1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 45 struct btrfs_path *btrfs_alloc_path(void) 46 { 47 struct btrfs_path *path; 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 return path; 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 #ifdef CONFIG_DEBUG_LOCK_ALLOC 84 /* lockdep really cares that we take all of these spinlocks 85 * in the right order. If any of the locks in the path are not 86 * currently blocking, it is going to complain. So, make really 87 * really sure by forcing the path to blocking before we clear 88 * the path blocking. 89 */ 90 if (held) { 91 btrfs_set_lock_blocking_rw(held, held_rw); 92 if (held_rw == BTRFS_WRITE_LOCK) 93 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 94 else if (held_rw == BTRFS_READ_LOCK) 95 held_rw = BTRFS_READ_LOCK_BLOCKING; 96 } 97 btrfs_set_path_blocking(p); 98 #endif 99 100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 101 if (p->nodes[i] && p->locks[i]) { 102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 104 p->locks[i] = BTRFS_WRITE_LOCK; 105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 106 p->locks[i] = BTRFS_READ_LOCK; 107 } 108 } 109 110 #ifdef CONFIG_DEBUG_LOCK_ALLOC 111 if (held) 112 btrfs_clear_lock_blocking_rw(held, held_rw); 113 #endif 114 } 115 116 /* this also releases the path */ 117 void btrfs_free_path(struct btrfs_path *p) 118 { 119 if (!p) 120 return; 121 btrfs_release_path(p); 122 kmem_cache_free(btrfs_path_cachep, p); 123 } 124 125 /* 126 * path release drops references on the extent buffers in the path 127 * and it drops any locks held by this path 128 * 129 * It is safe to call this on paths that no locks or extent buffers held. 130 */ 131 noinline void btrfs_release_path(struct btrfs_path *p) 132 { 133 int i; 134 135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 136 p->slots[i] = 0; 137 if (!p->nodes[i]) 138 continue; 139 if (p->locks[i]) { 140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 141 p->locks[i] = 0; 142 } 143 free_extent_buffer(p->nodes[i]); 144 p->nodes[i] = NULL; 145 } 146 } 147 148 /* 149 * safely gets a reference on the root node of a tree. A lock 150 * is not taken, so a concurrent writer may put a different node 151 * at the root of the tree. See btrfs_lock_root_node for the 152 * looping required. 153 * 154 * The extent buffer returned by this has a reference taken, so 155 * it won't disappear. It may stop being the root of the tree 156 * at any time because there are no locks held. 157 */ 158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 159 { 160 struct extent_buffer *eb; 161 162 while (1) { 163 rcu_read_lock(); 164 eb = rcu_dereference(root->node); 165 166 /* 167 * RCU really hurts here, we could free up the root node because 168 * it was cow'ed but we may not get the new root node yet so do 169 * the inc_not_zero dance and if it doesn't work then 170 * synchronize_rcu and try again. 171 */ 172 if (atomic_inc_not_zero(&eb->refs)) { 173 rcu_read_unlock(); 174 break; 175 } 176 rcu_read_unlock(); 177 synchronize_rcu(); 178 } 179 return eb; 180 } 181 182 /* loop around taking references on and locking the root node of the 183 * tree until you end up with a lock on the root. A locked buffer 184 * is returned, with a reference held. 185 */ 186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 187 { 188 struct extent_buffer *eb; 189 190 while (1) { 191 eb = btrfs_root_node(root); 192 btrfs_tree_lock(eb); 193 if (eb == root->node) 194 break; 195 btrfs_tree_unlock(eb); 196 free_extent_buffer(eb); 197 } 198 return eb; 199 } 200 201 /* loop around taking references on and locking the root node of the 202 * tree until you end up with a lock on the root. A locked buffer 203 * is returned, with a reference held. 204 */ 205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 206 { 207 struct extent_buffer *eb; 208 209 while (1) { 210 eb = btrfs_root_node(root); 211 btrfs_tree_read_lock(eb); 212 if (eb == root->node) 213 break; 214 btrfs_tree_read_unlock(eb); 215 free_extent_buffer(eb); 216 } 217 return eb; 218 } 219 220 /* cowonly root (everything not a reference counted cow subvolume), just get 221 * put onto a simple dirty list. transaction.c walks this to make sure they 222 * get properly updated on disk. 223 */ 224 static void add_root_to_dirty_list(struct btrfs_root *root) 225 { 226 spin_lock(&root->fs_info->trans_lock); 227 if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) && 228 list_empty(&root->dirty_list)) { 229 list_add(&root->dirty_list, 230 &root->fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&root->fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct extent_buffer *cow; 246 int ret = 0; 247 int level; 248 struct btrfs_disk_key disk_key; 249 250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 251 trans->transid != root->fs_info->running_transaction->transid); 252 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 253 trans->transid != root->last_trans); 254 255 level = btrfs_header_level(buf); 256 if (level == 0) 257 btrfs_item_key(buf, &disk_key, 0); 258 else 259 btrfs_node_key(buf, &disk_key, 0); 260 261 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 262 &disk_key, level, buf->start, 0); 263 if (IS_ERR(cow)) 264 return PTR_ERR(cow); 265 266 copy_extent_buffer(cow, buf, 0, 0, cow->len); 267 btrfs_set_header_bytenr(cow, cow->start); 268 btrfs_set_header_generation(cow, trans->transid); 269 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 270 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 271 BTRFS_HEADER_FLAG_RELOC); 272 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 273 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 274 else 275 btrfs_set_header_owner(cow, new_root_objectid); 276 277 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 278 BTRFS_FSID_SIZE); 279 280 WARN_ON(btrfs_header_generation(buf) > trans->transid); 281 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 282 ret = btrfs_inc_ref(trans, root, cow, 1); 283 else 284 ret = btrfs_inc_ref(trans, root, cow, 0); 285 286 if (ret) 287 return ret; 288 289 btrfs_mark_buffer_dirty(cow); 290 *cow_ret = cow; 291 return 0; 292 } 293 294 enum mod_log_op { 295 MOD_LOG_KEY_REPLACE, 296 MOD_LOG_KEY_ADD, 297 MOD_LOG_KEY_REMOVE, 298 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 299 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 300 MOD_LOG_MOVE_KEYS, 301 MOD_LOG_ROOT_REPLACE, 302 }; 303 304 struct tree_mod_move { 305 int dst_slot; 306 int nr_items; 307 }; 308 309 struct tree_mod_root { 310 u64 logical; 311 u8 level; 312 }; 313 314 struct tree_mod_elem { 315 struct rb_node node; 316 u64 index; /* shifted logical */ 317 u64 seq; 318 enum mod_log_op op; 319 320 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 321 int slot; 322 323 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 324 u64 generation; 325 326 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 327 struct btrfs_disk_key key; 328 u64 blockptr; 329 330 /* this is used for op == MOD_LOG_MOVE_KEYS */ 331 struct tree_mod_move move; 332 333 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 334 struct tree_mod_root old_root; 335 }; 336 337 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 338 { 339 read_lock(&fs_info->tree_mod_log_lock); 340 } 341 342 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 343 { 344 read_unlock(&fs_info->tree_mod_log_lock); 345 } 346 347 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 348 { 349 write_lock(&fs_info->tree_mod_log_lock); 350 } 351 352 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 353 { 354 write_unlock(&fs_info->tree_mod_log_lock); 355 } 356 357 /* 358 * Pull a new tree mod seq number for our operation. 359 */ 360 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 361 { 362 return atomic64_inc_return(&fs_info->tree_mod_seq); 363 } 364 365 /* 366 * This adds a new blocker to the tree mod log's blocker list if the @elem 367 * passed does not already have a sequence number set. So when a caller expects 368 * to record tree modifications, it should ensure to set elem->seq to zero 369 * before calling btrfs_get_tree_mod_seq. 370 * Returns a fresh, unused tree log modification sequence number, even if no new 371 * blocker was added. 372 */ 373 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 374 struct seq_list *elem) 375 { 376 tree_mod_log_write_lock(fs_info); 377 spin_lock(&fs_info->tree_mod_seq_lock); 378 if (!elem->seq) { 379 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 380 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 381 } 382 spin_unlock(&fs_info->tree_mod_seq_lock); 383 tree_mod_log_write_unlock(fs_info); 384 385 return elem->seq; 386 } 387 388 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 389 struct seq_list *elem) 390 { 391 struct rb_root *tm_root; 392 struct rb_node *node; 393 struct rb_node *next; 394 struct seq_list *cur_elem; 395 struct tree_mod_elem *tm; 396 u64 min_seq = (u64)-1; 397 u64 seq_putting = elem->seq; 398 399 if (!seq_putting) 400 return; 401 402 spin_lock(&fs_info->tree_mod_seq_lock); 403 list_del(&elem->list); 404 elem->seq = 0; 405 406 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 407 if (cur_elem->seq < min_seq) { 408 if (seq_putting > cur_elem->seq) { 409 /* 410 * blocker with lower sequence number exists, we 411 * cannot remove anything from the log 412 */ 413 spin_unlock(&fs_info->tree_mod_seq_lock); 414 return; 415 } 416 min_seq = cur_elem->seq; 417 } 418 } 419 spin_unlock(&fs_info->tree_mod_seq_lock); 420 421 /* 422 * anything that's lower than the lowest existing (read: blocked) 423 * sequence number can be removed from the tree. 424 */ 425 tree_mod_log_write_lock(fs_info); 426 tm_root = &fs_info->tree_mod_log; 427 for (node = rb_first(tm_root); node; node = next) { 428 next = rb_next(node); 429 tm = container_of(node, struct tree_mod_elem, node); 430 if (tm->seq > min_seq) 431 continue; 432 rb_erase(node, tm_root); 433 kfree(tm); 434 } 435 tree_mod_log_write_unlock(fs_info); 436 } 437 438 /* 439 * key order of the log: 440 * index -> sequence 441 * 442 * the index is the shifted logical of the *new* root node for root replace 443 * operations, or the shifted logical of the affected block for all other 444 * operations. 445 * 446 * Note: must be called with write lock (tree_mod_log_write_lock). 447 */ 448 static noinline int 449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 450 { 451 struct rb_root *tm_root; 452 struct rb_node **new; 453 struct rb_node *parent = NULL; 454 struct tree_mod_elem *cur; 455 456 BUG_ON(!tm); 457 458 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 459 460 tm_root = &fs_info->tree_mod_log; 461 new = &tm_root->rb_node; 462 while (*new) { 463 cur = container_of(*new, struct tree_mod_elem, node); 464 parent = *new; 465 if (cur->index < tm->index) 466 new = &((*new)->rb_left); 467 else if (cur->index > tm->index) 468 new = &((*new)->rb_right); 469 else if (cur->seq < tm->seq) 470 new = &((*new)->rb_left); 471 else if (cur->seq > tm->seq) 472 new = &((*new)->rb_right); 473 else 474 return -EEXIST; 475 } 476 477 rb_link_node(&tm->node, parent, new); 478 rb_insert_color(&tm->node, tm_root); 479 return 0; 480 } 481 482 /* 483 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 484 * returns zero with the tree_mod_log_lock acquired. The caller must hold 485 * this until all tree mod log insertions are recorded in the rb tree and then 486 * call tree_mod_log_write_unlock() to release. 487 */ 488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 489 struct extent_buffer *eb) { 490 smp_mb(); 491 if (list_empty(&(fs_info)->tree_mod_seq_list)) 492 return 1; 493 if (eb && btrfs_header_level(eb) == 0) 494 return 1; 495 496 tree_mod_log_write_lock(fs_info); 497 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 498 tree_mod_log_write_unlock(fs_info); 499 return 1; 500 } 501 502 return 0; 503 } 504 505 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 506 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 507 struct extent_buffer *eb) 508 { 509 smp_mb(); 510 if (list_empty(&(fs_info)->tree_mod_seq_list)) 511 return 0; 512 if (eb && btrfs_header_level(eb) == 0) 513 return 0; 514 515 return 1; 516 } 517 518 static struct tree_mod_elem * 519 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 520 enum mod_log_op op, gfp_t flags) 521 { 522 struct tree_mod_elem *tm; 523 524 tm = kzalloc(sizeof(*tm), flags); 525 if (!tm) 526 return NULL; 527 528 tm->index = eb->start >> PAGE_CACHE_SHIFT; 529 if (op != MOD_LOG_KEY_ADD) { 530 btrfs_node_key(eb, &tm->key, slot); 531 tm->blockptr = btrfs_node_blockptr(eb, slot); 532 } 533 tm->op = op; 534 tm->slot = slot; 535 tm->generation = btrfs_node_ptr_generation(eb, slot); 536 RB_CLEAR_NODE(&tm->node); 537 538 return tm; 539 } 540 541 static noinline int 542 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 543 struct extent_buffer *eb, int slot, 544 enum mod_log_op op, gfp_t flags) 545 { 546 struct tree_mod_elem *tm; 547 int ret; 548 549 if (!tree_mod_need_log(fs_info, eb)) 550 return 0; 551 552 tm = alloc_tree_mod_elem(eb, slot, op, flags); 553 if (!tm) 554 return -ENOMEM; 555 556 if (tree_mod_dont_log(fs_info, eb)) { 557 kfree(tm); 558 return 0; 559 } 560 561 ret = __tree_mod_log_insert(fs_info, tm); 562 tree_mod_log_write_unlock(fs_info); 563 if (ret) 564 kfree(tm); 565 566 return ret; 567 } 568 569 static noinline int 570 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 571 struct extent_buffer *eb, int dst_slot, int src_slot, 572 int nr_items, gfp_t flags) 573 { 574 struct tree_mod_elem *tm = NULL; 575 struct tree_mod_elem **tm_list = NULL; 576 int ret = 0; 577 int i; 578 int locked = 0; 579 580 if (!tree_mod_need_log(fs_info, eb)) 581 return 0; 582 583 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags); 584 if (!tm_list) 585 return -ENOMEM; 586 587 tm = kzalloc(sizeof(*tm), flags); 588 if (!tm) { 589 ret = -ENOMEM; 590 goto free_tms; 591 } 592 593 tm->index = eb->start >> PAGE_CACHE_SHIFT; 594 tm->slot = src_slot; 595 tm->move.dst_slot = dst_slot; 596 tm->move.nr_items = nr_items; 597 tm->op = MOD_LOG_MOVE_KEYS; 598 599 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 600 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 601 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 602 if (!tm_list[i]) { 603 ret = -ENOMEM; 604 goto free_tms; 605 } 606 } 607 608 if (tree_mod_dont_log(fs_info, eb)) 609 goto free_tms; 610 locked = 1; 611 612 /* 613 * When we override something during the move, we log these removals. 614 * This can only happen when we move towards the beginning of the 615 * buffer, i.e. dst_slot < src_slot. 616 */ 617 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 618 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 619 if (ret) 620 goto free_tms; 621 } 622 623 ret = __tree_mod_log_insert(fs_info, tm); 624 if (ret) 625 goto free_tms; 626 tree_mod_log_write_unlock(fs_info); 627 kfree(tm_list); 628 629 return 0; 630 free_tms: 631 for (i = 0; i < nr_items; i++) { 632 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 633 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 634 kfree(tm_list[i]); 635 } 636 if (locked) 637 tree_mod_log_write_unlock(fs_info); 638 kfree(tm_list); 639 kfree(tm); 640 641 return ret; 642 } 643 644 static inline int 645 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 646 struct tree_mod_elem **tm_list, 647 int nritems) 648 { 649 int i, j; 650 int ret; 651 652 for (i = nritems - 1; i >= 0; i--) { 653 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 654 if (ret) { 655 for (j = nritems - 1; j > i; j--) 656 rb_erase(&tm_list[j]->node, 657 &fs_info->tree_mod_log); 658 return ret; 659 } 660 } 661 662 return 0; 663 } 664 665 static noinline int 666 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 667 struct extent_buffer *old_root, 668 struct extent_buffer *new_root, gfp_t flags, 669 int log_removal) 670 { 671 struct tree_mod_elem *tm = NULL; 672 struct tree_mod_elem **tm_list = NULL; 673 int nritems = 0; 674 int ret = 0; 675 int i; 676 677 if (!tree_mod_need_log(fs_info, NULL)) 678 return 0; 679 680 if (log_removal && btrfs_header_level(old_root) > 0) { 681 nritems = btrfs_header_nritems(old_root); 682 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 683 flags); 684 if (!tm_list) { 685 ret = -ENOMEM; 686 goto free_tms; 687 } 688 for (i = 0; i < nritems; i++) { 689 tm_list[i] = alloc_tree_mod_elem(old_root, i, 690 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 691 if (!tm_list[i]) { 692 ret = -ENOMEM; 693 goto free_tms; 694 } 695 } 696 } 697 698 tm = kzalloc(sizeof(*tm), flags); 699 if (!tm) { 700 ret = -ENOMEM; 701 goto free_tms; 702 } 703 704 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 705 tm->old_root.logical = old_root->start; 706 tm->old_root.level = btrfs_header_level(old_root); 707 tm->generation = btrfs_header_generation(old_root); 708 tm->op = MOD_LOG_ROOT_REPLACE; 709 710 if (tree_mod_dont_log(fs_info, NULL)) 711 goto free_tms; 712 713 if (tm_list) 714 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 715 if (!ret) 716 ret = __tree_mod_log_insert(fs_info, tm); 717 718 tree_mod_log_write_unlock(fs_info); 719 if (ret) 720 goto free_tms; 721 kfree(tm_list); 722 723 return ret; 724 725 free_tms: 726 if (tm_list) { 727 for (i = 0; i < nritems; i++) 728 kfree(tm_list[i]); 729 kfree(tm_list); 730 } 731 kfree(tm); 732 733 return ret; 734 } 735 736 static struct tree_mod_elem * 737 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 738 int smallest) 739 { 740 struct rb_root *tm_root; 741 struct rb_node *node; 742 struct tree_mod_elem *cur = NULL; 743 struct tree_mod_elem *found = NULL; 744 u64 index = start >> PAGE_CACHE_SHIFT; 745 746 tree_mod_log_read_lock(fs_info); 747 tm_root = &fs_info->tree_mod_log; 748 node = tm_root->rb_node; 749 while (node) { 750 cur = container_of(node, struct tree_mod_elem, node); 751 if (cur->index < index) { 752 node = node->rb_left; 753 } else if (cur->index > index) { 754 node = node->rb_right; 755 } else if (cur->seq < min_seq) { 756 node = node->rb_left; 757 } else if (!smallest) { 758 /* we want the node with the highest seq */ 759 if (found) 760 BUG_ON(found->seq > cur->seq); 761 found = cur; 762 node = node->rb_left; 763 } else if (cur->seq > min_seq) { 764 /* we want the node with the smallest seq */ 765 if (found) 766 BUG_ON(found->seq < cur->seq); 767 found = cur; 768 node = node->rb_right; 769 } else { 770 found = cur; 771 break; 772 } 773 } 774 tree_mod_log_read_unlock(fs_info); 775 776 return found; 777 } 778 779 /* 780 * this returns the element from the log with the smallest time sequence 781 * value that's in the log (the oldest log item). any element with a time 782 * sequence lower than min_seq will be ignored. 783 */ 784 static struct tree_mod_elem * 785 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 786 u64 min_seq) 787 { 788 return __tree_mod_log_search(fs_info, start, min_seq, 1); 789 } 790 791 /* 792 * this returns the element from the log with the largest time sequence 793 * value that's in the log (the most recent log item). any element with 794 * a time sequence lower than min_seq will be ignored. 