1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 45 struct btrfs_path *btrfs_alloc_path(void) 46 { 47 struct btrfs_path *path; 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 return path; 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 #ifdef CONFIG_DEBUG_LOCK_ALLOC 84 /* lockdep really cares that we take all of these spinlocks 85 * in the right order. If any of the locks in the path are not 86 * currently blocking, it is going to complain. So, make really 87 * really sure by forcing the path to blocking before we clear 88 * the path blocking. 89 */ 90 if (held) { 91 btrfs_set_lock_blocking_rw(held, held_rw); 92 if (held_rw == BTRFS_WRITE_LOCK) 93 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 94 else if (held_rw == BTRFS_READ_LOCK) 95 held_rw = BTRFS_READ_LOCK_BLOCKING; 96 } 97 btrfs_set_path_blocking(p); 98 #endif 99 100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 101 if (p->nodes[i] && p->locks[i]) { 102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 104 p->locks[i] = BTRFS_WRITE_LOCK; 105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 106 p->locks[i] = BTRFS_READ_LOCK; 107 } 108 } 109 110 #ifdef CONFIG_DEBUG_LOCK_ALLOC 111 if (held) 112 btrfs_clear_lock_blocking_rw(held, held_rw); 113 #endif 114 } 115 116 /* this also releases the path */ 117 void btrfs_free_path(struct btrfs_path *p) 118 { 119 if (!p) 120 return; 121 btrfs_release_path(p); 122 kmem_cache_free(btrfs_path_cachep, p); 123 } 124 125 /* 126 * path release drops references on the extent buffers in the path 127 * and it drops any locks held by this path 128 * 129 * It is safe to call this on paths that no locks or extent buffers held. 130 */ 131 noinline void btrfs_release_path(struct btrfs_path *p) 132 { 133 int i; 134 135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 136 p->slots[i] = 0; 137 if (!p->nodes[i]) 138 continue; 139 if (p->locks[i]) { 140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 141 p->locks[i] = 0; 142 } 143 free_extent_buffer(p->nodes[i]); 144 p->nodes[i] = NULL; 145 } 146 } 147 148 /* 149 * safely gets a reference on the root node of a tree. A lock 150 * is not taken, so a concurrent writer may put a different node 151 * at the root of the tree. See btrfs_lock_root_node for the 152 * looping required. 153 * 154 * The extent buffer returned by this has a reference taken, so 155 * it won't disappear. It may stop being the root of the tree 156 * at any time because there are no locks held. 157 */ 158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 159 { 160 struct extent_buffer *eb; 161 162 while (1) { 163 rcu_read_lock(); 164 eb = rcu_dereference(root->node); 165 166 /* 167 * RCU really hurts here, we could free up the root node because 168 * it was cow'ed but we may not get the new root node yet so do 169 * the inc_not_zero dance and if it doesn't work then 170 * synchronize_rcu and try again. 171 */ 172 if (atomic_inc_not_zero(&eb->refs)) { 173 rcu_read_unlock(); 174 break; 175 } 176 rcu_read_unlock(); 177 synchronize_rcu(); 178 } 179 return eb; 180 } 181 182 /* loop around taking references on and locking the root node of the 183 * tree until you end up with a lock on the root. A locked buffer 184 * is returned, with a reference held. 185 */ 186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 187 { 188 struct extent_buffer *eb; 189 190 while (1) { 191 eb = btrfs_root_node(root); 192 btrfs_tree_lock(eb); 193 if (eb == root->node) 194 break; 195 btrfs_tree_unlock(eb); 196 free_extent_buffer(eb); 197 } 198 return eb; 199 } 200 201 /* loop around taking references on and locking the root node of the 202 * tree until you end up with a lock on the root. A locked buffer 203 * is returned, with a reference held. 204 */ 205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 206 { 207 struct extent_buffer *eb; 208 209 while (1) { 210 eb = btrfs_root_node(root); 211 btrfs_tree_read_lock(eb); 212 if (eb == root->node) 213 break; 214 btrfs_tree_read_unlock(eb); 215 free_extent_buffer(eb); 216 } 217 return eb; 218 } 219 220 /* cowonly root (everything not a reference counted cow subvolume), just get 221 * put onto a simple dirty list. transaction.c walks this to make sure they 222 * get properly updated on disk. 223 */ 224 static void add_root_to_dirty_list(struct btrfs_root *root) 225 { 226 spin_lock(&root->fs_info->trans_lock); 227 if (test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state) && 228 list_empty(&root->dirty_list)) { 229 list_add(&root->dirty_list, 230 &root->fs_info->dirty_cowonly_roots); 231 } 232 spin_unlock(&root->fs_info->trans_lock); 233 } 234 235 /* 236 * used by snapshot creation to make a copy of a root for a tree with 237 * a given objectid. The buffer with the new root node is returned in 238 * cow_ret, and this func returns zero on success or a negative error code. 239 */ 240 int btrfs_copy_root(struct btrfs_trans_handle *trans, 241 struct btrfs_root *root, 242 struct extent_buffer *buf, 243 struct extent_buffer **cow_ret, u64 new_root_objectid) 244 { 245 struct extent_buffer *cow; 246 int ret = 0; 247 int level; 248 struct btrfs_disk_key disk_key; 249 250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 251 trans->transid != root->fs_info->running_transaction->transid); 252 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 253 trans->transid != root->last_trans); 254 255 level = btrfs_header_level(buf); 256 if (level == 0) 257 btrfs_item_key(buf, &disk_key, 0); 258 else 259 btrfs_node_key(buf, &disk_key, 0); 260 261 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 262 new_root_objectid, &disk_key, level, 263 buf->start, 0); 264 if (IS_ERR(cow)) 265 return PTR_ERR(cow); 266 267 copy_extent_buffer(cow, buf, 0, 0, cow->len); 268 btrfs_set_header_bytenr(cow, cow->start); 269 btrfs_set_header_generation(cow, trans->transid); 270 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 271 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 272 BTRFS_HEADER_FLAG_RELOC); 273 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 274 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 275 else 276 btrfs_set_header_owner(cow, new_root_objectid); 277 278 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 279 BTRFS_FSID_SIZE); 280 281 WARN_ON(btrfs_header_generation(buf) > trans->transid); 282 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 283 ret = btrfs_inc_ref(trans, root, cow, 1); 284 else 285 ret = btrfs_inc_ref(trans, root, cow, 0); 286 287 if (ret) 288 return ret; 289 290 btrfs_mark_buffer_dirty(cow); 291 *cow_ret = cow; 292 return 0; 293 } 294 295 enum mod_log_op { 296 MOD_LOG_KEY_REPLACE, 297 MOD_LOG_KEY_ADD, 298 MOD_LOG_KEY_REMOVE, 299 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 300 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 301 MOD_LOG_MOVE_KEYS, 302 MOD_LOG_ROOT_REPLACE, 303 }; 304 305 struct tree_mod_move { 306 int dst_slot; 307 int nr_items; 308 }; 309 310 struct tree_mod_root { 311 u64 logical; 312 u8 level; 313 }; 314 315 struct tree_mod_elem { 316 struct rb_node node; 317 u64 index; /* shifted logical */ 318 u64 seq; 319 enum mod_log_op op; 320 321 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 322 int slot; 323 324 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 325 u64 generation; 326 327 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 328 struct btrfs_disk_key key; 329 u64 blockptr; 330 331 /* this is used for op == MOD_LOG_MOVE_KEYS */ 332 struct tree_mod_move move; 333 334 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 335 struct tree_mod_root old_root; 336 }; 337 338 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 339 { 340 read_lock(&fs_info->tree_mod_log_lock); 341 } 342 343 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 344 { 345 read_unlock(&fs_info->tree_mod_log_lock); 346 } 347 348 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 349 { 350 write_lock(&fs_info->tree_mod_log_lock); 351 } 352 353 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 354 { 355 write_unlock(&fs_info->tree_mod_log_lock); 356 } 357 358 /* 359 * Pull a new tree mod seq number for our operation. 360 */ 361 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 362 { 363 return atomic64_inc_return(&fs_info->tree_mod_seq); 364 } 365 366 /* 367 * This adds a new blocker to the tree mod log's blocker list if the @elem 368 * passed does not already have a sequence number set. So when a caller expects 369 * to record tree modifications, it should ensure to set elem->seq to zero 370 * before calling btrfs_get_tree_mod_seq. 371 * Returns a fresh, unused tree log modification sequence number, even if no new 372 * blocker was added. 373 */ 374 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 375 struct seq_list *elem) 376 { 377 tree_mod_log_write_lock(fs_info); 378 spin_lock(&fs_info->tree_mod_seq_lock); 379 if (!elem->seq) { 380 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 381 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 382 } 383 spin_unlock(&fs_info->tree_mod_seq_lock); 384 tree_mod_log_write_unlock(fs_info); 385 386 return elem->seq; 387 } 388 389 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 390 struct seq_list *elem) 391 { 392 struct rb_root *tm_root; 393 struct rb_node *node; 394 struct rb_node *next; 395 struct seq_list *cur_elem; 396 struct tree_mod_elem *tm; 397 u64 min_seq = (u64)-1; 398 u64 seq_putting = elem->seq; 399 400 if (!seq_putting) 401 return; 402 403 spin_lock(&fs_info->tree_mod_seq_lock); 404 list_del(&elem->list); 405 elem->seq = 0; 406 407 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 408 if (cur_elem->seq < min_seq) { 409 if (seq_putting > cur_elem->seq) { 410 /* 411 * blocker with lower sequence number exists, we 412 * cannot remove anything from the log 413 */ 414 spin_unlock(&fs_info->tree_mod_seq_lock); 415 return; 416 } 417 min_seq = cur_elem->seq; 418 } 419 } 420 spin_unlock(&fs_info->tree_mod_seq_lock); 421 422 /* 423 * anything that's lower than the lowest existing (read: blocked) 424 * sequence number can be removed from the tree. 425 */ 426 tree_mod_log_write_lock(fs_info); 427 tm_root = &fs_info->tree_mod_log; 428 for (node = rb_first(tm_root); node; node = next) { 429 next = rb_next(node); 430 tm = container_of(node, struct tree_mod_elem, node); 431 if (tm->seq > min_seq) 432 continue; 433 rb_erase(node, tm_root); 434 kfree(tm); 435 } 436 tree_mod_log_write_unlock(fs_info); 437 } 438 439 /* 440 * key order of the log: 441 * index -> sequence 442 * 443 * the index is the shifted logical of the *new* root node for root replace 444 * operations, or the shifted logical of the affected block for all other 445 * operations. 446 * 447 * Note: must be called with write lock (tree_mod_log_write_lock). 448 */ 449 static noinline int 450 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 451 { 452 struct rb_root *tm_root; 453 struct rb_node **new; 454 struct rb_node *parent = NULL; 455 struct tree_mod_elem *cur; 456 457 BUG_ON(!tm); 458 459 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 460 461 tm_root = &fs_info->tree_mod_log; 462 new = &tm_root->rb_node; 463 while (*new) { 464 cur = container_of(*new, struct tree_mod_elem, node); 465 parent = *new; 466 if (cur->index < tm->index) 467 new = &((*new)->rb_left); 468 else if (cur->index > tm->index) 469 new = &((*new)->rb_right); 470 else if (cur->seq < tm->seq) 471 new = &((*new)->rb_left); 472 else if (cur->seq > tm->seq) 473 new = &((*new)->rb_right); 474 else 475 return -EEXIST; 476 } 477 478 rb_link_node(&tm->node, parent, new); 479 rb_insert_color(&tm->node, tm_root); 480 return 0; 481 } 482 483 /* 484 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 485 * returns zero with the tree_mod_log_lock acquired. The caller must hold 486 * this until all tree mod log insertions are recorded in the rb tree and then 487 * call tree_mod_log_write_unlock() to release. 