1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "print-tree.h" 25 #include "locking.h" 26 27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 28 *root, struct btrfs_path *path, int level); 29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_key *ins_key, 31 struct btrfs_path *path, int data_size, int extend); 32 static int push_node_left(struct btrfs_trans_handle *trans, 33 struct btrfs_root *root, struct extent_buffer *dst, 34 struct extent_buffer *src, int empty); 35 static int balance_node_right(struct btrfs_trans_handle *trans, 36 struct btrfs_root *root, 37 struct extent_buffer *dst_buf, 38 struct extent_buffer *src_buf); 39 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 40 struct btrfs_path *path, int level, int slot); 41 42 struct btrfs_path *btrfs_alloc_path(void) 43 { 44 struct btrfs_path *path; 45 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 46 return path; 47 } 48 49 /* 50 * set all locked nodes in the path to blocking locks. This should 51 * be done before scheduling 52 */ 53 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 54 { 55 int i; 56 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 57 if (!p->nodes[i] || !p->locks[i]) 58 continue; 59 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 60 if (p->locks[i] == BTRFS_READ_LOCK) 61 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 62 else if (p->locks[i] == BTRFS_WRITE_LOCK) 63 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 64 } 65 } 66 67 /* 68 * reset all the locked nodes in the patch to spinning locks. 69 * 70 * held is used to keep lockdep happy, when lockdep is enabled 71 * we set held to a blocking lock before we go around and 72 * retake all the spinlocks in the path. You can safely use NULL 73 * for held 74 */ 75 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 76 struct extent_buffer *held, int held_rw) 77 { 78 int i; 79 80 #ifdef CONFIG_DEBUG_LOCK_ALLOC 81 /* lockdep really cares that we take all of these spinlocks 82 * in the right order. If any of the locks in the path are not 83 * currently blocking, it is going to complain. So, make really 84 * really sure by forcing the path to blocking before we clear 85 * the path blocking. 86 */ 87 if (held) { 88 btrfs_set_lock_blocking_rw(held, held_rw); 89 if (held_rw == BTRFS_WRITE_LOCK) 90 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 91 else if (held_rw == BTRFS_READ_LOCK) 92 held_rw = BTRFS_READ_LOCK_BLOCKING; 93 } 94 btrfs_set_path_blocking(p); 95 #endif 96 97 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 98 if (p->nodes[i] && p->locks[i]) { 99 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 100 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 101 p->locks[i] = BTRFS_WRITE_LOCK; 102 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 103 p->locks[i] = BTRFS_READ_LOCK; 104 } 105 } 106 107 #ifdef CONFIG_DEBUG_LOCK_ALLOC 108 if (held) 109 btrfs_clear_lock_blocking_rw(held, held_rw); 110 #endif 111 } 112 113 /* this also releases the path */ 114 void btrfs_free_path(struct btrfs_path *p) 115 { 116 if (!p) 117 return; 118 btrfs_release_path(p); 119 kmem_cache_free(btrfs_path_cachep, p); 120 } 121 122 /* 123 * path release drops references on the extent buffers in the path 124 * and it drops any locks held by this path 125 * 126 * It is safe to call this on paths that no locks or extent buffers held. 127 */ 128 noinline void btrfs_release_path(struct btrfs_path *p) 129 { 130 int i; 131 132 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 133 p->slots[i] = 0; 134 if (!p->nodes[i]) 135 continue; 136 if (p->locks[i]) { 137 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 138 p->locks[i] = 0; 139 } 140 free_extent_buffer(p->nodes[i]); 141 p->nodes[i] = NULL; 142 } 143 } 144 145 /* 146 * safely gets a reference on the root node of a tree. A lock 147 * is not taken, so a concurrent writer may put a different node 148 * at the root of the tree. See btrfs_lock_root_node for the 149 * looping required. 150 * 151 * The extent buffer returned by this has a reference taken, so 152 * it won't disappear. It may stop being the root of the tree 153 * at any time because there are no locks held. 154 */ 155 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 156 { 157 struct extent_buffer *eb; 158 159 while (1) { 160 rcu_read_lock(); 161 eb = rcu_dereference(root->node); 162 163 /* 164 * RCU really hurts here, we could free up the root node because 165 * it was cow'ed but we may not get the new root node yet so do 166 * the inc_not_zero dance and if it doesn't work then 167 * synchronize_rcu and try again. 168 */ 169 if (atomic_inc_not_zero(&eb->refs)) { 170 rcu_read_unlock(); 171 break; 172 } 173 rcu_read_unlock(); 174 synchronize_rcu(); 175 } 176 return eb; 177 } 178 179 /* loop around taking references on and locking the root node of the 180 * tree until you end up with a lock on the root. A locked buffer 181 * is returned, with a reference held. 182 */ 183 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 184 { 185 struct extent_buffer *eb; 186 187 while (1) { 188 eb = btrfs_root_node(root); 189 btrfs_tree_lock(eb); 190 if (eb == root->node) 191 break; 192 btrfs_tree_unlock(eb); 193 free_extent_buffer(eb); 194 } 195 return eb; 196 } 197 198 /* loop around taking references on and locking the root node of the 199 * tree until you end up with a lock on the root. A locked buffer 200 * is returned, with a reference held. 201 */ 202 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 203 { 204 struct extent_buffer *eb; 205 206 while (1) { 207 eb = btrfs_root_node(root); 208 btrfs_tree_read_lock(eb); 209 if (eb == root->node) 210 break; 211 btrfs_tree_read_unlock(eb); 212 free_extent_buffer(eb); 213 } 214 return eb; 215 } 216 217 /* cowonly root (everything not a reference counted cow subvolume), just get 218 * put onto a simple dirty list. transaction.c walks this to make sure they 219 * get properly updated on disk. 220 */ 221 static void add_root_to_dirty_list(struct btrfs_root *root) 222 { 223 spin_lock(&root->fs_info->trans_lock); 224 if (root->track_dirty && list_empty(&root->dirty_list)) { 225 list_add(&root->dirty_list, 226 &root->fs_info->dirty_cowonly_roots); 227 } 228 spin_unlock(&root->fs_info->trans_lock); 229 } 230 231 /* 232 * used by snapshot creation to make a copy of a root for a tree with 233 * a given objectid. The buffer with the new root node is returned in 234 * cow_ret, and this func returns zero on success or a negative error code. 235 */ 236 int btrfs_copy_root(struct btrfs_trans_handle *trans, 237 struct btrfs_root *root, 238 struct extent_buffer *buf, 239 struct extent_buffer **cow_ret, u64 new_root_objectid) 240 { 241 struct extent_buffer *cow; 242 int ret = 0; 243 int level; 244 struct btrfs_disk_key disk_key; 245 246 WARN_ON(root->ref_cows && trans->transid != 247 root->fs_info->running_transaction->transid); 248 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 249 250 level = btrfs_header_level(buf); 251 if (level == 0) 252 btrfs_item_key(buf, &disk_key, 0); 253 else 254 btrfs_node_key(buf, &disk_key, 0); 255 256 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 257 new_root_objectid, &disk_key, level, 258 buf->start, 0, 1); 259 if (IS_ERR(cow)) 260 return PTR_ERR(cow); 261 262 copy_extent_buffer(cow, buf, 0, 0, cow->len); 263 btrfs_set_header_bytenr(cow, cow->start); 264 btrfs_set_header_generation(cow, trans->transid); 265 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 266 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 267 BTRFS_HEADER_FLAG_RELOC); 268 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 269 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 270 else 271 btrfs_set_header_owner(cow, new_root_objectid); 272 273 write_extent_buffer(cow, root->fs_info->fsid, 274 (unsigned long)btrfs_header_fsid(cow), 275 BTRFS_FSID_SIZE); 276 277 WARN_ON(btrfs_header_generation(buf) > trans->transid); 278 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 279 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 280 else 281 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 282 283 if (ret) 284 return ret; 285 286 btrfs_mark_buffer_dirty(cow); 287 *cow_ret = cow; 288 return 0; 289 } 290 291 /* 292 * check if the tree block can be shared by multiple trees 293 */ 294 int btrfs_block_can_be_shared(struct btrfs_root *root, 295 struct extent_buffer *buf) 296 { 297 /* 298 * Tree blocks not in refernece counted trees and tree roots 299 * are never shared. If a block was allocated after the last 300 * snapshot and the block was not allocated by tree relocation, 301 * we know the block is not shared. 302 */ 303 if (root->ref_cows && 304 buf != root->node && buf != root->commit_root && 305 (btrfs_header_generation(buf) <= 306 btrfs_root_last_snapshot(&root->root_item) || 307 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 308 return 1; 309 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 310 if (root->ref_cows && 311 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 312 return 1; 313 #endif 314 return 0; 315 } 316 317 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 318 struct btrfs_root *root, 319 struct extent_buffer *buf, 320 struct extent_buffer *cow, 321 int *last_ref) 322 { 323 u64 refs; 324 u64 owner; 325 u64 flags; 326 u64 new_flags = 0; 327 int ret; 328 329 /* 330 * Backrefs update rules: 331 * 332 * Always use full backrefs for extent pointers in tree block 333 * allocated by tree relocation. 334 * 335 * If a shared tree block is no longer referenced by its owner 336 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 337 * use full backrefs for extent pointers in tree block. 338 * 339 * If a tree block is been relocating 340 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 341 * use full backrefs for extent pointers in tree block. 342 * The reason for this is some operations (such as drop tree) 343 * are only allowed for blocks use full backrefs. 344 */ 345 346 if (btrfs_block_can_be_shared(root, buf)) { 347 ret = btrfs_lookup_extent_info(trans, root, buf->start, 348 buf->len, &refs, &flags); 349 if (ret) 350 return ret; 351 if (refs == 0) { 352 ret = -EROFS; 353 btrfs_std_error(root->fs_info, ret); 354 return ret; 355 } 356 } else { 357 refs = 1; 358 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 359 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 360 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 361 else 362 flags = 0; 363 } 364 365 owner = btrfs_header_owner(buf); 366 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 367 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 368 369 if (refs > 1) { 370 if ((owner == root->root_key.objectid || 371 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 372 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 373 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 374 BUG_ON(ret); /* -ENOMEM */ 375 376 if (root->root_key.objectid == 377 BTRFS_TREE_RELOC_OBJECTID) { 378 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 379 BUG_ON(ret); /* -ENOMEM */ 380 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 381 BUG_ON(ret); /* -ENOMEM */ 382 } 383 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 384 } else { 385 386 if (root->root_key.objectid == 387 BTRFS_TREE_RELOC_OBJECTID) 388 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 389 else 390 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 391 BUG_ON(ret); /* -ENOMEM */ 392 } 393 if (new_flags != 0) { 394 ret = btrfs_set_disk_extent_flags(trans, root, 395 buf->start, 396 buf->len, 397 new_flags, 0); 398 if (ret) 399 return ret; 400 } 401 } else { 402 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 403 if (root->root_key.objectid == 404 BTRFS_TREE_RELOC_OBJECTID) 405 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 406 else 407 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 408 BUG_ON(ret); /* -ENOMEM */ 409 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 410 BUG_ON(ret); /* -ENOMEM */ 411 } 412 clean_tree_block(trans, root, buf); 413 *last_ref = 1; 414 } 415 return 0; 416 } 417 418 /* 419 * does the dirty work in cow of a single block. The parent block (if 420 * supplied) is updated to point to the new cow copy. The new buffer is marked 421 * dirty and returned locked. If you modify the block it needs to be marked 422 * dirty again. 423 * 424 * search_start -- an allocation hint for the new block 425 * 426 * empty_size -- a hint that you plan on doing more cow. This is the size in 427 * bytes the allocator should try to find free next to the block it returns. 428 * This is just a hint and may be ignored by the allocator. 429 */ 430 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 431 struct btrfs_root *root, 432 struct extent_buffer *buf, 433 struct extent_buffer *parent, int parent_slot, 434 struct extent_buffer **cow_ret, 435 u64 search_start, u64 empty_size) 436 { 437 struct btrfs_disk_key disk_key; 438 struct extent_buffer *cow; 439 int level, ret; 440 int last_ref = 0; 441 int unlock_orig = 0; 442 u64 parent_start; 443 444 if (*cow_ret == buf) 445 unlock_orig = 1; 446 447 btrfs_assert_tree_locked(buf); 448 449 WARN_ON(root->ref_cows && trans->transid != 450 root->fs_info->running_transaction->transid); 451 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 452 453 level = btrfs_header_level(buf); 454 455 if (level == 0) 456 btrfs_item_key(buf, &disk_key, 0); 457 else 458 btrfs_node_key(buf, &disk_key, 0); 459 460 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 461 if (parent) 462 parent_start = parent->start; 463 else 464 parent_start = 0; 465 } else 466 parent_start = 0; 467 468 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 469 root->root_key.objectid, &disk_key, 470 level, search_start, empty_size, 1); 471 if (IS_ERR(cow)) 472 return PTR_ERR(cow); 473 474 /* cow is set to blocking by btrfs_init_new_buffer */ 475 476 copy_extent_buffer(cow, buf, 0, 0, cow->len); 477 btrfs_set_header_bytenr(cow, cow->start); 478 btrfs_set_header_generation(cow, trans->transid); 479 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 480 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 481 BTRFS_HEADER_FLAG_RELOC); 482 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 483 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 484 else 485 btrfs_set_header_owner(cow, root->root_key.objectid); 486 487 write_extent_buffer(cow, root->fs_info->fsid, 488 (unsigned long)btrfs_header_fsid(cow), 489 BTRFS_FSID_SIZE); 490 491 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 492 if (ret) { 493 btrfs_abort_transaction(trans, root, ret); 494 return ret; 495 } 496 497 if (root->ref_cows) 498 btrfs_reloc_cow_block(trans, root, buf, cow); 499 500 if (buf == root->node) { 501 WARN_ON(parent && parent != buf); 502 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 503 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 504 parent_start = buf->start; 505 else 506 parent_start = 0; 507 508 extent_buffer_get(cow); 509 rcu_assign_pointer(root->node, cow); 510 511 btrfs_free_tree_block(trans, root, buf, parent_start, 512 last_ref, 1); 513 free_extent_buffer(buf); 514 add_root_to_dirty_list(root); 515 } else { 516 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 517 parent_start = parent->start; 518 else 519 parent_start = 0; 520 521 WARN_ON(trans->transid != btrfs_header_generation(parent)); 522 btrfs_set_node_blockptr(parent, parent_slot, 523 cow->start); 524 btrfs_set_node_ptr_generation(parent, parent_slot, 525 trans->transid); 526 btrfs_mark_buffer_dirty(parent); 527 btrfs_free_tree_block(trans, root, buf, parent_start, 528 last_ref, 1); 529 } 530 if (unlock_orig) 531 btrfs_tree_unlock(buf); 532 free_extent_buffer_stale(buf); 533 btrfs_mark_buffer_dirty(cow); 534 *cow_ret = cow; 535 return 0; 536 } 537 538 static inline int should_cow_block(struct btrfs_trans_handle *trans, 539 struct btrfs_root *root, 540 struct extent_buffer *buf) 541 { 542 /* ensure we can see the force_cow */ 543 smp_rmb(); 544 545 /* 546 * We do not need to cow a block if 547 * 1) this block is not created or changed in this transaction; 548 * 2) this block does not belong to TREE_RELOC tree; 549 * 3) the root is not forced COW. 550 * 551 * What is forced COW: 552 * when we create snapshot during commiting the transaction, 553 * after we've finished coping src root, we must COW the shared 554 * block to ensure the metadata consistency. 