795 */ 796 static struct tree_mod_elem * 797 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 798 { 799 return __tree_mod_log_search(fs_info, start, min_seq, 0); 800 } 801 802 static noinline int 803 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 804 struct extent_buffer *src, unsigned long dst_offset, 805 unsigned long src_offset, int nr_items) 806 { 807 int ret = 0; 808 struct tree_mod_elem **tm_list = NULL; 809 struct tree_mod_elem **tm_list_add, **tm_list_rem; 810 int i; 811 int locked = 0; 812 813 if (!tree_mod_need_log(fs_info, NULL)) 814 return 0; 815 816 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 817 return 0; 818 819 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *), 820 GFP_NOFS); 821 if (!tm_list) 822 return -ENOMEM; 823 824 tm_list_add = tm_list; 825 tm_list_rem = tm_list + nr_items; 826 for (i = 0; i < nr_items; i++) { 827 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 828 MOD_LOG_KEY_REMOVE, GFP_NOFS); 829 if (!tm_list_rem[i]) { 830 ret = -ENOMEM; 831 goto free_tms; 832 } 833 834 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 835 MOD_LOG_KEY_ADD, GFP_NOFS); 836 if (!tm_list_add[i]) { 837 ret = -ENOMEM; 838 goto free_tms; 839 } 840 } 841 842 if (tree_mod_dont_log(fs_info, NULL)) 843 goto free_tms; 844 locked = 1; 845 846 for (i = 0; i < nr_items; i++) { 847 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 848 if (ret) 849 goto free_tms; 850 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 851 if (ret) 852 goto free_tms; 853 } 854 855 tree_mod_log_write_unlock(fs_info); 856 kfree(tm_list); 857 858 return 0; 859 860 free_tms: 861 for (i = 0; i < nr_items * 2; i++) { 862 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 863 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 864 kfree(tm_list[i]); 865 } 866 if (locked) 867 tree_mod_log_write_unlock(fs_info); 868 kfree(tm_list); 869 870 return ret; 871 } 872 873 static inline void 874 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 875 int dst_offset, int src_offset, int nr_items) 876 { 877 int ret; 878 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 879 nr_items, GFP_NOFS); 880 BUG_ON(ret < 0); 881 } 882 883 static noinline void 884 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 885 struct extent_buffer *eb, int slot, int atomic) 886 { 887 int ret; 888 889 ret = tree_mod_log_insert_key(fs_info, eb, slot, 890 MOD_LOG_KEY_REPLACE, 891 atomic ? GFP_ATOMIC : GFP_NOFS); 892 BUG_ON(ret < 0); 893 } 894 895 static noinline int 896 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 897 { 898 struct tree_mod_elem **tm_list = NULL; 899 int nritems = 0; 900 int i; 901 int ret = 0; 902 903 if (btrfs_header_level(eb) == 0) 904 return 0; 905 906 if (!tree_mod_need_log(fs_info, NULL)) 907 return 0; 908 909 nritems = btrfs_header_nritems(eb); 910 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 911 GFP_NOFS); 912 if (!tm_list) 913 return -ENOMEM; 914 915 for (i = 0; i < nritems; i++) { 916 tm_list[i] = alloc_tree_mod_elem(eb, i, 917 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 918 if (!tm_list[i]) { 919 ret = -ENOMEM; 920 goto free_tms; 921 } 922 } 923 924 if (tree_mod_dont_log(fs_info, eb)) 925 goto free_tms; 926 927 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 928 tree_mod_log_write_unlock(fs_info); 929 if (ret) 930 goto free_tms; 931 kfree(tm_list); 932 933 return 0; 934 935 free_tms: 936 for (i = 0; i < nritems; i++) 937 kfree(tm_list[i]); 938 kfree(tm_list); 939 940 return ret; 941 } 942 943 static noinline void 944 tree_mod_log_set_root_pointer(struct btrfs_root *root, 945 struct extent_buffer *new_root_node, 946 int log_removal) 947 { 948 int ret; 949 ret = tree_mod_log_insert_root(root->fs_info, root->node, 950 new_root_node, GFP_NOFS, log_removal); 951 BUG_ON(ret < 0); 952 } 953 954 /* 955 * check if the tree block can be shared by multiple trees 956 */ 957 int btrfs_block_can_be_shared(struct btrfs_root *root, 958 struct extent_buffer *buf) 959 { 960 /* 961 * Tree blocks not in refernece counted trees and tree roots 962 * are never shared. If a block was allocated after the last 963 * snapshot and the block was not allocated by tree relocation, 964 * we know the block is not shared. 965 */ 966 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 967 buf != root->node && buf != root->commit_root && 968 (btrfs_header_generation(buf) <= 969 btrfs_root_last_snapshot(&root->root_item) || 970 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 971 return 1; 972 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 973 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 974 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 975 return 1; 976 #endif 977 return 0; 978 } 979 980 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 981 struct btrfs_root *root, 982 struct extent_buffer *buf, 983 struct extent_buffer *cow, 984 int *last_ref) 985 { 986 u64 refs; 987 u64 owner; 988 u64 flags; 989 u64 new_flags = 0; 990 int ret; 991 992 /* 993 * Backrefs update rules: 994 * 995 * Always use full backrefs for extent pointers in tree block 996 * allocated by tree relocation. 997 * 998 * If a shared tree block is no longer referenced by its owner 999 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 1000 * use full backrefs for extent pointers in tree block. 1001 * 1002 * If a tree block is been relocating 1003 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1004 * use full backrefs for extent pointers in tree block. 1005 * The reason for this is some operations (such as drop tree) 1006 * are only allowed for blocks use full backrefs. 1007 */ 1008 1009 if (btrfs_block_can_be_shared(root, buf)) { 1010 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1011 btrfs_header_level(buf), 1, 1012 &refs, &flags); 1013 if (ret) 1014 return ret; 1015 if (refs == 0) { 1016 ret = -EROFS; 1017 btrfs_std_error(root->fs_info, ret); 1018 return ret; 1019 } 1020 } else { 1021 refs = 1; 1022 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1023 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1024 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1025 else 1026 flags = 0; 1027 } 1028 1029 owner = btrfs_header_owner(buf); 1030 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1031 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1032 1033 if (refs > 1) { 1034 if ((owner == root->root_key.objectid || 1035 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1036 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1037 ret = btrfs_inc_ref(trans, root, buf, 1); 1038 BUG_ON(ret); /* -ENOMEM */ 1039 1040 if (root->root_key.objectid == 1041 BTRFS_TREE_RELOC_OBJECTID) { 1042 ret = btrfs_dec_ref(trans, root, buf, 0); 1043 BUG_ON(ret); /* -ENOMEM */ 1044 ret = btrfs_inc_ref(trans, root, cow, 1); 1045 BUG_ON(ret); /* -ENOMEM */ 1046 } 1047 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1048 } else { 1049 1050 if (root->root_key.objectid == 1051 BTRFS_TREE_RELOC_OBJECTID) 1052 ret = btrfs_inc_ref(trans, root, cow, 1); 1053 else 1054 ret = btrfs_inc_ref(trans, root, cow, 0); 1055 BUG_ON(ret); /* -ENOMEM */ 1056 } 1057 if (new_flags != 0) { 1058 int level = btrfs_header_level(buf); 1059 1060 ret = btrfs_set_disk_extent_flags(trans, root, 1061 buf->start, 1062 buf->len, 1063 new_flags, level, 0); 1064 if (ret) 1065 return ret; 1066 } 1067 } else { 1068 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1069 if (root->root_key.objectid == 1070 BTRFS_TREE_RELOC_OBJECTID) 1071 ret = btrfs_inc_ref(trans, root, cow, 1); 1072 else 1073 ret = btrfs_inc_ref(trans, root, cow, 0); 1074 BUG_ON(ret); /* -ENOMEM */ 1075 ret = btrfs_dec_ref(trans, root, buf, 1); 1076 BUG_ON(ret); /* -ENOMEM */ 1077 } 1078 clean_tree_block(trans, root, buf); 1079 *last_ref = 1; 1080 } 1081 return 0; 1082 } 1083 1084 /* 1085 * does the dirty work in cow of a single block. The parent block (if 1086 * supplied) is updated to point to the new cow copy. The new buffer is marked 1087 * dirty and returned locked. If you modify the block it needs to be marked 1088 * dirty again. 1089 * 1090 * search_start -- an allocation hint for the new block 1091 * 1092 * empty_size -- a hint that you plan on doing more cow. This is the size in 1093 * bytes the allocator should try to find free next to the block it returns. 1094 * This is just a hint and may be ignored by the allocator. 1095 */ 1096 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1097 struct btrfs_root *root, 1098 struct extent_buffer *buf, 1099 struct extent_buffer *parent, int parent_slot, 1100 struct extent_buffer **cow_ret, 1101 u64 search_start, u64 empty_size) 1102 { 1103 struct btrfs_disk_key disk_key; 1104 struct extent_buffer *cow; 1105 int level, ret; 1106 int last_ref = 0; 1107 int unlock_orig = 0; 1108 u64 parent_start; 1109 1110 if (*cow_ret == buf) 1111 unlock_orig = 1; 1112 1113 btrfs_assert_tree_locked(buf); 1114 1115 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1116 trans->transid != root->fs_info->running_transaction->transid); 1117 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1118 trans->transid != root->last_trans); 1119 1120 level = btrfs_header_level(buf); 1121 1122 if (level == 0) 1123 btrfs_item_key(buf, &disk_key, 0); 1124 else 1125 btrfs_node_key(buf, &disk_key, 0); 1126 1127 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1128 if (parent) 1129 parent_start = parent->start; 1130 else 1131 parent_start = 0; 1132 } else 1133 parent_start = 0; 1134 1135 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1136 root->root_key.objectid, &disk_key, level, 1137 search_start, empty_size); 1138 if (IS_ERR(cow)) 1139 return PTR_ERR(cow); 1140 1141 /* cow is set to blocking by btrfs_init_new_buffer */ 1142 1143 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1144 btrfs_set_header_bytenr(cow, cow->start); 1145 btrfs_set_header_generation(cow, trans->transid); 1146 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1147 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1148 BTRFS_HEADER_FLAG_RELOC); 1149 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1150 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1151 else 1152 btrfs_set_header_owner(cow, root->root_key.objectid); 1153 1154 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1155 BTRFS_FSID_SIZE); 1156 1157 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1158 if (ret) { 1159 btrfs_abort_transaction(trans, root, ret); 1160 return ret; 1161 } 1162 1163 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1164 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1165 if (ret) 1166 return ret; 1167 } 1168 1169 if (buf == root->node) { 1170 WARN_ON(parent && parent != buf); 1171 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1172 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1173 parent_start = buf->start; 1174 else 1175 parent_start = 0; 1176 1177 extent_buffer_get(cow); 1178 tree_mod_log_set_root_pointer(root, cow, 1); 1179 rcu_assign_pointer(root->node, cow); 1180 1181 btrfs_free_tree_block(trans, root, buf, parent_start, 1182 last_ref); 1183 free_extent_buffer(buf); 1184 add_root_to_dirty_list(root); 1185 } else { 1186 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1187 parent_start = parent->start; 1188 else 1189 parent_start = 0; 1190 1191 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1192 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1193 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1194 btrfs_set_node_blockptr(parent, parent_slot, 1195 cow->start); 1196 btrfs_set_node_ptr_generation(parent, parent_slot, 1197 trans->transid); 1198 btrfs_mark_buffer_dirty(parent); 1199 if (last_ref) { 1200 ret = tree_mod_log_free_eb(root->fs_info, buf); 1201 if (ret) { 1202 btrfs_abort_transaction(trans, root, ret); 1203 return ret; 1204 } 1205 } 1206 btrfs_free_tree_block(trans, root, buf, parent_start, 1207 last_ref); 1208 } 1209 if (unlock_orig) 1210 btrfs_tree_unlock(buf); 1211 free_extent_buffer_stale(buf); 1212 btrfs_mark_buffer_dirty(cow); 1213 *cow_ret = cow; 1214 return 0; 1215 } 1216 1217 /* 1218 * returns the logical address of the oldest predecessor of the given root. 1219 * entries older than time_seq are ignored. 1220 */ 1221 static struct tree_mod_elem * 1222 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1223 struct extent_buffer *eb_root, u64 time_seq) 1224 { 1225 struct tree_mod_elem *tm; 1226 struct tree_mod_elem *found = NULL; 1227 u64 root_logical = eb_root->start; 1228 int looped = 0; 1229 1230 if (!time_seq) 1231 return NULL; 1232 1233 /* 1234 * the very last operation that's logged for a root is the replacement 1235 * operation (if it is replaced at all). this has the index of the *new* 1236 * root, making it the very first operation that's logged for this root. 1237 */ 1238 while (1) { 1239 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1240 time_seq); 1241 if (!looped && !tm) 1242 return NULL; 1243 /* 1244 * if there are no tree operation for the oldest root, we simply 1245 * return it. this should only happen if that (old) root is at 1246 * level 0. 1247 */ 1248 if (!tm) 1249 break; 1250 1251 /* 1252 * if there's an operation that's not a root replacement, we 1253 * found the oldest version of our root. normally, we'll find a 1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1255 */ 1256 if (tm->op != MOD_LOG_ROOT_REPLACE) 1257 break; 1258 1259 found = tm; 1260 root_logical = tm->old_root.logical; 1261 looped = 1; 1262 } 1263 1264 /* if there's no old root to return, return what we found instead */ 1265 if (!found) 1266 found = tm; 1267 1268 return found; 1269 } 1270 1271 /* 1272 * tm is a pointer to the first operation to rewind within eb. then, all 1273 * previous operations will be rewinded (until we reach something older than 1274 * time_seq). 1275 */ 1276 static void 1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1278 u64 time_seq, struct tree_mod_elem *first_tm) 1279 { 1280 u32 n; 1281 struct rb_node *next; 1282 struct tree_mod_elem *tm = first_tm; 1283 unsigned long o_dst; 1284 unsigned long o_src; 1285 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1286 1287 n = btrfs_header_nritems(eb); 1288 tree_mod_log_read_lock(fs_info); 1289 while (tm && tm->seq >= time_seq) { 1290 /* 1291 * all the operations are recorded with the operator used for 1292 * the modification. as we're going backwards, we do the 1293 * opposite of each operation here. 1294 */ 1295 switch (tm->op) { 1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1297 BUG_ON(tm->slot < n); 1298 /* Fallthrough */ 1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1300 case MOD_LOG_KEY_REMOVE: 1301 btrfs_set_node_key(eb, &tm->key, tm->slot); 1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1303 btrfs_set_node_ptr_generation(eb, tm->slot, 1304 tm->generation); 1305 n++; 1306 break; 1307 case MOD_LOG_KEY_REPLACE: 1308 BUG_ON(tm->slot >= n); 1309 btrfs_set_node_key(eb, &tm->key, tm->slot); 1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1311 btrfs_set_node_ptr_generation(eb, tm->slot, 1312 tm->generation); 1313 break; 1314 case MOD_LOG_KEY_ADD: 1315 /* if a move operation is needed it's in the log */ 1316 n--; 1317 break; 1318 case MOD_LOG_MOVE_KEYS: 1319 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1321 memmove_extent_buffer(eb, o_dst, o_src, 1322 tm->move.nr_items * p_size); 1323 break; 1324 case MOD_LOG_ROOT_REPLACE: 1325 /* 1326 * this operation is special. for roots, this must be 1327 * handled explicitly before rewinding. 1328 * for non-roots, this operation may exist if the node 1329 * was a root: root A -> child B; then A gets empty and 1330 * B is promoted to the new root. in the mod log, we'll 1331 * have a root-replace operation for B, a tree block 1332 * that is no root. we simply ignore that operation. 1333 */ 1334 break; 1335 } 1336 next = rb_next(&tm->node); 1337 if (!next) 1338 break; 1339 tm = container_of(next, struct tree_mod_elem, node); 1340 if (tm->index != first_tm->index) 1341 break; 1342 } 1343 tree_mod_log_read_unlock(fs_info); 1344 btrfs_set_header_nritems(eb, n); 1345 } 1346 1347 /* 1348 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1349 * is returned. If rewind operations happen, a fresh buffer is returned. The 1350 * returned buffer is always read-locked. If the returned buffer is not the 1351 * input buffer, the lock on the input buffer is released and the input buffer 1352 * is freed (its refcount is decremented). 1353 */ 1354 static struct extent_buffer * 1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1356 struct extent_buffer *eb, u64 time_seq) 1357 { 1358 struct extent_buffer *eb_rewin; 1359 struct tree_mod_elem *tm; 1360 1361 if (!time_seq) 1362 return eb; 1363 1364 if (btrfs_header_level(eb) == 0) 1365 return eb; 1366 1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1368 if (!tm) 1369 return eb; 1370 1371 btrfs_set_path_blocking(path); 1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1373 1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1375 BUG_ON(tm->slot != 0); 1376 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1377 fs_info->tree_root->nodesize); 1378 if (!eb_rewin) { 1379 btrfs_tree_read_unlock_blocking(eb); 1380 free_extent_buffer(eb); 1381 return NULL; 1382 } 1383 btrfs_set_header_bytenr(eb_rewin, eb->start); 1384 btrfs_set_header_backref_rev(eb_rewin, 1385 btrfs_header_backref_rev(eb)); 1386 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1387 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1388 } else { 1389 eb_rewin = btrfs_clone_extent_buffer(eb); 1390 if (!eb_rewin) { 1391 btrfs_tree_read_unlock_blocking(eb); 1392 free_extent_buffer(eb); 1393 return NULL; 1394 } 1395 } 1396 1397 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1398 btrfs_tree_read_unlock_blocking(eb); 1399 free_extent_buffer(eb); 1400 1401 extent_buffer_get(eb_rewin); 1402 btrfs_tree_read_lock(eb_rewin); 1403 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1404 WARN_ON(btrfs_header_nritems(eb_rewin) > 1405 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1406 1407 return eb_rewin; 1408 } 1409 1410 /* 1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1412 * value. If there are no changes, the current root->root_node is returned. If 1413 * anything changed in between, there's a fresh buffer allocated on which the 1414 * rewind operations are done. In any case, the returned buffer is read locked. 1415 * Returns NULL on error (with no locks held). 1416 */ 1417 static inline struct extent_buffer * 1418 get_old_root(struct btrfs_root *root, u64 time_seq) 1419 { 1420 struct tree_mod_elem *tm; 1421 struct extent_buffer *eb = NULL; 1422 struct extent_buffer *eb_root; 1423 struct extent_buffer *old; 1424 struct tree_mod_root *old_root = NULL; 1425 u64 old_generation = 0; 1426 u64 logical; 1427 1428 eb_root = btrfs_read_lock_root_node(root); 1429 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1430 if (!tm) 1431 return eb_root; 1432 1433 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1434 old_root = &tm->old_root; 1435 old_generation = tm->generation; 1436 logical = old_root->logical; 1437 } else { 1438 logical = eb_root->start; 1439 } 1440 1441 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1442 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1443 btrfs_tree_read_unlock(eb_root); 1444 free_extent_buffer(eb_root); 1445 old = read_tree_block(root, logical, 0); 1446 if (WARN_ON(!old || !extent_buffer_uptodate(old))) { 1447 free_extent_buffer(old); 1448 btrfs_warn(root->fs_info, 1449 "failed to read tree block %llu from get_old_root", logical); 1450 } else { 1451 eb = btrfs_clone_extent_buffer(old); 1452 free_extent_buffer(old); 1453 } 1454 } else if (old_root) { 1455 btrfs_tree_read_unlock(eb_root); 1456 free_extent_buffer(eb_root); 1457 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1458 } else { 1459 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1460 eb = btrfs_clone_extent_buffer(eb_root); 1461 btrfs_tree_read_unlock_blocking(eb_root); 1462 free_extent_buffer(eb_root); 1463 } 1464 1465 if (!eb) 1466 return NULL; 1467 extent_buffer_get(eb); 1468 btrfs_tree_read_lock(eb); 1469 if (old_root) { 1470 btrfs_set_header_bytenr(eb, eb->start); 1471 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1472 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1473 btrfs_set_header_level(eb, old_root->level); 1474 btrfs_set_header_generation(eb, old_generation); 1475 } 1476 if (tm) 1477 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1478 else 1479 WARN_ON(btrfs_header_level(eb) != 0); 1480 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1481 1482 return eb; 1483 } 1484 1485 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1486 { 1487 struct tree_mod_elem *tm; 1488 int level; 1489 struct extent_buffer *eb_root = btrfs_root_node(root); 1490 1491 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1492 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1493 level = tm->old_root.level; 1494 } else { 1495 level = btrfs_header_level(eb_root); 1496 } 1497 free_extent_buffer(eb_root); 1498 1499 return level; 1500 } 1501 1502 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1503 struct btrfs_root *root, 1504 struct extent_buffer *buf) 1505 { 1506 if (btrfs_test_is_dummy_root(root)) 1507 return 0; 1508 1509 /* ensure we can see the force_cow */ 1510 smp_rmb(); 1511 1512 /* 1513 * We do not need to cow a block if 1514 * 1) this block is not created or changed in this transaction; 1515 * 2) this block does not belong to TREE_RELOC tree; 1516 * 3) the root is not forced COW. 1517 * 1518 * What is forced COW: 1519 * when we create snapshot during commiting the transaction, 1520 * after we've finished coping src root, we must COW the shared 1521 * block to ensure the metadata consistency. 