xref: /openbmc/linux/fs/btrfs/ctree.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 				 struct extent_buffer *eb);
44 
45 struct btrfs_path *btrfs_alloc_path(void)
46 {
47 	struct btrfs_path *path;
48 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 	return path;
50 }
51 
52 /*
53  * set all locked nodes in the path to blocking locks.  This should
54  * be done before scheduling
55  */
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
57 {
58 	int i;
59 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 		if (!p->nodes[i] || !p->locks[i])
61 			continue;
62 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 		if (p->locks[i] == BTRFS_READ_LOCK)
64 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
67 	}
68 }
69 
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  *
73  * held is used to keep lockdep happy, when lockdep is enabled
74  * we set held to a blocking lock before we go around and
75  * retake all the spinlocks in the path.  You can safely use NULL
76  * for held
77  */
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 					struct extent_buffer *held, int held_rw)
80 {
81 	int i;
82 
83 	if (held) {
84 		btrfs_set_lock_blocking_rw(held, held_rw);
85 		if (held_rw == BTRFS_WRITE_LOCK)
86 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 		else if (held_rw == BTRFS_READ_LOCK)
88 			held_rw = BTRFS_READ_LOCK_BLOCKING;
89 	}
90 	btrfs_set_path_blocking(p);
91 
92 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 		if (p->nodes[i] && p->locks[i]) {
94 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 				p->locks[i] = BTRFS_WRITE_LOCK;
97 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 				p->locks[i] = BTRFS_READ_LOCK;
99 		}
100 	}
101 
102 	if (held)
103 		btrfs_clear_lock_blocking_rw(held, held_rw);
104 }
105 
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
108 {
109 	if (!p)
110 		return;
111 	btrfs_release_path(p);
112 	kmem_cache_free(btrfs_path_cachep, p);
113 }
114 
115 /*
116  * path release drops references on the extent buffers in the path
117  * and it drops any locks held by this path
118  *
119  * It is safe to call this on paths that no locks or extent buffers held.
120  */
121 noinline void btrfs_release_path(struct btrfs_path *p)
122 {
123 	int i;
124 
125 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 		p->slots[i] = 0;
127 		if (!p->nodes[i])
128 			continue;
129 		if (p->locks[i]) {
130 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 			p->locks[i] = 0;
132 		}
133 		free_extent_buffer(p->nodes[i]);
134 		p->nodes[i] = NULL;
135 	}
136 }
137 
138 /*
139  * safely gets a reference on the root node of a tree.  A lock
140  * is not taken, so a concurrent writer may put a different node
141  * at the root of the tree.  See btrfs_lock_root_node for the
142  * looping required.
143  *
144  * The extent buffer returned by this has a reference taken, so
145  * it won't disappear.  It may stop being the root of the tree
146  * at any time because there are no locks held.
147  */
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
149 {
150 	struct extent_buffer *eb;
151 
152 	while (1) {
153 		rcu_read_lock();
154 		eb = rcu_dereference(root->node);
155 
156 		/*
157 		 * RCU really hurts here, we could free up the root node because
158 		 * it was cow'ed but we may not get the new root node yet so do
159 		 * the inc_not_zero dance and if it doesn't work then
160 		 * synchronize_rcu and try again.
161 		 */
162 		if (atomic_inc_not_zero(&eb->refs)) {
163 			rcu_read_unlock();
164 			break;
165 		}
166 		rcu_read_unlock();
167 		synchronize_rcu();
168 	}
169 	return eb;
170 }
171 
172 /* loop around taking references on and locking the root node of the
173  * tree until you end up with a lock on the root.  A locked buffer
174  * is returned, with a reference held.
175  */
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
177 {
178 	struct extent_buffer *eb;
179 
180 	while (1) {
181 		eb = btrfs_root_node(root);
182 		btrfs_tree_lock(eb);
183 		if (eb == root->node)
184 			break;
185 		btrfs_tree_unlock(eb);
186 		free_extent_buffer(eb);
187 	}
188 	return eb;
189 }
190 
191 /* loop around taking references on and locking the root node of the
192  * tree until you end up with a lock on the root.  A locked buffer
193  * is returned, with a reference held.
194  */
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
196 {
197 	struct extent_buffer *eb;
198 
199 	while (1) {
200 		eb = btrfs_root_node(root);
201 		btrfs_tree_read_lock(eb);
202 		if (eb == root->node)
203 			break;
204 		btrfs_tree_read_unlock(eb);
205 		free_extent_buffer(eb);
206 	}
207 	return eb;
208 }
209 
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211  * put onto a simple dirty list.  transaction.c walks this to make sure they
212  * get properly updated on disk.
213  */
214 static void add_root_to_dirty_list(struct btrfs_root *root)
215 {
216 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 		return;
219 
220 	spin_lock(&root->fs_info->trans_lock);
221 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 		/* Want the extent tree to be the last on the list */
223 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 			list_move_tail(&root->dirty_list,
225 				       &root->fs_info->dirty_cowonly_roots);
226 		else
227 			list_move(&root->dirty_list,
228 				  &root->fs_info->dirty_cowonly_roots);
229 	}
230 	spin_unlock(&root->fs_info->trans_lock);
231 }
232 
233 /*
234  * used by snapshot creation to make a copy of a root for a tree with
235  * a given objectid.  The buffer with the new root node is returned in
236  * cow_ret, and this func returns zero on success or a negative error code.
237  */
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 		      struct btrfs_root *root,
240 		      struct extent_buffer *buf,
241 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
242 {
243 	struct extent_buffer *cow;
244 	int ret = 0;
245 	int level;
246 	struct btrfs_disk_key disk_key;
247 
248 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249 		trans->transid != root->fs_info->running_transaction->transid);
250 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 		trans->transid != root->last_trans);
252 
253 	level = btrfs_header_level(buf);
254 	if (level == 0)
255 		btrfs_item_key(buf, &disk_key, 0);
256 	else
257 		btrfs_node_key(buf, &disk_key, 0);
258 
259 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260 			&disk_key, level, buf->start, 0);
261 	if (IS_ERR(cow))
262 		return PTR_ERR(cow);
263 
264 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
265 	btrfs_set_header_bytenr(cow, cow->start);
266 	btrfs_set_header_generation(cow, trans->transid);
267 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269 				     BTRFS_HEADER_FLAG_RELOC);
270 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 	else
273 		btrfs_set_header_owner(cow, new_root_objectid);
274 
275 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276 			    BTRFS_FSID_SIZE);
277 
278 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
279 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 		ret = btrfs_inc_ref(trans, root, cow, 1);
281 	else
282 		ret = btrfs_inc_ref(trans, root, cow, 0);
283 
284 	if (ret)
285 		return ret;
286 
287 	btrfs_mark_buffer_dirty(cow);
288 	*cow_ret = cow;
289 	return 0;
290 }
291 
292 enum mod_log_op {
293 	MOD_LOG_KEY_REPLACE,
294 	MOD_LOG_KEY_ADD,
295 	MOD_LOG_KEY_REMOVE,
296 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 	MOD_LOG_MOVE_KEYS,
299 	MOD_LOG_ROOT_REPLACE,
300 };
301 
302 struct tree_mod_move {
303 	int dst_slot;
304 	int nr_items;
305 };
306 
307 struct tree_mod_root {
308 	u64 logical;
309 	u8 level;
310 };
311 
312 struct tree_mod_elem {
313 	struct rb_node node;
314 	u64 index;		/* shifted logical */
315 	u64 seq;
316 	enum mod_log_op op;
317 
318 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 	int slot;
320 
321 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 	u64 generation;
323 
324 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 	struct btrfs_disk_key key;
326 	u64 blockptr;
327 
328 	/* this is used for op == MOD_LOG_MOVE_KEYS */
329 	struct tree_mod_move move;
330 
331 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
332 	struct tree_mod_root old_root;
333 };
334 
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
336 {
337 	read_lock(&fs_info->tree_mod_log_lock);
338 }
339 
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
341 {
342 	read_unlock(&fs_info->tree_mod_log_lock);
343 }
344 
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
346 {
347 	write_lock(&fs_info->tree_mod_log_lock);
348 }
349 
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
351 {
352 	write_unlock(&fs_info->tree_mod_log_lock);
353 }
354 
355 /*
356  * Pull a new tree mod seq number for our operation.
357  */
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
359 {
360 	return atomic64_inc_return(&fs_info->tree_mod_seq);
361 }
362 
363 /*
364  * This adds a new blocker to the tree mod log's blocker list if the @elem
365  * passed does not already have a sequence number set. So when a caller expects
366  * to record tree modifications, it should ensure to set elem->seq to zero
367  * before calling btrfs_get_tree_mod_seq.
368  * Returns a fresh, unused tree log modification sequence number, even if no new
369  * blocker was added.
370  */
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 			   struct seq_list *elem)
373 {
374 	tree_mod_log_write_lock(fs_info);
375 	spin_lock(&fs_info->tree_mod_seq_lock);
376 	if (!elem->seq) {
377 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
379 	}
380 	spin_unlock(&fs_info->tree_mod_seq_lock);
381 	tree_mod_log_write_unlock(fs_info);
382 
383 	return elem->seq;
384 }
385 
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387 			    struct seq_list *elem)
388 {
389 	struct rb_root *tm_root;
390 	struct rb_node *node;
391 	struct rb_node *next;
392 	struct seq_list *cur_elem;
393 	struct tree_mod_elem *tm;
394 	u64 min_seq = (u64)-1;
395 	u64 seq_putting = elem->seq;
396 
397 	if (!seq_putting)
398 		return;
399 
400 	spin_lock(&fs_info->tree_mod_seq_lock);
401 	list_del(&elem->list);
402 	elem->seq = 0;
403 
404 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405 		if (cur_elem->seq < min_seq) {
406 			if (seq_putting > cur_elem->seq) {
407 				/*
408 				 * blocker with lower sequence number exists, we
409 				 * cannot remove anything from the log
410 				 */
411 				spin_unlock(&fs_info->tree_mod_seq_lock);
412 				return;
413 			}
414 			min_seq = cur_elem->seq;
415 		}
416 	}
417 	spin_unlock(&fs_info->tree_mod_seq_lock);
418 
419 	/*
420 	 * anything that's lower than the lowest existing (read: blocked)
421 	 * sequence number can be removed from the tree.
422 	 */
423 	tree_mod_log_write_lock(fs_info);
424 	tm_root = &fs_info->tree_mod_log;
425 	for (node = rb_first(tm_root); node; node = next) {
426 		next = rb_next(node);
427 		tm = container_of(node, struct tree_mod_elem, node);
428 		if (tm->seq > min_seq)
429 			continue;
430 		rb_erase(node, tm_root);
431 		kfree(tm);
432 	}
433 	tree_mod_log_write_unlock(fs_info);
434 }
435 
436 /*
437  * key order of the log:
438  *       index -> sequence
439  *
440  * the index is the shifted logical of the *new* root node for root replace
441  * operations, or the shifted logical of the affected block for all other
442  * operations.
443  *
444  * Note: must be called with write lock (tree_mod_log_write_lock).
445  */
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
448 {
449 	struct rb_root *tm_root;
450 	struct rb_node **new;
451 	struct rb_node *parent = NULL;
452 	struct tree_mod_elem *cur;
453 
454 	BUG_ON(!tm);
455 
456 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
457 
458 	tm_root = &fs_info->tree_mod_log;
459 	new = &tm_root->rb_node;
460 	while (*new) {
461 		cur = container_of(*new, struct tree_mod_elem, node);
462 		parent = *new;
463 		if (cur->index < tm->index)
464 			new = &((*new)->rb_left);
465 		else if (cur->index > tm->index)
466 			new = &((*new)->rb_right);
467 		else if (cur->seq < tm->seq)
468 			new = &((*new)->rb_left);
469 		else if (cur->seq > tm->seq)
470 			new = &((*new)->rb_right);
471 		else
472 			return -EEXIST;
473 	}
474 
475 	rb_link_node(&tm->node, parent, new);
476 	rb_insert_color(&tm->node, tm_root);
477 	return 0;
478 }
479 
480 /*
481  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482  * returns zero with the tree_mod_log_lock acquired. The caller must hold
483  * this until all tree mod log insertions are recorded in the rb tree and then
484  * call tree_mod_log_write_unlock() to release.
485  */
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 				    struct extent_buffer *eb) {
488 	smp_mb();
489 	if (list_empty(&(fs_info)->tree_mod_seq_list))
490 		return 1;
491 	if (eb && btrfs_header_level(eb) == 0)
492 		return 1;
493 
494 	tree_mod_log_write_lock(fs_info);
495 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 		tree_mod_log_write_unlock(fs_info);
497 		return 1;
498 	}
499 
500 	return 0;
501 }
502 
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 				    struct extent_buffer *eb)
506 {
507 	smp_mb();
508 	if (list_empty(&(fs_info)->tree_mod_seq_list))
509 		return 0;
510 	if (eb && btrfs_header_level(eb) == 0)
511 		return 0;
512 
513 	return 1;
514 }
515 
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 		    enum mod_log_op op, gfp_t flags)
519 {
520 	struct tree_mod_elem *tm;
521 
522 	tm = kzalloc(sizeof(*tm), flags);
523 	if (!tm)
524 		return NULL;
525 
526 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
527 	if (op != MOD_LOG_KEY_ADD) {
528 		btrfs_node_key(eb, &tm->key, slot);
529 		tm->blockptr = btrfs_node_blockptr(eb, slot);
530 	}
531 	tm->op = op;
532 	tm->slot = slot;
533 	tm->generation = btrfs_node_ptr_generation(eb, slot);
534 	RB_CLEAR_NODE(&tm->node);
535 
536 	return tm;
537 }
538 
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 			struct extent_buffer *eb, int slot,
542 			enum mod_log_op op, gfp_t flags)
543 {
544 	struct tree_mod_elem *tm;
545 	int ret;
546 
547 	if (!tree_mod_need_log(fs_info, eb))
548 		return 0;
549 
550 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 	if (!tm)
552 		return -ENOMEM;
553 
554 	if (tree_mod_dont_log(fs_info, eb)) {
555 		kfree(tm);
556 		return 0;
557 	}
558 
559 	ret = __tree_mod_log_insert(fs_info, tm);
560 	tree_mod_log_write_unlock(fs_info);
561 	if (ret)
562 		kfree(tm);
563 
564 	return ret;
565 }
566 
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 			 struct extent_buffer *eb, int dst_slot, int src_slot,
570 			 int nr_items, gfp_t flags)
571 {
572 	struct tree_mod_elem *tm = NULL;
573 	struct tree_mod_elem **tm_list = NULL;
574 	int ret = 0;
575 	int i;
576 	int locked = 0;
577 
578 	if (!tree_mod_need_log(fs_info, eb))
579 		return 0;
580 
581 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
582 	if (!tm_list)
583 		return -ENOMEM;
584 
585 	tm = kzalloc(sizeof(*tm), flags);
586 	if (!tm) {
587 		ret = -ENOMEM;
588 		goto free_tms;
589 	}
590 
591 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
592 	tm->slot = src_slot;
593 	tm->move.dst_slot = dst_slot;
594 	tm->move.nr_items = nr_items;
595 	tm->op = MOD_LOG_MOVE_KEYS;
596 
597 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600 		if (!tm_list[i]) {
601 			ret = -ENOMEM;
602 			goto free_tms;
603 		}
604 	}
605 
606 	if (tree_mod_dont_log(fs_info, eb))
607 		goto free_tms;
608 	locked = 1;
609 
610 	/*
611 	 * When we override something during the move, we log these removals.
612 	 * This can only happen when we move towards the beginning of the
613 	 * buffer, i.e. dst_slot < src_slot.
614 	 */
615 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 		if (ret)
618 			goto free_tms;
619 	}
620 
621 	ret = __tree_mod_log_insert(fs_info, tm);
622 	if (ret)
623 		goto free_tms;
624 	tree_mod_log_write_unlock(fs_info);
625 	kfree(tm_list);
626 
627 	return 0;
628 free_tms:
629 	for (i = 0; i < nr_items; i++) {
630 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 		kfree(tm_list[i]);
633 	}
634 	if (locked)
635 		tree_mod_log_write_unlock(fs_info);
636 	kfree(tm_list);
637 	kfree(tm);
638 
639 	return ret;
640 }
641 
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 		       struct tree_mod_elem **tm_list,
645 		       int nritems)
646 {
647 	int i, j;
648 	int ret;
649 
650 	for (i = nritems - 1; i >= 0; i--) {
651 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 		if (ret) {
653 			for (j = nritems - 1; j > i; j--)
654 				rb_erase(&tm_list[j]->node,
655 					 &fs_info->tree_mod_log);
656 			return ret;
657 		}
658 	}
659 
660 	return 0;
661 }
662 
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 			 struct extent_buffer *old_root,
666 			 struct extent_buffer *new_root, gfp_t flags,
667 			 int log_removal)
668 {
669 	struct tree_mod_elem *tm = NULL;
670 	struct tree_mod_elem **tm_list = NULL;
671 	int nritems = 0;
672 	int ret = 0;
673 	int i;
674 
675 	if (!tree_mod_need_log(fs_info, NULL))
676 		return 0;
677 
678 	if (log_removal && btrfs_header_level(old_root) > 0) {
679 		nritems = btrfs_header_nritems(old_root);
680 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681 				  flags);
682 		if (!tm_list) {
683 			ret = -ENOMEM;
684 			goto free_tms;
685 		}
686 		for (i = 0; i < nritems; i++) {
687 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689 			if (!tm_list[i]) {
690 				ret = -ENOMEM;
691 				goto free_tms;
692 			}
693 		}
694 	}
695 
696 	tm = kzalloc(sizeof(*tm), flags);
697 	if (!tm) {
698 		ret = -ENOMEM;
699 		goto free_tms;
700 	}
701 
702 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703 	tm->old_root.logical = old_root->start;
704 	tm->old_root.level = btrfs_header_level(old_root);
705 	tm->generation = btrfs_header_generation(old_root);
706 	tm->op = MOD_LOG_ROOT_REPLACE;
707 
708 	if (tree_mod_dont_log(fs_info, NULL))
709 		goto free_tms;
710 
711 	if (tm_list)
712 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 	if (!ret)
714 		ret = __tree_mod_log_insert(fs_info, tm);
715 
716 	tree_mod_log_write_unlock(fs_info);
717 	if (ret)
718 		goto free_tms;
719 	kfree(tm_list);
720 
721 	return ret;
722 
723 free_tms:
724 	if (tm_list) {
725 		for (i = 0; i < nritems; i++)
726 			kfree(tm_list[i]);
727 		kfree(tm_list);
728 	}
729 	kfree(tm);
730 
731 	return ret;
732 }
733 
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 		      int smallest)
737 {
738 	struct rb_root *tm_root;
739 	struct rb_node *node;
740 	struct tree_mod_elem *cur = NULL;
741 	struct tree_mod_elem *found = NULL;
742 	u64 index = start >> PAGE_CACHE_SHIFT;
743 
744 	tree_mod_log_read_lock(fs_info);
745 	tm_root = &fs_info->tree_mod_log;
746 	node = tm_root->rb_node;
747 	while (node) {
748 		cur = container_of(node, struct tree_mod_elem, node);
749 		if (cur->index < index) {
750 			node = node->rb_left;
751 		} else if (cur->index > index) {
752 			node = node->rb_right;
753 		} else if (cur->seq < min_seq) {
754 			node = node->rb_left;
755 		} else if (!smallest) {
756 			/* we want the node with the highest seq */
757 			if (found)
758 				BUG_ON(found->seq > cur->seq);
759 			found = cur;
760 			node = node->rb_left;
761 		} else if (cur->seq > min_seq) {
762 			/* we want the node with the smallest seq */
763 			if (found)
764 				BUG_ON(found->seq < cur->seq);
765 			found = cur;
766 			node = node->rb_right;
767 		} else {
768 			found = cur;
769 			break;
770 		}
771 	}
772 	tree_mod_log_read_unlock(fs_info);
773 
774 	return found;
775 }
776 
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 			   u64 min_seq)
785 {
786 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788 
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799 
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 		     struct extent_buffer *src, unsigned long dst_offset,
803 		     unsigned long src_offset, int nr_items)
804 {
805 	int ret = 0;
806 	struct tree_mod_elem **tm_list = NULL;
807 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 	int i;
809 	int locked = 0;
810 
811 	if (!tree_mod_need_log(fs_info, NULL))
812 		return 0;
813 
814 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 		return 0;
816 
817 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 			  GFP_NOFS);
819 	if (!tm_list)
820 		return -ENOMEM;
821 
822 	tm_list_add = tm_list;
823 	tm_list_rem = tm_list + nr_items;
824 	for (i = 0; i < nr_items; i++) {
825 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 		if (!tm_list_rem[i]) {
828 			ret = -ENOMEM;
829 			goto free_tms;
830 		}
831 
832 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 		    MOD_LOG_KEY_ADD, GFP_NOFS);
834 		if (!tm_list_add[i]) {
835 			ret = -ENOMEM;
836 			goto free_tms;
837 		}
838 	}
839 
840 	if (tree_mod_dont_log(fs_info, NULL))
841 		goto free_tms;
842 	locked = 1;
843 
844 	for (i = 0; i < nr_items; i++) {
845 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 		if (ret)
847 			goto free_tms;
848 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 		if (ret)
850 			goto free_tms;
851 	}
852 
853 	tree_mod_log_write_unlock(fs_info);
854 	kfree(tm_list);
855 
856 	return 0;
857 
858 free_tms:
859 	for (i = 0; i < nr_items * 2; i++) {
860 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 		kfree(tm_list[i]);
863 	}
864 	if (locked)
865 		tree_mod_log_write_unlock(fs_info);
866 	kfree(tm_list);
867 
868 	return ret;
869 }
870 
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 		     int dst_offset, int src_offset, int nr_items)
874 {
875 	int ret;
876 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 				       nr_items, GFP_NOFS);
878 	BUG_ON(ret < 0);
879 }
880 
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 			  struct extent_buffer *eb, int slot, int atomic)
884 {
885 	int ret;
886 
887 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 					MOD_LOG_KEY_REPLACE,
889 					atomic ? GFP_ATOMIC : GFP_NOFS);
890 	BUG_ON(ret < 0);
891 }
892 
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 	struct tree_mod_elem **tm_list = NULL;
897 	int nritems = 0;
898 	int i;
899 	int ret = 0;
900 
901 	if (btrfs_header_level(eb) == 0)
902 		return 0;
903 
904 	if (!tree_mod_need_log(fs_info, NULL))
905 		return 0;
906 
907 	nritems = btrfs_header_nritems(eb);
908 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 	if (!tm_list)
910 		return -ENOMEM;
911 
912 	for (i = 0; i < nritems; i++) {
913 		tm_list[i] = alloc_tree_mod_elem(eb, i,
914 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 		if (!tm_list[i]) {
916 			ret = -ENOMEM;
917 			goto free_tms;
918 		}
919 	}
920 
921 	if (tree_mod_dont_log(fs_info, eb))
922 		goto free_tms;
923 
924 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 	tree_mod_log_write_unlock(fs_info);
926 	if (ret)
927 		goto free_tms;
928 	kfree(tm_list);
929 
930 	return 0;
931 
932 free_tms:
933 	for (i = 0; i < nritems; i++)
934 		kfree(tm_list[i]);
935 	kfree(tm_list);
936 
937 	return ret;
938 }
939 
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 			      struct extent_buffer *new_root_node,
943 			      int log_removal)
944 {
945 	int ret;
946 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 				       new_root_node, GFP_NOFS, log_removal);
948 	BUG_ON(ret < 0);
949 }
950 
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 			      struct extent_buffer *buf)
956 {
957 	/*
958 	 * Tree blocks not in refernece counted trees and tree roots
959 	 * are never shared. If a block was allocated after the last
960 	 * snapshot and the block was not allocated by tree relocation,
961 	 * we know the block is not shared.