555 */ 556 if (btrfs_header_generation(buf) == trans->transid && 557 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 558 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 559 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 560 !root->force_cow) 561 return 0; 562 return 1; 563 } 564 565 /* 566 * cows a single block, see __btrfs_cow_block for the real work. 567 * This version of it has extra checks so that a block isn't cow'd more than 568 * once per transaction, as long as it hasn't been written yet 569 */ 570 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 571 struct btrfs_root *root, struct extent_buffer *buf, 572 struct extent_buffer *parent, int parent_slot, 573 struct extent_buffer **cow_ret) 574 { 575 u64 search_start; 576 int ret; 577 578 if (trans->transaction != root->fs_info->running_transaction) { 579 printk(KERN_CRIT "trans %llu running %llu\n", 580 (unsigned long long)trans->transid, 581 (unsigned long long) 582 root->fs_info->running_transaction->transid); 583 WARN_ON(1); 584 } 585 if (trans->transid != root->fs_info->generation) { 586 printk(KERN_CRIT "trans %llu running %llu\n", 587 (unsigned long long)trans->transid, 588 (unsigned long long)root->fs_info->generation); 589 WARN_ON(1); 590 } 591 592 if (!should_cow_block(trans, root, buf)) { 593 *cow_ret = buf; 594 return 0; 595 } 596 597 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 598 599 if (parent) 600 btrfs_set_lock_blocking(parent); 601 btrfs_set_lock_blocking(buf); 602 603 ret = __btrfs_cow_block(trans, root, buf, parent, 604 parent_slot, cow_ret, search_start, 0); 605 606 trace_btrfs_cow_block(root, buf, *cow_ret); 607 608 return ret; 609 } 610 611 /* 612 * helper function for defrag to decide if two blocks pointed to by a 613 * node are actually close by 614 */ 615 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 616 { 617 if (blocknr < other && other - (blocknr + blocksize) < 32768) 618 return 1; 619 if (blocknr > other && blocknr - (other + blocksize) < 32768) 620 return 1; 621 return 0; 622 } 623 624 /* 625 * compare two keys in a memcmp fashion 626 */ 627 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 628 { 629 struct btrfs_key k1; 630 631 btrfs_disk_key_to_cpu(&k1, disk); 632 633 return btrfs_comp_cpu_keys(&k1, k2); 634 } 635 636 /* 637 * same as comp_keys only with two btrfs_key's 638 */ 639 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 640 { 641 if (k1->objectid > k2->objectid) 642 return 1; 643 if (k1->objectid < k2->objectid) 644 return -1; 645 if (k1->type > k2->type) 646 return 1; 647 if (k1->type < k2->type) 648 return -1; 649 if (k1->offset > k2->offset) 650 return 1; 651 if (k1->offset < k2->offset) 652 return -1; 653 return 0; 654 } 655 656 /* 657 * this is used by the defrag code to go through all the 658 * leaves pointed to by a node and reallocate them so that 659 * disk order is close to key order 660 */ 661 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 662 struct btrfs_root *root, struct extent_buffer *parent, 663 int start_slot, int cache_only, u64 *last_ret, 664 struct btrfs_key *progress) 665 { 666 struct extent_buffer *cur; 667 u64 blocknr; 668 u64 gen; 669 u64 search_start = *last_ret; 670 u64 last_block = 0; 671 u64 other; 672 u32 parent_nritems; 673 int end_slot; 674 int i; 675 int err = 0; 676 int parent_level; 677 int uptodate; 678 u32 blocksize; 679 int progress_passed = 0; 680 struct btrfs_disk_key disk_key; 681 682 parent_level = btrfs_header_level(parent); 683 if (cache_only && parent_level != 1) 684 return 0; 685 686 if (trans->transaction != root->fs_info->running_transaction) 687 WARN_ON(1); 688 if (trans->transid != root->fs_info->generation) 689 WARN_ON(1); 690 691 parent_nritems = btrfs_header_nritems(parent); 692 blocksize = btrfs_level_size(root, parent_level - 1); 693 end_slot = parent_nritems; 694 695 if (parent_nritems == 1) 696 return 0; 697 698 btrfs_set_lock_blocking(parent); 699 700 for (i = start_slot; i < end_slot; i++) { 701 int close = 1; 702 703 btrfs_node_key(parent, &disk_key, i); 704 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 705 continue; 706 707 progress_passed = 1; 708 blocknr = btrfs_node_blockptr(parent, i); 709 gen = btrfs_node_ptr_generation(parent, i); 710 if (last_block == 0) 711 last_block = blocknr; 712 713 if (i > 0) { 714 other = btrfs_node_blockptr(parent, i - 1); 715 close = close_blocks(blocknr, other, blocksize); 716 } 717 if (!close && i < end_slot - 2) { 718 other = btrfs_node_blockptr(parent, i + 1); 719 close = close_blocks(blocknr, other, blocksize); 720 } 721 if (close) { 722 last_block = blocknr; 723 continue; 724 } 725 726 cur = btrfs_find_tree_block(root, blocknr, blocksize); 727 if (cur) 728 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 729 else 730 uptodate = 0; 731 if (!cur || !uptodate) { 732 if (cache_only) { 733 free_extent_buffer(cur); 734 continue; 735 } 736 if (!cur) { 737 cur = read_tree_block(root, blocknr, 738 blocksize, gen); 739 if (!cur) 740 return -EIO; 741 } else if (!uptodate) { 742 btrfs_read_buffer(cur, gen); 743 } 744 } 745 if (search_start == 0) 746 search_start = last_block; 747 748 btrfs_tree_lock(cur); 749 btrfs_set_lock_blocking(cur); 750 err = __btrfs_cow_block(trans, root, cur, parent, i, 751 &cur, search_start, 752 min(16 * blocksize, 753 (end_slot - i) * blocksize)); 754 if (err) { 755 btrfs_tree_unlock(cur); 756 free_extent_buffer(cur); 757 break; 758 } 759 search_start = cur->start; 760 last_block = cur->start; 761 *last_ret = search_start; 762 btrfs_tree_unlock(cur); 763 free_extent_buffer(cur); 764 } 765 return err; 766 } 767 768 /* 769 * The leaf data grows from end-to-front in the node. 770 * this returns the address of the start of the last item, 771 * which is the stop of the leaf data stack 772 */ 773 static inline unsigned int leaf_data_end(struct btrfs_root *root, 774 struct extent_buffer *leaf) 775 { 776 u32 nr = btrfs_header_nritems(leaf); 777 if (nr == 0) 778 return BTRFS_LEAF_DATA_SIZE(root); 779 return btrfs_item_offset_nr(leaf, nr - 1); 780 } 781 782 783 /* 784 * search for key in the extent_buffer. The items start at offset p, 785 * and they are item_size apart. There are 'max' items in p. 786 * 787 * the slot in the array is returned via slot, and it points to 788 * the place where you would insert key if it is not found in 789 * the array. 790 * 791 * slot may point to max if the key is bigger than all of the keys 792 */ 793 static noinline int generic_bin_search(struct extent_buffer *eb, 794 unsigned long p, 795 int item_size, struct btrfs_key *key, 796 int max, int *slot) 797 { 798 int low = 0; 799 int high = max; 800 int mid; 801 int ret; 802 struct btrfs_disk_key *tmp = NULL; 803 struct btrfs_disk_key unaligned; 804 unsigned long offset; 805 char *kaddr = NULL; 806 unsigned long map_start = 0; 807 unsigned long map_len = 0; 808 int err; 809 810 while (low < high) { 811 mid = (low + high) / 2; 812 offset = p + mid * item_size; 813 814 if (!kaddr || offset < map_start || 815 (offset + sizeof(struct btrfs_disk_key)) > 816 map_start + map_len) { 817 818 err = map_private_extent_buffer(eb, offset, 819 sizeof(struct btrfs_disk_key), 820 &kaddr, &map_start, &map_len); 821 822 if (!err) { 823 tmp = (struct btrfs_disk_key *)(kaddr + offset - 824 map_start); 825 } else { 826 read_extent_buffer(eb, &unaligned, 827 offset, sizeof(unaligned)); 828 tmp = &unaligned; 829 } 830 831 } else { 832 tmp = (struct btrfs_disk_key *)(kaddr + offset - 833 map_start); 834 } 835 ret = comp_keys(tmp, key); 836 837 if (ret < 0) 838 low = mid + 1; 839 else if (ret > 0) 840 high = mid; 841 else { 842 *slot = mid; 843 return 0; 844 } 845 } 846 *slot = low; 847 return 1; 848 } 849 850 /* 851 * simple bin_search frontend that does the right thing for 852 * leaves vs nodes 853 */ 854 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 855 int level, int *slot) 856 { 857 if (level == 0) { 858 return generic_bin_search(eb, 859 offsetof(struct btrfs_leaf, items), 860 sizeof(struct btrfs_item), 861 key, btrfs_header_nritems(eb), 862 slot); 863 } else { 864 return generic_bin_search(eb, 865 offsetof(struct btrfs_node, ptrs), 866 sizeof(struct btrfs_key_ptr), 867 key, btrfs_header_nritems(eb), 868 slot); 869 } 870 return -1; 871 } 872 873 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 874 int level, int *slot) 875 { 876 return bin_search(eb, key, level, slot); 877 } 878 879 static void root_add_used(struct btrfs_root *root, u32 size) 880 { 881 spin_lock(&root->accounting_lock); 882 btrfs_set_root_used(&root->root_item, 883 btrfs_root_used(&root->root_item) + size); 884 spin_unlock(&root->accounting_lock); 885 } 886 887 static void root_sub_used(struct btrfs_root *root, u32 size) 888 { 889 spin_lock(&root->accounting_lock); 890 btrfs_set_root_used(&root->root_item, 891 btrfs_root_used(&root->root_item) - size); 892 spin_unlock(&root->accounting_lock); 893 } 894 895 /* given a node and slot number, this reads the blocks it points to. The 896 * extent buffer is returned with a reference taken (but unlocked). 897 * NULL is returned on error. 898 */ 899 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 900 struct extent_buffer *parent, int slot) 901 { 902 int level = btrfs_header_level(parent); 903 if (slot < 0) 904 return NULL; 905 if (slot >= btrfs_header_nritems(parent)) 906 return NULL; 907 908 BUG_ON(level == 0); 909 910 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 911 btrfs_level_size(root, level - 1), 912 btrfs_node_ptr_generation(parent, slot)); 913 } 914 915 /* 916 * node level balancing, used to make sure nodes are in proper order for 917 * item deletion. We balance from the top down, so we have to make sure 918 * that a deletion won't leave an node completely empty later on. 919 */ 920 static noinline int balance_level(struct btrfs_trans_handle *trans, 921 struct btrfs_root *root, 922 struct btrfs_path *path, int level) 923 { 924 struct extent_buffer *right = NULL; 925 struct extent_buffer *mid; 926 struct extent_buffer *left = NULL; 927 struct extent_buffer *parent = NULL; 928 int ret = 0; 929 int wret; 930 int pslot; 931 int orig_slot = path->slots[level]; 932 u64 orig_ptr; 933 934 if (level == 0) 935 return 0; 936 937 mid = path->nodes[level]; 938 939 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 940 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 941 WARN_ON(btrfs_header_generation(mid) != trans->transid); 942 943 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 944 945 if (level < BTRFS_MAX_LEVEL - 1) { 946 parent = path->nodes[level + 1]; 947 pslot = path->slots[level + 1]; 948 } 949 950 /* 951 * deal with the case where there is only one pointer in the root 952 * by promoting the node below to a root 953 */ 954 if (!parent) { 955 struct extent_buffer *child; 956 957 if (btrfs_header_nritems(mid) != 1) 958 return 0; 959 960 /* promote the child to a root */ 961 child = read_node_slot(root, mid, 0); 962 if (!child) { 963 ret = -EROFS; 964 btrfs_std_error(root->fs_info, ret); 965 goto enospc; 966 } 967 968 btrfs_tree_lock(child); 969 btrfs_set_lock_blocking(child); 970 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 971 if (ret) { 972 btrfs_tree_unlock(child); 973 free_extent_buffer(child); 974 goto enospc; 975 } 976 977 rcu_assign_pointer(root->node, child); 978 979 add_root_to_dirty_list(root); 980 btrfs_tree_unlock(child); 981 982 path->locks[level] = 0; 983 path->nodes[level] = NULL; 984 clean_tree_block(trans, root, mid); 985 btrfs_tree_unlock(mid); 986 /* once for the path */ 987 free_extent_buffer(mid); 988 989 root_sub_used(root, mid->len); 990 btrfs_free_tree_block(trans, root, mid, 0, 1, 0); 991 /* once for the root ptr */ 992 free_extent_buffer_stale(mid); 993 return 0; 994 } 995 if (btrfs_header_nritems(mid) > 996 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 997 return 0; 998 999 btrfs_header_nritems(mid); 1000 1001 left = read_node_slot(root, parent, pslot - 1); 1002 if (left) { 1003 btrfs_tree_lock(left); 1004 btrfs_set_lock_blocking(left); 1005 wret = btrfs_cow_block(trans, root, left, 1006 parent, pslot - 1, &left); 1007 if (wret) { 1008 ret = wret; 1009 goto enospc; 1010 } 1011 } 1012 right = read_node_slot(root, parent, pslot + 1); 1013 if (right) { 1014 btrfs_tree_lock(right); 1015 btrfs_set_lock_blocking(right); 1016 wret = btrfs_cow_block(trans, root, right, 1017 parent, pslot + 1, &right); 1018 if (wret) { 1019 ret = wret; 1020 goto enospc; 1021 } 1022 } 1023 1024 /* first, try to make some room in the middle buffer */ 1025 if (left) { 1026 orig_slot += btrfs_header_nritems(left); 1027 wret = push_node_left(trans, root, left, mid, 1); 1028 if (wret < 0) 1029 ret = wret; 1030 btrfs_header_nritems(mid); 1031 } 1032 1033 /* 1034 * then try to empty the right most buffer into the middle 1035 */ 1036 if (right) { 1037 wret = push_node_left(trans, root, mid, right, 1); 1038 if (wret < 0 && wret != -ENOSPC) 1039 ret = wret; 1040 if (btrfs_header_nritems(right) == 0) { 1041 clean_tree_block(trans, root, right); 1042 btrfs_tree_unlock(right); 1043 del_ptr(trans, root, path, level + 1, pslot + 1); 1044 root_sub_used(root, right->len); 1045 btrfs_free_tree_block(trans, root, right, 0, 1, 0); 1046 free_extent_buffer_stale(right); 1047 right = NULL; 1048 } else { 1049 struct btrfs_disk_key right_key; 1050 btrfs_node_key(right, &right_key, 0); 1051 btrfs_set_node_key(parent, &right_key, pslot + 1); 1052 btrfs_mark_buffer_dirty(parent); 1053 } 1054 } 1055 if (btrfs_header_nritems(mid) == 1) { 1056 /* 1057 * we're not allowed to leave a node with one item in the 1058 * tree during a delete. A deletion from lower in the tree 1059 * could try to delete the only pointer in this node. 1060 * So, pull some keys from the left. 1061 * There has to be a left pointer at this point because 1062 * otherwise we would have pulled some pointers from the 1063 * right 1064 */ 1065 if (!left) { 1066 ret = -EROFS; 1067 btrfs_std_error(root->fs_info, ret); 1068 goto enospc; 1069 } 1070 wret = balance_node_right(trans, root, mid, left); 1071 if (wret < 0) { 1072 ret = wret; 1073 goto enospc; 1074 } 1075 if (wret == 1) { 1076 wret = push_node_left(trans, root, left, mid, 1); 1077 if (wret < 0) 1078 ret = wret; 1079 } 1080 BUG_ON(wret == 1); 1081 } 1082 if (btrfs_header_nritems(mid) == 0) { 1083 clean_tree_block(trans, root, mid); 1084 btrfs_tree_unlock(mid); 1085 del_ptr(trans, root, path, level + 1, pslot); 1086 root_sub_used(root, mid->len); 1087 btrfs_free_tree_block(trans, root, mid, 0, 1, 0); 1088 free_extent_buffer_stale(mid); 1089 mid = NULL; 1090 } else { 1091 /* update the parent key to reflect our changes */ 1092 struct btrfs_disk_key mid_key; 1093 btrfs_node_key(mid, &mid_key, 0); 1094 btrfs_set_node_key(parent, &mid_key, pslot); 1095 btrfs_mark_buffer_dirty(parent); 1096 } 1097 1098 /* update the path */ 1099 if (left) { 1100 if (btrfs_header_nritems(left) > orig_slot) { 1101 extent_buffer_get(left); 1102 /* left was locked after cow */ 1103 path->nodes[level] = left; 1104 path->slots[level + 1] -= 1; 1105 path->slots[level] = orig_slot; 1106 if (mid) { 1107 btrfs_tree_unlock(mid); 1108 free_extent_buffer(mid); 1109 } 1110 } else { 1111 orig_slot -= btrfs_header_nritems(left); 1112 path->slots[level] = orig_slot; 1113 } 1114 } 1115 /* double check we haven't messed things up */ 1116 if (orig_ptr != 1117 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1118 BUG(); 1119 enospc: 1120 if (right) { 1121 btrfs_tree_unlock(right); 1122 free_extent_buffer(right); 1123 } 1124 if (left) { 1125 if (path->nodes[level] != left) 1126 btrfs_tree_unlock(left); 1127 free_extent_buffer(left); 1128 } 1129 return ret; 1130 } 1131 1132 /* Node balancing for insertion. Here we only split or push nodes around 1133 * when they are completely full. This is also done top down, so we 1134 * have to be pessimistic. 