1522 */ 1523 if (btrfs_header_generation(buf) == trans->transid && 1524 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1525 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1526 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1527 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1528 return 0; 1529 return 1; 1530 } 1531 1532 /* 1533 * cows a single block, see __btrfs_cow_block for the real work. 1534 * This version of it has extra checks so that a block isn't cow'd more than 1535 * once per transaction, as long as it hasn't been written yet 1536 */ 1537 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1538 struct btrfs_root *root, struct extent_buffer *buf, 1539 struct extent_buffer *parent, int parent_slot, 1540 struct extent_buffer **cow_ret) 1541 { 1542 u64 search_start; 1543 int ret; 1544 1545 if (trans->transaction != root->fs_info->running_transaction) 1546 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1547 trans->transid, 1548 root->fs_info->running_transaction->transid); 1549 1550 if (trans->transid != root->fs_info->generation) 1551 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1552 trans->transid, root->fs_info->generation); 1553 1554 if (!should_cow_block(trans, root, buf)) { 1555 *cow_ret = buf; 1556 return 0; 1557 } 1558 1559 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1560 1561 if (parent) 1562 btrfs_set_lock_blocking(parent); 1563 btrfs_set_lock_blocking(buf); 1564 1565 ret = __btrfs_cow_block(trans, root, buf, parent, 1566 parent_slot, cow_ret, search_start, 0); 1567 1568 trace_btrfs_cow_block(root, buf, *cow_ret); 1569 1570 return ret; 1571 } 1572 1573 /* 1574 * helper function for defrag to decide if two blocks pointed to by a 1575 * node are actually close by 1576 */ 1577 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1578 { 1579 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1580 return 1; 1581 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1582 return 1; 1583 return 0; 1584 } 1585 1586 /* 1587 * compare two keys in a memcmp fashion 1588 */ 1589 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1590 { 1591 struct btrfs_key k1; 1592 1593 btrfs_disk_key_to_cpu(&k1, disk); 1594 1595 return btrfs_comp_cpu_keys(&k1, k2); 1596 } 1597 1598 /* 1599 * same as comp_keys only with two btrfs_key's 1600 */ 1601 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1602 { 1603 if (k1->objectid > k2->objectid) 1604 return 1; 1605 if (k1->objectid < k2->objectid) 1606 return -1; 1607 if (k1->type > k2->type) 1608 return 1; 1609 if (k1->type < k2->type) 1610 return -1; 1611 if (k1->offset > k2->offset) 1612 return 1; 1613 if (k1->offset < k2->offset) 1614 return -1; 1615 return 0; 1616 } 1617 1618 /* 1619 * this is used by the defrag code to go through all the 1620 * leaves pointed to by a node and reallocate them so that 1621 * disk order is close to key order 1622 */ 1623 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1624 struct btrfs_root *root, struct extent_buffer *parent, 1625 int start_slot, u64 *last_ret, 1626 struct btrfs_key *progress) 1627 { 1628 struct extent_buffer *cur; 1629 u64 blocknr; 1630 u64 gen; 1631 u64 search_start = *last_ret; 1632 u64 last_block = 0; 1633 u64 other; 1634 u32 parent_nritems; 1635 int end_slot; 1636 int i; 1637 int err = 0; 1638 int parent_level; 1639 int uptodate; 1640 u32 blocksize; 1641 int progress_passed = 0; 1642 struct btrfs_disk_key disk_key; 1643 1644 parent_level = btrfs_header_level(parent); 1645 1646 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1647 WARN_ON(trans->transid != root->fs_info->generation); 1648 1649 parent_nritems = btrfs_header_nritems(parent); 1650 blocksize = root->nodesize; 1651 end_slot = parent_nritems; 1652 1653 if (parent_nritems == 1) 1654 return 0; 1655 1656 btrfs_set_lock_blocking(parent); 1657 1658 for (i = start_slot; i < end_slot; i++) { 1659 int close = 1; 1660 1661 btrfs_node_key(parent, &disk_key, i); 1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1663 continue; 1664 1665 progress_passed = 1; 1666 blocknr = btrfs_node_blockptr(parent, i); 1667 gen = btrfs_node_ptr_generation(parent, i); 1668 if (last_block == 0) 1669 last_block = blocknr; 1670 1671 if (i > 0) { 1672 other = btrfs_node_blockptr(parent, i - 1); 1673 close = close_blocks(blocknr, other, blocksize); 1674 } 1675 if (!close && i < end_slot - 2) { 1676 other = btrfs_node_blockptr(parent, i + 1); 1677 close = close_blocks(blocknr, other, blocksize); 1678 } 1679 if (close) { 1680 last_block = blocknr; 1681 continue; 1682 } 1683 1684 cur = btrfs_find_tree_block(root, blocknr); 1685 if (cur) 1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1687 else 1688 uptodate = 0; 1689 if (!cur || !uptodate) { 1690 if (!cur) { 1691 cur = read_tree_block(root, blocknr, gen); 1692 if (!cur || !extent_buffer_uptodate(cur)) { 1693 free_extent_buffer(cur); 1694 return -EIO; 1695 } 1696 } else if (!uptodate) { 1697 err = btrfs_read_buffer(cur, gen); 1698 if (err) { 1699 free_extent_buffer(cur); 1700 return err; 1701 } 1702 } 1703 } 1704 if (search_start == 0) 1705 search_start = last_block; 1706 1707 btrfs_tree_lock(cur); 1708 btrfs_set_lock_blocking(cur); 1709 err = __btrfs_cow_block(trans, root, cur, parent, i, 1710 &cur, search_start, 1711 min(16 * blocksize, 1712 (end_slot - i) * blocksize)); 1713 if (err) { 1714 btrfs_tree_unlock(cur); 1715 free_extent_buffer(cur); 1716 break; 1717 } 1718 search_start = cur->start; 1719 last_block = cur->start; 1720 *last_ret = search_start; 1721 btrfs_tree_unlock(cur); 1722 free_extent_buffer(cur); 1723 } 1724 return err; 1725 } 1726 1727 /* 1728 * The leaf data grows from end-to-front in the node. 1729 * this returns the address of the start of the last item, 1730 * which is the stop of the leaf data stack 1731 */ 1732 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1733 struct extent_buffer *leaf) 1734 { 1735 u32 nr = btrfs_header_nritems(leaf); 1736 if (nr == 0) 1737 return BTRFS_LEAF_DATA_SIZE(root); 1738 return btrfs_item_offset_nr(leaf, nr - 1); 1739 } 1740 1741 1742 /* 1743 * search for key in the extent_buffer. The items start at offset p, 1744 * and they are item_size apart. There are 'max' items in p. 1745 * 1746 * the slot in the array is returned via slot, and it points to 1747 * the place where you would insert key if it is not found in 1748 * the array. 1749 * 1750 * slot may point to max if the key is bigger than all of the keys 1751 */ 1752 static noinline int generic_bin_search(struct extent_buffer *eb, 1753 unsigned long p, 1754 int item_size, struct btrfs_key *key, 1755 int max, int *slot) 1756 { 1757 int low = 0; 1758 int high = max; 1759 int mid; 1760 int ret; 1761 struct btrfs_disk_key *tmp = NULL; 1762 struct btrfs_disk_key unaligned; 1763 unsigned long offset; 1764 char *kaddr = NULL; 1765 unsigned long map_start = 0; 1766 unsigned long map_len = 0; 1767 int err; 1768 1769 while (low < high) { 1770 mid = (low + high) / 2; 1771 offset = p + mid * item_size; 1772 1773 if (!kaddr || offset < map_start || 1774 (offset + sizeof(struct btrfs_disk_key)) > 1775 map_start + map_len) { 1776 1777 err = map_private_extent_buffer(eb, offset, 1778 sizeof(struct btrfs_disk_key), 1779 &kaddr, &map_start, &map_len); 1780 1781 if (!err) { 1782 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1783 map_start); 1784 } else { 1785 read_extent_buffer(eb, &unaligned, 1786 offset, sizeof(unaligned)); 1787 tmp = &unaligned; 1788 } 1789 1790 } else { 1791 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1792 map_start); 1793 } 1794 ret = comp_keys(tmp, key); 1795 1796 if (ret < 0) 1797 low = mid + 1; 1798 else if (ret > 0) 1799 high = mid; 1800 else { 1801 *slot = mid; 1802 return 0; 1803 } 1804 } 1805 *slot = low; 1806 return 1; 1807 } 1808 1809 /* 1810 * simple bin_search frontend that does the right thing for 1811 * leaves vs nodes 1812 */ 1813 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1814 int level, int *slot) 1815 { 1816 if (level == 0) 1817 return generic_bin_search(eb, 1818 offsetof(struct btrfs_leaf, items), 1819 sizeof(struct btrfs_item), 1820 key, btrfs_header_nritems(eb), 1821 slot); 1822 else 1823 return generic_bin_search(eb, 1824 offsetof(struct btrfs_node, ptrs), 1825 sizeof(struct btrfs_key_ptr), 1826 key, btrfs_header_nritems(eb), 1827 slot); 1828 } 1829 1830 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1831 int level, int *slot) 1832 { 1833 return bin_search(eb, key, level, slot); 1834 } 1835 1836 static void root_add_used(struct btrfs_root *root, u32 size) 1837 { 1838 spin_lock(&root->accounting_lock); 1839 btrfs_set_root_used(&root->root_item, 1840 btrfs_root_used(&root->root_item) + size); 1841 spin_unlock(&root->accounting_lock); 1842 } 1843 1844 static void root_sub_used(struct btrfs_root *root, u32 size) 1845 { 1846 spin_lock(&root->accounting_lock); 1847 btrfs_set_root_used(&root->root_item, 1848 btrfs_root_used(&root->root_item) - size); 1849 spin_unlock(&root->accounting_lock); 1850 } 1851 1852 /* given a node and slot number, this reads the blocks it points to. The 1853 * extent buffer is returned with a reference taken (but unlocked). 1854 * NULL is returned on error. 1855 */ 1856 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1857 struct extent_buffer *parent, int slot) 1858 { 1859 int level = btrfs_header_level(parent); 1860 struct extent_buffer *eb; 1861 1862 if (slot < 0) 1863 return NULL; 1864 if (slot >= btrfs_header_nritems(parent)) 1865 return NULL; 1866 1867 BUG_ON(level == 0); 1868 1869 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1870 btrfs_node_ptr_generation(parent, slot)); 1871 if (eb && !extent_buffer_uptodate(eb)) { 1872 free_extent_buffer(eb); 1873 eb = NULL; 1874 } 1875 1876 return eb; 1877 } 1878 1879 /* 1880 * node level balancing, used to make sure nodes are in proper order for 1881 * item deletion. We balance from the top down, so we have to make sure 1882 * that a deletion won't leave an node completely empty later on. 1883 */ 1884 static noinline int balance_level(struct btrfs_trans_handle *trans, 1885 struct btrfs_root *root, 1886 struct btrfs_path *path, int level) 1887 { 1888 struct extent_buffer *right = NULL; 1889 struct extent_buffer *mid; 1890 struct extent_buffer *left = NULL; 1891 struct extent_buffer *parent = NULL; 1892 int ret = 0; 1893 int wret; 1894 int pslot; 1895 int orig_slot = path->slots[level]; 1896 u64 orig_ptr; 1897 1898 if (level == 0) 1899 return 0; 1900 1901 mid = path->nodes[level]; 1902 1903 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1904 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1905 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1906 1907 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1908 1909 if (level < BTRFS_MAX_LEVEL - 1) { 1910 parent = path->nodes[level + 1]; 1911 pslot = path->slots[level + 1]; 1912 } 1913 1914 /* 1915 * deal with the case where there is only one pointer in the root 1916 * by promoting the node below to a root 1917 */ 1918 if (!parent) { 1919 struct extent_buffer *child; 1920 1921 if (btrfs_header_nritems(mid) != 1) 1922 return 0; 1923 1924 /* promote the child to a root */ 1925 child = read_node_slot(root, mid, 0); 1926 if (!child) { 1927 ret = -EROFS; 1928 btrfs_std_error(root->fs_info, ret); 1929 goto enospc; 1930 } 1931 1932 btrfs_tree_lock(child); 1933 btrfs_set_lock_blocking(child); 1934 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1935 if (ret) { 1936 btrfs_tree_unlock(child); 1937 free_extent_buffer(child); 1938 goto enospc; 1939 } 1940 1941 tree_mod_log_set_root_pointer(root, child, 1); 1942 rcu_assign_pointer(root->node, child); 1943 1944 add_root_to_dirty_list(root); 1945 btrfs_tree_unlock(child); 1946 1947 path->locks[level] = 0; 1948 path->nodes[level] = NULL; 1949 clean_tree_block(trans, root, mid); 1950 btrfs_tree_unlock(mid); 1951 /* once for the path */ 1952 free_extent_buffer(mid); 1953 1954 root_sub_used(root, mid->len); 1955 btrfs_free_tree_block(trans, root, mid, 0, 1); 1956 /* once for the root ptr */ 1957 free_extent_buffer_stale(mid); 1958 return 0; 1959 } 1960 if (btrfs_header_nritems(mid) > 1961 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1962 return 0; 1963 1964 left = read_node_slot(root, parent, pslot - 1); 1965 if (left) { 1966 btrfs_tree_lock(left); 1967 btrfs_set_lock_blocking(left); 1968 wret = btrfs_cow_block(trans, root, left, 1969 parent, pslot - 1, &left); 1970 if (wret) { 1971 ret = wret; 1972 goto enospc; 1973 } 1974 } 1975 right = read_node_slot(root, parent, pslot + 1); 1976 if (right) { 1977 btrfs_tree_lock(right); 1978 btrfs_set_lock_blocking(right); 1979 wret = btrfs_cow_block(trans, root, right, 1980 parent, pslot + 1, &right); 1981 if (wret) { 1982 ret = wret; 1983 goto enospc; 1984 } 1985 } 1986 1987 /* first, try to make some room in the middle buffer */ 1988 if (left) { 1989 orig_slot += btrfs_header_nritems(left); 1990 wret = push_node_left(trans, root, left, mid, 1); 1991 if (wret < 0) 1992 ret = wret; 1993 } 1994 1995 /* 1996 * then try to empty the right most buffer into the middle 1997 */ 1998 if (right) { 1999 wret = push_node_left(trans, root, mid, right, 1); 2000 if (wret < 0 && wret != -ENOSPC) 2001 ret = wret; 2002 if (btrfs_header_nritems(right) == 0) { 2003 clean_tree_block(trans, root, right); 2004 btrfs_tree_unlock(right); 2005 del_ptr(root, path, level + 1, pslot + 1); 2006 root_sub_used(root, right->len); 2007 btrfs_free_tree_block(trans, root, right, 0, 1); 2008 free_extent_buffer_stale(right); 2009 right = NULL; 2010 } else { 2011 struct btrfs_disk_key right_key; 2012 btrfs_node_key(right, &right_key, 0); 2013 tree_mod_log_set_node_key(root->fs_info, parent, 2014 pslot + 1, 0); 2015 btrfs_set_node_key(parent, &right_key, pslot + 1); 2016 btrfs_mark_buffer_dirty(parent); 2017 } 2018 } 2019 if (btrfs_header_nritems(mid) == 1) { 2020 /* 2021 * we're not allowed to leave a node with one item in the 2022 * tree during a delete. A deletion from lower in the tree 2023 * could try to delete the only pointer in this node. 2024 * So, pull some keys from the left. 2025 * There has to be a left pointer at this point because 2026 * otherwise we would have pulled some pointers from the 2027 * right 2028 */ 2029 if (!left) { 2030 ret = -EROFS; 2031 btrfs_std_error(root->fs_info, ret); 2032 goto enospc; 2033 } 2034 wret = balance_node_right(trans, root, mid, left); 2035 if (wret < 0) { 2036 ret = wret; 2037 goto enospc; 2038 } 2039 if (wret == 1) { 2040 wret = push_node_left(trans, root, left, mid, 1); 2041 if (wret < 0) 2042 ret = wret; 2043 } 2044 BUG_ON(wret == 1); 2045 } 2046 if (btrfs_header_nritems(mid) == 0) { 2047 clean_tree_block(trans, root, mid); 2048 btrfs_tree_unlock(mid); 2049 del_ptr(root, path, level + 1, pslot); 2050 root_sub_used(root, mid->len); 2051 btrfs_free_tree_block(trans, root, mid, 0, 1); 2052 free_extent_buffer_stale(mid); 2053 mid = NULL; 2054 } else { 2055 /* update the parent key to reflect our changes */ 2056 struct btrfs_disk_key mid_key; 2057 btrfs_node_key(mid, &mid_key, 0); 2058 tree_mod_log_set_node_key(root->fs_info, parent, 2059 pslot, 0); 2060 btrfs_set_node_key(parent, &mid_key, pslot); 2061 btrfs_mark_buffer_dirty(parent); 2062 } 2063 2064 /* update the path */ 2065 if (left) { 2066 if (btrfs_header_nritems(left) > orig_slot) { 2067 extent_buffer_get(left); 2068 /* left was locked after cow */ 2069 path->nodes[level] = left; 2070 path->slots[level + 1] -= 1; 2071 path->slots[level] = orig_slot; 2072 if (mid) { 2073 btrfs_tree_unlock(mid); 2074 free_extent_buffer(mid); 2075 } 2076 } else { 2077 orig_slot -= btrfs_header_nritems(left); 2078 path->slots[level] = orig_slot; 2079 } 2080 } 2081 /* double check we haven't messed things up */ 2082 if (orig_ptr != 2083 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2084 BUG(); 2085 enospc: 2086 if (right) { 2087 btrfs_tree_unlock(right); 2088 free_extent_buffer(right); 2089 } 2090 if (left) { 2091 if (path->nodes[level] != left) 2092 btrfs_tree_unlock(left); 2093 free_extent_buffer(left); 2094 } 2095 return ret; 2096 } 2097 2098 /* Node balancing for insertion. Here we only split or push nodes around 2099 * when they are completely full. This is also done top down, so we 2100 * have to be pessimistic. 2101 */ 2102 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2103 struct btrfs_root *root, 2104 struct btrfs_path *path, int level) 2105 { 2106 struct extent_buffer *right = NULL; 2107 struct extent_buffer *mid; 2108 struct extent_buffer *left = NULL; 2109 struct extent_buffer *parent = NULL; 2110 int ret = 0; 2111 int wret; 2112 int pslot; 2113 int orig_slot = path->slots[level]; 2114 2115 if (level == 0) 2116 return 1; 2117 2118 mid = path->nodes[level]; 2119 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2120 2121 if (level < BTRFS_MAX_LEVEL - 1) { 2122 parent = path->nodes[level + 1]; 2123 pslot = path->slots[level + 1]; 2124 } 2125 2126 if (!parent) 2127 return 1; 2128 2129 left = read_node_slot(root, parent, pslot - 1); 2130 2131 /* first, try to make some room in the middle buffer */ 2132 if (left) { 2133 u32 left_nr; 2134 2135 btrfs_tree_lock(left); 2136 btrfs_set_lock_blocking(left); 2137 2138 left_nr = btrfs_header_nritems(left); 2139 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2140 wret = 1; 2141 } else { 2142 ret = btrfs_cow_block(trans, root, left, parent, 2143 pslot - 1, &left); 2144 if (ret) 2145 wret = 1; 2146 else { 2147 wret = push_node_left(trans, root, 2148 left, mid, 0); 2149 } 2150 } 2151 if (wret < 0) 2152 ret = wret; 2153 if (wret == 0) { 2154 struct btrfs_disk_key disk_key; 2155 orig_slot += left_nr; 2156 btrfs_node_key(mid, &disk_key, 0); 2157 tree_mod_log_set_node_key(root->fs_info, parent, 2158 pslot, 0); 2159 btrfs_set_node_key(parent, &disk_key, pslot); 2160 btrfs_mark_buffer_dirty(parent); 2161 if (btrfs_header_nritems(left) > orig_slot) { 2162 path->nodes[level] = left; 2163 path->slots[level + 1] -= 1; 2164 path->slots[level] = orig_slot; 2165 btrfs_tree_unlock(mid); 2166 free_extent_buffer(mid); 2167 } else { 2168 orig_slot -= 2169 btrfs_header_nritems(left); 2170 path->slots[level] = orig_slot; 2171 btrfs_tree_unlock(left); 2172 free_extent_buffer(left); 2173 } 2174 return 0; 2175 } 2176 btrfs_tree_unlock(left); 2177 free_extent_buffer(left); 2178 } 2179 right = read_node_slot(root, parent, pslot + 1); 2180 2181 /* 2182 * then try to empty the right most buffer into the middle 2183 */ 2184 if (right) { 2185 u32 right_nr; 2186 2187 btrfs_tree_lock(right); 2188 btrfs_set_lock_blocking(right); 2189 2190 right_nr = btrfs_header_nritems(right); 2191 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2192 wret = 1; 2193 } else { 2194 ret = btrfs_cow_block(trans, root, right, 2195 parent, pslot + 1, 2196 &right); 2197 if (ret) 2198 wret = 1; 2199 else { 2200 wret = balance_node_right(trans, root, 2201 right, mid); 2202 } 2203 } 2204 if (wret < 0) 2205 ret = wret; 2206 if (wret == 0) { 2207 struct btrfs_disk_key disk_key; 2208 2209 btrfs_node_key(right, &disk_key, 0); 2210 tree_mod_log_set_node_key(root->fs_info, parent, 2211 pslot + 1, 0); 2212 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2213 btrfs_mark_buffer_dirty(parent); 2214 2215 if (btrfs_header_nritems(mid) <= orig_slot) { 2216 path->nodes[level] = right; 2217 path->slots[level + 1] += 1; 2218 path->slots[level] = orig_slot - 2219 btrfs_header_nritems(mid); 2220 btrfs_tree_unlock(mid); 2221 free_extent_buffer(mid); 2222 } else { 2223 btrfs_tree_unlock(right); 2224 free_extent_buffer(right); 2225 } 2226 return 0; 2227 } 2228 btrfs_tree_unlock(right); 2229 free_extent_buffer(right); 2230 } 2231 return 1; 2232 } 2233 2234 /* 2235 * readahead one full node of leaves, finding things that are close 2236 * to the block in 'slot', and triggering ra on them. 2237 */ 2238 static void reada_for_search(struct btrfs_root *root, 2239 struct btrfs_path *path, 2240 int level, int slot, u64 objectid) 2241 { 2242 struct extent_buffer *node; 2243 struct btrfs_disk_key disk_key; 2244 u32 nritems; 2245 u64 search; 2246 u64 target; 2247 u64 nread = 0; 2248 u64 gen; 2249 int direction = path->reada; 2250 struct extent_buffer *eb; 2251 u32 nr; 2252 u32 blocksize; 2253 u32 nscan = 0; 2254 2255 if (level != 1) 2256 return; 2257 2258 if (!path->nodes[level]) 2259 return; 2260 2261 node = path->nodes[level]; 2262 2263 search = btrfs_node_blockptr(node, slot); 2264 blocksize = root->nodesize; 2265 eb = btrfs_find_tree_block(root, search); 2266 if (eb) { 2267 free_extent_buffer(eb); 2268 return; 2269 } 2270 2271 target = search; 2272 2273 nritems = btrfs_header_nritems(node); 2274 nr = slot; 2275 2276 while (1) { 2277 if (direction < 0) { 2278 if (nr == 0) 2279 break; 2280 nr--; 2281 } else if (direction > 0) { 2282 nr++; 2283 if (nr >= nritems) 2284 break; 2285 } 2286 if (path->reada < 0 && objectid) { 2287 btrfs_node_key(node, &disk_key, nr); 2288 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2289 break; 2290 } 2291 search = btrfs_node_blockptr(node, nr); 2292 if ((search <= target && target - search <= 65536) || 2293 (search > target && search - target <= 65536)) { 2294 gen = btrfs_node_ptr_generation(node, nr); 2295 readahead_tree_block(root, search, blocksize); 2296 nread += blocksize; 2297 } 2298 nscan++; 2299 if ((nread > 65536 || nscan > 32)) 2300 break; 2301 } 2302 } 2303 2304 static noinline void reada_for_balance(struct btrfs_root *root, 2305 struct btrfs_path *path, int level) 2306 { 2307 int slot; 2308 int nritems; 2309 struct extent_buffer *parent; 2310 struct extent_buffer *eb; 2311 u64 gen; 2312 u64 block1 = 0; 2313 u64 block2 = 0; 2314 int blocksize; 2315 2316 parent = path->nodes[level + 1]; 2317 if (!parent) 2318 return; 2319 2320 nritems = btrfs_header_nritems(parent); 2321 slot = path->slots[level + 1]; 2322 blocksize = root->nodesize; 2323 2324 if (slot > 0) { 2325 block1 = btrfs_node_blockptr(parent, slot - 1); 2326 gen = btrfs_node_ptr_generation(parent, slot - 1); 2327 eb = btrfs_find_tree_block(root, block1); 2328 /* 2329 * if we get -eagain from btrfs_buffer_uptodate, we 2330 * don't want to return eagain here. That will loop 2331 * forever 2332 */ 2333 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2334 block1 = 0; 2335 free_extent_buffer(eb); 2336 } 2337 if (slot + 1 < nritems) { 2338 block2 = btrfs_node_blockptr(parent, slot + 1); 2339 gen = btrfs_node_ptr_generation(parent, slot + 1); 2340 eb = btrfs_find_tree_block(root, block2); 2341 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2342 block2 = 0; 2343 free_extent_buffer(eb); 2344 } 2345 2346 if (block1) 2347 readahead_tree_block(root, block1, blocksize); 2348 if (block2) 2349 readahead_tree_block(root, block2, blocksize); 2350 } 2351 2352 2353 /* 2354 * when we walk down the tree, it is usually safe to unlock the higher layers 2355 * in the tree. The exceptions are when our path goes through slot 0, because 2356 * operations on the tree might require changing key pointers higher up in the 2357 * tree. 2358 * 2359 * callers might also have set path->keep_locks, which tells this code to keep 2360 * the lock if the path points to the last slot in the block. This is part of 2361 * walking through the tree, and selecting the next slot in the higher block. 