buffer *dst, 3267 struct extent_buffer *src) 3268 { 3269 int push_items = 0; 3270 int max_push; 3271 int src_nritems; 3272 int dst_nritems; 3273 int ret = 0; 3274 3275 WARN_ON(btrfs_header_generation(src) != trans->transid); 3276 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3277 3278 src_nritems = btrfs_header_nritems(src); 3279 dst_nritems = btrfs_header_nritems(dst); 3280 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3281 if (push_items <= 0) 3282 return 1; 3283 3284 if (src_nritems < 4) 3285 return 1; 3286 3287 max_push = src_nritems / 2 + 1; 3288 /* don't try to empty the node */ 3289 if (max_push >= src_nritems) 3290 return 1; 3291 3292 if (max_push < push_items) 3293 push_items = max_push; 3294 3295 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3296 BUG_ON(ret < 0); 3297 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3298 btrfs_node_key_ptr_offset(0), 3299 (dst_nritems) * 3300 sizeof(struct btrfs_key_ptr)); 3301 3302 ret = tree_mod_log_eb_copy(fs_info, dst, src, 0, 3303 src_nritems - push_items, push_items); 3304 if (ret) { 3305 btrfs_abort_transaction(trans, ret); 3306 return ret; 3307 } 3308 copy_extent_buffer(dst, src, 3309 btrfs_node_key_ptr_offset(0), 3310 btrfs_node_key_ptr_offset(src_nritems - push_items), 3311 push_items * sizeof(struct btrfs_key_ptr)); 3312 3313 btrfs_set_header_nritems(src, src_nritems - push_items); 3314 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3315 3316 btrfs_mark_buffer_dirty(src); 3317 btrfs_mark_buffer_dirty(dst); 3318 3319 return ret; 3320 } 3321 3322 /* 3323 * helper function to insert a new root level in the tree. 3324 * A new node is allocated, and a single item is inserted to 3325 * point to the existing root 3326 * 3327 * returns zero on success or < 0 on failure. 3328 */ 3329 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3330 struct btrfs_root *root, 3331 struct btrfs_path *path, int level) 3332 { 3333 struct btrfs_fs_info *fs_info = root->fs_info; 3334 u64 lower_gen; 3335 struct extent_buffer *lower; 3336 struct extent_buffer *c; 3337 struct extent_buffer *old; 3338 struct btrfs_disk_key lower_key; 3339 int ret; 3340 3341 BUG_ON(path->nodes[level]); 3342 BUG_ON(path->nodes[level-1] != root->node); 3343 3344 lower = path->nodes[level-1]; 3345 if (level == 1) 3346 btrfs_item_key(lower, &lower_key, 0); 3347 else 3348 btrfs_node_key(lower, &lower_key, 0); 3349 3350 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3351 &lower_key, level, root->node->start, 0); 3352 if (IS_ERR(c)) 3353 return PTR_ERR(c); 3354 3355 root_add_used(root, fs_info->nodesize); 3356 3357 btrfs_set_header_nritems(c, 1); 3358 btrfs_set_node_key(c, &lower_key, 0); 3359 btrfs_set_node_blockptr(c, 0, lower->start); 3360 lower_gen = btrfs_header_generation(lower); 3361 WARN_ON(lower_gen != trans->transid); 3362 3363 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3364 3365 btrfs_mark_buffer_dirty(c); 3366 3367 old = root->node; 3368 ret = tree_mod_log_insert_root(root->node, c, 0); 3369 BUG_ON(ret < 0); 3370 rcu_assign_pointer(root->node, c); 3371 3372 /* the super has an extra ref to root->node */ 3373 free_extent_buffer(old); 3374 3375 add_root_to_dirty_list(root); 3376 extent_buffer_get(c); 3377 path->nodes[level] = c; 3378 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3379 path->slots[level] = 0; 3380 return 0; 3381 } 3382 3383 /* 3384 * worker function to insert a single pointer in a node. 3385 * the node should have enough room for the pointer already 3386 * 3387 * slot and level indicate where you want the key to go, and 3388 * blocknr is the block the key points to. 3389 */ 3390 static void insert_ptr(struct btrfs_trans_handle *trans, 3391 struct btrfs_fs_info *fs_info, struct btrfs_path *path, 3392 struct btrfs_disk_key *key, u64 bytenr, 3393 int slot, int level) 3394 { 3395 struct extent_buffer *lower; 3396 int nritems; 3397 int ret; 3398 3399 BUG_ON(!path->nodes[level]); 3400 btrfs_assert_tree_locked(path->nodes[level]); 3401 lower = path->nodes[level]; 3402 nritems = btrfs_header_nritems(lower); 3403 BUG_ON(slot > nritems); 3404 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 3405 if (slot != nritems) { 3406 if (level) { 3407 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3408 nritems - slot); 3409 BUG_ON(ret < 0); 3410 } 3411 memmove_extent_buffer(lower, 3412 btrfs_node_key_ptr_offset(slot + 1), 3413 btrfs_node_key_ptr_offset(slot), 3414 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3415 } 3416 if (level) { 3417 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3418 GFP_NOFS); 3419 BUG_ON(ret < 0); 3420 } 3421 btrfs_set_node_key(lower, key, slot); 3422 btrfs_set_node_blockptr(lower, slot, bytenr); 3423 WARN_ON(trans->transid == 0); 3424 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3425 btrfs_set_header_nritems(lower, nritems + 1); 3426 btrfs_mark_buffer_dirty(lower); 3427 } 3428 3429 /* 3430 * split the node at the specified level in path in two. 3431 * The path is corrected to point to the appropriate node after the split 3432 * 3433 * Before splitting this tries to make some room in the node by pushing 3434 * left and right, if either one works, it returns right away. 3435 * 3436 * returns 0 on success and < 0 on failure 3437 */ 3438 static noinline int split_node(struct btrfs_trans_handle *trans, 3439 struct btrfs_root *root, 3440 struct btrfs_path *path, int level) 3441 { 3442 struct btrfs_fs_info *fs_info = root->fs_info; 3443 struct extent_buffer *c; 3444 struct extent_buffer *split; 3445 struct btrfs_disk_key disk_key; 3446 int mid; 3447 int ret; 3448 u32 c_nritems; 3449 3450 c = path->nodes[level]; 3451 WARN_ON(btrfs_header_generation(c) != trans->transid); 3452 if (c == root->node) { 3453 /* 3454 * trying to split the root, lets make a new one 3455 * 3456 * tree mod log: We don't log_removal old root in 3457 * insert_new_root, because that root buffer will be kept as a 3458 * normal node. We are going to log removal of half of the 3459 * elements below with tree_mod_log_eb_copy. We're holding a 3460 * tree lock on the buffer, which is why we cannot race with 3461 * other tree_mod_log users. 3462 */ 3463 ret = insert_new_root(trans, root, path, level + 1); 3464 if (ret) 3465 return ret; 3466 } else { 3467 ret = push_nodes_for_insert(trans, root, path, level); 3468 c = path->nodes[level]; 3469 if (!ret && btrfs_header_nritems(c) < 3470 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3471 return 0; 3472 if (ret < 0) 3473 return ret; 3474 } 3475 3476 c_nritems = btrfs_header_nritems(c); 3477 mid = (c_nritems + 1) / 2; 3478 btrfs_node_key(c, &disk_key, mid); 3479 3480 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3481 &disk_key, level, c->start, 0); 3482 if (IS_ERR(split)) 3483 return PTR_ERR(split); 3484 3485 root_add_used(root, fs_info->nodesize); 3486 ASSERT(btrfs_header_level(c) == level); 3487 3488 ret = tree_mod_log_eb_copy(fs_info, split, c, 0, mid, c_nritems - mid); 3489 if (ret) { 3490 btrfs_abort_transaction(trans, ret); 3491 return ret; 3492 } 3493 copy_extent_buffer(split, c, 3494 btrfs_node_key_ptr_offset(0), 3495 btrfs_node_key_ptr_offset(mid), 3496 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3497 btrfs_set_header_nritems(split, c_nritems - mid); 3498 btrfs_set_header_nritems(c, mid); 3499 ret = 0; 3500 3501 btrfs_mark_buffer_dirty(c); 3502 btrfs_mark_buffer_dirty(split); 3503 3504 insert_ptr(trans, fs_info, path, &disk_key, split->start, 3505 path->slots[level + 1] + 1, level + 1); 3506 3507 if (path->slots[level] >= mid) { 3508 path->slots[level] -= mid; 3509 btrfs_tree_unlock(c); 3510 free_extent_buffer(c); 3511 path->nodes[level] = split; 3512 path->slots[level + 1] += 1; 3513 } else { 3514 btrfs_tree_unlock(split); 3515 free_extent_buffer(split); 3516 } 3517 return ret; 3518 } 3519 3520 /* 3521 * how many bytes are required to store the items in a leaf. start 3522 * and nr indicate which items in the leaf to check. This totals up the 3523 * space used both by the item structs and the item data 3524 */ 3525 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3526 { 3527 struct btrfs_item *start_item; 3528 struct btrfs_item *end_item; 3529 struct btrfs_map_token token; 3530 int data_len; 3531 int nritems = btrfs_header_nritems(l); 3532 int end = min(nritems, start + nr) - 1; 3533 3534 if (!nr) 3535 return 0; 3536 btrfs_init_map_token(&token); 3537 start_item = btrfs_item_nr(start); 3538 end_item = btrfs_item_nr(end); 3539 data_len = btrfs_token_item_offset(l, start_item, &token) + 3540 btrfs_token_item_size(l, start_item, &token); 3541 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3542 data_len += sizeof(struct btrfs_item) * nr; 3543 WARN_ON(data_len < 0); 3544 return data_len; 3545 } 3546 3547 /* 3548 * The space between the end of the leaf items and 3549 * the start of the leaf data. IOW, how much room 3550 * the leaf has left for both items and data 3551 */ 3552 noinline int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info, 3553 struct extent_buffer *leaf) 3554 { 3555 int nritems = btrfs_header_nritems(leaf); 3556 int ret; 3557 3558 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3559 if (ret < 0) { 3560 btrfs_crit(fs_info, 3561 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3562 ret, 3563 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3564 leaf_space_used(leaf, 0, nritems), nritems); 3565 } 3566 return ret; 3567 } 3568 3569 /* 3570 * min slot controls the lowest index we're willing to push to the 3571 * right. We'll push up to and including min_slot, but no lower 3572 */ 3573 static noinline int __push_leaf_right(struct btrfs_fs_info *fs_info, 3574 struct btrfs_path *path, 3575 int