1135 */ 1136 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1137 struct btrfs_root *root, 1138 struct btrfs_path *path, int level) 1139 { 1140 struct extent_buffer *right = NULL; 1141 struct extent_buffer *mid; 1142 struct extent_buffer *left = NULL; 1143 struct extent_buffer *parent = NULL; 1144 int ret = 0; 1145 int wret; 1146 int pslot; 1147 int orig_slot = path->slots[level]; 1148 1149 if (level == 0) 1150 return 1; 1151 1152 mid = path->nodes[level]; 1153 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1154 1155 if (level < BTRFS_MAX_LEVEL - 1) { 1156 parent = path->nodes[level + 1]; 1157 pslot = path->slots[level + 1]; 1158 } 1159 1160 if (!parent) 1161 return 1; 1162 1163 left = read_node_slot(root, parent, pslot - 1); 1164 1165 /* first, try to make some room in the middle buffer */ 1166 if (left) { 1167 u32 left_nr; 1168 1169 btrfs_tree_lock(left); 1170 btrfs_set_lock_blocking(left); 1171 1172 left_nr = btrfs_header_nritems(left); 1173 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1174 wret = 1; 1175 } else { 1176 ret = btrfs_cow_block(trans, root, left, parent, 1177 pslot - 1, &left); 1178 if (ret) 1179 wret = 1; 1180 else { 1181 wret = push_node_left(trans, root, 1182 left, mid, 0); 1183 } 1184 } 1185 if (wret < 0) 1186 ret = wret; 1187 if (wret == 0) { 1188 struct btrfs_disk_key disk_key; 1189 orig_slot += left_nr; 1190 btrfs_node_key(mid, &disk_key, 0); 1191 btrfs_set_node_key(parent, &disk_key, pslot); 1192 btrfs_mark_buffer_dirty(parent); 1193 if (btrfs_header_nritems(left) > orig_slot) { 1194 path->nodes[level] = left; 1195 path->slots[level + 1] -= 1; 1196 path->slots[level] = orig_slot; 1197 btrfs_tree_unlock(mid); 1198 free_extent_buffer(mid); 1199 } else { 1200 orig_slot -= 1201 btrfs_header_nritems(left); 1202 path->slots[level] = orig_slot; 1203 btrfs_tree_unlock(left); 1204 free_extent_buffer(left); 1205 } 1206 return 0; 1207 } 1208 btrfs_tree_unlock(left); 1209 free_extent_buffer(left); 1210 } 1211 right = read_node_slot(root, parent, pslot + 1); 1212 1213 /* 1214 * then try to empty the right most buffer into the middle 1215 */ 1216 if (right) { 1217 u32 right_nr; 1218 1219 btrfs_tree_lock(right); 1220 btrfs_set_lock_blocking(right); 1221 1222 right_nr = btrfs_header_nritems(right); 1223 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1224 wret = 1; 1225 } else { 1226 ret = btrfs_cow_block(trans, root, right, 1227 parent, pslot + 1, 1228 &right); 1229 if (ret) 1230 wret = 1; 1231 else { 1232 wret = balance_node_right(trans, root, 1233 right, mid); 1234 } 1235 } 1236 if (wret < 0) 1237 ret = wret; 1238 if (wret == 0) { 1239 struct btrfs_disk_key disk_key; 1240 1241 btrfs_node_key(right, &disk_key, 0); 1242 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1243 btrfs_mark_buffer_dirty(parent); 1244 1245 if (btrfs_header_nritems(mid) <= orig_slot) { 1246 path->nodes[level] = right; 1247 path->slots[level + 1] += 1; 1248 path->slots[level] = orig_slot - 1249 btrfs_header_nritems(mid); 1250 btrfs_tree_unlock(mid); 1251 free_extent_buffer(mid); 1252 } else { 1253 btrfs_tree_unlock(right); 1254 free_extent_buffer(right); 1255 } 1256 return 0; 1257 } 1258 btrfs_tree_unlock(right); 1259 free_extent_buffer(right); 1260 } 1261 return 1; 1262 } 1263 1264 /* 1265 * readahead one full node of leaves, finding things that are close 1266 * to the block in 'slot', and triggering ra on them. 1267 */ 1268 static void reada_for_search(struct btrfs_root *root, 1269 struct btrfs_path *path, 1270 int level, int slot, u64 objectid) 1271 { 1272 struct extent_buffer *node; 1273 struct btrfs_disk_key disk_key; 1274 u32 nritems; 1275 u64 search; 1276 u64 target; 1277 u64 nread = 0; 1278 u64 gen; 1279 int direction = path->reada; 1280 struct extent_buffer *eb; 1281 u32 nr; 1282 u32 blocksize; 1283 u32 nscan = 0; 1284 1285 if (level != 1) 1286 return; 1287 1288 if (!path->nodes[level]) 1289 return; 1290 1291 node = path->nodes[level]; 1292 1293 search = btrfs_node_blockptr(node, slot); 1294 blocksize = btrfs_level_size(root, level - 1); 1295 eb = btrfs_find_tree_block(root, search, blocksize); 1296 if (eb) { 1297 free_extent_buffer(eb); 1298 return; 1299 } 1300 1301 target = search; 1302 1303 nritems = btrfs_header_nritems(node); 1304 nr = slot; 1305 1306 while (1) { 1307 if (direction < 0) { 1308 if (nr == 0) 1309 break; 1310 nr--; 1311 } else if (direction > 0) { 1312 nr++; 1313 if (nr >= nritems) 1314 break; 1315 } 1316 if (path->reada < 0 && objectid) { 1317 btrfs_node_key(node, &disk_key, nr); 1318 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1319 break; 1320 } 1321 search = btrfs_node_blockptr(node, nr); 1322 if ((search <= target && target - search <= 65536) || 1323 (search > target && search - target <= 65536)) { 1324 gen = btrfs_node_ptr_generation(node, nr); 1325 readahead_tree_block(root, search, blocksize, gen); 1326 nread += blocksize; 1327 } 1328 nscan++; 1329 if ((nread > 65536 || nscan > 32)) 1330 break; 1331 } 1332 } 1333 1334 /* 1335 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1336 * cache 1337 */ 1338 static noinline int reada_for_balance(struct btrfs_root *root, 1339 struct btrfs_path *path, int level) 1340 { 1341 int slot; 1342 int nritems; 1343 struct extent_buffer *parent; 1344 struct extent_buffer *eb; 1345 u64 gen; 1346 u64 block1 = 0; 1347 u64 block2 = 0; 1348 int ret = 0; 1349 int blocksize; 1350 1351 parent = path->nodes[level + 1]; 1352 if (!parent) 1353 return 0; 1354 1355 nritems = btrfs_header_nritems(parent); 1356 slot = path->slots[level + 1]; 1357 blocksize = btrfs_level_size(root, level); 1358 1359 if (slot > 0) { 1360 block1 = btrfs_node_blockptr(parent, slot - 1); 1361 gen = btrfs_node_ptr_generation(parent, slot - 1); 1362 eb = btrfs_find_tree_block(root, block1, blocksize); 1363 /* 1364 * if we get -eagain from btrfs_buffer_uptodate, we 1365 * don't want to return eagain here. That will loop 1366 * forever 1367 */ 1368 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 1369 block1 = 0; 1370 free_extent_buffer(eb); 1371 } 1372 if (slot + 1 < nritems) { 1373 block2 = btrfs_node_blockptr(parent, slot + 1); 1374 gen = btrfs_node_ptr_generation(parent, slot + 1); 1375 eb = btrfs_find_tree_block(root, block2, blocksize); 1376 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 1377 block2 = 0; 1378 free_extent_buffer(eb); 1379 } 1380 if (block1 || block2) { 1381 ret = -EAGAIN; 1382 1383 /* release the whole path */ 1384 btrfs_release_path(path); 1385 1386 /* read the blocks */ 1387 if (block1) 1388 readahead_tree_block(root, block1, blocksize, 0); 1389 if (block2) 1390 readahead_tree_block(root, block2, blocksize, 0); 1391 1392 if (block1) { 1393 eb = read_tree_block(root, block1, blocksize, 0); 1394 free_extent_buffer(eb); 1395 } 1396 if (block2) { 1397 eb = read_tree_block(root, block2, blocksize, 0); 1398 free_extent_buffer(eb); 1399 } 1400 } 1401 return ret; 1402 } 1403 1404 1405 /* 1406 * when we walk down the tree, it is usually safe to unlock the higher layers 1407 * in the tree. The exceptions are when our path goes through slot 0, because 1408 * operations on the tree might require changing key pointers higher up in the 1409 * tree. 1410 * 1411 * callers might also have set path->keep_locks, which tells this code to keep 1412 * the lock if the path points to the last slot in the block. This is part of 1413 * walking through the tree, and selecting the next slot in the higher block. 1414 * 1415 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1416 * if lowest_unlock is 1, level 0 won't be unlocked 1417 */ 1418 static noinline void unlock_up(struct btrfs_path *path, int level, 1419 int lowest_unlock, int min_write_lock_level, 1420 int *write_lock_level) 1421 { 1422 int i; 1423 int skip_level = level; 1424 int no_skips = 0; 1425 struct extent_buffer *t; 1426 1427 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1428 if (!path->nodes[i]) 1429 break; 1430 if (!path->locks[i]) 1431 break; 1432 if (!no_skips && path->slots[i] == 0) { 1433 skip_level = i + 1; 1434 continue; 1435 } 1436 if (!no_skips && path->keep_locks) { 1437 u32 nritems; 1438 t = path->nodes[i]; 1439 nritems = btrfs_header_nritems(t); 1440 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1441 skip_level = i + 1; 1442 continue; 1443 } 1444 } 1445 if (skip_level < i && i >= lowest_unlock) 1446 no_skips = 1; 1447 1448 t = path->nodes[i]; 1449 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1450 btrfs_tree_unlock_rw(t, path->locks[i]); 1451 path->locks[i] = 0; 1452 if (write_lock_level && 1453 i > min_write_lock_level && 1454 i <= *write_lock_level) { 1455 *write_lock_level = i - 1; 1456 } 1457 } 1458 } 1459 } 1460 1461 /* 1462 * This releases any locks held in the path starting at level and 1463 * going all the way up to the root. 1464 * 1465 * btrfs_search_slot will keep the lock held on higher nodes in a few 1466 * corner cases, such as COW of the block at slot zero in the node. This 1467 * ignores those rules, and it should only be called when there are no 1468 * more updates to be done higher up in the tree. 1469 */ 1470 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1471 { 1472 int i; 1473 1474 if (path->keep_locks) 1475 return; 1476 1477 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1478 if (!path->nodes[i]) 1479 continue; 1480 if (!path->locks[i]) 1481 continue; 1482 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 1483 path->locks[i] = 0; 1484 } 1485 } 1486 1487 /* 1488 * helper function for btrfs_search_slot. The goal is to find a block 1489 * in cache without setting the path to blocking. If we find the block 1490 * we return zero and the path is unchanged. 1491 * 1492 * If we can't find the block, we set the path blocking and do some 1493 * reada. -EAGAIN is returned and the search must be repeated. 1494 */ 1495 static int 1496 read_block_for_search(struct btrfs_trans_handle *trans, 1497 struct btrfs_root *root, struct btrfs_path *p, 1498 struct extent_buffer **eb_ret, int level, int slot, 1499 struct btrfs_key *key) 1500 { 1501 u64 blocknr; 1502 u64 gen; 1503 u32 blocksize; 1504 struct extent_buffer *b = *eb_ret; 1505 struct extent_buffer *tmp; 1506 int ret; 1507 1508 blocknr = btrfs_node_blockptr(b, slot); 1509 gen = btrfs_node_ptr_generation(b, slot); 1510 blocksize = btrfs_level_size(root, level - 1); 1511 1512 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1513 if (tmp) { 1514 /* first we do an atomic uptodate check */ 1515 if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) { 1516 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 1517 /* 1518 * we found an up to date block without 1519 * sleeping, return 1520 * right away 1521 */ 1522 *eb_ret = tmp; 1523 return 0; 1524 } 1525 /* the pages were up to date, but we failed 1526 * the generation number check. Do a full 1527 * read for the generation number that is correct. 1528 * We must do this without dropping locks so 1529 * we can trust our generation number 1530 */ 1531 free_extent_buffer(tmp); 1532 btrfs_set_path_blocking(p); 1533 1534 /* now we're allowed to do a blocking uptodate check */ 1535 tmp = read_tree_block(root, blocknr, blocksize, gen); 1536 if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) { 1537 *eb_ret = tmp; 1538 return 0; 1539 } 1540 free_extent_buffer(tmp); 1541 btrfs_release_path(p); 1542 return -EIO; 1543 } 1544 } 1545 1546 /* 1547 * reduce lock contention at high levels 1548 * of the btree by dropping locks before 1549 * we read. Don't release the lock on the current 1550 * level because we need to walk this node to figure 1551 * out which blocks to read. 1552 */ 1553 btrfs_unlock_up_safe(p, level + 1); 1554 btrfs_set_path_blocking(p); 1555 1556 free_extent_buffer(tmp); 1557 if (p->reada) 1558 reada_for_search(root, p, level, slot, key->objectid); 1559 1560 btrfs_release_path(p); 1561 1562 ret = -EAGAIN; 1563 tmp = read_tree_block(root, blocknr, blocksize, 0); 1564 if (tmp) { 1565 /* 1566 * If the read above didn't mark this buffer up to date, 1567 * it will never end up being up to date. Set ret to EIO now 1568 * and give up so that our caller doesn't loop forever 1569 * on our EAGAINs. 1570 */ 1571 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 1572 ret = -EIO; 1573 free_extent_buffer(tmp); 1574 } 1575 return ret; 1576 } 1577 1578 /* 1579 * helper function for btrfs_search_slot. This does all of the checks 1580 * for node-level blocks and does any balancing required based on 1581 * the ins_len. 1582 * 1583 * If no extra work was required, zero is returned. If we had to 1584 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1585 * start over 1586 */ 1587 static int 1588 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1589 struct btrfs_root *root, struct btrfs_path *p, 1590 struct extent_buffer *b, int level, int ins_len, 1591 int *write_lock_level) 1592 { 1593 int ret; 1594 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1595 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1596 int sret; 1597 1598 if (*write_lock_level < level + 1) { 1599 *write_lock_level = level + 1; 1600 btrfs_release_path(p); 1601 goto again; 1602 } 1603 1604 sret = reada_for_balance(root, p, level); 1605 if (sret) 1606 goto again; 1607 1608 btrfs_set_path_blocking(p); 1609 sret = split_node(trans, root, p, level); 1610 btrfs_clear_path_blocking(p, NULL, 0); 1611 1612 BUG_ON(sret > 0); 1613 if (sret) { 1614 ret = sret; 1615 goto done; 1616 } 1617 b = p->nodes[level]; 1618 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1619 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 1620 int sret; 1621 1622 if (*write_lock_level < level + 1) { 1623 *write_lock_level = level + 1; 1624 btrfs_release_path(p); 1625 goto again; 1626 } 1627 1628 sret = reada_for_balance(root, p, level); 1629 if (sret) 1630 goto again; 1631 1632 btrfs_set_path_blocking(p); 1633 sret = balance_level(trans, root, p, level); 1634 btrfs_clear_path_blocking(p, NULL, 0); 1635 1636 if (sret) { 1637 ret = sret; 1638 goto done; 1639 } 1640 b = p->nodes[level]; 1641 if (!b) { 1642 btrfs_release_path(p); 1643 goto again; 1644 } 1645 BUG_ON(btrfs_header_nritems(b) == 1); 1646 } 1647 return 0; 1648 1649 again: 1650 ret = -EAGAIN; 1651 done: 1652 return ret; 1653 } 1654 1655 /* 1656 * look for key in the tree. path is filled in with nodes along the way 1657 * if key is found, we return zero and you can find the item in the leaf 1658 * level of the path (level 0) 1659 * 1660 * If the key isn't found, the path points to the slot where it should 1661 * be inserted, and 1 is returned. If there are other errors during the 1662 * search a negative error number is returned. 