2362 * 2363 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2364 * if lowest_unlock is 1, level 0 won't be unlocked 2365 */ 2366 static noinline void unlock_up(struct btrfs_path *path, int level, 2367 int lowest_unlock, int min_write_lock_level, 2368 int *write_lock_level) 2369 { 2370 int i; 2371 int skip_level = level; 2372 int no_skips = 0; 2373 struct extent_buffer *t; 2374 2375 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2376 if (!path->nodes[i]) 2377 break; 2378 if (!path->locks[i]) 2379 break; 2380 if (!no_skips && path->slots[i] == 0) { 2381 skip_level = i + 1; 2382 continue; 2383 } 2384 if (!no_skips && path->keep_locks) { 2385 u32 nritems; 2386 t = path->nodes[i]; 2387 nritems = btrfs_header_nritems(t); 2388 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2389 skip_level = i + 1; 2390 continue; 2391 } 2392 } 2393 if (skip_level < i && i >= lowest_unlock) 2394 no_skips = 1; 2395 2396 t = path->nodes[i]; 2397 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2398 btrfs_tree_unlock_rw(t, path->locks[i]); 2399 path->locks[i] = 0; 2400 if (write_lock_level && 2401 i > min_write_lock_level && 2402 i <= *write_lock_level) { 2403 *write_lock_level = i - 1; 2404 } 2405 } 2406 } 2407 } 2408 2409 /* 2410 * This releases any locks held in the path starting at level and 2411 * going all the way up to the root. 2412 * 2413 * btrfs_search_slot will keep the lock held on higher nodes in a few 2414 * corner cases, such as COW of the block at slot zero in the node. This 2415 * ignores those rules, and it should only be called when there are no 2416 * more updates to be done higher up in the tree. 2417 */ 2418 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2419 { 2420 int i; 2421 2422 if (path->keep_locks) 2423 return; 2424 2425 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2426 if (!path->nodes[i]) 2427 continue; 2428 if (!path->locks[i]) 2429 continue; 2430 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2431 path->locks[i] = 0; 2432 } 2433 } 2434 2435 /* 2436 * helper function for btrfs_search_slot. The goal is to find a block 2437 * in cache without setting the path to blocking. If we find the block 2438 * we return zero and the path is unchanged. 2439 * 2440 * If we can't find the block, we set the path blocking and do some 2441 * reada. -EAGAIN is returned and the search must be repeated. 2442 */ 2443 static int 2444 read_block_for_search(struct btrfs_trans_handle *trans, 2445 struct btrfs_root *root, struct btrfs_path *p, 2446 struct extent_buffer **eb_ret, int level, int slot, 2447 struct btrfs_key *key, u64 time_seq) 2448 { 2449 u64 blocknr; 2450 u64 gen; 2451 struct extent_buffer *b = *eb_ret; 2452 struct extent_buffer *tmp; 2453 int ret; 2454 2455 blocknr = btrfs_node_blockptr(b, slot); 2456 gen = btrfs_node_ptr_generation(b, slot); 2457 2458 tmp = btrfs_find_tree_block(root, blocknr); 2459 if (tmp) { 2460 /* first we do an atomic uptodate check */ 2461 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2462 *eb_ret = tmp; 2463 return 0; 2464 } 2465 2466 /* the pages were up to date, but we failed 2467 * the generation number check. Do a full 2468 * read for the generation number that is correct. 2469 * We must do this without dropping locks so 2470 * we can trust our generation number 2471 */ 2472 btrfs_set_path_blocking(p); 2473 2474 /* now we're allowed to do a blocking uptodate check */ 2475 ret = btrfs_read_buffer(tmp, gen); 2476 if (!ret) { 2477 *eb_ret = tmp; 2478 return 0; 2479 } 2480 free_extent_buffer(tmp); 2481 btrfs_release_path(p); 2482 return -EIO; 2483 } 2484 2485 /* 2486 * reduce lock contention at high levels 2487 * of the btree by dropping locks before 2488 * we read. Don't release the lock on the current 2489 * level because we need to walk this node to figure 2490 * out which blocks to read. 2491 */ 2492 btrfs_unlock_up_safe(p, level + 1); 2493 btrfs_set_path_blocking(p); 2494 2495 free_extent_buffer(tmp); 2496 if (p->reada) 2497 reada_for_search(root, p, level, slot, key->objectid); 2498 2499 btrfs_release_path(p); 2500 2501 ret = -EAGAIN; 2502 tmp = read_tree_block(root, blocknr, 0); 2503 if (tmp) { 2504 /* 2505 * If the read above didn't mark this buffer up to date, 2506 * it will never end up being up to date. Set ret to EIO now 2507 * and give up so that our caller doesn't loop forever 2508 * on our EAGAINs. 2509 */ 2510 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2511 ret = -EIO; 2512 free_extent_buffer(tmp); 2513 } 2514 return ret; 2515 } 2516 2517 /* 2518 * helper function for btrfs_search_slot. This does all of the checks 2519 * for node-level blocks and does any balancing required based on 2520 * the ins_len. 2521 * 2522 * If no extra work was required, zero is returned. If we had to 2523 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2524 * start over 2525 */ 2526 static int 2527 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2528 struct btrfs_root *root, struct btrfs_path *p, 2529 struct extent_buffer *b, int level, int ins_len, 2530 int *write_lock_level) 2531 { 2532 int ret; 2533 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2534 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2535 int sret; 2536 2537 if (*write_lock_level < level + 1) { 2538 *write_lock_level = level + 1; 2539 btrfs_release_path(p); 2540 goto again; 2541 } 2542 2543 btrfs_set_path_blocking(p); 2544 reada_for_balance(root, p, level); 2545 sret = split_node(trans, root, p, level); 2546 btrfs_clear_path_blocking(p, NULL, 0); 2547 2548 BUG_ON(sret > 0); 2549 if (sret) { 2550 ret = sret; 2551 goto done; 2552 } 2553 b = p->nodes[level]; 2554 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2555 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2556 int sret; 2557 2558 if (*write_lock_level < level + 1) { 2559 *write_lock_level = level + 1; 2560 btrfs_release_path(p); 2561 goto again; 2562 } 2563 2564 btrfs_set_path_blocking(p); 2565 reada_for_balance(root, p, level); 2566 sret = balance_level(trans, root, p, level); 2567 btrfs_clear_path_blocking(p, NULL, 0); 2568 2569 if (sret) { 2570 ret = sret; 2571 goto done; 2572 } 2573 b = p->nodes[level]; 2574 if (!b) { 2575 btrfs_release_path(p); 2576 goto again; 2577 } 2578 BUG_ON(btrfs_header_nritems(b) == 1); 2579 } 2580 return 0; 2581 2582 again: 2583 ret = -EAGAIN; 2584 done: 2585 return ret; 2586 } 2587 2588 static void key_search_validate(struct extent_buffer *b, 2589 struct btrfs_key *key, 2590 int level) 2591 { 2592 #ifdef CONFIG_BTRFS_ASSERT 2593 struct btrfs_disk_key disk_key; 2594 2595 btrfs_cpu_key_to_disk(&disk_key, key); 2596 2597 if (level == 0) 2598 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2599 offsetof(struct btrfs_leaf, items[0].key), 2600 sizeof(disk_key))); 2601 else 2602 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2603 offsetof(struct btrfs_node, ptrs[0].key), 2604 sizeof(disk_key))); 2605 #endif 2606 } 2607 2608 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2609 int level, int *prev_cmp, int *slot) 2610 { 2611 if (*prev_cmp != 0) { 2612 *prev_cmp = bin_search(b, key, level, slot); 2613 return *prev_cmp; 2614 } 2615 2616 key_search_validate(b, key, level); 2617 *slot = 0; 2618 2619 return 0; 2620 } 2621 2622 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path, 2623 u64 iobjectid, u64 ioff, u8 key_type, 2624 struct btrfs_key *found_key) 2625 { 2626 int ret; 2627 struct btrfs_key key; 2628 struct extent_buffer *eb; 2629 struct btrfs_path *path; 2630 2631 key.type = key_type; 2632 key.objectid = iobjectid; 2633 key.offset = ioff; 2634 2635 if (found_path == NULL) { 2636 path = btrfs_alloc_path(); 2637 if (!path) 2638 return -ENOMEM; 2639 } else 2640 path = found_path; 2641 2642 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2643 if ((ret < 0) || (found_key == NULL)) { 2644 if (path != found_path) 2645 btrfs_free_path(path); 2646 return ret; 2647 } 2648 2649 eb = path->nodes[0]; 2650 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2651 ret = btrfs_next_leaf(fs_root, path); 2652 if (ret) 2653 return ret; 2654 eb = path->nodes[0]; 2655 } 2656 2657 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2658 if (found_key->type != key.type || 2659 found_key->objectid != key.objectid) 2660 return 1; 2661 2662 return 0; 2663 } 2664 2665 /* 2666 * look for key in the tree. path is filled in with nodes along the way 2667 * if key is found, we return zero and you can find the item in the leaf 2668 * level of the path (level 0) 2669 * 2670 * If the key isn't found, the path points to the slot where it should 2671 * be inserted, and 1 is returned. If there are other errors during the 2672 * search a negative error number is returned. 2673 * 2674 * if ins_len > 0, nodes and leaves will be split as we walk down the 2675 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2676 * possible) 2677 */ 2678 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2679 *root, struct btrfs_key *key, struct btrfs_path *p, int 2680 ins_len, int cow) 2681 { 2682 struct extent_buffer *b; 2683 int slot; 2684 int ret; 2685 int err; 2686 int level; 2687 int lowest_unlock = 1; 2688 int root_lock; 2689 /* everything at write_lock_level or lower must be write locked */ 2690 int write_lock_level = 0; 2691 u8 lowest_level = 0; 2692 int min_write_lock_level; 2693 int prev_cmp; 2694 2695 lowest_level = p->lowest_level; 2696 WARN_ON(lowest_level && ins_len > 0); 2697 WARN_ON(p->nodes[0] != NULL); 2698 BUG_ON(!cow && ins_len); 2699 2700 if (ins_len < 0) { 2701 lowest_unlock = 2; 2702 2703 /* when we are removing items, we might have to go up to level 2704 * two as we update tree pointers Make sure we keep write 2705 * for those levels as well 2706 */ 2707 write_lock_level = 2; 2708 } else if (ins_len > 0) { 2709 /* 2710 * for inserting items, make sure we have a write lock on 2711 * level 1 so we can update keys 2712 */ 2713 write_lock_level = 1; 2714 } 2715 2716 if (!cow) 2717 write_lock_level = -1; 2718 2719 if (cow && (p->keep_locks || p->lowest_level)) 2720 write_lock_level = BTRFS_MAX_LEVEL; 2721 2722 min_write_lock_level = write_lock_level; 2723 2724 again: 2725 prev_cmp = -1; 2726 /* 2727 * we try very hard to do read locks on the root 2728 */ 2729 root_lock = BTRFS_READ_LOCK; 2730 level = 0; 2731 if (p->search_commit_root) { 2732 /* 2733 * the commit roots are read only 2734 * so we always do read locks 2735 */ 2736 if (p->need_commit_sem) 2737 down_read(&root->fs_info->commit_root_sem); 2738 b = root->commit_root; 2739 extent_buffer_get(b); 2740 level = btrfs_header_level(b); 2741 if (p->need_commit_sem) 2742 up_read(&root->fs_info->commit_root_sem); 2743 if (!p->skip_locking) 2744 btrfs_tree_read_lock(b); 2745 } else { 2746 if (p->skip_locking) { 2747 b = btrfs_root_node(root); 2748 level = btrfs_header_level(b); 2749 } else { 2750 /* we don't know the level of the root node 2751 * until we actually have it read locked 2752 */ 2753 b = btrfs_read_lock_root_node(root); 2754 level = btrfs_header_level(b); 2755 if (level <= write_lock_level) { 2756 /* whoops, must trade for write lock */ 2757 btrfs_tree_read_unlock(b); 2758 free_extent_buffer(b); 2759 b = btrfs_lock_root_node(root); 2760 root_lock = BTRFS_WRITE_LOCK; 2761 2762 /* the level might have changed, check again */ 2763 level = btrfs_header_level(b); 2764 } 2765 } 2766 } 2767 p->nodes[level] = b; 2768 if (!p->skip_locking) 2769 p->locks[level] = root_lock; 2770 2771 while (b) { 2772 level = btrfs_header_level(b); 2773 2774 /* 2775 * setup the path here so we can release it under lock 2776 * contention with the cow code 2777 */ 2778 if (cow) { 2779 /* 2780 * if we don't really need to cow this block 2781 * then we don't want to set the path blocking, 2782 * so we test it here 2783 */ 2784 if (!should_cow_block(trans, root, b)) 2785 goto cow_done; 2786 2787 /* 2788 * must have write locks on this node and the 2789 * parent 2790 */ 2791 if (level > write_lock_level || 2792 (level + 1 > write_lock_level && 2793 level + 1 < BTRFS_MAX_LEVEL && 2794 p->nodes[level + 1])) { 2795 write_lock_level = level + 1; 2796 btrfs_release_path(p); 2797 goto again; 2798 } 2799 2800 btrfs_set_path_blocking(p); 2801 err = btrfs_cow_block(trans, root, b, 2802 p->nodes[level + 1], 2803 p->slots[level + 1], &b); 2804 if (err) { 2805 ret = err; 2806 goto done; 2807 } 2808 } 2809 cow_done: 2810 p->nodes[level] = b; 2811 btrfs_clear_path_blocking(p, NULL, 0); 2812 2813 /* 2814 * we have a lock on b and as long as we aren't changing 2815 * the tree, there is no way to for the items in b to change. 2816 * It is safe to drop the lock on our parent before we 2817 * go through the expensive btree search on b. 2818 * 2819 * If we're inserting or deleting (ins_len != 0), then we might 2820 * be changing slot zero, which may require changing the parent. 2821 * So, we can't drop the lock until after we know which slot 2822 * we're operating on. 2823 */ 2824 if (!ins_len && !p->keep_locks) { 2825 int u = level + 1; 2826 2827 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2828 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2829 p->locks[u] = 0; 2830 } 2831 } 2832 2833 ret = key_search(b, key, level, &prev_cmp, &slot); 2834 2835 if (level != 0) { 2836 int dec = 0; 2837 if (ret && slot > 0) { 2838 dec = 1; 2839 slot -= 1; 2840 } 2841 p->slots[level] = slot; 2842 err = setup_nodes_for_search(trans, root, p, b, level, 2843 ins_len, &write_lock_level); 2844 if (err == -EAGAIN) 2845 goto again; 2846 if (err) { 2847 ret = err; 2848 goto done; 2849 } 2850 b = p->nodes[level]; 2851 slot = p->slots[level]; 2852 2853 /* 2854 * slot 0 is special, if we change the key 2855 * we have to update the parent pointer 2856 * which means we must have a write lock 2857 * on the parent 2858 */ 2859 if (slot == 0 && ins_len && 2860 write_lock_level < level + 1) { 2861 write_lock_level = level + 1; 2862 btrfs_release_path(p); 2863 goto again; 2864 } 2865 2866 unlock_up(p, level, lowest_unlock, 2867 min_write_lock_level, &write_lock_level); 2868 2869 if (level == lowest_level) { 2870 if (dec) 2871 p->slots[level]++; 2872 goto done; 2873 } 2874 2875 err = read_block_for_search(trans, root, p, 2876 &b, level, slot, key, 0); 2877 if (err == -EAGAIN) 2878 goto again; 2879 if (err) { 2880 ret = err; 2881 goto done; 2882 } 2883 2884 if (!p->skip_locking) { 2885 level = btrfs_header_level(b); 2886 if (level <= write_lock_level) { 2887 err = btrfs_try_tree_write_lock(b); 2888 if (!err) { 2889 btrfs_set_path_blocking(p); 2890 btrfs_tree_lock(b); 2891 btrfs_clear_path_blocking(p, b, 2892 BTRFS_WRITE_LOCK); 2893 } 2894 p->locks[level] = BTRFS_WRITE_LOCK; 2895 } else { 2896 err = btrfs_try_tree_read_lock(b); 2897 if (!err) { 2898 btrfs_set_path_blocking(p); 2899 btrfs_tree_read_lock(b); 2900 btrfs_clear_path_blocking(p, b, 2901 BTRFS_READ_LOCK); 2902 } 2903 p->locks[level] = BTRFS_READ_LOCK; 2904 } 2905 p->nodes[level] = b; 2906 } 2907 } else { 2908 p->slots[level] = slot; 2909 if (ins_len > 0 && 2910 btrfs_leaf_free_space(root, b) < ins_len) { 2911 if (write_lock_level < 1) { 2912 write_lock_level = 1; 2913 btrfs_release_path(p); 2914 goto again; 2915 } 2916 2917 btrfs_set_path_blocking(p); 2918 err = split_leaf(trans, root, key, 2919 p, ins_len, ret == 0); 2920 btrfs_clear_path_blocking(p, NULL, 0); 2921 2922 BUG_ON(err > 0); 2923 if (err) { 2924 ret = err; 2925 goto done; 2926 } 2927 } 2928 if (!p->search_for_split) 2929 unlock_up(p, level, lowest_unlock, 2930 min_write_lock_level, &write_lock_level); 2931 goto done; 2932 } 2933 } 2934 ret = 1; 2935 done: 2936 /* 2937 * we don't really know what they plan on doing with the path 2938 * from here on, so for now just mark it as blocking 2939 */ 2940 if (!p->leave_spinning) 2941 btrfs_set_path_blocking(p); 2942 if (ret < 0) 2943 btrfs_release_path(p); 2944 return ret; 2945 } 2946 2947 /* 2948 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2949 * current state of the tree together with the operations recorded in the tree 2950 * modification log to search for the key in a previous version of this tree, as 2951 * denoted by the time_seq parameter. 2952 * 2953 * Naturally, there is no support for insert, delete or cow operations. 2954 * 2955 * The resulting path and return value will be set up as if we called 2956 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2957 */ 2958 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2959 struct btrfs_path *p, u64 time_seq) 2960 { 2961 struct extent_buffer *b; 2962 int slot; 2963 int ret; 2964 int err; 2965 int level; 2966 int lowest_unlock = 1; 2967 u8 lowest_level = 0; 2968 int prev_cmp = -1; 2969 2970 lowest_level = p->lowest_level; 2971 WARN_ON(p->nodes[0] != NULL); 2972 2973 if (p->search_commit_root) { 2974 BUG_ON(time_seq); 2975 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2976 } 2977 2978 again: 2979 b = get_old_root(root, time_seq); 2980 level = btrfs_header_level(b); 2981 p->locks[level] = BTRFS_READ_LOCK; 2982 2983 while (b) { 2984 level = btrfs_header_level(b); 2985 p->nodes[level] = b; 2986 btrfs_clear_path_blocking(p, NULL, 0); 2987 2988 /* 2989 * we have a lock on b and as long as we aren't changing 2990 * the tree, there is no way to for the items in b to change. 2991 * It is safe to drop the lock on our parent before we 2992 * go through the expensive btree search on b. 2993 */ 2994 btrfs_unlock_up_safe(p, level + 1); 2995 2996 /* 2997 * Since we can unwind eb's we want to do a real search every 2998 * time. 2999 */ 3000 prev_cmp = -1; 3001 ret = key_search(b, key, level, &prev_cmp, &slot); 3002 3003 if (level != 0) { 3004 int dec = 0; 3005 if (ret && slot > 0) { 3006 dec = 1; 3007 slot -= 1; 3008 } 3009 p->slots[level] = slot; 3010 unlock_up(p, level, lowest_unlock, 0, NULL); 3011 3012 if (level == lowest_level) { 3013 if (dec) 3014 p->slots[level]++; 3015 goto done; 3016 } 3017 3018 err = read_block_for_search(NULL, root, p, &b, level, 3019 slot, key, time_seq); 3020 if (err == -EAGAIN) 3021 goto again; 3022 if (err) { 3023 ret = err; 3024 goto done; 3025 } 3026 3027 level = btrfs_header_level(b); 3028 err = btrfs_try_tree_read_lock(b); 3029 if (!err) { 3030 btrfs_set_path_blocking(p); 3031 btrfs_tree_read_lock(b); 3032 btrfs_clear_path_blocking(p, b, 3033 BTRFS_READ_LOCK); 3034 } 3035 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3036 if (!b) { 3037 ret = -ENOMEM; 3038 goto done; 3039 } 3040 p->locks[level] = BTRFS_READ_LOCK; 3041 p->nodes[level] = b; 3042 } else { 3043 p->slots[level] = slot; 3044 unlock_up(p, level, lowest_unlock, 0, NULL); 3045 goto done; 3046 } 3047 } 3048 ret = 1; 3049 done: 3050 if (!p->leave_spinning) 3051 btrfs_set_path_blocking(p); 3052 if (ret < 0) 3053 btrfs_release_path(p); 3054 3055 return ret; 3056 } 3057 3058 /* 3059 * helper to use instead of search slot if no exact match is needed but 3060 * instead the next or previous item should be returned. 3061 * When find_higher is true, the next higher item is returned, the next lower 3062 * otherwise. 3063 * When return_any and find_higher are both true, and no higher item is found, 3064 * return the next lower instead. 3065 * When return_any is true and find_higher is false, and no lower item is found, 3066 * return the next higher instead. 