488 */ 489 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 490 struct extent_buffer *eb) { 491 smp_mb(); 492 if (list_empty(&(fs_info)->tree_mod_seq_list)) 493 return 1; 494 if (eb && btrfs_header_level(eb) == 0) 495 return 1; 496 497 tree_mod_log_write_lock(fs_info); 498 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 499 tree_mod_log_write_unlock(fs_info); 500 return 1; 501 } 502 503 return 0; 504 } 505 506 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 507 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 508 struct extent_buffer *eb) 509 { 510 smp_mb(); 511 if (list_empty(&(fs_info)->tree_mod_seq_list)) 512 return 0; 513 if (eb && btrfs_header_level(eb) == 0) 514 return 0; 515 516 return 1; 517 } 518 519 static struct tree_mod_elem * 520 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 521 enum mod_log_op op, gfp_t flags) 522 { 523 struct tree_mod_elem *tm; 524 525 tm = kzalloc(sizeof(*tm), flags); 526 if (!tm) 527 return NULL; 528 529 tm->index = eb->start >> PAGE_CACHE_SHIFT; 530 if (op != MOD_LOG_KEY_ADD) { 531 btrfs_node_key(eb, &tm->key, slot); 532 tm->blockptr = btrfs_node_blockptr(eb, slot); 533 } 534 tm->op = op; 535 tm->slot = slot; 536 tm->generation = btrfs_node_ptr_generation(eb, slot); 537 RB_CLEAR_NODE(&tm->node); 538 539 return tm; 540 } 541 542 static noinline int 543 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 544 struct extent_buffer *eb, int slot, 545 enum mod_log_op op, gfp_t flags) 546 { 547 struct tree_mod_elem *tm; 548 int ret; 549 550 if (!tree_mod_need_log(fs_info, eb)) 551 return 0; 552 553 tm = alloc_tree_mod_elem(eb, slot, op, flags); 554 if (!tm) 555 return -ENOMEM; 556 557 if (tree_mod_dont_log(fs_info, eb)) { 558 kfree(tm); 559 return 0; 560 } 561 562 ret = __tree_mod_log_insert(fs_info, tm); 563 tree_mod_log_write_unlock(fs_info); 564 if (ret) 565 kfree(tm); 566 567 return ret; 568 } 569 570 static noinline int 571 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 572 struct extent_buffer *eb, int dst_slot, int src_slot, 573 int nr_items, gfp_t flags) 574 { 575 struct tree_mod_elem *tm = NULL; 576 struct tree_mod_elem **tm_list = NULL; 577 int ret = 0; 578 int i; 579 int locked = 0; 580 581 if (!tree_mod_need_log(fs_info, eb)) 582 return 0; 583 584 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags); 585 if (!tm_list) 586 return -ENOMEM; 587 588 tm = kzalloc(sizeof(*tm), flags); 589 if (!tm) { 590 ret = -ENOMEM; 591 goto free_tms; 592 } 593 594 tm->index = eb->start >> PAGE_CACHE_SHIFT; 595 tm->slot = src_slot; 596 tm->move.dst_slot = dst_slot; 597 tm->move.nr_items = nr_items; 598 tm->op = MOD_LOG_MOVE_KEYS; 599 600 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 601 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 602 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 603 if (!tm_list[i]) { 604 ret = -ENOMEM; 605 goto free_tms; 606 } 607 } 608 609 if (tree_mod_dont_log(fs_info, eb)) 610 goto free_tms; 611 locked = 1; 612 613 /* 614 * When we override something during the move, we log these removals. 615 * This can only happen when we move towards the beginning of the 616 * buffer, i.e. dst_slot < src_slot. 617 */ 618 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 619 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 620 if (ret) 621 goto free_tms; 622 } 623 624 ret = __tree_mod_log_insert(fs_info, tm); 625 if (ret) 626 goto free_tms; 627 tree_mod_log_write_unlock(fs_info); 628 kfree(tm_list); 629 630 return 0; 631 free_tms: 632 for (i = 0; i < nr_items; i++) { 633 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 634 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 635 kfree(tm_list[i]); 636 } 637 if (locked) 638 tree_mod_log_write_unlock(fs_info); 639 kfree(tm_list); 640 kfree(tm); 641 642 return ret; 643 } 644 645 static inline int 646 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 647 struct tree_mod_elem **tm_list, 648 int nritems) 649 { 650 int i, j; 651 int ret; 652 653 for (i = nritems - 1; i >= 0; i--) { 654 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 655 if (ret) { 656 for (j = nritems - 1; j > i; j--) 657 rb_erase(&tm_list[j]->node, 658 &fs_info->tree_mod_log); 659 return ret; 660 } 661 } 662 663 return 0; 664 } 665 666 static noinline int 667 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 668 struct extent_buffer *old_root, 669 struct extent_buffer *new_root, gfp_t flags, 670 int log_removal) 671 { 672 struct tree_mod_elem *tm = NULL; 673 struct tree_mod_elem **tm_list = NULL; 674 int nritems = 0; 675 int ret = 0; 676 int i; 677 678 if (!tree_mod_need_log(fs_info, NULL)) 679 return 0; 680 681 if (log_removal && btrfs_header_level(old_root) > 0) { 682 nritems = btrfs_header_nritems(old_root); 683 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 684 flags); 685 if (!tm_list) { 686 ret = -ENOMEM; 687 goto free_tms; 688 } 689 for (i = 0; i < nritems; i++) { 690 tm_list[i] = alloc_tree_mod_elem(old_root, i, 691 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 692 if (!tm_list[i]) { 693 ret = -ENOMEM; 694 goto free_tms; 695 } 696 } 697 } 698 699 tm = kzalloc(sizeof(*tm), flags); 700 if (!tm) { 701 ret = -ENOMEM; 702 goto free_tms; 703 } 704 705 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 706 tm->old_root.logical = old_root->start; 707 tm->old_root.level = btrfs_header_level(old_root); 708 tm->generation = btrfs_header_generation(old_root); 709 tm->op = MOD_LOG_ROOT_REPLACE; 710 711 if (tree_mod_dont_log(fs_info, NULL)) 712 goto free_tms; 713 714 if (tm_list) 715 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 716 if (!ret) 717 ret = __tree_mod_log_insert(fs_info, tm); 718 719 tree_mod_log_write_unlock(fs_info); 720 if (ret) 721 goto free_tms; 722 kfree(tm_list); 723 724 return ret; 725 726 free_tms: 727 if (tm_list) { 728 for (i = 0; i < nritems; i++) 729 kfree(tm_list[i]); 730 kfree(tm_list); 731 } 732 kfree(tm); 733 734 return ret; 735 } 736 737 static struct tree_mod_elem * 738 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 739 int smallest) 740 { 741 struct rb_root *tm_root; 742 struct rb_node *node; 743 struct tree_mod_elem *cur = NULL; 744 struct tree_mod_elem *found = NULL; 745 u64 index = start >> PAGE_CACHE_SHIFT; 746 747 tree_mod_log_read_lock(fs_info); 748 tm_root = &fs_info->tree_mod_log; 749 node = tm_root->rb_node; 750 while (node) { 751 cur = container_of(node, struct tree_mod_elem, node); 752 if (cur->index < index) { 753 node = node->rb_left; 754 } else if (cur->index > index) { 755 node = node->rb_right; 756 } else if (cur->seq < min_seq) { 757 node = node->rb_left; 758 } else if (!smallest) { 759 /* we want the node with the highest seq */ 760 if (found) 761 BUG_ON(found->seq > cur->seq); 762 found = cur; 763 node = node->rb_left; 764 } else if (cur->seq > min_seq) { 765 /* we want the node with the smallest seq */ 766 if (found) 767 BUG_ON(found->seq < cur->seq); 768 found = cur; 769 node = node->rb_right; 770 } else { 771 found = cur; 772 break; 773 } 774 } 775 tree_mod_log_read_unlock(fs_info); 776 777 return found; 778 } 779 780 /* 781 * this returns the element from the log with the smallest time sequence 782 * value that's in the log (the oldest log item). any element with a time 783 * sequence lower than min_seq will be ignored. 784 */ 785 static struct tree_mod_elem * 786 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 787 u64 min_seq) 788 { 789 return __tree_mod_log_search(fs_info, start, min_seq, 1); 790 } 791 792 /* 793 * this returns the element from the log with the largest time sequence 794 * value that's in the log (the most recent log item). any element with 795 * a time sequence lower than min_seq will be ignored. 796 */ 797 static struct tree_mod_elem * 798 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 799 { 800 return __tree_mod_log_search(fs_info, start, min_seq, 0); 801 } 802 803 static noinline int 804 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 805 struct extent_buffer *src, unsigned long dst_offset, 806 unsigned long src_offset, int nr_items) 807 { 808 int ret = 0; 809 struct tree_mod_elem **tm_list = NULL; 810 struct tree_mod_elem **tm_list_add, **tm_list_rem; 811 int i; 812 int locked = 0; 813 814 if (!tree_mod_need_log(fs_info, NULL)) 815 return 0; 816 817 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 818 return 0; 819 820 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *), 821 GFP_NOFS); 822 if (!tm_list) 823 return -ENOMEM; 824 825 tm_list_add = tm_list; 826 tm_list_rem = tm_list + nr_items; 827 for (i = 0; i < nr_items; i++) { 828 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 829 MOD_LOG_KEY_REMOVE, GFP_NOFS); 830 if (!tm_list_rem[i]) { 831 ret = -ENOMEM; 832 goto free_tms; 833 } 834 835 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 836 MOD_LOG_KEY_ADD, GFP_NOFS); 837 if (!tm_list_add[i]) { 838 ret = -ENOMEM; 839 goto free_tms; 840 } 841 } 842 843 if (tree_mod_dont_log(fs_info, NULL)) 844 goto free_tms; 845 locked = 1; 846 847 for (i = 0; i < nr_items; i++) { 848 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 849 if (ret) 850 goto free_tms; 851 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 852 if (ret) 853 goto free_tms; 854 } 855 856 tree_mod_log_write_unlock(fs_info); 857 kfree(tm_list); 858 859 return 0; 860 861 free_tms: 862 for (i = 0; i < nr_items * 2; i++) { 863 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 864 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 865 kfree(tm_list[i]); 866 } 867 if (locked) 868 tree_mod_log_write_unlock(fs_info); 869 kfree(tm_list); 870 871 return ret; 872 } 873 874 static inline void 875 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 876 int dst_offset, int src_offset, int nr_items) 877 { 878 int ret; 879 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 880 nr_items, GFP_NOFS); 881 BUG_ON(ret < 0); 882 } 883 884 static noinline void 885 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 886 struct extent_buffer *eb, int slot, int atomic) 887 { 888 int ret; 889 890 ret = tree_mod_log_insert_key(fs_info, eb, slot, 891 MOD_LOG_KEY_REPLACE, 892 atomic ? GFP_ATOMIC : GFP_NOFS); 893 BUG_ON(ret < 0); 894 } 895 896 static noinline int 897 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 898 { 899 struct tree_mod_elem **tm_list = NULL; 900 int nritems = 0; 901 int i; 902 int ret = 0; 903 904 if (btrfs_header_level(eb) == 0) 905 return 0; 906 907 if (!tree_mod_need_log(fs_info, NULL)) 908 return 0; 909 910 nritems = btrfs_header_nritems(eb); 911 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 912 GFP_NOFS); 913 if (!tm_list) 914 return -ENOMEM; 915 916 for (i = 0; i < nritems; i++) { 917 tm_list[i] = alloc_tree_mod_elem(eb, i, 918 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 919 if (!tm_list[i]) { 920 ret = -ENOMEM; 921 goto free_tms; 922 } 923 } 924 925 if (tree_mod_dont_log(fs_info, eb)) 926 goto free_tms; 927 928 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 929 tree_mod_log_write_unlock(fs_info); 930 if (ret) 931 goto free_tms; 932 kfree(tm_list); 933 934 return 0; 935 936 free_tms: 937 for (i = 0; i < nritems; i++) 938 kfree(tm_list[i]); 939 kfree(tm_list); 940 941 return ret; 942 } 943 944 static noinline void 945 tree_mod_log_set_root_pointer(struct btrfs_root *root, 946 struct extent_buffer *new_root_node, 947 int log_removal) 948 { 949 int ret; 950 ret = tree_mod_log_insert_root(root->fs_info, root->node, 951 new_root_node, GFP_NOFS, log_removal); 952 BUG_ON(ret < 0); 953 } 954 955 /* 956 * check if the tree block can be shared by multiple trees 957 */ 958 int btrfs_block_can_be_shared(struct btrfs_root *root, 959 struct extent_buffer *buf) 960 { 961 /* 962 * Tree blocks not in refernece counted trees and tree roots 963 * are never shared. If a block was allocated after the last 964 * snapshot and the block was not allocated by tree relocation, 965 * we know the block is not shared. 