1663 * 1664 * if ins_len > 0, nodes and leaves will be split as we walk down the 1665 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1666 * possible) 1667 */ 1668 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1669 *root, struct btrfs_key *key, struct btrfs_path *p, int 1670 ins_len, int cow) 1671 { 1672 struct extent_buffer *b; 1673 int slot; 1674 int ret; 1675 int err; 1676 int level; 1677 int lowest_unlock = 1; 1678 int root_lock; 1679 /* everything at write_lock_level or lower must be write locked */ 1680 int write_lock_level = 0; 1681 u8 lowest_level = 0; 1682 int min_write_lock_level; 1683 1684 lowest_level = p->lowest_level; 1685 WARN_ON(lowest_level && ins_len > 0); 1686 WARN_ON(p->nodes[0] != NULL); 1687 1688 if (ins_len < 0) { 1689 lowest_unlock = 2; 1690 1691 /* when we are removing items, we might have to go up to level 1692 * two as we update tree pointers Make sure we keep write 1693 * for those levels as well 1694 */ 1695 write_lock_level = 2; 1696 } else if (ins_len > 0) { 1697 /* 1698 * for inserting items, make sure we have a write lock on 1699 * level 1 so we can update keys 1700 */ 1701 write_lock_level = 1; 1702 } 1703 1704 if (!cow) 1705 write_lock_level = -1; 1706 1707 if (cow && (p->keep_locks || p->lowest_level)) 1708 write_lock_level = BTRFS_MAX_LEVEL; 1709 1710 min_write_lock_level = write_lock_level; 1711 1712 again: 1713 /* 1714 * we try very hard to do read locks on the root 1715 */ 1716 root_lock = BTRFS_READ_LOCK; 1717 level = 0; 1718 if (p->search_commit_root) { 1719 /* 1720 * the commit roots are read only 1721 * so we always do read locks 1722 */ 1723 b = root->commit_root; 1724 extent_buffer_get(b); 1725 level = btrfs_header_level(b); 1726 if (!p->skip_locking) 1727 btrfs_tree_read_lock(b); 1728 } else { 1729 if (p->skip_locking) { 1730 b = btrfs_root_node(root); 1731 level = btrfs_header_level(b); 1732 } else { 1733 /* we don't know the level of the root node 1734 * until we actually have it read locked 1735 */ 1736 b = btrfs_read_lock_root_node(root); 1737 level = btrfs_header_level(b); 1738 if (level <= write_lock_level) { 1739 /* whoops, must trade for write lock */ 1740 btrfs_tree_read_unlock(b); 1741 free_extent_buffer(b); 1742 b = btrfs_lock_root_node(root); 1743 root_lock = BTRFS_WRITE_LOCK; 1744 1745 /* the level might have changed, check again */ 1746 level = btrfs_header_level(b); 1747 } 1748 } 1749 } 1750 p->nodes[level] = b; 1751 if (!p->skip_locking) 1752 p->locks[level] = root_lock; 1753 1754 while (b) { 1755 level = btrfs_header_level(b); 1756 1757 /* 1758 * setup the path here so we can release it under lock 1759 * contention with the cow code 1760 */ 1761 if (cow) { 1762 /* 1763 * if we don't really need to cow this block 1764 * then we don't want to set the path blocking, 1765 * so we test it here 1766 */ 1767 if (!should_cow_block(trans, root, b)) 1768 goto cow_done; 1769 1770 btrfs_set_path_blocking(p); 1771 1772 /* 1773 * must have write locks on this node and the 1774 * parent 1775 */ 1776 if (level + 1 > write_lock_level) { 1777 write_lock_level = level + 1; 1778 btrfs_release_path(p); 1779 goto again; 1780 } 1781 1782 err = btrfs_cow_block(trans, root, b, 1783 p->nodes[level + 1], 1784 p->slots[level + 1], &b); 1785 if (err) { 1786 ret = err; 1787 goto done; 1788 } 1789 } 1790 cow_done: 1791 BUG_ON(!cow && ins_len); 1792 1793 p->nodes[level] = b; 1794 btrfs_clear_path_blocking(p, NULL, 0); 1795 1796 /* 1797 * we have a lock on b and as long as we aren't changing 1798 * the tree, there is no way to for the items in b to change. 1799 * It is safe to drop the lock on our parent before we 1800 * go through the expensive btree search on b. 1801 * 1802 * If cow is true, then we might be changing slot zero, 1803 * which may require changing the parent. So, we can't 1804 * drop the lock until after we know which slot we're 1805 * operating on. 1806 */ 1807 if (!cow) 1808 btrfs_unlock_up_safe(p, level + 1); 1809 1810 ret = bin_search(b, key, level, &slot); 1811 1812 if (level != 0) { 1813 int dec = 0; 1814 if (ret && slot > 0) { 1815 dec = 1; 1816 slot -= 1; 1817 } 1818 p->slots[level] = slot; 1819 err = setup_nodes_for_search(trans, root, p, b, level, 1820 ins_len, &write_lock_level); 1821 if (err == -EAGAIN) 1822 goto again; 1823 if (err) { 1824 ret = err; 1825 goto done; 1826 } 1827 b = p->nodes[level]; 1828 slot = p->slots[level]; 1829 1830 /* 1831 * slot 0 is special, if we change the key 1832 * we have to update the parent pointer 1833 * which means we must have a write lock 1834 * on the parent 1835 */ 1836 if (slot == 0 && cow && 1837 write_lock_level < level + 1) { 1838 write_lock_level = level + 1; 1839 btrfs_release_path(p); 1840 goto again; 1841 } 1842 1843 unlock_up(p, level, lowest_unlock, 1844 min_write_lock_level, &write_lock_level); 1845 1846 if (level == lowest_level) { 1847 if (dec) 1848 p->slots[level]++; 1849 goto done; 1850 } 1851 1852 err = read_block_for_search(trans, root, p, 1853 &b, level, slot, key); 1854 if (err == -EAGAIN) 1855 goto again; 1856 if (err) { 1857 ret = err; 1858 goto done; 1859 } 1860 1861 if (!p->skip_locking) { 1862 level = btrfs_header_level(b); 1863 if (level <= write_lock_level) { 1864 err = btrfs_try_tree_write_lock(b); 1865 if (!err) { 1866 btrfs_set_path_blocking(p); 1867 btrfs_tree_lock(b); 1868 btrfs_clear_path_blocking(p, b, 1869 BTRFS_WRITE_LOCK); 1870 } 1871 p->locks[level] = BTRFS_WRITE_LOCK; 1872 } else { 1873 err = btrfs_try_tree_read_lock(b); 1874 if (!err) { 1875 btrfs_set_path_blocking(p); 1876 btrfs_tree_read_lock(b); 1877 btrfs_clear_path_blocking(p, b, 1878 BTRFS_READ_LOCK); 1879 } 1880 p->locks[level] = BTRFS_READ_LOCK; 1881 } 1882 p->nodes[level] = b; 1883 } 1884 } else { 1885 p->slots[level] = slot; 1886 if (ins_len > 0 && 1887 btrfs_leaf_free_space(root, b) < ins_len) { 1888 if (write_lock_level < 1) { 1889 write_lock_level = 1; 1890 btrfs_release_path(p); 1891 goto again; 1892 } 1893 1894 btrfs_set_path_blocking(p); 1895 err = split_leaf(trans, root, key, 1896 p, ins_len, ret == 0); 1897 btrfs_clear_path_blocking(p, NULL, 0); 1898 1899 BUG_ON(err > 0); 1900 if (err) { 1901 ret = err; 1902 goto done; 1903 } 1904 } 1905 if (!p->search_for_split) 1906 unlock_up(p, level, lowest_unlock, 1907 min_write_lock_level, &write_lock_level); 1908 goto done; 1909 } 1910 } 1911 ret = 1; 1912 done: 1913 /* 1914 * we don't really know what they plan on doing with the path 1915 * from here on, so for now just mark it as blocking 1916 */ 1917 if (!p->leave_spinning) 1918 btrfs_set_path_blocking(p); 1919 if (ret < 0) 1920 btrfs_release_path(p); 1921 return ret; 1922 } 1923 1924 /* 1925 * adjust the pointers going up the tree, starting at level 1926 * making sure the right key of each node is points to 'key'. 1927 * This is used after shifting pointers to the left, so it stops 1928 * fixing up pointers when a given leaf/node is not in slot 0 of the 1929 * higher levels 1930 * 1931 */ 1932 static void fixup_low_keys(struct btrfs_trans_handle *trans, 1933 struct btrfs_root *root, struct btrfs_path *path, 1934 struct btrfs_disk_key *key, int level) 1935 { 1936 int i; 1937 struct extent_buffer *t; 1938 1939 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1940 int tslot = path->slots[i]; 1941 if (!path->nodes[i]) 1942 break; 1943 t = path->nodes[i]; 1944 btrfs_set_node_key(t, key, tslot); 1945 btrfs_mark_buffer_dirty(path->nodes[i]); 1946 if (tslot != 0) 1947 break; 1948 } 1949 } 1950 1951 /* 1952 * update item key. 1953 * 1954 * This function isn't completely safe. It's the caller's responsibility 1955 * that the new key won't break the order 1956 */ 1957 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1958 struct btrfs_root *root, struct btrfs_path *path, 1959 struct btrfs_key *new_key) 1960 { 1961 struct btrfs_disk_key disk_key; 1962 struct extent_buffer *eb; 1963 int slot; 1964 1965 eb = path->nodes[0]; 1966 slot = path->slots[0]; 1967 if (slot > 0) { 1968 btrfs_item_key(eb, &disk_key, slot - 1); 1969 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 1970 } 1971 if (slot < btrfs_header_nritems(eb) - 1) { 1972 btrfs_item_key(eb, &disk_key, slot + 1); 1973 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 1974 } 1975 1976 btrfs_cpu_key_to_disk(&disk_key, new_key); 1977 btrfs_set_item_key(eb, &disk_key, slot); 1978 btrfs_mark_buffer_dirty(eb); 1979 if (slot == 0) 1980 fixup_low_keys(trans, root, path, &disk_key, 1); 1981 } 1982 1983 /* 1984 * try to push data from one node into the next node left in the 1985 * tree. 1986 * 1987 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1988 * error, and > 0 if there was no room in the left hand block. 1989 */ 1990 static int push_node_left(struct btrfs_trans_handle *trans, 1991 struct btrfs_root *root, struct extent_buffer *dst, 1992 struct extent_buffer *src, int empty) 1993 { 1994 int push_items = 0; 1995 int src_nritems; 1996 int dst_nritems; 1997 int ret = 0; 1998 1999 src_nritems = btrfs_header_nritems(src); 2000 dst_nritems = btrfs_header_nritems(dst); 2001 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2002 WARN_ON(btrfs_header_generation(src) != trans->transid); 2003 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2004 2005 if (!empty && src_nritems <= 8) 2006 return 1; 2007 2008 if (push_items <= 0) 2009 return 1; 2010 2011 if (empty) { 2012 push_items = min(src_nritems, push_items); 2013 if (push_items < src_nritems) { 2014 /* leave at least 8 pointers in the node if 2015 * we aren't going to empty it 2016 */ 2017 if (src_nritems - push_items < 8) { 2018 if (push_items <= 8) 2019 return 1; 2020 push_items -= 8; 2021 } 2022 } 2023 } else 2024 push_items = min(src_nritems - 8, push_items); 2025 2026 copy_extent_buffer(dst, src, 2027 btrfs_node_key_ptr_offset(dst_nritems), 2028 btrfs_node_key_ptr_offset(0), 2029 push_items * sizeof(struct btrfs_key_ptr)); 2030 2031 if (push_items < src_nritems) { 2032 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2033 btrfs_node_key_ptr_offset(push_items), 2034 (src_nritems - push_items) * 2035 sizeof(struct btrfs_key_ptr)); 2036 } 2037 btrfs_set_header_nritems(src, src_nritems - push_items); 2038 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2039 btrfs_mark_buffer_dirty(src); 2040 btrfs_mark_buffer_dirty(dst); 2041 2042 return ret; 2043 } 2044 2045 /* 2046 * try to push data from one node into the next node right in the 2047 * tree. 2048 * 2049 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2050 * error, and > 0 if there was no room in the right hand block. 2051 * 2052 * this will only push up to 1/2 the contents of the left node over 2053 */ 2054 static int balance_node_right(struct btrfs_trans_handle *trans, 2055 struct btrfs_root *root, 2056 struct extent_buffer *dst, 2057 struct extent_buffer *src) 2058 { 2059 int push_items = 0; 2060 int max_push; 2061 int src_nritems; 2062 int dst_nritems; 2063 int ret = 0; 2064 2065 WARN_ON(btrfs_header_generation(src) != trans->transid); 2066 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2067 2068 src_nritems = btrfs_header_nritems(src); 2069 dst_nritems = btrfs_header_nritems(dst); 2070 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2071 if (push_items <= 0) 2072 return 1; 2073 2074 if (src_nritems < 4) 2075 return 1; 2076 2077 max_push = src_nritems / 2 + 1; 2078 /* don't try to empty the node */ 2079 if (max_push >= src_nritems) 2080 return 1; 2081 2082 if (max_push < push_items) 2083 push_items = max_push; 2084 2085 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2086 btrfs_node_key_ptr_offset(0), 2087 (dst_nritems) * 2088 sizeof(struct btrfs_key_ptr)); 2089 2090 copy_extent_buffer(dst, src, 2091 btrfs_node_key_ptr_offset(0), 2092 btrfs_node_key_ptr_offset(src_nritems - push_items), 2093 push_items * sizeof(struct btrfs_key_ptr)); 2094 2095 btrfs_set_header_nritems(src, src_nritems - push_items); 2096 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2097 2098 btrfs_mark_buffer_dirty(src); 2099 btrfs_mark_buffer_dirty(dst); 2100 2101 return ret; 2102 } 2103 2104 /* 2105 * helper function to insert a new root level in the tree. 2106 * A new node is allocated, and a single item is inserted to 2107 * point to the existing root 2108 * 2109 * returns zero on success or < 0 on failure. 2110 */ 2111 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2112 struct btrfs_root *root, 2113 struct btrfs_path *path, int level) 2114 { 2115 u64 lower_gen; 2116 struct extent_buffer *lower; 2117 struct extent_buffer *c; 2118 struct extent_buffer *old; 2119 struct btrfs_disk_key lower_key; 2120 2121 BUG_ON(path->nodes[level]); 2122 BUG_ON(path->nodes[level-1] != root->node); 2123 2124 lower = path->nodes[level-1]; 2125 if (level == 1) 2126 btrfs_item_key(lower, &lower_key, 0); 2127 else 2128 btrfs_node_key(lower, &lower_key, 0); 2129 2130 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2131 root->root_key.objectid, &lower_key, 2132 level, root->node->start, 0, 0); 2133 if (IS_ERR(c)) 2134 return PTR_ERR(c); 2135 2136 root_add_used(root, root->nodesize); 2137 2138 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2139 btrfs_set_header_nritems(c, 1); 2140 btrfs_set_header_level(c, level); 2141 btrfs_set_header_bytenr(c, c->start); 2142 btrfs_set_header_generation(c, trans->transid); 2143 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2144 btrfs_set_header_owner(c, root->root_key.objectid); 2145 2146 write_extent_buffer(c, root->fs_info->fsid, 2147 (unsigned long)btrfs_header_fsid(c), 2148 BTRFS_FSID_SIZE); 2149 2150 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2151 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2152 BTRFS_UUID_SIZE); 2153 2154 btrfs_set_node_key(c, &lower_key, 0); 2155 btrfs_set_node_blockptr(c, 0, lower->start); 2156 lower_gen = btrfs_header_generation(lower); 2157 WARN_ON(lower_gen != trans->transid); 2158 2159 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2160 2161 btrfs_mark_buffer_dirty(c); 2162 2163 old = root->node; 2164 rcu_assign_pointer(root->node, c); 2165 2166 /* the super has an extra ref to root->node */ 2167 free_extent_buffer(old); 2168 2169 add_root_to_dirty_list(root); 2170 extent_buffer_get(c); 2171 path->nodes[level] = c; 2172 path->locks[level] = BTRFS_WRITE_LOCK; 2173 path->slots[level] = 0; 2174 return 0; 2175 } 2176 2177 /* 2178 * worker function to insert a single pointer in a node. 2179 * the node should have enough room for the pointer already 2180 * 2181 * slot and level indicate where you want the key to go, and 2182 * blocknr is the block the key points to. 2183 */ 2184 static void insert_ptr(struct btrfs_trans_handle *trans, 2185 struct btrfs_root *root, struct btrfs_path *path, 2186 struct btrfs_disk_key *key, u64 bytenr, 2187 int slot, int level) 2188 { 2189 struct extent_buffer *lower; 2190 int nritems; 2191 2192 BUG_ON(!path->nodes[level]); 2193 btrfs_assert_tree_locked(path->nodes[level]); 2194 lower = path->nodes[level]; 2195 nritems = btrfs_header_nritems(lower); 2196 BUG_ON(slot > nritems); 2197 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 2198 if (slot != nritems) { 2199 memmove_extent_buffer(lower, 2200 btrfs_node_key_ptr_offset(slot + 1), 2201 btrfs_node_key_ptr_offset(slot), 2202 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2203 } 2204 btrfs_set_node_key(lower, key, slot); 2205 btrfs_set_node_blockptr(lower, slot, bytenr); 2206 WARN_ON(trans->transid == 0); 2207 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2208 btrfs_set_header_nritems(lower, nritems + 1); 2209 