3067 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3068 * < 0 on error 3069 */ 3070 int btrfs_search_slot_for_read(struct btrfs_root *root, 3071 struct btrfs_key *key, struct btrfs_path *p, 3072 int find_higher, int return_any) 3073 { 3074 int ret; 3075 struct extent_buffer *leaf; 3076 3077 again: 3078 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3079 if (ret <= 0) 3080 return ret; 3081 /* 3082 * a return value of 1 means the path is at the position where the 3083 * item should be inserted. Normally this is the next bigger item, 3084 * but in case the previous item is the last in a leaf, path points 3085 * to the first free slot in the previous leaf, i.e. at an invalid 3086 * item. 3087 */ 3088 leaf = p->nodes[0]; 3089 3090 if (find_higher) { 3091 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3092 ret = btrfs_next_leaf(root, p); 3093 if (ret <= 0) 3094 return ret; 3095 if (!return_any) 3096 return 1; 3097 /* 3098 * no higher item found, return the next 3099 * lower instead 3100 */ 3101 return_any = 0; 3102 find_higher = 0; 3103 btrfs_release_path(p); 3104 goto again; 3105 } 3106 } else { 3107 if (p->slots[0] == 0) { 3108 ret = btrfs_prev_leaf(root, p); 3109 if (ret < 0) 3110 return ret; 3111 if (!ret) { 3112 leaf = p->nodes[0]; 3113 if (p->slots[0] == btrfs_header_nritems(leaf)) 3114 p->slots[0]--; 3115 return 0; 3116 } 3117 if (!return_any) 3118 return 1; 3119 /* 3120 * no lower item found, return the next 3121 * higher instead 3122 */ 3123 return_any = 0; 3124 find_higher = 1; 3125 btrfs_release_path(p); 3126 goto again; 3127 } else { 3128 --p->slots[0]; 3129 } 3130 } 3131 return 0; 3132 } 3133 3134 /* 3135 * adjust the pointers going up the tree, starting at level 3136 * making sure the right key of each node is points to 'key'. 3137 * This is used after shifting pointers to the left, so it stops 3138 * fixing up pointers when a given leaf/node is not in slot 0 of the 3139 * higher levels 3140 * 3141 */ 3142 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 3143 struct btrfs_disk_key *key, int level) 3144 { 3145 int i; 3146 struct extent_buffer *t; 3147 3148 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3149 int tslot = path->slots[i]; 3150 if (!path->nodes[i]) 3151 break; 3152 t = path->nodes[i]; 3153 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 3154 btrfs_set_node_key(t, key, tslot); 3155 btrfs_mark_buffer_dirty(path->nodes[i]); 3156 if (tslot != 0) 3157 break; 3158 } 3159 } 3160 3161 /* 3162 * update item key. 3163 * 3164 * This function isn't completely safe. It's the caller's responsibility 3165 * that the new key won't break the order 3166 */ 3167 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 3168 struct btrfs_key *new_key) 3169 { 3170 struct btrfs_disk_key disk_key; 3171 struct extent_buffer *eb; 3172 int slot; 3173 3174 eb = path->nodes[0]; 3175 slot = path->slots[0]; 3176 if (slot > 0) { 3177 btrfs_item_key(eb, &disk_key, slot - 1); 3178 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3179 } 3180 if (slot < btrfs_header_nritems(eb) - 1) { 3181 btrfs_item_key(eb, &disk_key, slot + 1); 3182 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3183 } 3184 3185 btrfs_cpu_key_to_disk(&disk_key, new_key); 3186 btrfs_set_item_key(eb, &disk_key, slot); 3187 btrfs_mark_buffer_dirty(eb); 3188 if (slot == 0) 3189 fixup_low_keys(root, path, &disk_key, 1); 3190 } 3191 3192 /* 3193 * try to push data from one node into the next node left in the 3194 * tree. 3195 * 3196 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3197 * error, and > 0 if there was no room in the left hand block. 3198 */ 3199 static int push_node_left(struct btrfs_trans_handle *trans, 3200 struct btrfs_root *root, struct extent_buffer *dst, 3201 struct extent_buffer *src, int empty) 3202 { 3203 int push_items = 0; 3204 int src_nritems; 3205 int dst_nritems; 3206 int ret = 0; 3207 3208 src_nritems = btrfs_header_nritems(src); 3209 dst_nritems = btrfs_header_nritems(dst); 3210 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3211 WARN_ON(btrfs_header_generation(src) != trans->transid); 3212 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3213 3214 if (!empty && src_nritems <= 8) 3215 return 1; 3216 3217 if (push_items <= 0) 3218 return 1; 3219 3220 if (empty) { 3221 push_items = min(src_nritems, push_items); 3222 if (push_items < src_nritems) { 3223 /* leave at least 8 pointers in the node if 3224 * we aren't going to empty it 3225 */ 3226 if (src_nritems - push_items < 8) { 3227 if (push_items <= 8) 3228 return 1; 3229 push_items -= 8; 3230 } 3231 } 3232 } else 3233 push_items = min(src_nritems - 8, push_items); 3234 3235 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3236 push_items); 3237 if (ret) { 3238 btrfs_abort_transaction(trans, root, ret); 3239 return ret; 3240 } 3241 copy_extent_buffer(dst, src, 3242 btrfs_node_key_ptr_offset(dst_nritems), 3243 btrfs_node_key_ptr_offset(0), 3244 push_items * sizeof(struct btrfs_key_ptr)); 3245 3246 if (push_items < src_nritems) { 3247 /* 3248 * don't call tree_mod_log_eb_move here, key removal was already 3249 * fully logged by tree_mod_log_eb_copy above. 3250 */ 3251 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3252 btrfs_node_key_ptr_offset(push_items), 3253 (src_nritems - push_items) * 3254 sizeof(struct btrfs_key_ptr)); 3255 } 3256 btrfs_set_header_nritems(src, src_nritems - push_items); 3257 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3258 btrfs_mark_buffer_dirty(src); 3259 btrfs_mark_buffer_dirty(dst); 3260 3261 return ret; 3262 } 3263 3264 /* 3265 * try to push data from one node into the next node right in the 3266 * tree. 3267 * 3268 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3269 * error, and > 0 if there was no room in the right hand block. 3270 * 3271 * this will only push up to 1/2 the contents of the left node over 3272 */ 3273 static int balance_node_right(struct btrfs_trans_handle *trans, 3274 struct btrfs_root *root, 3275 struct extent_buffer *dst, 3276 struct extent_buffer *src) 3277 { 3278 int push_items = 0; 3279 int max_push; 3280 int src_nritems; 3281 int dst_nritems; 3282 int ret = 0; 3283 3284 WARN_ON(btrfs_header_generation(src) != trans->transid); 3285 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3286 3287 src_nritems = btrfs_header_nritems(src); 3288 dst_nritems = btrfs_header_nritems(dst); 3289 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3290 if (push_items <= 0) 3291 return 1; 3292 3293 if (src_nritems < 4) 3294 return 1; 3295 3296 max_push = src_nritems / 2 + 1; 3297 /* don't try to empty the node */ 3298 if (max_push >= src_nritems) 3299 return 1; 3300 3301 if (max_push < push_items) 3302 push_items = max_push; 3303 3304 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3305 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3306 btrfs_node_key_ptr_offset(0), 3307 (dst_nritems) * 3308 sizeof(struct btrfs_key_ptr)); 3309 3310 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3311 src_nritems - push_items, push_items); 3312 if (ret) { 3313 btrfs_abort_transaction(trans, root, ret); 3314 return ret; 3315 } 3316 copy_extent_buffer(dst, src, 3317 btrfs_node_key_ptr_offset(0), 3318 btrfs_node_key_ptr_offset(src_nritems - push_items), 3319 push_items * sizeof(struct btrfs_key_ptr)); 3320 3321 btrfs_set_header_nritems(src, src_nritems - push_items); 3322 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3323 3324 btrfs_mark_buffer_dirty(src); 3325 btrfs_mark_buffer_dirty(dst); 3326 3327 return ret; 3328 } 3329 3330 /* 3331 * helper function to insert a new root level in the tree. 3332 * A new node is allocated, and a single item is inserted to 3333 * point to the existing root 3334 * 3335 * returns zero on success or < 0 on failure. 3336 */ 3337 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3338 struct btrfs_root *root, 3339 struct btrfs_path *path, int level) 3340 { 3341 u64 lower_gen; 3342 struct extent_buffer *lower; 3343 struct extent_buffer *c; 3344 struct extent_buffer *old; 3345 struct btrfs_disk_key lower_key; 3346 3347 BUG_ON(path->nodes[level]); 3348 BUG_ON(path->nodes[level-1] != root->node); 3349 3350 lower = path->nodes[level-1]; 3351 if (level == 1) 3352 btrfs_item_key(lower, &lower_key, 0); 3353 else 3354 btrfs_node_key(lower, &lower_key, 0); 3355 3356 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3357 &lower_key, level, root->node->start, 0); 3358 if (IS_ERR(c)) 3359 return PTR_ERR(c); 3360 3361 root_add_used(root, root->nodesize); 3362 3363 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3364 btrfs_set_header_nritems(c, 1); 3365 btrfs_set_header_level(c, level); 3366 btrfs_set_header_bytenr(c, c->start); 3367 btrfs_set_header_generation(c, trans->transid); 3368 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3369 btrfs_set_header_owner(c, root->root_key.objectid); 3370 3371 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3372 BTRFS_FSID_SIZE); 3373 3374 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3375 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3376 3377 btrfs_set_node_key(c, &lower_key, 0); 3378 btrfs_set_node_blockptr(c, 0, lower->start); 3379 lower_gen = btrfs_header_generation(lower); 3380 WARN_ON(lower_gen != trans->transid); 3381 3382 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3383 3384 btrfs_mark_buffer_dirty(c); 3385 3386 old = root->node; 3387 tree_mod_log_set_root_pointer(root, c, 0); 3388 rcu_assign_pointer(root->node, c); 3389 3390 /* the super has an extra ref to root->node */ 3391 free_extent_buffer(old); 3392 3393 add_root_to_dirty_list(root); 3394 extent_buffer_get(c); 3395 path->nodes[level] = c; 3396 path->locks[level] = BTRFS_WRITE_LOCK; 3397 path->slots[level] = 0; 3398 return 0; 3399 } 3400 3401 /* 3402 * worker function to insert a single pointer in a node. 3403 * the node should have enough room for the pointer already 3404 * 3405 * slot and level indicate where you want the key to go, and 3406 * blocknr is the block the key points to. 3407 */ 3408 static void insert_ptr(struct btrfs_trans_handle *trans, 3409 struct btrfs_root *root, struct btrfs_path *path, 3410 struct btrfs_disk_key *key, u64 bytenr, 3411 int slot, int level) 3412 { 3413 struct extent_buffer *lower; 3414 int nritems; 3415 int ret; 3416 3417 BUG_ON(!path->nodes[level]); 3418 btrfs_assert_tree_locked(path->nodes[level]); 3419 lower = path->nodes[level]; 3420 nritems = btrfs_header_nritems(lower); 3421 BUG_ON(slot > nritems); 3422 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3423 if (slot != nritems) { 3424 if (level) 3425 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3426 slot, nritems - slot); 3427 memmove_extent_buffer(lower, 3428 btrfs_node_key_ptr_offset(slot + 1), 3429 btrfs_node_key_ptr_offset(slot), 3430 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3431 } 3432 if (level) { 3433 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3434 MOD_LOG_KEY_ADD, GFP_NOFS); 3435 BUG_ON(ret < 0); 3436 } 3437 btrfs_set_node_key(lower, key, slot); 3438 btrfs_set_node_blockptr(lower, slot, bytenr); 3439 WARN_ON(trans->transid == 0); 3440 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3441 btrfs_set_header_nritems(lower, nritems + 1); 3442 btrfs_mark_buffer_dirty(lower); 3443 } 3444 3445 /* 3446 * split the node at the specified level in path in two. 3447 * The path is corrected to point to the appropriate node after the split 3448 * 3449 * Before splitting this tries to make some room in the node by pushing 3450 * left and right, if either one works, it returns right away. 3451 * 3452 * returns 0 on success and < 0 on failure 3453 */ 3454 static noinline int split_node(struct btrfs_trans_handle *trans, 3455 struct btrfs_root *root, 3456 struct btrfs_path *path, int level) 3457 { 3458 struct extent_buffer *c; 3459 struct extent_buffer *split; 3460 struct btrfs_disk_key disk_key; 3461 int mid; 3462 int ret; 3463 u32 c_nritems; 3464 3465 c = path->nodes[level]; 3466 WARN_ON(btrfs_header_generation(c) != trans->transid); 3467 if (c == root->node) { 3468 /* 3469 * trying to split the root, lets make a new one 3470 * 3471 * tree mod log: We don't log_removal old root in 3472 * insert_new_root, because that root buffer will be kept as a 3473 * normal node. We are going to log removal of half of the 3474 * elements below with tree_mod_log_eb_copy. We're holding a 3475 * tree lock on the buffer, which is why we cannot race with 3476 * other tree_mod_log users. 3477 */ 3478 ret = insert_new_root(trans, root, path, level + 1); 3479 if (ret) 3480 return ret; 3481 } else { 3482 ret = push_nodes_for_insert(trans, root, path, level); 3483 c = path->nodes[level]; 3484 if (!ret && btrfs_header_nritems(c) < 3485 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3486 return 0; 3487 if (ret < 0) 3488 return ret; 3489 } 3490 3491 c_nritems = btrfs_header_nritems(c); 3492 mid = (c_nritems + 1) / 2; 3493 btrfs_node_key(c, &disk_key, mid); 3494 3495 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3496 &disk_key, level, c->start, 0); 3497 if (IS_ERR(split)) 3498 return PTR_ERR(split); 3499 3500 root_add_used(root, root->nodesize); 3501 3502 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3503 btrfs_set_header_level(split, btrfs_header_level(c)); 3504 btrfs_set_header_bytenr(split, split->start); 3505 btrfs_set_header_generation(split, trans->transid); 3506 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3507 btrfs_set_header_owner(split, root->root_key.objectid); 3508 write_extent_buffer(split, root->fs_info->fsid, 3509 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3510 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3511 btrfs_header_chunk_tree_uuid(split), 3512 BTRFS_UUID_SIZE); 3513 3514 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3515 mid, c_nritems - mid); 3516 if (ret) { 3517 btrfs_abort_transaction(trans, root, ret); 3518 return ret; 3519 } 3520 copy_extent_buffer(split, c, 3521 btrfs_node_key_ptr_offset(0), 3522 btrfs_node_key_ptr_offset(mid), 3523 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3524 btrfs_set_header_nritems(split, c_nritems - mid); 3525 btrfs_set_header_nritems(c, mid); 3526 ret = 0; 3527 3528 btrfs_mark_buffer_dirty(c); 3529 btrfs_mark_buffer_dirty(split); 3530 3531 insert_ptr(trans, root, path, &disk_key, split->start, 3532 path->slots[level + 1] + 1, level + 1); 3533 3534 if (path->slots[level] >= mid) { 3535 path->slots[level] -= mid; 3536 btrfs_tree_unlock(c); 3537 free_extent_buffer(c); 3538 path->nodes[level] = split; 3539 path->slots[level + 1] += 1; 3540 } else { 3541 btrfs_tree_unlock(split); 3542 free_extent_buffer(split); 3543 } 3544 return ret; 3545 } 3546 3547 /* 3548 * how many bytes are required to store the items in a leaf. start 3549 * and nr indicate which items in the leaf to check. This totals up the 3550 * space used both by the item structs and the item data 3551 */ 3552 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3553 { 3554 struct btrfs_item *start_item; 3555 struct btrfs_item *end_item; 3556 struct btrfs_map_token token; 3557 int data_len; 3558 int nritems = btrfs_header_nritems(l); 3559 int end = min(nritems, start + nr) - 1; 3560 3561 if (!nr) 3562 return 0; 3563 btrfs_init_map_token(&token); 3564 start_item = btrfs_item_nr(start); 3565 end_item = btrfs_item_nr(end); 3566 data_len = btrfs_token_item_offset(l, start_item, &token) + 3567 btrfs_token_item_size(l, start_item, &token); 3568 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3569 data_len += sizeof(struct btrfs_item) * nr; 3570 WARN_ON(data_len < 0); 3571 return data_len; 3572 } 3573 3574 /* 3575 * The space between the end of the leaf items and 3576 * the start of the leaf data. IOW, how much room 3577 * the leaf has left for both items and data 3578 */ 3579 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3580 struct extent_buffer *leaf) 3581 { 3582 int nritems = btrfs_header_nritems(leaf); 3583 int ret; 3584 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3585 if (ret < 0) { 3586 btrfs_crit(root->fs_info, 3587 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3588 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3589 leaf_space_used(leaf, 0, nritems), nritems); 3590 } 3591 return ret; 3592 } 3593 3594 /* 3595 * min slot controls the lowest index we're willing to push to the 3596 * right. We'll push up to and including min_slot, but no lower 3597 */ 3598 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3599 struct btrfs_root *root, 3600 struct btrfs_path *path, 3601 int data_size, int empty, 3602 struct extent_buffer *right, 3603 int free_space, u32 left_nritems, 3604 u32 min_slot) 3605 { 3606 struct extent_buffer *left = path->nodes[0]; 3607 struct extent_buffer *upper = path->nodes[1]; 3608 struct btrfs_map_token token; 3609 struct btrfs_disk_key disk_key; 3610 int slot; 3611 u32 i; 3612 int push_space = 0; 3613 int push_items = 0; 3614 struct btrfs_item *item; 3615 u32 nr; 3616 u32 right_nritems; 3617 u32 data_end; 3618 u32 this_item_size; 3619 3620 btrfs_init_map_token(&token); 3621 3622 if (empty) 3623 nr = 0; 3624 else 3625 nr = max_t(u32, 1, min_slot); 3626 3627 if (path->slots[0] >= left_nritems) 3628 push_space += data_size; 3629 3630 slot = path->slots[1]; 3631 i = left_nritems - 1; 3632 while (i >= nr) { 3633 item = btrfs_item_nr(i); 3634 3635 if (!empty && push_items > 0) { 3636 if (path->slots[0] > i) 3637 break; 3638 if (path->slots[0] == i) { 3639 int space = btrfs_leaf_free_space(root, left); 3640 if (space + push_space * 2 > free_space) 3641 break; 3642 } 3643 } 3644 3645 if (path->slots[0] == i) 3646 push_space += data_size; 3647 3648 this_item_size = btrfs_item_size(left, item); 3649 if (this_item_size + sizeof(*item) + push_space > free_space) 3650 break; 3651 3652 push_items++; 3653 push_space += this_item_size + sizeof(*item); 3654 if (i == 0) 3655 break; 3656 i--; 3657 } 3658 3659 if (push_items == 0) 3660 goto out_unlock; 3661 3662 WARN_ON(!empty && push_items == left_nritems); 3663 3664 /* push left to right */ 3665 right_nritems = btrfs_header_nritems(right); 3666 3667 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3668 push_space -= leaf_data_end(root, left); 3669 3670 /* make room in the right data area */ 3671 data_end = leaf_data_end(root, right); 3672 memmove_extent_buffer(right, 3673 btrfs_leaf_data(right) + data_end - push_space, 3674 btrfs_leaf_data(right) + data_end, 3675 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3676 3677 /* copy from the left data area */ 3678 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3679 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3680 btrfs_leaf_data(left) + leaf_data_end(root, left), 3681 push_space); 3682 3683 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3684 btrfs_item_nr_offset(0), 3685 right_nritems * sizeof(struct btrfs_item)); 3686 3687 /* copy the items from left to right */ 3688 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3689 btrfs_item_nr_offset(left_nritems - push_items), 3690 push_items * sizeof(struct btrfs_item)); 3691 3692 /* update the item pointers */ 3693 right_nritems += push_items; 3694 btrfs_set_header_nritems(right, right_nritems); 3695 push_space = BTRFS_LEAF_DATA_SIZE(root); 3696 for (i = 0; i < right_nritems; i++) { 3697 item = btrfs_item_nr(i); 3698 push_space -= btrfs_token_item_size(right, item, &token); 3699 btrfs_set_token_item_offset(right, item, push_space, &token); 3700 } 3701 3702 left_nritems -= push_items; 3703 btrfs_set_header_nritems(left, left_nritems); 3704 3705 if (left_nritems) 3706 btrfs_mark_buffer_dirty(left); 3707 else 3708 clean_tree_block(trans, root, left); 3709 3710 btrfs_mark_buffer_dirty(right); 3711 3712 btrfs_item_key(right, &disk_key, 0); 3713 btrfs_set_node_key(upper, &disk_key, slot + 1); 3714 btrfs_mark_buffer_dirty(upper); 3715 3716 /* then fixup the leaf pointer in the path */ 3717 if (path->slots[0] >= left_nritems) { 3718 path->slots[0] -= left_nritems; 3719 if (btrfs_header_nritems(path->nodes[0]) == 0) 3720 clean_tree_block(trans, root, path->nodes[0]); 3721 btrfs_tree_unlock(path->nodes[0]); 3722 free_extent_buffer(path->nodes[0]); 3723 path->nodes[0] = right; 3724 path->slots[1] += 1; 3725 } else { 3726 btrfs_tree_unlock(right); 3727 free_extent_buffer(right); 3728 } 3729 return 0; 3730 3731 out_unlock: 3732 btrfs_tree_unlock(right); 3733 free_extent_buffer(right); 3734 return 1; 3735 } 3736 3737 /* 3738 * push some data in the path leaf to the right, trying to free up at 3739 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3740 * 3741 * returns 1 if the push failed because the other node didn't have enough 3742 * room, 0 if everything worked out and < 0 if there were major errors. 