962 	 */
963 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 	    buf != root->node && buf != root->commit_root &&
965 	    (btrfs_header_generation(buf) <=
966 	     btrfs_root_last_snapshot(&root->root_item) ||
967 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 		return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 		return 1;
973 #endif
974 	return 0;
975 }
976 
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 				       struct btrfs_root *root,
979 				       struct extent_buffer *buf,
980 				       struct extent_buffer *cow,
981 				       int *last_ref)
982 {
983 	u64 refs;
984 	u64 owner;
985 	u64 flags;
986 	u64 new_flags = 0;
987 	int ret;
988 
989 	/*
990 	 * Backrefs update rules:
991 	 *
992 	 * Always use full backrefs for extent pointers in tree block
993 	 * allocated by tree relocation.
994 	 *
995 	 * If a shared tree block is no longer referenced by its owner
996 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 	 * use full backrefs for extent pointers in tree block.
998 	 *
999 	 * If a tree block is been relocating
1000 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 	 * use full backrefs for extent pointers in tree block.
1002 	 * The reason for this is some operations (such as drop tree)
1003 	 * are only allowed for blocks use full backrefs.
1004 	 */
1005 
1006 	if (btrfs_block_can_be_shared(root, buf)) {
1007 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 					       btrfs_header_level(buf), 1,
1009 					       &refs, &flags);
1010 		if (ret)
1011 			return ret;
1012 		if (refs == 0) {
1013 			ret = -EROFS;
1014 			btrfs_std_error(root->fs_info, ret);
1015 			return ret;
1016 		}
1017 	} else {
1018 		refs = 1;
1019 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 		else
1023 			flags = 0;
1024 	}
1025 
1026 	owner = btrfs_header_owner(buf);
1027 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029 
1030 	if (refs > 1) {
1031 		if ((owner == root->root_key.objectid ||
1032 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 			ret = btrfs_inc_ref(trans, root, buf, 1);
1035 			BUG_ON(ret); /* -ENOMEM */
1036 
1037 			if (root->root_key.objectid ==
1038 			    BTRFS_TREE_RELOC_OBJECTID) {
1039 				ret = btrfs_dec_ref(trans, root, buf, 0);
1040 				BUG_ON(ret); /* -ENOMEM */
1041 				ret = btrfs_inc_ref(trans, root, cow, 1);
1042 				BUG_ON(ret); /* -ENOMEM */
1043 			}
1044 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 		} else {
1046 
1047 			if (root->root_key.objectid ==
1048 			    BTRFS_TREE_RELOC_OBJECTID)
1049 				ret = btrfs_inc_ref(trans, root, cow, 1);
1050 			else
1051 				ret = btrfs_inc_ref(trans, root, cow, 0);
1052 			BUG_ON(ret); /* -ENOMEM */
1053 		}
1054 		if (new_flags != 0) {
1055 			int level = btrfs_header_level(buf);
1056 
1057 			ret = btrfs_set_disk_extent_flags(trans, root,
1058 							  buf->start,
1059 							  buf->len,
1060 							  new_flags, level, 0);
1061 			if (ret)
1062 				return ret;
1063 		}
1064 	} else {
1065 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 			if (root->root_key.objectid ==
1067 			    BTRFS_TREE_RELOC_OBJECTID)
1068 				ret = btrfs_inc_ref(trans, root, cow, 1);
1069 			else
1070 				ret = btrfs_inc_ref(trans, root, cow, 0);
1071 			BUG_ON(ret); /* -ENOMEM */
1072 			ret = btrfs_dec_ref(trans, root, buf, 1);
1073 			BUG_ON(ret); /* -ENOMEM */
1074 		}
1075 		clean_tree_block(trans, root->fs_info, buf);
1076 		*last_ref = 1;
1077 	}
1078 	return 0;
1079 }
1080 
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 			     struct btrfs_root *root,
1095 			     struct extent_buffer *buf,
1096 			     struct extent_buffer *parent, int parent_slot,
1097 			     struct extent_buffer **cow_ret,
1098 			     u64 search_start, u64 empty_size)
1099 {
1100 	struct btrfs_disk_key disk_key;
1101 	struct extent_buffer *cow;
1102 	int level, ret;
1103 	int last_ref = 0;
1104 	int unlock_orig = 0;
1105 	u64 parent_start;
1106 
1107 	if (*cow_ret == buf)
1108 		unlock_orig = 1;
1109 
1110 	btrfs_assert_tree_locked(buf);
1111 
1112 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 		trans->transid != root->fs_info->running_transaction->transid);
1114 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 		trans->transid != root->last_trans);
1116 
1117 	level = btrfs_header_level(buf);
1118 
1119 	if (level == 0)
1120 		btrfs_item_key(buf, &disk_key, 0);
1121 	else
1122 		btrfs_node_key(buf, &disk_key, 0);
1123 
1124 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 		if (parent)
1126 			parent_start = parent->start;
1127 		else
1128 			parent_start = 0;
1129 	} else
1130 		parent_start = 0;
1131 
1132 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 			root->root_key.objectid, &disk_key, level,
1134 			search_start, empty_size);
1135 	if (IS_ERR(cow))
1136 		return PTR_ERR(cow);
1137 
1138 	/* cow is set to blocking by btrfs_init_new_buffer */
1139 
1140 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 	btrfs_set_header_bytenr(cow, cow->start);
1142 	btrfs_set_header_generation(cow, trans->transid);
1143 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 				     BTRFS_HEADER_FLAG_RELOC);
1146 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 	else
1149 		btrfs_set_header_owner(cow, root->root_key.objectid);
1150 
1151 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 			    BTRFS_FSID_SIZE);
1153 
1154 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 	if (ret) {
1156 		btrfs_abort_transaction(trans, root, ret);
1157 		return ret;
1158 	}
1159 
1160 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 		if (ret)
1163 			return ret;
1164 	}
1165 
1166 	if (buf == root->node) {
1167 		WARN_ON(parent && parent != buf);
1168 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1169 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1170 			parent_start = buf->start;
1171 		else
1172 			parent_start = 0;
1173 
1174 		extent_buffer_get(cow);
1175 		tree_mod_log_set_root_pointer(root, cow, 1);
1176 		rcu_assign_pointer(root->node, cow);
1177 
1178 		btrfs_free_tree_block(trans, root, buf, parent_start,
1179 				      last_ref);
1180 		free_extent_buffer(buf);
1181 		add_root_to_dirty_list(root);
1182 	} else {
1183 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1184 			parent_start = parent->start;
1185 		else
1186 			parent_start = 0;
1187 
1188 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1189 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1190 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191 		btrfs_set_node_blockptr(parent, parent_slot,
1192 					cow->start);
1193 		btrfs_set_node_ptr_generation(parent, parent_slot,
1194 					      trans->transid);
1195 		btrfs_mark_buffer_dirty(parent);
1196 		if (last_ref) {
1197 			ret = tree_mod_log_free_eb(root->fs_info, buf);
1198 			if (ret) {
1199 				btrfs_abort_transaction(trans, root, ret);
1200 				return ret;
1201 			}
1202 		}
1203 		btrfs_free_tree_block(trans, root, buf, parent_start,
1204 				      last_ref);
1205 	}
1206 	if (unlock_orig)
1207 		btrfs_tree_unlock(buf);
1208 	free_extent_buffer_stale(buf);
1209 	btrfs_mark_buffer_dirty(cow);
1210 	*cow_ret = cow;
1211 	return 0;
1212 }
1213 
1214 /*
1215  * returns the logical address of the oldest predecessor of the given root.
1216  * entries older than time_seq are ignored.
1217  */
1218 static struct tree_mod_elem *
1219 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1220 			   struct extent_buffer *eb_root, u64 time_seq)
1221 {
1222 	struct tree_mod_elem *tm;
1223 	struct tree_mod_elem *found = NULL;
1224 	u64 root_logical = eb_root->start;
1225 	int looped = 0;
1226 
1227 	if (!time_seq)
1228 		return NULL;
1229 
1230 	/*
1231 	 * the very last operation that's logged for a root is the replacement
1232 	 * operation (if it is replaced at all). this has the index of the *new*
1233 	 * root, making it the very first operation that's logged for this root.
1234 	 */
1235 	while (1) {
1236 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1237 						time_seq);
1238 		if (!looped && !tm)
1239 			return NULL;
1240 		/*
1241 		 * if there are no tree operation for the oldest root, we simply
1242 		 * return it. this should only happen if that (old) root is at
1243 		 * level 0.
1244 		 */
1245 		if (!tm)
1246 			break;
1247 
1248 		/*
1249 		 * if there's an operation that's not a root replacement, we
1250 		 * found the oldest version of our root. normally, we'll find a
1251 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1252 		 */
1253 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1254 			break;
1255 
1256 		found = tm;
1257 		root_logical = tm->old_root.logical;
1258 		looped = 1;
1259 	}
1260 
1261 	/* if there's no old root to return, return what we found instead */
1262 	if (!found)
1263 		found = tm;
1264 
1265 	return found;
1266 }
1267 
1268 /*
1269  * tm is a pointer to the first operation to rewind within eb. then, all
1270  * previous operations will be rewinded (until we reach something older than
1271  * time_seq).
1272  */
1273 static void
1274 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1275 		      u64 time_seq, struct tree_mod_elem *first_tm)
1276 {
1277 	u32 n;
1278 	struct rb_node *next;
1279 	struct tree_mod_elem *tm = first_tm;
1280 	unsigned long o_dst;
1281 	unsigned long o_src;
1282 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1283 
1284 	n = btrfs_header_nritems(eb);
1285 	tree_mod_log_read_lock(fs_info);
1286 	while (tm && tm->seq >= time_seq) {
1287 		/*
1288 		 * all the operations are recorded with the operator used for
1289 		 * the modification. as we're going backwards, we do the
1290 		 * opposite of each operation here.
1291 		 */
1292 		switch (tm->op) {
1293 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1294 			BUG_ON(tm->slot < n);
1295 			/* Fallthrough */
1296 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1297 		case MOD_LOG_KEY_REMOVE:
1298 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1299 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1300 			btrfs_set_node_ptr_generation(eb, tm->slot,
1301 						      tm->generation);
1302 			n++;
1303 			break;
1304 		case MOD_LOG_KEY_REPLACE:
1305 			BUG_ON(tm->slot >= n);
1306 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1307 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1308 			btrfs_set_node_ptr_generation(eb, tm->slot,
1309 						      tm->generation);
1310 			break;
1311 		case MOD_LOG_KEY_ADD:
1312 			/* if a move operation is needed it's in the log */
1313 			n--;
1314 			break;
1315 		case MOD_LOG_MOVE_KEYS:
1316 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1317 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1318 			memmove_extent_buffer(eb, o_dst, o_src,
1319 					      tm->move.nr_items * p_size);
1320 			break;
1321 		case MOD_LOG_ROOT_REPLACE:
1322 			/*
1323 			 * this operation is special. for roots, this must be
1324 			 * handled explicitly before rewinding.
1325 			 * for non-roots, this operation may exist if the node
1326 			 * was a root: root A -> child B; then A gets empty and
1327 			 * B is promoted to the new root. in the mod log, we'll
1328 			 * have a root-replace operation for B, a tree block
1329 			 * that is no root. we simply ignore that operation.
1330 			 */
1331 			break;
1332 		}
1333 		next = rb_next(&tm->node);
1334 		if (!next)
1335 			break;
1336 		tm = container_of(next, struct tree_mod_elem, node);
1337 		if (tm->index != first_tm->index)
1338 			break;
1339 	}
1340 	tree_mod_log_read_unlock(fs_info);
1341 	btrfs_set_header_nritems(eb, n);
1342 }
1343 
1344 /*
1345  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1346  * is returned. If rewind operations happen, a fresh buffer is returned. The
1347  * returned buffer is always read-locked. If the returned buffer is not the
1348  * input buffer, the lock on the input buffer is released and the input buffer
1349  * is freed (its refcount is decremented).
1350  */
1351 static struct extent_buffer *
1352 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1353 		    struct extent_buffer *eb, u64 time_seq)
1354 {
1355 	struct extent_buffer *eb_rewin;
1356 	struct tree_mod_elem *tm;
1357 
1358 	if (!time_seq)
1359 		return eb;
1360 
1361 	if (btrfs_header_level(eb) == 0)
1362 		return eb;
1363 
1364 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1365 	if (!tm)
1366 		return eb;
1367 
1368 	btrfs_set_path_blocking(path);
1369 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1370 
1371 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1372 		BUG_ON(tm->slot != 0);
1373 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1374 		if (!eb_rewin) {
1375 			btrfs_tree_read_unlock_blocking(eb);
1376 			free_extent_buffer(eb);
1377 			return NULL;
1378 		}
1379 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1380 		btrfs_set_header_backref_rev(eb_rewin,
1381 					     btrfs_header_backref_rev(eb));
1382 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1383 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1384 	} else {
1385 		eb_rewin = btrfs_clone_extent_buffer(eb);
1386 		if (!eb_rewin) {
1387 			btrfs_tree_read_unlock_blocking(eb);
1388 			free_extent_buffer(eb);
1389 			return NULL;
1390 		}
1391 	}
1392 
1393 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1394 	btrfs_tree_read_unlock_blocking(eb);
1395 	free_extent_buffer(eb);
1396 
1397 	extent_buffer_get(eb_rewin);
1398 	btrfs_tree_read_lock(eb_rewin);
1399 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1400 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1401 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1402 
1403 	return eb_rewin;
1404 }
1405 
1406 /*
1407  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1408  * value. If there are no changes, the current root->root_node is returned. If
1409  * anything changed in between, there's a fresh buffer allocated on which the
1410  * rewind operations are done. In any case, the returned buffer is read locked.
1411  * Returns NULL on error (with no locks held).
1412  */
1413 static inline struct extent_buffer *
1414 get_old_root(struct btrfs_root *root, u64 time_seq)
1415 {
1416 	struct tree_mod_elem *tm;
1417 	struct extent_buffer *eb = NULL;
1418 	struct extent_buffer *eb_root;
1419 	struct extent_buffer *old;
1420 	struct tree_mod_root *old_root = NULL;
1421 	u64 old_generation = 0;
1422 	u64 logical;
1423 
1424 	eb_root = btrfs_read_lock_root_node(root);
1425 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1426 	if (!tm)
1427 		return eb_root;
1428 
1429 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1430 		old_root = &tm->old_root;
1431 		old_generation = tm->generation;
1432 		logical = old_root->logical;
1433 	} else {
1434 		logical = eb_root->start;
1435 	}
1436 
1437 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1438 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1439 		btrfs_tree_read_unlock(eb_root);
1440 		free_extent_buffer(eb_root);
1441 		old = read_tree_block(root, logical, 0);
1442 		if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1443 			free_extent_buffer(old);
1444 			btrfs_warn(root->fs_info,
1445 				"failed to read tree block %llu from get_old_root", logical);
1446 		} else {
1447 			eb = btrfs_clone_extent_buffer(old);
1448 			free_extent_buffer(old);
1449 		}
1450 	} else if (old_root) {
1451 		btrfs_tree_read_unlock(eb_root);
1452 		free_extent_buffer(eb_root);
1453 		eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1454 	} else {
1455 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1456 		eb = btrfs_clone_extent_buffer(eb_root);
1457 		btrfs_tree_read_unlock_blocking(eb_root);
1458 		free_extent_buffer(eb_root);
1459 	}
1460 
1461 	if (!eb)
1462 		return NULL;
1463 	extent_buffer_get(eb);
1464 	btrfs_tree_read_lock(eb);
1465 	if (old_root) {
1466 		btrfs_set_header_bytenr(eb, eb->start);
1467 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1468 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1469 		btrfs_set_header_level(eb, old_root->level);
1470 		btrfs_set_header_generation(eb, old_generation);
1471 	}
1472 	if (tm)
1473 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1474 	else
1475 		WARN_ON(btrfs_header_level(eb) != 0);
1476 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1477 
1478 	return eb;
1479 }
1480 
1481 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1482 {
1483 	struct tree_mod_elem *tm;
1484 	int level;
1485 	struct extent_buffer *eb_root = btrfs_root_node(root);
1486 
1487 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1488 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1489 		level = tm->old_root.level;
1490 	} else {
1491 		level = btrfs_header_level(eb_root);
1492 	}
1493 	free_extent_buffer(eb_root);
1494 
1495 	return level;
1496 }
1497 
1498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1499 				   struct btrfs_root *root,
1500 				   struct extent_buffer *buf)
1501 {
1502 	if (btrfs_test_is_dummy_root(root))
1503 		return 0;
1504 
1505 	/* ensure we can see the force_cow */
1506 	smp_rmb();
1507 
1508 	/*
1509 	 * We do not need to cow a block if
1510 	 * 1) this block is not created or changed in this transaction;
1511 	 * 2) this block does not belong to TREE_RELOC tree;
1512 	 * 3) the root is not forced COW.
1513 	 *
1514 	 * What is forced COW:
1515 	 *    when we create snapshot during commiting the transaction,
1516 	 *    after we've finished coping src root, we must COW the shared
1517 	 *    block to ensure the metadata consistency.
1518 	 */
1519 	if (btrfs_header_generation(buf) == trans->transid &&
1520 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1521 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1522 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1523 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1524 		return 0;
1525 	return 1;
1526 }
1527 
1528 /*
1529  * cows a single block, see __btrfs_cow_block for the real work.
1530  * This version of it has extra checks so that a block isn't cow'd more than
1531  * once per transaction, as long as it hasn't been written yet
1532  */
1533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1534 		    struct btrfs_root *root, struct extent_buffer *buf,
1535 		    struct extent_buffer *parent, int parent_slot,
1536 		    struct extent_buffer **cow_ret)
1537 {
1538 	u64 search_start;
1539 	int ret;
1540 
1541 	if (trans->transaction != root->fs_info->running_transaction)
1542 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1543 		       trans->transid,
1544 		       root->fs_info->running_transaction->transid);
1545 
1546 	if (trans->transid != root->fs_info->generation)
1547 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1548 		       trans->transid, root->fs_info->generation);
1549 
1550 	if (!should_cow_block(trans, root, buf)) {
1551 		*cow_ret = buf;
1552 		return 0;
1553 	}
1554 
1555 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1556 
1557 	if (parent)
1558 		btrfs_set_lock_blocking(parent);
1559 	btrfs_set_lock_blocking(buf);
1560 
1561 	ret = __btrfs_cow_block(trans, root, buf, parent,
1562 				 parent_slot, cow_ret, search_start, 0);
1563 
1564 	trace_btrfs_cow_block(root, buf, *cow_ret);
1565 
1566 	return ret;
1567 }
1568 
1569 /*
1570  * helper function for defrag to decide if two blocks pointed to by a
1571  * node are actually close by
1572  */
1573 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1574 {
1575 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1576 		return 1;
1577 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1578 		return 1;
1579 	return 0;
1580 }
1581 
1582 /*
1583  * compare two keys in a memcmp fashion
1584  */
1585 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1586 {
1587 	struct btrfs_key k1;
1588 
1589 	btrfs_disk_key_to_cpu(&k1, disk);
1590 
1591 	return btrfs_comp_cpu_keys(&k1, k2);
1592 }
1593 
1594 /*
1595  * same as comp_keys only with two btrfs_key's
1596  */
1597 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1598 {
1599 	if (k1->objectid > k2->objectid)
1600 		return 1;
1601 	if (k1->objectid < k2->objectid)
1602 		return -1;
1603 	if (k1->type > k2->type)
1604 		return 1;
1605 	if (k1->type < k2->type)
1606 		return -1;
1607 	if (k1->offset > k2->offset)
1608 		return 1;
1609 	if (k1->offset < k2->offset)
1610 		return -1;
1611 	return 0;
1612 }
1613 
1614 /*
1615  * this is used by the defrag code to go through all the
1616  * leaves pointed to by a node and reallocate them so that
1617  * disk order is close to key order
1618  */
1619 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1620 		       struct btrfs_root *root, struct extent_buffer *parent,
1621 		       int start_slot, u64 *last_ret,
1622 		       struct btrfs_key *progress)
1623 {
1624 	struct extent_buffer *cur;
1625 	u64 blocknr;
1626 	u64 gen;
1627 	u64 search_start = *last_ret;
1628 	u64 last_block = 0;
1629 	u64 other;
1630 	u32 parent_nritems;
1631 	int end_slot;
1632 	int i;
1633 	int err = 0;
1634 	int parent_level;
1635 	int uptodate;
1636 	u32 blocksize;
1637 	int progress_passed = 0;
1638 	struct btrfs_disk_key disk_key;
1639 
1640 	parent_level = btrfs_header_level(parent);
1641 
1642 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1643 	WARN_ON(trans->transid != root->fs_info->generation);
1644 
1645 	parent_nritems = btrfs_header_nritems(parent);
1646 	blocksize = root->nodesize;
1647 	end_slot = parent_nritems - 1;
1648 
1649 	if (parent_nritems <= 1)
1650 		return 0;
1651 
1652 	btrfs_set_lock_blocking(parent);
1653 
1654 	for (i = start_slot; i <= end_slot; i++) {
1655 		int close = 1;
1656 
1657 		btrfs_node_key(parent, &disk_key, i);
1658 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1659 			continue;
1660 
1661 		progress_passed = 1;
1662 		blocknr = btrfs_node_blockptr(parent, i);
1663 		gen = btrfs_node_ptr_generation(parent, i);
1664 		if (last_block == 0)
1665 			last_block = blocknr;
1666 
1667 		if (i > 0) {
1668 			other = btrfs_node_blockptr(parent, i - 1);
1669 			close = close_blocks(blocknr, other, blocksize);
1670 		}
1671 		if (!close && i < end_slot) {
1672 			other = btrfs_node_blockptr(parent, i + 1);
1673 			close = close_blocks(blocknr, other, blocksize);
1674 		}
1675 		if (close) {
1676 			last_block = blocknr;
1677 			continue;
1678 		}
1679 
1680 		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1681 		if (cur)
1682 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1683 		else
1684 			uptodate = 0;
1685 		if (!cur || !uptodate) {
1686 			if (!cur) {
1687 				cur = read_tree_block(root, blocknr, gen);
1688 				if (!cur || !extent_buffer_uptodate(cur)) {
1689 					free_extent_buffer(cur);
1690 					return -EIO;
1691 				}
1692 			} else if (!uptodate) {
1693 				err = btrfs_read_buffer(cur, gen);
1694 				if (err) {
1695 					free_extent_buffer(cur);
1696 					return err;
1697 				}
1698 			}
1699 		}
1700 		if (search_start == 0)
1701 			search_start = last_block;
1702 
1703 		btrfs_tree_lock(cur);
1704 		btrfs_set_lock_blocking(cur);
1705 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1706 					&cur, search_start,
1707 					min(16 * blocksize,
1708 					    (end_slot - i) * blocksize));
1709 		if (err) {
1710 			btrfs_tree_unlock(cur);
1711 			free_extent_buffer(cur);
1712 			break;
1713 		}
1714 		search_start = cur->start;
1715 		last_block = cur->start;
1716 		*last_ret = search_start;
1717 		btrfs_tree_unlock(cur);
1718 		free_extent_buffer(cur);
1719 	}
1720 	return err;
1721 }
1722 
1723 /*
1724  * The leaf data grows from end-to-front in the node.