btrfs_mark_buffer_dirty(lower); 2210 } 2211 2212 /* 2213 * split the node at the specified level in path in two. 2214 * The path is corrected to point to the appropriate node after the split 2215 * 2216 * Before splitting this tries to make some room in the node by pushing 2217 * left and right, if either one works, it returns right away. 2218 * 2219 * returns 0 on success and < 0 on failure 2220 */ 2221 static noinline int split_node(struct btrfs_trans_handle *trans, 2222 struct btrfs_root *root, 2223 struct btrfs_path *path, int level) 2224 { 2225 struct extent_buffer *c; 2226 struct extent_buffer *split; 2227 struct btrfs_disk_key disk_key; 2228 int mid; 2229 int ret; 2230 u32 c_nritems; 2231 2232 c = path->nodes[level]; 2233 WARN_ON(btrfs_header_generation(c) != trans->transid); 2234 if (c == root->node) { 2235 /* trying to split the root, lets make a new one */ 2236 ret = insert_new_root(trans, root, path, level + 1); 2237 if (ret) 2238 return ret; 2239 } else { 2240 ret = push_nodes_for_insert(trans, root, path, level); 2241 c = path->nodes[level]; 2242 if (!ret && btrfs_header_nritems(c) < 2243 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2244 return 0; 2245 if (ret < 0) 2246 return ret; 2247 } 2248 2249 c_nritems = btrfs_header_nritems(c); 2250 mid = (c_nritems + 1) / 2; 2251 btrfs_node_key(c, &disk_key, mid); 2252 2253 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2254 root->root_key.objectid, 2255 &disk_key, level, c->start, 0, 0); 2256 if (IS_ERR(split)) 2257 return PTR_ERR(split); 2258 2259 root_add_used(root, root->nodesize); 2260 2261 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2262 btrfs_set_header_level(split, btrfs_header_level(c)); 2263 btrfs_set_header_bytenr(split, split->start); 2264 btrfs_set_header_generation(split, trans->transid); 2265 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2266 btrfs_set_header_owner(split, root->root_key.objectid); 2267 write_extent_buffer(split, root->fs_info->fsid, 2268 (unsigned long)btrfs_header_fsid(split), 2269 BTRFS_FSID_SIZE); 2270 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2271 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2272 BTRFS_UUID_SIZE); 2273 2274 2275 copy_extent_buffer(split, c, 2276 btrfs_node_key_ptr_offset(0), 2277 btrfs_node_key_ptr_offset(mid), 2278 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2279 btrfs_set_header_nritems(split, c_nritems - mid); 2280 btrfs_set_header_nritems(c, mid); 2281 ret = 0; 2282 2283 btrfs_mark_buffer_dirty(c); 2284 btrfs_mark_buffer_dirty(split); 2285 2286 insert_ptr(trans, root, path, &disk_key, split->start, 2287 path->slots[level + 1] + 1, level + 1); 2288 2289 if (path->slots[level] >= mid) { 2290 path->slots[level] -= mid; 2291 btrfs_tree_unlock(c); 2292 free_extent_buffer(c); 2293 path->nodes[level] = split; 2294 path->slots[level + 1] += 1; 2295 } else { 2296 btrfs_tree_unlock(split); 2297 free_extent_buffer(split); 2298 } 2299 return ret; 2300 } 2301 2302 /* 2303 * how many bytes are required to store the items in a leaf. start 2304 * and nr indicate which items in the leaf to check. This totals up the 2305 * space used both by the item structs and the item data 2306 */ 2307 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2308 { 2309 int data_len; 2310 int nritems = btrfs_header_nritems(l); 2311 int end = min(nritems, start + nr) - 1; 2312 2313 if (!nr) 2314 return 0; 2315 data_len = btrfs_item_end_nr(l, start); 2316 data_len = data_len - btrfs_item_offset_nr(l, end); 2317 data_len += sizeof(struct btrfs_item) * nr; 2318 WARN_ON(data_len < 0); 2319 return data_len; 2320 } 2321 2322 /* 2323 * The space between the end of the leaf items and 2324 * the start of the leaf data. IOW, how much room 2325 * the leaf has left for both items and data 2326 */ 2327 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2328 struct extent_buffer *leaf) 2329 { 2330 int nritems = btrfs_header_nritems(leaf); 2331 int ret; 2332 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2333 if (ret < 0) { 2334 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2335 "used %d nritems %d\n", 2336 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2337 leaf_space_used(leaf, 0, nritems), nritems); 2338 } 2339 return ret; 2340 } 2341 2342 /* 2343 * min slot controls the lowest index we're willing to push to the 2344 * right. We'll push up to and including min_slot, but no lower 2345 */ 2346 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2347 struct btrfs_root *root, 2348 struct btrfs_path *path, 2349 int data_size, int empty, 2350 struct extent_buffer *right, 2351 int free_space, u32 left_nritems, 2352 u32 min_slot) 2353 { 2354 struct extent_buffer *left = path->nodes[0]; 2355 struct extent_buffer *upper = path->nodes[1]; 2356 struct btrfs_map_token token; 2357 struct btrfs_disk_key disk_key; 2358 int slot; 2359 u32 i; 2360 int push_space = 0; 2361 int push_items = 0; 2362 struct btrfs_item *item; 2363 u32 nr; 2364 u32 right_nritems; 2365 u32 data_end; 2366 u32 this_item_size; 2367 2368 btrfs_init_map_token(&token); 2369 2370 if (empty) 2371 nr = 0; 2372 else 2373 nr = max_t(u32, 1, min_slot); 2374 2375 if (path->slots[0] >= left_nritems) 2376 push_space += data_size; 2377 2378 slot = path->slots[1]; 2379 i = left_nritems - 1; 2380 while (i >= nr) { 2381 item = btrfs_item_nr(left, i); 2382 2383 if (!empty && push_items > 0) { 2384 if (path->slots[0] > i) 2385 break; 2386 if (path->slots[0] == i) { 2387 int space = btrfs_leaf_free_space(root, left); 2388 if (space + push_space * 2 > free_space) 2389 break; 2390 } 2391 } 2392 2393 if (path->slots[0] == i) 2394 push_space += data_size; 2395 2396 this_item_size = btrfs_item_size(left, item); 2397 if (this_item_size + sizeof(*item) + push_space > free_space) 2398 break; 2399 2400 push_items++; 2401 push_space += this_item_size + sizeof(*item); 2402 if (i == 0) 2403 break; 2404 i--; 2405 } 2406 2407 if (push_items == 0) 2408 goto out_unlock; 2409 2410 if (!empty && push_items == left_nritems) 2411 WARN_ON(1); 2412 2413 /* push left to right */ 2414 right_nritems = btrfs_header_nritems(right); 2415 2416 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2417 push_space -= leaf_data_end(root, left); 2418 2419 /* make room in the right data area */ 2420 data_end = leaf_data_end(root, right); 2421 memmove_extent_buffer(right, 2422 btrfs_leaf_data(right) + data_end - push_space, 2423 btrfs_leaf_data(right) + data_end, 2424 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2425 2426 /* copy from the left data area */ 2427 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2428 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2429 btrfs_leaf_data(left) + leaf_data_end(root, left), 2430 push_space); 2431 2432 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2433 btrfs_item_nr_offset(0), 2434 right_nritems * sizeof(struct btrfs_item)); 2435 2436 /* copy the items from left to right */ 2437 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2438 btrfs_item_nr_offset(left_nritems - push_items), 2439 push_items * sizeof(struct btrfs_item)); 2440 2441 /* update the item pointers */ 2442 right_nritems += push_items; 2443 btrfs_set_header_nritems(right, right_nritems); 2444 push_space = BTRFS_LEAF_DATA_SIZE(root); 2445 for (i = 0; i < right_nritems; i++) { 2446 item = btrfs_item_nr(right, i); 2447 push_space -= btrfs_token_item_size(right, item, &token); 2448 btrfs_set_token_item_offset(right, item, push_space, &token); 2449 } 2450 2451 left_nritems -= push_items; 2452 btrfs_set_header_nritems(left, left_nritems); 2453 2454 if (left_nritems) 2455 btrfs_mark_buffer_dirty(left); 2456 else 2457 clean_tree_block(trans, root, left); 2458 2459 btrfs_mark_buffer_dirty(right); 2460 2461 btrfs_item_key(right, &disk_key, 0); 2462 btrfs_set_node_key(upper, &disk_key, slot + 1); 2463 btrfs_mark_buffer_dirty(upper); 2464 2465 /* then fixup the leaf pointer in the path */ 2466 if (path->slots[0] >= left_nritems) { 2467 path->slots[0] -= left_nritems; 2468 if (btrfs_header_nritems(path->nodes[0]) == 0) 2469 clean_tree_block(trans, root, path->nodes[0]); 2470 btrfs_tree_unlock(path->nodes[0]); 2471 free_extent_buffer(path->nodes[0]); 2472 path->nodes[0] = right; 2473 path->slots[1] += 1; 2474 } else { 2475 btrfs_tree_unlock(right); 2476 free_extent_buffer(right); 2477 } 2478 return 0; 2479 2480 out_unlock: 2481 btrfs_tree_unlock(right); 2482 free_extent_buffer(right); 2483 return 1; 2484 } 2485 2486 /* 2487 * push some data in the path leaf to the right, trying to free up at 2488 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2489 * 2490 * returns 1 if the push failed because the other node didn't have enough 2491 * room, 0 if everything worked out and < 0 if there were major errors. 2492 * 2493 * this will push starting from min_slot to the end of the leaf. It won't 2494 * push any slot lower than min_slot 2495 */ 2496 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2497 *root, struct btrfs_path *path, 2498 int min_data_size, int data_size, 2499 int empty, u32 min_slot) 2500 { 2501 struct extent_buffer *left = path->nodes[0]; 2502 struct extent_buffer *right; 2503 struct extent_buffer *upper; 2504 int slot; 2505 int free_space; 2506 u32 left_nritems; 2507 int ret; 2508 2509 if (!path->nodes[1]) 2510 return 1; 2511 2512 slot = path->slots[1]; 2513 upper = path->nodes[1]; 2514 if (slot >= btrfs_header_nritems(upper) - 1) 2515 return 1; 2516 2517 btrfs_assert_tree_locked(path->nodes[1]); 2518 2519 right = read_node_slot(root, upper, slot + 1); 2520 if (right == NULL) 2521 return 1; 2522 2523 btrfs_tree_lock(right); 2524 btrfs_set_lock_blocking(right); 2525 2526 free_space = btrfs_leaf_free_space(root, right); 2527 if (free_space < data_size) 2528 goto out_unlock; 2529 2530 /* cow and double check */ 2531 ret = btrfs_cow_block(trans, root, right, upper, 2532 slot + 1, &right); 2533 if (ret) 2534 goto out_unlock; 2535 2536 free_space = btrfs_leaf_free_space(root, right); 2537 if (free_space < data_size) 2538 goto out_unlock; 2539 2540 left_nritems = btrfs_header_nritems(left); 2541 if (left_nritems == 0) 2542 goto out_unlock; 2543 2544 return __push_leaf_right(trans, root, path, min_data_size, empty, 2545 right, free_space, left_nritems, min_slot); 2546 out_unlock: 2547 btrfs_tree_unlock(right); 2548 free_extent_buffer(right); 2549 return 1; 2550 } 2551 2552 /* 2553 * push some data in the path leaf to the left, trying to free up at 2554 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2555 * 2556 * max_slot can put a limit on how far into the leaf we'll push items. The 2557 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2558 * items 2559 */ 2560 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2561 struct btrfs_root *root, 2562 struct btrfs_path *path, int data_size, 2563 int empty, struct extent_buffer *left, 2564 int free_space, u32 right_nritems, 2565 u32 max_slot) 2566 { 2567 struct btrfs_disk_key disk_key; 2568 struct extent_buffer *right = path->nodes[0]; 2569 int i; 2570 int push_space = 0; 2571 int push_items = 0; 2572 struct btrfs_item *item; 2573 u32 old_left_nritems; 2574 u32 nr; 2575 int ret = 0; 2576 u32 this_item_size; 2577 u32 old_left_item_size; 2578 struct btrfs_map_token token; 2579 2580 btrfs_init_map_token(&token); 2581 2582 if (empty) 2583 nr = min(right_nritems, max_slot); 2584 else 2585 nr = min(right_nritems - 1, max_slot); 2586 2587 for (i = 0; i < nr; i++) { 2588 item = btrfs_item_nr(right, i); 2589 2590 if (!empty && push_items > 0) { 2591 if (path->slots[0] < i) 2592 break; 2593 if (path->slots[0] == i) { 2594 int space = btrfs_leaf_free_space(root, right); 2595 if (space + push_space * 2 > free_space) 2596 break; 2597 } 2598 } 2599 2600 if (path->slots[0] == i) 2601 push_space += data_size; 2602 2603 this_item_size = btrfs_item_size(right, item); 2604 if (this_item_size + sizeof(*item) + push_space > free_space) 2605 break; 2606 2607 push_items++; 2608 push_space += this_item_size + sizeof(*item); 2609 } 2610 2611 if (push_items == 0) { 2612 ret = 1; 2613 goto out; 2614 } 2615 if (!empty && push_items == btrfs_header_nritems(right)) 2616 WARN_ON(1); 2617 2618 /* push data from right to left */ 2619 copy_extent_buffer(left, right, 2620 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2621 btrfs_item_nr_offset(0), 2622 push_items * sizeof(struct btrfs_item)); 2623 2624 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2625 btrfs_item_offset_nr(right, push_items - 1); 2626 2627 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2628 leaf_data_end(root, left) - push_space, 2629 btrfs_leaf_data(right) + 2630 btrfs_item_offset_nr(right, push_items - 1), 2631 push_space); 2632 old_left_nritems = btrfs_header_nritems(left); 2633 BUG_ON(old_left_nritems <= 0); 2634 2635 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2636 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2637 u32 ioff; 2638 2639 item = btrfs_item_nr(left, i); 2640 2641 ioff = btrfs_token_item_offset(left, item, &token); 2642 btrfs_set_token_item_offset(left, item, 2643 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 2644 &token); 2645 } 2646 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2647 2648 /* fixup right node */ 2649 if (push_items > right_nritems) { 2650 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2651 right_nritems); 2652 WARN_ON(1); 2653 } 2654 2655 if (push_items < right_nritems) { 2656 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2657 leaf_data_end(root, right); 2658 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2659 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2660 btrfs_leaf_data(right) + 2661 leaf_data_end(root, right), push_space); 2662 2663 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2664 btrfs_item_nr_offset(push_items), 2665 (btrfs_header_nritems(right) - push_items) * 2666 sizeof(struct btrfs_item)); 2667 } 2668 right_nritems -= push_items; 2669 btrfs_set_header_nritems(right, right_nritems); 2670 push_space = BTRFS_LEAF_DATA_SIZE(root); 2671 for (i = 0; i < right_nritems; i++) { 2672 item = btrfs_item_nr(right, i); 2673 2674 push_space = push_space - btrfs_token_item_size(right, 2675 item, &token); 2676 btrfs_set_token_item_offset(right, item, push_space, &token); 2677 } 2678 2679 btrfs_mark_buffer_dirty(left); 2680 if (right_nritems) 2681 btrfs_mark_buffer_dirty(right); 2682 else 2683 clean_tree_block(trans, root, right); 2684 2685 btrfs_item_key(right, &disk_key, 0); 2686 fixup_low_keys(trans, root, path, &disk_key, 1); 2687 2688 /* then fixup the leaf pointer in the path */ 2689 if (path->slots[0] < push_items) { 2690 path->slots[0] += old_left_nritems; 2691 btrfs_tree_unlock(path->nodes[0]); 2692 free_extent_buffer(path->nodes[0]); 2693 path->nodes[0] = left; 2694 path->slots[1] -= 1; 2695 } else { 2696 btrfs_tree_unlock(left); 2697 free_extent_buffer(left); 2698 path->slots[0] -= push_items; 2699 } 2700 BUG_ON(path->slots[0] < 0); 2701 return ret; 2702 out: 2703 btrfs_tree_unlock(left); 2704 free_extent_buffer(left); 2705 return ret; 2706 } 2707 2708 /* 2709 * push some data in the path leaf to the left, trying to free up at 2710 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2711 * 2712 * max_slot can put a limit on how far into the leaf we'll push items. The 2713 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 2714 * items 2715 */ 2716 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2717 *root, struct btrfs_path *path, int min_data_size, 2718 int data_size, int empty, u32 max_slot) 2719 { 2720 struct extent_buffer *right = path->nodes[0]; 2721 struct extent_buffer *left; 2722 int slot; 