966 */ 967 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 968 buf != root->node && buf != root->commit_root && 969 (btrfs_header_generation(buf) <= 970 btrfs_root_last_snapshot(&root->root_item) || 971 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 972 return 1; 973 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 974 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 975 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 976 return 1; 977 #endif 978 return 0; 979 } 980 981 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 982 struct btrfs_root *root, 983 struct extent_buffer *buf, 984 struct extent_buffer *cow, 985 int *last_ref) 986 { 987 u64 refs; 988 u64 owner; 989 u64 flags; 990 u64 new_flags = 0; 991 int ret; 992 993 /* 994 * Backrefs update rules: 995 * 996 * Always use full backrefs for extent pointers in tree block 997 * allocated by tree relocation. 998 * 999 * If a shared tree block is no longer referenced by its owner 1000 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 1001 * use full backrefs for extent pointers in tree block. 1002 * 1003 * If a tree block is been relocating 1004 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1005 * use full backrefs for extent pointers in tree block. 1006 * The reason for this is some operations (such as drop tree) 1007 * are only allowed for blocks use full backrefs. 1008 */ 1009 1010 if (btrfs_block_can_be_shared(root, buf)) { 1011 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1012 btrfs_header_level(buf), 1, 1013 &refs, &flags); 1014 if (ret) 1015 return ret; 1016 if (refs == 0) { 1017 ret = -EROFS; 1018 btrfs_std_error(root->fs_info, ret); 1019 return ret; 1020 } 1021 } else { 1022 refs = 1; 1023 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1024 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1025 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1026 else 1027 flags = 0; 1028 } 1029 1030 owner = btrfs_header_owner(buf); 1031 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1032 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1033 1034 if (refs > 1) { 1035 if ((owner == root->root_key.objectid || 1036 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1037 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1038 ret = btrfs_inc_ref(trans, root, buf, 1); 1039 BUG_ON(ret); /* -ENOMEM */ 1040 1041 if (root->root_key.objectid == 1042 BTRFS_TREE_RELOC_OBJECTID) { 1043 ret = btrfs_dec_ref(trans, root, buf, 0); 1044 BUG_ON(ret); /* -ENOMEM */ 1045 ret = btrfs_inc_ref(trans, root, cow, 1); 1046 BUG_ON(ret); /* -ENOMEM */ 1047 } 1048 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1049 } else { 1050 1051 if (root->root_key.objectid == 1052 BTRFS_TREE_RELOC_OBJECTID) 1053 ret = btrfs_inc_ref(trans, root, cow, 1); 1054 else 1055 ret = btrfs_inc_ref(trans, root, cow, 0); 1056 BUG_ON(ret); /* -ENOMEM */ 1057 } 1058 if (new_flags != 0) { 1059 int level = btrfs_header_level(buf); 1060 1061 ret = btrfs_set_disk_extent_flags(trans, root, 1062 buf->start, 1063 buf->len, 1064 new_flags, level, 0); 1065 if (ret) 1066 return ret; 1067 } 1068 } else { 1069 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1070 if (root->root_key.objectid == 1071 BTRFS_TREE_RELOC_OBJECTID) 1072 ret = btrfs_inc_ref(trans, root, cow, 1); 1073 else 1074 ret = btrfs_inc_ref(trans, root, cow, 0); 1075 BUG_ON(ret); /* -ENOMEM */ 1076 ret = btrfs_dec_ref(trans, root, buf, 1); 1077 BUG_ON(ret); /* -ENOMEM */ 1078 } 1079 clean_tree_block(trans, root, buf); 1080 *last_ref = 1; 1081 } 1082 return 0; 1083 } 1084 1085 /* 1086 * does the dirty work in cow of a single block. The parent block (if 1087 * supplied) is updated to point to the new cow copy. The new buffer is marked 1088 * dirty and returned locked. If you modify the block it needs to be marked 1089 * dirty again. 1090 * 1091 * search_start -- an allocation hint for the new block 1092 * 1093 * empty_size -- a hint that you plan on doing more cow. This is the size in 1094 * bytes the allocator should try to find free next to the block it returns. 1095 * This is just a hint and may be ignored by the allocator. 1096 */ 1097 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1098 struct btrfs_root *root, 1099 struct extent_buffer *buf, 1100 struct extent_buffer *parent, int parent_slot, 1101 struct extent_buffer **cow_ret, 1102 u64 search_start, u64 empty_size) 1103 { 1104 struct btrfs_disk_key disk_key; 1105 struct extent_buffer *cow; 1106 int level, ret; 1107 int last_ref = 0; 1108 int unlock_orig = 0; 1109 u64 parent_start; 1110 1111 if (*cow_ret == buf) 1112 unlock_orig = 1; 1113 1114 btrfs_assert_tree_locked(buf); 1115 1116 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1117 trans->transid != root->fs_info->running_transaction->transid); 1118 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1119 trans->transid != root->last_trans); 1120 1121 level = btrfs_header_level(buf); 1122 1123 if (level == 0) 1124 btrfs_item_key(buf, &disk_key, 0); 1125 else 1126 btrfs_node_key(buf, &disk_key, 0); 1127 1128 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1129 if (parent) 1130 parent_start = parent->start; 1131 else 1132 parent_start = 0; 1133 } else 1134 parent_start = 0; 1135 1136 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 1137 root->root_key.objectid, &disk_key, 1138 level, search_start, empty_size); 1139 if (IS_ERR(cow)) 1140 return PTR_ERR(cow); 1141 1142 /* cow is set to blocking by btrfs_init_new_buffer */ 1143 1144 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1145 btrfs_set_header_bytenr(cow, cow->start); 1146 btrfs_set_header_generation(cow, trans->transid); 1147 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1148 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1149 BTRFS_HEADER_FLAG_RELOC); 1150 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1151 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1152 else 1153 btrfs_set_header_owner(cow, root->root_key.objectid); 1154 1155 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1156 BTRFS_FSID_SIZE); 1157 1158 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1159 if (ret) { 1160 btrfs_abort_transaction(trans, root, ret); 1161 return ret; 1162 } 1163 1164 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1165 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1166 if (ret) 1167 return ret; 1168 } 1169 1170 if (buf == root->node) { 1171 WARN_ON(parent && parent != buf); 1172 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1173 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1174 parent_start = buf->start; 1175 else 1176 parent_start = 0; 1177 1178 extent_buffer_get(cow); 1179 tree_mod_log_set_root_pointer(root, cow, 1); 1180 rcu_assign_pointer(root->node, cow); 1181 1182 btrfs_free_tree_block(trans, root, buf, parent_start, 1183 last_ref); 1184 free_extent_buffer(buf); 1185 add_root_to_dirty_list(root); 1186 } else { 1187 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1188 parent_start = parent->start; 1189 else 1190 parent_start = 0; 1191 1192 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1193 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1194 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1195 btrfs_set_node_blockptr(parent, parent_slot, 1196 cow->start); 1197 btrfs_set_node_ptr_generation(parent, parent_slot, 1198 trans->transid); 1199 btrfs_mark_buffer_dirty(parent); 1200 if (last_ref) { 1201 ret = tree_mod_log_free_eb(root->fs_info, buf); 1202 if (ret) { 1203 btrfs_abort_transaction(trans, root, ret); 1204 return ret; 1205 } 1206 } 1207 btrfs_free_tree_block(trans, root, buf, parent_start, 1208 last_ref); 1209 } 1210 if (unlock_orig) 1211 btrfs_tree_unlock(buf); 1212 free_extent_buffer_stale(buf); 1213 btrfs_mark_buffer_dirty(cow); 1214 *cow_ret = cow; 1215 return 0; 1216 } 1217 1218 /* 1219 * returns the logical address of the oldest predecessor of the given root. 1220 * entries older than time_seq are ignored. 1221 */ 1222 static struct tree_mod_elem * 1223 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1224 struct extent_buffer *eb_root, u64 time_seq) 1225 { 1226 struct tree_mod_elem *tm; 1227 struct tree_mod_elem *found = NULL; 1228 u64 root_logical = eb_root->start; 1229 int looped = 0; 1230 1231 if (!time_seq) 1232 return NULL; 1233 1234 /* 1235 * the very last operation that's logged for a root is the replacement 1236 * operation (if it is replaced at all). this has the index of the *new* 1237 * root, making it the very first operation that's logged for this root. 1238 */ 1239 while (1) { 1240 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1241 time_seq); 1242 if (!looped && !tm) 1243 return NULL; 1244 /* 1245 * if there are no tree operation for the oldest root, we simply 1246 * return it. this should only happen if that (old) root is at 1247 * level 0. 1248 */ 1249 if (!tm) 1250 break; 1251 1252 /* 1253 * if there's an operation that's not a root replacement, we 1254 * found the oldest version of our root. normally, we'll find a 1255 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1256 */ 1257 if (tm->op != MOD_LOG_ROOT_REPLACE) 1258 break; 1259 1260 found = tm; 1261 root_logical = tm->old_root.logical; 1262 looped = 1; 1263 } 1264 1265 /* if there's no old root to return, return what we found instead */ 1266 if (!found) 1267 found = tm; 1268 1269 return found; 1270 } 1271 1272 /* 1273 * tm is a pointer to the first operation to rewind within eb. then, all 1274 * previous operations will be rewinded (until we reach something older than 1275 * time_seq). 1276 */ 1277 static void 1278 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1279 u64 time_seq, struct tree_mod_elem *first_tm) 1280 { 1281 u32 n; 1282 struct rb_node *next; 1283 struct tree_mod_elem *tm = first_tm; 1284 unsigned long o_dst; 1285 unsigned long o_src; 1286 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1287 1288 n = btrfs_header_nritems(eb); 1289 tree_mod_log_read_lock(fs_info); 1290 while (tm && tm->seq >= time_seq) { 1291 /* 1292 * all the operations are recorded with the operator used for 1293 * the modification. as we're going backwards, we do the 1294 * opposite of each operation here. 1295 */ 1296 switch (tm->op) { 1297 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1298 BUG_ON(tm->slot < n); 1299 /* Fallthrough */ 1300 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1301 case MOD_LOG_KEY_REMOVE: 1302 btrfs_set_node_key(eb, &tm->key, tm->slot); 1303 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1304 btrfs_set_node_ptr_generation(eb, tm->slot, 1305 tm->generation); 1306 n++; 1307 break; 1308 case MOD_LOG_KEY_REPLACE: 1309 BUG_ON(tm->slot >= n); 1310 btrfs_set_node_key(eb, &tm->key, tm->slot); 1311 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1312 btrfs_set_node_ptr_generation(eb, tm->slot, 1313 tm->generation); 1314 break; 1315 case MOD_LOG_KEY_ADD: 1316 /* if a move operation is needed it's in the log */ 1317 n--; 1318 break; 1319 case MOD_LOG_MOVE_KEYS: 1320 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1321 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1322 memmove_extent_buffer(eb, o_dst, o_src, 1323 tm->move.nr_items * p_size); 1324 break; 1325 case MOD_LOG_ROOT_REPLACE: 1326 /* 1327 * this operation is special. for roots, this must be 1328 * handled explicitly before rewinding. 1329 * for non-roots, this operation may exist if the node 1330 * was a root: root A -> child B; then A gets empty and 1331 * B is promoted to the new root. in the mod log, we'll 1332 * have a root-replace operation for B, a tree block 1333 * that is no root. we simply ignore that operation. 1334 */ 1335 break; 1336 } 1337 next = rb_next(&tm->node); 1338 if (!next) 1339 break; 1340 tm = container_of(next, struct tree_mod_elem, node); 1341 if (tm->index != first_tm->index) 1342 break; 1343 } 1344 tree_mod_log_read_unlock(fs_info); 1345 btrfs_set_header_nritems(eb, n); 1346 } 1347 1348 /* 1349 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1350 * is returned. If rewind operations happen, a fresh buffer is returned. The 1351 * returned buffer is always read-locked. If the returned buffer is not the 1352 * input buffer, the lock on the input buffer is released and the input buffer 1353 * is freed (its refcount is decremented). 