1725  * this returns the address of the start of the last item,
1726  * which is the stop of the leaf data stack
1727  */
1728 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1729 					 struct extent_buffer *leaf)
1730 {
1731 	u32 nr = btrfs_header_nritems(leaf);
1732 	if (nr == 0)
1733 		return BTRFS_LEAF_DATA_SIZE(root);
1734 	return btrfs_item_offset_nr(leaf, nr - 1);
1735 }
1736 
1737 
1738 /*
1739  * search for key in the extent_buffer.  The items start at offset p,
1740  * and they are item_size apart.  There are 'max' items in p.
1741  *
1742  * the slot in the array is returned via slot, and it points to
1743  * the place where you would insert key if it is not found in
1744  * the array.
1745  *
1746  * slot may point to max if the key is bigger than all of the keys
1747  */
1748 static noinline int generic_bin_search(struct extent_buffer *eb,
1749 				       unsigned long p,
1750 				       int item_size, struct btrfs_key *key,
1751 				       int max, int *slot)
1752 {
1753 	int low = 0;
1754 	int high = max;
1755 	int mid;
1756 	int ret;
1757 	struct btrfs_disk_key *tmp = NULL;
1758 	struct btrfs_disk_key unaligned;
1759 	unsigned long offset;
1760 	char *kaddr = NULL;
1761 	unsigned long map_start = 0;
1762 	unsigned long map_len = 0;
1763 	int err;
1764 
1765 	while (low < high) {
1766 		mid = (low + high) / 2;
1767 		offset = p + mid * item_size;
1768 
1769 		if (!kaddr || offset < map_start ||
1770 		    (offset + sizeof(struct btrfs_disk_key)) >
1771 		    map_start + map_len) {
1772 
1773 			err = map_private_extent_buffer(eb, offset,
1774 						sizeof(struct btrfs_disk_key),
1775 						&kaddr, &map_start, &map_len);
1776 
1777 			if (!err) {
1778 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1779 							map_start);
1780 			} else {
1781 				read_extent_buffer(eb, &unaligned,
1782 						   offset, sizeof(unaligned));
1783 				tmp = &unaligned;
1784 			}
1785 
1786 		} else {
1787 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1788 							map_start);
1789 		}
1790 		ret = comp_keys(tmp, key);
1791 
1792 		if (ret < 0)
1793 			low = mid + 1;
1794 		else if (ret > 0)
1795 			high = mid;
1796 		else {
1797 			*slot = mid;
1798 			return 0;
1799 		}
1800 	}
1801 	*slot = low;
1802 	return 1;
1803 }
1804 
1805 /*
1806  * simple bin_search frontend that does the right thing for
1807  * leaves vs nodes
1808  */
1809 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1810 		      int level, int *slot)
1811 {
1812 	if (level == 0)
1813 		return generic_bin_search(eb,
1814 					  offsetof(struct btrfs_leaf, items),
1815 					  sizeof(struct btrfs_item),
1816 					  key, btrfs_header_nritems(eb),
1817 					  slot);
1818 	else
1819 		return generic_bin_search(eb,
1820 					  offsetof(struct btrfs_node, ptrs),
1821 					  sizeof(struct btrfs_key_ptr),
1822 					  key, btrfs_header_nritems(eb),
1823 					  slot);
1824 }
1825 
1826 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1827 		     int level, int *slot)
1828 {
1829 	return bin_search(eb, key, level, slot);
1830 }
1831 
1832 static void root_add_used(struct btrfs_root *root, u32 size)
1833 {
1834 	spin_lock(&root->accounting_lock);
1835 	btrfs_set_root_used(&root->root_item,
1836 			    btrfs_root_used(&root->root_item) + size);
1837 	spin_unlock(&root->accounting_lock);
1838 }
1839 
1840 static void root_sub_used(struct btrfs_root *root, u32 size)
1841 {
1842 	spin_lock(&root->accounting_lock);
1843 	btrfs_set_root_used(&root->root_item,
1844 			    btrfs_root_used(&root->root_item) - size);
1845 	spin_unlock(&root->accounting_lock);
1846 }
1847 
1848 /* given a node and slot number, this reads the blocks it points to.  The
1849  * extent buffer is returned with a reference taken (but unlocked).
1850  * NULL is returned on error.
1851  */
1852 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1853 				   struct extent_buffer *parent, int slot)
1854 {
1855 	int level = btrfs_header_level(parent);
1856 	struct extent_buffer *eb;
1857 
1858 	if (slot < 0)
1859 		return NULL;
1860 	if (slot >= btrfs_header_nritems(parent))
1861 		return NULL;
1862 
1863 	BUG_ON(level == 0);
1864 
1865 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1866 			     btrfs_node_ptr_generation(parent, slot));
1867 	if (eb && !extent_buffer_uptodate(eb)) {
1868 		free_extent_buffer(eb);
1869 		eb = NULL;
1870 	}
1871 
1872 	return eb;
1873 }
1874 
1875 /*
1876  * node level balancing, used to make sure nodes are in proper order for
1877  * item deletion.  We balance from the top down, so we have to make sure
1878  * that a deletion won't leave an node completely empty later on.
1879  */
1880 static noinline int balance_level(struct btrfs_trans_handle *trans,
1881 			 struct btrfs_root *root,
1882 			 struct btrfs_path *path, int level)
1883 {
1884 	struct extent_buffer *right = NULL;
1885 	struct extent_buffer *mid;
1886 	struct extent_buffer *left = NULL;
1887 	struct extent_buffer *parent = NULL;
1888 	int ret = 0;
1889 	int wret;
1890 	int pslot;
1891 	int orig_slot = path->slots[level];
1892 	u64 orig_ptr;
1893 
1894 	if (level == 0)
1895 		return 0;
1896 
1897 	mid = path->nodes[level];
1898 
1899 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1900 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1901 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1902 
1903 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1904 
1905 	if (level < BTRFS_MAX_LEVEL - 1) {
1906 		parent = path->nodes[level + 1];
1907 		pslot = path->slots[level + 1];
1908 	}
1909 
1910 	/*
1911 	 * deal with the case where there is only one pointer in the root
1912 	 * by promoting the node below to a root
1913 	 */
1914 	if (!parent) {
1915 		struct extent_buffer *child;
1916 
1917 		if (btrfs_header_nritems(mid) != 1)
1918 			return 0;
1919 
1920 		/* promote the child to a root */
1921 		child = read_node_slot(root, mid, 0);
1922 		if (!child) {
1923 			ret = -EROFS;
1924 			btrfs_std_error(root->fs_info, ret);
1925 			goto enospc;
1926 		}
1927 
1928 		btrfs_tree_lock(child);
1929 		btrfs_set_lock_blocking(child);
1930 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1931 		if (ret) {
1932 			btrfs_tree_unlock(child);
1933 			free_extent_buffer(child);
1934 			goto enospc;
1935 		}
1936 
1937 		tree_mod_log_set_root_pointer(root, child, 1);
1938 		rcu_assign_pointer(root->node, child);
1939 
1940 		add_root_to_dirty_list(root);
1941 		btrfs_tree_unlock(child);
1942 
1943 		path->locks[level] = 0;
1944 		path->nodes[level] = NULL;
1945 		clean_tree_block(trans, root->fs_info, mid);
1946 		btrfs_tree_unlock(mid);
1947 		/* once for the path */
1948 		free_extent_buffer(mid);
1949 
1950 		root_sub_used(root, mid->len);
1951 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1952 		/* once for the root ptr */
1953 		free_extent_buffer_stale(mid);
1954 		return 0;
1955 	}
1956 	if (btrfs_header_nritems(mid) >
1957 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1958 		return 0;
1959 
1960 	left = read_node_slot(root, parent, pslot - 1);
1961 	if (left) {
1962 		btrfs_tree_lock(left);
1963 		btrfs_set_lock_blocking(left);
1964 		wret = btrfs_cow_block(trans, root, left,
1965 				       parent, pslot - 1, &left);
1966 		if (wret) {
1967 			ret = wret;
1968 			goto enospc;
1969 		}
1970 	}
1971 	right = read_node_slot(root, parent, pslot + 1);
1972 	if (right) {
1973 		btrfs_tree_lock(right);
1974 		btrfs_set_lock_blocking(right);
1975 		wret = btrfs_cow_block(trans, root, right,
1976 				       parent, pslot + 1, &right);
1977 		if (wret) {
1978 			ret = wret;
1979 			goto enospc;
1980 		}
1981 	}
1982 
1983 	/* first, try to make some room in the middle buffer */
1984 	if (left) {
1985 		orig_slot += btrfs_header_nritems(left);
1986 		wret = push_node_left(trans, root, left, mid, 1);
1987 		if (wret < 0)
1988 			ret = wret;
1989 	}
1990 
1991 	/*
1992 	 * then try to empty the right most buffer into the middle
1993 	 */
1994 	if (right) {
1995 		wret = push_node_left(trans, root, mid, right, 1);
1996 		if (wret < 0 && wret != -ENOSPC)
1997 			ret = wret;
1998 		if (btrfs_header_nritems(right) == 0) {
1999 			clean_tree_block(trans, root->fs_info, right);
2000 			btrfs_tree_unlock(right);
2001 			del_ptr(root, path, level + 1, pslot + 1);
2002 			root_sub_used(root, right->len);
2003 			btrfs_free_tree_block(trans, root, right, 0, 1);
2004 			free_extent_buffer_stale(right);
2005 			right = NULL;
2006 		} else {
2007 			struct btrfs_disk_key right_key;
2008 			btrfs_node_key(right, &right_key, 0);
2009 			tree_mod_log_set_node_key(root->fs_info, parent,
2010 						  pslot + 1, 0);
2011 			btrfs_set_node_key(parent, &right_key, pslot + 1);
2012 			btrfs_mark_buffer_dirty(parent);
2013 		}
2014 	}
2015 	if (btrfs_header_nritems(mid) == 1) {
2016 		/*
2017 		 * we're not allowed to leave a node with one item in the
2018 		 * tree during a delete.  A deletion from lower in the tree
2019 		 * could try to delete the only pointer in this node.
2020 		 * So, pull some keys from the left.
2021 		 * There has to be a left pointer at this point because
2022 		 * otherwise we would have pulled some pointers from the
2023 		 * right
2024 		 */
2025 		if (!left) {
2026 			ret = -EROFS;
2027 			btrfs_std_error(root->fs_info, ret);
2028 			goto enospc;
2029 		}
2030 		wret = balance_node_right(trans, root, mid, left);
2031 		if (wret < 0) {
2032 			ret = wret;
2033 			goto enospc;
2034 		}
2035 		if (wret == 1) {
2036 			wret = push_node_left(trans, root, left, mid, 1);
2037 			if (wret < 0)
2038 				ret = wret;
2039 		}
2040 		BUG_ON(wret == 1);
2041 	}
2042 	if (btrfs_header_nritems(mid) == 0) {
2043 		clean_tree_block(trans, root->fs_info, mid);
2044 		btrfs_tree_unlock(mid);
2045 		del_ptr(root, path, level + 1, pslot);
2046 		root_sub_used(root, mid->len);
2047 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2048 		free_extent_buffer_stale(mid);
2049 		mid = NULL;
2050 	} else {
2051 		/* update the parent key to reflect our changes */
2052 		struct btrfs_disk_key mid_key;
2053 		btrfs_node_key(mid, &mid_key, 0);
2054 		tree_mod_log_set_node_key(root->fs_info, parent,
2055 					  pslot, 0);
2056 		btrfs_set_node_key(parent, &mid_key, pslot);
2057 		btrfs_mark_buffer_dirty(parent);
2058 	}
2059 
2060 	/* update the path */
2061 	if (left) {
2062 		if (btrfs_header_nritems(left) > orig_slot) {
2063 			extent_buffer_get(left);
2064 			/* left was locked after cow */
2065 			path->nodes[level] = left;
2066 			path->slots[level + 1] -= 1;
2067 			path->slots[level] = orig_slot;
2068 			if (mid) {
2069 				btrfs_tree_unlock(mid);
2070 				free_extent_buffer(mid);
2071 			}
2072 		} else {
2073 			orig_slot -= btrfs_header_nritems(left);
2074 			path->slots[level] = orig_slot;
2075 		}
2076 	}
2077 	/* double check we haven't messed things up */
2078 	if (orig_ptr !=
2079 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2080 		BUG();
2081 enospc:
2082 	if (right) {
2083 		btrfs_tree_unlock(right);
2084 		free_extent_buffer(right);
2085 	}
2086 	if (left) {
2087 		if (path->nodes[level] != left)
2088 			btrfs_tree_unlock(left);
2089 		free_extent_buffer(left);
2090 	}
2091 	return ret;
2092 }
2093 
2094 /* Node balancing for insertion.  Here we only split or push nodes around
2095  * when they are completely full.  This is also done top down, so we
2096  * have to be pessimistic.
2097  */
2098 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2099 					  struct btrfs_root *root,
2100 					  struct btrfs_path *path, int level)
2101 {
2102 	struct extent_buffer *right = NULL;
2103 	struct extent_buffer *mid;
2104 	struct extent_buffer *left = NULL;
2105 	struct extent_buffer *parent = NULL;
2106 	int ret = 0;
2107 	int wret;
2108 	int pslot;
2109 	int orig_slot = path->slots[level];
2110 
2111 	if (level == 0)
2112 		return 1;
2113 
2114 	mid = path->nodes[level];
2115 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2116 
2117 	if (level < BTRFS_MAX_LEVEL - 1) {
2118 		parent = path->nodes[level + 1];
2119 		pslot = path->slots[level + 1];
2120 	}
2121 
2122 	if (!parent)
2123 		return 1;
2124 
2125 	left = read_node_slot(root, parent, pslot - 1);
2126 
2127 	/* first, try to make some room in the middle buffer */
2128 	if (left) {
2129 		u32 left_nr;
2130 
2131 		btrfs_tree_lock(left);
2132 		btrfs_set_lock_blocking(left);
2133 
2134 		left_nr = btrfs_header_nritems(left);
2135 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2136 			wret = 1;
2137 		} else {
2138 			ret = btrfs_cow_block(trans, root, left, parent,
2139 					      pslot - 1, &left);
2140 			if (ret)
2141 				wret = 1;
2142 			else {
2143 				wret = push_node_left(trans, root,
2144 						      left, mid, 0);
2145 			}
2146 		}
2147 		if (wret < 0)
2148 			ret = wret;
2149 		if (wret == 0) {
2150 			struct btrfs_disk_key disk_key;
2151 			orig_slot += left_nr;
2152 			btrfs_node_key(mid, &disk_key, 0);
2153 			tree_mod_log_set_node_key(root->fs_info, parent,
2154 						  pslot, 0);
2155 			btrfs_set_node_key(parent, &disk_key, pslot);
2156 			btrfs_mark_buffer_dirty(parent);
2157 			if (btrfs_header_nritems(left) > orig_slot) {
2158 				path->nodes[level] = left;
2159 				path->slots[level + 1] -= 1;
2160 				path->slots[level] = orig_slot;
2161 				btrfs_tree_unlock(mid);
2162 				free_extent_buffer(mid);
2163 			} else {
2164 				orig_slot -=
2165 					btrfs_header_nritems(left);
2166 				path->slots[level] = orig_slot;
2167 				btrfs_tree_unlock(left);
2168 				free_extent_buffer(left);
2169 			}
2170 			return 0;
2171 		}
2172 		btrfs_tree_unlock(left);
2173 		free_extent_buffer(left);
2174 	}
2175 	right = read_node_slot(root, parent, pslot + 1);
2176 
2177 	/*
2178 	 * then try to empty the right most buffer into the middle
2179 	 */
2180 	if (right) {
2181 		u32 right_nr;
2182 
2183 		btrfs_tree_lock(right);
2184 		btrfs_set_lock_blocking(right);
2185 
2186 		right_nr = btrfs_header_nritems(right);
2187 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2188 			wret = 1;
2189 		} else {
2190 			ret = btrfs_cow_block(trans, root, right,
2191 					      parent, pslot + 1,
2192 					      &right);
2193 			if (ret)
2194 				wret = 1;
2195 			else {
2196 				wret = balance_node_right(trans, root,
2197 							  right, mid);
2198 			}
2199 		}
2200 		if (wret < 0)
2201 			ret = wret;
2202 		if (wret == 0) {
2203 			struct btrfs_disk_key disk_key;
2204 
2205 			btrfs_node_key(right, &disk_key, 0);
2206 			tree_mod_log_set_node_key(root->fs_info, parent,
2207 						  pslot + 1, 0);
2208 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2209 			btrfs_mark_buffer_dirty(parent);
2210 
2211 			if (btrfs_header_nritems(mid) <= orig_slot) {
2212 				path->nodes[level] = right;
2213 				path->slots[level + 1] += 1;
2214 				path->slots[level] = orig_slot -
2215 					btrfs_header_nritems(mid);
2216 				btrfs_tree_unlock(mid);
2217 				free_extent_buffer(mid);
2218 			} else {
2219 				btrfs_tree_unlock(right);
2220 				free_extent_buffer(right);
2221 			}
2222 			return 0;
2223 		}
2224 		btrfs_tree_unlock(right);
2225 		free_extent_buffer(right);
2226 	}
2227 	return 1;
2228 }
2229 
2230 /*
2231  * readahead one full node of leaves, finding things that are close
2232  * to the block in 'slot', and triggering ra on them.
2233  */
2234 static void reada_for_search(struct btrfs_root *root,
2235 			     struct btrfs_path *path,
2236 			     int level, int slot, u64 objectid)
2237 {
2238 	struct extent_buffer *node;
2239 	struct btrfs_disk_key disk_key;
2240 	u32 nritems;
2241 	u64 search;
2242 	u64 target;
2243 	u64 nread = 0;
2244 	u64 gen;
2245 	int direction = path->reada;
2246 	struct extent_buffer *eb;
2247 	u32 nr;
2248 	u32 blocksize;
2249 	u32 nscan = 0;
2250 
2251 	if (level != 1)
2252 		return;
2253 
2254 	if (!path->nodes[level])
2255 		return;
2256 
2257 	node = path->nodes[level];
2258 
2259 	search = btrfs_node_blockptr(node, slot);
2260 	blocksize = root->nodesize;
2261 	eb = btrfs_find_tree_block(root->fs_info, search);
2262 	if (eb) {
2263 		free_extent_buffer(eb);
2264 		return;
2265 	}
2266 
2267 	target = search;
2268 
2269 	nritems = btrfs_header_nritems(node);
2270 	nr = slot;
2271 
2272 	while (1) {
2273 		if (direction < 0) {
2274 			if (nr == 0)
2275 				break;
2276 			nr--;
2277 		} else if (direction > 0) {
2278 			nr++;
2279 			if (nr >= nritems)
2280 				break;
2281 		}
2282 		if (path->reada < 0 && objectid) {
2283 			btrfs_node_key(node, &disk_key, nr);
2284 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2285 				break;
2286 		}
2287 		search = btrfs_node_blockptr(node, nr);
2288 		if ((search <= target && target - search <= 65536) ||
2289 		    (search > target && search - target <= 65536)) {
2290 			gen = btrfs_node_ptr_generation(node, nr);
2291 			readahead_tree_block(root, search);
2292 			nread += blocksize;
2293 		}
2294 		nscan++;
2295 		if ((nread > 65536 || nscan > 32))
2296 			break;
2297 	}
2298 }
2299 
2300 static noinline void reada_for_balance(struct btrfs_root *root,
2301 				       struct btrfs_path *path, int level)
2302 {
2303 	int slot;
2304 	int nritems;
2305 	struct extent_buffer *parent;
2306 	struct extent_buffer *eb;
2307 	u64 gen;
2308 	u64 block1 = 0;
2309 	u64 block2 = 0;
2310 
2311 	parent = path->nodes[level + 1];
2312 	if (!parent)
2313 		return;
2314 
2315 	nritems = btrfs_header_nritems(parent);
2316 	slot = path->slots[level + 1];
2317 
2318 	if (slot > 0) {
2319 		block1 = btrfs_node_blockptr(parent, slot - 1);
2320 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2321 		eb = btrfs_find_tree_block(root->fs_info, block1);
2322 		/*
2323 		 * if we get -eagain from btrfs_buffer_uptodate, we
2324 		 * don't want to return eagain here.  That will loop
2325 		 * forever
2326 		 */
2327 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2328 			block1 = 0;
2329 		free_extent_buffer(eb);
2330 	}
2331 	if (slot + 1 < nritems) {
2332 		block2 = btrfs_node_blockptr(parent, slot + 1);
2333 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2334 		eb = btrfs_find_tree_block(root->fs_info, block2);
2335 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2336 			block2 = 0;
2337 		free_extent_buffer(eb);
2338 	}
2339 
2340 	if (block1)
2341 		readahead_tree_block(root, block1);
2342 	if (block2)
2343 		readahead_tree_block(root, block2);
2344 }
2345 
2346 
2347 /*
2348  * when we walk down the tree, it is usually safe to unlock the higher layers
2349  * in the tree.  The exceptions are when our path goes through slot 0, because
2350  * operations on the tree might require changing key pointers higher up in the
2351  * tree.
2352  *
2353  * callers might also have set path->keep_locks, which tells this code to keep
2354  * the lock if the path points to the last slot in the block.  This is part of
2355  * walking through the tree, and selecting the next slot in the higher block.