data_size, int empty, 3576 struct extent_buffer *right, 3577 int free_space, u32 left_nritems, 3578 u32 min_slot) 3579 { 3580 struct extent_buffer *left = path->nodes[0]; 3581 struct extent_buffer *upper = path->nodes[1]; 3582 struct btrfs_map_token token; 3583 struct btrfs_disk_key disk_key; 3584 int slot; 3585 u32 i; 3586 int push_space = 0; 3587 int push_items = 0; 3588 struct btrfs_item *item; 3589 u32 nr; 3590 u32 right_nritems; 3591 u32 data_end; 3592 u32 this_item_size; 3593 3594 btrfs_init_map_token(&token); 3595 3596 if (empty) 3597 nr = 0; 3598 else 3599 nr = max_t(u32, 1, min_slot); 3600 3601 if (path->slots[0] >= left_nritems) 3602 push_space += data_size; 3603 3604 slot = path->slots[1]; 3605 i = left_nritems - 1; 3606 while (i >= nr) { 3607 item = btrfs_item_nr(i); 3608 3609 if (!empty && push_items > 0) { 3610 if (path->slots[0] > i) 3611 break; 3612 if (path->slots[0] == i) { 3613 int space = btrfs_leaf_free_space(fs_info, left); 3614 if (space + push_space * 2 > free_space) 3615 break; 3616 } 3617 } 3618 3619 if (path->slots[0] == i) 3620 push_space += data_size; 3621 3622 this_item_size = btrfs_item_size(left, item); 3623 if (this_item_size + sizeof(*item) + push_space > free_space) 3624 break; 3625 3626 push_items++; 3627 push_space += this_item_size + sizeof(*item); 3628 if (i == 0) 3629 break; 3630 i--; 3631 } 3632 3633 if (push_items == 0) 3634 goto out_unlock; 3635 3636 WARN_ON(!empty && push_items == left_nritems); 3637 3638 /* push left to right */ 3639 right_nritems = btrfs_header_nritems(right); 3640 3641 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3642 push_space -= leaf_data_end(fs_info, left); 3643 3644 /* make room in the right data area */ 3645 data_end = leaf_data_end(fs_info, right); 3646 memmove_extent_buffer(right, 3647 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3648 BTRFS_LEAF_DATA_OFFSET + data_end, 3649 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3650 3651 /* copy from the left data area */ 3652 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3653 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3654 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, left), 3655 push_space); 3656 3657 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3658 btrfs_item_nr_offset(0), 3659 right_nritems * sizeof(struct btrfs_item)); 3660 3661 /* copy the items from left to right */ 3662 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3663 btrfs_item_nr_offset(left_nritems - push_items), 3664 push_items * sizeof(struct btrfs_item)); 3665 3666 /* update the item pointers */ 3667 right_nritems += push_items; 3668 btrfs_set_header_nritems(right, right_nritems); 3669 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3670 for (i = 0; i < right_nritems; i++) { 3671 item = btrfs_item_nr(i); 3672 push_space -= btrfs_token_item_size(right, item, &token); 3673 btrfs_set_token_item_offset(right, item, push_space, &token); 3674 } 3675 3676 left_nritems -= push_items; 3677 btrfs_set_header_nritems(left, left_nritems); 3678 3679 if (left_nritems) 3680 btrfs_mark_buffer_dirty(left); 3681 else 3682 clean_tree_block(fs_info, left); 3683 3684 btrfs_mark_buffer_dirty(right); 3685 3686 btrfs_item_key(right, &disk_key, 0); 3687 btrfs_set_node_key(upper, &disk_key, slot + 1); 3688 btrfs_mark_buffer_dirty(upper); 3689 3690 /* then fixup the leaf pointer in the path */ 3691 if (path->slots[0] >= left_nritems) { 3692 path->slots[0] -= left_nritems; 3693 if (btrfs_header_nritems(path->nodes[0]) == 0) 3694 clean_tree_block(fs_info, path->nodes[0]); 3695 btrfs_tree_unlock(path->nodes[0]); 3696 free_extent_buffer(path->nodes[0]); 3697 path->nodes[0] = right; 3698 path->slots[1] += 1; 3699 } else { 3700 btrfs_tree_unlock(right); 3701 free_extent_buffer(right); 3702 } 3703 return 0; 3704 3705 out_unlock: 3706 btrfs_tree_unlock(right); 3707 free_extent_buffer(right); 3708 return 1; 3709 } 3710 3711 /* 3712 * push some data in the path leaf to the right, trying to free up at 3713 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3714 * 3715 * returns 1 if the push failed because the other node didn't have enough 3716 * room, 0 if everything worked out and < 0 if there were major errors. 3717 * 3718 * this will push starting from min_slot to the end of the leaf. It won't 3719 * push any slot lower than min_slot 3720 */ 3721 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3722 *root, struct btrfs_path *path, 3723 int min_data_size, int data_size, 3724 int empty, u32 min_slot) 3725 { 3726 struct btrfs_fs_info *fs_info = root->fs_info; 3727 struct extent_buffer *left = path->nodes[0]; 3728 struct extent_buffer *right; 3729 struct extent_buffer *upper; 3730 int slot; 3731 int free_space; 3732 u32 left_nritems; 3733 int ret; 3734 3735 if (!path->nodes[1]) 3736 return 1; 3737 3738 slot = path->slots[1]; 3739 upper = path->nodes[1]; 3740 if (slot >= btrfs_header_nritems(upper) - 1) 3741 return 1; 3742 3743 btrfs_assert_tree_locked(path->nodes[1]); 3744 3745 right = read_node_slot(fs_info, upper, slot + 1); 3746 /* 3747 * slot + 1 is not valid or we fail to read the right node, 3748 * no big deal, just return. 3749 */ 3750 if (IS_ERR(right)) 3751 return 1; 3752 3753 btrfs_tree_lock(right); 3754 btrfs_set_lock_blocking(right); 3755 3756 free_space = btrfs_leaf_free_space(fs_info, right); 3757 if (free_space < data_size) 3758 goto out_unlock; 3759 3760 /* cow and double check */ 3761 ret = btrfs_cow_block(trans, root, right, upper, 3762 slot + 1, &right); 3763 if (ret) 3764 goto out_unlock; 3765 3766 free_space = btrfs_leaf_free_space(fs_info, right); 3767 if (free_space < data_size) 3768 goto out_unlock; 3769 3770 left_nritems = btrfs_header_nritems(left); 3771 if (left_nritems == 0) 3772 goto out_unlock; 3773 3774 if (path->slots[0] == left_nritems && !empty) { 3775 /* Key greater than all keys in the leaf, right neighbor has 3776 * enough room for it and we're not emptying our leaf to delete 3777 * it, therefore use right neighbor to insert the new item and 3778 * no need to touch/dirty our left leaft. */ 3779 btrfs_tree_unlock(left); 3780 free_extent_buffer(left); 3781 path->nodes[0] = right; 3782 path->slots[0] = 0; 3783 path->slots[1]++; 3784 return 0; 3785 } 3786 3787 return __push_leaf_right(fs_info, path, min_data_size, empty, 3788 right, free_space, left_nritems, min_slot); 3789 out_unlock: 3790 btrfs_tree_unlock(right); 3791 free_extent_buffer(right); 3792 return 1; 3793 } 3794 3795 /* 3796 * push some data in the path leaf to the left, trying to free up at 3797 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3798 * 3799 * max_slot can put a limit on how far into the leaf we'll push items. The 3800 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3801 * items 3802 */ 3803 static noinline int __push_leaf_left(struct btrfs_fs_info *fs_info, 3804 struct btrfs_path *path, int data_size, 3805 int empty, struct extent_buffer *left, 3806 int free_space, u32 right_nritems, 3807 u32 max_slot) 3808 { 3809 struct btrfs_disk_key disk_key; 3810 struct extent_buffer *right = path->nodes[0]; 3811 int i; 3812 int push_space = 0; 3813 int push_items = 0; 3814 struct btrfs_item *item; 3815 u32 old_left_nritems; 3816 u32 nr; 3817 int ret = 0; 3818 u32 this_item_size; 3819 u32 old_left_item_size; 3820 struct btrfs_map_token token; 3821 3822 btrfs_init_map_token(&token); 3823 3824 if (empty) 3825 nr = min(right_nritems, max_slot); 3826 else 3827 nr = min(right_nritems - 1, max_slot); 3828 3829 for (i = 0; i < nr; i++) { 3830 item = btrfs_item_nr(i); 3831 3832 if (!empty && push_items > 0) { 3833 if (path->slots[0] < i) 3834 break; 3835 if (path->slots[0] == i) { 3836 int space = btrfs_leaf_free_space(fs_info, right); 3837 if (space + push_space * 2 > free_space) 3838 break; 3839 } 3840 } 3841 3842 if (path->slots[0] == i) 3843 push_space += data_size; 3844 3845 this_item_size = btrfs_item_size(right, item); 3846 if (this_item_size + sizeof(*item) + push_space > free_space) 3847 break; 3848 3849 push_items++; 3850 push_space += this_item_size + sizeof(*item); 3851 } 3852 3853 if (push_items == 0) { 3854 ret = 1; 3855 goto out; 3856 } 3857 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3858 3859 /* push data from right to left */ 3860 copy_extent_buffer(left, right, 3861 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3862 btrfs_item_nr_offset(0), 3863 push_items * sizeof(struct btrfs_item)); 3864 3865 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3866 btrfs_item_offset_nr(right, push_items - 1); 3867 3868 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3869 leaf_data_end(fs_info, left) - push_space, 3870 BTRFS_LEAF_DATA_OFFSET + 3871 btrfs_item_offset_nr(right, push_items - 1), 3872 push_space); 3873 old_left_nritems = btrfs_header_nritems(left); 3874 BUG_ON(old_left_nritems <= 0); 3875 3876 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3877 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3878 u32 ioff; 3879 3880 item = btrfs_item_nr(i); 3881 3882 ioff = btrfs_token_item_offset(left, item, &token); 3883 btrfs_set_token_item_offset(left, item, 3884 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3885 &token); 3886 } 3887 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3888 3889 /* fixup right node */ 3890 if (push_items > right_nritems) 3891 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3892 right_nritems); 3893 3894 if (push_items < right_nritems) { 3895 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3896 leaf_data_end(fs_info, right); 3897 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3898 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3899 BTRFS_LEAF_DATA_OFFSET + 3900 