1354 */ 1355 static struct extent_buffer * 1356 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1357 struct extent_buffer *eb, u64 time_seq) 1358 { 1359 struct extent_buffer *eb_rewin; 1360 struct tree_mod_elem *tm; 1361 1362 if (!time_seq) 1363 return eb; 1364 1365 if (btrfs_header_level(eb) == 0) 1366 return eb; 1367 1368 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1369 if (!tm) 1370 return eb; 1371 1372 btrfs_set_path_blocking(path); 1373 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1374 1375 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1376 BUG_ON(tm->slot != 0); 1377 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1378 fs_info->tree_root->nodesize); 1379 if (!eb_rewin) { 1380 btrfs_tree_read_unlock_blocking(eb); 1381 free_extent_buffer(eb); 1382 return NULL; 1383 } 1384 btrfs_set_header_bytenr(eb_rewin, eb->start); 1385 btrfs_set_header_backref_rev(eb_rewin, 1386 btrfs_header_backref_rev(eb)); 1387 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1388 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1389 } else { 1390 eb_rewin = btrfs_clone_extent_buffer(eb); 1391 if (!eb_rewin) { 1392 btrfs_tree_read_unlock_blocking(eb); 1393 free_extent_buffer(eb); 1394 return NULL; 1395 } 1396 } 1397 1398 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1399 btrfs_tree_read_unlock_blocking(eb); 1400 free_extent_buffer(eb); 1401 1402 extent_buffer_get(eb_rewin); 1403 btrfs_tree_read_lock(eb_rewin); 1404 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1405 WARN_ON(btrfs_header_nritems(eb_rewin) > 1406 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1407 1408 return eb_rewin; 1409 } 1410 1411 /* 1412 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1413 * value. If there are no changes, the current root->root_node is returned. If 1414 * anything changed in between, there's a fresh buffer allocated on which the 1415 * rewind operations are done. In any case, the returned buffer is read locked. 1416 * Returns NULL on error (with no locks held). 1417 */ 1418 static inline struct extent_buffer * 1419 get_old_root(struct btrfs_root *root, u64 time_seq) 1420 { 1421 struct tree_mod_elem *tm; 1422 struct extent_buffer *eb = NULL; 1423 struct extent_buffer *eb_root; 1424 struct extent_buffer *old; 1425 struct tree_mod_root *old_root = NULL; 1426 u64 old_generation = 0; 1427 u64 logical; 1428 u32 blocksize; 1429 1430 eb_root = btrfs_read_lock_root_node(root); 1431 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1432 if (!tm) 1433 return eb_root; 1434 1435 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1436 old_root = &tm->old_root; 1437 old_generation = tm->generation; 1438 logical = old_root->logical; 1439 } else { 1440 logical = eb_root->start; 1441 } 1442 1443 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1444 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1445 btrfs_tree_read_unlock(eb_root); 1446 free_extent_buffer(eb_root); 1447 blocksize = btrfs_level_size(root, old_root->level); 1448 old = read_tree_block(root, logical, blocksize, 0); 1449 if (WARN_ON(!old || !extent_buffer_uptodate(old))) { 1450 free_extent_buffer(old); 1451 btrfs_warn(root->fs_info, 1452 "failed to read tree block %llu from get_old_root", logical); 1453 } else { 1454 eb = btrfs_clone_extent_buffer(old); 1455 free_extent_buffer(old); 1456 } 1457 } else if (old_root) { 1458 btrfs_tree_read_unlock(eb_root); 1459 free_extent_buffer(eb_root); 1460 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1461 } else { 1462 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1463 eb = btrfs_clone_extent_buffer(eb_root); 1464 btrfs_tree_read_unlock_blocking(eb_root); 1465 free_extent_buffer(eb_root); 1466 } 1467 1468 if (!eb) 1469 return NULL; 1470 extent_buffer_get(eb); 1471 btrfs_tree_read_lock(eb); 1472 if (old_root) { 1473 btrfs_set_header_bytenr(eb, eb->start); 1474 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1475 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1476 btrfs_set_header_level(eb, old_root->level); 1477 btrfs_set_header_generation(eb, old_generation); 1478 } 1479 if (tm) 1480 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1481 else 1482 WARN_ON(btrfs_header_level(eb) != 0); 1483 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1484 1485 return eb; 1486 } 1487 1488 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1489 { 1490 struct tree_mod_elem *tm; 1491 int level; 1492 struct extent_buffer *eb_root = btrfs_root_node(root); 1493 1494 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1495 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1496 level = tm->old_root.level; 1497 } else { 1498 level = btrfs_header_level(eb_root); 1499 } 1500 free_extent_buffer(eb_root); 1501 1502 return level; 1503 } 1504 1505 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1506 struct btrfs_root *root, 1507 struct extent_buffer *buf) 1508 { 1509 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 1510 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state))) 1511 return 0; 1512 #endif 1513 /* ensure we can see the force_cow */ 1514 smp_rmb(); 1515 1516 /* 1517 * We do not need to cow a block if 1518 * 1) this block is not created or changed in this transaction; 1519 * 2) this block does not belong to TREE_RELOC tree; 1520 * 3) the root is not forced COW. 1521 * 1522 * What is forced COW: 1523 * when we create snapshot during commiting the transaction, 1524 * after we've finished coping src root, we must COW the shared 1525 * block to ensure the metadata consistency. 1526 */ 1527 if (btrfs_header_generation(buf) == trans->transid && 1528 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1529 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1530 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1531 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1532 return 0; 1533 return 1; 1534 } 1535 1536 /* 1537 * cows a single block, see __btrfs_cow_block for the real work. 1538 * This version of it has extra checks so that a block isn't cow'd more than 1539 * once per transaction, as long as it hasn't been written yet 1540 */ 1541 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1542 struct btrfs_root *root, struct extent_buffer *buf, 1543 struct extent_buffer *parent, int parent_slot, 1544 struct extent_buffer **cow_ret) 1545 { 1546 u64 search_start; 1547 int ret; 1548 1549 if (trans->transaction != root->fs_info->running_transaction) 1550 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1551 trans->transid, 1552 root->fs_info->running_transaction->transid); 1553 1554 if (trans->transid != root->fs_info->generation) 1555 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1556 trans->transid, root->fs_info->generation); 1557 1558 if (!should_cow_block(trans, root, buf)) { 1559 *cow_ret = buf; 1560 return 0; 1561 } 1562 1563 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1564 1565 if (parent) 1566 btrfs_set_lock_blocking(parent); 1567 btrfs_set_lock_blocking(buf); 1568 1569 ret = __btrfs_cow_block(trans, root, buf, parent, 1570 parent_slot, cow_ret, search_start, 0); 1571 1572 trace_btrfs_cow_block(root, buf, *cow_ret); 1573 1574 return ret; 1575 } 1576 1577 /* 1578 * helper function for defrag to decide if two blocks pointed to by a 1579 * node are actually close by 1580 */ 1581 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1582 { 1583 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1584 return 1; 1585 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1586 return 1; 1587 return 0; 1588 } 1589 1590 /* 1591 * compare two keys in a memcmp fashion 1592 */ 1593 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1594 { 1595 struct btrfs_key k1; 1596 1597 btrfs_disk_key_to_cpu(&k1, disk); 1598 1599 return btrfs_comp_cpu_keys(&k1, k2); 1600 } 1601 1602 /* 1603 * same as comp_keys only with two btrfs_key's 1604 */ 1605 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1606 { 1607 if (k1->objectid > k2->objectid) 1608 return 1; 1609 if (k1->objectid < k2->objectid) 1610 return -1; 1611 if (k1->type > k2->type) 1612 return 1; 1613 if (k1->type < k2->type) 1614 return -1; 1615 if (k1->offset > k2->offset) 1616 return 1; 1617 if (k1->offset < k2->offset) 1618 return -1; 1619 return 0; 1620 } 1621 1622 /* 1623 * this is used by the defrag code to go through all the 1624 * leaves pointed to by a node and reallocate them so that 1625 * disk order is close to key order 1626 */ 1627 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1628 struct btrfs_root *root, struct extent_buffer *parent, 1629 int start_slot, u64 *last_ret, 1630 struct btrfs_key *progress) 1631 { 1632 struct extent_buffer *cur; 1633 u64 blocknr; 1634 u64 gen; 1635 u64 search_start = *last_ret; 1636 u64 last_block = 0; 1637 u64 other; 1638 u32 parent_nritems; 1639 int end_slot; 1640 int i; 1641 int err = 0; 1642 int parent_level; 1643 int uptodate; 1644 u32 blocksize; 1645 int progress_passed = 0; 1646 struct btrfs_disk_key disk_key; 1647 1648 parent_level = btrfs_header_level(parent); 1649 1650 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1651 WARN_ON(trans->transid != root->fs_info->generation); 1652 1653 parent_nritems = btrfs_header_nritems(parent); 1654 blocksize = btrfs_level_size(root, parent_level - 1); 1655 end_slot = parent_nritems; 1656 1657 if (parent_nritems == 1) 1658 return 0; 1659 1660 btrfs_set_lock_blocking(parent); 1661 1662 for (i = start_slot; i < end_slot; i++) { 1663 int close = 1; 1664 1665 btrfs_node_key(parent, &disk_key, i); 1666 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1667 continue; 1668 1669 progress_passed = 1; 1670 blocknr = btrfs_node_blockptr(parent, i); 1671 gen = btrfs_node_ptr_generation(parent, i); 1672 if (last_block == 0) 1673 last_block = blocknr; 1674 1675 if (i > 0) { 1676 other = btrfs_node_blockptr(parent, i - 1); 1677 close = close_blocks(blocknr, other, blocksize); 1678 } 1679 if (!close && i < end_slot - 2) { 1680 other = btrfs_node_blockptr(parent, i + 1); 1681 close = close_blocks(blocknr, other, blocksize); 1682 } 1683 if (close) { 1684 last_block = blocknr; 1685 continue; 1686 } 1687 1688 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1689 if (cur) 1690 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1691 else 1692 uptodate = 0; 1693 if (!cur || !uptodate) { 1694 if (!cur) { 1695 cur = read_tree_block(root, blocknr, 1696 blocksize, gen); 1697 if (!cur || !extent_buffer_uptodate(cur)) { 1698 free_extent_buffer(cur); 1699 return -EIO; 1700 } 1701 } else if (!uptodate) { 1702 err = btrfs_read_buffer(cur, gen); 1703 if (err) { 1704 free_extent_buffer(cur); 1705 return err; 1706 } 1707 } 1708 } 1709 if (search_start == 0) 1710 search_start = last_block; 1711 1712 btrfs_tree_lock(cur); 1713 btrfs_set_lock_blocking(cur); 1714 err = __btrfs_cow_block(trans, root, cur, parent, i, 1715 &cur, search_start, 1716 min(16 * blocksize, 1717 (end_slot - i) * blocksize)); 1718 if (err) { 1719 btrfs_tree_unlock(cur); 1720 free_extent_buffer(cur); 1721 break; 1722 } 1723 search_start = cur->start; 1724 last_block = cur->start; 1725 *last_ret = search_start; 1726 btrfs_tree_unlock(cur); 1727 free_extent_buffer(cur); 1728 } 1729 return err; 1730 } 1731 1732 /* 1733 * The leaf data grows from end-to-front in the node. 1734 * this returns the address of the start of the last item, 1735 * which is the stop of the leaf data stack 1736 */ 1737 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1738 struct extent_buffer *leaf) 1739 { 1740 u32 nr = btrfs_header_nritems(leaf); 1741 if (nr == 0) 1742 return BTRFS_LEAF_DATA_SIZE(root); 1743 return btrfs_item_offset_nr(leaf, nr - 1); 1744 } 1745 1746 1747 /* 1748 * search for key in the extent_buffer. The items start at offset p, 1749 * and they are item_size apart. There are 'max' items in p. 1750 * 1751 * the slot in the array is returned via slot, and it points to 1752 * the place where you would insert key if it is not found in 1753 * the array. 