3743 * 3744 * this will push starting from min_slot to the end of the leaf. It won't 3745 * push any slot lower than min_slot 3746 */ 3747 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3748 *root, struct btrfs_path *path, 3749 int min_data_size, int data_size, 3750 int empty, u32 min_slot) 3751 { 3752 struct extent_buffer *left = path->nodes[0]; 3753 struct extent_buffer *right; 3754 struct extent_buffer *upper; 3755 int slot; 3756 int free_space; 3757 u32 left_nritems; 3758 int ret; 3759 3760 if (!path->nodes[1]) 3761 return 1; 3762 3763 slot = path->slots[1]; 3764 upper = path->nodes[1]; 3765 if (slot >= btrfs_header_nritems(upper) - 1) 3766 return 1; 3767 3768 btrfs_assert_tree_locked(path->nodes[1]); 3769 3770 right = read_node_slot(root, upper, slot + 1); 3771 if (right == NULL) 3772 return 1; 3773 3774 btrfs_tree_lock(right); 3775 btrfs_set_lock_blocking(right); 3776 3777 free_space = btrfs_leaf_free_space(root, right); 3778 if (free_space < data_size) 3779 goto out_unlock; 3780 3781 /* cow and double check */ 3782 ret = btrfs_cow_block(trans, root, right, upper, 3783 slot + 1, &right); 3784 if (ret) 3785 goto out_unlock; 3786 3787 free_space = btrfs_leaf_free_space(root, right); 3788 if (free_space < data_size) 3789 goto out_unlock; 3790 3791 left_nritems = btrfs_header_nritems(left); 3792 if (left_nritems == 0) 3793 goto out_unlock; 3794 3795 if (path->slots[0] == left_nritems && !empty) { 3796 /* Key greater than all keys in the leaf, right neighbor has 3797 * enough room for it and we're not emptying our leaf to delete 3798 * it, therefore use right neighbor to insert the new item and 3799 * no need to touch/dirty our left leaft. */ 3800 btrfs_tree_unlock(left); 3801 free_extent_buffer(left); 3802 path->nodes[0] = right; 3803 path->slots[0] = 0; 3804 path->slots[1]++; 3805 return 0; 3806 } 3807 3808 return __push_leaf_right(trans, root, path, min_data_size, empty, 3809 right, free_space, left_nritems, min_slot); 3810 out_unlock: 3811 btrfs_tree_unlock(right); 3812 free_extent_buffer(right); 3813 return 1; 3814 } 3815 3816 /* 3817 * push some data in the path leaf to the left, trying to free up at 3818 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3819 * 3820 * max_slot can put a limit on how far into the leaf we'll push items. The 3821 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3822 * items 3823 */ 3824 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3825 struct btrfs_root *root, 3826 struct btrfs_path *path, int data_size, 3827 int empty, struct extent_buffer *left, 3828 int free_space, u32 right_nritems, 3829 u32 max_slot) 3830 { 3831 struct btrfs_disk_key disk_key; 3832 struct extent_buffer *right = path->nodes[0]; 3833 int i; 3834 int push_space = 0; 3835 int push_items = 0; 3836 struct btrfs_item *item; 3837 u32 old_left_nritems; 3838 u32 nr; 3839 int ret = 0; 3840 u32 this_item_size; 3841 u32 old_left_item_size; 3842 struct btrfs_map_token token; 3843 3844 btrfs_init_map_token(&token); 3845 3846 if (empty) 3847 nr = min(right_nritems, max_slot); 3848 else 3849 nr = min(right_nritems - 1, max_slot); 3850 3851 for (i = 0; i < nr; i++) { 3852 item = btrfs_item_nr(i); 3853 3854 if (!empty && push_items > 0) { 3855 if (path->slots[0] < i) 3856 break; 3857 if (path->slots[0] == i) { 3858 int space = btrfs_leaf_free_space(root, right); 3859 if (space + push_space * 2 > free_space) 3860 break; 3861 } 3862 } 3863 3864 if (path->slots[0] == i) 3865 push_space += data_size; 3866 3867 this_item_size = btrfs_item_size(right, item); 3868 if (this_item_size + sizeof(*item) + push_space > free_space) 3869 break; 3870 3871 push_items++; 3872 push_space += this_item_size + sizeof(*item); 3873 } 3874 3875 if (push_items == 0) { 3876 ret = 1; 3877 goto out; 3878 } 3879 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3880 3881 /* push data from right to left */ 3882 copy_extent_buffer(left, right, 3883 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3884 btrfs_item_nr_offset(0), 3885 push_items * sizeof(struct btrfs_item)); 3886 3887 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3888 btrfs_item_offset_nr(right, push_items - 1); 3889 3890 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3891 leaf_data_end(root, left) - push_space, 3892 btrfs_leaf_data(right) + 3893 btrfs_item_offset_nr(right, push_items - 1), 3894 push_space); 3895 old_left_nritems = btrfs_header_nritems(left); 3896 BUG_ON(old_left_nritems <= 0); 3897 3898 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3899 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3900 u32 ioff; 3901 3902 item = btrfs_item_nr(i); 3903 3904 ioff = btrfs_token_item_offset(left, item, &token); 3905 btrfs_set_token_item_offset(left, item, 3906 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3907 &token); 3908 } 3909 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3910 3911 /* fixup right node */ 3912 if (push_items > right_nritems) 3913 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3914 right_nritems); 3915 3916 if (push_items < right_nritems) { 3917 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3918 leaf_data_end(root, right); 3919 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3920 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3921 btrfs_leaf_data(right) + 3922 leaf_data_end(root, right), push_space); 3923 3924 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3925 btrfs_item_nr_offset(push_items), 3926 (btrfs_header_nritems(right) - push_items) * 3927 sizeof(struct btrfs_item)); 3928 } 3929 right_nritems -= push_items; 3930 btrfs_set_header_nritems(right, right_nritems); 3931 push_space = BTRFS_LEAF_DATA_SIZE(root); 3932 for (i = 0; i < right_nritems; i++) { 3933 item = btrfs_item_nr(i); 3934 3935 push_space = push_space - btrfs_token_item_size(right, 3936 item, &token); 3937 btrfs_set_token_item_offset(right, item, push_space, &token); 3938 } 3939 3940 btrfs_mark_buffer_dirty(left); 3941 if (right_nritems) 3942 btrfs_mark_buffer_dirty(right); 3943 else 3944 clean_tree_block(trans, root, right); 3945 3946 btrfs_item_key(right, &disk_key, 0); 3947 fixup_low_keys(root, path, &disk_key, 1); 3948 3949 /* then fixup the leaf pointer in the path */ 3950 if (path->slots[0] < push_items) { 3951 path->slots[0] += old_left_nritems; 3952 btrfs_tree_unlock(path->nodes[0]); 3953 free_extent_buffer(path->nodes[0]); 3954 path->nodes[0] = left; 3955 path->slots[1] -= 1; 3956 } else { 3957 btrfs_tree_unlock(left); 3958 free_extent_buffer(left); 3959 path->slots[0] -= push_items; 3960 } 3961 BUG_ON(path->slots[0] < 0); 3962 return ret; 3963 out: 3964 btrfs_tree_unlock(left); 3965 free_extent_buffer(left); 3966 return ret; 3967 } 3968 3969 /* 3970 * push some data in the path leaf to the left, trying to free up at 3971 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3972 * 3973 * max_slot can put a limit on how far into the leaf we'll push items. The 3974 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3975 * items 3976 */ 3977 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3978 *root, struct btrfs_path *path, int min_data_size, 3979 int data_size, int empty, u32 max_slot) 3980 { 3981 struct extent_buffer *right = path->nodes[0]; 3982 struct extent_buffer *left; 3983 int slot; 3984 int free_space; 3985 u32 right_nritems; 3986 int ret = 0; 3987 3988 slot = path->slots[1]; 3989 if (slot == 0) 3990 return 1; 3991 if (!path->nodes[1]) 3992 return 1; 3993 3994 right_nritems = btrfs_header_nritems(right); 3995 if (right_nritems == 0) 3996 return 1; 3997 3998 btrfs_assert_tree_locked(path->nodes[1]); 3999 4000 left = read_node_slot(root, path->nodes[1], slot - 1); 4001 if (left == NULL) 4002 return 1; 4003 4004 btrfs_tree_lock(left); 4005 btrfs_set_lock_blocking(left); 4006 4007 free_space = btrfs_leaf_free_space(root, left); 4008 if (free_space < data_size) { 4009 ret = 1; 4010 goto out; 4011 } 4012 4013 /* cow and double check */ 4014 ret = btrfs_cow_block(trans, root, left, 4015 path->nodes[1], slot - 1, &left); 4016 if (ret) { 4017 /* we hit -ENOSPC, but it isn't fatal here */ 4018 if (ret == -ENOSPC) 4019 ret = 1; 4020 goto out; 4021 } 4022 4023 free_space = btrfs_leaf_free_space(root, left); 4024 if (free_space < data_size) { 4025 ret = 1; 4026 goto out; 4027 } 4028 4029 return __push_leaf_left(trans, root, path, min_data_size, 4030 empty, left, free_space, right_nritems, 4031 max_slot); 4032 out: 4033 btrfs_tree_unlock(left); 4034 free_extent_buffer(left); 4035 return ret; 4036 } 4037 4038 /* 4039 * split the path's leaf in two, making sure there is at least data_size 4040 * available for the resulting leaf level of the path. 4041 */ 4042 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4043 struct btrfs_root *root, 4044 struct btrfs_path *path, 4045 struct extent_buffer *l, 4046 struct extent_buffer *right, 4047 int slot, int mid, int nritems) 4048 { 4049 int data_copy_size; 4050 int rt_data_off; 4051 int i; 4052 struct btrfs_disk_key disk_key; 4053 struct btrfs_map_token token; 4054 4055 btrfs_init_map_token(&token); 4056 4057 nritems = nritems - mid; 4058 btrfs_set_header_nritems(right, nritems); 4059 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4060 4061 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4062 btrfs_item_nr_offset(mid), 4063 nritems * sizeof(struct btrfs_item)); 4064 4065 copy_extent_buffer(right, l, 4066 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4067 data_copy_size, btrfs_leaf_data(l) + 4068 leaf_data_end(root, l), data_copy_size); 4069 4070 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4071 btrfs_item_end_nr(l, mid); 4072 4073 for (i = 0; i < nritems; i++) { 4074 struct btrfs_item *item = btrfs_item_nr(i); 4075 u32 ioff; 4076 4077 ioff = btrfs_token_item_offset(right, item, &token); 4078 btrfs_set_token_item_offset(right, item, 4079 ioff + rt_data_off, &token); 4080 } 4081 4082 btrfs_set_header_nritems(l, mid); 4083 btrfs_item_key(right, &disk_key, 0); 4084 insert_ptr(trans, root, path, &disk_key, right->start, 4085 path->slots[1] + 1, 1); 4086 4087 btrfs_mark_buffer_dirty(right); 4088 btrfs_mark_buffer_dirty(l); 4089 BUG_ON(path->slots[0] != slot); 4090 4091 if (mid <= slot) { 4092 btrfs_tree_unlock(path->nodes[0]); 4093 free_extent_buffer(path->nodes[0]); 4094 path->nodes[0] = right; 4095 path->slots[0] -= mid; 4096 path->slots[1] += 1; 4097 } else { 4098 btrfs_tree_unlock(right); 4099 free_extent_buffer(right); 4100 } 4101 4102 BUG_ON(path->slots[0] < 0); 4103 } 4104 4105 /* 4106 * double splits happen when we need to insert a big item in the middle 4107 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4108 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4109 * A B C 4110 * 4111 * We avoid this by trying to push the items on either side of our target 4112 * into the adjacent leaves. If all goes well we can avoid the double split 4113 * completely. 4114 */ 4115 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4116 struct btrfs_root *root, 4117 struct btrfs_path *path, 4118 int data_size) 4119 { 4120 int ret; 4121 int progress = 0; 4122 int slot; 4123 u32 nritems; 4124 int space_needed = data_size; 4125 4126 slot = path->slots[0]; 4127 if (slot < btrfs_header_nritems(path->nodes[0])) 4128 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4129 4130 /* 4131 * try to push all the items after our slot into the 4132 * right leaf 4133 */ 4134 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4135 if (ret < 0) 4136 return ret; 4137 4138 if (ret == 0) 4139 progress++; 4140 4141 nritems = btrfs_header_nritems(path->nodes[0]); 4142 /* 4143 * our goal is to get our slot at the start or end of a leaf. If 4144 * we've done so we're done 4145 */ 4146 if (path->slots[0] == 0 || path->slots[0] == nritems) 4147 return 0; 4148 4149 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4150 return 0; 4151 4152 /* try to push all the items before our slot into the next leaf */ 4153 slot = path->slots[0]; 4154 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4155 if (ret < 0) 4156 return ret; 4157 4158 if (ret == 0) 4159 progress++; 4160 4161 if (progress) 4162 return 0; 4163 return 1; 4164 } 4165 4166 /* 4167 * split the path's leaf in two, making sure there is at least data_size 4168 * available for the resulting leaf level of the path. 4169 * 4170 * returns 0 if all went well and < 0 on failure. 4171 */ 4172 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4173 struct btrfs_root *root, 4174 struct btrfs_key *ins_key, 4175 struct btrfs_path *path, int data_size, 4176 int extend) 4177 { 4178 struct btrfs_disk_key disk_key; 4179 struct extent_buffer *l; 4180 u32 nritems; 4181 int mid; 4182 int slot; 4183 struct extent_buffer *right; 4184 int ret = 0; 4185 int wret; 4186 int split; 4187 int num_doubles = 0; 4188 int tried_avoid_double = 0; 4189 4190 l = path->nodes[0]; 4191 slot = path->slots[0]; 4192 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4193 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4194 return -EOVERFLOW; 4195 4196 /* first try to make some room by pushing left and right */ 4197 if (data_size && path->nodes[1]) { 4198 int space_needed = data_size; 4199 4200 if (slot < btrfs_header_nritems(l)) 4201 space_needed -= btrfs_leaf_free_space(root, l); 4202 4203 wret = push_leaf_right(trans, root, path, space_needed, 4204 space_needed, 0, 0); 4205 if (wret < 0) 4206 return wret; 4207 if (wret) { 4208 wret = push_leaf_left(trans, root, path, space_needed, 4209 space_needed, 0, (u32)-1); 4210 if (wret < 0) 4211 return wret; 4212 } 4213 l = path->nodes[0]; 4214 4215 /* did the pushes work? */ 4216 if (btrfs_leaf_free_space(root, l) >= data_size) 4217 return 0; 4218 } 4219 4220 if (!path->nodes[1]) { 4221 ret = insert_new_root(trans, root, path, 1); 4222 if (ret) 4223 return ret; 4224 } 4225 again: 4226 split = 1; 4227 l = path->nodes[0]; 4228 slot = path->slots[0]; 4229 nritems = btrfs_header_nritems(l); 4230 mid = (nritems + 1) / 2; 4231 4232 if (mid <= slot) { 4233 if (nritems == 1 || 4234 leaf_space_used(l, mid, nritems - mid) + data_size > 4235 BTRFS_LEAF_DATA_SIZE(root)) { 4236 if (slot >= nritems) { 4237 split = 0; 4238 } else { 4239 mid = slot; 4240 if (mid != nritems && 4241 leaf_space_used(l, mid, nritems - mid) + 4242 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4243 if (data_size && !tried_avoid_double) 4244 goto push_for_double; 4245 split = 2; 4246 } 4247 } 4248 } 4249 } else { 4250 if (leaf_space_used(l, 0, mid) + data_size > 4251 BTRFS_LEAF_DATA_SIZE(root)) { 4252 if (!extend && data_size && slot == 0) { 4253 split = 0; 4254 } else if ((extend || !data_size) && slot == 0) { 4255 mid = 1; 4256 } else { 4257 mid = slot; 4258 if (mid != nritems && 4259 leaf_space_used(l, mid, nritems - mid) + 4260 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4261 if (data_size && !tried_avoid_double) 4262 goto push_for_double; 4263 split = 2; 4264 } 4265 } 4266 } 4267 } 4268 4269 if (split == 0) 4270 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4271 else 4272 btrfs_item_key(l, &disk_key, mid); 4273 4274 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4275 &disk_key, 0, l->start, 0); 4276 if (IS_ERR(right)) 4277 return PTR_ERR(right); 4278 4279 root_add_used(root, root->nodesize); 4280 4281 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4282 btrfs_set_header_bytenr(right, right->start); 4283 btrfs_set_header_generation(right, trans->transid); 4284 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4285 btrfs_set_header_owner(right, root->root_key.objectid); 4286 btrfs_set_header_level(right, 0); 4287 write_extent_buffer(right, root->fs_info->fsid, 4288 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4289 4290 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4291 btrfs_header_chunk_tree_uuid(right), 4292 BTRFS_UUID_SIZE); 4293 4294 if (split == 0) { 4295 if (mid <= slot) { 4296 btrfs_set_header_nritems(right, 0); 4297 insert_ptr(trans, root, path, &disk_key, right->start, 4298 path->slots[1] + 1, 1); 4299 btrfs_tree_unlock(path->nodes[0]); 4300 free_extent_buffer(path->nodes[0]); 4301 path->nodes[0] = right; 4302 path->slots[0] = 0; 4303 path->slots[1] += 1; 4304 } else { 4305 btrfs_set_header_nritems(right, 0); 4306 insert_ptr(trans, root, path, &disk_key, right->start, 4307 path->slots[1], 1); 4308 btrfs_tree_unlock(path->nodes[0]); 4309 free_extent_buffer(path->nodes[0]); 4310 path->nodes[0] = right; 4311 path->slots[0] = 0; 4312 if (path->slots[1] == 0) 4313 fixup_low_keys(root, path, &disk_key, 1); 4314 } 4315 btrfs_mark_buffer_dirty(right); 4316 return ret; 4317 } 4318 4319 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4320 4321 if (split == 2) { 4322 BUG_ON(num_doubles != 0); 4323 num_doubles++; 4324 goto again; 4325 } 4326 4327 return 0; 4328 4329 push_for_double: 4330 push_for_double_split(trans, root, path, data_size); 4331 tried_avoid_double = 1; 4332 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4333 return 0; 4334 goto again; 4335 } 4336 4337 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4338 struct btrfs_root *root, 4339 struct btrfs_path *path, int ins_len) 4340 { 4341 struct btrfs_key key; 4342 struct extent_buffer *leaf; 4343 struct btrfs_file_extent_item *fi; 4344 u64 extent_len = 0; 4345 u32 item_size; 4346 int ret; 4347 4348 leaf = path->nodes[0]; 4349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4350 4351 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4352 key.type != BTRFS_EXTENT_CSUM_KEY); 4353 4354 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4355 return 0; 4356 4357 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4358 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4359 fi = btrfs_item_ptr(leaf, path->slots[0], 4360 struct btrfs_file_extent_item); 4361 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4362 } 4363 btrfs_release_path(path); 4364 4365 path->keep_locks = 1; 4366 path->search_for_split = 1; 4367 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4368 path->search_for_split = 0; 4369 if (ret < 0) 4370 goto err; 4371 4372 ret = -EAGAIN; 4373 leaf = path->nodes[0]; 4374 /* if our item isn't there or got smaller, return now */ 4375 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4376 goto err; 4377 4378 /* the leaf has changed, it now has room. return now */ 4379 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4380 goto err; 4381 4382 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4383 fi = btrfs_item_ptr(leaf, path->slots[0], 4384 struct btrfs_file_extent_item); 4385 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4386 goto err; 4387 } 4388 4389 btrfs_set_path_blocking(path); 4390 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4391 if (ret) 4392 goto err; 4393 4394 path->keep_locks = 0; 4395 btrfs_unlock_up_safe(path, 1); 4396 return 0; 4397 err: 4398 path->keep_locks = 0; 4399 return ret; 4400 } 4401 4402 static noinline int split_item(struct btrfs_trans_handle *trans, 4403 struct btrfs_root *root, 4404 struct btrfs_path *path, 4405 struct btrfs_key *new_key, 4406 unsigned long split_offset) 4407 { 4408 struct extent_buffer *leaf; 4409 struct btrfs_item *item; 4410 struct btrfs_item *new_item; 4411 int slot; 4412 char *buf; 4413 u32 nritems; 4414 u32 item_size; 4415 u32 orig_offset; 4416 struct btrfs_disk_key disk_key; 4417 4418 leaf = path->nodes[0]; 4419 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4420 4421 btrfs_set_path_blocking(path); 4422 4423 item = btrfs_item_nr(path->slots[0]); 4424 orig_offset = btrfs_item_offset(leaf, item); 4425 item_size = btrfs_item_size(leaf, item); 4426 4427 buf = kmalloc(item_size, GFP_NOFS); 4428 if (!buf) 4429 return -ENOMEM; 4430 4431 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4432 path->slots[0]), item_size); 4433 4434 slot = path->slots[0] + 1; 4435 nritems = btrfs_header_nritems(leaf); 4436 if (slot != nritems) { 4437 /* shift the items */ 4438 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4439 btrfs_item_nr_offset(slot), 4440 (nritems - slot) * sizeof(struct btrfs_item)); 4441 } 4442 4443 btrfs_cpu_key_to_disk(&disk_key, new_key); 4444 btrfs_set_item_key(leaf, &disk_key, slot); 4445 4446 new_item = btrfs_item_nr(slot); 4447 4448 btrfs_set_item_offset(leaf, new_item, orig_offset); 4449 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4450 4451 btrfs_set_item_offset(leaf, item, 4452 orig_offset + item_size - split_offset); 4453 btrfs_set_item_size(leaf, item, split_offset); 4454 4455 btrfs_set_header_nritems(leaf, nritems + 1); 4456 4457 /* write the data for the start of the original item */ 4458 write_extent_buffer(leaf, buf, 4459 btrfs_item_ptr_offset(leaf, path->slots[0]), 4460 split_offset); 4461 4462 /* write the data for the new item */ 4463 write_extent_buffer(leaf, buf + split_offset, 4464 btrfs_item_ptr_offset(leaf, slot), 4465 item_size - split_offset); 4466 btrfs_mark_buffer_dirty(leaf); 4467 4468 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4469 kfree(buf); 4470 return 0; 4471 } 4472 4473 /* 4474 * This function splits a single item into two items, 4475 * giving 'new_key' to the new item and splitting the 4476 * old one at split_offset (from the start of the item). 