leaf_data_end(fs_info, right), push_space); 3901 3902 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3903 btrfs_item_nr_offset(push_items), 3904 (btrfs_header_nritems(right) - push_items) * 3905 sizeof(struct btrfs_item)); 3906 } 3907 right_nritems -= push_items; 3908 btrfs_set_header_nritems(right, right_nritems); 3909 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3910 for (i = 0; i < right_nritems; i++) { 3911 item = btrfs_item_nr(i); 3912 3913 push_space = push_space - btrfs_token_item_size(right, 3914 item, &token); 3915 btrfs_set_token_item_offset(right, item, push_space, &token); 3916 } 3917 3918 btrfs_mark_buffer_dirty(left); 3919 if (right_nritems) 3920 btrfs_mark_buffer_dirty(right); 3921 else 3922 clean_tree_block(fs_info, right); 3923 3924 btrfs_item_key(right, &disk_key, 0); 3925 fixup_low_keys(path, &disk_key, 1); 3926 3927 /* then fixup the leaf pointer in the path */ 3928 if (path->slots[0] < push_items) { 3929 path->slots[0] += old_left_nritems; 3930 btrfs_tree_unlock(path->nodes[0]); 3931 free_extent_buffer(path->nodes[0]); 3932 path->nodes[0] = left; 3933 path->slots[1] -= 1; 3934 } else { 3935 btrfs_tree_unlock(left); 3936 free_extent_buffer(left); 3937 path->slots[0] -= push_items; 3938 } 3939 BUG_ON(path->slots[0] < 0); 3940 return ret; 3941 out: 3942 btrfs_tree_unlock(left); 3943 free_extent_buffer(left); 3944 return ret; 3945 } 3946 3947 /* 3948 * push some data in the path leaf to the left, trying to free up at 3949 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3950 * 3951 * max_slot can put a limit on how far into the leaf we'll push items. The 3952 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3953 * items 3954 */ 3955 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3956 *root, struct btrfs_path *path, int min_data_size, 3957 int data_size, int empty, u32 max_slot) 3958 { 3959 struct btrfs_fs_info *fs_info = root->fs_info; 3960 struct extent_buffer *right = path->nodes[0]; 3961 struct extent_buffer *left; 3962 int slot; 3963 int free_space; 3964 u32 right_nritems; 3965 int ret = 0; 3966 3967 slot = path->slots[1]; 3968 if (slot == 0) 3969 return 1; 3970 if (!path->nodes[1]) 3971 return 1; 3972 3973 right_nritems = btrfs_header_nritems(right); 3974 if (right_nritems == 0) 3975 return 1; 3976 3977 btrfs_assert_tree_locked(path->nodes[1]); 3978 3979 left = read_node_slot(fs_info, path->nodes[1], slot - 1); 3980 /* 3981 * slot - 1 is not valid or we fail to read the left node, 3982 * no big deal, just return. 3983 */ 3984 if (IS_ERR(left)) 3985 return 1; 3986 3987 btrfs_tree_lock(left); 3988 btrfs_set_lock_blocking(left); 3989 3990 free_space = btrfs_leaf_free_space(fs_info, left); 3991 if (free_space < data_size) { 3992 ret = 1; 3993 goto out; 3994 } 3995 3996 /* cow and double check */ 3997 ret = btrfs_cow_block(trans, root, left, 3998 path->nodes[1], slot - 1, &left); 3999 if (ret) { 4000 /* we hit -ENOSPC, but it isn't fatal here */ 4001 if (ret == -ENOSPC) 4002 ret = 1; 4003 goto out; 4004 } 4005 4006 free_space = btrfs_leaf_free_space(fs_info, left); 4007 if (free_space < data_size) { 4008 ret = 1; 4009 goto out; 4010 } 4011 4012 return __push_leaf_left(fs_info, path, min_data_size, 4013 empty, left, free_space, right_nritems, 4014 max_slot); 4015 out: 4016 btrfs_tree_unlock(left); 4017 free_extent_buffer(left); 4018 return ret; 4019 } 4020 4021 /* 4022 * split the path's leaf in two, making sure there is at least data_size 4023 * available for the resulting leaf level of the path. 4024 */ 4025 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4026 struct btrfs_fs_info *fs_info, 4027 struct btrfs_path *path, 4028 struct extent_buffer *l, 4029 struct extent_buffer *right, 4030 int slot, int mid, int nritems) 4031 { 4032 int data_copy_size; 4033 int rt_data_off; 4034 int i; 4035 struct btrfs_disk_key disk_key; 4036 struct btrfs_map_token token; 4037 4038 btrfs_init_map_token(&token); 4039 4040 nritems = nritems - mid; 4041 btrfs_set_header_nritems(right, nritems); 4042 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(fs_info, l); 4043 4044 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4045 btrfs_item_nr_offset(mid), 4046 nritems * sizeof(struct btrfs_item)); 4047 4048 copy_extent_buffer(right, l, 4049 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4050 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4051 leaf_data_end(fs_info, l), data_copy_size); 4052 4053 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4054 4055 for (i = 0; i < nritems; i++) { 4056 struct btrfs_item *item = btrfs_item_nr(i); 4057 u32 ioff; 4058 4059 ioff = btrfs_token_item_offset(right, item, &token); 4060 btrfs_set_token_item_offset(right, item, 4061 ioff + rt_data_off, &token); 4062 } 4063 4064 btrfs_set_header_nritems(l, mid); 4065 btrfs_item_key(right, &disk_key, 0); 4066 insert_ptr(trans, fs_info, path, &disk_key, right->start, 4067 path->slots[1] + 1, 1); 4068 4069 btrfs_mark_buffer_dirty(right); 4070 btrfs_mark_buffer_dirty(l); 4071 BUG_ON(path->slots[0] != slot); 4072 4073 if (mid <= slot) { 4074 btrfs_tree_unlock(path->nodes[0]); 4075 free_extent_buffer(path->nodes[0]); 4076 path->nodes[0] = right; 4077 path->slots[0] -= mid; 4078 path->slots[1] += 1; 4079 } else { 4080 btrfs_tree_unlock(right); 4081 free_extent_buffer(right); 4082 } 4083 4084 BUG_ON(path->slots[0] < 0); 4085 } 4086 4087 /* 4088 * double splits happen when we need to insert a big item in the middle 4089 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4090 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4091 * A B C 4092 * 4093 * We avoid this by trying to push the items on either side of our target 4094 * into the adjacent leaves. If all goes well we can avoid the double split 4095 * completely. 4096 */ 4097 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4098 struct btrfs_root *root, 4099 struct btrfs_path *path, 4100 int data_size) 4101 { 4102 struct btrfs_fs_info *fs_info = root->fs_info; 4103 int ret; 4104 int progress = 0; 4105 int slot; 4106 u32 nritems; 4107 int space_needed = data_size; 4108 4109 slot = path->slots[0]; 4110 if (slot < btrfs_header_nritems(path->nodes[0])) 4111 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4112 4113 /* 4114 * try to push all the items after our slot into the 4115 * right leaf 4116 */ 4117 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4118 if (ret < 0) 4119 return ret; 4120 4121 if (ret == 0) 4122 progress++; 4123 4124 nritems = btrfs_header_nritems(path->nodes[0]); 4125 /* 4126 * our goal is to get our slot at the start or end of a leaf. If 4127 * we've done so we're done 4128 */ 4129 if (path->slots[0] == 0 || path->slots[0] == nritems) 4130 return 0; 4131 4132 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4133 return 0; 4134 4135 /* try to push all the items before our slot into the next leaf */ 4136 slot = path->slots[0]; 4137 space_needed = data_size; 4138 if (slot > 0) 4139 space_needed -= btrfs_leaf_free_space(fs_info, path->nodes[0]); 4140 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4141 if (ret < 0) 4142 return ret; 4143 4144 if (ret == 0) 4145 progress++; 4146 4147 if (progress) 4148 return 0; 4149 return 1; 4150 } 4151 4152 /* 4153 * split the path's leaf in two, making sure there is at least data_size 4154 * available for the resulting leaf level of the path. 4155 * 4156 * returns 0 if all went well and < 0 on failure. 4157 */ 4158 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4159 struct btrfs_root *root, 4160 const struct btrfs_key *ins_key, 4161 struct btrfs_path *path, int data_size, 4162 int extend) 4163 { 4164 struct btrfs_disk_key disk_key; 4165 struct extent_buffer *l; 4166 u32 nritems; 4167 int mid; 4168 int slot; 4169 struct extent_buffer *right; 4170 struct btrfs_fs_info *fs_info = root->fs_info; 4171 int ret = 0; 4172 int wret; 4173 int split; 4174 int num_doubles = 0; 4175 int tried_avoid_double = 0; 4176 4177 l = path->nodes[0]; 4178 slot = path->slots[0]; 4179 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4180 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4181 return -EOVERFLOW; 4182 4183 /* first try to make some room by pushing left and right */ 4184 if (data_size && path->nodes[1]) { 4185 int space_needed = data_size; 4186 4187 if (slot < btrfs_header_nritems(l)) 4188 space_needed -= btrfs_leaf_free_space(fs_info, l); 4189 4190 wret = push_leaf_right(trans, root, path, space_needed, 4191 space_needed, 0, 0); 4192 if (wret < 0) 4193 return wret; 4194 if (wret) { 4195 space_needed = data_size; 4196 if (slot > 0) 4197 space_needed -= btrfs_leaf_free_space(fs_info, 4198 l); 4199 wret = push_leaf_left(trans, root, path, space_needed, 4200 space_needed, 0, (u32)-1); 4201 if (wret < 0) 4202 return wret; 4203 } 4204 l = path->nodes[0]; 4205 4206 /* did the pushes work? */ 4207 if (btrfs_leaf_free_space(fs_info, l) >= data_size) 4208 return 0; 4209 } 4210 4211 if (!path->nodes[1]) { 4212 ret = insert_new_root(trans, root, path, 1); 4213 if (ret) 4214 return ret; 4215 } 4216 again: 4217 split = 1; 4218 l = path->nodes[0]; 4219 slot = path->slots[0]; 4220 nritems = btrfs_header_nritems(l); 4221 mid = (nritems + 1) / 2; 4222 4223 if (mid <= slot) { 4224 if (nritems == 1 || 4225 leaf_space_used(l, mid, nritems - mid) + data_size > 4226 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4227 if (slot >= nritems) { 4228 split = 0; 4229 } else { 4230 mid = slot; 4231 if (mid != nritems && 4232 leaf_space_used(l, mid, nritems - mid) + 4233 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4234 if (data_size && !tried_avoid_double) 4235 goto push_for_double; 4236 split = 2; 4237 } 4238 } 4239 } 4240 } else { 4241 if (leaf_space_used(l, 