1754 * 1755 * slot may point to max if the key is bigger than all of the keys 1756 */ 1757 static noinline int generic_bin_search(struct extent_buffer *eb, 1758 unsigned long p, 1759 int item_size, struct btrfs_key *key, 1760 int max, int *slot) 1761 { 1762 int low = 0; 1763 int high = max; 1764 int mid; 1765 int ret; 1766 struct btrfs_disk_key *tmp = NULL; 1767 struct btrfs_disk_key unaligned; 1768 unsigned long offset; 1769 char *kaddr = NULL; 1770 unsigned long map_start = 0; 1771 unsigned long map_len = 0; 1772 int err; 1773 1774 while (low < high) { 1775 mid = (low + high) / 2; 1776 offset = p + mid * item_size; 1777 1778 if (!kaddr || offset < map_start || 1779 (offset + sizeof(struct btrfs_disk_key)) > 1780 map_start + map_len) { 1781 1782 err = map_private_extent_buffer(eb, offset, 1783 sizeof(struct btrfs_disk_key), 1784 &kaddr, &map_start, &map_len); 1785 1786 if (!err) { 1787 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1788 map_start); 1789 } else { 1790 read_extent_buffer(eb, &unaligned, 1791 offset, sizeof(unaligned)); 1792 tmp = &unaligned; 1793 } 1794 1795 } else { 1796 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1797 map_start); 1798 } 1799 ret = comp_keys(tmp, key); 1800 1801 if (ret < 0) 1802 low = mid + 1; 1803 else if (ret > 0) 1804 high = mid; 1805 else { 1806 *slot = mid; 1807 return 0; 1808 } 1809 } 1810 *slot = low; 1811 return 1; 1812 } 1813 1814 /* 1815 * simple bin_search frontend that does the right thing for 1816 * leaves vs nodes 1817 */ 1818 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1819 int level, int *slot) 1820 { 1821 if (level == 0) 1822 return generic_bin_search(eb, 1823 offsetof(struct btrfs_leaf, items), 1824 sizeof(struct btrfs_item), 1825 key, btrfs_header_nritems(eb), 1826 slot); 1827 else 1828 return generic_bin_search(eb, 1829 offsetof(struct btrfs_node, ptrs), 1830 sizeof(struct btrfs_key_ptr), 1831 key, btrfs_header_nritems(eb), 1832 slot); 1833 } 1834 1835 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1836 int level, int *slot) 1837 { 1838 return bin_search(eb, key, level, slot); 1839 } 1840 1841 static void root_add_used(struct btrfs_root *root, u32 size) 1842 { 1843 spin_lock(&root->accounting_lock); 1844 btrfs_set_root_used(&root->root_item, 1845 btrfs_root_used(&root->root_item) + size); 1846 spin_unlock(&root->accounting_lock); 1847 } 1848 1849 static void root_sub_used(struct btrfs_root *root, u32 size) 1850 { 1851 spin_lock(&root->accounting_lock); 1852 btrfs_set_root_used(&root->root_item, 1853 btrfs_root_used(&root->root_item) - size); 1854 spin_unlock(&root->accounting_lock); 1855 } 1856 1857 /* given a node and slot number, this reads the blocks it points to. The 1858 * extent buffer is returned with a reference taken (but unlocked). 1859 * NULL is returned on error. 1860 */ 1861 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1862 struct extent_buffer *parent, int slot) 1863 { 1864 int level = btrfs_header_level(parent); 1865 struct extent_buffer *eb; 1866 1867 if (slot < 0) 1868 return NULL; 1869 if (slot >= btrfs_header_nritems(parent)) 1870 return NULL; 1871 1872 BUG_ON(level == 0); 1873 1874 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1875 btrfs_level_size(root, level - 1), 1876 btrfs_node_ptr_generation(parent, slot)); 1877 if (eb && !extent_buffer_uptodate(eb)) { 1878 free_extent_buffer(eb); 1879 eb = NULL; 1880 } 1881 1882 return eb; 1883 } 1884 1885 /* 1886 * node level balancing, used to make sure nodes are in proper order for 1887 * item deletion. We balance from the top down, so we have to make sure 1888 * that a deletion won't leave an node completely empty later on. 1889 */ 1890 static noinline int balance_level(struct btrfs_trans_handle *trans, 1891 struct btrfs_root *root, 1892 struct btrfs_path *path, int level) 1893 { 1894 struct extent_buffer *right = NULL; 1895 struct extent_buffer *mid; 1896 struct extent_buffer *left = NULL; 1897 struct extent_buffer *parent = NULL; 1898 int ret = 0; 1899 int wret; 1900 int pslot; 1901 int orig_slot = path->slots[level]; 1902 u64 orig_ptr; 1903 1904 if (level == 0) 1905 return 0; 1906 1907 mid = path->nodes[level]; 1908 1909 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1910 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1911 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1912 1913 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1914 1915 if (level < BTRFS_MAX_LEVEL - 1) { 1916 parent = path->nodes[level + 1]; 1917 pslot = path->slots[level + 1]; 1918 } 1919 1920 /* 1921 * deal with the case where there is only one pointer in the root 1922 * by promoting the node below to a root 1923 */ 1924 if (!parent) { 1925 struct extent_buffer *child; 1926 1927 if (btrfs_header_nritems(mid) != 1) 1928 return 0; 1929 1930 /* promote the child to a root */ 1931 child = read_node_slot(root, mid, 0); 1932 if (!child) { 1933 ret = -EROFS; 1934 btrfs_std_error(root->fs_info, ret); 1935 goto enospc; 1936 } 1937 1938 btrfs_tree_lock(child); 1939 btrfs_set_lock_blocking(child); 1940 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1941 if (ret) { 1942 btrfs_tree_unlock(child); 1943 free_extent_buffer(child); 1944 goto enospc; 1945 } 1946 1947 tree_mod_log_set_root_pointer(root, child, 1); 1948 rcu_assign_pointer(root->node, child); 1949 1950 add_root_to_dirty_list(root); 1951 btrfs_tree_unlock(child); 1952 1953 path->locks[level] = 0; 1954 path->nodes[level] = NULL; 1955 clean_tree_block(trans, root, mid); 1956 btrfs_tree_unlock(mid); 1957 /* once for the path */ 1958 free_extent_buffer(mid); 1959 1960 root_sub_used(root, mid->len); 1961 btrfs_free_tree_block(trans, root, mid, 0, 1); 1962 /* once for the root ptr */ 1963 free_extent_buffer_stale(mid); 1964 return 0; 1965 } 1966 if (btrfs_header_nritems(mid) > 1967 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1968 return 0; 1969 1970 left = read_node_slot(root, parent, pslot - 1); 1971 if (left) { 1972 btrfs_tree_lock(left); 1973 btrfs_set_lock_blocking(left); 1974 wret = btrfs_cow_block(trans, root, left, 1975 parent, pslot - 1, &left); 1976 if (wret) { 1977 ret = wret; 1978 goto enospc; 1979 } 1980 } 1981 right = read_node_slot(root, parent, pslot + 1); 1982 if (right) { 1983 btrfs_tree_lock(right); 1984 btrfs_set_lock_blocking(right); 1985 wret = btrfs_cow_block(trans, root, right, 1986 parent, pslot + 1, &right); 1987 if (wret) { 1988 ret = wret; 1989 goto enospc; 1990 } 1991 } 1992 1993 /* first, try to make some room in the middle buffer */ 1994 if (left) { 1995 orig_slot += btrfs_header_nritems(left); 1996 wret = push_node_left(trans, root, left, mid, 1); 1997 if (wret < 0) 1998 ret = wret; 1999 } 2000 2001 /* 2002 * then try to empty the right most buffer into the middle 2003 */ 2004 if (right) { 2005 wret = push_node_left(trans, root, mid, right, 1); 2006 if (wret < 0 && wret != -ENOSPC) 2007 ret = wret; 2008 if (btrfs_header_nritems(right) == 0) { 2009 clean_tree_block(trans, root, right); 2010 btrfs_tree_unlock(right); 2011 del_ptr(root, path, level + 1, pslot + 1); 2012 root_sub_used(root, right->len); 2013 btrfs_free_tree_block(trans, root, right, 0, 1); 2014 free_extent_buffer_stale(right); 2015 right = NULL; 2016 } else { 2017 struct btrfs_disk_key right_key; 2018 btrfs_node_key(right, &right_key, 0); 2019 tree_mod_log_set_node_key(root->fs_info, parent, 2020 pslot + 1, 0); 2021 btrfs_set_node_key(parent, &right_key, pslot + 1); 2022 btrfs_mark_buffer_dirty(parent); 2023 } 2024 } 2025 if (btrfs_header_nritems(mid) == 1) { 2026 /* 2027 * we're not allowed to leave a node with one item in the 2028 * tree during a delete. A deletion from lower in the tree 2029 * could try to delete the only pointer in this node. 2030 * So, pull some keys from the left. 2031 * There has to be a left pointer at this point because 2032 * otherwise we would have pulled some pointers from the 2033 * right 2034 */ 2035 if (!left) { 2036 ret = -EROFS; 2037 btrfs_std_error(root->fs_info, ret); 2038 goto enospc; 2039 } 2040 wret = balance_node_right(trans, root, mid, left); 2041 if (wret < 0) { 2042 ret = wret; 2043 goto enospc; 2044 } 2045 if (wret == 1) { 2046 wret = push_node_left(trans, root, left, mid, 1); 2047 if (wret < 0) 2048 ret = wret; 2049 } 2050 BUG_ON(wret == 1); 2051 } 2052 if (btrfs_header_nritems(mid) == 0) { 2053 clean_tree_block(trans, root, mid); 2054 btrfs_tree_unlock(mid); 2055 del_ptr(root, path, level + 1, pslot); 2056 root_sub_used(root, mid->len); 2057 btrfs_free_tree_block(trans, root, mid, 0, 1); 2058 free_extent_buffer_stale(mid); 2059 mid = NULL; 2060 } else { 2061 /* update the parent key to reflect our changes */ 2062 struct btrfs_disk_key mid_key; 2063 btrfs_node_key(mid, &mid_key, 0); 2064 tree_mod_log_set_node_key(root->fs_info, parent, 2065 pslot, 0); 2066 btrfs_set_node_key(parent, &mid_key, pslot); 2067 btrfs_mark_buffer_dirty(parent); 2068 } 2069 2070 /* update the path */ 2071 if (left) { 2072 if (btrfs_header_nritems(left) > orig_slot) { 2073 extent_buffer_get(left); 2074 /* left was locked after cow */ 2075 path->nodes[level] = left; 2076 path->slots[level + 1] -= 1; 2077 path->slots[level] = orig_slot; 2078 if (mid) { 2079 btrfs_tree_unlock(mid); 2080 free_extent_buffer(mid); 2081 } 2082 } else { 2083 orig_slot -= btrfs_header_nritems(left); 2084 path->slots[level] = orig_slot; 2085 } 2086 } 2087 /* double check we haven't messed things up */ 2088 if (orig_ptr != 2089 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2090 BUG(); 2091 enospc: 2092 if (right) { 2093 btrfs_tree_unlock(right); 2094 free_extent_buffer(right); 2095 } 2096 if (left) { 2097 if (path->nodes[level] != left) 2098 btrfs_tree_unlock(left); 2099 free_extent_buffer(left); 2100 } 2101 return ret; 2102 } 2103 2104 /* Node balancing for insertion. Here we only split or push nodes around 2105 * when they are completely full. This is also done top down, so we 2106 * have to be pessimistic. 