2723 int free_space; 2724 u32 right_nritems; 2725 int ret = 0; 2726 2727 slot = path->slots[1]; 2728 if (slot == 0) 2729 return 1; 2730 if (!path->nodes[1]) 2731 return 1; 2732 2733 right_nritems = btrfs_header_nritems(right); 2734 if (right_nritems == 0) 2735 return 1; 2736 2737 btrfs_assert_tree_locked(path->nodes[1]); 2738 2739 left = read_node_slot(root, path->nodes[1], slot - 1); 2740 if (left == NULL) 2741 return 1; 2742 2743 btrfs_tree_lock(left); 2744 btrfs_set_lock_blocking(left); 2745 2746 free_space = btrfs_leaf_free_space(root, left); 2747 if (free_space < data_size) { 2748 ret = 1; 2749 goto out; 2750 } 2751 2752 /* cow and double check */ 2753 ret = btrfs_cow_block(trans, root, left, 2754 path->nodes[1], slot - 1, &left); 2755 if (ret) { 2756 /* we hit -ENOSPC, but it isn't fatal here */ 2757 if (ret == -ENOSPC) 2758 ret = 1; 2759 goto out; 2760 } 2761 2762 free_space = btrfs_leaf_free_space(root, left); 2763 if (free_space < data_size) { 2764 ret = 1; 2765 goto out; 2766 } 2767 2768 return __push_leaf_left(trans, root, path, min_data_size, 2769 empty, left, free_space, right_nritems, 2770 max_slot); 2771 out: 2772 btrfs_tree_unlock(left); 2773 free_extent_buffer(left); 2774 return ret; 2775 } 2776 2777 /* 2778 * split the path's leaf in two, making sure there is at least data_size 2779 * available for the resulting leaf level of the path. 2780 */ 2781 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 2782 struct btrfs_root *root, 2783 struct btrfs_path *path, 2784 struct extent_buffer *l, 2785 struct extent_buffer *right, 2786 int slot, int mid, int nritems) 2787 { 2788 int data_copy_size; 2789 int rt_data_off; 2790 int i; 2791 struct btrfs_disk_key disk_key; 2792 struct btrfs_map_token token; 2793 2794 btrfs_init_map_token(&token); 2795 2796 nritems = nritems - mid; 2797 btrfs_set_header_nritems(right, nritems); 2798 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2799 2800 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2801 btrfs_item_nr_offset(mid), 2802 nritems * sizeof(struct btrfs_item)); 2803 2804 copy_extent_buffer(right, l, 2805 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2806 data_copy_size, btrfs_leaf_data(l) + 2807 leaf_data_end(root, l), data_copy_size); 2808 2809 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2810 btrfs_item_end_nr(l, mid); 2811 2812 for (i = 0; i < nritems; i++) { 2813 struct btrfs_item *item = btrfs_item_nr(right, i); 2814 u32 ioff; 2815 2816 ioff = btrfs_token_item_offset(right, item, &token); 2817 btrfs_set_token_item_offset(right, item, 2818 ioff + rt_data_off, &token); 2819 } 2820 2821 btrfs_set_header_nritems(l, mid); 2822 btrfs_item_key(right, &disk_key, 0); 2823 insert_ptr(trans, root, path, &disk_key, right->start, 2824 path->slots[1] + 1, 1); 2825 2826 btrfs_mark_buffer_dirty(right); 2827 btrfs_mark_buffer_dirty(l); 2828 BUG_ON(path->slots[0] != slot); 2829 2830 if (mid <= slot) { 2831 btrfs_tree_unlock(path->nodes[0]); 2832 free_extent_buffer(path->nodes[0]); 2833 path->nodes[0] = right; 2834 path->slots[0] -= mid; 2835 path->slots[1] += 1; 2836 } else { 2837 btrfs_tree_unlock(right); 2838 free_extent_buffer(right); 2839 } 2840 2841 BUG_ON(path->slots[0] < 0); 2842 } 2843 2844 /* 2845 * double splits happen when we need to insert a big item in the middle 2846 * of a leaf. A double split can leave us with 3 mostly empty leaves: 2847 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 2848 * A B C 2849 * 2850 * We avoid this by trying to push the items on either side of our target 2851 * into the adjacent leaves. If all goes well we can avoid the double split 2852 * completely. 2853 */ 2854 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 2855 struct btrfs_root *root, 2856 struct btrfs_path *path, 2857 int data_size) 2858 { 2859 int ret; 2860 int progress = 0; 2861 int slot; 2862 u32 nritems; 2863 2864 slot = path->slots[0]; 2865 2866 /* 2867 * try to push all the items after our slot into the 2868 * right leaf 2869 */ 2870 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 2871 if (ret < 0) 2872 return ret; 2873 2874 if (ret == 0) 2875 progress++; 2876 2877 nritems = btrfs_header_nritems(path->nodes[0]); 2878 /* 2879 * our goal is to get our slot at the start or end of a leaf. If 2880 * we've done so we're done 2881 */ 2882 if (path->slots[0] == 0 || path->slots[0] == nritems) 2883 return 0; 2884 2885 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 2886 return 0; 2887 2888 /* try to push all the items before our slot into the next leaf */ 2889 slot = path->slots[0]; 2890 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 2891 if (ret < 0) 2892 return ret; 2893 2894 if (ret == 0) 2895 progress++; 2896 2897 if (progress) 2898 return 0; 2899 return 1; 2900 } 2901 2902 /* 2903 * split the path's leaf in two, making sure there is at least data_size 2904 * available for the resulting leaf level of the path. 2905 * 2906 * returns 0 if all went well and < 0 on failure. 2907 */ 2908 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2909 struct btrfs_root *root, 2910 struct btrfs_key *ins_key, 2911 struct btrfs_path *path, int data_size, 2912 int extend) 2913 { 2914 struct btrfs_disk_key disk_key; 2915 struct extent_buffer *l; 2916 u32 nritems; 2917 int mid; 2918 int slot; 2919 struct extent_buffer *right; 2920 int ret = 0; 2921 int wret; 2922 int split; 2923 int num_doubles = 0; 2924 int tried_avoid_double = 0; 2925 2926 l = path->nodes[0]; 2927 slot = path->slots[0]; 2928 if (extend && data_size + btrfs_item_size_nr(l, slot) + 2929 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 2930 return -EOVERFLOW; 2931 2932 /* first try to make some room by pushing left and right */ 2933 if (data_size) { 2934 wret = push_leaf_right(trans, root, path, data_size, 2935 data_size, 0, 0); 2936 if (wret < 0) 2937 return wret; 2938 if (wret) { 2939 wret = push_leaf_left(trans, root, path, data_size, 2940 data_size, 0, (u32)-1); 2941 if (wret < 0) 2942 return wret; 2943 } 2944 l = path->nodes[0]; 2945 2946 /* did the pushes work? */ 2947 if (btrfs_leaf_free_space(root, l) >= data_size) 2948 return 0; 2949 } 2950 2951 if (!path->nodes[1]) { 2952 ret = insert_new_root(trans, root, path, 1); 2953 if (ret) 2954 return ret; 2955 } 2956 again: 2957 split = 1; 2958 l = path->nodes[0]; 2959 slot = path->slots[0]; 2960 nritems = btrfs_header_nritems(l); 2961 mid = (nritems + 1) / 2; 2962 2963 if (mid <= slot) { 2964 if (nritems == 1 || 2965 leaf_space_used(l, mid, nritems - mid) + data_size > 2966 BTRFS_LEAF_DATA_SIZE(root)) { 2967 if (slot >= nritems) { 2968 split = 0; 2969 } else { 2970 mid = slot; 2971 if (mid != nritems && 2972 leaf_space_used(l, mid, nritems - mid) + 2973 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2974 if (data_size && !tried_avoid_double) 2975 goto push_for_double; 2976 split = 2; 2977 } 2978 } 2979 } 2980 } else { 2981 if (leaf_space_used(l, 0, mid) + data_size > 2982 BTRFS_LEAF_DATA_SIZE(root)) { 2983 if (!extend && data_size && slot == 0) { 2984 split = 0; 2985 } else if ((extend || !data_size) && slot == 0) { 2986 mid = 1; 2987 } else { 2988 mid = slot; 2989 if (mid != nritems && 2990 leaf_space_used(l, mid, nritems - mid) + 2991 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 2992 if (data_size && !tried_avoid_double) 2993 goto push_for_double; 2994 split = 2 ; 2995 } 2996 } 2997 } 2998 } 2999 3000 if (split == 0) 3001 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3002 else 3003 btrfs_item_key(l, &disk_key, mid); 3004 3005 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3006 root->root_key.objectid, 3007 &disk_key, 0, l->start, 0, 0); 3008 if (IS_ERR(right)) 3009 return PTR_ERR(right); 3010 3011 root_add_used(root, root->leafsize); 3012 3013 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3014 btrfs_set_header_bytenr(right, right->start); 3015 btrfs_set_header_generation(right, trans->transid); 3016 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3017 btrfs_set_header_owner(right, root->root_key.objectid); 3018 btrfs_set_header_level(right, 0); 3019 write_extent_buffer(right, root->fs_info->fsid, 3020 (unsigned long)btrfs_header_fsid(right), 3021 BTRFS_FSID_SIZE); 3022 3023 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3024 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3025 BTRFS_UUID_SIZE); 3026 3027 if (split == 0) { 3028 if (mid <= slot) { 3029 btrfs_set_header_nritems(right, 0); 3030 insert_ptr(trans, root, path, &disk_key, right->start, 3031 path->slots[1] + 1, 1); 3032 btrfs_tree_unlock(path->nodes[0]); 3033 free_extent_buffer(path->nodes[0]); 3034 path->nodes[0] = right; 3035 path->slots[0] = 0; 3036 path->slots[1] += 1; 3037 } else { 3038 btrfs_set_header_nritems(right, 0); 3039 insert_ptr(trans, root, path, &disk_key, right->start, 3040 path->slots[1], 1); 3041 btrfs_tree_unlock(path->nodes[0]); 3042 free_extent_buffer(path->nodes[0]); 3043 path->nodes[0] = right; 3044 path->slots[0] = 0; 3045 if (path->slots[1] == 0) 3046 fixup_low_keys(trans, root, path, 3047 &disk_key, 1); 3048 } 3049 btrfs_mark_buffer_dirty(right); 3050 return ret; 3051 } 3052 3053 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3054 3055 if (split == 2) { 3056 BUG_ON(num_doubles != 0); 3057 num_doubles++; 3058 goto again; 3059 } 3060 3061 return 0; 3062 3063 push_for_double: 3064 push_for_double_split(trans, root, path, data_size); 3065 tried_avoid_double = 1; 3066 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3067 return 0; 3068 goto again; 3069 } 3070 3071 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3072 struct btrfs_root *root, 3073 struct btrfs_path *path, int ins_len) 3074 { 3075 struct btrfs_key key; 3076 struct extent_buffer *leaf; 3077 struct btrfs_file_extent_item *fi; 3078 u64 extent_len = 0; 3079 u32 item_size; 3080 int ret; 3081 3082 leaf = path->nodes[0]; 3083 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3084 3085 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3086 key.type != BTRFS_EXTENT_CSUM_KEY); 3087 3088 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3089 return 0; 3090 3091 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3092 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3093 fi = btrfs_item_ptr(leaf, path->slots[0], 3094 struct btrfs_file_extent_item); 3095 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3096 } 3097 btrfs_release_path(path); 3098 3099 path->keep_locks = 1; 3100 path->search_for_split = 1; 3101 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3102 path->search_for_split = 0; 3103 if (ret < 0) 3104 goto err; 3105 3106 ret = -EAGAIN; 3107 leaf = path->nodes[0]; 3108 /* if our item isn't there or got smaller, return now */ 3109 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3110 goto err; 3111 3112 /* the leaf has changed, it now has room. return now */ 3113 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3114 goto err; 3115 3116 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3117 fi = btrfs_item_ptr(leaf, path->slots[0], 3118 struct btrfs_file_extent_item); 3119 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3120 goto err; 3121 } 3122 3123 btrfs_set_path_blocking(path); 3124 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3125 if (ret) 3126 goto err; 3127 3128 path->keep_locks = 0; 3129 btrfs_unlock_up_safe(path, 1); 3130 return 0; 3131 err: 3132 path->keep_locks = 0; 3133 return ret; 3134 } 3135 3136 static noinline int split_item(struct btrfs_trans_handle *trans, 3137 struct btrfs_root *root, 3138 struct btrfs_path *path, 3139 struct btrfs_key *new_key, 3140 unsigned long split_offset) 3141 { 3142 struct extent_buffer *leaf; 3143 struct btrfs_item *item; 3144 struct btrfs_item *new_item; 3145 int slot; 3146 char *buf; 3147 u32 nritems; 3148 u32 item_size; 3149 u32 orig_offset; 3150 struct btrfs_disk_key disk_key; 3151 3152 leaf = path->nodes[0]; 3153 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3154 3155 btrfs_set_path_blocking(path); 3156 3157 item = btrfs_item_nr(leaf, path->slots[0]); 3158 orig_offset = btrfs_item_offset(leaf, item); 3159 item_size = btrfs_item_size(leaf, item); 3160 3161 buf = kmalloc(item_size, GFP_NOFS); 3162 if (!buf) 3163 return -ENOMEM; 3164 3165 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3166 path->slots[0]), item_size); 3167 3168 slot = path->slots[0] + 1; 3169 nritems = btrfs_header_nritems(leaf); 3170 if (slot != nritems) { 3171 /* shift the items */ 3172 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3173 btrfs_item_nr_offset(slot), 3174 (nritems - slot) * sizeof(struct btrfs_item)); 3175 } 3176 3177 btrfs_cpu_key_to_disk(&disk_key, new_key); 3178 btrfs_set_item_key(leaf, &disk_key, slot); 3179 3180 new_item = btrfs_item_nr(leaf, slot); 3181 3182 btrfs_set_item_offset(leaf, new_item, orig_offset); 3183 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3184 3185 btrfs_set_item_offset(leaf, item, 3186 orig_offset + item_size - split_offset); 3187 btrfs_set_item_size(leaf, item, split_offset); 3188 3189 btrfs_set_header_nritems(leaf, nritems + 1); 3190 3191 /* write the data for the start of the original item */ 3192 write_extent_buffer(leaf, buf, 3193 btrfs_item_ptr_offset(leaf, path->slots[0]), 3194 split_offset); 3195 3196 /* write the data for the new item */ 3197 write_extent_buffer(leaf, buf + split_offset, 3198 btrfs_item_ptr_offset(leaf, slot), 3199 item_size - split_offset); 3200 btrfs_mark_buffer_dirty(leaf); 3201 3202 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3203 kfree(buf); 3204 return 0; 3205 } 3206 3207 /* 3208 * This function splits a single item into two items, 3209 * giving 'new_key' to the new item and splitting the 3210 * old one at split_offset (from the start of the item). 3211 * 3212 * The path may be released by this operation. After 3213 * the split, the path is pointing to the old item. The 3214 * new item is going to be in the same node as the old one. 3215 * 3216 * Note, the item being split must be smaller enough to live alone on 3217 * a tree block with room for one extra struct btrfs_item 3218 * 3219 * This allows us to split the item in place, keeping a lock on the 3220 * leaf the entire time. 3221 */ 3222 int btrfs_split_item(struct btrfs_trans_handle *trans, 3223 struct btrfs_root *root, 3224 struct btrfs_path *path, 3225 struct btrfs_key *new_key, 3226 unsigned long split_offset) 3227 { 3228 int ret; 3229 ret = setup_leaf_for_split(trans, root, path, 3230 sizeof(struct btrfs_item)); 3231 if (ret) 3232 return ret; 3233 3234 ret = split_item(trans, root, path, new_key, split_offset); 3235 return ret; 3236 } 3237 3238 /* 3239 * This function duplicate a item, giving 'new_key' to the new item. 3240 * It guarantees both items live in the same tree leaf and the new item 3241 * is contiguous with the original item. 3242 * 3243 * This allows us to split file extent in place, keeping a lock on the 3244 * leaf the entire time. 3245 */ 3246 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3247 struct btrfs_root *root, 3248 struct btrfs_path *path, 3249 struct btrfs_key *new_key) 3250 { 3251 struct extent_buffer *leaf; 3252 int ret; 3253 u32 item_size; 3254 3255 leaf = path->nodes[0]; 3256 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3257 ret = setup_leaf_for_split(trans, root, path, 3258 item_size + sizeof(struct btrfs_item)); 3259 if (ret) 3260 return ret; 3261 3262 path->slots[0]++; 3263 setup_items_for_insert(trans, root, path, new_key, &item_size, 3264 item_size, item_size + 3265 sizeof(struct btrfs_item), 1); 3266 leaf = path->nodes[0]; 3267 memcpy_extent_buffer(leaf, 3268 btrfs_item_ptr_offset(leaf, path->slots[0]), 3269 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3270 item_size); 3271 return 0; 3272 } 3273 3274 /* 3275 * make the item pointed to by the path smaller. new_size indicates 3276 * how small to make it, and from_end tells us if we just chop bytes 3277 * off the end of the item or if we shift the item to chop bytes off 3278 * the front. 