0, mid) + data_size > 4242 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4243 if (!extend && data_size && slot == 0) { 4244 split = 0; 4245 } else if ((extend || !data_size) && slot == 0) { 4246 mid = 1; 4247 } else { 4248 mid = slot; 4249 if (mid != nritems && 4250 leaf_space_used(l, mid, nritems - mid) + 4251 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4252 if (data_size && !tried_avoid_double) 4253 goto push_for_double; 4254 split = 2; 4255 } 4256 } 4257 } 4258 } 4259 4260 if (split == 0) 4261 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4262 else 4263 btrfs_item_key(l, &disk_key, mid); 4264 4265 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4266 &disk_key, 0, l->start, 0); 4267 if (IS_ERR(right)) 4268 return PTR_ERR(right); 4269 4270 root_add_used(root, fs_info->nodesize); 4271 4272 if (split == 0) { 4273 if (mid <= slot) { 4274 btrfs_set_header_nritems(right, 0); 4275 insert_ptr(trans, fs_info, path, &disk_key, 4276 right->start, path->slots[1] + 1, 1); 4277 btrfs_tree_unlock(path->nodes[0]); 4278 free_extent_buffer(path->nodes[0]); 4279 path->nodes[0] = right; 4280 path->slots[0] = 0; 4281 path->slots[1] += 1; 4282 } else { 4283 btrfs_set_header_nritems(right, 0); 4284 insert_ptr(trans, fs_info, path, &disk_key, 4285 right->start, path->slots[1], 1); 4286 btrfs_tree_unlock(path->nodes[0]); 4287 free_extent_buffer(path->nodes[0]); 4288 path->nodes[0] = right; 4289 path->slots[0] = 0; 4290 if (path->slots[1] == 0) 4291 fixup_low_keys(path, &disk_key, 1); 4292 } 4293 /* 4294 * We create a new leaf 'right' for the required ins_len and 4295 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4296 * the content of ins_len to 'right'. 4297 */ 4298 return ret; 4299 } 4300 4301 copy_for_split(trans, fs_info, path, l, right, slot, mid, nritems); 4302 4303 if (split == 2) { 4304 BUG_ON(num_doubles != 0); 4305 num_doubles++; 4306 goto again; 4307 } 4308 4309 return 0; 4310 4311 push_for_double: 4312 push_for_double_split(trans, root, path, data_size); 4313 tried_avoid_double = 1; 4314 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= data_size) 4315 return 0; 4316 goto again; 4317 } 4318 4319 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4320 struct btrfs_root *root, 4321 struct btrfs_path *path, int ins_len) 4322 { 4323 struct btrfs_fs_info *fs_info = root->fs_info; 4324 struct btrfs_key key; 4325 struct extent_buffer *leaf; 4326 struct btrfs_file_extent_item *fi; 4327 u64 extent_len = 0; 4328 u32 item_size; 4329 int ret; 4330 4331 leaf = path->nodes[0]; 4332 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4333 4334 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4335 key.type != BTRFS_EXTENT_CSUM_KEY); 4336 4337 if (btrfs_leaf_free_space(fs_info, leaf) >= ins_len) 4338 return 0; 4339 4340 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4341 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4342 fi = btrfs_item_ptr(leaf, path->slots[0], 4343 struct btrfs_file_extent_item); 4344 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4345 } 4346 btrfs_release_path(path); 4347 4348 path->keep_locks = 1; 4349 path->search_for_split = 1; 4350 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4351 path->search_for_split = 0; 4352 if (ret > 0) 4353 ret = -EAGAIN; 4354 if (ret < 0) 4355 goto err; 4356 4357 ret = -EAGAIN; 4358 leaf = path->nodes[0]; 4359 /* if our item isn't there, return now */ 4360 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4361 goto err; 4362 4363 /* the leaf has changed, it now has room. return now */ 4364 if (btrfs_leaf_free_space(fs_info, path->nodes[0]) >= ins_len) 4365 goto err; 4366 4367 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4368 fi = btrfs_item_ptr(leaf, path->slots[0], 4369 struct btrfs_file_extent_item); 4370 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4371 goto err; 4372 } 4373 4374 btrfs_set_path_blocking(path); 4375 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4376 if (ret) 4377 goto err; 4378 4379 path->keep_locks = 0; 4380 btrfs_unlock_up_safe(path, 1); 4381 return 0; 4382 err: 4383 path->keep_locks = 0; 4384 return ret; 4385 } 4386 4387 static noinline int split_item(struct btrfs_fs_info *fs_info, 4388 struct btrfs_path *path, 4389 const struct btrfs_key *new_key, 4390 unsigned long split_offset) 4391 { 4392 struct extent_buffer *leaf; 4393 struct btrfs_item *item; 4394 struct btrfs_item *new_item; 4395 int slot; 4396 char *buf; 4397 u32 nritems; 4398 u32 item_size; 4399 u32 orig_offset; 4400 struct btrfs_disk_key disk_key; 4401 4402 leaf = path->nodes[0]; 4403 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < sizeof(struct btrfs_item)); 4404 4405 btrfs_set_path_blocking(path); 4406 4407 item = btrfs_item_nr(path->slots[0]); 4408 orig_offset = btrfs_item_offset(leaf, item); 4409 item_size = btrfs_item_size(leaf, item); 4410 4411 buf = kmalloc(item_size, GFP_NOFS); 4412 if (!buf) 4413 return -ENOMEM; 4414 4415 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4416 path->slots[0]), item_size); 4417 4418 slot = path->slots[0] + 1; 4419 nritems = btrfs_header_nritems(leaf); 4420 if (slot != nritems) { 4421 /* shift the items */ 4422 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4423 btrfs_item_nr_offset(slot), 4424 (nritems - slot) * sizeof(struct btrfs_item)); 4425 } 4426 4427 btrfs_cpu_key_to_disk(&disk_key, new_key); 4428 btrfs_set_item_key(leaf, &disk_key, slot); 4429 4430 new_item = btrfs_item_nr(slot); 4431 4432 btrfs_set_item_offset(leaf, new_item, orig_offset); 4433 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4434 4435 btrfs_set_item_offset(leaf, item, 4436 orig_offset + item_size - split_offset); 4437 btrfs_set_item_size(leaf, item, split_offset); 4438 4439 btrfs_set_header_nritems(leaf, nritems + 1); 4440 4441 /* write the data for the start of the original item */ 4442 write_extent_buffer(leaf, buf, 4443 btrfs_item_ptr_offset(leaf, path->slots[0]), 4444 split_offset); 4445 4446 /* write the data for the new item */ 4447 write_extent_buffer(leaf, buf + split_offset, 4448 btrfs_item_ptr_offset(leaf, slot), 4449 item_size - split_offset); 4450 btrfs_mark_buffer_dirty(leaf); 4451 4452 BUG_ON(btrfs_leaf_free_space(fs_info, leaf) < 0); 4453 kfree(buf); 4454 return 0; 4455 } 4456 4457 /* 4458 * This function splits a single item into two items, 4459 * giving 'new_key' to the new item and splitting the 4460 * old one at split_offset (from the start of the item). 4461 * 4462 * The path may be released by this operation. After 4463 * the split, the path is pointing to the old item. The 4464 * new item is going to be in the same node as the old one. 4465 * 4466 * Note, the item being split must be smaller enough to live alone on 4467 * a tree block with room for one extra struct btrfs_item 4468 * 4469 * This allows us to split the item in place, keeping a lock on the 4470 * leaf the entire time. 4471 */ 4472 int btrfs_split_item(struct btrfs_trans_handle *trans, 4473 struct btrfs_root *root, 4474 struct btrfs_path *path, 4475 const struct btrfs_key *new_key, 4476 unsigned long split_offset) 4477 { 4478 int ret; 4479 ret = setup_leaf_for_split(trans, root, path, 4480 sizeof(struct btrfs_item)); 4481 if (ret) 4482 return ret; 4483 4484 ret = split_item(root->fs_info, path, new_key, split_offset); 4485 return ret; 4486 } 4487 4488 /* 4489 * This function duplicate a item, giving 'new_key' to the new item. 4490 * It guarantees both items live in the same tree leaf and the new item 4491 * is contiguous with the original item. 4492 * 4493 * This allows us to split file extent in place, keeping a lock on the 4494 * leaf the entire time. 4495 */ 4496 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4497 struct btrfs_root *root, 4498 struct btrfs_path *path, 4499 const struct btrfs_key *new_key) 4500 { 4501 struct extent_buffer *leaf; 4502 int ret; 4503 u32 item_size; 4504 4505 leaf = path->nodes[0]; 4506 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4507 ret = setup_leaf_for_split(trans, root, path, 4508 item_size + sizeof(struct btrfs_item)); 4509 if (ret) 4510 return ret; 4511 4512 path->slots[0]++; 4513 setup_items_for_insert(root, path, new_key, &item_size, 4514 item_size, item_size + 4515 sizeof(struct btrfs_item), 1); 4516 leaf = path->nodes[0]; 4517 memcpy_extent_buffer(leaf, 4518 btrfs_item_ptr_offset(leaf, path->slots[0]), 4519 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4520 item_size); 4521 return 0; 4522 } 4523 4524 /* 4525 * make the item pointed to by the path smaller. new_size indicates 4526 * how small to make it, and from_end tells us if we just chop bytes 4527 * off the end of the item or if we shift the item to chop bytes off 4528 * the front. 