2107 */ 2108 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2109 struct btrfs_root *root, 2110 struct btrfs_path *path, int level) 2111 { 2112 struct extent_buffer *right = NULL; 2113 struct extent_buffer *mid; 2114 struct extent_buffer *left = NULL; 2115 struct extent_buffer *parent = NULL; 2116 int ret = 0; 2117 int wret; 2118 int pslot; 2119 int orig_slot = path->slots[level]; 2120 2121 if (level == 0) 2122 return 1; 2123 2124 mid = path->nodes[level]; 2125 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2126 2127 if (level < BTRFS_MAX_LEVEL - 1) { 2128 parent = path->nodes[level + 1]; 2129 pslot = path->slots[level + 1]; 2130 } 2131 2132 if (!parent) 2133 return 1; 2134 2135 left = read_node_slot(root, parent, pslot - 1); 2136 2137 /* first, try to make some room in the middle buffer */ 2138 if (left) { 2139 u32 left_nr; 2140 2141 btrfs_tree_lock(left); 2142 btrfs_set_lock_blocking(left); 2143 2144 left_nr = btrfs_header_nritems(left); 2145 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2146 wret = 1; 2147 } else { 2148 ret = btrfs_cow_block(trans, root, left, parent, 2149 pslot - 1, &left); 2150 if (ret) 2151 wret = 1; 2152 else { 2153 wret = push_node_left(trans, root, 2154 left, mid, 0); 2155 } 2156 } 2157 if (wret < 0) 2158 ret = wret; 2159 if (wret == 0) { 2160 struct btrfs_disk_key disk_key; 2161 orig_slot += left_nr; 2162 btrfs_node_key(mid, &disk_key, 0); 2163 tree_mod_log_set_node_key(root->fs_info, parent, 2164 pslot, 0); 2165 btrfs_set_node_key(parent, &disk_key, pslot); 2166 btrfs_mark_buffer_dirty(parent); 2167 if (btrfs_header_nritems(left) > orig_slot) { 2168 path->nodes[level] = left; 2169 path->slots[level + 1] -= 1; 2170 path->slots[level] = orig_slot; 2171 btrfs_tree_unlock(mid); 2172 free_extent_buffer(mid); 2173 } else { 2174 orig_slot -= 2175 btrfs_header_nritems(left); 2176 path->slots[level] = orig_slot; 2177 btrfs_tree_unlock(left); 2178 free_extent_buffer(left); 2179 } 2180 return 0; 2181 } 2182 btrfs_tree_unlock(left); 2183 free_extent_buffer(left); 2184 } 2185 right = read_node_slot(root, parent, pslot + 1); 2186 2187 /* 2188 * then try to empty the right most buffer into the middle 2189 */ 2190 if (right) { 2191 u32 right_nr; 2192 2193 btrfs_tree_lock(right); 2194 btrfs_set_lock_blocking(right); 2195 2196 right_nr = btrfs_header_nritems(right); 2197 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2198 wret = 1; 2199 } else { 2200 ret = btrfs_cow_block(trans, root, right, 2201 parent, pslot + 1, 2202 &right); 2203 if (ret) 2204 wret = 1; 2205 else { 2206 wret = balance_node_right(trans, root, 2207 right, mid); 2208 } 2209 } 2210 if (wret < 0) 2211 ret = wret; 2212 if (wret == 0) { 2213 struct btrfs_disk_key disk_key; 2214 2215 btrfs_node_key(right, &disk_key, 0); 2216 tree_mod_log_set_node_key(root->fs_info, parent, 2217 pslot + 1, 0); 2218 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2219 btrfs_mark_buffer_dirty(parent); 2220 2221 if (btrfs_header_nritems(mid) <= orig_slot) { 2222 path->nodes[level] = right; 2223 path->slots[level + 1] += 1; 2224 path->slots[level] = orig_slot - 2225 btrfs_header_nritems(mid); 2226 btrfs_tree_unlock(mid); 2227 free_extent_buffer(mid); 2228 } else { 2229 btrfs_tree_unlock(right); 2230 free_extent_buffer(right); 2231 } 2232 return 0; 2233 } 2234 btrfs_tree_unlock(right); 2235 free_extent_buffer(right); 2236 } 2237 return 1; 2238 } 2239 2240 /* 2241 * readahead one full node of leaves, finding things that are close 2242 * to the block in 'slot', and triggering ra on them. 2243 */ 2244 static void reada_for_search(struct btrfs_root *root, 2245 struct btrfs_path *path, 2246 int level, int slot, u64 objectid) 2247 { 2248 struct extent_buffer *node; 2249 struct btrfs_disk_key disk_key; 2250 u32 nritems; 2251 u64 search; 2252 u64 target; 2253 u64 nread = 0; 2254 u64 gen; 2255 int direction = path->reada; 2256 struct extent_buffer *eb; 2257 u32 nr; 2258 u32 blocksize; 2259 u32 nscan = 0; 2260 2261 if (level != 1) 2262 return; 2263 2264 if (!path->nodes[level]) 2265 return; 2266 2267 node = path->nodes[level]; 2268 2269 search = btrfs_node_blockptr(node, slot); 2270 blocksize = btrfs_level_size(root, level - 1); 2271 eb = btrfs_find_tree_block(root, search, blocksize); 2272 if (eb) { 2273 free_extent_buffer(eb); 2274 return; 2275 } 2276 2277 target = search; 2278 2279 nritems = btrfs_header_nritems(node); 2280 nr = slot; 2281 2282 while (1) { 2283 if (direction < 0) { 2284 if (nr == 0) 2285 break; 2286 nr--; 2287 } else if (direction > 0) { 2288 nr++; 2289 if (nr >= nritems) 2290 break; 2291 } 2292 if (path->reada < 0 && objectid) { 2293 btrfs_node_key(node, &disk_key, nr); 2294 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2295 break; 2296 } 2297 search = btrfs_node_blockptr(node, nr); 2298 if ((search <= target && target - search <= 65536) || 2299 (search > target && search - target <= 65536)) { 2300 gen = btrfs_node_ptr_generation(node, nr); 2301 readahead_tree_block(root, search, blocksize, gen); 2302 nread += blocksize; 2303 } 2304 nscan++; 2305 if ((nread > 65536 || nscan > 32)) 2306 break; 2307 } 2308 } 2309 2310 static noinline void reada_for_balance(struct btrfs_root *root, 2311 struct btrfs_path *path, int level) 2312 { 2313 int slot; 2314 int nritems; 2315 struct extent_buffer *parent; 2316 struct extent_buffer *eb; 2317 u64 gen; 2318 u64 block1 = 0; 2319 u64 block2 = 0; 2320 int blocksize; 2321 2322 parent = path->nodes[level + 1]; 2323 if (!parent) 2324 return; 2325 2326 nritems = btrfs_header_nritems(parent); 2327 slot = path->slots[level + 1]; 2328 blocksize = btrfs_level_size(root, level); 2329 2330 if (slot > 0) { 2331 block1 = btrfs_node_blockptr(parent, slot - 1); 2332 gen = btrfs_node_ptr_generation(parent, slot - 1); 2333 eb = btrfs_find_tree_block(root, block1, blocksize); 2334 /* 2335 * if we get -eagain from btrfs_buffer_uptodate, we 2336 * don't want to return eagain here. That will loop 2337 * forever 2338 */ 2339 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2340 block1 = 0; 2341 free_extent_buffer(eb); 2342 } 2343 if (slot + 1 < nritems) { 2344 block2 = btrfs_node_blockptr(parent, slot + 1); 2345 gen = btrfs_node_ptr_generation(parent, slot + 1); 2346 eb = btrfs_find_tree_block(root, block2, blocksize); 2347 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2348 block2 = 0; 2349 free_extent_buffer(eb); 2350 } 2351 2352 if (block1) 2353 readahead_tree_block(root, block1, blocksize, 0); 2354 if (block2) 2355 readahead_tree_block(root, block2, blocksize, 0); 2356 } 2357 2358 2359 /* 2360 * when we walk down the tree, it is usually safe to unlock the higher layers 2361 * in the tree. The exceptions are when our path goes through slot 0, because 2362 * operations on the tree might require changing key pointers higher up in the 2363 * tree. 2364 * 2365 * callers might also have set path->keep_locks, which tells this code to keep 2366 * the lock if the path points to the last slot in the block. This is part of 2367 * walking through the tree, and selecting the next slot in the higher block. 2368 * 2369 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2370 * if lowest_unlock is 1, level 0 won't be unlocked 2371 */ 2372 static noinline void unlock_up(struct btrfs_path *path, int level, 2373 int lowest_unlock, int min_write_lock_level, 2374 int *write_lock_level) 2375 { 2376 int i; 2377 int skip_level = level; 2378 int no_skips = 0; 2379 struct extent_buffer *t; 2380 2381 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2382 if (!path->nodes[i]) 2383 break; 2384 if (!path->locks[i]) 2385 break; 2386 if (!no_skips && path->slots[i] == 0) { 2387 skip_level = i + 1; 2388 continue; 2389 } 2390 if (!no_skips && path->keep_locks) { 2391 u32 nritems; 2392 t = path->nodes[i]; 2393 nritems = btrfs_header_nritems(t); 2394 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2395 skip_level = i + 1; 2396 continue; 2397 } 2398 } 2399 if (skip_level < i && i >= lowest_unlock) 2400 no_skips = 1; 2401 2402 t = path->nodes[i]; 2403 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2404 btrfs_tree_unlock_rw(t, path->locks[i]); 2405 path->locks[i] = 0; 2406 if (write_lock_level && 2407 i > min_write_lock_level && 2408 i <= *write_lock_level) { 2409 *write_lock_level = i - 1; 2410 } 2411 } 2412 } 2413 } 2414 2415 /* 2416 * This releases any locks held in the path starting at level and 2417 * going all the way up to the root. 2418 * 2419 * btrfs_search_slot will keep the lock held on higher nodes in a few 2420 * corner cases, such as COW of the block at slot zero in the node. This 2421 * ignores those rules, and it should only be called when there are no 2422 * more updates to be done higher up in the tree. 2423 */ 2424 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2425 { 2426 int i; 2427 2428 if (path->keep_locks) 2429 return; 2430 2431 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2432 if (!path->nodes[i]) 2433 continue; 2434 if (!path->locks[i]) 2435 continue; 2436 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2437 path->locks[i] = 0; 2438 } 2439 } 2440 2441 /* 2442 * helper function for btrfs_search_slot. The goal is to find a block 2443 * in cache without setting the path to blocking. If we find the block 2444 * we return zero and the path is unchanged. 2445 * 2446 * If we can't find the block, we set the path blocking and do some 2447 * reada. -EAGAIN is returned and the search must be repeated. 2448 */ 2449 static int 2450 read_block_for_search(struct btrfs_trans_handle *trans, 2451 struct btrfs_root *root, struct btrfs_path *p, 2452 struct extent_buffer **eb_ret, int level, int slot, 2453 struct btrfs_key *key, u64 time_seq) 2454 { 2455 u64 blocknr; 2456 u64 gen; 2457 u32 blocksize; 2458 struct extent_buffer *b = *eb_ret; 2459 struct extent_buffer *tmp; 2460 int ret; 2461 2462 blocknr = btrfs_node_blockptr(b, slot); 2463 gen = btrfs_node_ptr_generation(b, slot); 2464 blocksize = btrfs_level_size(root, level - 1); 2465 2466 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2467 if (tmp) { 2468 /* first we do an atomic uptodate check */ 2469 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2470 *eb_ret = tmp; 2471 return 0; 2472 } 2473 2474 /* the pages were up to date, but we failed 2475 * the generation number check. Do a full 2476 * read for the generation number that is correct. 2477 * We must do this without dropping locks so 2478 * we can trust our generation number 2479 */ 2480 btrfs_set_path_blocking(p); 2481 2482 /* now we're allowed to do a blocking uptodate check */ 2483 ret = btrfs_read_buffer(tmp, gen); 2484 if (!ret) { 2485 *eb_ret = tmp; 2486 return 0; 2487 } 2488 free_extent_buffer(tmp); 2489 btrfs_release_path(p); 2490 return -EIO; 2491 } 2492 2493 /* 2494 * reduce lock contention at high levels 2495 * of the btree by dropping locks before 2496 * we read. Don't release the lock on the current 2497 * level because we need to walk this node to figure 2498 * out which blocks to read. 2499 */ 2500 btrfs_unlock_up_safe(p, level + 1); 2501 btrfs_set_path_blocking(p); 2502 2503 free_extent_buffer(tmp); 2504 if (p->reada) 2505 reada_for_search(root, p, level, slot, key->objectid); 2506 2507 btrfs_release_path(p); 2508 2509 ret = -EAGAIN; 2510 tmp = read_tree_block(root, blocknr, blocksize, 0); 2511 if (tmp) { 2512 /* 2513 * If the read above didn't mark this buffer up to date, 2514 * it will never end up being up to date. Set ret to EIO now 2515 * and give up so that our caller doesn't loop forever 2516 * on our EAGAINs. 2517 */ 2518 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2519 ret = -EIO; 2520 free_extent_buffer(tmp); 2521 } 2522 return ret; 2523 } 2524 2525 /* 2526 * helper function for btrfs_search_slot. This does all of the checks 2527 * for node-level blocks and does any balancing required based on 2528 * the ins_len. 2529 * 2530 * If no extra work was required, zero is returned. If we had to 2531 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2532 * start over 2533 */ 2534 static int 2535 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2536 struct btrfs_root *root, struct btrfs_path *p, 2537 struct extent_buffer *b, int level, int ins_len, 2538 int *write_lock_level) 2539 { 2540 int ret; 2541 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2542 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2543 int sret; 2544 2545 if (*write_lock_level < level + 1) { 2546 *write_lock_level = level + 1; 2547 btrfs_release_path(p); 2548 goto again; 2549 } 2550 2551 btrfs_set_path_blocking(p); 2552 reada_for_balance(root, p, level); 2553 sret = split_node(trans, root, p, level); 2554 btrfs_clear_path_blocking(p, NULL, 0); 2555 2556 BUG_ON(sret > 0); 2557 if (sret) { 2558 ret = sret; 2559 goto done; 2560 } 2561 b = p->nodes[level]; 2562 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2563 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2564 int sret; 2565 2566 if (*write_lock_level < level + 1) { 2567 *write_lock_level = level + 1; 2568 btrfs_release_path(p); 2569 goto again; 2570 } 2571 2572 btrfs_set_path_blocking(p); 2573 reada_for_balance(root, p, level); 2574 sret = balance_level(trans, root, p, level); 2575 btrfs_clear_path_blocking(p, NULL, 0); 2576 2577 if (sret) { 2578 ret = sret; 2579 goto done; 2580 } 2581 b = p->nodes[level]; 2582 if (!b) { 2583 btrfs_release_path(p); 2584 goto again; 2585 } 2586 BUG_ON(btrfs_header_nritems(b) == 1); 2587 } 2588 return 0; 2589 2590 again: 2591 ret = -EAGAIN; 2592 done: 2593 return ret; 2594 } 2595 2596 static void key_search_validate(struct extent_buffer *b, 2597 struct btrfs_key *key, 2598 int level) 2599 { 2600 #ifdef CONFIG_BTRFS_ASSERT 2601 