4477 * 4478 * The path may be released by this operation. After 4479 * the split, the path is pointing to the old item. The 4480 * new item is going to be in the same node as the old one. 4481 * 4482 * Note, the item being split must be smaller enough to live alone on 4483 * a tree block with room for one extra struct btrfs_item 4484 * 4485 * This allows us to split the item in place, keeping a lock on the 4486 * leaf the entire time. 4487 */ 4488 int btrfs_split_item(struct btrfs_trans_handle *trans, 4489 struct btrfs_root *root, 4490 struct btrfs_path *path, 4491 struct btrfs_key *new_key, 4492 unsigned long split_offset) 4493 { 4494 int ret; 4495 ret = setup_leaf_for_split(trans, root, path, 4496 sizeof(struct btrfs_item)); 4497 if (ret) 4498 return ret; 4499 4500 ret = split_item(trans, root, path, new_key, split_offset); 4501 return ret; 4502 } 4503 4504 /* 4505 * This function duplicate a item, giving 'new_key' to the new item. 4506 * It guarantees both items live in the same tree leaf and the new item 4507 * is contiguous with the original item. 4508 * 4509 * This allows us to split file extent in place, keeping a lock on the 4510 * leaf the entire time. 4511 */ 4512 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4513 struct btrfs_root *root, 4514 struct btrfs_path *path, 4515 struct btrfs_key *new_key) 4516 { 4517 struct extent_buffer *leaf; 4518 int ret; 4519 u32 item_size; 4520 4521 leaf = path->nodes[0]; 4522 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4523 ret = setup_leaf_for_split(trans, root, path, 4524 item_size + sizeof(struct btrfs_item)); 4525 if (ret) 4526 return ret; 4527 4528 path->slots[0]++; 4529 setup_items_for_insert(root, path, new_key, &item_size, 4530 item_size, item_size + 4531 sizeof(struct btrfs_item), 1); 4532 leaf = path->nodes[0]; 4533 memcpy_extent_buffer(leaf, 4534 btrfs_item_ptr_offset(leaf, path->slots[0]), 4535 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4536 item_size); 4537 return 0; 4538 } 4539 4540 /* 4541 * make the item pointed to by the path smaller. new_size indicates 4542 * how small to make it, and from_end tells us if we just chop bytes 4543 * off the end of the item or if we shift the item to chop bytes off 4544 * the front. 4545 */ 4546 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4547 u32 new_size, int from_end) 4548 { 4549 int slot; 4550 struct extent_buffer *leaf; 4551 struct btrfs_item *item; 4552 u32 nritems; 4553 unsigned int data_end; 4554 unsigned int old_data_start; 4555 unsigned int old_size; 4556 unsigned int size_diff; 4557 int i; 4558 struct btrfs_map_token token; 4559 4560 btrfs_init_map_token(&token); 4561 4562 leaf = path->nodes[0]; 4563 slot = path->slots[0]; 4564 4565 old_size = btrfs_item_size_nr(leaf, slot); 4566 if (old_size == new_size) 4567 return; 4568 4569 nritems = btrfs_header_nritems(leaf); 4570 data_end = leaf_data_end(root, leaf); 4571 4572 old_data_start = btrfs_item_offset_nr(leaf, slot); 4573 4574 size_diff = old_size - new_size; 4575 4576 BUG_ON(slot < 0); 4577 BUG_ON(slot >= nritems); 4578 4579 /* 4580 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4581 */ 4582 /* first correct the data pointers */ 4583 for (i = slot; i < nritems; i++) { 4584 u32 ioff; 4585 item = btrfs_item_nr(i); 4586 4587 ioff = btrfs_token_item_offset(leaf, item, &token); 4588 btrfs_set_token_item_offset(leaf, item, 4589 ioff + size_diff, &token); 4590 } 4591 4592 /* shift the data */ 4593 if (from_end) { 4594 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4595 data_end + size_diff, btrfs_leaf_data(leaf) + 4596 data_end, old_data_start + new_size - data_end); 4597 } else { 4598 struct btrfs_disk_key disk_key; 4599 u64 offset; 4600 4601 btrfs_item_key(leaf, &disk_key, slot); 4602 4603 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4604 unsigned long ptr; 4605 struct btrfs_file_extent_item *fi; 4606 4607 fi = btrfs_item_ptr(leaf, slot, 4608 struct btrfs_file_extent_item); 4609 fi = (struct btrfs_file_extent_item *)( 4610 (unsigned long)fi - size_diff); 4611 4612 if (btrfs_file_extent_type(leaf, fi) == 4613 BTRFS_FILE_EXTENT_INLINE) { 4614 ptr = btrfs_item_ptr_offset(leaf, slot); 4615 memmove_extent_buffer(leaf, ptr, 4616 (unsigned long)fi, 4617 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4618 } 4619 } 4620 4621 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4622 data_end + size_diff, btrfs_leaf_data(leaf) + 4623 data_end, old_data_start - data_end); 4624 4625 offset = btrfs_disk_key_offset(&disk_key); 4626 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4627 btrfs_set_item_key(leaf, &disk_key, slot); 4628 if (slot == 0) 4629 fixup_low_keys(root, path, &disk_key, 1); 4630 } 4631 4632 item = btrfs_item_nr(slot); 4633 btrfs_set_item_size(leaf, item, new_size); 4634 btrfs_mark_buffer_dirty(leaf); 4635 4636 if (btrfs_leaf_free_space(root, leaf) < 0) { 4637 btrfs_print_leaf(root, leaf); 4638 BUG(); 4639 } 4640 } 4641 4642 /* 4643 * make the item pointed to by the path bigger, data_size is the added size. 4644 */ 4645 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4646 u32 data_size) 4647 { 4648 int slot; 4649 struct extent_buffer *leaf; 4650 struct btrfs_item *item; 4651 u32 nritems; 4652 unsigned int data_end; 4653 unsigned int old_data; 4654 unsigned int old_size; 4655 int i; 4656 struct btrfs_map_token token; 4657 4658 btrfs_init_map_token(&token); 4659 4660 leaf = path->nodes[0]; 4661 4662 nritems = btrfs_header_nritems(leaf); 4663 data_end = leaf_data_end(root, leaf); 4664 4665 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4666 btrfs_print_leaf(root, leaf); 4667 BUG(); 4668 } 4669 slot = path->slots[0]; 4670 old_data = btrfs_item_end_nr(leaf, slot); 4671 4672 BUG_ON(slot < 0); 4673 if (slot >= nritems) { 4674 btrfs_print_leaf(root, leaf); 4675 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4676 slot, nritems); 4677 BUG_ON(1); 4678 } 4679 4680 /* 4681 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4682 */ 4683 /* first correct the data pointers */ 4684 for (i = slot; i < nritems; i++) { 4685 u32 ioff; 4686 item = btrfs_item_nr(i); 4687 4688 ioff = btrfs_token_item_offset(leaf, item, &token); 4689 btrfs_set_token_item_offset(leaf, item, 4690 ioff - data_size, &token); 4691 } 4692 4693 /* shift the data */ 4694 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4695 data_end - data_size, btrfs_leaf_data(leaf) + 4696 data_end, old_data - data_end); 4697 4698 data_end = old_data; 4699 old_size = btrfs_item_size_nr(leaf, slot); 4700 item = btrfs_item_nr(slot); 4701 btrfs_set_item_size(leaf, item, old_size + data_size); 4702 btrfs_mark_buffer_dirty(leaf); 4703 4704 if (btrfs_leaf_free_space(root, leaf) < 0) { 4705 btrfs_print_leaf(root, leaf); 4706 BUG(); 4707 } 4708 } 4709 4710 /* 4711 * this is a helper for btrfs_insert_empty_items, the main goal here is 4712 * to save stack depth by doing the bulk of the work in a function 4713 * that doesn't call btrfs_search_slot 4714 */ 4715 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4716 struct btrfs_key *cpu_key, u32 *data_size, 4717 u32 total_data, u32 total_size, int nr) 4718 { 4719 struct btrfs_item *item; 4720 int i; 4721 u32 nritems; 4722 unsigned int data_end; 4723 struct btrfs_disk_key disk_key; 4724 struct extent_buffer *leaf; 4725 int slot; 4726 struct btrfs_map_token token; 4727 4728 if (path->slots[0] == 0) { 4729 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4730 fixup_low_keys(root, path, &disk_key, 1); 4731 } 4732 btrfs_unlock_up_safe(path, 1); 4733 4734 btrfs_init_map_token(&token); 4735 4736 leaf = path->nodes[0]; 4737 slot = path->slots[0]; 4738 4739 nritems = btrfs_header_nritems(leaf); 4740 data_end = leaf_data_end(root, leaf); 4741 4742 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4743 btrfs_print_leaf(root, leaf); 4744 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4745 total_size, btrfs_leaf_free_space(root, leaf)); 4746 BUG(); 4747 } 4748 4749 if (slot != nritems) { 4750 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4751 4752 if (old_data < data_end) { 4753 btrfs_print_leaf(root, leaf); 4754 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4755 slot, old_data, data_end); 4756 BUG_ON(1); 4757 } 4758 /* 4759 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4760 */ 4761 /* first correct the data pointers */ 4762 for (i = slot; i < nritems; i++) { 4763 u32 ioff; 4764 4765 item = btrfs_item_nr( i); 4766 ioff = btrfs_token_item_offset(leaf, item, &token); 4767 btrfs_set_token_item_offset(leaf, item, 4768 ioff - total_data, &token); 4769 } 4770 /* shift the items */ 4771 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4772 btrfs_item_nr_offset(slot), 4773 (nritems - slot) * sizeof(struct btrfs_item)); 4774 4775 /* shift the data */ 4776 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4777 data_end - total_data, btrfs_leaf_data(leaf) + 4778 data_end, old_data - data_end); 4779 data_end = old_data; 4780 } 4781 4782 /* setup the item for the new data */ 4783 for (i = 0; i < nr; i++) { 4784 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4785 btrfs_set_item_key(leaf, &disk_key, slot + i); 4786 item = btrfs_item_nr(slot + i); 4787 btrfs_set_token_item_offset(leaf, item, 4788 data_end - data_size[i], &token); 4789 data_end -= data_size[i]; 4790 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4791 } 4792 4793 btrfs_set_header_nritems(leaf, nritems + nr); 4794 btrfs_mark_buffer_dirty(leaf); 4795 4796 if (btrfs_leaf_free_space(root, leaf) < 0) { 4797 btrfs_print_leaf(root, leaf); 4798 BUG(); 4799 } 4800 } 4801 4802 /* 4803 * Given a key and some data, insert items into the tree. 4804 * This does all the path init required, making room in the tree if needed. 4805 */ 4806 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4807 struct btrfs_root *root, 4808 struct btrfs_path *path, 4809 struct btrfs_key *cpu_key, u32 *data_size, 4810 int nr) 4811 { 4812 int ret = 0; 4813 int slot; 4814 int i; 4815 u32 total_size = 0; 4816 u32 total_data = 0; 4817 4818 for (i = 0; i < nr; i++) 4819 total_data += data_size[i]; 4820 4821 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4822 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4823 if (ret == 0) 4824 return -EEXIST; 4825 if (ret < 0) 4826 return ret; 4827 4828 slot = path->slots[0]; 4829 BUG_ON(slot < 0); 4830 4831 setup_items_for_insert(root, path, cpu_key, data_size, 4832 total_data, total_size, nr); 4833 return 0; 4834 } 4835 4836 /* 4837 * Given a key and some data, insert an item into the tree. 4838 * This does all the path init required, making room in the tree if needed. 4839 */ 4840 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4841 *root, struct btrfs_key *cpu_key, void *data, u32 4842 data_size) 4843 { 4844 int ret = 0; 4845 struct btrfs_path *path; 4846 struct extent_buffer *leaf; 4847 unsigned long ptr; 4848 4849 path = btrfs_alloc_path(); 4850 if (!path) 4851 return -ENOMEM; 4852 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4853 if (!ret) { 4854 leaf = path->nodes[0]; 4855 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4856 write_extent_buffer(leaf, data, ptr, data_size); 4857 btrfs_mark_buffer_dirty(leaf); 4858 } 4859 btrfs_free_path(path); 4860 return ret; 4861 } 4862 4863 /* 4864 * delete the pointer from a given node. 4865 * 4866 * the tree should have been previously balanced so the deletion does not 4867 * empty a node. 4868 */ 4869 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4870 int level, int slot) 4871 { 4872 struct extent_buffer *parent = path->nodes[level]; 4873 u32 nritems; 4874 int ret; 4875 4876 nritems = btrfs_header_nritems(parent); 4877 if (slot != nritems - 1) { 4878 if (level) 4879 tree_mod_log_eb_move(root->fs_info, parent, slot, 4880 slot + 1, nritems - slot - 1); 4881 memmove_extent_buffer(parent, 4882 btrfs_node_key_ptr_offset(slot), 4883 btrfs_node_key_ptr_offset(slot + 1), 4884 sizeof(struct btrfs_key_ptr) * 4885 (nritems - slot - 1)); 4886 } else if (level) { 4887 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4888 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4889 BUG_ON(ret < 0); 4890 } 4891 4892 nritems--; 4893 btrfs_set_header_nritems(parent, nritems); 4894 if (nritems == 0 && parent == root->node) { 4895 BUG_ON(btrfs_header_level(root->node) != 1); 4896 /* just turn the root into a leaf and break */ 4897 btrfs_set_header_level(root->node, 0); 4898 } else if (slot == 0) { 4899 struct btrfs_disk_key disk_key; 4900 4901 btrfs_node_key(parent, &disk_key, 0); 4902 fixup_low_keys(root, path, &disk_key, level + 1); 4903 } 4904 btrfs_mark_buffer_dirty(parent); 4905 } 4906 4907 /* 4908 * a helper function to delete the leaf pointed to by path->slots[1] and 4909 * path->nodes[1]. 4910 * 4911 * This deletes the pointer in path->nodes[1] and frees the leaf 4912 * block extent. zero is returned if it all worked out, < 0 otherwise. 4913 * 4914 * The path must have already been setup for deleting the leaf, including 4915 * all the proper balancing. path->nodes[1] must be locked. 4916 */ 4917 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4918 struct btrfs_root *root, 4919 struct btrfs_path *path, 4920 struct extent_buffer *leaf) 4921 { 4922 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4923 del_ptr(root, path, 1, path->slots[1]); 4924 4925 /* 4926 * btrfs_free_extent is expensive, we want to make sure we 4927 * aren't holding any locks when we call it 4928 */ 4929 btrfs_unlock_up_safe(path, 0); 4930 4931 root_sub_used(root, leaf->len); 4932 4933 extent_buffer_get(leaf); 4934 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4935 free_extent_buffer_stale(leaf); 4936 } 4937 /* 4938 * delete the item at the leaf level in path. If that empties 4939 * the leaf, remove it from the tree 4940 */ 4941 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4942 struct btrfs_path *path, int slot, int nr) 4943 { 4944 struct extent_buffer *leaf; 4945 struct btrfs_item *item; 4946 int last_off; 4947 int dsize = 0; 4948 int ret = 0; 4949 int wret; 4950 int i; 4951 u32 nritems; 4952 struct btrfs_map_token token; 4953 4954 btrfs_init_map_token(&token); 4955 4956 leaf = path->nodes[0]; 4957 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4958 4959 for (i = 0; i < nr; i++) 4960 dsize += btrfs_item_size_nr(leaf, slot + i); 4961 4962 nritems = btrfs_header_nritems(leaf); 4963 4964 if (slot + nr != nritems) { 4965 int data_end = leaf_data_end(root, leaf); 4966 4967 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4968 data_end + dsize, 4969 btrfs_leaf_data(leaf) + data_end, 4970 last_off - data_end); 4971 4972 for (i = slot + nr; i < nritems; i++) { 4973 u32 ioff; 4974 4975 item = btrfs_item_nr(i); 4976 ioff = btrfs_token_item_offset(leaf, item, &token); 4977 btrfs_set_token_item_offset(leaf, item, 4978 ioff + dsize, &token); 4979 } 4980 4981 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4982 btrfs_item_nr_offset(slot + nr), 4983 sizeof(struct btrfs_item) * 4984 (nritems - slot - nr)); 4985 } 4986 btrfs_set_header_nritems(leaf, nritems - nr); 4987 nritems -= nr; 4988 4989 /* delete the leaf if we've emptied it */ 4990 if (nritems == 0) { 4991 if (leaf == root->node) { 4992 btrfs_set_header_level(leaf, 0); 4993 } else { 4994 btrfs_set_path_blocking(path); 4995 clean_tree_block(trans, root, leaf); 4996 btrfs_del_leaf(trans, root, path, leaf); 4997 } 4998 } else { 4999 int used = leaf_space_used(leaf, 0, nritems); 5000 if (slot == 0) { 5001 struct btrfs_disk_key disk_key; 5002 5003 btrfs_item_key(leaf, &disk_key, 0); 5004 fixup_low_keys(root, path, &disk_key, 1); 5005 } 5006 5007 /* delete the leaf if it is mostly empty */ 5008 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5009 /* push_leaf_left fixes the path. 5010 * make sure the path still points to our leaf 5011 * for possible call to del_ptr below 5012 */ 5013 slot = path->slots[1]; 5014 extent_buffer_get(leaf); 5015 5016 btrfs_set_path_blocking(path); 5017 wret = push_leaf_left(trans, root, path, 1, 1, 5018 1, (u32)-1); 5019 if (wret < 0 && wret != -ENOSPC) 5020 ret = wret; 5021 5022 if (path->nodes[0] == leaf && 5023 btrfs_header_nritems(leaf)) { 5024 wret = push_leaf_right(trans, root, path, 1, 5025 1, 1, 0); 5026 if (wret < 0 && wret != -ENOSPC) 5027 ret = wret; 5028 } 5029 5030 if (btrfs_header_nritems(leaf) == 0) { 5031 path->slots[1] = slot; 5032 btrfs_del_leaf(trans, root, path, leaf); 5033 free_extent_buffer(leaf); 5034 ret = 0; 5035 } else { 5036 /* if we're still in the path, make sure 5037 * we're dirty. Otherwise, one of the 5038 * push_leaf functions must have already 5039 * dirtied this buffer 5040 */ 5041 if (path->nodes[0] == leaf) 5042 btrfs_mark_buffer_dirty(leaf); 5043 free_extent_buffer(leaf); 5044 } 5045 } else { 5046 btrfs_mark_buffer_dirty(leaf); 5047 } 5048 } 5049 return ret; 5050 } 5051 5052 /* 5053 * search the tree again to find a leaf with lesser keys 5054 * returns 0 if it found something or 1 if there are no lesser leaves. 5055 * returns < 0 on io errors. 5056 * 5057 * This may release the path, and so you may lose any locks held at the 5058 * time you call it. 5059 */ 5060 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5061 { 5062 struct btrfs_key key; 5063 struct btrfs_disk_key found_key; 5064 int ret; 5065 5066 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5067 5068 if (key.offset > 0) { 5069 key.offset--; 5070 } else if (key.type > 0) { 5071 key.type--; 5072 key.offset = (u64)-1; 5073 } else if (key.objectid > 0) { 5074 key.objectid--; 5075 key.type = (u8)-1; 5076 key.offset = (u64)-1; 5077 } else { 5078 return 1; 5079 } 5080 5081 btrfs_release_path(path); 5082 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5083 if (ret < 0) 5084 return ret; 5085 btrfs_item_key(path->nodes[0], &found_key, 0); 5086 ret = comp_keys(&found_key, &key); 5087 /* 5088 * We might have had an item with the previous key in the tree right 5089 * before we released our path. And after we released our path, that 5090 * item might have been pushed to the first slot (0) of the leaf we 5091 * were holding due to a tree balance. Alternatively, an item with the 5092 * previous key can exist as the only element of a leaf (big fat item). 5093 * Therefore account for these 2 cases, so that our callers (like 5094 * btrfs_previous_item) don't miss an existing item with a key matching 5095 * the previous key we computed above. 5096 */ 5097 if (ret <= 0) 5098 return 0; 5099 return 1; 5100 } 5101 5102 /* 5103 * A helper function to walk down the tree starting at min_key, and looking 5104 * for nodes or leaves that are have a minimum transaction id. 5105 * This is used by the btree defrag code, and tree logging 5106 * 5107 * This does not cow, but it does stuff the starting key it finds back 5108 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5109 * key and get a writable path. 5110 * 5111 * This does lock as it descends, and path->keep_locks should be set 5112 * to 1 by the caller. 5113 * 5114 * This honors path->lowest_level to prevent descent past a given level 5115 * of the tree. 5116 * 5117 * min_trans indicates the oldest transaction that you are interested 5118 * in walking through. Any nodes or leaves older than min_trans are 5119 * skipped over (without reading them). 5120 * 5121 * returns zero if something useful was found, < 0 on error and 1 if there 5122 * was nothing in the tree that matched the search criteria. 5123 */ 5124 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5125 struct btrfs_path *path, 5126 u64 min_trans) 5127 { 5128 struct extent_buffer *cur; 5129 struct btrfs_key found_key; 5130 int slot; 5131 int sret; 5132 u32 nritems; 5133 int level; 5134 int ret = 1; 5135 int keep_locks = path->keep_locks; 5136 5137 path->keep_locks = 1; 5138 again: 5139 cur = btrfs_read_lock_root_node(root); 5140 level = btrfs_header_level(cur); 5141 WARN_ON(path->nodes[level]); 5142 path->nodes[level] = cur; 5143 path->locks[level] = BTRFS_READ_LOCK; 5144 5145 if (btrfs_header_generation(cur) < min_trans) { 5146 ret = 1; 5147 goto out; 5148 } 5149 while (1) { 5150 nritems = btrfs_header_nritems(cur); 5151 level = btrfs_header_level(cur); 5152 sret = bin_search(cur, min_key, level, &slot); 5153 5154 /* at the lowest level, we're done, setup the path and exit */ 5155 if (level == path->lowest_level) { 5156 if (slot >= nritems) 5157 goto find_next_key; 5158 ret = 0; 5159 path->slots[level] = slot; 5160 btrfs_item_key_to_cpu(cur, &found_key, slot); 5161 goto out; 5162 } 5163 if (sret && slot > 0) 5164 slot--; 5165 /* 5166 * check this node pointer against the min_trans parameters. 