3279 */ 3280 void btrfs_truncate_item(struct btrfs_trans_handle *trans, 3281 struct btrfs_root *root, 3282 struct btrfs_path *path, 3283 u32 new_size, int from_end) 3284 { 3285 int slot; 3286 struct extent_buffer *leaf; 3287 struct btrfs_item *item; 3288 u32 nritems; 3289 unsigned int data_end; 3290 unsigned int old_data_start; 3291 unsigned int old_size; 3292 unsigned int size_diff; 3293 int i; 3294 struct btrfs_map_token token; 3295 3296 btrfs_init_map_token(&token); 3297 3298 leaf = path->nodes[0]; 3299 slot = path->slots[0]; 3300 3301 old_size = btrfs_item_size_nr(leaf, slot); 3302 if (old_size == new_size) 3303 return; 3304 3305 nritems = btrfs_header_nritems(leaf); 3306 data_end = leaf_data_end(root, leaf); 3307 3308 old_data_start = btrfs_item_offset_nr(leaf, slot); 3309 3310 size_diff = old_size - new_size; 3311 3312 BUG_ON(slot < 0); 3313 BUG_ON(slot >= nritems); 3314 3315 /* 3316 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3317 */ 3318 /* first correct the data pointers */ 3319 for (i = slot; i < nritems; i++) { 3320 u32 ioff; 3321 item = btrfs_item_nr(leaf, i); 3322 3323 ioff = btrfs_token_item_offset(leaf, item, &token); 3324 btrfs_set_token_item_offset(leaf, item, 3325 ioff + size_diff, &token); 3326 } 3327 3328 /* shift the data */ 3329 if (from_end) { 3330 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3331 data_end + size_diff, btrfs_leaf_data(leaf) + 3332 data_end, old_data_start + new_size - data_end); 3333 } else { 3334 struct btrfs_disk_key disk_key; 3335 u64 offset; 3336 3337 btrfs_item_key(leaf, &disk_key, slot); 3338 3339 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3340 unsigned long ptr; 3341 struct btrfs_file_extent_item *fi; 3342 3343 fi = btrfs_item_ptr(leaf, slot, 3344 struct btrfs_file_extent_item); 3345 fi = (struct btrfs_file_extent_item *)( 3346 (unsigned long)fi - size_diff); 3347 3348 if (btrfs_file_extent_type(leaf, fi) == 3349 BTRFS_FILE_EXTENT_INLINE) { 3350 ptr = btrfs_item_ptr_offset(leaf, slot); 3351 memmove_extent_buffer(leaf, ptr, 3352 (unsigned long)fi, 3353 offsetof(struct btrfs_file_extent_item, 3354 disk_bytenr)); 3355 } 3356 } 3357 3358 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3359 data_end + size_diff, btrfs_leaf_data(leaf) + 3360 data_end, old_data_start - data_end); 3361 3362 offset = btrfs_disk_key_offset(&disk_key); 3363 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3364 btrfs_set_item_key(leaf, &disk_key, slot); 3365 if (slot == 0) 3366 fixup_low_keys(trans, root, path, &disk_key, 1); 3367 } 3368 3369 item = btrfs_item_nr(leaf, slot); 3370 btrfs_set_item_size(leaf, item, new_size); 3371 btrfs_mark_buffer_dirty(leaf); 3372 3373 if (btrfs_leaf_free_space(root, leaf) < 0) { 3374 btrfs_print_leaf(root, leaf); 3375 BUG(); 3376 } 3377 } 3378 3379 /* 3380 * make the item pointed to by the path bigger, data_size is the new size. 3381 */ 3382 void btrfs_extend_item(struct btrfs_trans_handle *trans, 3383 struct btrfs_root *root, struct btrfs_path *path, 3384 u32 data_size) 3385 { 3386 int slot; 3387 struct extent_buffer *leaf; 3388 struct btrfs_item *item; 3389 u32 nritems; 3390 unsigned int data_end; 3391 unsigned int old_data; 3392 unsigned int old_size; 3393 int i; 3394 struct btrfs_map_token token; 3395 3396 btrfs_init_map_token(&token); 3397 3398 leaf = path->nodes[0]; 3399 3400 nritems = btrfs_header_nritems(leaf); 3401 data_end = leaf_data_end(root, leaf); 3402 3403 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3404 btrfs_print_leaf(root, leaf); 3405 BUG(); 3406 } 3407 slot = path->slots[0]; 3408 old_data = btrfs_item_end_nr(leaf, slot); 3409 3410 BUG_ON(slot < 0); 3411 if (slot >= nritems) { 3412 btrfs_print_leaf(root, leaf); 3413 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3414 slot, nritems); 3415 BUG_ON(1); 3416 } 3417 3418 /* 3419 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3420 */ 3421 /* first correct the data pointers */ 3422 for (i = slot; i < nritems; i++) { 3423 u32 ioff; 3424 item = btrfs_item_nr(leaf, i); 3425 3426 ioff = btrfs_token_item_offset(leaf, item, &token); 3427 btrfs_set_token_item_offset(leaf, item, 3428 ioff - data_size, &token); 3429 } 3430 3431 /* shift the data */ 3432 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3433 data_end - data_size, btrfs_leaf_data(leaf) + 3434 data_end, old_data - data_end); 3435 3436 data_end = old_data; 3437 old_size = btrfs_item_size_nr(leaf, slot); 3438 item = btrfs_item_nr(leaf, slot); 3439 btrfs_set_item_size(leaf, item, old_size + data_size); 3440 btrfs_mark_buffer_dirty(leaf); 3441 3442 if (btrfs_leaf_free_space(root, leaf) < 0) { 3443 btrfs_print_leaf(root, leaf); 3444 BUG(); 3445 } 3446 } 3447 3448 /* 3449 * Given a key and some data, insert items into the tree. 3450 * This does all the path init required, making room in the tree if needed. 3451 * Returns the number of keys that were inserted. 3452 */ 3453 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3454 struct btrfs_root *root, 3455 struct btrfs_path *path, 3456 struct btrfs_key *cpu_key, u32 *data_size, 3457 int nr) 3458 { 3459 struct extent_buffer *leaf; 3460 struct btrfs_item *item; 3461 int ret = 0; 3462 int slot; 3463 int i; 3464 u32 nritems; 3465 u32 total_data = 0; 3466 u32 total_size = 0; 3467 unsigned int data_end; 3468 struct btrfs_disk_key disk_key; 3469 struct btrfs_key found_key; 3470 struct btrfs_map_token token; 3471 3472 btrfs_init_map_token(&token); 3473 3474 for (i = 0; i < nr; i++) { 3475 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3476 BTRFS_LEAF_DATA_SIZE(root)) { 3477 break; 3478 nr = i; 3479 } 3480 total_data += data_size[i]; 3481 total_size += data_size[i] + sizeof(struct btrfs_item); 3482 } 3483 BUG_ON(nr == 0); 3484 3485 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3486 if (ret == 0) 3487 return -EEXIST; 3488 if (ret < 0) 3489 goto out; 3490 3491 leaf = path->nodes[0]; 3492 3493 nritems = btrfs_header_nritems(leaf); 3494 data_end = leaf_data_end(root, leaf); 3495 3496 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3497 for (i = nr; i >= 0; i--) { 3498 total_data -= data_size[i]; 3499 total_size -= data_size[i] + sizeof(struct btrfs_item); 3500 if (total_size < btrfs_leaf_free_space(root, leaf)) 3501 break; 3502 } 3503 nr = i; 3504 } 3505 3506 slot = path->slots[0]; 3507 BUG_ON(slot < 0); 3508 3509 if (slot != nritems) { 3510 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3511 3512 item = btrfs_item_nr(leaf, slot); 3513 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3514 3515 /* figure out how many keys we can insert in here */ 3516 total_data = data_size[0]; 3517 for (i = 1; i < nr; i++) { 3518 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3519 break; 3520 total_data += data_size[i]; 3521 } 3522 nr = i; 3523 3524 if (old_data < data_end) { 3525 btrfs_print_leaf(root, leaf); 3526 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3527 slot, old_data, data_end); 3528 BUG_ON(1); 3529 } 3530 /* 3531 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3532 */ 3533 /* first correct the data pointers */ 3534 for (i = slot; i < nritems; i++) { 3535 u32 ioff; 3536 3537 item = btrfs_item_nr(leaf, i); 3538 ioff = btrfs_token_item_offset(leaf, item, &token); 3539 btrfs_set_token_item_offset(leaf, item, 3540 ioff - total_data, &token); 3541 } 3542 /* shift the items */ 3543 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3544 btrfs_item_nr_offset(slot), 3545 (nritems - slot) * sizeof(struct btrfs_item)); 3546 3547 /* shift the data */ 3548 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3549 data_end - total_data, btrfs_leaf_data(leaf) + 3550 data_end, old_data - data_end); 3551 data_end = old_data; 3552 } else { 3553 /* 3554 * this sucks but it has to be done, if we are inserting at 3555 * the end of the leaf only insert 1 of the items, since we 3556 * have no way of knowing whats on the next leaf and we'd have 3557 * to drop our current locks to figure it out 3558 */ 3559 nr = 1; 3560 } 3561 3562 /* setup the item for the new data */ 3563 for (i = 0; i < nr; i++) { 3564 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3565 btrfs_set_item_key(leaf, &disk_key, slot + i); 3566 item = btrfs_item_nr(leaf, slot + i); 3567 btrfs_set_token_item_offset(leaf, item, 3568 data_end - data_size[i], &token); 3569 data_end -= data_size[i]; 3570 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 3571 } 3572 btrfs_set_header_nritems(leaf, nritems + nr); 3573 btrfs_mark_buffer_dirty(leaf); 3574 3575 ret = 0; 3576 if (slot == 0) { 3577 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3578 fixup_low_keys(trans, root, path, &disk_key, 1); 3579 } 3580 3581 if (btrfs_leaf_free_space(root, leaf) < 0) { 3582 btrfs_print_leaf(root, leaf); 3583 BUG(); 3584 } 3585 out: 3586 if (!ret) 3587 ret = nr; 3588 return ret; 3589 } 3590 3591 /* 3592 * this is a helper for btrfs_insert_empty_items, the main goal here is 3593 * to save stack depth by doing the bulk of the work in a function 3594 * that doesn't call btrfs_search_slot 3595 */ 3596 void setup_items_for_insert(struct btrfs_trans_handle *trans, 3597 struct btrfs_root *root, struct btrfs_path *path, 3598 struct btrfs_key *cpu_key, u32 *data_size, 3599 u32 total_data, u32 total_size, int nr) 3600 { 3601 struct btrfs_item *item; 3602 int i; 3603 u32 nritems; 3604 unsigned int data_end; 3605 struct btrfs_disk_key disk_key; 3606 struct extent_buffer *leaf; 3607 int slot; 3608 struct btrfs_map_token token; 3609 3610 btrfs_init_map_token(&token); 3611 3612 leaf = path->nodes[0]; 3613 slot = path->slots[0]; 3614 3615 nritems = btrfs_header_nritems(leaf); 3616 data_end = leaf_data_end(root, leaf); 3617 3618 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3619 btrfs_print_leaf(root, leaf); 3620 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3621 total_size, btrfs_leaf_free_space(root, leaf)); 3622 BUG(); 3623 } 3624 3625 if (slot != nritems) { 3626 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3627 3628 if (old_data < data_end) { 3629 btrfs_print_leaf(root, leaf); 3630 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3631 slot, old_data, data_end); 3632 BUG_ON(1); 3633 } 3634 /* 3635 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3636 */ 3637 /* first correct the data pointers */ 3638 for (i = slot; i < nritems; i++) { 3639 u32 ioff; 3640 3641 item = btrfs_item_nr(leaf, i); 3642 ioff = btrfs_token_item_offset(leaf, item, &token); 3643 btrfs_set_token_item_offset(leaf, item, 3644 ioff - total_data, &token); 3645 } 3646 /* shift the items */ 3647 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3648 btrfs_item_nr_offset(slot), 3649 (nritems - slot) * sizeof(struct btrfs_item)); 3650 3651 /* shift the data */ 3652 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3653 data_end - total_data, btrfs_leaf_data(leaf) + 3654 data_end, old_data - data_end); 3655 data_end = old_data; 3656 } 3657 3658 /* setup the item for the new data */ 3659 for (i = 0; i < nr; i++) { 3660 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3661 btrfs_set_item_key(leaf, &disk_key, slot + i); 3662 item = btrfs_item_nr(leaf, slot + i); 3663 btrfs_set_token_item_offset(leaf, item, 3664 data_end - data_size[i], &token); 3665 data_end -= data_size[i]; 3666 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 3667 } 3668 3669 btrfs_set_header_nritems(leaf, nritems + nr); 3670 3671 if (slot == 0) { 3672 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3673 fixup_low_keys(trans, root, path, &disk_key, 1); 3674 } 3675 btrfs_unlock_up_safe(path, 1); 3676 btrfs_mark_buffer_dirty(leaf); 3677 3678 if (btrfs_leaf_free_space(root, leaf) < 0) { 3679 btrfs_print_leaf(root, leaf); 3680 BUG(); 3681 } 3682 } 3683 3684 /* 3685 * Given a key and some data, insert items into the tree. 3686 * This does all the path init required, making room in the tree if needed. 3687 */ 3688 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3689 struct btrfs_root *root, 3690 struct btrfs_path *path, 3691 struct btrfs_key *cpu_key, u32 *data_size, 3692 int nr) 3693 { 3694 int ret = 0; 3695 int slot; 3696 int i; 3697 u32 total_size = 0; 3698 u32 total_data = 0; 3699 3700 for (i = 0; i < nr; i++) 3701 total_data += data_size[i]; 3702 3703 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3704 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3705 if (ret == 0) 3706 return -EEXIST; 3707 if (ret < 0) 3708 return ret; 3709 3710 slot = path->slots[0]; 3711 BUG_ON(slot < 0); 3712 3713 setup_items_for_insert(trans, root, path, cpu_key, data_size, 3714 total_data, total_size, nr); 3715 return 0; 3716 } 3717 3718 /* 3719 * Given a key and some data, insert an item into the tree. 3720 * This does all the path init required, making room in the tree if needed. 3721 */ 3722 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3723 *root, struct btrfs_key *cpu_key, void *data, u32 3724 data_size) 3725 { 3726 int ret = 0; 3727 struct btrfs_path *path; 3728 struct extent_buffer *leaf; 3729 unsigned long ptr; 3730 3731 path = btrfs_alloc_path(); 3732 if (!path) 3733 return -ENOMEM; 3734 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3735 if (!ret) { 3736 leaf = path->nodes[0]; 3737 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3738 write_extent_buffer(leaf, data, ptr, data_size); 3739 btrfs_mark_buffer_dirty(leaf); 3740 } 3741 btrfs_free_path(path); 3742 return ret; 3743 } 3744 3745 /* 3746 * delete the pointer from a given node. 3747 * 3748 * the tree should have been previously balanced so the deletion does not 3749 * empty a node. 3750 */ 3751 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3752 struct btrfs_path *path, int level, int slot) 3753 { 3754 struct extent_buffer *parent = path->nodes[level]; 3755 u32 nritems; 3756 3757 nritems = btrfs_header_nritems(parent); 3758 if (slot != nritems - 1) { 3759 memmove_extent_buffer(parent, 3760 btrfs_node_key_ptr_offset(slot), 3761 btrfs_node_key_ptr_offset(slot + 1), 3762 sizeof(struct btrfs_key_ptr) * 3763 (nritems - slot - 1)); 3764 } 3765 nritems--; 3766 btrfs_set_header_nritems(parent, nritems); 3767 if (nritems == 0 && parent == root->node) { 3768 BUG_ON(btrfs_header_level(root->node) != 1); 3769 /* just turn the root into a leaf and break */ 3770 btrfs_set_header_level(root->node, 0); 3771 } else if (slot == 0) { 3772 struct btrfs_disk_key disk_key; 3773 3774 btrfs_node_key(parent, &disk_key, 0); 3775 fixup_low_keys(trans, root, path, &disk_key, level + 1); 3776 } 3777 btrfs_mark_buffer_dirty(parent); 3778 } 3779 3780 /* 3781 * a helper function to delete the leaf pointed to by path->slots[1] and 3782 * path->nodes[1]. 3783 * 3784 * This deletes the pointer in path->nodes[1] and frees the leaf 3785 * block extent. zero is returned if it all worked out, < 0 otherwise. 3786 * 3787 * The path must have already been setup for deleting the leaf, including 3788 * all the proper balancing. path->nodes[1] must be locked. 