struct btrfs_disk_key disk_key; 2602 2603 btrfs_cpu_key_to_disk(&disk_key, key); 2604 2605 if (level == 0) 2606 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2607 offsetof(struct btrfs_leaf, items[0].key), 2608 sizeof(disk_key))); 2609 else 2610 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2611 offsetof(struct btrfs_node, ptrs[0].key), 2612 sizeof(disk_key))); 2613 #endif 2614 } 2615 2616 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2617 int level, int *prev_cmp, int *slot) 2618 { 2619 if (*prev_cmp != 0) { 2620 *prev_cmp = bin_search(b, key, level, slot); 2621 return *prev_cmp; 2622 } 2623 2624 key_search_validate(b, key, level); 2625 *slot = 0; 2626 2627 return 0; 2628 } 2629 2630 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path, 2631 u64 iobjectid, u64 ioff, u8 key_type, 2632 struct btrfs_key *found_key) 2633 { 2634 int ret; 2635 struct btrfs_key key; 2636 struct extent_buffer *eb; 2637 struct btrfs_path *path; 2638 2639 key.type = key_type; 2640 key.objectid = iobjectid; 2641 key.offset = ioff; 2642 2643 if (found_path == NULL) { 2644 path = btrfs_alloc_path(); 2645 if (!path) 2646 return -ENOMEM; 2647 } else 2648 path = found_path; 2649 2650 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2651 if ((ret < 0) || (found_key == NULL)) { 2652 if (path != found_path) 2653 btrfs_free_path(path); 2654 return ret; 2655 } 2656 2657 eb = path->nodes[0]; 2658 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2659 ret = btrfs_next_leaf(fs_root, path); 2660 if (ret) 2661 return ret; 2662 eb = path->nodes[0]; 2663 } 2664 2665 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2666 if (found_key->type != key.type || 2667 found_key->objectid != key.objectid) 2668 return 1; 2669 2670 return 0; 2671 } 2672 2673 /* 2674 * look for key in the tree. path is filled in with nodes along the way 2675 * if key is found, we return zero and you can find the item in the leaf 2676 * level of the path (level 0) 2677 * 2678 * If the key isn't found, the path points to the slot where it should 2679 * be inserted, and 1 is returned. If there are other errors during the 2680 * search a negative error number is returned. 2681 * 2682 * if ins_len > 0, nodes and leaves will be split as we walk down the 2683 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2684 * possible) 2685 */ 2686 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2687 *root, struct btrfs_key *key, struct btrfs_path *p, int 2688 ins_len, int cow) 2689 { 2690 struct extent_buffer *b; 2691 int slot; 2692 int ret; 2693 int err; 2694 int level; 2695 int lowest_unlock = 1; 2696 int root_lock; 2697 /* everything at write_lock_level or lower must be write locked */ 2698 int write_lock_level = 0; 2699 u8 lowest_level = 0; 2700 int min_write_lock_level; 2701 int prev_cmp; 2702 2703 lowest_level = p->lowest_level; 2704 WARN_ON(lowest_level && ins_len > 0); 2705 WARN_ON(p->nodes[0] != NULL); 2706 BUG_ON(!cow && ins_len); 2707 2708 if (ins_len < 0) { 2709 lowest_unlock = 2; 2710 2711 /* when we are removing items, we might have to go up to level 2712 * two as we update tree pointers Make sure we keep write 2713 * for those levels as well 2714 */ 2715 write_lock_level = 2; 2716 } else if (ins_len > 0) { 2717 /* 2718 * for inserting items, make sure we have a write lock on 2719 * level 1 so we can update keys 2720 */ 2721 write_lock_level = 1; 2722 } 2723 2724 if (!cow) 2725 write_lock_level = -1; 2726 2727 if (cow && (p->keep_locks || p->lowest_level)) 2728 write_lock_level = BTRFS_MAX_LEVEL; 2729 2730 min_write_lock_level = write_lock_level; 2731 2732 again: 2733 prev_cmp = -1; 2734 /* 2735 * we try very hard to do read locks on the root 2736 */ 2737 root_lock = BTRFS_READ_LOCK; 2738 level = 0; 2739 if (p->search_commit_root) { 2740 /* 2741 * the commit roots are read only 2742 * so we always do read locks 2743 */ 2744 if (p->need_commit_sem) 2745 down_read(&root->fs_info->commit_root_sem); 2746 b = root->commit_root; 2747 extent_buffer_get(b); 2748 level = btrfs_header_level(b); 2749 if (p->need_commit_sem) 2750 up_read(&root->fs_info->commit_root_sem); 2751 if (!p->skip_locking) 2752 btrfs_tree_read_lock(b); 2753 } else { 2754 if (p->skip_locking) { 2755 b = btrfs_root_node(root); 2756 level = btrfs_header_level(b); 2757 } else { 2758 /* we don't know the level of the root node 2759 * until we actually have it read locked 2760 */ 2761 b = btrfs_read_lock_root_node(root); 2762 level = btrfs_header_level(b); 2763 if (level <= write_lock_level) { 2764 /* whoops, must trade for write lock */ 2765 btrfs_tree_read_unlock(b); 2766 free_extent_buffer(b); 2767 b = btrfs_lock_root_node(root); 2768 root_lock = BTRFS_WRITE_LOCK; 2769 2770 /* the level might have changed, check again */ 2771 level = btrfs_header_level(b); 2772 } 2773 } 2774 } 2775 p->nodes[level] = b; 2776 if (!p->skip_locking) 2777 p->locks[level] = root_lock; 2778 2779 while (b) { 2780 level = btrfs_header_level(b); 2781 2782 /* 2783 * setup the path here so we can release it under lock 2784 * contention with the cow code 2785 */ 2786 if (cow) { 2787 /* 2788 * if we don't really need to cow this block 2789 * then we don't want to set the path blocking, 2790 * so we test it here 2791 */ 2792 if (!should_cow_block(trans, root, b)) 2793 goto cow_done; 2794 2795 btrfs_set_path_blocking(p); 2796 2797 /* 2798 * must have write locks on this node and the 2799 * parent 2800 */ 2801 if (level > write_lock_level || 2802 (level + 1 > write_lock_level && 2803 level + 1 < BTRFS_MAX_LEVEL && 2804 p->nodes[level + 1])) { 2805 write_lock_level = level + 1; 2806 btrfs_release_path(p); 2807 goto again; 2808 } 2809 2810 err = btrfs_cow_block(trans, root, b, 2811 p->nodes[level + 1], 2812 p->slots[level + 1], &b); 2813 if (err) { 2814 ret = err; 2815 goto done; 2816 } 2817 } 2818 cow_done: 2819 p->nodes[level] = b; 2820 btrfs_clear_path_blocking(p, NULL, 0); 2821 2822 /* 2823 * we have a lock on b and as long as we aren't changing 2824 * the tree, there is no way to for the items in b to change. 2825 * It is safe to drop the lock on our parent before we 2826 * go through the expensive btree search on b. 2827 * 2828 * If we're inserting or deleting (ins_len != 0), then we might 2829 * be changing slot zero, which may require changing the parent. 2830 * So, we can't drop the lock until after we know which slot 2831 * we're operating on. 2832 */ 2833 if (!ins_len && !p->keep_locks) { 2834 int u = level + 1; 2835 2836 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2837 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2838 p->locks[u] = 0; 2839 } 2840 } 2841 2842 ret = key_search(b, key, level, &prev_cmp, &slot); 2843 2844 if (level != 0) { 2845 int dec = 0; 2846 if (ret && slot > 0) { 2847 dec = 1; 2848 slot -= 1; 2849 } 2850 p->slots[level] = slot; 2851 err = setup_nodes_for_search(trans, root, p, b, level, 2852 ins_len, &write_lock_level); 2853 if (err == -EAGAIN) 2854 goto again; 2855 if (err) { 2856 ret = err; 2857 goto done; 2858 } 2859 b = p->nodes[level]; 2860 slot = p->slots[level]; 2861 2862 /* 2863 * slot 0 is special, if we change the key 2864 * we have to update the parent pointer 2865 * which means we must have a write lock 2866 * on the parent 2867 */ 2868 if (slot == 0 && ins_len && 2869 write_lock_level < level + 1) { 2870 write_lock_level = level + 1; 2871 btrfs_release_path(p); 2872 goto again; 2873 } 2874 2875 unlock_up(p, level, lowest_unlock, 2876 min_write_lock_level, &write_lock_level); 2877 2878 if (level == lowest_level) { 2879 if (dec) 2880 p->slots[level]++; 2881 goto done; 2882 } 2883 2884 err = read_block_for_search(trans, root, p, 2885 &b, level, slot, key, 0); 2886 if (err == -EAGAIN) 2887 goto again; 2888 if (err) { 2889 ret = err; 2890 goto done; 2891 } 2892 2893 if (!p->skip_locking) { 2894 level = btrfs_header_level(b); 2895 if (level <= write_lock_level) { 2896 err = btrfs_try_tree_write_lock(b); 2897 if (!err) { 2898 btrfs_set_path_blocking(p); 2899 btrfs_tree_lock(b); 2900 btrfs_clear_path_blocking(p, b, 2901 BTRFS_WRITE_LOCK); 2902 } 2903 p->locks[level] = BTRFS_WRITE_LOCK; 2904 } else { 2905 err = btrfs_try_tree_read_lock(b); 2906 if (!err) { 2907 btrfs_set_path_blocking(p); 2908 btrfs_tree_read_lock(b); 2909 btrfs_clear_path_blocking(p, b, 2910 BTRFS_READ_LOCK); 2911 } 2912 p->locks[level] = BTRFS_READ_LOCK; 2913 } 2914 p->nodes[level] = b; 2915 } 2916 } else { 2917 p->slots[level] = slot; 2918 if (ins_len > 0 && 2919 btrfs_leaf_free_space(root, b) < ins_len) { 2920 if (write_lock_level < 1) { 2921 write_lock_level = 1; 2922 btrfs_release_path(p); 2923 goto again; 2924 } 2925 2926 btrfs_set_path_blocking(p); 2927 err = split_leaf(trans, root, key, 2928 p, ins_len, ret == 0); 2929 btrfs_clear_path_blocking(p, NULL, 0); 2930 2931 BUG_ON(err > 0); 2932 if (err) { 2933 ret = err; 2934 goto done; 2935 } 2936 } 2937 if (!p->search_for_split) 2938 unlock_up(p, level, lowest_unlock, 2939 min_write_lock_level, &write_lock_level); 2940 goto done; 2941 } 2942 } 2943 ret = 1; 2944 done: 2945 /* 2946 * we don't really know what they plan on doing with the path 2947 * from here on, so for now just mark it as blocking 2948 */ 2949 if (!p->leave_spinning) 2950 btrfs_set_path_blocking(p); 2951 if (ret < 0) 2952 btrfs_release_path(p); 2953 return ret; 2954 } 2955 2956 /* 2957 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2958 * current state of the tree together with the operations recorded in the tree 2959 * modification log to search for the key in a previous version of this tree, as 2960 * denoted by the time_seq parameter. 2961 * 2962 * Naturally, there is no support for insert, delete or cow operations. 2963 * 2964 * The resulting path and return value will be set up as if we called 2965 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2966 */ 2967 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2968 struct btrfs_path *p, u64 time_seq) 2969 { 2970 struct extent_buffer *b; 2971 int slot; 2972 int ret; 2973 int err; 2974 int level; 2975 int lowest_unlock = 1; 2976 u8 lowest_level = 0; 2977 int prev_cmp = -1; 2978 2979 lowest_level = p->lowest_level; 2980 WARN_ON(p->nodes[0] != NULL); 2981 2982 if (p->search_commit_root) { 2983 BUG_ON(time_seq); 2984 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2985 } 2986 2987 again: 2988 b = get_old_root(root, time_seq); 2989 level = btrfs_header_level(b); 2990 p->locks[level] = BTRFS_READ_LOCK; 2991 2992 while (b) { 2993 level = btrfs_header_level(b); 2994 p->nodes[level] = b; 2995 btrfs_clear_path_blocking(p, NULL, 0); 2996 2997 /* 2998 * we have a lock on b and as long as we aren't changing 2999 * the tree, there is no way to for the items in b to change. 3000 * It is safe to drop the lock on our parent before we 3001 * go through the expensive btree search on b. 3002 */ 3003 btrfs_unlock_up_safe(p, level + 1); 3004 3005 /* 3006 * Since we can unwind eb's we want to do a real search every 3007 * time. 3008 */ 3009 prev_cmp = -1; 3010 ret = key_search(b, key, level, &prev_cmp, &slot); 3011 3012 if (level != 0) { 3013 int dec = 0; 3014 if (ret && slot > 0) { 3015 dec = 1; 3016 slot -= 1; 3017 } 3018 p->slots[level] = slot; 3019 unlock_up(p, level, lowest_unlock, 0, NULL); 3020 3021 if (level == lowest_level) { 3022 if (dec) 3023 p->slots[level]++; 3024 goto done; 3025 } 3026 3027 err = read_block_for_search(NULL, root, p, &b, level, 3028 slot, key, time_seq); 3029 if (err == -EAGAIN) 3030 goto again; 3031 if (err) { 3032 ret = err; 3033 goto done; 3034 } 3035 3036 level = btrfs_header_level(b); 3037 err = btrfs_try_tree_read_lock(b); 3038 if (!err) { 3039 btrfs_set_path_blocking(p); 3040 btrfs_tree_read_lock(b); 3041 btrfs_clear_path_blocking(p, b, 3042 BTRFS_READ_LOCK); 3043 } 3044 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3045 if (!b) { 3046 ret = -ENOMEM; 3047 goto done; 3048 } 3049 p->locks[level] = BTRFS_READ_LOCK; 3050 p->nodes[level] = b; 3051 } else { 3052 p->slots[level] = slot; 3053 unlock_up(p, level, lowest_unlock, 0, NULL); 3054 goto done; 3055 } 3056 } 3057 ret = 1; 3058 done: 3059 if (!p->leave_spinning) 3060 btrfs_set_path_blocking(p); 3061 if (ret < 0) 3062 btrfs_release_path(p); 3063 3064 return ret; 3065 } 3066 3067 /* 3068 * helper to use instead of search slot if no exact match is needed but 3069 * instead the next or previous item should be returned. 