5167 * If it is too old, old, skip to the next one. 5168 */ 5169 while (slot < nritems) { 5170 u64 gen; 5171 5172 gen = btrfs_node_ptr_generation(cur, slot); 5173 if (gen < min_trans) { 5174 slot++; 5175 continue; 5176 } 5177 break; 5178 } 5179 find_next_key: 5180 /* 5181 * we didn't find a candidate key in this node, walk forward 5182 * and find another one 5183 */ 5184 if (slot >= nritems) { 5185 path->slots[level] = slot; 5186 btrfs_set_path_blocking(path); 5187 sret = btrfs_find_next_key(root, path, min_key, level, 5188 min_trans); 5189 if (sret == 0) { 5190 btrfs_release_path(path); 5191 goto again; 5192 } else { 5193 goto out; 5194 } 5195 } 5196 /* save our key for returning back */ 5197 btrfs_node_key_to_cpu(cur, &found_key, slot); 5198 path->slots[level] = slot; 5199 if (level == path->lowest_level) { 5200 ret = 0; 5201 goto out; 5202 } 5203 btrfs_set_path_blocking(path); 5204 cur = read_node_slot(root, cur, slot); 5205 BUG_ON(!cur); /* -ENOMEM */ 5206 5207 btrfs_tree_read_lock(cur); 5208 5209 path->locks[level - 1] = BTRFS_READ_LOCK; 5210 path->nodes[level - 1] = cur; 5211 unlock_up(path, level, 1, 0, NULL); 5212 btrfs_clear_path_blocking(path, NULL, 0); 5213 } 5214 out: 5215 path->keep_locks = keep_locks; 5216 if (ret == 0) { 5217 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5218 btrfs_set_path_blocking(path); 5219 memcpy(min_key, &found_key, sizeof(found_key)); 5220 } 5221 return ret; 5222 } 5223 5224 static void tree_move_down(struct btrfs_root *root, 5225 struct btrfs_path *path, 5226 int *level, int root_level) 5227 { 5228 BUG_ON(*level == 0); 5229 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5230 path->slots[*level]); 5231 path->slots[*level - 1] = 0; 5232 (*level)--; 5233 } 5234 5235 static int tree_move_next_or_upnext(struct btrfs_root *root, 5236 struct btrfs_path *path, 5237 int *level, int root_level) 5238 { 5239 int ret = 0; 5240 int nritems; 5241 nritems = btrfs_header_nritems(path->nodes[*level]); 5242 5243 path->slots[*level]++; 5244 5245 while (path->slots[*level] >= nritems) { 5246 if (*level == root_level) 5247 return -1; 5248 5249 /* move upnext */ 5250 path->slots[*level] = 0; 5251 free_extent_buffer(path->nodes[*level]); 5252 path->nodes[*level] = NULL; 5253 (*level)++; 5254 path->slots[*level]++; 5255 5256 nritems = btrfs_header_nritems(path->nodes[*level]); 5257 ret = 1; 5258 } 5259 return ret; 5260 } 5261 5262 /* 5263 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5264 * or down. 5265 */ 5266 static int tree_advance(struct btrfs_root *root, 5267 struct btrfs_path *path, 5268 int *level, int root_level, 5269 int allow_down, 5270 struct btrfs_key *key) 5271 { 5272 int ret; 5273 5274 if (*level == 0 || !allow_down) { 5275 ret = tree_move_next_or_upnext(root, path, level, root_level); 5276 } else { 5277 tree_move_down(root, path, level, root_level); 5278 ret = 0; 5279 } 5280 if (ret >= 0) { 5281 if (*level == 0) 5282 btrfs_item_key_to_cpu(path->nodes[*level], key, 5283 path->slots[*level]); 5284 else 5285 btrfs_node_key_to_cpu(path->nodes[*level], key, 5286 path->slots[*level]); 5287 } 5288 return ret; 5289 } 5290 5291 static int tree_compare_item(struct btrfs_root *left_root, 5292 struct btrfs_path *left_path, 5293 struct btrfs_path *right_path, 5294 char *tmp_buf) 5295 { 5296 int cmp; 5297 int len1, len2; 5298 unsigned long off1, off2; 5299 5300 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5301 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5302 if (len1 != len2) 5303 return 1; 5304 5305 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5306 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5307 right_path->slots[0]); 5308 5309 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5310 5311 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5312 if (cmp) 5313 return 1; 5314 return 0; 5315 } 5316 5317 #define ADVANCE 1 5318 #define ADVANCE_ONLY_NEXT -1 5319 5320 /* 5321 * This function compares two trees and calls the provided callback for 5322 * every changed/new/deleted item it finds. 5323 * If shared tree blocks are encountered, whole subtrees are skipped, making 5324 * the compare pretty fast on snapshotted subvolumes. 5325 * 5326 * This currently works on commit roots only. As commit roots are read only, 5327 * we don't do any locking. The commit roots are protected with transactions. 5328 * Transactions are ended and rejoined when a commit is tried in between. 5329 * 5330 * This function checks for modifications done to the trees while comparing. 5331 * If it detects a change, it aborts immediately. 5332 */ 5333 int btrfs_compare_trees(struct btrfs_root *left_root, 5334 struct btrfs_root *right_root, 5335 btrfs_changed_cb_t changed_cb, void *ctx) 5336 { 5337 int ret; 5338 int cmp; 5339 struct btrfs_path *left_path = NULL; 5340 struct btrfs_path *right_path = NULL; 5341 struct btrfs_key left_key; 5342 struct btrfs_key right_key; 5343 char *tmp_buf = NULL; 5344 int left_root_level; 5345 int right_root_level; 5346 int left_level; 5347 int right_level; 5348 int left_end_reached; 5349 int right_end_reached; 5350 int advance_left; 5351 int advance_right; 5352 u64 left_blockptr; 5353 u64 right_blockptr; 5354 u64 left_gen; 5355 u64 right_gen; 5356 5357 left_path = btrfs_alloc_path(); 5358 if (!left_path) { 5359 ret = -ENOMEM; 5360 goto out; 5361 } 5362 right_path = btrfs_alloc_path(); 5363 if (!right_path) { 5364 ret = -ENOMEM; 5365 goto out; 5366 } 5367 5368 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS); 5369 if (!tmp_buf) { 5370 ret = -ENOMEM; 5371 goto out; 5372 } 5373 5374 left_path->search_commit_root = 1; 5375 left_path->skip_locking = 1; 5376 right_path->search_commit_root = 1; 5377 right_path->skip_locking = 1; 5378 5379 /* 5380 * Strategy: Go to the first items of both trees. Then do 5381 * 5382 * If both trees are at level 0 5383 * Compare keys of current items 5384 * If left < right treat left item as new, advance left tree 5385 * and repeat 5386 * If left > right treat right item as deleted, advance right tree 5387 * and repeat 5388 * If left == right do deep compare of items, treat as changed if 5389 * needed, advance both trees and repeat 5390 * If both trees are at the same level but not at level 0 5391 * Compare keys of current nodes/leafs 5392 * If left < right advance left tree and repeat 5393 * If left > right advance right tree and repeat 5394 * If left == right compare blockptrs of the next nodes/leafs 5395 * If they match advance both trees but stay at the same level 5396 * and repeat 5397 * If they don't match advance both trees while allowing to go 5398 * deeper and repeat 5399 * If tree levels are different 5400 * Advance the tree that needs it and repeat 5401 * 5402 * Advancing a tree means: 5403 * If we are at level 0, try to go to the next slot. If that's not 5404 * possible, go one level up and repeat. Stop when we found a level 5405 * where we could go to the next slot. We may at this point be on a 5406 * node or a leaf. 5407 * 5408 * If we are not at level 0 and not on shared tree blocks, go one 5409 * level deeper. 5410 * 5411 * If we are not at level 0 and on shared tree blocks, go one slot to 5412 * the right if possible or go up and right. 5413 */ 5414 5415 down_read(&left_root->fs_info->commit_root_sem); 5416 left_level = btrfs_header_level(left_root->commit_root); 5417 left_root_level = left_level; 5418 left_path->nodes[left_level] = left_root->commit_root; 5419 extent_buffer_get(left_path->nodes[left_level]); 5420 5421 right_level = btrfs_header_level(right_root->commit_root); 5422 right_root_level = right_level; 5423 right_path->nodes[right_level] = right_root->commit_root; 5424 extent_buffer_get(right_path->nodes[right_level]); 5425 up_read(&left_root->fs_info->commit_root_sem); 5426 5427 if (left_level == 0) 5428 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5429 &left_key, left_path->slots[left_level]); 5430 else 5431 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5432 &left_key, left_path->slots[left_level]); 5433 if (right_level == 0) 5434 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5435 &right_key, right_path->slots[right_level]); 5436 else 5437 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5438 &right_key, right_path->slots[right_level]); 5439 5440 left_end_reached = right_end_reached = 0; 5441 advance_left = advance_right = 0; 5442 5443 while (1) { 5444 if (advance_left && !left_end_reached) { 5445 ret = tree_advance(left_root, left_path, &left_level, 5446 left_root_level, 5447 advance_left != ADVANCE_ONLY_NEXT, 5448 &left_key); 5449 if (ret < 0) 5450 left_end_reached = ADVANCE; 5451 advance_left = 0; 5452 } 5453 if (advance_right && !right_end_reached) { 5454 ret = tree_advance(right_root, right_path, &right_level, 5455 right_root_level, 5456 advance_right != ADVANCE_ONLY_NEXT, 5457 &right_key); 5458 if (ret < 0) 5459 right_end_reached = ADVANCE; 5460 advance_right = 0; 5461 } 5462 5463 if (left_end_reached && right_end_reached) { 5464 ret = 0; 5465 goto out; 5466 } else if (left_end_reached) { 5467 if (right_level == 0) { 5468 ret = changed_cb(left_root, right_root, 5469 left_path, right_path, 5470 &right_key, 5471 BTRFS_COMPARE_TREE_DELETED, 5472 ctx); 5473 if (ret < 0) 5474 goto out; 5475 } 5476 advance_right = ADVANCE; 5477 continue; 5478 } else if (right_end_reached) { 5479 if (left_level == 0) { 5480 ret = changed_cb(left_root, right_root, 5481 left_path, right_path, 5482 &left_key, 5483 BTRFS_COMPARE_TREE_NEW, 5484 ctx); 5485 if (ret < 0) 5486 goto out; 5487 } 5488 advance_left = ADVANCE; 5489 continue; 5490 } 5491 5492 if (left_level == 0 && right_level == 0) { 5493 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5494 if (cmp < 0) { 5495 ret = changed_cb(left_root, right_root, 5496 left_path, right_path, 5497 &left_key, 5498 BTRFS_COMPARE_TREE_NEW, 5499 ctx); 5500 if (ret < 0) 5501 goto out; 5502 advance_left = ADVANCE; 5503 } else if (cmp > 0) { 5504 ret = changed_cb(left_root, right_root, 5505 left_path, right_path, 5506 &right_key, 5507 BTRFS_COMPARE_TREE_DELETED, 5508 ctx); 5509 if (ret < 0) 5510 goto out; 5511 advance_right = ADVANCE; 5512 } else { 5513 enum btrfs_compare_tree_result result; 5514 5515 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5516 ret = tree_compare_item(left_root, left_path, 5517 right_path, tmp_buf); 5518 if (ret) 5519 result = BTRFS_COMPARE_TREE_CHANGED; 5520 else 5521 result = BTRFS_COMPARE_TREE_SAME; 5522 ret = changed_cb(left_root, right_root, 5523 left_path, right_path, 5524 &left_key, result, ctx); 5525 if (ret < 0) 5526 goto out; 5527 advance_left = ADVANCE; 5528 advance_right = ADVANCE; 5529 } 5530 } else if (left_level == right_level) { 5531 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5532 if (cmp < 0) { 5533 advance_left = ADVANCE; 5534 } else if (cmp > 0) { 5535 advance_right = ADVANCE; 5536 } else { 5537 left_blockptr = btrfs_node_blockptr( 5538 left_path->nodes[left_level], 5539 left_path->slots[left_level]); 5540 right_blockptr = btrfs_node_blockptr( 5541 right_path->nodes[right_level], 5542 right_path->slots[right_level]); 5543 left_gen = btrfs_node_ptr_generation( 5544 left_path->nodes[left_level], 5545 left_path->slots[left_level]); 5546 right_gen = btrfs_node_ptr_generation( 5547 right_path->nodes[right_level], 5548 right_path->slots[right_level]); 5549 if (left_blockptr == right_blockptr && 5550 left_gen == right_gen) { 5551 /* 5552 * As we're on a shared block, don't 5553 * allow to go deeper. 5554 */ 5555 advance_left = ADVANCE_ONLY_NEXT; 5556 advance_right = ADVANCE_ONLY_NEXT; 5557 } else { 5558 advance_left = ADVANCE; 5559 advance_right = ADVANCE; 5560 } 5561 } 5562 } else if (left_level < right_level) { 5563 advance_right = ADVANCE; 5564 } else { 5565 advance_left = ADVANCE; 5566 } 5567 } 5568 5569 out: 5570 btrfs_free_path(left_path); 5571 btrfs_free_path(right_path); 5572 kfree(tmp_buf); 5573 return ret; 5574 } 5575 5576 /* 5577 * this is similar to btrfs_next_leaf, but does not try to preserve 5578 * and fixup the path. It looks for and returns the next key in the 5579 * tree based on the current path and the min_trans parameters. 5580 * 5581 * 0 is returned if another key is found, < 0 if there are any errors 5582 * and 1 is returned if there are no higher keys in the tree 5583 * 5584 * path->keep_locks should be set to 1 on the search made before 5585 * calling this function. 5586 */ 5587 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5588 struct btrfs_key *key, int level, u64 min_trans) 5589 { 5590 int slot; 5591 struct extent_buffer *c; 5592 5593 WARN_ON(!path->keep_locks); 5594 while (level < BTRFS_MAX_LEVEL) { 5595 if (!path->nodes[level]) 5596 return 1; 5597 5598 slot = path->slots[level] + 1; 5599 c = path->nodes[level]; 5600 next: 5601 if (slot >= btrfs_header_nritems(c)) { 5602 int ret; 5603 int orig_lowest; 5604 struct btrfs_key cur_key; 5605 if (level + 1 >= BTRFS_MAX_LEVEL || 5606 !path->nodes[level + 1]) 5607 return 1; 5608 5609 if (path->locks[level + 1]) { 5610 level++; 5611 continue; 5612 } 5613 5614 slot = btrfs_header_nritems(c) - 1; 5615 if (level == 0) 5616 btrfs_item_key_to_cpu(c, &cur_key, slot); 5617 else 5618 btrfs_node_key_to_cpu(c, &cur_key, slot); 5619 5620 orig_lowest = path->lowest_level; 5621 btrfs_release_path(path); 5622 path->lowest_level = level; 5623 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5624 0, 0); 5625 path->lowest_level = orig_lowest; 5626 if (ret < 0) 5627 return ret; 5628 5629 c = path->nodes[level]; 5630 slot = path->slots[level]; 5631 if (ret == 0) 5632 slot++; 5633 goto next; 5634 } 5635 5636 if (level == 0) 5637 btrfs_item_key_to_cpu(c, key, slot); 5638 else { 5639 u64 gen = btrfs_node_ptr_generation(c, slot); 5640 5641 if (gen < min_trans) { 5642 slot++; 5643 goto next; 5644 } 5645 btrfs_node_key_to_cpu(c, key, slot); 5646 } 5647 return 0; 5648 } 5649 return 1; 5650 } 5651 5652 /* 5653 * search the tree again to find a leaf with greater keys 5654 * returns 0 if it found something or 1 if there are no greater leaves. 5655 * returns < 0 on io errors. 5656 */ 5657 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5658 { 5659 return btrfs_next_old_leaf(root, path, 0); 5660 } 5661 5662 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5663 u64 time_seq) 5664 { 5665 int slot; 5666 int level; 5667 struct extent_buffer *c; 5668 struct extent_buffer *next; 5669 struct btrfs_key key; 5670 u32 nritems; 5671 int ret; 5672 int old_spinning = path->leave_spinning; 5673 int next_rw_lock = 0; 5674 5675 nritems = btrfs_header_nritems(path->nodes[0]); 5676 if (nritems == 0) 5677 return 1; 5678 5679 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5680 again: 5681 level = 1; 5682 next = NULL; 5683 next_rw_lock = 0; 5684 btrfs_release_path(path); 5685 5686 path->keep_locks = 1; 5687 path->leave_spinning = 1; 5688 5689 if (time_seq) 5690 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5691 else 5692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5693 path->keep_locks = 0; 5694 5695 if (ret < 0) 5696 return ret; 5697 5698 nritems = btrfs_header_nritems(path->nodes[0]); 5699 /* 5700 * by releasing the path above we dropped all our locks. A balance 5701 * could have added more items next to the key that used to be 5702 * at the very end of the block. So, check again here and 5703 * advance the path if there are now more items available. 5704 */ 5705 if (nritems > 0 && path->slots[0] < nritems - 1) { 5706 if (ret == 0) 5707 path->slots[0]++; 5708 ret = 0; 5709 goto done; 5710 } 5711 /* 5712 * So the above check misses one case: 5713 * - after releasing the path above, someone has removed the item that 5714 * used to be at the very end of the block, and balance between leafs 5715 * gets another one with bigger key.offset to replace it. 5716 * 5717 * This one should be returned as well, or we can get leaf corruption 5718 * later(esp. in __btrfs_drop_extents()). 5719 * 5720 * And a bit more explanation about this check, 5721 * with ret > 0, the key isn't found, the path points to the slot 5722 * where it should be inserted, so the path->slots[0] item must be the 5723 * bigger one. 5724 */ 5725 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5726 ret = 0; 5727 goto done; 5728 } 5729 5730 while (level < BTRFS_MAX_LEVEL) { 5731 if (!path->nodes[level]) { 5732 ret = 1; 5733 goto done; 5734 } 5735 5736 slot = path->slots[level] + 1; 5737 c = path->nodes[level]; 5738 if (slot >= btrfs_header_nritems(c)) { 5739 level++; 5740 if (level == BTRFS_MAX_LEVEL) { 5741 ret = 1; 5742 goto done; 5743 } 5744 continue; 5745 } 5746 5747 if (next) { 5748 btrfs_tree_unlock_rw(next, next_rw_lock); 5749 free_extent_buffer(next); 5750 } 5751 5752 next = c; 5753 next_rw_lock = path->locks[level]; 5754 ret = read_block_for_search(NULL, root, path, &next, level, 5755 slot, &key, 0); 5756 if (ret == -EAGAIN) 5757 goto again; 5758 5759 if (ret < 0) { 5760 btrfs_release_path(path); 5761 goto done; 5762 } 5763 5764 if (!path->skip_locking) { 5765 ret = btrfs_try_tree_read_lock(next); 5766 if (!ret && time_seq) { 5767 /* 5768 * If we don't get the lock, we may be racing 5769 * with push_leaf_left, holding that lock while 5770 * itself waiting for the leaf we've currently 5771 * locked. To solve this situation, we give up 5772 * on our lock and cycle. 5773 */ 5774 free_extent_buffer(next); 5775 btrfs_release_path(path); 5776 cond_resched(); 5777 goto again; 5778 } 5779 if (!ret) { 5780 btrfs_set_path_blocking(path); 5781 btrfs_tree_read_lock(next); 5782 btrfs_clear_path_blocking(path, next, 5783 BTRFS_READ_LOCK); 5784 } 5785 next_rw_lock = BTRFS_READ_LOCK; 5786 } 5787 break; 5788 } 5789 path->slots[level] = slot; 5790 while (1) { 5791 level--; 5792 c = path->nodes[level]; 5793 if (path->locks[level]) 5794 btrfs_tree_unlock_rw(c, path->locks[level]); 5795 5796 free_extent_buffer(c); 5797 path->nodes[level] = next; 5798 path->slots[level] = 0; 5799 if (!path->skip_locking) 5800 path->locks[level] = next_rw_lock; 5801 if (!level) 5802 break; 5803 5804 ret = read_block_for_search(NULL, root, path, &next, level, 5805 0, &key, 0); 5806 if (ret == -EAGAIN) 5807 goto again; 5808 5809 if (ret < 0) { 5810 btrfs_release_path(path); 5811 goto done; 5812 } 5813 5814 if (!path->skip_locking) { 5815 ret = btrfs_try_tree_read_lock(next); 5816 if (!ret) { 5817 btrfs_set_path_blocking(path); 5818 btrfs_tree_read_lock(next); 5819 btrfs_clear_path_blocking(path, next, 5820 BTRFS_READ_LOCK); 5821 } 5822 next_rw_lock = BTRFS_READ_LOCK; 5823 } 5824 } 5825 ret = 0; 5826 done: 5827 unlock_up(path, 0, 1, 0, NULL); 5828 path->leave_spinning = old_spinning; 5829 if (!old_spinning) 5830 btrfs_set_path_blocking(path); 5831 5832 return ret; 5833 } 5834 5835 /* 5836 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5837 * searching until it gets past min_objectid or finds an item of 'type' 5838 * 5839 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5840 */ 5841 int btrfs_previous_item(struct btrfs_root *root, 5842 struct btrfs_path *path, u64 min_objectid, 5843 int type) 5844 { 5845 struct btrfs_key found_key; 5846 struct extent_buffer *leaf; 5847 u32 nritems; 5848 int ret; 5849 5850 while (1) { 5851 if (path->slots[0] == 0) { 5852 btrfs_set_path_blocking(path); 5853 ret = btrfs_prev_leaf(root, path); 5854 if (ret != 0) 5855 return ret; 5856 } else { 5857 path->slots[0]--; 5858 } 5859 leaf = path->nodes[0]; 5860 nritems = btrfs_header_nritems(leaf); 5861 if (nritems == 0) 5862 return 1; 5863 if (path->slots[0] == nritems) 5864 path->slots[0]--; 5865 5866 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5867 if (found_key.objectid < min_objectid) 5868 break; 5869 if (found_key.type == type) 5870 return 0; 5871 if (found_key.objectid == min_objectid && 5872 found_key.type < type) 5873 break; 5874 } 5875 return 1; 5876 } 5877 5878 /* 5879 * search in extent tree to find a previous Metadata/Data extent item with 5880 * min objecitd. 5881 * 5882 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5883 */ 5884 int btrfs_previous_extent_item(struct btrfs_root *root, 5885 struct btrfs_path *path, u64 min_objectid) 5886 { 5887 struct btrfs_key found_key; 5888 struct extent_buffer *leaf; 5889 u32 nritems; 5890 int ret; 5891 5892 while (1) { 5893 if (path->slots[0] == 0) { 5894 btrfs_set_path_blocking(path); 5895 ret = btrfs_prev_leaf(root, path); 5896 if (ret != 0) 5897 return ret; 5898 } else { 5899 path->slots[0]--; 5900 } 5901 leaf = path->nodes[0]; 5902 nritems = btrfs_header_nritems(leaf); 5903 if (nritems == 0) 5904 return 1; 5905 if (path->slots[0] == nritems) 5906 path->slots[0]--; 5907 5908 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5909 if (found_key.objectid < min_objectid) 5910 break; 5911 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5912 found_key.type == BTRFS_METADATA_ITEM_KEY) 5913 return 0; 5914 if (found_key.objectid == min_objectid && 5915 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5916 break; 5917 } 5918 return 1; 5919 } 5920