4529 */ 4530 void btrfs_truncate_item(struct btrfs_fs_info *fs_info, 4531 struct btrfs_path *path, u32 new_size, int from_end) 4532 { 4533 int slot; 4534 struct extent_buffer *leaf; 4535 struct btrfs_item *item; 4536 u32 nritems; 4537 unsigned int data_end; 4538 unsigned int old_data_start; 4539 unsigned int old_size; 4540 unsigned int size_diff; 4541 int i; 4542 struct btrfs_map_token token; 4543 4544 btrfs_init_map_token(&token); 4545 4546 leaf = path->nodes[0]; 4547 slot = path->slots[0]; 4548 4549 old_size = btrfs_item_size_nr(leaf, slot); 4550 if (old_size == new_size) 4551 return; 4552 4553 nritems = btrfs_header_nritems(leaf); 4554 data_end = leaf_data_end(fs_info, leaf); 4555 4556 old_data_start = btrfs_item_offset_nr(leaf, slot); 4557 4558 size_diff = old_size - new_size; 4559 4560 BUG_ON(slot < 0); 4561 BUG_ON(slot >= nritems); 4562 4563 /* 4564 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4565 */ 4566 /* first correct the data pointers */ 4567 for (i = slot; i < nritems; i++) { 4568 u32 ioff; 4569 item = btrfs_item_nr(i); 4570 4571 ioff = btrfs_token_item_offset(leaf, item, &token); 4572 btrfs_set_token_item_offset(leaf, item, 4573 ioff + size_diff, &token); 4574 } 4575 4576 /* shift the data */ 4577 if (from_end) { 4578 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4579 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4580 data_end, old_data_start + new_size - data_end); 4581 } else { 4582 struct btrfs_disk_key disk_key; 4583 u64 offset; 4584 4585 btrfs_item_key(leaf, &disk_key, slot); 4586 4587 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4588 unsigned long ptr; 4589 struct btrfs_file_extent_item *fi; 4590 4591 fi = btrfs_item_ptr(leaf, slot, 4592 struct btrfs_file_extent_item); 4593 fi = (struct btrfs_file_extent_item *)( 4594 (unsigned long)fi - size_diff); 4595 4596 if (btrfs_file_extent_type(leaf, fi) == 4597 BTRFS_FILE_EXTENT_INLINE) { 4598 ptr = btrfs_item_ptr_offset(leaf, slot); 4599 memmove_extent_buffer(leaf, ptr, 4600 (unsigned long)fi, 4601 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4602 } 4603 } 4604 4605 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4606 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4607 data_end, old_data_start - data_end); 4608 4609 offset = btrfs_disk_key_offset(&disk_key); 4610 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4611 btrfs_set_item_key(leaf, &disk_key, slot); 4612 if (slot == 0) 4613 fixup_low_keys(path, &disk_key, 1); 4614 } 4615 4616 item = btrfs_item_nr(slot); 4617 btrfs_set_item_size(leaf, item, new_size); 4618 btrfs_mark_buffer_dirty(leaf); 4619 4620 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4621 btrfs_print_leaf(leaf); 4622 BUG(); 4623 } 4624 } 4625 4626 /* 4627 * make the item pointed to by the path bigger, data_size is the added size. 4628 */ 4629 void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 4630 u32 data_size) 4631 { 4632 int slot; 4633 struct extent_buffer *leaf; 4634 struct btrfs_item *item; 4635 u32 nritems; 4636 unsigned int data_end; 4637 unsigned int old_data; 4638 unsigned int old_size; 4639 int i; 4640 struct btrfs_map_token token; 4641 4642 btrfs_init_map_token(&token); 4643 4644 leaf = path->nodes[0]; 4645 4646 nritems = btrfs_header_nritems(leaf); 4647 data_end = leaf_data_end(fs_info, leaf); 4648 4649 if (btrfs_leaf_free_space(fs_info, leaf) < data_size) { 4650 btrfs_print_leaf(leaf); 4651 BUG(); 4652 } 4653 slot = path->slots[0]; 4654 old_data = btrfs_item_end_nr(leaf, slot); 4655 4656 BUG_ON(slot < 0); 4657 if (slot >= nritems) { 4658 btrfs_print_leaf(leaf); 4659 btrfs_crit(fs_info, "slot %d too large, nritems %d", 4660 slot, nritems); 4661 BUG_ON(1); 4662 } 4663 4664 /* 4665 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4666 */ 4667 /* first correct the data pointers */ 4668 for (i = slot; i < nritems; i++) { 4669 u32 ioff; 4670 item = btrfs_item_nr(i); 4671 4672 ioff = btrfs_token_item_offset(leaf, item, &token); 4673 btrfs_set_token_item_offset(leaf, item, 4674 ioff - data_size, &token); 4675 } 4676 4677 /* shift the data */ 4678 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4679 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4680 data_end, old_data - data_end); 4681 4682 data_end = old_data; 4683 old_size = btrfs_item_size_nr(leaf, slot); 4684 item = btrfs_item_nr(slot); 4685 btrfs_set_item_size(leaf, item, old_size + data_size); 4686 btrfs_mark_buffer_dirty(leaf); 4687 4688 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4689 btrfs_print_leaf(leaf); 4690 BUG(); 4691 } 4692 } 4693 4694 /* 4695 * this is a helper for btrfs_insert_empty_items, the main goal here is 4696 * to save stack depth by doing the bulk of the work in a function 4697 * that doesn't call btrfs_search_slot 4698 */ 4699 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4700 const struct btrfs_key *cpu_key, u32 *data_size, 4701 u32 total_data, u32 total_size, int nr) 4702 { 4703 struct btrfs_fs_info *fs_info = root->fs_info; 4704 struct btrfs_item *item; 4705 int i; 4706 u32 nritems; 4707 unsigned int data_end; 4708 struct btrfs_disk_key disk_key; 4709 struct extent_buffer *leaf; 4710 int slot; 4711 struct btrfs_map_token token; 4712 4713 if (path->slots[0] == 0) { 4714 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4715 fixup_low_keys(path, &disk_key, 1); 4716 } 4717 btrfs_unlock_up_safe(path, 1); 4718 4719 btrfs_init_map_token(&token); 4720 4721 leaf = path->nodes[0]; 4722 slot = path->slots[0]; 4723 4724 nritems = btrfs_header_nritems(leaf); 4725 data_end = leaf_data_end(fs_info, leaf); 4726 4727 if (btrfs_leaf_free_space(fs_info, leaf) < total_size) { 4728 btrfs_print_leaf(leaf); 4729 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4730 total_size, btrfs_leaf_free_space(fs_info, leaf)); 4731 BUG(); 4732 } 4733 4734 if (slot != nritems) { 4735 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4736 4737 if (old_data < data_end) { 4738 btrfs_print_leaf(leaf); 4739 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4740 slot, old_data, data_end); 4741 BUG_ON(1); 4742 } 4743 /* 4744 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4745 */ 4746 /* first correct the data pointers */ 4747 for (i = slot; i < nritems; i++) { 4748 u32 ioff; 4749 4750 item = btrfs_item_nr(i); 4751 ioff = btrfs_token_item_offset(leaf, item, &token); 4752 btrfs_set_token_item_offset(leaf, item, 4753 ioff - total_data, &token); 4754 } 4755 /* shift the items */ 4756 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4757 btrfs_item_nr_offset(slot), 4758 (nritems - slot) * sizeof(struct btrfs_item)); 4759 4760 /* shift the data */ 4761 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4762 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4763 data_end, old_data - data_end); 4764 data_end = old_data; 4765 } 4766 4767 /* setup the item for the new data */ 4768 for (i = 0; i < nr; i++) { 4769 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4770 btrfs_set_item_key(leaf, &disk_key, slot + i); 4771 item = btrfs_item_nr(slot + i); 4772 btrfs_set_token_item_offset(leaf, item, 4773 data_end - data_size[i], &token); 4774 data_end -= data_size[i]; 4775 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4776 } 4777 4778 btrfs_set_header_nritems(leaf, nritems + nr); 4779 btrfs_mark_buffer_dirty(leaf); 4780 4781 if (btrfs_leaf_free_space(fs_info, leaf) < 0) { 4782 btrfs_print_leaf(leaf); 4783 BUG(); 4784 } 4785 } 4786 4787 /* 4788 * Given a key and some data, insert items into the tree. 4789 * This does all the path init required, making room in the tree if needed. 4790 */ 4791 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4792 struct btrfs_root *root, 4793 struct btrfs_path *path, 4794 const struct btrfs_key *cpu_key, u32 *data_size, 4795 int nr) 4796 { 4797 int ret = 0; 4798 int slot; 4799 int i; 4800 u32 total_size = 0; 4801 u32 total_data = 0; 4802 4803 for (i = 0; i < nr; i++) 4804 total_data += data_size[i]; 4805 4806 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4807 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4808 if (ret == 0) 4809 return -EEXIST; 4810 if (ret < 0) 4811 return ret; 4812 4813 slot = path->slots[0]; 4814 BUG_ON(slot < 0); 4815 4816 setup_items_for_insert(root, path, cpu_key, data_size, 4817 total_data, total_size, nr); 4818 return 0; 4819 } 4820 4821 /* 4822 * Given a key and some data, insert an item into the tree. 4823 * This does all the path init required, making room in the tree if needed. 4824 */ 4825 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4826 const struct btrfs_key *cpu_key, void *data, 4827 u32 data_size) 4828 { 4829 int ret = 0; 4830 struct btrfs_path *path; 4831 struct extent_buffer *leaf; 4832 unsigned long ptr; 4833 4834 path = btrfs_alloc_path(); 4835 if (!path) 4836 return -ENOMEM; 4837 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4838 if (!ret) { 4839 leaf = path->nodes[0]; 4840 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4841 write_extent_buffer(leaf, data, ptr, data_size); 4842 btrfs_mark_buffer_dirty(leaf); 4843 } 4844 btrfs_free_path(path); 4845 return ret; 4846 } 4847 4848 /* 4849 * delete the pointer from a given node. 4850 * 4851 * the tree should have been previously balanced so the deletion does not 4852 * empty a node. 4853 */ 4854 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4855 int level, int slot) 4856 { 4857 struct extent_buffer *parent = path->nodes[level]; 4858 u32 nritems; 4859 int ret; 4860 4861 nritems = btrfs_header_nritems(parent); 4862 if (slot != nritems - 1) { 4863 if (level) { 4864 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4865 nritems - slot - 1); 4866 BUG_ON(ret < 0); 4867 } 4868 memmove_extent_buffer(parent, 4869 btrfs_node_key_ptr_offset(slot), 4870 btrfs_node_key_ptr_offset(slot + 1), 4871 sizeof(struct btrfs_key_ptr) * 4872 (nritems - slot - 1)); 4873 } else if (level) { 4874 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4875 GFP_NOFS); 4876 BUG_ON(ret < 0); 4877 } 4878 4879 nritems--; 4880 btrfs_set_header_nritems(parent, nritems); 4881 if (nritems == 0 && parent == root->node) { 4882 BUG_ON(btrfs_header_level(root->node) != 1); 4883 /* just turn the root into a leaf and break */ 4884 btrfs_set_header_level(root->node, 0); 4885 } else if (slot == 0) { 4886 struct btrfs_disk_key disk_key; 4887 4888 btrfs_node_key(parent, &disk_key, 0); 4889 fixup_low_keys(path, &disk_key, level + 1); 4890 } 4891 btrfs_mark_buffer_dirty(parent); 4892 } 4893 4894 /* 4895 * a helper function to delete the leaf pointed to by path->slots[1] and 4896 * path->nodes[1]. 4897 * 4898 * This deletes the pointer in path->nodes[1] and frees the leaf 4899 * block extent. zero is returned if it all worked out, < 0 otherwise. 