2356  *
2357  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2358  * if lowest_unlock is 1, level 0 won't be unlocked
2359  */
2360 static noinline void unlock_up(struct btrfs_path *path, int level,
2361 			       int lowest_unlock, int min_write_lock_level,
2362 			       int *write_lock_level)
2363 {
2364 	int i;
2365 	int skip_level = level;
2366 	int no_skips = 0;
2367 	struct extent_buffer *t;
2368 
2369 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2370 		if (!path->nodes[i])
2371 			break;
2372 		if (!path->locks[i])
2373 			break;
2374 		if (!no_skips && path->slots[i] == 0) {
2375 			skip_level = i + 1;
2376 			continue;
2377 		}
2378 		if (!no_skips && path->keep_locks) {
2379 			u32 nritems;
2380 			t = path->nodes[i];
2381 			nritems = btrfs_header_nritems(t);
2382 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2383 				skip_level = i + 1;
2384 				continue;
2385 			}
2386 		}
2387 		if (skip_level < i && i >= lowest_unlock)
2388 			no_skips = 1;
2389 
2390 		t = path->nodes[i];
2391 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2392 			btrfs_tree_unlock_rw(t, path->locks[i]);
2393 			path->locks[i] = 0;
2394 			if (write_lock_level &&
2395 			    i > min_write_lock_level &&
2396 			    i <= *write_lock_level) {
2397 				*write_lock_level = i - 1;
2398 			}
2399 		}
2400 	}
2401 }
2402 
2403 /*
2404  * This releases any locks held in the path starting at level and
2405  * going all the way up to the root.
2406  *
2407  * btrfs_search_slot will keep the lock held on higher nodes in a few
2408  * corner cases, such as COW of the block at slot zero in the node.  This
2409  * ignores those rules, and it should only be called when there are no
2410  * more updates to be done higher up in the tree.
2411  */
2412 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2413 {
2414 	int i;
2415 
2416 	if (path->keep_locks)
2417 		return;
2418 
2419 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2420 		if (!path->nodes[i])
2421 			continue;
2422 		if (!path->locks[i])
2423 			continue;
2424 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2425 		path->locks[i] = 0;
2426 	}
2427 }
2428 
2429 /*
2430  * helper function for btrfs_search_slot.  The goal is to find a block
2431  * in cache without setting the path to blocking.  If we find the block
2432  * we return zero and the path is unchanged.
2433  *
2434  * If we can't find the block, we set the path blocking and do some
2435  * reada.  -EAGAIN is returned and the search must be repeated.
2436  */
2437 static int
2438 read_block_for_search(struct btrfs_trans_handle *trans,
2439 		       struct btrfs_root *root, struct btrfs_path *p,
2440 		       struct extent_buffer **eb_ret, int level, int slot,
2441 		       struct btrfs_key *key, u64 time_seq)
2442 {
2443 	u64 blocknr;
2444 	u64 gen;
2445 	struct extent_buffer *b = *eb_ret;
2446 	struct extent_buffer *tmp;
2447 	int ret;
2448 
2449 	blocknr = btrfs_node_blockptr(b, slot);
2450 	gen = btrfs_node_ptr_generation(b, slot);
2451 
2452 	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2453 	if (tmp) {
2454 		/* first we do an atomic uptodate check */
2455 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2456 			*eb_ret = tmp;
2457 			return 0;
2458 		}
2459 
2460 		/* the pages were up to date, but we failed
2461 		 * the generation number check.  Do a full
2462 		 * read for the generation number that is correct.
2463 		 * We must do this without dropping locks so
2464 		 * we can trust our generation number
2465 		 */
2466 		btrfs_set_path_blocking(p);
2467 
2468 		/* now we're allowed to do a blocking uptodate check */
2469 		ret = btrfs_read_buffer(tmp, gen);
2470 		if (!ret) {
2471 			*eb_ret = tmp;
2472 			return 0;
2473 		}
2474 		free_extent_buffer(tmp);
2475 		btrfs_release_path(p);
2476 		return -EIO;
2477 	}
2478 
2479 	/*
2480 	 * reduce lock contention at high levels
2481 	 * of the btree by dropping locks before
2482 	 * we read.  Don't release the lock on the current
2483 	 * level because we need to walk this node to figure
2484 	 * out which blocks to read.
2485 	 */
2486 	btrfs_unlock_up_safe(p, level + 1);
2487 	btrfs_set_path_blocking(p);
2488 
2489 	free_extent_buffer(tmp);
2490 	if (p->reada)
2491 		reada_for_search(root, p, level, slot, key->objectid);
2492 
2493 	btrfs_release_path(p);
2494 
2495 	ret = -EAGAIN;
2496 	tmp = read_tree_block(root, blocknr, 0);
2497 	if (tmp) {
2498 		/*
2499 		 * If the read above didn't mark this buffer up to date,
2500 		 * it will never end up being up to date.  Set ret to EIO now
2501 		 * and give up so that our caller doesn't loop forever
2502 		 * on our EAGAINs.
2503 		 */
2504 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2505 			ret = -EIO;
2506 		free_extent_buffer(tmp);
2507 	}
2508 	return ret;
2509 }
2510 
2511 /*
2512  * helper function for btrfs_search_slot.  This does all of the checks
2513  * for node-level blocks and does any balancing required based on
2514  * the ins_len.
2515  *
2516  * If no extra work was required, zero is returned.  If we had to
2517  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2518  * start over
2519  */
2520 static int
2521 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2522 		       struct btrfs_root *root, struct btrfs_path *p,
2523 		       struct extent_buffer *b, int level, int ins_len,
2524 		       int *write_lock_level)
2525 {
2526 	int ret;
2527 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2528 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2529 		int sret;
2530 
2531 		if (*write_lock_level < level + 1) {
2532 			*write_lock_level = level + 1;
2533 			btrfs_release_path(p);
2534 			goto again;
2535 		}
2536 
2537 		btrfs_set_path_blocking(p);
2538 		reada_for_balance(root, p, level);
2539 		sret = split_node(trans, root, p, level);
2540 		btrfs_clear_path_blocking(p, NULL, 0);
2541 
2542 		BUG_ON(sret > 0);
2543 		if (sret) {
2544 			ret = sret;
2545 			goto done;
2546 		}
2547 		b = p->nodes[level];
2548 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2549 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2550 		int sret;
2551 
2552 		if (*write_lock_level < level + 1) {
2553 			*write_lock_level = level + 1;
2554 			btrfs_release_path(p);
2555 			goto again;
2556 		}
2557 
2558 		btrfs_set_path_blocking(p);
2559 		reada_for_balance(root, p, level);
2560 		sret = balance_level(trans, root, p, level);
2561 		btrfs_clear_path_blocking(p, NULL, 0);
2562 
2563 		if (sret) {
2564 			ret = sret;
2565 			goto done;
2566 		}
2567 		b = p->nodes[level];
2568 		if (!b) {
2569 			btrfs_release_path(p);
2570 			goto again;
2571 		}
2572 		BUG_ON(btrfs_header_nritems(b) == 1);
2573 	}
2574 	return 0;
2575 
2576 again:
2577 	ret = -EAGAIN;
2578 done:
2579 	return ret;
2580 }
2581 
2582 static void key_search_validate(struct extent_buffer *b,
2583 				struct btrfs_key *key,
2584 				int level)
2585 {
2586 #ifdef CONFIG_BTRFS_ASSERT
2587 	struct btrfs_disk_key disk_key;
2588 
2589 	btrfs_cpu_key_to_disk(&disk_key, key);
2590 
2591 	if (level == 0)
2592 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2593 		    offsetof(struct btrfs_leaf, items[0].key),
2594 		    sizeof(disk_key)));
2595 	else
2596 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2597 		    offsetof(struct btrfs_node, ptrs[0].key),
2598 		    sizeof(disk_key)));
2599 #endif
2600 }
2601 
2602 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2603 		      int level, int *prev_cmp, int *slot)
2604 {
2605 	if (*prev_cmp != 0) {
2606 		*prev_cmp = bin_search(b, key, level, slot);
2607 		return *prev_cmp;
2608 	}
2609 
2610 	key_search_validate(b, key, level);
2611 	*slot = 0;
2612 
2613 	return 0;
2614 }
2615 
2616 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2617 		u64 iobjectid, u64 ioff, u8 key_type,
2618 		struct btrfs_key *found_key)
2619 {
2620 	int ret;
2621 	struct btrfs_key key;
2622 	struct extent_buffer *eb;
2623 
2624 	ASSERT(path);
2625 	ASSERT(found_key);
2626 
2627 	key.type = key_type;
2628 	key.objectid = iobjectid;
2629 	key.offset = ioff;
2630 
2631 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2632 	if (ret < 0)
2633 		return ret;
2634 
2635 	eb = path->nodes[0];
2636 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2637 		ret = btrfs_next_leaf(fs_root, path);
2638 		if (ret)
2639 			return ret;
2640 		eb = path->nodes[0];
2641 	}
2642 
2643 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2644 	if (found_key->type != key.type ||
2645 			found_key->objectid != key.objectid)
2646 		return 1;
2647 
2648 	return 0;
2649 }
2650 
2651 /*
2652  * look for key in the tree.  path is filled in with nodes along the way
2653  * if key is found, we return zero and you can find the item in the leaf
2654  * level of the path (level 0)
2655  *
2656  * If the key isn't found, the path points to the slot where it should
2657  * be inserted, and 1 is returned.  If there are other errors during the
2658  * search a negative error number is returned.
2659  *
2660  * if ins_len > 0, nodes and leaves will be split as we walk down the
2661  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2662  * possible)
2663  */
2664 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2665 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2666 		      ins_len, int cow)
2667 {
2668 	struct extent_buffer *b;
2669 	int slot;
2670 	int ret;
2671 	int err;
2672 	int level;
2673 	int lowest_unlock = 1;
2674 	int root_lock;
2675 	/* everything at write_lock_level or lower must be write locked */
2676 	int write_lock_level = 0;
2677 	u8 lowest_level = 0;
2678 	int min_write_lock_level;
2679 	int prev_cmp;
2680 
2681 	lowest_level = p->lowest_level;
2682 	WARN_ON(lowest_level && ins_len > 0);
2683 	WARN_ON(p->nodes[0] != NULL);
2684 	BUG_ON(!cow && ins_len);
2685 
2686 	if (ins_len < 0) {
2687 		lowest_unlock = 2;
2688 
2689 		/* when we are removing items, we might have to go up to level
2690 		 * two as we update tree pointers  Make sure we keep write
2691 		 * for those levels as well
2692 		 */
2693 		write_lock_level = 2;
2694 	} else if (ins_len > 0) {
2695 		/*
2696 		 * for inserting items, make sure we have a write lock on
2697 		 * level 1 so we can update keys
2698 		 */
2699 		write_lock_level = 1;
2700 	}
2701 
2702 	if (!cow)
2703 		write_lock_level = -1;
2704 
2705 	if (cow && (p->keep_locks || p->lowest_level))
2706 		write_lock_level = BTRFS_MAX_LEVEL;
2707 
2708 	min_write_lock_level = write_lock_level;
2709 
2710 again:
2711 	prev_cmp = -1;
2712 	/*
2713 	 * we try very hard to do read locks on the root
2714 	 */
2715 	root_lock = BTRFS_READ_LOCK;
2716 	level = 0;
2717 	if (p->search_commit_root) {
2718 		/*
2719 		 * the commit roots are read only
2720 		 * so we always do read locks
2721 		 */
2722 		if (p->need_commit_sem)
2723 			down_read(&root->fs_info->commit_root_sem);
2724 		b = root->commit_root;
2725 		extent_buffer_get(b);
2726 		level = btrfs_header_level(b);
2727 		if (p->need_commit_sem)
2728 			up_read(&root->fs_info->commit_root_sem);
2729 		if (!p->skip_locking)
2730 			btrfs_tree_read_lock(b);
2731 	} else {
2732 		if (p->skip_locking) {
2733 			b = btrfs_root_node(root);
2734 			level = btrfs_header_level(b);
2735 		} else {
2736 			/* we don't know the level of the root node
2737 			 * until we actually have it read locked
2738 			 */
2739 			b = btrfs_read_lock_root_node(root);
2740 			level = btrfs_header_level(b);
2741 			if (level <= write_lock_level) {
2742 				/* whoops, must trade for write lock */
2743 				btrfs_tree_read_unlock(b);
2744 				free_extent_buffer(b);
2745 				b = btrfs_lock_root_node(root);
2746 				root_lock = BTRFS_WRITE_LOCK;
2747 
2748 				/* the level might have changed, check again */
2749 				level = btrfs_header_level(b);
2750 			}
2751 		}
2752 	}
2753 	p->nodes[level] = b;
2754 	if (!p->skip_locking)
2755 		p->locks[level] = root_lock;
2756 
2757 	while (b) {
2758 		level = btrfs_header_level(b);
2759 
2760 		/*
2761 		 * setup the path here so we can release it under lock
2762 		 * contention with the cow code
2763 		 */
2764 		if (cow) {
2765 			/*
2766 			 * if we don't really need to cow this block
2767 			 * then we don't want to set the path blocking,
2768 			 * so we test it here
2769 			 */
2770 			if (!should_cow_block(trans, root, b))
2771 				goto cow_done;
2772 
2773 			/*
2774 			 * must have write locks on this node and the
2775 			 * parent
2776 			 */
2777 			if (level > write_lock_level ||
2778 			    (level + 1 > write_lock_level &&
2779 			    level + 1 < BTRFS_MAX_LEVEL &&
2780 			    p->nodes[level + 1])) {
2781 				write_lock_level = level + 1;
2782 				btrfs_release_path(p);
2783 				goto again;
2784 			}
2785 
2786 			btrfs_set_path_blocking(p);
2787 			err = btrfs_cow_block(trans, root, b,
2788 					      p->nodes[level + 1],
2789 					      p->slots[level + 1], &b);
2790 			if (err) {
2791 				ret = err;
2792 				goto done;
2793 			}
2794 		}
2795 cow_done:
2796 		p->nodes[level] = b;
2797 		btrfs_clear_path_blocking(p, NULL, 0);
2798 
2799 		/*
2800 		 * we have a lock on b and as long as we aren't changing
2801 		 * the tree, there is no way to for the items in b to change.
2802 		 * It is safe to drop the lock on our parent before we
2803 		 * go through the expensive btree search on b.
2804 		 *
2805 		 * If we're inserting or deleting (ins_len != 0), then we might
2806 		 * be changing slot zero, which may require changing the parent.
2807 		 * So, we can't drop the lock until after we know which slot
2808 		 * we're operating on.
2809 		 */
2810 		if (!ins_len && !p->keep_locks) {
2811 			int u = level + 1;
2812 
2813 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2814 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2815 				p->locks[u] = 0;
2816 			}
2817 		}
2818 
2819 		ret = key_search(b, key, level, &prev_cmp, &slot);
2820 
2821 		if (level != 0) {
2822 			int dec = 0;
2823 			if (ret && slot > 0) {
2824 				dec = 1;
2825 				slot -= 1;
2826 			}
2827 			p->slots[level] = slot;
2828 			err = setup_nodes_for_search(trans, root, p, b, level,
2829 					     ins_len, &write_lock_level);
2830 			if (err == -EAGAIN)
2831 				goto again;
2832 			if (err) {
2833 				ret = err;
2834 				goto done;
2835 			}
2836 			b = p->nodes[level];
2837 			slot = p->slots[level];
2838 
2839 			/*
2840 			 * slot 0 is special, if we change the key
2841 			 * we have to update the parent pointer
2842 			 * which means we must have a write lock
2843 			 * on the parent
2844 			 */
2845 			if (slot == 0 && ins_len &&
2846 			    write_lock_level < level + 1) {
2847 				write_lock_level = level + 1;
2848 				btrfs_release_path(p);
2849 				goto again;
2850 			}
2851 
2852 			unlock_up(p, level, lowest_unlock,
2853 				  min_write_lock_level, &write_lock_level);
2854 
2855 			if (level == lowest_level) {
2856 				if (dec)
2857 					p->slots[level]++;
2858 				goto done;
2859 			}
2860 
2861 			err = read_block_for_search(trans, root, p,
2862 						    &b, level, slot, key, 0);
2863 			if (err == -EAGAIN)
2864 				goto again;
2865 			if (err) {
2866 				ret = err;
2867 				goto done;
2868 			}
2869 
2870 			if (!p->skip_locking) {
2871 				level = btrfs_header_level(b);
2872 				if (level <= write_lock_level) {
2873 					err = btrfs_try_tree_write_lock(b);
2874 					if (!err) {
2875 						btrfs_set_path_blocking(p);
2876 						btrfs_tree_lock(b);
2877 						btrfs_clear_path_blocking(p, b,
2878 								  BTRFS_WRITE_LOCK);
2879 					}
2880 					p->locks[level] = BTRFS_WRITE_LOCK;
2881 				} else {
2882 					err = btrfs_tree_read_lock_atomic(b);
2883 					if (!err) {
2884 						btrfs_set_path_blocking(p);
2885 						btrfs_tree_read_lock(b);
2886 						btrfs_clear_path_blocking(p, b,
2887 								  BTRFS_READ_LOCK);
2888 					}
2889 					p->locks[level] = BTRFS_READ_LOCK;
2890 				}
2891 				p->nodes[level] = b;
2892 			}
2893 		} else {
2894 			p->slots[level] = slot;
2895 			if (ins_len > 0 &&
2896 			    btrfs_leaf_free_space(root, b) < ins_len) {
2897 				if (write_lock_level < 1) {
2898 					write_lock_level = 1;
2899 					btrfs_release_path(p);
2900 					goto again;
2901 				}
2902 
2903 				btrfs_set_path_blocking(p);
2904 				err = split_leaf(trans, root, key,
2905 						 p, ins_len, ret == 0);
2906 				btrfs_clear_path_blocking(p, NULL, 0);
2907 
2908 				BUG_ON(err > 0);
2909 				if (err) {
2910 					ret = err;
2911 					goto done;
2912 				}
2913 			}
2914 			if (!p->search_for_split)
2915 				unlock_up(p, level, lowest_unlock,
2916 					  min_write_lock_level, &write_lock_level);
2917 			goto done;
2918 		}
2919 	}
2920 	ret = 1;
2921 done:
2922 	/*
2923 	 * we don't really know what they plan on doing with the path
2924 	 * from here on, so for now just mark it as blocking
2925 	 */
2926 	if (!p->leave_spinning)
2927 		btrfs_set_path_blocking(p);
2928 	if (ret < 0 && !p->skip_release_on_error)
2929 		btrfs_release_path(p);
2930 	return ret;
2931 }
2932 
2933 /*
2934  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2935  * current state of the tree together with the operations recorded in the tree
2936  * modification log to search for the key in a previous version of this tree, as
2937  * denoted by the time_seq parameter.
2938  *
2939  * Naturally, there is no support for insert, delete or cow operations.
2940  *
2941  * The resulting path and return value will be set up as if we called
2942  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2943  */
2944 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2945 			  struct btrfs_path *p, u64 time_seq)
2946 {
2947 	struct extent_buffer *b;
2948 	int slot;
2949 	int ret;
2950 	int err;
2951 	int level;
2952 	int lowest_unlock = 1;
2953 	u8 lowest_level = 0;
2954 	int prev_cmp = -1;
2955 
2956 	lowest_level = p->lowest_level;
2957 	WARN_ON(p->nodes[0] != NULL);
2958 
2959 	if (p->search_commit_root) {
2960 		BUG_ON(time_seq);
2961 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2962 	}
2963 
2964 again:
2965 	b = get_old_root(root, time_seq);
2966 	level = btrfs_header_level(b);
2967 	p->locks[level] = BTRFS_READ_LOCK;
2968 
2969 	while (b) {
2970 		level = btrfs_header_level(b);
2971 		p->nodes[level] = b;
2972 		btrfs_clear_path_blocking(p, NULL, 0);
2973 
2974 		/*
2975 		 * we have a lock on b and as long as we aren't changing
2976 		 * the tree, there is no way to for the items in b to change.
2977 		 * It is safe to drop the lock on our parent before we
2978 		 * go through the expensive btree search on b.
2979 		 */
2980 		btrfs_unlock_up_safe(p, level + 1);
2981 
2982 		/*
2983 		 * Since we can unwind eb's we want to do a real search every
2984 		 * time.
2985 		 */
2986 		prev_cmp = -1;
2987 		ret = key_search(b, key, level, &prev_cmp, &slot);
2988 
2989 		if (level != 0) {
2990 			int dec = 0;
2991 			if (ret && slot > 0) {
2992 				dec = 1;
2993 				slot -= 1;
2994 			}
2995 			p->slots[level] = slot;
2996 			unlock_up(p, level, lowest_unlock, 0, NULL);
2997 
2998 			if (level == lowest_level) {
2999 				if (dec)
3000 					p->slots[level]++;
3001 				goto done;
3002 			}
3003 
3004 			err = read_block_for_search(NULL, root, p, &b, level,
3005 						    slot, key, time_seq);
3006 			if (err == -EAGAIN)
3007 				goto again;
3008 			if (err) {
3009 				ret = err;
3010 				goto done;
3011 			}
3012 
3013 			level = btrfs_header_level(b);
3014 			err = btrfs_tree_read_lock_atomic(b);
3015 			if (!err) {
3016 				btrfs_set_path_blocking(p);
3017 				btrfs_tree_read_lock(b);
3018 				btrfs_clear_path_blocking(p, b,
3019 							  BTRFS_READ_LOCK);
3020 			}
3021 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3022 			if (!b) {
3023 				ret = -ENOMEM;
3024 				goto done;
3025 			}
3026 			p->locks[level] = BTRFS_READ_LOCK;
3027 			p->nodes[level] = b;
3028 		} else {
3029 			p->slots[level] = slot;
3030 			unlock_up(p, level, lowest_unlock, 0, NULL);
3031 			goto done;
3032 		}
3033 	}
3034 	ret = 1;
3035 done:
3036 	if (!p->leave_spinning)
3037 		btrfs_set_path_blocking(p);
3038 	if (ret < 0)
3039 		btrfs_release_path(p);
3040 
3041 	return ret;
3042 }
3043 
3044 /*
3045  * helper to use instead of search slot if no exact match is needed but
3046  * instead the next or previous item should be returned.
3047  * When find_higher is true, the next higher item is returned, the next lower
3048  * otherwise.
3049  * When return_any and find_higher are both true, and no higher item is found,
3050  * return the next lower instead.
3051  * When return_any is true and find_higher is false, and no lower item is found,
3052  * return the next higher instead.
3053  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3054  * < 0 on error
3055  */
3056 int btrfs_search_slot_for_read(struct btrfs_root *root,
3057 			       struct btrfs_key *key, struct btrfs_path *p,
3058 			       int find_higher, int return_any)
3059 {
3060 	int ret;
3061 	struct extent_buffer *leaf;
3062 
3063 again:
3064 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3065 	if (ret <= 0)
3066 		return ret;
3067 	/*
3068 	 * a return value of 1 means the path is at the position where the
3069 	 * item should be inserted. Normally this is the next bigger item,
3070 	 * but in case the previous item is the last in a leaf, path points
3071 	 * to the first free slot in the previous leaf, i.e. at an invalid
3072 	 * item.