3789 */ 3790 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 3791 struct btrfs_root *root, 3792 struct btrfs_path *path, 3793 struct extent_buffer *leaf) 3794 { 3795 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3796 del_ptr(trans, root, path, 1, path->slots[1]); 3797 3798 /* 3799 * btrfs_free_extent is expensive, we want to make sure we 3800 * aren't holding any locks when we call it 3801 */ 3802 btrfs_unlock_up_safe(path, 0); 3803 3804 root_sub_used(root, leaf->len); 3805 3806 extent_buffer_get(leaf); 3807 btrfs_free_tree_block(trans, root, leaf, 0, 1, 0); 3808 free_extent_buffer_stale(leaf); 3809 } 3810 /* 3811 * delete the item at the leaf level in path. If that empties 3812 * the leaf, remove it from the tree 3813 */ 3814 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3815 struct btrfs_path *path, int slot, int nr) 3816 { 3817 struct extent_buffer *leaf; 3818 struct btrfs_item *item; 3819 int last_off; 3820 int dsize = 0; 3821 int ret = 0; 3822 int wret; 3823 int i; 3824 u32 nritems; 3825 struct btrfs_map_token token; 3826 3827 btrfs_init_map_token(&token); 3828 3829 leaf = path->nodes[0]; 3830 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3831 3832 for (i = 0; i < nr; i++) 3833 dsize += btrfs_item_size_nr(leaf, slot + i); 3834 3835 nritems = btrfs_header_nritems(leaf); 3836 3837 if (slot + nr != nritems) { 3838 int data_end = leaf_data_end(root, leaf); 3839 3840 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3841 data_end + dsize, 3842 btrfs_leaf_data(leaf) + data_end, 3843 last_off - data_end); 3844 3845 for (i = slot + nr; i < nritems; i++) { 3846 u32 ioff; 3847 3848 item = btrfs_item_nr(leaf, i); 3849 ioff = btrfs_token_item_offset(leaf, item, &token); 3850 btrfs_set_token_item_offset(leaf, item, 3851 ioff + dsize, &token); 3852 } 3853 3854 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3855 btrfs_item_nr_offset(slot + nr), 3856 sizeof(struct btrfs_item) * 3857 (nritems - slot - nr)); 3858 } 3859 btrfs_set_header_nritems(leaf, nritems - nr); 3860 nritems -= nr; 3861 3862 /* delete the leaf if we've emptied it */ 3863 if (nritems == 0) { 3864 if (leaf == root->node) { 3865 btrfs_set_header_level(leaf, 0); 3866 } else { 3867 btrfs_set_path_blocking(path); 3868 clean_tree_block(trans, root, leaf); 3869 btrfs_del_leaf(trans, root, path, leaf); 3870 } 3871 } else { 3872 int used = leaf_space_used(leaf, 0, nritems); 3873 if (slot == 0) { 3874 struct btrfs_disk_key disk_key; 3875 3876 btrfs_item_key(leaf, &disk_key, 0); 3877 fixup_low_keys(trans, root, path, &disk_key, 1); 3878 } 3879 3880 /* delete the leaf if it is mostly empty */ 3881 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 3882 /* push_leaf_left fixes the path. 3883 * make sure the path still points to our leaf 3884 * for possible call to del_ptr below 3885 */ 3886 slot = path->slots[1]; 3887 extent_buffer_get(leaf); 3888 3889 btrfs_set_path_blocking(path); 3890 wret = push_leaf_left(trans, root, path, 1, 1, 3891 1, (u32)-1); 3892 if (wret < 0 && wret != -ENOSPC) 3893 ret = wret; 3894 3895 if (path->nodes[0] == leaf && 3896 btrfs_header_nritems(leaf)) { 3897 wret = push_leaf_right(trans, root, path, 1, 3898 1, 1, 0); 3899 if (wret < 0 && wret != -ENOSPC) 3900 ret = wret; 3901 } 3902 3903 if (btrfs_header_nritems(leaf) == 0) { 3904 path->slots[1] = slot; 3905 btrfs_del_leaf(trans, root, path, leaf); 3906 free_extent_buffer(leaf); 3907 ret = 0; 3908 } else { 3909 /* if we're still in the path, make sure 3910 * we're dirty. Otherwise, one of the 3911 * push_leaf functions must have already 3912 * dirtied this buffer 3913 */ 3914 if (path->nodes[0] == leaf) 3915 btrfs_mark_buffer_dirty(leaf); 3916 free_extent_buffer(leaf); 3917 } 3918 } else { 3919 btrfs_mark_buffer_dirty(leaf); 3920 } 3921 } 3922 return ret; 3923 } 3924 3925 /* 3926 * search the tree again to find a leaf with lesser keys 3927 * returns 0 if it found something or 1 if there are no lesser leaves. 3928 * returns < 0 on io errors. 3929 * 3930 * This may release the path, and so you may lose any locks held at the 3931 * time you call it. 3932 */ 3933 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 3934 { 3935 struct btrfs_key key; 3936 struct btrfs_disk_key found_key; 3937 int ret; 3938 3939 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 3940 3941 if (key.offset > 0) 3942 key.offset--; 3943 else if (key.type > 0) 3944 key.type--; 3945 else if (key.objectid > 0) 3946 key.objectid--; 3947 else 3948 return 1; 3949 3950 btrfs_release_path(path); 3951 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3952 if (ret < 0) 3953 return ret; 3954 btrfs_item_key(path->nodes[0], &found_key, 0); 3955 ret = comp_keys(&found_key, &key); 3956 if (ret < 0) 3957 return 0; 3958 return 1; 3959 } 3960 3961 /* 3962 * A helper function to walk down the tree starting at min_key, and looking 3963 * for nodes or leaves that are either in cache or have a minimum 3964 * transaction id. This is used by the btree defrag code, and tree logging 3965 * 3966 * This does not cow, but it does stuff the starting key it finds back 3967 * into min_key, so you can call btrfs_search_slot with cow=1 on the 3968 * key and get a writable path. 3969 * 3970 * This does lock as it descends, and path->keep_locks should be set 3971 * to 1 by the caller. 3972 * 3973 * This honors path->lowest_level to prevent descent past a given level 3974 * of the tree. 3975 * 3976 * min_trans indicates the oldest transaction that you are interested 3977 * in walking through. Any nodes or leaves older than min_trans are 3978 * skipped over (without reading them). 3979 * 3980 * returns zero if something useful was found, < 0 on error and 1 if there 3981 * was nothing in the tree that matched the search criteria. 3982 */ 3983 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 3984 struct btrfs_key *max_key, 3985 struct btrfs_path *path, int cache_only, 3986 u64 min_trans) 3987 { 3988 struct extent_buffer *cur; 3989 struct btrfs_key found_key; 3990 int slot; 3991 int sret; 3992 u32 nritems; 3993 int level; 3994 int ret = 1; 3995 3996 WARN_ON(!path->keep_locks); 3997 again: 3998 cur = btrfs_read_lock_root_node(root); 3999 level = btrfs_header_level(cur); 4000 WARN_ON(path->nodes[level]); 4001 path->nodes[level] = cur; 4002 path->locks[level] = BTRFS_READ_LOCK; 4003 4004 if (btrfs_header_generation(cur) < min_trans) { 4005 ret = 1; 4006 goto out; 4007 } 4008 while (1) { 4009 nritems = btrfs_header_nritems(cur); 4010 level = btrfs_header_level(cur); 4011 sret = bin_search(cur, min_key, level, &slot); 4012 4013 /* at the lowest level, we're done, setup the path and exit */ 4014 if (level == path->lowest_level) { 4015 if (slot >= nritems) 4016 goto find_next_key; 4017 ret = 0; 4018 path->slots[level] = slot; 4019 btrfs_item_key_to_cpu(cur, &found_key, slot); 4020 goto out; 4021 } 4022 if (sret && slot > 0) 4023 slot--; 4024 /* 4025 * check this node pointer against the cache_only and 4026 * min_trans parameters. If it isn't in cache or is too 4027 * old, skip to the next one. 4028 */ 4029 while (slot < nritems) { 4030 u64 blockptr; 4031 u64 gen; 4032 struct extent_buffer *tmp; 4033 struct btrfs_disk_key disk_key; 4034 4035 blockptr = btrfs_node_blockptr(cur, slot); 4036 gen = btrfs_node_ptr_generation(cur, slot); 4037 if (gen < min_trans) { 4038 slot++; 4039 continue; 4040 } 4041 if (!cache_only) 4042 break; 4043 4044 if (max_key) { 4045 btrfs_node_key(cur, &disk_key, slot); 4046 if (comp_keys(&disk_key, max_key) >= 0) { 4047 ret = 1; 4048 goto out; 4049 } 4050 } 4051 4052 tmp = btrfs_find_tree_block(root, blockptr, 4053 btrfs_level_size(root, level - 1)); 4054 4055 if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 4056 free_extent_buffer(tmp); 4057 break; 4058 } 4059 if (tmp) 4060 free_extent_buffer(tmp); 4061 slot++; 4062 } 4063 find_next_key: 4064 /* 4065 * we didn't find a candidate key in this node, walk forward 4066 * and find another one 4067 */ 4068 if (slot >= nritems) { 4069 path->slots[level] = slot; 4070 btrfs_set_path_blocking(path); 4071 sret = btrfs_find_next_key(root, path, min_key, level, 4072 cache_only, min_trans); 4073 if (sret == 0) { 4074 btrfs_release_path(path); 4075 goto again; 4076 } else { 4077 goto out; 4078 } 4079 } 4080 /* save our key for returning back */ 4081 btrfs_node_key_to_cpu(cur, &found_key, slot); 4082 path->slots[level] = slot; 4083 if (level == path->lowest_level) { 4084 ret = 0; 4085 unlock_up(path, level, 1, 0, NULL); 4086 goto out; 4087 } 4088 btrfs_set_path_blocking(path); 4089 cur = read_node_slot(root, cur, slot); 4090 BUG_ON(!cur); /* -ENOMEM */ 4091 4092 btrfs_tree_read_lock(cur); 4093 4094 path->locks[level - 1] = BTRFS_READ_LOCK; 4095 path->nodes[level - 1] = cur; 4096 unlock_up(path, level, 1, 0, NULL); 4097 btrfs_clear_path_blocking(path, NULL, 0); 4098 } 4099 out: 4100 if (ret == 0) 4101 memcpy(min_key, &found_key, sizeof(found_key)); 4102 btrfs_set_path_blocking(path); 4103 return ret; 4104 } 4105 4106 /* 4107 * this is similar to btrfs_next_leaf, but does not try to preserve 4108 * and fixup the path. It looks for and returns the next key in the 4109 * tree based on the current path and the cache_only and min_trans 4110 * parameters. 4111 * 4112 * 0 is returned if another key is found, < 0 if there are any errors 4113 * and 1 is returned if there are no higher keys in the tree 4114 * 4115 * path->keep_locks should be set to 1 on the search made before 4116 * calling this function. 4117 */ 4118 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4119 struct btrfs_key *key, int level, 4120 int cache_only, u64 min_trans) 4121 { 4122 int slot; 4123 struct extent_buffer *c; 4124 4125 WARN_ON(!path->keep_locks); 4126 while (level < BTRFS_MAX_LEVEL) { 4127 if (!path->nodes[level]) 4128 return 1; 4129 4130 slot = path->slots[level] + 1; 4131 c = path->nodes[level]; 4132 next: 4133 if (slot >= btrfs_header_nritems(c)) { 4134 int ret; 4135 int orig_lowest; 4136 struct btrfs_key cur_key; 4137 if (level + 1 >= BTRFS_MAX_LEVEL || 4138 !path->nodes[level + 1]) 4139 return 1; 4140 4141 if (path->locks[level + 1]) { 4142 level++; 4143 continue; 4144 } 4145 4146 slot = btrfs_header_nritems(c) - 1; 4147 if (level == 0) 4148 btrfs_item_key_to_cpu(c, &cur_key, slot); 4149 else 4150 btrfs_node_key_to_cpu(c, &cur_key, slot); 4151 4152 orig_lowest = path->lowest_level; 4153 btrfs_release_path(path); 4154 path->lowest_level = level; 4155 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4156 0, 0); 4157 path->lowest_level = orig_lowest; 4158 if (ret < 0) 4159 return ret; 4160 4161 c = path->nodes[level]; 4162 slot = path->slots[level]; 4163 if (ret == 0) 4164 slot++; 4165 goto next; 4166 } 4167 4168 if (level == 0) 4169 btrfs_item_key_to_cpu(c, key, slot); 4170 else { 4171 u64 blockptr = btrfs_node_blockptr(c, slot); 4172 u64 gen = btrfs_node_ptr_generation(c, slot); 4173 4174 if (cache_only) { 4175 struct extent_buffer *cur; 4176 cur = btrfs_find_tree_block(root, blockptr, 4177 btrfs_level_size(root, level - 1)); 4178 if (!cur || 4179 btrfs_buffer_uptodate(cur, gen, 1) <= 0) { 4180 slot++; 4181 if (cur) 4182 free_extent_buffer(cur); 4183 goto next; 4184 } 4185 free_extent_buffer(cur); 4186 } 4187 if (gen < min_trans) { 4188 slot++; 4189 goto next; 4190 } 4191 btrfs_node_key_to_cpu(c, key, slot); 4192 } 4193 return 0; 4194 } 4195 return 1; 4196 } 4197 4198 /* 4199 * search the tree again to find a leaf with greater keys 4200 * returns 0 if it found something or 1 if there are no greater leaves. 4201 * returns < 0 on io errors. 4202 */ 4203 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4204 { 4205 int slot; 4206 int level; 4207 struct extent_buffer *c; 4208 struct extent_buffer *next; 4209 struct btrfs_key key; 4210 u32 nritems; 4211 int ret; 4212 int old_spinning = path->leave_spinning; 4213 int next_rw_lock = 0; 4214 4215 nritems = btrfs_header_nritems(path->nodes[0]); 4216 if (nritems == 0) 4217 return 1; 4218 4219 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4220 again: 4221 level = 1; 4222 next = NULL; 4223 next_rw_lock = 0; 4224 btrfs_release_path(path); 4225 4226 path->keep_locks = 1; 4227 path->leave_spinning = 1; 4228 4229 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4230 path->keep_locks = 0; 4231 4232 if (ret < 0) 4233 return ret; 4234 4235 nritems = btrfs_header_nritems(path->nodes[0]); 4236 /* 4237 * by releasing the path above we dropped all our locks. A balance 4238 * could have added more items next to the key that used to be 4239 * at the very end of the block. So, check again here and 4240 * advance the path if there are now more items available. 4241 */ 4242 if (nritems > 0 && path->slots[0] < nritems - 1) { 4243 if (ret == 0) 4244 path->slots[0]++; 4245 ret = 0; 4246 goto done; 4247 } 4248 4249 while (level < BTRFS_MAX_LEVEL) { 4250 if (!path->nodes[level]) { 4251 ret = 1; 4252 goto done; 4253 } 4254 4255 slot = path->slots[level] + 1; 4256 c = path->nodes[level]; 4257 if (slot >= btrfs_header_nritems(c)) { 4258 level++; 4259 if (level == BTRFS_MAX_LEVEL) { 4260 ret = 1; 4261 goto done; 4262 } 4263 continue; 4264 } 4265 4266 if (next) { 4267 btrfs_tree_unlock_rw(next, next_rw_lock); 4268 free_extent_buffer(next); 4269 } 4270 4271 next = c; 4272 next_rw_lock = path->locks[level]; 4273 ret = read_block_for_search(NULL, root, path, &next, level, 4274 slot, &key); 4275 if (ret == -EAGAIN) 4276 goto again; 4277 4278 if (ret < 0) { 4279 btrfs_release_path(path); 4280 goto done; 4281 } 4282 4283 if (!path->skip_locking) { 4284 ret = btrfs_try_tree_read_lock(next); 4285 if (!ret) { 4286 btrfs_set_path_blocking(path); 4287 btrfs_tree_read_lock(next); 4288 btrfs_clear_path_blocking(path, next, 4289 BTRFS_READ_LOCK); 4290 } 4291 next_rw_lock = BTRFS_READ_LOCK; 4292 } 4293 break; 4294 } 4295 path->slots[level] = slot; 4296 while (1) { 4297 level--; 4298 c = path->nodes[level]; 4299 if (path->locks[level]) 4300 btrfs_tree_unlock_rw(c, path->locks[level]); 4301 4302 free_extent_buffer(c); 4303 path->nodes[level] = next; 4304 path->slots[level] = 0; 4305 if (!path->skip_locking) 4306 path->locks[level] = next_rw_lock; 4307 if (!level) 4308 break; 4309 4310 ret = read_block_for_search(NULL, root, path, &next, level, 4311 0, &key); 4312 if (ret == -EAGAIN) 4313 goto again; 4314 4315 if (ret < 0) { 4316 btrfs_release_path(path); 4317 goto done; 4318 } 4319 4320 if (!path->skip_locking) { 4321 ret = btrfs_try_tree_read_lock(next); 4322 if (!ret) { 4323 btrfs_set_path_blocking(path); 4324 btrfs_tree_read_lock(next); 4325 btrfs_clear_path_blocking(path, next, 4326 BTRFS_READ_LOCK); 4327 } 4328 next_rw_lock = BTRFS_READ_LOCK; 4329 } 4330 } 4331 ret = 0; 4332 done: 4333 unlock_up(path, 0, 1, 0, NULL); 4334 path->leave_spinning = old_spinning; 4335 if (!old_spinning) 4336 btrfs_set_path_blocking(path); 4337 4338 return ret; 4339 } 4340 4341 /* 4342 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4343 * searching until it gets past min_objectid or finds an item of 'type' 4344 * 4345 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4346 */ 4347 int btrfs_previous_item(struct btrfs_root *root, 4348 struct btrfs_path *path, u64 min_objectid, 4349 int type) 4350 { 4351 struct btrfs_key found_key; 4352 struct extent_buffer *leaf; 4353 u32 nritems; 4354 int ret; 4355 4356 while (1) { 4357 if (path->slots[0] == 0) { 4358 btrfs_set_path_blocking(path); 4359 ret = btrfs_prev_leaf(root, path); 4360 if (ret != 0) 4361 return ret; 4362 } else { 4363 path->slots[0]--; 4364 } 4365 leaf = path->nodes[0]; 4366 nritems = btrfs_header_nritems(leaf); 4367 if (nritems == 0) 4368 return 1; 4369 if (path->slots[0] == nritems) 4370 path->slots[0]--; 4371 4372 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4373 if (found_key.objectid < min_objectid) 4374 break; 4375 if (found_key.type == type) 4376 return 0; 4377 if (found_key.objectid == min_objectid && 4378 found_key.type < type) 4379 break; 4380 } 4381 return 1; 4382 } 4383