4900 * 4901 * The path must have already been setup for deleting the leaf, including 4902 * all the proper balancing. path->nodes[1] must be locked. 4903 */ 4904 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4905 struct btrfs_root *root, 4906 struct btrfs_path *path, 4907 struct extent_buffer *leaf) 4908 { 4909 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4910 del_ptr(root, path, 1, path->slots[1]); 4911 4912 /* 4913 * btrfs_free_extent is expensive, we want to make sure we 4914 * aren't holding any locks when we call it 4915 */ 4916 btrfs_unlock_up_safe(path, 0); 4917 4918 root_sub_used(root, leaf->len); 4919 4920 extent_buffer_get(leaf); 4921 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4922 free_extent_buffer_stale(leaf); 4923 } 4924 /* 4925 * delete the item at the leaf level in path. If that empties 4926 * the leaf, remove it from the tree 4927 */ 4928 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4929 struct btrfs_path *path, int slot, int nr) 4930 { 4931 struct btrfs_fs_info *fs_info = root->fs_info; 4932 struct extent_buffer *leaf; 4933 struct btrfs_item *item; 4934 u32 last_off; 4935 u32 dsize = 0; 4936 int ret = 0; 4937 int wret; 4938 int i; 4939 u32 nritems; 4940 struct btrfs_map_token token; 4941 4942 btrfs_init_map_token(&token); 4943 4944 leaf = path->nodes[0]; 4945 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4946 4947 for (i = 0; i < nr; i++) 4948 dsize += btrfs_item_size_nr(leaf, slot + i); 4949 4950 nritems = btrfs_header_nritems(leaf); 4951 4952 if (slot + nr != nritems) { 4953 int data_end = leaf_data_end(fs_info, leaf); 4954 4955 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4956 data_end + dsize, 4957 BTRFS_LEAF_DATA_OFFSET + data_end, 4958 last_off - data_end); 4959 4960 for (i = slot + nr; i < nritems; i++) { 4961 u32 ioff; 4962 4963 item = btrfs_item_nr(i); 4964 ioff = btrfs_token_item_offset(leaf, item, &token); 4965 btrfs_set_token_item_offset(leaf, item, 4966 ioff + dsize, &token); 4967 } 4968 4969 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4970 btrfs_item_nr_offset(slot + nr), 4971 sizeof(struct btrfs_item) * 4972 (nritems - slot - nr)); 4973 } 4974 btrfs_set_header_nritems(leaf, nritems - nr); 4975 nritems -= nr; 4976 4977 /* delete the leaf if we've emptied it */ 4978 if (nritems == 0) { 4979 if (leaf == root->node) { 4980 btrfs_set_header_level(leaf, 0); 4981 } else { 4982 btrfs_set_path_blocking(path); 4983 clean_tree_block(fs_info, leaf); 4984 btrfs_del_leaf(trans, root, path, leaf); 4985 } 4986 } else { 4987 int used = leaf_space_used(leaf, 0, nritems); 4988 if (slot == 0) { 4989 struct btrfs_disk_key disk_key; 4990 4991 btrfs_item_key(leaf, &disk_key, 0); 4992 fixup_low_keys(path, &disk_key, 1); 4993 } 4994 4995 /* delete the leaf if it is mostly empty */ 4996 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4997 /* push_leaf_left fixes the path. 4998 * make sure the path still points to our leaf 4999 * for possible call to del_ptr below 5000 */ 5001 slot = path->slots[1]; 5002 extent_buffer_get(leaf); 5003 5004 btrfs_set_path_blocking(path); 5005 wret = push_leaf_left(trans, root, path, 1, 1, 5006 1, (u32)-1); 5007 if (wret < 0 && wret != -ENOSPC) 5008 ret = wret; 5009 5010 if (path->nodes[0] == leaf && 5011 btrfs_header_nritems(leaf)) { 5012 wret = push_leaf_right(trans, root, path, 1, 5013 1, 1, 0); 5014 if (wret < 0 && wret != -ENOSPC) 5015 ret = wret; 5016 } 5017 5018 if (btrfs_header_nritems(leaf) == 0) { 5019 path->slots[1] = slot; 5020 btrfs_del_leaf(trans, root, path, leaf); 5021 free_extent_buffer(leaf); 5022 ret = 0; 5023 } else { 5024 /* if we're still in the path, make sure 5025 * we're dirty. Otherwise, one of the 5026 * push_leaf functions must have already 5027 * dirtied this buffer 5028 */ 5029 if (path->nodes[0] == leaf) 5030 btrfs_mark_buffer_dirty(leaf); 5031 free_extent_buffer(leaf); 5032 } 5033 } else { 5034 btrfs_mark_buffer_dirty(leaf); 5035 } 5036 } 5037 return ret; 5038 } 5039 5040 /* 5041 * search the tree again to find a leaf with lesser keys 5042 * returns 0 if it found something or 1 if there are no lesser leaves. 5043 * returns < 0 on io errors. 5044 * 5045 * This may release the path, and so you may lose any locks held at the 5046 * time you call it. 5047 */ 5048 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5049 { 5050 struct btrfs_key key; 5051 struct btrfs_disk_key found_key; 5052 int ret; 5053 5054 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5055 5056 if (key.offset > 0) { 5057 key.offset--; 5058 } else if (key.type > 0) { 5059 key.type--; 5060 key.offset = (u64)-1; 5061 } else if (key.objectid > 0) { 5062 key.objectid--; 5063 key.type = (u8)-1; 5064 key.offset = (u64)-1; 5065 } else { 5066 return 1; 5067 } 5068 5069 btrfs_release_path(path); 5070 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5071 if (ret < 0) 5072 return ret; 5073 btrfs_item_key(path->nodes[0], &found_key, 0); 5074 ret = comp_keys(&found_key, &key); 5075 /* 5076 * We might have had an item with the previous key in the tree right 5077 * before we released our path. And after we released our path, that 5078 * item might have been pushed to the first slot (0) of the leaf we 5079 * were holding due to a tree balance. Alternatively, an item with the 5080 * previous key can exist as the only element of a leaf (big fat item). 5081 * Therefore account for these 2 cases, so that our callers (like 5082 * btrfs_previous_item) don't miss an existing item with a key matching 5083 * the previous key we computed above. 5084 */ 5085 if (ret <= 0) 5086 return 0; 5087 return 1; 5088 } 5089 5090 /* 5091 * A helper function to walk down the tree starting at min_key, and looking 5092 * for nodes or leaves that are have a minimum transaction id. 5093 * This is used by the btree defrag code, and tree logging 5094 * 5095 * This does not cow, but it does stuff the starting key it finds back 5096 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5097 * key and get a writable path. 5098 * 5099 * This honors path->lowest_level to prevent descent past a given level 5100 * of the tree. 5101 * 5102 * min_trans indicates the oldest transaction that you are interested 5103 * in walking through. Any nodes or leaves older than min_trans are 5104 * skipped over (without reading them). 5105 * 5106 * returns zero if something useful was found, < 0 on error and 1 if there 5107 * was nothing in the tree that matched the search criteria. 5108 */ 5109 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5110 struct btrfs_path *path, 5111 u64 min_trans) 5112 { 5113 struct btrfs_fs_info *fs_info = root->fs_info; 5114 struct extent_buffer *cur; 5115 struct btrfs_key found_key; 5116 int slot; 5117 int sret; 5118 u32 nritems; 5119 int level; 5120 int ret = 1; 5121 int keep_locks = path->keep_locks; 5122 5123 path->keep_locks = 1; 5124 again: 5125 cur = btrfs_read_lock_root_node(root); 5126 level = btrfs_header_level(cur); 5127 WARN_ON(path->nodes[level]); 5128 path->nodes[level] = cur; 5129 path->locks[level] = BTRFS_READ_LOCK; 5130 5131 if (btrfs_header_generation(cur) < min_trans) { 5132 ret = 1; 5133 goto out; 5134 } 5135 while (1) { 5136 nritems = btrfs_header_nritems(cur); 5137 level = btrfs_header_level(cur); 5138 sret = btrfs_bin_search(cur, min_key, level, &slot); 5139 5140 /* at the lowest level, we're done, setup the path and exit */ 5141 if (level == path->lowest_level) { 5142 if (slot >= nritems) 5143 goto find_next_key; 5144 ret = 0; 5145 path->slots[level] = slot; 5146 btrfs_item_key_to_cpu(cur, &found_key, slot); 5147 goto out; 5148 } 5149 if (sret && slot > 0) 5150 slot--; 5151 /* 5152 * check this node pointer against the min_trans parameters. 5153 * If it is too old, old, skip to the next one. 5154 */ 5155 while (slot < nritems) { 5156 u64 gen; 5157 5158 gen = btrfs_node_ptr_generation(cur, slot); 5159 if (gen < min_trans) { 5160 slot++; 5161 continue; 5162 } 5163 break; 5164 } 5165 find_next_key: 5166 /* 5167 * we didn't find a candidate key in this node, walk forward 5168 * and find another one 5169 */ 5170 if (slot >= nritems) { 5171 path->slots[level] = slot; 5172 btrfs_set_path_blocking(path); 5173 sret = btrfs_find_next_key(root, path, min_key, level, 5174 min_trans); 5175 if (sret == 0) { 5176 btrfs_release_path(path); 5177 goto again; 5178 } else { 5179 goto out; 5180 } 5181 } 5182 /* save our key for returning back */ 5183 btrfs_node_key_to_cpu(cur, &found_key, slot); 5184 path->slots[level] = slot; 5185 if (level == path->lowest_level) { 5186 ret = 0; 5187 goto out; 5188 } 5189 btrfs_set_path_blocking(path); 5190 cur = read_node_slot(fs_info, cur, slot); 5191 if (IS_ERR(cur)) { 5192 ret = PTR_ERR(cur); 5193 goto out; 5194 } 5195 5196 btrfs_tree_read_lock(cur); 5197 5198 path->locks[level - 1] = BTRFS_READ_LOCK; 5199 path->nodes[level - 1] = cur; 5200 unlock_up(path, level, 1, 0, NULL); 5201 btrfs_clear_path_blocking(path, NULL, 0); 5202 } 5203 out: 5204 path->keep_locks = keep_locks; 5205 if (ret == 0) { 5206 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5207 btrfs_set_path_blocking(path); 5208 memcpy(min_key, &found_key, sizeof(found_key)); 5209 } 5210 return ret; 5211 } 5212 5213 static int tree_move_down(struct btrfs_fs_info *fs_info, 5214 struct btrfs_path *path, 5215 int *level) 5216 { 5217 struct extent_buffer *eb; 5218 5219 BUG_ON(*level == 0); 5220 eb = read_node_slot(fs_info, path->nodes[*level], path->slots[*level]); 5221 if (IS_ERR(eb)) 5222 return PTR_ERR(eb); 5223 5224 path->nodes[*level - 1] = eb; 5225 path->slots[*level - 1] = 0; 5226 (*level)--; 5227 return 0; 5228 } 5229 5230 static int