3073 	 */
3074 	leaf = p->nodes[0];
3075 
3076 	if (find_higher) {
3077 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3078 			ret = btrfs_next_leaf(root, p);
3079 			if (ret <= 0)
3080 				return ret;
3081 			if (!return_any)
3082 				return 1;
3083 			/*
3084 			 * no higher item found, return the next
3085 			 * lower instead
3086 			 */
3087 			return_any = 0;
3088 			find_higher = 0;
3089 			btrfs_release_path(p);
3090 			goto again;
3091 		}
3092 	} else {
3093 		if (p->slots[0] == 0) {
3094 			ret = btrfs_prev_leaf(root, p);
3095 			if (ret < 0)
3096 				return ret;
3097 			if (!ret) {
3098 				leaf = p->nodes[0];
3099 				if (p->slots[0] == btrfs_header_nritems(leaf))
3100 					p->slots[0]--;
3101 				return 0;
3102 			}
3103 			if (!return_any)
3104 				return 1;
3105 			/*
3106 			 * no lower item found, return the next
3107 			 * higher instead
3108 			 */
3109 			return_any = 0;
3110 			find_higher = 1;
3111 			btrfs_release_path(p);
3112 			goto again;
3113 		} else {
3114 			--p->slots[0];
3115 		}
3116 	}
3117 	return 0;
3118 }
3119 
3120 /*
3121  * adjust the pointers going up the tree, starting at level
3122  * making sure the right key of each node is points to 'key'.
3123  * This is used after shifting pointers to the left, so it stops
3124  * fixing up pointers when a given leaf/node is not in slot 0 of the
3125  * higher levels
3126  *
3127  */
3128 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3129 			   struct btrfs_path *path,
3130 			   struct btrfs_disk_key *key, int level)
3131 {
3132 	int i;
3133 	struct extent_buffer *t;
3134 
3135 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3136 		int tslot = path->slots[i];
3137 		if (!path->nodes[i])
3138 			break;
3139 		t = path->nodes[i];
3140 		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3141 		btrfs_set_node_key(t, key, tslot);
3142 		btrfs_mark_buffer_dirty(path->nodes[i]);
3143 		if (tslot != 0)
3144 			break;
3145 	}
3146 }
3147 
3148 /*
3149  * update item key.
3150  *
3151  * This function isn't completely safe. It's the caller's responsibility
3152  * that the new key won't break the order
3153  */
3154 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3155 			     struct btrfs_path *path,
3156 			     struct btrfs_key *new_key)
3157 {
3158 	struct btrfs_disk_key disk_key;
3159 	struct extent_buffer *eb;
3160 	int slot;
3161 
3162 	eb = path->nodes[0];
3163 	slot = path->slots[0];
3164 	if (slot > 0) {
3165 		btrfs_item_key(eb, &disk_key, slot - 1);
3166 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3167 	}
3168 	if (slot < btrfs_header_nritems(eb) - 1) {
3169 		btrfs_item_key(eb, &disk_key, slot + 1);
3170 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3171 	}
3172 
3173 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3174 	btrfs_set_item_key(eb, &disk_key, slot);
3175 	btrfs_mark_buffer_dirty(eb);
3176 	if (slot == 0)
3177 		fixup_low_keys(fs_info, path, &disk_key, 1);
3178 }
3179 
3180 /*
3181  * try to push data from one node into the next node left in the
3182  * tree.
3183  *
3184  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3185  * error, and > 0 if there was no room in the left hand block.
3186  */
3187 static int push_node_left(struct btrfs_trans_handle *trans,
3188 			  struct btrfs_root *root, struct extent_buffer *dst,
3189 			  struct extent_buffer *src, int empty)
3190 {
3191 	int push_items = 0;
3192 	int src_nritems;
3193 	int dst_nritems;
3194 	int ret = 0;
3195 
3196 	src_nritems = btrfs_header_nritems(src);
3197 	dst_nritems = btrfs_header_nritems(dst);
3198 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3199 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3200 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3201 
3202 	if (!empty && src_nritems <= 8)
3203 		return 1;
3204 
3205 	if (push_items <= 0)
3206 		return 1;
3207 
3208 	if (empty) {
3209 		push_items = min(src_nritems, push_items);
3210 		if (push_items < src_nritems) {
3211 			/* leave at least 8 pointers in the node if
3212 			 * we aren't going to empty it
3213 			 */
3214 			if (src_nritems - push_items < 8) {
3215 				if (push_items <= 8)
3216 					return 1;
3217 				push_items -= 8;
3218 			}
3219 		}
3220 	} else
3221 		push_items = min(src_nritems - 8, push_items);
3222 
3223 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3224 				   push_items);
3225 	if (ret) {
3226 		btrfs_abort_transaction(trans, root, ret);
3227 		return ret;
3228 	}
3229 	copy_extent_buffer(dst, src,
3230 			   btrfs_node_key_ptr_offset(dst_nritems),
3231 			   btrfs_node_key_ptr_offset(0),
3232 			   push_items * sizeof(struct btrfs_key_ptr));
3233 
3234 	if (push_items < src_nritems) {
3235 		/*
3236 		 * don't call tree_mod_log_eb_move here, key removal was already
3237 		 * fully logged by tree_mod_log_eb_copy above.
3238 		 */
3239 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3240 				      btrfs_node_key_ptr_offset(push_items),
3241 				      (src_nritems - push_items) *
3242 				      sizeof(struct btrfs_key_ptr));
3243 	}
3244 	btrfs_set_header_nritems(src, src_nritems - push_items);
3245 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3246 	btrfs_mark_buffer_dirty(src);
3247 	btrfs_mark_buffer_dirty(dst);
3248 
3249 	return ret;
3250 }
3251 
3252 /*
3253  * try to push data from one node into the next node right in the
3254  * tree.
3255  *
3256  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3257  * error, and > 0 if there was no room in the right hand block.
3258  *
3259  * this will  only push up to 1/2 the contents of the left node over
3260  */
3261 static int balance_node_right(struct btrfs_trans_handle *trans,
3262 			      struct btrfs_root *root,
3263 			      struct extent_buffer *dst,
3264 			      struct extent_buffer *src)
3265 {
3266 	int push_items = 0;
3267 	int max_push;
3268 	int src_nritems;
3269 	int dst_nritems;
3270 	int ret = 0;
3271 
3272 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3273 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3274 
3275 	src_nritems = btrfs_header_nritems(src);
3276 	dst_nritems = btrfs_header_nritems(dst);
3277 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3278 	if (push_items <= 0)
3279 		return 1;
3280 
3281 	if (src_nritems < 4)
3282 		return 1;
3283 
3284 	max_push = src_nritems / 2 + 1;
3285 	/* don't try to empty the node */
3286 	if (max_push >= src_nritems)
3287 		return 1;
3288 
3289 	if (max_push < push_items)
3290 		push_items = max_push;
3291 
3292 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3293 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3294 				      btrfs_node_key_ptr_offset(0),
3295 				      (dst_nritems) *
3296 				      sizeof(struct btrfs_key_ptr));
3297 
3298 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3299 				   src_nritems - push_items, push_items);
3300 	if (ret) {
3301 		btrfs_abort_transaction(trans, root, ret);
3302 		return ret;
3303 	}
3304 	copy_extent_buffer(dst, src,
3305 			   btrfs_node_key_ptr_offset(0),
3306 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3307 			   push_items * sizeof(struct btrfs_key_ptr));
3308 
3309 	btrfs_set_header_nritems(src, src_nritems - push_items);
3310 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3311 
3312 	btrfs_mark_buffer_dirty(src);
3313 	btrfs_mark_buffer_dirty(dst);
3314 
3315 	return ret;
3316 }
3317 
3318 /*
3319  * helper function to insert a new root level in the tree.
3320  * A new node is allocated, and a single item is inserted to
3321  * point to the existing root
3322  *
3323  * returns zero on success or < 0 on failure.
3324  */
3325 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3326 			   struct btrfs_root *root,
3327 			   struct btrfs_path *path, int level)
3328 {
3329 	u64 lower_gen;
3330 	struct extent_buffer *lower;
3331 	struct extent_buffer *c;
3332 	struct extent_buffer *old;
3333 	struct btrfs_disk_key lower_key;
3334 
3335 	BUG_ON(path->nodes[level]);
3336 	BUG_ON(path->nodes[level-1] != root->node);
3337 
3338 	lower = path->nodes[level-1];
3339 	if (level == 1)
3340 		btrfs_item_key(lower, &lower_key, 0);
3341 	else
3342 		btrfs_node_key(lower, &lower_key, 0);
3343 
3344 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3345 				   &lower_key, level, root->node->start, 0);
3346 	if (IS_ERR(c))
3347 		return PTR_ERR(c);
3348 
3349 	root_add_used(root, root->nodesize);
3350 
3351 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3352 	btrfs_set_header_nritems(c, 1);
3353 	btrfs_set_header_level(c, level);
3354 	btrfs_set_header_bytenr(c, c->start);
3355 	btrfs_set_header_generation(c, trans->transid);
3356 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3357 	btrfs_set_header_owner(c, root->root_key.objectid);
3358 
3359 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3360 			    BTRFS_FSID_SIZE);
3361 
3362 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3363 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3364 
3365 	btrfs_set_node_key(c, &lower_key, 0);
3366 	btrfs_set_node_blockptr(c, 0, lower->start);
3367 	lower_gen = btrfs_header_generation(lower);
3368 	WARN_ON(lower_gen != trans->transid);
3369 
3370 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3371 
3372 	btrfs_mark_buffer_dirty(c);
3373 
3374 	old = root->node;
3375 	tree_mod_log_set_root_pointer(root, c, 0);
3376 	rcu_assign_pointer(root->node, c);
3377 
3378 	/* the super has an extra ref to root->node */
3379 	free_extent_buffer(old);
3380 
3381 	add_root_to_dirty_list(root);
3382 	extent_buffer_get(c);
3383 	path->nodes[level] = c;
3384 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3385 	path->slots[level] = 0;
3386 	return 0;
3387 }
3388 
3389 /*
3390  * worker function to insert a single pointer in a node.
3391  * the node should have enough room for the pointer already
3392  *
3393  * slot and level indicate where you want the key to go, and
3394  * blocknr is the block the key points to.
3395  */
3396 static void insert_ptr(struct btrfs_trans_handle *trans,
3397 		       struct btrfs_root *root, struct btrfs_path *path,
3398 		       struct btrfs_disk_key *key, u64 bytenr,
3399 		       int slot, int level)
3400 {
3401 	struct extent_buffer *lower;
3402 	int nritems;
3403 	int ret;
3404 
3405 	BUG_ON(!path->nodes[level]);
3406 	btrfs_assert_tree_locked(path->nodes[level]);
3407 	lower = path->nodes[level];
3408 	nritems = btrfs_header_nritems(lower);
3409 	BUG_ON(slot > nritems);
3410 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3411 	if (slot != nritems) {
3412 		if (level)
3413 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3414 					     slot, nritems - slot);
3415 		memmove_extent_buffer(lower,
3416 			      btrfs_node_key_ptr_offset(slot + 1),
3417 			      btrfs_node_key_ptr_offset(slot),
3418 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3419 	}
3420 	if (level) {
3421 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3422 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3423 		BUG_ON(ret < 0);
3424 	}
3425 	btrfs_set_node_key(lower, key, slot);
3426 	btrfs_set_node_blockptr(lower, slot, bytenr);
3427 	WARN_ON(trans->transid == 0);
3428 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3429 	btrfs_set_header_nritems(lower, nritems + 1);
3430 	btrfs_mark_buffer_dirty(lower);
3431 }
3432 
3433 /*
3434  * split the node at the specified level in path in two.
3435  * The path is corrected to point to the appropriate node after the split
3436  *
3437  * Before splitting this tries to make some room in the node by pushing
3438  * left and right, if either one works, it returns right away.
3439  *
3440  * returns 0 on success and < 0 on failure
3441  */
3442 static noinline int split_node(struct btrfs_trans_handle *trans,
3443 			       struct btrfs_root *root,
3444 			       struct btrfs_path *path, int level)
3445 {
3446 	struct extent_buffer *c;
3447 	struct extent_buffer *split;
3448 	struct btrfs_disk_key disk_key;
3449 	int mid;
3450 	int ret;
3451 	u32 c_nritems;
3452 
3453 	c = path->nodes[level];
3454 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3455 	if (c == root->node) {
3456 		/*
3457 		 * trying to split the root, lets make a new one
3458 		 *
3459 		 * tree mod log: We don't log_removal old root in
3460 		 * insert_new_root, because that root buffer will be kept as a
3461 		 * normal node. We are going to log removal of half of the
3462 		 * elements below with tree_mod_log_eb_copy. We're holding a
3463 		 * tree lock on the buffer, which is why we cannot race with
3464 		 * other tree_mod_log users.
3465 		 */
3466 		ret = insert_new_root(trans, root, path, level + 1);
3467 		if (ret)
3468 			return ret;
3469 	} else {
3470 		ret = push_nodes_for_insert(trans, root, path, level);
3471 		c = path->nodes[level];
3472 		if (!ret && btrfs_header_nritems(c) <
3473 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3474 			return 0;
3475 		if (ret < 0)
3476 			return ret;
3477 	}
3478 
3479 	c_nritems = btrfs_header_nritems(c);
3480 	mid = (c_nritems + 1) / 2;
3481 	btrfs_node_key(c, &disk_key, mid);
3482 
3483 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3484 			&disk_key, level, c->start, 0);
3485 	if (IS_ERR(split))
3486 		return PTR_ERR(split);
3487 
3488 	root_add_used(root, root->nodesize);
3489 
3490 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3491 	btrfs_set_header_level(split, btrfs_header_level(c));
3492 	btrfs_set_header_bytenr(split, split->start);
3493 	btrfs_set_header_generation(split, trans->transid);
3494 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3495 	btrfs_set_header_owner(split, root->root_key.objectid);
3496 	write_extent_buffer(split, root->fs_info->fsid,
3497 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3498 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3499 			    btrfs_header_chunk_tree_uuid(split),
3500 			    BTRFS_UUID_SIZE);
3501 
3502 	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3503 				   mid, c_nritems - mid);
3504 	if (ret) {
3505 		btrfs_abort_transaction(trans, root, ret);
3506 		return ret;
3507 	}
3508 	copy_extent_buffer(split, c,
3509 			   btrfs_node_key_ptr_offset(0),
3510 			   btrfs_node_key_ptr_offset(mid),
3511 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3512 	btrfs_set_header_nritems(split, c_nritems - mid);
3513 	btrfs_set_header_nritems(c, mid);
3514 	ret = 0;
3515 
3516 	btrfs_mark_buffer_dirty(c);
3517 	btrfs_mark_buffer_dirty(split);
3518 
3519 	insert_ptr(trans, root, path, &disk_key, split->start,
3520 		   path->slots[level + 1] + 1, level + 1);
3521 
3522 	if (path->slots[level] >= mid) {
3523 		path->slots[level] -= mid;
3524 		btrfs_tree_unlock(c);
3525 		free_extent_buffer(c);
3526 		path->nodes[level] = split;
3527 		path->slots[level + 1] += 1;
3528 	} else {
3529 		btrfs_tree_unlock(split);
3530 		free_extent_buffer(split);
3531 	}
3532 	return ret;
3533 }
3534 
3535 /*
3536  * how many bytes are required to store the items in a leaf.  start
3537  * and nr indicate which items in the leaf to check.  This totals up the
3538  * space used both by the item structs and the item data
3539  */
3540 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3541 {
3542 	struct btrfs_item *start_item;
3543 	struct btrfs_item *end_item;
3544 	struct btrfs_map_token token;
3545 	int data_len;
3546 	int nritems = btrfs_header_nritems(l);
3547 	int end = min(nritems, start + nr) - 1;
3548 
3549 	if (!nr)
3550 		return 0;
3551 	btrfs_init_map_token(&token);
3552 	start_item = btrfs_item_nr(start);
3553 	end_item = btrfs_item_nr(end);
3554 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3555 		btrfs_token_item_size(l, start_item, &token);
3556 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3557 	data_len += sizeof(struct btrfs_item) * nr;
3558 	WARN_ON(data_len < 0);
3559 	return data_len;
3560 }
3561 
3562 /*
3563  * The space between the end of the leaf items and
3564  * the start of the leaf data.  IOW, how much room
3565  * the leaf has left for both items and data
3566  */
3567 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3568 				   struct extent_buffer *leaf)
3569 {
3570 	int nritems = btrfs_header_nritems(leaf);
3571 	int ret;
3572 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3573 	if (ret < 0) {
3574 		btrfs_crit(root->fs_info,
3575 			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3576 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3577 		       leaf_space_used(leaf, 0, nritems), nritems);
3578 	}
3579 	return ret;
3580 }
3581 
3582 /*
3583  * min slot controls the lowest index we're willing to push to the
3584  * right.  We'll push up to and including min_slot, but no lower
3585  */
3586 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3587 				      struct btrfs_root *root,
3588 				      struct btrfs_path *path,
3589 				      int data_size, int empty,
3590 				      struct extent_buffer *right,
3591 				      int free_space, u32 left_nritems,
3592 				      u32 min_slot)
3593 {
3594 	struct extent_buffer *left = path->nodes[0];
3595 	struct extent_buffer *upper = path->nodes[1];
3596 	struct btrfs_map_token token;
3597 	struct btrfs_disk_key disk_key;
3598 	int slot;
3599 	u32 i;
3600 	int push_space = 0;
3601 	int push_items = 0;
3602 	struct btrfs_item *item;
3603 	u32 nr;
3604 	u32 right_nritems;
3605 	u32 data_end;
3606 	u32 this_item_size;
3607 
3608 	btrfs_init_map_token(&token);
3609 
3610 	if (empty)
3611 		nr = 0;
3612 	else
3613 		nr = max_t(u32, 1, min_slot);
3614 
3615 	if (path->slots[0] >= left_nritems)
3616 		push_space += data_size;
3617 
3618 	slot = path->slots[1];
3619 	i = left_nritems - 1;
3620 	while (i >= nr) {
3621 		item = btrfs_item_nr(i);
3622 
3623 		if (!empty && push_items > 0) {
3624 			if (path->slots[0] > i)
3625 				break;
3626 			if (path->slots[0] == i) {
3627 				int space = btrfs_leaf_free_space(root, left);
3628 				if (space + push_space * 2 > free_space)
3629 					break;
3630 			}
3631 		}
3632 
3633 		if (path->slots[0] == i)
3634 			push_space += data_size;
3635 
3636 		this_item_size = btrfs_item_size(left, item);
3637 		if (this_item_size + sizeof(*item) + push_space > free_space)
3638 			break;
3639 
3640 		push_items++;
3641 		push_space += this_item_size + sizeof(*item);
3642 		if (i == 0)
3643 			break;
3644 		i--;
3645 	}
3646 
3647 	if (push_items == 0)
3648 		goto out_unlock;
3649 
3650 	WARN_ON(!empty && push_items == left_nritems);
3651 
3652 	/* push left to right */
3653 	right_nritems = btrfs_header_nritems(right);
3654 
3655 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3656 	push_space -= leaf_data_end(root, left);
3657 
3658 	/* make room in the right data area */
3659 	data_end = leaf_data_end(root, right);
3660 	memmove_extent_buffer(right,
3661 			      btrfs_leaf_data(right) + data_end - push_space,
3662 			      btrfs_leaf_data(right) + data_end,
3663 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3664 
3665 	/* copy from the left data area */
3666 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3667 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3668 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3669 		     push_space);
3670 
3671 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3672 			      btrfs_item_nr_offset(0),
3673 			      right_nritems * sizeof(struct btrfs_item));
3674 
3675 	/* copy the items from left to right */
3676 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3677 		   btrfs_item_nr_offset(left_nritems - push_items),
3678 		   push_items * sizeof(struct btrfs_item));
3679 
3680 	/* update the item pointers */
3681 	right_nritems += push_items;
3682 	btrfs_set_header_nritems(right, right_nritems);
3683 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3684 	for (i = 0; i < right_nritems; i++) {
3685 		item = btrfs_item_nr(i);
3686 		push_space -= btrfs_token_item_size(right, item, &token);
3687 		btrfs_set_token_item_offset(right, item, push_space, &token);
3688 	}
3689 
3690 	left_nritems -= push_items;
3691 	btrfs_set_header_nritems(left, left_nritems);
3692 
3693 	if (left_nritems)
3694 		btrfs_mark_buffer_dirty(left);
3695 	else
3696 		clean_tree_block(trans, root->fs_info, left);
3697 
3698 	btrfs_mark_buffer_dirty(right);
3699 
3700 	btrfs_item_key(right, &disk_key, 0);
3701 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3702 	btrfs_mark_buffer_dirty(upper);
3703 
3704 	/* then fixup the leaf pointer in the path */
3705 	if (path->slots[0] >= left_nritems) {
3706 		path->slots[0] -= left_nritems;
3707 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3708 			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3709 		btrfs_tree_unlock(path->nodes[0]);
3710 		free_extent_buffer(path->nodes[0]);
3711 		path->nodes[0] = right;
3712 		path->slots[1] += 1;
3713 	} else {
3714 		btrfs_tree_unlock(right);
3715 		free_extent_buffer(right);
3716 	}
3717 	return 0;
3718 
3719 out_unlock:
3720 	btrfs_tree_unlock(right);
3721 	free_extent_buffer(right);
3722 	return 1;
3723 }
3724 
3725 /*
3726  * push some data in the path leaf to the right, trying to free up at
3727  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3728  *
3729  * returns 1 if the push failed because the other node didn't have enough
3730  * room, 0 if everything worked out and < 0 if there were major errors.
3731  *
3732  * this will push starting from min_slot to the end of the leaf.  It won't
3733  * push any slot lower than min_slot
3734  */
3735 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3736 			   *root, struct btrfs_path *path,
3737 			   int min_data_size, int data_size,
3738 			   int empty, u32 min_slot)
3739 {
3740 	struct extent_buffer *left = path->nodes[0];
3741 	struct extent_buffer *right;
3742 	struct extent_buffer *upper;
3743 	int slot;
3744 	int free_space;
3745 	u32 left_nritems;
3746 	int ret;
3747 
3748 	if (!path->nodes[1])
3749 		return 1;
3750 
3751 	slot = path->slots[1];
3752 	upper = path->nodes[1];
3753 	if (slot >= btrfs_header_nritems(upper) - 1)
3754 		return 1;
3755 
3756 	btrfs_assert_tree_locked(path->nodes[1]);
3757 
3758 	right = read_node_slot(root, upper, slot + 1);
3759 	if (right == NULL)
3760 		return 1;
3761 
3762 	btrfs_tree_lock(right);
3763 	btrfs_set_lock_blocking(right);
3764 
3765 	free_space = btrfs_leaf_free_space(root, right);
3766 	if (free_space < data_size)
3767 		goto out_unlock;
3768 
3769 	/* cow and double check */
3770 	ret = btrfs_cow_block(trans, root, right, upper,
3771 			      slot + 1, &right);
3772 	if (ret)
3773 		goto out_unlock;
3774 
3775 	free_space = btrfs_leaf_free_space(root, right);
3776 	if (free_space < data_size)
3777 		goto out_unlock;
3778 
3779 	left_nritems = btrfs_header_nritems(left);
3780 	if (left_nritems == 0)
3781 		goto out_unlock;
3782 
3783 	if (path->slots[0] == left_nritems && !empty) {
3784 		/* Key greater than all keys in the leaf, right neighbor has
3785 		 * enough room for it and we're not emptying our leaf to delete
3786 		 * it, therefore use right neighbor to insert the new item and
3787 		 * no need to touch/dirty our left leaft. */
3788 		btrfs_tree_unlock(left);
3789 		free_extent_buffer(left);
3790 		path->nodes[0] = right;
3791 		path->slots[0] = 0;
3792 		path->slots[1]++;
3793 		return 0;
3794 	}
3795 
3796 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3797 				right, free_space, left_nritems, min_slot);
3798 out_unlock:
3799 	btrfs_tree_unlock(right);
3800 	free_extent_buffer(right);
3801 	return 1;
3802 }
3803 
3804 /*
3805  * push some data in the path leaf to the left, trying to free up at
3806  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3807  *
3808  * max_slot can put a limit on how far into the leaf we'll push items.  The
3809  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3810  * items
3811  */
3812 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3813 				     struct btrfs_root *root,
3814 				     struct btrfs_path *path, int data_size,
3815 				     int empty, struct extent_buffer *left,
3816 				     int free_space, u32 right_nritems,
3817 				     u32 max_slot)
3818 {
3819 	struct btrfs_disk_key disk_key;
3820 	struct extent_buffer *right = path->nodes[0];
3821 	int i;
3822 	int push_space = 0;
3823 	int push_items = 0;
3824 	struct btrfs_item *item;
3825 	u32 old_left_nritems;
3826 	u32 nr;
3827 	int ret = 0;
3828 	u32 this_item_size;
3829 	u32 old_left_item_size;
3830 	struct btrfs_map_token token;
3831 
3832 	btrfs_init_map_token(&token);
3833 
3834 	if (empty)
3835 		nr = min(right_nritems, max_slot);
3836 	else
3837 		nr = min(right_nritems - 1, max_slot);
3838 
3839 	for (i = 0; i < nr; i++) {
3840 		item = btrfs_item_nr(i);
3841 
3842 		if (!empty && push_items > 0) {
3843 			if (path->slots[0] < i)
3844 				break;
3845 			if (path->slots[0] == i) {
3846 				int space = btrfs_leaf_free_space(root, right);
3847 				if (space + push_space * 2 > free_space)
3848 					break;
3849 			}
3850 		}
3851 
3852 		if (path->slots[0] == i)
3853 			push_space += data_size;
3854 
3855 		this_item_size = btrfs_item_size(right, item);
3856 		if (this_item_size + sizeof(*item) + push_space > free_space)
3857 			break;
3858 
3859 		push_items++;
3860 		push_space += this_item_size + sizeof(*item);
3861 	}
3862 
3863 	if (push_items == 0) {
3864 		ret = 1;
3865 		goto out;
3866 	}
3867 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3868 
3869 	/* push data from right to left */
3870 	copy_extent_buffer(left, right,
3871 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3872 			   btrfs_item_nr_offset(0),
3873 			   push_items * sizeof(struct btrfs_item));
3874 
3875 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3876 		     btrfs_item_offset_nr(right, push_items - 1);
3877 
3878 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3879 		     leaf_data_end(root, left) - push_space,
3880 		     btrfs_leaf_data(right) +
3881 		     btrfs_item_offset_nr(right, push_items - 1),
3882 		     push_space);
3883 	old_left_nritems = btrfs_header_nritems(left);
3884 	BUG_ON(old_left_nritems <= 0);
3885 
3886 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3887 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3888 		u32 ioff;
3889 
3890 		item = btrfs_item_nr(i);
3891 
3892 		ioff = btrfs_token_item_offset(left, item, &token);
3893 		btrfs_set_token_item_offset(left, item,
3894 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3895 		      &token);
3896 	}
3897 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3898 
3899 	/* fixup right node */
3900 	if (push_items > right_nritems)
3901 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3902 		       right_nritems);
3903 
3904 	if (push_items < right_nritems) {
3905 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3906 						  leaf_data_end(root, right);
3907 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3908 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3909 				      btrfs_leaf_data(right) +
3910 				      leaf_data_end(root, right), push_space);
3911 
3912 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3913 			      btrfs_item_nr_offset(push_items),
3914 			     (btrfs_header_nritems(right) - push_items) *
3915 			     sizeof(struct btrfs_item));
3916 	}
3917 	right_nritems -= push_items;
3918 	btrfs_set_header_nritems(right, right_nritems);
3919 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3920 	for (i = 0; i < right_nritems; i++) {
3921 		item = btrfs_item_nr(i);
3922 
3923 		push_space = push_space - btrfs_token_item_size(right,
3924 								item, &token);
3925 		btrfs_set_token_item_offset(right, item, push_space, &token);
3926 	}
3927 
3928 	btrfs_mark_buffer_dirty(left);
3929 	if (right_nritems)
3930 		btrfs_mark_buffer_dirty(right);
3931 	else
3932 		clean_tree_block(trans, root->fs_info, right);
3933 
3934 	btrfs_item_key(right, &disk_key, 0);
3935 	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3936 
3937 	/* then fixup the leaf pointer in the path */
3938 	if (path->slots[0] < push_items) {
3939 		path->slots[0] += old_left_nritems;
3940 		btrfs_tree_unlock(path->nodes[0]);
3941 		free_extent_buffer(path->nodes[0]);
3942 		path->nodes[0] = left;
3943 		path->slots[1] -= 1;
3944 	} else {
3945 		btrfs_tree_unlock(left);
3946 		free_extent_buffer(left);
3947 		path->slots[0] -= push_items;
3948 	}
3949 	BUG_ON(path->slots[0] < 0);
3950 	return ret;
3951 out:
3952 	btrfs_tree_unlock(left);
3953 	free_extent_buffer(left);
3954 	return ret;
3955 }
3956 
3957 /*
3958  * push some data in the path leaf to the left, trying to free up at
3959  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3960  *
3961  * max_slot can put a limit on how far into the leaf we'll push items.  The
3962  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3963  * items
3964  */
3965 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3966 			  *root, struct btrfs_path *path, int min_data_size,
3967 			  int data_size, int empty, u32 max_slot)
3968 {
3969 	struct extent_buffer *right = path->nodes[0];
3970 	struct extent_buffer *left;
3971 	int slot;
3972 	int free_space;
3973 	u32 right_nritems;
3974 	int ret = 0;
3975 
3976 	slot = path->slots[1];
3977 	if (slot == 0)
3978 		return 1;
3979 	if (!path->nodes[1])
3980 		return 1;
3981 
3982 	right_nritems = btrfs_header_nritems(right);
3983 	if (right_nritems == 0)
3984 		return 1;
3985 
3986 	btrfs_assert_tree_locked(path->nodes[1]);
3987 
3988 	left = read_node_slot(root, path->nodes[1], slot - 1);
3989 	if (left == NULL)
3990 		return 1;
3991 
3992 	btrfs_tree_lock(left);
3993 	btrfs_set_lock_blocking(left);
3994 
3995 	free_space = btrfs_leaf_free_space(root, left);
3996 	if (free_space < data_size) {
3997 		ret = 1;
3998 		goto out;
3999 	}
4000 
4001 	/* cow and double check */
4002 	ret = btrfs_cow_block(trans, root, left,
4003 			      path->nodes[1], slot - 1, &left);
4004 	if (ret) {
4005 		/* we hit -ENOSPC, but it isn't fatal here */
4006 		if (ret == -ENOSPC)
4007 			ret = 1;
4008 		goto out;
4009 	}
4010 
4011 	free_space = btrfs_leaf_free_space(root, left);
4012 	if (free_space < data_size) {
4013 		ret = 1;
4014 		goto out;
4015 	}
4016 
4017 	return __push_leaf_left(trans, root, path, min_data_size,
4018 			       empty, left, free_space, right_nritems,
4019 			       max_slot);
4020 out:
4021 	btrfs_tree_unlock(left);
4022 	free_extent_buffer(left);
4023 	return ret;
4024 }
4025 
4026 /*
4027  * split the path's leaf in two, making sure there is at least data_size
4028  * available for the resulting leaf level of the path.
4029  */
4030 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4031 				    struct btrfs_root *root,
4032 				    struct btrfs_path *path,
4033 				    struct extent_buffer *l,
4034 				    struct extent_buffer *right,
4035 				    int slot, int mid, int nritems)
4036 {
4037 	int data_copy_size;
4038 	int rt_data_off;
4039 	int i;
4040 	struct btrfs_disk_key disk_key;
4041 	struct btrfs_map_token token;
4042 
4043 	btrfs_init_map_token(&token);
4044 
4045 	nritems = nritems - mid;
4046 	btrfs_set_header_nritems(right, nritems);
4047 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4048 
4049 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4050 			   btrfs_item_nr_offset(mid),
4051 			   nritems * sizeof(struct btrfs_item));
4052 
4053 	copy_extent_buffer(right, l,
4054 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4055 		     data_copy_size, btrfs_leaf_data(l) +
4056 		     leaf_data_end(root, l), data_copy_size);
4057 
4058 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4059 		      btrfs_item_end_nr(l, mid);
4060 
4061 	for (i = 0; i < nritems; i++) {
4062 		struct btrfs_item *item = btrfs_item_nr(i);
4063 		u32 ioff;
4064 
4065 		ioff = btrfs_token_item_offset(right, item, &token);
4066 		btrfs_set_token_item_offset(right, item,
4067 					    ioff + rt_data_off, &token);
4068 	}
4069 
4070 	btrfs_set_header_nritems(l, mid);
4071 	btrfs_item_key(right, &disk_key, 0);
4072 	insert_ptr(trans, root, path, &disk_key, right->start,
4073 		   path->slots[1] + 1, 1);
4074 
4075 	btrfs_mark_buffer_dirty(right);
4076 	btrfs_mark_buffer_dirty(l);
4077 	BUG_ON(path->slots[0] != slot);
4078 
4079 	if (mid <= slot) {
4080 		btrfs_tree_unlock(path->nodes[0]);
4081 		free_extent_buffer(path->nodes[0]);
4082 		path->nodes[0] = right;
4083 		path->slots[0] -= mid;
4084 		path->slots[1] += 1;
4085 	} else {
4086 		btrfs_tree_unlock(right);
4087 		free_extent_buffer(right);
4088 	}
4089 
4090 	BUG_ON(path->slots[0] < 0);
4091 }
4092 
4093 /*
4094  * double splits happen when we need to insert a big item in the middle
4095  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4096  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4097  *          A                 B                 C
4098  *
4099  * We avoid this by trying to push the items on either side of our target
4100  * into the adjacent leaves.  If all goes well we can avoid the double split
4101  * completely.
4102  */
4103 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4104 					  struct btrfs_root *root,
4105 					  struct btrfs_path *path,
4106 					  int data_size)
4107 {
4108 	int ret;
4109 	int progress = 0;
4110 	int slot;
4111 	u32 nritems;
4112 	int space_needed = data_size;
4113 
4114 	slot = path->slots[0];
4115 	if (slot < btrfs_header_nritems(path->nodes[0]))
4116 		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4117 
4118 	/*
4119 	 * try to push all the items after our slot into the
4120 	 * right leaf
4121 	 */
4122 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4123 	if (ret < 0)
4124 		return ret;
4125 
4126 	if (ret == 0)
4127 		progress++;
4128 
4129 	nritems = btrfs_header_nritems(path->nodes[0]);
4130 	/*
4131 	 * our goal is to get our slot at the start or end of a leaf.  If
4132 	 * we've done so we're done
4133 	 */
4134 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4135 		return 0;
4136 
4137 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4138 		return 0;
4139 
4140 	/* try to push all the items before our slot into the next leaf */
4141 	slot = path->slots[0];
4142 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4143 	if (ret < 0)
4144 		return ret;
4145 
4146 	if (ret == 0)
4147 		progress++;
4148 
4149 	if (progress)
4150 		return 0;
4151 	return 1;
4152 }
4153 
4154 /*
4155  * split the path's leaf in two, making sure there is at least data_size
4156  * available for the resulting leaf level of the path.
4157  *
4158  * returns 0 if all went well and < 0 on failure.
4159  */
4160 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4161 			       struct btrfs_root *root,
4162 			       struct btrfs_key *ins_key,
4163 			       struct btrfs_path *path, int data_size,
4164 			       int extend)
4165 {
4166 	struct btrfs_disk_key disk_key;
4167 	struct extent_buffer *l;
4168 	u32 nritems;
4169 	int mid;
4170 	int slot;
4171 	struct extent_buffer *right;
4172 	struct btrfs_fs_info *fs_info = root->fs_info;
4173 	int ret = 0;
4174 	int wret;
4175 	int split;
4176 	int num_doubles = 0;
4177 	int tried_avoid_double = 0;
4178 
4179 	l = path->nodes[0];
4180 	slot = path->slots[0];
4181 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4182 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4183 		return -EOVERFLOW;
4184 
4185 	/* first try to make some room by pushing left and right */
4186 	if (data_size && path->nodes[1]) {
4187 		int space_needed = data_size;
4188 
4189 		if (slot < btrfs_header_nritems(l))
4190 			space_needed -= btrfs_leaf_free_space(root, l);
4191 
4192 		wret = push_leaf_right(trans, root, path, space_needed,
4193 				       space_needed, 0, 0);
4194 		if (wret < 0)
4195 			return wret;
4196 		if (wret) {
4197 			wret = push_leaf_left(trans, root, path, space_needed,
4198 					      space_needed, 0, (u32)-1);
4199 			if (wret < 0)
4200 				return wret;
4201 		}
4202 		l = path->nodes[0];
4203 
4204 		/* did the pushes work? */
4205 		if (btrfs_leaf_free_space(root, l) >= data_size)
4206 			return 0;
4207 	}
4208 
4209 	if (!path->nodes[1]) {
4210 		ret = insert_new_root(trans, root, path, 1);
4211 		if (ret)
4212 			return ret;
4213 	}
4214 again:
4215 	split = 1;
4216 	l = path->nodes[0];
4217 	slot = path->slots[0];
4218 	nritems = btrfs_header_nritems(l);
4219 	mid = (nritems + 1) / 2;
4220 
4221 	if (mid <= slot) {
4222 		if (nritems == 1 ||
4223 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4224 			BTRFS_LEAF_DATA_SIZE(root)) {
4225 			if (slot >= nritems) {
4226 				split = 0;
4227 			} else {
4228 				mid = slot;
4229 				if (mid != nritems &&
4230 				    leaf_space_used(l, mid, nritems - mid) +
4231 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4232 					if (data_size && !tried_avoid_double)
4233 						goto push_for_double;
4234 					split = 2;
4235 				}
4236 			}
4237 		}
4238 	} else {
4239 		if (leaf_space_used(l, 0, mid) + data_size >
4240 			BTRFS_LEAF_DATA_SIZE(root)) {
4241 			if (!extend && data_size && slot == 0) {
4242 				split = 0;
4243 			} else if ((extend || !data_size) && slot == 0) {
4244 				mid = 1;
4245 			} else {
4246 				mid = slot;
4247 				if (mid != nritems &&
4248 				    leaf_space_used(l, mid, nritems - mid) +
4249 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4250 					if (data_size && !tried_avoid_double)
4251 						goto push_for_double;
4252 					split = 2;
4253 				}
4254 			}
4255 		}
4256 	}
4257 
4258 	if (split == 0)
4259 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4260 	else
4261 		btrfs_item_key(l, &disk_key, mid);
4262 
4263 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4264 			&disk_key, 0, l->start, 0);
4265 	if (IS_ERR(right))
4266 		return PTR_ERR(right);
4267 
4268 	root_add_used(root, root->nodesize);
4269 
4270 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4271 	btrfs_set_header_bytenr(right, right->start);
4272 	btrfs_set_header_generation(right, trans->transid);
4273 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4274 	btrfs_set_header_owner(right, root->root_key.objectid);
4275 	btrfs_set_header_level(right, 0);
4276 	write_extent_buffer(right, fs_info->fsid,
4277 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4278 
4279 	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4280 			    btrfs_header_chunk_tree_uuid(right),
4281 			    BTRFS_UUID_SIZE);
4282 
4283 	if (split == 0) {
4284 		if (mid <= slot) {
4285 			btrfs_set_header_nritems(right, 0);
4286 			insert_ptr(trans, root, path, &disk_key, right->start,
4287 				   path->slots[1] + 1, 1);
4288 			btrfs_tree_unlock(path->nodes[0]);
4289 			free_extent_buffer(path->nodes[0]);
4290 			path->nodes[0] = right;
4291 			path->slots[0] = 0;
4292 			path->slots[1] += 1;
4293 		} else {
4294 			btrfs_set_header_nritems(right, 0);
4295 			insert_ptr(trans, root, path, &disk_key, right->start,
4296 					  path->slots[1], 1);
4297 			btrfs_tree_unlock(path->nodes[0]);
4298 			free_extent_buffer(path->nodes[0]);
4299 			path->nodes[0] = right;
4300 			path->slots[0] = 0;
4301 			if (path->slots[1] == 0)
4302 				fixup_low_keys(fs_info, path, &disk_key, 1);
4303 		}
4304 		btrfs_mark_buffer_dirty(right);
4305 		return ret;
4306 	}
4307 
4308 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4309 
4310 	if (split == 2) {
4311 		BUG_ON(num_doubles != 0);
4312 		num_doubles++;
4313 		goto again;
4314 	}
4315 
4316 	return 0;
4317 
4318 push_for_double:
4319 	push_for_double_split(trans, root, path, data_size);
4320 	tried_avoid_double = 1;
4321 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4322 		return 0;
4323 	goto again;
4324 }
4325 
4326 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4327 					 struct btrfs_root *root,
4328 					 struct btrfs_path *path, int ins_len)
4329 {
4330 	struct btrfs_key key;
4331 	struct extent_buffer *leaf;
4332 	struct btrfs_file_extent_item *fi;
4333 	u64 extent_len = 0;
4334 	u32 item_size;
4335 	int ret;
4336 
4337 	leaf = path->nodes[0];
4338 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4339 
4340 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4341 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4342 
4343 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4344 		return 0;
4345 
4346 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4347 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4348 		fi = btrfs_item_ptr(leaf, path->slots[0],
4349 				    struct btrfs_file_extent_item);
4350 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4351 	}
4352 	btrfs_release_path(path);
4353 
4354 	path->keep_locks = 1;
4355 	path->search_for_split = 1;
4356 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4357 	path->search_for_split = 0;
4358 	if (ret > 0)
4359 		ret = -EAGAIN;
4360 	if (ret < 0)
4361 		goto err;
4362 
4363 	ret = -EAGAIN;
4364 	leaf = path->nodes[0];
4365 	/* if our item isn't there, return now */
4366 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4367 		goto err;
4368 
4369 	/* the leaf has  changed, it now has room.  return now */
4370 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4371 		goto err;
4372 
4373 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4374 		fi = btrfs_item_ptr(leaf, path->slots[0],
4375 				    struct btrfs_file_extent_item);
4376 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4377 			goto err;
4378 	}
4379 
4380 	btrfs_set_path_blocking(path);
4381 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4382 	if (ret)
4383 		goto err;
4384 
4385 	path->keep_locks = 0;
4386 	btrfs_unlock_up_safe(path, 1);
4387 	return 0;
4388 err:
4389 	path->keep_locks = 0;
4390 	return ret;
4391 }
4392 
4393 static noinline int split_item(struct btrfs_trans_handle *trans,
4394 			       struct btrfs_root *root,
4395 			       struct btrfs_path *path,
4396 			       struct btrfs_key *new_key,
4397 			       unsigned long split_offset)
4398 {
4399 	struct extent_buffer *leaf;
4400 	struct btrfs_item *item;
4401 	struct btrfs_item *new_item;
4402 	int slot;
4403 	char *buf;
4404 	u32 nritems;
4405 	u32 item_size;
4406 	u32 orig_offset;
4407 	struct btrfs_disk_key disk_key;
4408 
4409 	leaf = path->nodes[0];
4410 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4411 
4412 	btrfs_set_path_blocking(path);
4413 
4414 	item = btrfs_item_nr(path->slots[0]);
4415 	orig_offset = btrfs_item_offset(leaf, item);
4416 	item_size = btrfs_item_size(leaf, item);
4417 
4418 	buf = kmalloc(item_size, GFP_NOFS);
4419 	if (!buf)
4420 		return -ENOMEM;
4421 
4422 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4423 			    path->slots[0]), item_size);
4424 
4425 	slot = path->slots[0] + 1;
4426 	nritems = btrfs_header_nritems(leaf);
4427 	if (slot != nritems) {
4428 		/* shift the items */
4429 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4430 				btrfs_item_nr_offset(slot),
4431 				(nritems - slot) * sizeof(struct btrfs_item));
4432 	}
4433 
4434 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4435 	btrfs_set_item_key(leaf, &disk_key, slot);
4436 
4437 	new_item = btrfs_item_nr(slot);
4438 
4439 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4440 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4441 
4442 	btrfs_set_item_offset(leaf, item,
4443 			      orig_offset + item_size - split_offset);
4444 	btrfs_set_item_size(leaf, item, split_offset);
4445 
4446 	btrfs_set_header_nritems(leaf, nritems + 1);
4447 
4448 	/* write the data for the start of the original item */
4449 	write_extent_buffer(leaf, buf,
4450 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4451 			    split_offset);
4452 
4453 	/* write the data for the new item */
4454 	write_extent_buffer(leaf, buf + split_offset,
4455 			    btrfs_item_ptr_offset(leaf, slot),
4456 			    item_size - split_offset);
4457 	btrfs_mark_buffer_dirty(leaf);
4458 
4459 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4460 	kfree(buf);
4461 	return 0;
4462 }
4463 
4464 /*
4465  * This function splits a single item into two items,
4466  * giving 'new_key' to the new item and splitting the
4467  * old one at split_offset (from the start of the item).
4468  *
4469  * The path may be released by this operation.  After
4470  * the split, the path is pointing to the old item.  The
4471  * new item is going to be in the same node as the old one.
4472  *
4473  * Note, the item being split must be smaller enough to live alone on
4474  * a tree block with room for one extra struct btrfs_item
4475  *
4476  * This allows us to split the item in place, keeping a lock on the
4477  * leaf the entire time.
4478  */
4479 int btrfs_split_item(struct btrfs_trans_handle *trans,
4480 		     struct btrfs_root *root,
4481 		     struct btrfs_path *path,
4482 		     struct btrfs_key *new_key,
4483 		     unsigned long split_offset)
4484 {
4485 	int ret;
4486 	ret = setup_leaf_for_split(trans, root, path,
4487 				   sizeof(struct btrfs_item));
4488 	if (ret)
4489 		return ret;
4490 
4491 	ret = split_item(trans, root, path, new_key, split_offset);
4492 	return ret;
4493 }
4494 
4495 /*
4496  * This function duplicate a item, giving 'new_key' to the new item.
4497  * It guarantees both items live in the same tree leaf and the new item
4498  * is contiguous with the original item.
4499  *
4500  * This allows us to split file extent in place, keeping a lock on the
4501  * leaf the entire time.