tree_move_next_or_upnext(struct btrfs_path *path, 5231 int *level, int root_level) 5232 { 5233 int ret = 0; 5234 int nritems; 5235 nritems = btrfs_header_nritems(path->nodes[*level]); 5236 5237 path->slots[*level]++; 5238 5239 while (path->slots[*level] >= nritems) { 5240 if (*level == root_level) 5241 return -1; 5242 5243 /* move upnext */ 5244 path->slots[*level] = 0; 5245 free_extent_buffer(path->nodes[*level]); 5246 path->nodes[*level] = NULL; 5247 (*level)++; 5248 path->slots[*level]++; 5249 5250 nritems = btrfs_header_nritems(path->nodes[*level]); 5251 ret = 1; 5252 } 5253 return ret; 5254 } 5255 5256 /* 5257 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5258 * or down. 5259 */ 5260 static int tree_advance(struct btrfs_fs_info *fs_info, 5261 struct btrfs_path *path, 5262 int *level, int root_level, 5263 int allow_down, 5264 struct btrfs_key *key) 5265 { 5266 int ret; 5267 5268 if (*level == 0 || !allow_down) { 5269 ret = tree_move_next_or_upnext(path, level, root_level); 5270 } else { 5271 ret = tree_move_down(fs_info, path, level); 5272 } 5273 if (ret >= 0) { 5274 if (*level == 0) 5275 btrfs_item_key_to_cpu(path->nodes[*level], key, 5276 path->slots[*level]); 5277 else 5278 btrfs_node_key_to_cpu(path->nodes[*level], key, 5279 path->slots[*level]); 5280 } 5281 return ret; 5282 } 5283 5284 static int tree_compare_item(struct btrfs_path *left_path, 5285 struct btrfs_path *right_path, 5286 char *tmp_buf) 5287 { 5288 int cmp; 5289 int len1, len2; 5290 unsigned long off1, off2; 5291 5292 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5293 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5294 if (len1 != len2) 5295 return 1; 5296 5297 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5298 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5299 right_path->slots[0]); 5300 5301 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5302 5303 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5304 if (cmp) 5305 return 1; 5306 return 0; 5307 } 5308 5309 #define ADVANCE 1 5310 #define ADVANCE_ONLY_NEXT -1 5311 5312 /* 5313 * This function compares two trees and calls the provided callback for 5314 * every changed/new/deleted item it finds. 5315 * If shared tree blocks are encountered, whole subtrees are skipped, making 5316 * the compare pretty fast on snapshotted subvolumes. 5317 * 5318 * This currently works on commit roots only. As commit roots are read only, 5319 * we don't do any locking. The commit roots are protected with transactions. 5320 * Transactions are ended and rejoined when a commit is tried in between. 5321 * 5322 * This function checks for modifications done to the trees while comparing. 5323 * If it detects a change, it aborts immediately. 5324 */ 5325 int btrfs_compare_trees(struct btrfs_root *left_root, 5326 struct btrfs_root *right_root, 5327 btrfs_changed_cb_t changed_cb, void *ctx) 5328 { 5329 struct btrfs_fs_info *fs_info = left_root->fs_info; 5330 int ret; 5331 int cmp; 5332 struct btrfs_path *left_path = NULL; 5333 struct btrfs_path *right_path = NULL; 5334 struct btrfs_key left_key; 5335 struct btrfs_key right_key; 5336 char *tmp_buf = NULL; 5337 int left_root_level; 5338 int right_root_level; 5339 int left_level; 5340 int right_level; 5341 int left_end_reached; 5342 int right_end_reached; 5343 int advance_left; 5344 int advance_right; 5345 u64 left_blockptr; 5346 u64 right_blockptr; 5347 u64 left_gen; 5348 u64 right_gen; 5349 5350 left_path = btrfs_alloc_path(); 5351 if (!left_path) { 5352 ret = -ENOMEM; 5353 goto out; 5354 } 5355 right_path = btrfs_alloc_path(); 5356 if (!right_path) { 5357 ret = -ENOMEM; 5358 goto out; 5359 } 5360 5361 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5362 if (!tmp_buf) { 5363 ret = -ENOMEM; 5364 goto out; 5365 } 5366 5367 left_path->search_commit_root = 1; 5368 left_path->skip_locking = 1; 5369 right_path->search_commit_root = 1; 5370 right_path->skip_locking = 1; 5371 5372 /* 5373 * Strategy: Go to the first items of both trees. Then do 5374 * 5375 * If both trees are at level 0 5376 * Compare keys of current items 5377 * If left < right treat left item as new, advance left tree 5378 * and repeat 5379 * If left > right treat right item as deleted, advance right tree 5380 * and repeat 5381 * If left == right do deep compare of items, treat as changed if 5382 * needed, advance both trees and repeat 5383 * If both trees are at the same level but not at level 0 5384 * Compare keys of current nodes/leafs 5385 * If left < right advance left tree and repeat 5386 * If left > right advance right tree and repeat 5387 * If left == right compare blockptrs of the next nodes/leafs 5388 * If they match advance both trees but stay at the same level 5389 * and repeat 5390 * If they don't match advance both trees while allowing to go 5391 * deeper and repeat 5392 * If tree levels are different 5393 * Advance the tree that needs it and repeat 5394 * 5395 * Advancing a tree means: 5396 * If we are at level 0, try to go to the next slot. If that's not 5397 * possible, go one level up and repeat. Stop when we found a level 5398 * where we could go to the next slot. We may at this point be on a 5399 * node or a leaf. 5400 * 5401 * If we are not at level 0 and not on shared tree blocks, go one 5402 * level deeper. 5403 * 5404 * If we are not at level 0 and on shared tree blocks, go one slot to 5405 * the right if possible or go up and right. 5406 */ 5407 5408 down_read(&fs_info->commit_root_sem); 5409 left_level = btrfs_header_level(left_root->commit_root); 5410 left_root_level = left_level; 5411 left_path->nodes[left_level] = 5412 btrfs_clone_extent_buffer(left_root->commit_root); 5413 if (!left_path->nodes[left_level]) { 5414 up_read(&fs_info->commit_root_sem); 5415 ret = -ENOMEM; 5416 goto out; 5417 } 5418 extent_buffer_get(left_path->nodes[left_level]); 5419 5420 right_level = btrfs_header_level(right_root->commit_root); 5421 right_root_level = right_level; 5422 right_path->nodes[right_level] = 5423 btrfs_clone_extent_buffer(right_root->commit_root); 5424 if (!right_path->nodes[right_level]) { 5425 up_read(&fs_info->commit_root_sem); 5426 ret = -ENOMEM; 5427 goto out; 5428 } 5429 extent_buffer_get(right_path->nodes[right_level]); 5430 up_read(&fs_info->commit_root_sem); 5431 5432 if (left_level == 0) 5433 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5434 &left_key, left_path->slots[left_level]); 5435 else 5436 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5437 &left_key, left_path->slots[left_level]); 5438 if (right_level == 0) 5439 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5440 &right_key, right_path->slots[right_level]); 5441 else 5442 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5443 &right_key, right_path->slots[right_level]); 5444 5445 left_end_reached = right_end_reached = 0; 5446 advance_left = advance_right = 0; 5447 5448 while (1) { 5449 if (advance_left && !left_end_reached) { 5450 ret = tree_advance(fs_info, left_path, &left_level, 5451 left_root_level, 5452 advance_left != ADVANCE_ONLY_NEXT, 5453 &left_key); 5454 if (ret == -1) 5455 left_end_reached = ADVANCE; 5456 else if (ret < 0) 5457 goto out; 5458 advance_left = 0; 5459 } 5460 if (advance_right && !right_end_reached) { 5461 ret = tree_advance(fs_info, right_path, &right_level, 5462 right_root_level, 5463 advance_right != ADVANCE_ONLY_NEXT, 5464 &right_key); 5465 if (ret == -1) 5466 right_end_reached = ADVANCE; 5467 else if (ret < 0) 5468 goto out; 5469 advance_right = 0; 5470 } 5471 5472 if (left_end_reached && right_end_reached) { 5473 ret = 0; 5474 goto out; 5475 } else if (left_end_reached) { 5476 if (right_level == 0) { 5477 ret = changed_cb(left_path, right_path, 5478 &right_key, 5479 BTRFS_COMPARE_TREE_DELETED, 5480 ctx); 5481 if (ret < 0) 5482 goto out; 5483 } 5484 advance_right = ADVANCE; 5485 continue; 5486 } else if (right_end_reached) { 5487 if (left_level == 0) { 5488 ret = changed_cb(left_path, right_path, 5489 &left_key, 5490 BTRFS_COMPARE_TREE_NEW, 5491 ctx); 5492 if (ret < 0) 5493 goto out; 5494 } 5495 advance_left = ADVANCE; 5496 continue; 5497 } 5498 5499 if (left_level == 0 && right_level == 0) { 5500 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5501 if (cmp < 0) { 5502 ret = changed_cb(left_path, right_path, 5503 &left_key, 5504 BTRFS_COMPARE_TREE_NEW, 5505 ctx); 5506 if (ret < 0) 5507 goto out; 5508 advance_left = ADVANCE; 5509 } else if (cmp > 0) { 5510 ret = changed_cb(left_path, right_path, 5511 &right_key, 5512 BTRFS_COMPARE_TREE_DELETED, 5513 ctx); 5514 if (ret < 0) 5515 goto out; 5516 advance_right = ADVANCE; 5517 } else { 5518 enum btrfs_compare_tree_result result; 5519 5520 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5521 ret = tree_compare_item(left_path, right_path, 5522 tmp_buf); 5523 if (ret) 5524 result = BTRFS_COMPARE_TREE_CHANGED; 5525 else 5526 result = BTRFS_COMPARE_TREE_SAME; 5527 ret = changed_cb(left_path, right_path, 5528 &left_key, result, ctx); 5529 if (ret < 0) 5530 goto out; 5531 advance_left = ADVANCE; 5532 advance_right = ADVANCE; 5533 } 5534 } else if (left_level == right_level) { 5535 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5536 if (cmp < 0) { 5537 advance_left = ADVANCE; 5538 } else if (cmp > 0) { 5539 advance_right = ADVANCE; 5540 } else { 5541 left_blockptr = btrfs_node_blockptr( 5542 left_path->nodes[left_level], 5543 left_path->slots[left_level]); 5544 right_blockptr = btrfs_node_blockptr( 5545 right_path->nodes[right_level], 5546 right_path->slots[right_level]); 5547 left_gen = btrfs_node_ptr_generation( 5548 left_path->nodes[left_level], 5549 left_path->slots[left_level]); 5550 right_gen = btrfs_node_ptr_generation( 5551 right_path->nodes[right_level], 5552 right_path->slots[right_level]); 5553 if (left_blockptr == right_blockptr && 5554 left_gen == right_gen) { 5555 /* 5556 * As we're on a shared block, don't 5557 * allow to go deeper. 