4502  */
4503 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4504 			 struct btrfs_root *root,
4505 			 struct btrfs_path *path,
4506 			 struct btrfs_key *new_key)
4507 {
4508 	struct extent_buffer *leaf;
4509 	int ret;
4510 	u32 item_size;
4511 
4512 	leaf = path->nodes[0];
4513 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4514 	ret = setup_leaf_for_split(trans, root, path,
4515 				   item_size + sizeof(struct btrfs_item));
4516 	if (ret)
4517 		return ret;
4518 
4519 	path->slots[0]++;
4520 	setup_items_for_insert(root, path, new_key, &item_size,
4521 			       item_size, item_size +
4522 			       sizeof(struct btrfs_item), 1);
4523 	leaf = path->nodes[0];
4524 	memcpy_extent_buffer(leaf,
4525 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4526 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4527 			     item_size);
4528 	return 0;
4529 }
4530 
4531 /*
4532  * make the item pointed to by the path smaller.  new_size indicates
4533  * how small to make it, and from_end tells us if we just chop bytes
4534  * off the end of the item or if we shift the item to chop bytes off
4535  * the front.
4536  */
4537 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4538 			 u32 new_size, int from_end)
4539 {
4540 	int slot;
4541 	struct extent_buffer *leaf;
4542 	struct btrfs_item *item;
4543 	u32 nritems;
4544 	unsigned int data_end;
4545 	unsigned int old_data_start;
4546 	unsigned int old_size;
4547 	unsigned int size_diff;
4548 	int i;
4549 	struct btrfs_map_token token;
4550 
4551 	btrfs_init_map_token(&token);
4552 
4553 	leaf = path->nodes[0];
4554 	slot = path->slots[0];
4555 
4556 	old_size = btrfs_item_size_nr(leaf, slot);
4557 	if (old_size == new_size)
4558 		return;
4559 
4560 	nritems = btrfs_header_nritems(leaf);
4561 	data_end = leaf_data_end(root, leaf);
4562 
4563 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4564 
4565 	size_diff = old_size - new_size;
4566 
4567 	BUG_ON(slot < 0);
4568 	BUG_ON(slot >= nritems);
4569 
4570 	/*
4571 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4572 	 */
4573 	/* first correct the data pointers */
4574 	for (i = slot; i < nritems; i++) {
4575 		u32 ioff;
4576 		item = btrfs_item_nr(i);
4577 
4578 		ioff = btrfs_token_item_offset(leaf, item, &token);
4579 		btrfs_set_token_item_offset(leaf, item,
4580 					    ioff + size_diff, &token);
4581 	}
4582 
4583 	/* shift the data */
4584 	if (from_end) {
4585 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4586 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4587 			      data_end, old_data_start + new_size - data_end);
4588 	} else {
4589 		struct btrfs_disk_key disk_key;
4590 		u64 offset;
4591 
4592 		btrfs_item_key(leaf, &disk_key, slot);
4593 
4594 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4595 			unsigned long ptr;
4596 			struct btrfs_file_extent_item *fi;
4597 
4598 			fi = btrfs_item_ptr(leaf, slot,
4599 					    struct btrfs_file_extent_item);
4600 			fi = (struct btrfs_file_extent_item *)(
4601 			     (unsigned long)fi - size_diff);
4602 
4603 			if (btrfs_file_extent_type(leaf, fi) ==
4604 			    BTRFS_FILE_EXTENT_INLINE) {
4605 				ptr = btrfs_item_ptr_offset(leaf, slot);
4606 				memmove_extent_buffer(leaf, ptr,
4607 				      (unsigned long)fi,
4608 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4609 			}
4610 		}
4611 
4612 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4613 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4614 			      data_end, old_data_start - data_end);
4615 
4616 		offset = btrfs_disk_key_offset(&disk_key);
4617 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4618 		btrfs_set_item_key(leaf, &disk_key, slot);
4619 		if (slot == 0)
4620 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4621 	}
4622 
4623 	item = btrfs_item_nr(slot);
4624 	btrfs_set_item_size(leaf, item, new_size);
4625 	btrfs_mark_buffer_dirty(leaf);
4626 
4627 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4628 		btrfs_print_leaf(root, leaf);
4629 		BUG();
4630 	}
4631 }
4632 
4633 /*
4634  * make the item pointed to by the path bigger, data_size is the added size.
4635  */
4636 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4637 		       u32 data_size)
4638 {
4639 	int slot;
4640 	struct extent_buffer *leaf;
4641 	struct btrfs_item *item;
4642 	u32 nritems;
4643 	unsigned int data_end;
4644 	unsigned int old_data;
4645 	unsigned int old_size;
4646 	int i;
4647 	struct btrfs_map_token token;
4648 
4649 	btrfs_init_map_token(&token);
4650 
4651 	leaf = path->nodes[0];
4652 
4653 	nritems = btrfs_header_nritems(leaf);
4654 	data_end = leaf_data_end(root, leaf);
4655 
4656 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4657 		btrfs_print_leaf(root, leaf);
4658 		BUG();
4659 	}
4660 	slot = path->slots[0];
4661 	old_data = btrfs_item_end_nr(leaf, slot);
4662 
4663 	BUG_ON(slot < 0);
4664 	if (slot >= nritems) {
4665 		btrfs_print_leaf(root, leaf);
4666 		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4667 		       slot, nritems);
4668 		BUG_ON(1);
4669 	}
4670 
4671 	/*
4672 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4673 	 */
4674 	/* first correct the data pointers */
4675 	for (i = slot; i < nritems; i++) {
4676 		u32 ioff;
4677 		item = btrfs_item_nr(i);
4678 
4679 		ioff = btrfs_token_item_offset(leaf, item, &token);
4680 		btrfs_set_token_item_offset(leaf, item,
4681 					    ioff - data_size, &token);
4682 	}
4683 
4684 	/* shift the data */
4685 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4686 		      data_end - data_size, btrfs_leaf_data(leaf) +
4687 		      data_end, old_data - data_end);
4688 
4689 	data_end = old_data;
4690 	old_size = btrfs_item_size_nr(leaf, slot);
4691 	item = btrfs_item_nr(slot);
4692 	btrfs_set_item_size(leaf, item, old_size + data_size);
4693 	btrfs_mark_buffer_dirty(leaf);
4694 
4695 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4696 		btrfs_print_leaf(root, leaf);
4697 		BUG();
4698 	}
4699 }
4700 
4701 /*
4702  * this is a helper for btrfs_insert_empty_items, the main goal here is
4703  * to save stack depth by doing the bulk of the work in a function
4704  * that doesn't call btrfs_search_slot
4705  */
4706 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4707 			    struct btrfs_key *cpu_key, u32 *data_size,
4708 			    u32 total_data, u32 total_size, int nr)
4709 {
4710 	struct btrfs_item *item;
4711 	int i;
4712 	u32 nritems;
4713 	unsigned int data_end;
4714 	struct btrfs_disk_key disk_key;
4715 	struct extent_buffer *leaf;
4716 	int slot;
4717 	struct btrfs_map_token token;
4718 
4719 	if (path->slots[0] == 0) {
4720 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4721 		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4722 	}
4723 	btrfs_unlock_up_safe(path, 1);
4724 
4725 	btrfs_init_map_token(&token);
4726 
4727 	leaf = path->nodes[0];
4728 	slot = path->slots[0];
4729 
4730 	nritems = btrfs_header_nritems(leaf);
4731 	data_end = leaf_data_end(root, leaf);
4732 
4733 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4734 		btrfs_print_leaf(root, leaf);
4735 		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4736 		       total_size, btrfs_leaf_free_space(root, leaf));
4737 		BUG();
4738 	}
4739 
4740 	if (slot != nritems) {
4741 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4742 
4743 		if (old_data < data_end) {
4744 			btrfs_print_leaf(root, leaf);
4745 			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4746 			       slot, old_data, data_end);
4747 			BUG_ON(1);
4748 		}
4749 		/*
4750 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4751 		 */
4752 		/* first correct the data pointers */
4753 		for (i = slot; i < nritems; i++) {
4754 			u32 ioff;
4755 
4756 			item = btrfs_item_nr( i);
4757 			ioff = btrfs_token_item_offset(leaf, item, &token);
4758 			btrfs_set_token_item_offset(leaf, item,
4759 						    ioff - total_data, &token);
4760 		}
4761 		/* shift the items */
4762 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4763 			      btrfs_item_nr_offset(slot),
4764 			      (nritems - slot) * sizeof(struct btrfs_item));
4765 
4766 		/* shift the data */
4767 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4768 			      data_end - total_data, btrfs_leaf_data(leaf) +
4769 			      data_end, old_data - data_end);
4770 		data_end = old_data;
4771 	}
4772 
4773 	/* setup the item for the new data */
4774 	for (i = 0; i < nr; i++) {
4775 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4776 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4777 		item = btrfs_item_nr(slot + i);
4778 		btrfs_set_token_item_offset(leaf, item,
4779 					    data_end - data_size[i], &token);
4780 		data_end -= data_size[i];
4781 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4782 	}
4783 
4784 	btrfs_set_header_nritems(leaf, nritems + nr);
4785 	btrfs_mark_buffer_dirty(leaf);
4786 
4787 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4788 		btrfs_print_leaf(root, leaf);
4789 		BUG();
4790 	}
4791 }
4792 
4793 /*
4794  * Given a key and some data, insert items into the tree.
4795  * This does all the path init required, making room in the tree if needed.
4796  */
4797 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4798 			    struct btrfs_root *root,
4799 			    struct btrfs_path *path,
4800 			    struct btrfs_key *cpu_key, u32 *data_size,
4801 			    int nr)
4802 {
4803 	int ret = 0;
4804 	int slot;
4805 	int i;
4806 	u32 total_size = 0;
4807 	u32 total_data = 0;
4808 
4809 	for (i = 0; i < nr; i++)
4810 		total_data += data_size[i];
4811 
4812 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4813 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4814 	if (ret == 0)
4815 		return -EEXIST;
4816 	if (ret < 0)
4817 		return ret;
4818 
4819 	slot = path->slots[0];
4820 	BUG_ON(slot < 0);
4821 
4822 	setup_items_for_insert(root, path, cpu_key, data_size,
4823 			       total_data, total_size, nr);
4824 	return 0;
4825 }
4826 
4827 /*
4828  * Given a key and some data, insert an item into the tree.
4829  * This does all the path init required, making room in the tree if needed.
4830  */
4831 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4832 		      *root, struct btrfs_key *cpu_key, void *data, u32
4833 		      data_size)
4834 {
4835 	int ret = 0;
4836 	struct btrfs_path *path;
4837 	struct extent_buffer *leaf;
4838 	unsigned long ptr;
4839 
4840 	path = btrfs_alloc_path();
4841 	if (!path)
4842 		return -ENOMEM;
4843 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4844 	if (!ret) {
4845 		leaf = path->nodes[0];
4846 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4847 		write_extent_buffer(leaf, data, ptr, data_size);
4848 		btrfs_mark_buffer_dirty(leaf);
4849 	}
4850 	btrfs_free_path(path);
4851 	return ret;
4852 }
4853 
4854 /*
4855  * delete the pointer from a given node.
4856  *
4857  * the tree should have been previously balanced so the deletion does not
4858  * empty a node.
4859  */
4860 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4861 		    int level, int slot)
4862 {
4863 	struct extent_buffer *parent = path->nodes[level];
4864 	u32 nritems;
4865 	int ret;
4866 
4867 	nritems = btrfs_header_nritems(parent);
4868 	if (slot != nritems - 1) {
4869 		if (level)
4870 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4871 					     slot + 1, nritems - slot - 1);
4872 		memmove_extent_buffer(parent,
4873 			      btrfs_node_key_ptr_offset(slot),
4874 			      btrfs_node_key_ptr_offset(slot + 1),
4875 			      sizeof(struct btrfs_key_ptr) *
4876 			      (nritems - slot - 1));
4877 	} else if (level) {
4878 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4879 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4880 		BUG_ON(ret < 0);
4881 	}
4882 
4883 	nritems--;
4884 	btrfs_set_header_nritems(parent, nritems);
4885 	if (nritems == 0 && parent == root->node) {
4886 		BUG_ON(btrfs_header_level(root->node) != 1);
4887 		/* just turn the root into a leaf and break */
4888 		btrfs_set_header_level(root->node, 0);
4889 	} else if (slot == 0) {
4890 		struct btrfs_disk_key disk_key;
4891 
4892 		btrfs_node_key(parent, &disk_key, 0);
4893 		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4894 	}
4895 	btrfs_mark_buffer_dirty(parent);
4896 }
4897 
4898 /*
4899  * a helper function to delete the leaf pointed to by path->slots[1] and
4900  * path->nodes[1].
4901  *
4902  * This deletes the pointer in path->nodes[1] and frees the leaf
4903  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4904  *
4905  * The path must have already been setup for deleting the leaf, including
4906  * all the proper balancing.  path->nodes[1] must be locked.
4907  */
4908 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4909 				    struct btrfs_root *root,
4910 				    struct btrfs_path *path,
4911 				    struct extent_buffer *leaf)
4912 {
4913 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4914 	del_ptr(root, path, 1, path->slots[1]);
4915 
4916 	/*
4917 	 * btrfs_free_extent is expensive, we want to make sure we
4918 	 * aren't holding any locks when we call it
4919 	 */
4920 	btrfs_unlock_up_safe(path, 0);
4921 
4922 	root_sub_used(root, leaf->len);
4923 
4924 	extent_buffer_get(leaf);
4925 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4926 	free_extent_buffer_stale(leaf);
4927 }
4928 /*
4929  * delete the item at the leaf level in path.  If that empties
4930  * the leaf, remove it from the tree
4931  */
4932 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4933 		    struct btrfs_path *path, int slot, int nr)
4934 {
4935 	struct extent_buffer *leaf;
4936 	struct btrfs_item *item;
4937 	int last_off;
4938 	int dsize = 0;
4939 	int ret = 0;
4940 	int wret;
4941 	int i;
4942 	u32 nritems;
4943 	struct btrfs_map_token token;
4944 
4945 	btrfs_init_map_token(&token);
4946 
4947 	leaf = path->nodes[0];
4948 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4949 
4950 	for (i = 0; i < nr; i++)
4951 		dsize += btrfs_item_size_nr(leaf, slot + i);
4952 
4953 	nritems = btrfs_header_nritems(leaf);
4954 
4955 	if (slot + nr != nritems) {
4956 		int data_end = leaf_data_end(root, leaf);
4957 
4958 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4959 			      data_end + dsize,
4960 			      btrfs_leaf_data(leaf) + data_end,
4961 			      last_off - data_end);
4962 
4963 		for (i = slot + nr; i < nritems; i++) {
4964 			u32 ioff;
4965 
4966 			item = btrfs_item_nr(i);
4967 			ioff = btrfs_token_item_offset(leaf, item, &token);
4968 			btrfs_set_token_item_offset(leaf, item,
4969 						    ioff + dsize, &token);
4970 		}
4971 
4972 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4973 			      btrfs_item_nr_offset(slot + nr),
4974 			      sizeof(struct btrfs_item) *
4975 			      (nritems - slot - nr));
4976 	}
4977 	btrfs_set_header_nritems(leaf, nritems - nr);
4978 	nritems -= nr;
4979 
4980 	/* delete the leaf if we've emptied it */
4981 	if (nritems == 0) {
4982 		if (leaf == root->node) {
4983 			btrfs_set_header_level(leaf, 0);
4984 		} else {
4985 			btrfs_set_path_blocking(path);
4986 			clean_tree_block(trans, root->fs_info, leaf);
4987 			btrfs_del_leaf(trans, root, path, leaf);
4988 		}
4989 	} else {
4990 		int used = leaf_space_used(leaf, 0, nritems);
4991 		if (slot == 0) {
4992 			struct btrfs_disk_key disk_key;
4993 
4994 			btrfs_item_key(leaf, &disk_key, 0);
4995 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4996 		}
4997 
4998 		/* delete the leaf if it is mostly empty */
4999 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5000 			/* push_leaf_left fixes the path.
5001 			 * make sure the path still points to our leaf
5002 			 * for possible call to del_ptr below
5003 			 */
5004 			slot = path->slots[1];
5005 			extent_buffer_get(leaf);
5006 
5007 			btrfs_set_path_blocking(path);
5008 			wret = push_leaf_left(trans, root, path, 1, 1,
5009 					      1, (u32)-1);
5010 			if (wret < 0 && wret != -ENOSPC)
5011 				ret = wret;
5012 
5013 			if (path->nodes[0] == leaf &&
5014 			    btrfs_header_nritems(leaf)) {
5015 				wret = push_leaf_right(trans, root, path, 1,
5016 						       1, 1, 0);
5017 				if (wret < 0 && wret != -ENOSPC)
5018 					ret = wret;
5019 			}
5020 
5021 			if (btrfs_header_nritems(leaf) == 0) {
5022 				path->slots[1] = slot;
5023 				btrfs_del_leaf(trans, root, path, leaf);
5024 				free_extent_buffer(leaf);
5025 				ret = 0;
5026 			} else {
5027 				/* if we're still in the path, make sure
5028 				 * we're dirty.  Otherwise, one of the
5029 				 * push_leaf functions must have already
5030 				 * dirtied this buffer
5031 				 */
5032 				if (path->nodes[0] == leaf)
5033 					btrfs_mark_buffer_dirty(leaf);
5034 				free_extent_buffer(leaf);
5035 			}
5036 		} else {
5037 			btrfs_mark_buffer_dirty(leaf);
5038 		}
5039 	}
5040 	return ret;
5041 }
5042 
5043 /*
5044  * search the tree again to find a leaf with lesser keys
5045  * returns 0 if it found something or 1 if there are no lesser leaves.
5046  * returns < 0 on io errors.
5047  *
5048  * This may release the path, and so you may lose any locks held at the
5049  * time you call it.
5050  */
5051 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5052 {
5053 	struct btrfs_key key;
5054 	struct btrfs_disk_key found_key;
5055 	int ret;
5056 
5057 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5058 
5059 	if (key.offset > 0) {
5060 		key.offset--;
5061 	} else if (key.type > 0) {
5062 		key.type--;
5063 		key.offset = (u64)-1;
5064 	} else if (key.objectid > 0) {
5065 		key.objectid--;
5066 		key.type = (u8)-1;
5067 		key.offset = (u64)-1;
5068 	} else {
5069 		return 1;
5070 	}
5071 
5072 	btrfs_release_path(path);
5073 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5074 	if (ret < 0)
5075 		return ret;
5076 	btrfs_item_key(path->nodes[0], &found_key, 0);
5077 	ret = comp_keys(&found_key, &key);
5078 	/*
5079 	 * We might have had an item with the previous key in the tree right
5080 	 * before we released our path. And after we released our path, that
5081 	 * item might have been pushed to the first slot (0) of the leaf we
5082 	 * were holding due to a tree balance. Alternatively, an item with the
5083 	 * previous key can exist as the only element of a leaf (big fat item).
5084 	 * Therefore account for these 2 cases, so that our callers (like
5085 	 * btrfs_previous_item) don't miss an existing item with a key matching
5086 	 * the previous key we computed above.
5087 	 */
5088 	if (ret <= 0)
5089 		return 0;
5090 	return 1;
5091 }
5092 
5093 /*
5094  * A helper function to walk down the tree starting at min_key, and looking
5095  * for nodes or leaves that are have a minimum transaction id.
5096  * This is used by the btree defrag code, and tree logging
5097  *
5098  * This does not cow, but it does stuff the starting key it finds back
5099  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5100  * key and get a writable path.
5101  *
5102  * This does lock as it descends, and path->keep_locks should be set
5103  * to 1 by the caller.
5104  *
5105  * This honors path->lowest_level to prevent descent past a given level
5106  * of the tree.
5107  *
5108  * min_trans indicates the oldest transaction that you are interested
5109  * in walking through.  Any nodes or leaves older than min_trans are
5110  * skipped over (without reading them).
5111  *
5112  * returns zero if something useful was found, < 0 on error and 1 if there
5113  * was nothing in the tree that matched the search criteria.
5114  */
5115 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5116 			 struct btrfs_path *path,
5117 			 u64 min_trans)
5118 {
5119 	struct extent_buffer *cur;
5120 	struct btrfs_key found_key;
5121 	int slot;
5122 	int sret;
5123 	u32 nritems;
5124 	int level;
5125 	int ret = 1;
5126 	int keep_locks = path->keep_locks;
5127 
5128 	path->keep_locks = 1;
5129 again:
5130 	cur = btrfs_read_lock_root_node(root);
5131 	level = btrfs_header_level(cur);
5132 	WARN_ON(path->nodes[level]);
5133 	path->nodes[level] = cur;
5134 	path->locks[level] = BTRFS_READ_LOCK;
5135 
5136 	if (btrfs_header_generation(cur) < min_trans) {
5137 		ret = 1;
5138 		goto out;
5139 	}
5140 	while (1) {
5141 		nritems = btrfs_header_nritems(cur);
5142 		level = btrfs_header_level(cur);
5143 		sret = bin_search(cur, min_key, level, &slot);
5144 
5145 		/* at the lowest level, we're done, setup the path and exit */
5146 		if (level == path->lowest_level) {
5147 			if (slot >= nritems)
5148 				goto find_next_key;
5149 			ret = 0;
5150 			path->slots[level] = slot;
5151 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5152 			goto out;
5153 		}
5154 		if (sret && slot > 0)
5155 			slot--;
5156 		/*
5157 		 * check this node pointer against the min_trans parameters.
5158 		 * If it is too old, old, skip to the next one.
5159 		 */
5160 		while (slot < nritems) {
5161 			u64 gen;
5162 
5163 			gen = btrfs_node_ptr_generation(cur, slot);
5164 			if (gen < min_trans) {
5165 				slot++;
5166 				continue;
5167 			}
5168 			break;
5169 		}
5170 find_next_key:
5171 		/*
5172 		 * we didn't find a candidate key in this node, walk forward
5173 		 * and find another one
5174 		 */
5175 		if (slot >= nritems) {
5176 			path->slots[level] = slot;
5177 			btrfs_set_path_blocking(path);
5178 			sret = btrfs_find_next_key(root, path, min_key, level,
5179 						  min_trans);
5180 			if (sret == 0) {
5181 				btrfs_release_path(path);
5182 				goto again;
5183 			} else {
5184 				goto out;
5185 			}
5186 		}
5187 		/* save our key for returning back */
5188 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5189 		path->slots[level] = slot;
5190 		if (level == path->lowest_level) {
5191 			ret = 0;
5192 			goto out;
5193 		}
5194 		btrfs_set_path_blocking(path);
5195 		cur = read_node_slot(root, cur, slot);
5196 		BUG_ON(!cur); /* -ENOMEM */
5197 
5198 		btrfs_tree_read_lock(cur);
5199 
5200 		path->locks[level - 1] = BTRFS_READ_LOCK;
5201 		path->nodes[level - 1] = cur;
5202 		unlock_up(path, level, 1, 0, NULL);
5203 		btrfs_clear_path_blocking(path, NULL, 0);
5204 	}
5205 out:
5206 	path->keep_locks = keep_locks;
5207 	if (ret == 0) {
5208 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5209 		btrfs_set_path_blocking(path);
5210 		memcpy(min_key, &found_key, sizeof(found_key));
5211 	}
5212 	return ret;
5213 }
5214 
5215 static void tree_move_down(struct btrfs_root *root,
5216 			   struct btrfs_path *path,
5217 			   int *level, int root_level)
5218 {
5219 	BUG_ON(*level == 0);
5220 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5221 					path->slots[*level]);
5222 	path->slots[*level - 1] = 0;
5223 	(*level)--;
5224 }
5225 
5226 static int tree_move_next_or_upnext(struct btrfs_root *root,
5227 				    struct btrfs_path *path,
5228 				    int *level, int root_level)
5229 {
5230 	int ret = 0;
5231 	int nritems;
5232 	nritems = btrfs_header_nritems(path->nodes[*level]);
5233 
5234 	path->slots[*level]++;
5235 
5236 	while (path->slots[*level] >= nritems) {
5237 		if (*level == root_level)
5238 			return -1;
5239 
5240 		/* move upnext */
5241 		path->slots[*level] = 0;
5242 		free_extent_buffer(path->nodes[*level]);
5243 		path->nodes[*level] = NULL;
5244 		(*level)++;
5245 		path->slots[*level]++;
5246 
5247 		nritems = btrfs_header_nritems(path->nodes[*level]);
5248 		ret = 1;
5249 	}
5250 	return ret;
5251 }
5252 
5253 /*
5254  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5255  * or down.
5256  */
5257 static int tree_advance(struct btrfs_root *root,
5258 			struct btrfs_path *path,
5259 			int *level, int root_level,
5260 			int allow_down,
5261 			struct btrfs_key *key)
5262 {
5263 	int ret;
5264 
5265 	if (*level == 0 || !allow_down) {
5266 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5267 	} else {
5268 		tree_move_down(root, path, level, root_level);
5269 		ret = 0;
5270 	}
5271 	if (ret >= 0) {
5272 		if (*level == 0)
5273 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5274 					path->slots[*level]);
5275 		else
5276 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5277 					path->slots[*level]);
5278 	}
5279 	return ret;
5280 }
5281 
5282 static int tree_compare_item(struct btrfs_root *left_root,
5283 			     struct btrfs_path *left_path,
5284 			     struct btrfs_path *right_path,
5285 			     char *tmp_buf)
5286 {
5287 	int cmp;
5288 	int len1, len2;
5289 	unsigned long off1, off2;
5290 
5291 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5292 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5293 	if (len1 != len2)
5294 		return 1;
5295 
5296 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5297 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5298 				right_path->slots[0]);
5299 
5300 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5301 
5302 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5303 	if (cmp)
5304 		return 1;
5305 	return 0;
5306 }
5307 
5308 #define ADVANCE 1
5309 #define ADVANCE_ONLY_NEXT -1
5310 
5311 /*
5312  * This function compares two trees and calls the provided callback for
5313  * every changed/new/deleted item it finds.
5314  * If shared tree blocks are encountered, whole subtrees are skipped, making
5315  * the compare pretty fast on snapshotted subvolumes.
5316  *
5317  * This currently works on commit roots only. As commit roots are read only,
5318  * we don't do any locking. The commit roots are protected with transactions.
5319  * Transactions are ended and rejoined when a commit is tried in between.
5320  *
5321  * This function checks for modifications done to the trees while comparing.
5322  * If it detects a change, it aborts immediately.
5323  */
5324 int btrfs_compare_trees(struct btrfs_root *left_root,
5325 			struct btrfs_root *right_root,
5326 			btrfs_changed_cb_t changed_cb, void *ctx)
5327 {
5328 	int ret;
5329 	int cmp;
5330 	struct btrfs_path *left_path = NULL;
5331 	struct btrfs_path *right_path = NULL;
5332 	struct btrfs_key left_key;
5333 	struct btrfs_key right_key;
5334 	char *tmp_buf = NULL;
5335 	int left_root_level;
5336 	int right_root_level;
5337 	int left_level;
5338 	int right_level;
5339 	int left_end_reached;
5340 	int right_end_reached;
5341 	int advance_left;
5342 	int advance_right;
5343 	u64 left_blockptr;
5344 	u64 right_blockptr;
5345 	u64 left_gen;
5346 	u64 right_gen;
5347 
5348 	left_path = btrfs_alloc_path();
5349 	if (!left_path) {
5350 		ret = -ENOMEM;
5351 		goto out;
5352 	}
5353 	right_path = btrfs_alloc_path();
5354 	if (!right_path) {
5355 		ret = -ENOMEM;
5356 		goto out;
5357 	}
5358 
5359 	tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5360 	if (!tmp_buf) {
5361 		ret = -ENOMEM;
5362 		goto out;
5363 	}
5364 
5365 	left_path->search_commit_root = 1;
5366 	left_path->skip_locking = 1;
5367 	right_path->search_commit_root = 1;
5368 	right_path->skip_locking = 1;
5369 
5370 	/*
5371 	 * Strategy: Go to the first items of both trees. Then do
5372 	 *
5373 	 * If both trees are at level 0
5374 	 *   Compare keys of current items
5375 	 *     If left < right treat left item as new, advance left tree
5376 	 *       and repeat
5377 	 *     If left > right treat right item as deleted, advance right tree
5378 	 *       and repeat
5379 	 *     If left == right do deep compare of items, treat as changed if
5380 	 *       needed, advance both trees and repeat
5381 	 * If both trees are at the same level but not at level 0
5382 	 *   Compare keys of current nodes/leafs
5383 	 *     If left < right advance left tree and repeat
5384 	 *     If left > right advance right tree and repeat
5385 	 *     If left == right compare blockptrs of the next nodes/leafs
5386 	 *       If they match advance both trees but stay at the same level
5387 	 *         and repeat
5388 	 *       If they don't match advance both trees while allowing to go
5389 	 *         deeper and repeat
5390 	 * If tree levels are different
5391 	 *   Advance the tree that needs it and repeat
5392 	 *
5393 	 * Advancing a tree means:
5394 	 *   If we are at level 0, try to go to the next slot. If that's not
5395 	 *   possible, go one level up and repeat. Stop when we found a level
5396 	 *   where we could go to the next slot. We may at this point be on a
5397 	 *   node or a leaf.
5398 	 *
5399 	 *   If we are not at level 0 and not on shared tree blocks, go one
5400 	 *   level deeper.
5401 	 *
5402 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5403 	 *   the right if possible or go up and right.
5404 	 */
5405 
5406 	down_read(&left_root->fs_info->commit_root_sem);
5407 	left_level = btrfs_header_level(left_root->commit_root);
5408 	left_root_level = left_level;
5409 	left_path->nodes[left_level] = left_root->commit_root;
5410 	extent_buffer_get(left_path->nodes[left_level]);
5411 
5412 	right_level = btrfs_header_level(right_root->commit_root);
5413 	right_root_level = right_level;
5414 	right_path->nodes[right_level] = right_root->commit_root;
5415 	extent_buffer_get(right_path->nodes[right_level]);
5416 	up_read(&left_root->fs_info->commit_root_sem);
5417 
5418 	if (left_level == 0)
5419 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5420 				&left_key, left_path->slots[left_level]);
5421 	else
5422 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5423 				&left_key, left_path->slots[left_level]);
5424 	if (right_level == 0)
5425 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5426 				&right_key, right_path->slots[right_level]);
5427 	else
5428 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5429 				&right_key, right_path->slots[right_level]);
5430 
5431 	left_end_reached = right_end_reached = 0;
5432 	advance_left = advance_right = 0;
5433 
5434 	while (1) {
5435 		if (advance_left && !left_end_reached) {
5436 			ret = tree_advance(left_root, left_path, &left_level,
5437 					left_root_level,
5438 					advance_left != ADVANCE_ONLY_NEXT,
5439 					&left_key);
5440 			if (ret < 0)
5441 				left_end_reached = ADVANCE;
5442 			advance_left = 0;
5443 		}
5444 		if (advance_right && !right_end_reached) {
5445 			ret = tree_advance(right_root, right_path, &right_level,
5446 					right_root_level,
5447 					advance_right != ADVANCE_ONLY_NEXT,
5448 					&right_key);
5449 			if (ret < 0)
5450 				right_end_reached = ADVANCE;
5451 			advance_right = 0;
5452 		}
5453 
5454 		if (left_end_reached && right_end_reached) {
5455 			ret = 0;
5456 			goto out;
5457 		} else if (left_end_reached) {
5458 			if (right_level == 0) {
5459 				ret = changed_cb(left_root, right_root,
5460 						left_path, right_path,
5461 						&right_key,
5462 						BTRFS_COMPARE_TREE_DELETED,
5463 						ctx);
5464 				if (ret < 0)
5465 					goto out;
5466 			}
5467 			advance_right = ADVANCE;
5468 			continue;
5469 		} else if (right_end_reached) {
5470 			if (left_level == 0) {
5471 				ret = changed_cb(left_root, right_root,
5472 						left_path, right_path,
5473 						&left_key,
5474 						BTRFS_COMPARE_TREE_NEW,
5475 						ctx);
5476 				if (ret < 0)
5477 					goto out;
5478 			}
5479 			advance_left = ADVANCE;
5480 			continue;
5481 		}
5482 
5483 		if (left_level == 0 && right_level == 0) {
5484 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5485 			if (cmp < 0) {
5486 				ret = changed_cb(left_root, right_root,
5487 						left_path, right_path,
5488 						&left_key,
5489 						BTRFS_COMPARE_TREE_NEW,
5490 						ctx);
5491 				if (ret < 0)
5492 					goto out;
5493 				advance_left = ADVANCE;
5494 			} else if (cmp > 0) {
5495 				ret = changed_cb(left_root, right_root,
5496 						left_path, right_path,
5497 						&right_key,
5498 						BTRFS_COMPARE_TREE_DELETED,
5499 						ctx);
5500 				if (ret < 0)
5501 					goto out;
5502 				advance_right = ADVANCE;
5503 			} else {
5504 				enum btrfs_compare_tree_result result;
5505 
5506 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5507 				ret = tree_compare_item(left_root, left_path,
5508 						right_path, tmp_buf);
5509 				if (ret)
5510 					result = BTRFS_COMPARE_TREE_CHANGED;
5511 				else
5512 					result = BTRFS_COMPARE_TREE_SAME;
5513 				ret = changed_cb(left_root, right_root,
5514 						 left_path, right_path,
5515 						 &left_key, result, ctx);
5516 				if (ret < 0)
5517 					goto out;
5518 				advance_left = ADVANCE;
5519 				advance_right = ADVANCE;
5520 			}
5521 		} else if (left_level == right_level) {
5522 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5523 			if (cmp < 0) {
5524 				advance_left = ADVANCE;
5525 			} else if (cmp > 0) {
5526 				advance_right = ADVANCE;
5527 			} else {
5528 				left_blockptr = btrfs_node_blockptr(
5529 						left_path->nodes[left_level],
5530 						left_path->slots[left_level]);
5531 				right_blockptr = btrfs_node_blockptr(
5532 						right_path->nodes[right_level],
5533 						right_path->slots[right_level]);
5534 				left_gen = btrfs_node_ptr_generation(
5535 						left_path->nodes[left_level],
5536 						left_path->slots[left_level]);
5537 				right_gen = btrfs_node_ptr_generation(
5538 						right_path->nodes[right_level],
5539 						right_path->slots[right_level]);
5540 				if (left_blockptr == right_blockptr &&
5541 				    left_gen == right_gen) {
5542 					/*
5543 					 * As we're on a shared block, don't
5544 					 * allow to go deeper.
5545 					 */
5546 					advance_left = ADVANCE_ONLY_NEXT;
5547 					advance_right = ADVANCE_ONLY_NEXT;
5548 				} else {
5549 					advance_left = ADVANCE;
5550 					advance_right = ADVANCE;
5551 				}
5552 			}
5553 		} else if (left_level < right_level) {
5554 			advance_right = ADVANCE;
5555 		} else {
5556 			advance_left = ADVANCE;
5557 		}
5558 	}
5559 
5560 out:
5561 	btrfs_free_path(left_path);
5562 	btrfs_free_path(right_path);
5563 	kfree(tmp_buf);
5564 	return ret;
5565 }
5566 
5567 /*
5568  * this is similar to btrfs_next_leaf, but does not try to preserve
5569  * and fixup the path.  It looks for and returns the next key in the
5570  * tree based on the current path and the min_trans parameters.
5571  *
5572  * 0 is returned if another key is found, < 0 if there are any errors
5573  * and 1 is returned if there are no higher keys in the tree
5574  *
5575  * path->keep_locks should be set to 1 on the search made before
5576  * calling this function.
5577  */
5578 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5579 			struct btrfs_key *key, int level, u64 min_trans)
5580 {
5581 	int slot;
5582 	struct extent_buffer *c;
5583 
5584 	WARN_ON(!path->keep_locks);
5585 	while (level < BTRFS_MAX_LEVEL) {
5586 		if (!path->nodes[level])
5587 			return 1;
5588 
5589 		slot = path->slots[level] + 1;
5590 		c = path->nodes[level];
5591 next:
5592 		if (slot >= btrfs_header_nritems(c)) {
5593 			int ret;
5594 			int orig_lowest;
5595 			struct btrfs_key cur_key;
5596 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5597 			    !path->nodes[level + 1])
5598 				return 1;
5599 
5600 			if (path->locks[level + 1]) {
5601 				level++;
5602 				continue;
5603 			}
5604 
5605 			slot = btrfs_header_nritems(c) - 1;
5606 			if (level == 0)
5607 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5608 			else
5609 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5610 
5611 			orig_lowest = path->lowest_level;
5612 			btrfs_release_path(path);
5613 			path->lowest_level = level;
5614 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5615 						0, 0);
5616 			path->lowest_level = orig_lowest;
5617 			if (ret < 0)
5618 				return ret;
5619 
5620 			c = path->nodes[level];
5621 			slot = path->slots[level];
5622 			if (ret == 0)
5623 				slot++;
5624 			goto next;
5625 		}
5626 
5627 		if (level == 0)
5628 			btrfs_item_key_to_cpu(c, key, slot);
5629 		else {
5630 			u64 gen = btrfs_node_ptr_generation(c, slot);
5631 
5632 			if (gen < min_trans) {
5633 				slot++;
5634 				goto next;
5635 			}
5636 			btrfs_node_key_to_cpu(c, key, slot);
5637 		}
5638 		return 0;
5639 	}
5640 	return 1;
5641 }
5642 
5643 /*
5644  * search the tree again to find a leaf with greater keys
5645  * returns 0 if it found something or 1 if there are no greater leaves.
5646  * returns < 0 on io errors.
5647  */
5648 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5649 {
5650 	return btrfs_next_old_leaf(root, path, 0);
5651 }
5652 
5653 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5654 			u64 time_seq)
5655 {
5656 	int slot;
5657 	int level;
5658 	struct extent_buffer *c;
5659 	struct extent_buffer *next;
5660 	struct btrfs_key key;
5661 	u32 nritems;
5662 	int ret;
5663 	int old_spinning = path->leave_spinning;
5664 	int next_rw_lock = 0;
5665 
5666 	nritems = btrfs_header_nritems(path->nodes[0]);
5667 	if (nritems == 0)
5668 		return 1;
5669 
5670 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5671 again:
5672 	level = 1;
5673 	next = NULL;
5674 	next_rw_lock = 0;
5675 	btrfs_release_path(path);
5676 
5677 	path->keep_locks = 1;
5678 	path->leave_spinning = 1;
5679 
5680 	if (time_seq)
5681 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5682 	else
5683 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5684 	path->keep_locks = 0;
5685 
5686 	if (ret < 0)
5687 		return ret;
5688 
5689 	nritems = btrfs_header_nritems(path->nodes[0]);
5690 	/*
5691 	 * by releasing the path above we dropped all our locks.  A balance
5692 	 * could have added more items next to the key that used to be
5693 	 * at the very end of the block.  So, check again here and
5694 	 * advance the path if there are now more items available.
5695 	 */
5696 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5697 		if (ret == 0)
5698 			path->slots[0]++;
5699 		ret = 0;
5700 		goto done;
5701 	}
5702 	/*
5703 	 * So the above check misses one case:
5704 	 * - after releasing the path above, someone has removed the item that
5705 	 *   used to be at the very end of the block, and balance between leafs
5706 	 *   gets another one with bigger key.offset to replace it.
5707 	 *
5708 	 * This one should be returned as well, or we can get leaf corruption
5709 	 * later(esp. in __btrfs_drop_extents()).
5710 	 *
5711 	 * And a bit more explanation about this check,
5712 	 * with ret > 0, the key isn't found, the path points to the slot
5713 	 * where it should be inserted, so the path->slots[0] item must be the
5714 	 * bigger one.
5715 	 */
5716 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5717 		ret = 0;
5718 		goto done;
5719 	}
5720 
5721 	while (level < BTRFS_MAX_LEVEL) {
5722 		if (!path->nodes[level]) {
5723 			ret = 1;
5724 			goto done;
5725 		}
5726 
5727 		slot = path->slots[level] + 1;
5728 		c = path->nodes[level];
5729 		if (slot >= btrfs_header_nritems(c)) {
5730 			level++;
5731 			if (level == BTRFS_MAX_LEVEL) {
5732 				ret = 1;
5733 				goto done;
5734 			}
5735 			continue;
5736 		}
5737 
5738 		if (next) {
5739 			btrfs_tree_unlock_rw(next, next_rw_lock);
5740 			free_extent_buffer(next);
5741 		}
5742 
5743 		next = c;
5744 		next_rw_lock = path->locks[level];
5745 		ret = read_block_for_search(NULL, root, path, &next, level,
5746 					    slot, &key, 0);
5747 		if (ret == -EAGAIN)
5748 			goto again;
5749 
5750 		if (ret < 0) {
5751 			btrfs_release_path(path);
5752 			goto done;
5753 		}
5754 
5755 		if (!path->skip_locking) {
5756 			ret = btrfs_try_tree_read_lock(next);
5757 			if (!ret && time_seq) {
5758 				/*
5759 				 * If we don't get the lock, we may be racing
5760 				 * with push_leaf_left, holding that lock while
5761 				 * itself waiting for the leaf we've currently
5762 				 * locked. To solve this situation, we give up
5763 				 * on our lock and cycle.
5764 				 */
5765 				free_extent_buffer(next);
5766 				btrfs_release_path(path);
5767 				cond_resched();
5768 				goto again;
5769 			}
5770 			if (!ret) {
5771 				btrfs_set_path_blocking(path);
5772 				btrfs_tree_read_lock(next);
5773 				btrfs_clear_path_blocking(path, next,
5774 							  BTRFS_READ_LOCK);
5775 			}
5776 			next_rw_lock = BTRFS_READ_LOCK;
5777 		}
5778 		break;
5779 	}
5780 	path->slots[level] = slot;
5781 	while (1) {
5782 		level--;
5783 		c = path->nodes[level];
5784 		if (path->locks[level])
5785 			btrfs_tree_unlock_rw(c, path->locks[level]);
5786 
5787 		free_extent_buffer(c);
5788 		path->nodes[level] = next;
5789 		path->slots[level] = 0;
5790 		if (!path->skip_locking)
5791 			path->locks[level] = next_rw_lock;
5792 		if (!level)
5793 			break;
5794 
5795 		ret = read_block_for_search(NULL, root, path, &next, level,
5796 					    0, &key, 0);
5797 		if (ret == -EAGAIN)
5798 			goto again;
5799 
5800 		if (ret < 0) {
5801 			btrfs_release_path(path);
5802 			goto done;
5803 		}
5804 
5805 		if (!path->skip_locking) {
5806 			ret = btrfs_try_tree_read_lock(next);
5807 			if (!ret) {
5808 				btrfs_set_path_blocking(path);
5809 				btrfs_tree_read_lock(next);
5810 				btrfs_clear_path_blocking(path, next,
5811 							  BTRFS_READ_LOCK);
5812 			}
5813 			next_rw_lock = BTRFS_READ_LOCK;
5814 		}
5815 	}
5816 	ret = 0;
5817 done:
5818 	unlock_up(path, 0, 1, 0, NULL);
5819 	path->leave_spinning = old_spinning;
5820 	if (!old_spinning)
5821 		btrfs_set_path_blocking(path);
5822 
5823 	return ret;
5824 }
5825 
5826 /*
5827  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5828  * searching until it gets past min_objectid or finds an item of 'type'
5829  *
5830  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5831  */
5832 int btrfs_previous_item(struct btrfs_root *root,
5833 			struct btrfs_path *path, u64 min_objectid,
5834 			int type)
5835 {
5836 	struct btrfs_key found_key;
5837 	struct extent_buffer *leaf;
5838 	u32 nritems;
5839 	int ret;
5840 
5841 	while (1) {
5842 		if (path->slots[0] == 0) {
5843 			btrfs_set_path_blocking(path);
5844 			ret = btrfs_prev_leaf(root, path);
5845 			if (ret != 0)
5846 				return ret;
5847 		} else {
5848 			path->slots[0]--;
5849 		}
5850 		leaf = path->nodes[0];
5851 		nritems = btrfs_header_nritems(leaf);
5852 		if (nritems == 0)
5853 			return 1;
5854 		if (path->slots[0] == nritems)
5855 			path->slots[0]--;
5856 
5857 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5858 		if (found_key.objectid < min_objectid)
5859 			break;
5860 		if (found_key.type == type)
5861 			return 0;
5862 		if (found_key.objectid == min_objectid &&
5863 		    found_key.type < type)
5864 			break;
5865 	}
5866 	return 1;
5867 }
5868 
5869 /*
5870  * search in extent tree to find a previous Metadata/Data extent item with
5871  * min objecitd.
5872  *
5873  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5874  */
5875 int btrfs_previous_extent_item(struct btrfs_root *root,
5876 			struct btrfs_path *path, u64 min_objectid)
5877 {
5878 	struct btrfs_key found_key;
5879 	struct extent_buffer *leaf;
5880 	u32 nritems;
5881 	int ret;
5882 
5883 	while (1) {
5884 		if (path->slots[0] == 0) {
5885 			btrfs_set_path_blocking(path);
5886 			ret = btrfs_prev_leaf(root, path);
5887 			if (ret != 0)
5888 				return ret;
5889 		} else {
5890 			path->slots[0]--;
5891 		}
5892 		leaf = path->nodes[0];
5893 		nritems = btrfs_header_nritems(leaf);
5894 		if (nritems == 0)
5895 			return 1;
5896 		if (path->slots[0] == nritems)
5897 			path->slots[0]--;
5898 
5899 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5900 		if (found_key.objectid < min_objectid)
5901 			break;
5902 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5903 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5904 			return 0;
5905 		if (found_key.objectid == min_objectid &&
5906 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5907 			break;
5908 	}
5909 	return 1;
5910 }
5911