5558 */ 5559 advance_left = ADVANCE_ONLY_NEXT; 5560 advance_right = ADVANCE_ONLY_NEXT; 5561 } else { 5562 advance_left = ADVANCE; 5563 advance_right = ADVANCE; 5564 } 5565 } 5566 } else if (left_level < right_level) { 5567 advance_right = ADVANCE; 5568 } else { 5569 advance_left = ADVANCE; 5570 } 5571 } 5572 5573 out: 5574 btrfs_free_path(left_path); 5575 btrfs_free_path(right_path); 5576 kvfree(tmp_buf); 5577 return ret; 5578 } 5579 5580 /* 5581 * this is similar to btrfs_next_leaf, but does not try to preserve 5582 * and fixup the path. It looks for and returns the next key in the 5583 * tree based on the current path and the min_trans parameters. 5584 * 5585 * 0 is returned if another key is found, < 0 if there are any errors 5586 * and 1 is returned if there are no higher keys in the tree 5587 * 5588 * path->keep_locks should be set to 1 on the search made before 5589 * calling this function. 5590 */ 5591 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5592 struct btrfs_key *key, int level, u64 min_trans) 5593 { 5594 int slot; 5595 struct extent_buffer *c; 5596 5597 WARN_ON(!path->keep_locks); 5598 while (level < BTRFS_MAX_LEVEL) { 5599 if (!path->nodes[level]) 5600 return 1; 5601 5602 slot = path->slots[level] + 1; 5603 c = path->nodes[level]; 5604 next: 5605 if (slot >= btrfs_header_nritems(c)) { 5606 int ret; 5607 int orig_lowest; 5608 struct btrfs_key cur_key; 5609 if (level + 1 >= BTRFS_MAX_LEVEL || 5610 !path->nodes[level + 1]) 5611 return 1; 5612 5613 if (path->locks[level + 1]) { 5614 level++; 5615 continue; 5616 } 5617 5618 slot = btrfs_header_nritems(c) - 1; 5619 if (level == 0) 5620 btrfs_item_key_to_cpu(c, &cur_key, slot); 5621 else 5622 btrfs_node_key_to_cpu(c, &cur_key, slot); 5623 5624 orig_lowest = path->lowest_level; 5625 btrfs_release_path(path); 5626 path->lowest_level = level; 5627 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5628 0, 0); 5629 path->lowest_level = orig_lowest; 5630 if (ret < 0) 5631 return ret; 5632 5633 c = path->nodes[level]; 5634 slot = path->slots[level]; 5635 if (ret == 0) 5636 slot++; 5637 goto next; 5638 } 5639 5640 if (level == 0) 5641 btrfs_item_key_to_cpu(c, key, slot); 5642 else { 5643 u64 gen = btrfs_node_ptr_generation(c, slot); 5644 5645 if (gen < min_trans) { 5646 slot++; 5647 goto next; 5648 } 5649 btrfs_node_key_to_cpu(c, key, slot); 5650 } 5651 return 0; 5652 } 5653 return 1; 5654 } 5655 5656 /* 5657 * search the tree again to find a leaf with greater keys 5658 * returns 0 if it found something or 1 if there are no greater leaves. 5659 * returns < 0 on io errors. 5660 */ 5661 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5662 { 5663 return btrfs_next_old_leaf(root, path, 0); 5664 } 5665 5666 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5667 u64 time_seq) 5668 { 5669 int slot; 5670 int level; 5671 struct extent_buffer *c; 5672 struct extent_buffer *next; 5673 struct btrfs_key key; 5674 u32 nritems; 5675 int ret; 5676 int old_spinning = path->leave_spinning; 5677 int next_rw_lock = 0; 5678 5679 nritems = btrfs_header_nritems(path->nodes[0]); 5680 if (nritems == 0) 5681 return 1; 5682 5683 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5684 again: 5685 level = 1; 5686 next = NULL; 5687 next_rw_lock = 0; 5688 btrfs_release_path(path); 5689 5690 path->keep_locks = 1; 5691 path->leave_spinning = 1; 5692 5693 if (time_seq) 5694 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5695 else 5696 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5697 path->keep_locks = 0; 5698 5699 if (ret < 0) 5700 return ret; 5701 5702 nritems = btrfs_header_nritems(path->nodes[0]); 5703 /* 5704 * by releasing the path above we dropped all our locks. A balance 5705 * could have added more items next to the key that used to be 5706 * at the very end of the block. So, check again here and 5707 * advance the path if there are now more items available. 5708 */ 5709 if (nritems > 0 && path->slots[0] < nritems - 1) { 5710 if (ret == 0) 5711 path->slots[0]++; 5712 ret = 0; 5713 goto done; 5714 } 5715 /* 5716 * So the above check misses one case: 5717 * - after releasing the path above, someone has removed the item that 5718 * used to be at the very end of the block, and balance between leafs 5719 * gets another one with bigger key.offset to replace it. 5720 * 5721 * This one should be returned as well, or we can get leaf corruption 5722 * later(esp. in __btrfs_drop_extents()). 5723 * 5724 * And a bit more explanation about this check, 5725 * with ret > 0, the key isn't found, the path points to the slot 5726 * where it should be inserted, so the path->slots[0] item must be the 5727 * bigger one. 5728 */ 5729 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5730 ret = 0; 5731 goto done; 5732 } 5733 5734 while (level < BTRFS_MAX_LEVEL) { 5735 if (!path->nodes[level]) { 5736 ret = 1; 5737 goto done; 5738 } 5739 5740 slot = path->slots[level] + 1; 5741 c = path->nodes[level]; 5742 if (slot >= btrfs_header_nritems(c)) { 5743 level++; 5744 if (level == BTRFS_MAX_LEVEL) { 5745 ret = 1; 5746 goto done; 5747 } 5748 continue; 5749 } 5750 5751 if (next) { 5752 btrfs_tree_unlock_rw(next, next_rw_lock); 5753 free_extent_buffer(next); 5754 } 5755 5756 next = c; 5757 next_rw_lock = path->locks[level]; 5758 ret = read_block_for_search(root, path, &next, level, 5759 slot, &key); 5760 if (ret == -EAGAIN) 5761 goto again; 5762 5763 if (ret < 0) { 5764 btrfs_release_path(path); 5765 goto done; 5766 } 5767 5768 if (!path->skip_locking) { 5769 ret = btrfs_try_tree_read_lock(next); 5770 if (!ret && time_seq) { 5771 /* 5772 * If we don't get the lock, we may be racing 5773 * with push_leaf_left, holding that lock while 5774 * itself waiting for the leaf we've currently 5775 * locked. To solve this situation, we give up 5776 * on our lock and cycle. 5777 */ 5778 free_extent_buffer(next); 5779 btrfs_release_path(path); 5780 cond_resched(); 5781 goto again; 5782 } 5783 if (!ret) { 5784 btrfs_set_path_blocking(path); 5785 btrfs_tree_read_lock(next); 5786 btrfs_clear_path_blocking(path, next, 5787 BTRFS_READ_LOCK); 5788 } 5789 next_rw_lock = BTRFS_READ_LOCK; 5790 } 5791 break; 5792 } 5793 path->slots[level] = slot; 5794 while (1) { 5795 level--; 5796 c = path->nodes[level]; 5797 if (path->locks[level]) 5798 btrfs_tree_unlock_rw(c, path->locks[level]); 5799 5800 free_extent_buffer(c); 5801 path->nodes[level] = next; 5802 path->slots[level] = 0; 5803 if (!path->skip_locking) 5804 path->locks[level] = next_rw_lock; 5805 if (!level) 5806 break; 5807 5808 ret = read_block_for_search(root, path, &next, level, 5809 0, &key); 5810 if (ret == -EAGAIN) 5811 goto again; 5812 5813 if (ret < 0) { 5814 btrfs_release_path(path); 5815 goto done; 5816 } 5817 5818 if (!path->skip_locking) { 5819 ret = btrfs_try_tree_read_lock(next); 5820 if (!ret) { 5821 btrfs_set_path_blocking(path); 5822 btrfs_tree_read_lock(next); 5823 btrfs_clear_path_blocking(path, next, 5824 BTRFS_READ_LOCK); 5825 } 5826 next_rw_lock = BTRFS_READ_LOCK; 5827 } 5828 } 5829 ret = 0; 5830 done: 5831 unlock_up(path, 0, 1, 0, NULL); 5832 path->leave_spinning = old_spinning; 5833 if (!old_spinning) 5834 btrfs_set_path_blocking(path); 5835 5836 return ret; 5837 } 5838 5839 /* 5840 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5841 * searching until it gets past min_objectid or finds an item of 'type' 5842 * 5843 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5844 */ 5845 int btrfs_previous_item(struct btrfs_root *root, 5846 struct btrfs_path *path, u64 min_objectid, 5847 int type) 5848 { 5849 struct btrfs_key found_key; 5850 struct extent_buffer *leaf; 5851 u32 nritems; 5852 int ret; 5853 5854 while (1) { 5855 if (path->slots[0] == 0) { 5856 btrfs_set_path_blocking(path); 5857 ret = btrfs_prev_leaf(root, path); 5858 if (ret != 0) 5859 return ret; 5860 } else { 5861 path->slots[0]--; 5862 } 5863 leaf = path->nodes[0]; 5864 nritems = btrfs_header_nritems(leaf); 5865 if (nritems == 0) 5866 return 1; 5867 if (path->slots[0] == nritems) 5868 path->slots[0]--; 5869 5870 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5871 if (found_key.objectid < min_objectid) 5872 break; 5873 if (found_key.type == type) 5874 return 0; 5875 if (found_key.objectid == min_objectid && 5876 found_key.type < type) 5877 break; 5878 } 5879 return 1; 5880 } 5881 5882 /* 5883 * search in extent tree to find a previous Metadata/Data extent item with 5884 * min objecitd. 5885 * 5886 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5887 */ 5888 int btrfs_previous_extent_item(struct btrfs_root *root, 5889 struct btrfs_path *path, u64 min_objectid) 5890 { 5891 struct btrfs_key found_key; 5892 struct extent_buffer *leaf; 5893 u32 nritems; 5894 int ret; 5895 5896 while (1) { 5897 if (path->slots[0] == 0) { 5898 btrfs_set_path_blocking(path); 5899 ret = btrfs_prev_leaf(root, path); 5900 if (ret != 0) 5901 return ret; 5902 } else { 5903 path->slots[0]--; 5904 } 5905 leaf = path->nodes[0]; 5906 nritems = btrfs_header_nritems(leaf); 5907 if (nritems == 0) 5908 return 1; 5909 if (path->slots[0] == nritems) 5910 path->slots[0]--; 5911 5912 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5913 if (found_key.objectid < min_objectid) 5914 break; 5915 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5916 found_key.type == BTRFS_METADATA_ITEM_KEY) 5917 return 0; 5918 if (found_key.objectid == min_objectid && 5919 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5920 break; 5921 } 5922 return 1; 5923 } 5924