3070 * When find_higher is true, the next higher item is returned, the next lower 3071 * otherwise. 3072 * When return_any and find_higher are both true, and no higher item is found, 3073 * return the next lower instead. 3074 * When return_any is true and find_higher is false, and no lower item is found, 3075 * return the next higher instead. 3076 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3077 * < 0 on error 3078 */ 3079 int btrfs_search_slot_for_read(struct btrfs_root *root, 3080 struct btrfs_key *key, struct btrfs_path *p, 3081 int find_higher, int return_any) 3082 { 3083 int ret; 3084 struct extent_buffer *leaf; 3085 3086 again: 3087 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3088 if (ret <= 0) 3089 return ret; 3090 /* 3091 * a return value of 1 means the path is at the position where the 3092 * item should be inserted. Normally this is the next bigger item, 3093 * but in case the previous item is the last in a leaf, path points 3094 * to the first free slot in the previous leaf, i.e. at an invalid 3095 * item. 3096 */ 3097 leaf = p->nodes[0]; 3098 3099 if (find_higher) { 3100 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3101 ret = btrfs_next_leaf(root, p); 3102 if (ret <= 0) 3103 return ret; 3104 if (!return_any) 3105 return 1; 3106 /* 3107 * no higher item found, return the next 3108 * lower instead 3109 */ 3110 return_any = 0; 3111 find_higher = 0; 3112 btrfs_release_path(p); 3113 goto again; 3114 } 3115 } else { 3116 if (p->slots[0] == 0) { 3117 ret = btrfs_prev_leaf(root, p); 3118 if (ret < 0) 3119 return ret; 3120 if (!ret) { 3121 leaf = p->nodes[0]; 3122 if (p->slots[0] == btrfs_header_nritems(leaf)) 3123 p->slots[0]--; 3124 return 0; 3125 } 3126 if (!return_any) 3127 return 1; 3128 /* 3129 * no lower item found, return the next 3130 * higher instead 3131 */ 3132 return_any = 0; 3133 find_higher = 1; 3134 btrfs_release_path(p); 3135 goto again; 3136 } else { 3137 --p->slots[0]; 3138 } 3139 } 3140 return 0; 3141 } 3142 3143 /* 3144 * adjust the pointers going up the tree, starting at level 3145 * making sure the right key of each node is points to 'key'. 3146 * This is used after shifting pointers to the left, so it stops 3147 * fixing up pointers when a given leaf/node is not in slot 0 of the 3148 * higher levels 3149 * 3150 */ 3151 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 3152 struct btrfs_disk_key *key, int level) 3153 { 3154 int i; 3155 struct extent_buffer *t; 3156 3157 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3158 int tslot = path->slots[i]; 3159 if (!path->nodes[i]) 3160 break; 3161 t = path->nodes[i]; 3162 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 3163 btrfs_set_node_key(t, key, tslot); 3164 btrfs_mark_buffer_dirty(path->nodes[i]); 3165 if (tslot != 0) 3166 break; 3167 } 3168 } 3169 3170 /* 3171 * update item key. 3172 * 3173 * This function isn't completely safe. It's the caller's responsibility 3174 * that the new key won't break the order 3175 */ 3176 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 3177 struct btrfs_key *new_key) 3178 { 3179 struct btrfs_disk_key disk_key; 3180 struct extent_buffer *eb; 3181 int slot; 3182 3183 eb = path->nodes[0]; 3184 slot = path->slots[0]; 3185 if (slot > 0) { 3186 btrfs_item_key(eb, &disk_key, slot - 1); 3187 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3188 } 3189 if (slot < btrfs_header_nritems(eb) - 1) { 3190 btrfs_item_key(eb, &disk_key, slot + 1); 3191 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3192 } 3193 3194 btrfs_cpu_key_to_disk(&disk_key, new_key); 3195 btrfs_set_item_key(eb, &disk_key, slot); 3196 btrfs_mark_buffer_dirty(eb); 3197 if (slot == 0) 3198 fixup_low_keys(root, path, &disk_key, 1); 3199 } 3200 3201 /* 3202 * try to push data from one node into the next node left in the 3203 * tree. 3204 * 3205 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3206 * error, and > 0 if there was no room in the left hand block. 3207 */ 3208 static int push_node_left(struct btrfs_trans_handle *trans, 3209 struct btrfs_root *root, struct extent_buffer *dst, 3210 struct extent_buffer *src, int empty) 3211 { 3212 int push_items = 0; 3213 int src_nritems; 3214 int dst_nritems; 3215 int ret = 0; 3216 3217 src_nritems = btrfs_header_nritems(src); 3218 dst_nritems = btrfs_header_nritems(dst); 3219 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3220 WARN_ON(btrfs_header_generation(src) != trans->transid); 3221 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3222 3223 if (!empty && src_nritems <= 8) 3224 return 1; 3225 3226 if (push_items <= 0) 3227 return 1; 3228 3229 if (empty) { 3230 push_items = min(src_nritems, push_items); 3231 if (push_items < src_nritems) { 3232 /* leave at least 8 pointers in the node if 3233 * we aren't going to empty it 3234 */ 3235 if (src_nritems - push_items < 8) { 3236 if (push_items <= 8) 3237 return 1; 3238 push_items -= 8; 3239 } 3240 } 3241 } else 3242 push_items = min(src_nritems - 8, push_items); 3243 3244 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3245 push_items); 3246 if (ret) { 3247 btrfs_abort_transaction(trans, root, ret); 3248 return ret; 3249 } 3250 copy_extent_buffer(dst, src, 3251 btrfs_node_key_ptr_offset(dst_nritems), 3252 btrfs_node_key_ptr_offset(0), 3253 push_items * sizeof(struct btrfs_key_ptr)); 3254 3255 if (push_items < src_nritems) { 3256 /* 3257 * don't call tree_mod_log_eb_move here, key removal was already 3258 * fully logged by tree_mod_log_eb_copy above. 3259 */ 3260 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3261 btrfs_node_key_ptr_offset(push_items), 3262 (src_nritems - push_items) * 3263 sizeof(struct btrfs_key_ptr)); 3264 } 3265 btrfs_set_header_nritems(src, src_nritems - push_items); 3266 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3267 btrfs_mark_buffer_dirty(src); 3268 btrfs_mark_buffer_dirty(dst); 3269 3270 return ret; 3271 } 3272 3273 /* 3274 * try to push data from one node into the next node right in the 3275 * tree. 3276 * 3277 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3278 * error, and > 0 if there was no room in the right hand block. 3279 * 3280 * this will only push up to 1/2 the contents of the left node over 3281 */ 3282 static int balance_node_right(struct btrfs_trans_handle *trans, 3283 struct btrfs_root *root, 3284 struct extent_buffer *dst, 3285 struct extent_buffer *src) 3286 { 3287 int push_items = 0; 3288 int max_push; 3289 int src_nritems; 3290 int dst_nritems; 3291 int ret = 0; 3292 3293 WARN_ON(btrfs_header_generation(src) != trans->transid); 3294 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3295 3296 src_nritems = btrfs_header_nritems(src); 3297 dst_nritems = btrfs_header_nritems(dst); 3298 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3299 if (push_items <= 0) 3300 return 1; 3301 3302 if (src_nritems < 4) 3303 return 1; 3304 3305 max_push = src_nritems / 2 + 1; 3306 /* don't try to empty the node */ 3307 if (max_push >= src_nritems) 3308 return 1; 3309 3310 if (max_push < push_items) 3311 push_items = max_push; 3312 3313 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3314 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3315 btrfs_node_key_ptr_offset(0), 3316 (dst_nritems) * 3317 sizeof(struct btrfs_key_ptr)); 3318 3319 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3320 src_nritems - push_items, push_items); 3321 if (ret) { 3322 btrfs_abort_transaction(trans, root, ret); 3323 return ret; 3324 } 3325 copy_extent_buffer(dst, src, 3326 btrfs_node_key_ptr_offset(0), 3327 btrfs_node_key_ptr_offset(src_nritems - push_items), 3328 push_items * sizeof(struct btrfs_key_ptr)); 3329 3330 btrfs_set_header_nritems(src, src_nritems - push_items); 3331 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3332 3333 btrfs_mark_buffer_dirty(src); 3334 btrfs_mark_buffer_dirty(dst); 3335 3336 return ret; 3337 } 3338 3339 /* 3340 * helper function to insert a new root level in the tree. 3341 * A new node is allocated, and a single item is inserted to 3342 * point to the existing root 3343 * 3344 * returns zero on success or < 0 on failure. 3345 */ 3346 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3347 struct btrfs_root *root, 3348 struct btrfs_path *path, int level) 3349 { 3350 u64 lower_gen; 3351 struct extent_buffer *lower; 3352 struct extent_buffer *c; 3353 struct extent_buffer *old; 3354 struct btrfs_disk_key lower_key; 3355 3356 BUG_ON(path->nodes[level]); 3357 BUG_ON(path->nodes[level-1] != root->node); 3358 3359 lower = path->nodes[level-1]; 3360 if (level == 1) 3361 btrfs_item_key(lower, &lower_key, 0); 3362 else 3363 btrfs_node_key(lower, &lower_key, 0); 3364 3365 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3366 root->root_key.objectid, &lower_key, 3367 level, root->node->start, 0); 3368 if (IS_ERR(c)) 3369 return PTR_ERR(c); 3370 3371 root_add_used(root, root->nodesize); 3372 3373 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3374 btrfs_set_header_nritems(c, 1); 3375 btrfs_set_header_level(c, level); 3376 btrfs_set_header_bytenr(c, c->start); 3377 btrfs_set_header_generation(c, trans->transid); 3378 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3379 btrfs_set_header_owner(c, root->root_key.objectid); 3380 3381 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3382 BTRFS_FSID_SIZE); 3383 3384 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3385 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3386 3387 btrfs_set_node_key(c, &lower_key, 0); 3388 btrfs_set_node_blockptr(c, 0, lower->start); 3389 lower_gen = btrfs_header_generation(lower); 3390 WARN_ON(lower_gen != trans->transid); 3391 3392 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3393 3394 btrfs_mark_buffer_dirty(c); 3395 3396 old = root->node; 3397 tree_mod_log_set_root_pointer(root, c, 0); 3398 rcu_assign_pointer(root->node, c); 3399 3400 /* the super has an extra ref to root->node */ 3401 free_extent_buffer(old); 3402 3403 add_root_to_dirty_list(root); 3404 extent_buffer_get(c); 3405 path->nodes[level] = c; 3406 path->locks[level] = BTRFS_WRITE_LOCK; 3407 path->slots[level] = 0; 3408 return 0; 3409 } 3410 3411 /* 3412 * worker function to insert a single pointer in a node. 3413 * the node should have enough room for the pointer already 3414 * 3415 * slot and level indicate where you want the key to go, and 3416 * blocknr is the block the key points to. 3417 */ 3418 static void insert_ptr(struct btrfs_trans_handle *trans, 3419 struct btrfs_root *root, struct btrfs_path *path, 3420 struct btrfs_disk_key *key, u64 bytenr, 3421 int slot, int level) 3422 { 3423 struct extent_buffer *lower; 3424 int nritems; 3425 int ret; 3426 3427 BUG_ON(!path->nodes[level]); 3428 btrfs_assert_tree_locked(path->nodes[level]); 3429 lower = path->nodes[level]; 3430 nritems = btrfs_header_nritems(lower); 3431 BUG_ON(slot > nritems); 3432 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3433 if (slot != nritems) { 3434 if (level) 3435 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3436 slot, nritems - slot); 3437 memmove_extent_buffer(lower, 3438 btrfs_node_key_ptr_offset(slot + 1), 3439 btrfs_node_key_ptr_offset(slot), 3440 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3441 } 3442 if (level) { 3443 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3444 MOD_LOG_KEY_ADD, GFP_NOFS); 3445 BUG_ON(ret < 0); 3446 } 3447 btrfs_set_node_key(lower, key, slot); 3448 btrfs_set_node_blockptr(lower, slot, bytenr); 3449 WARN_ON(trans->transid == 0); 3450 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3451 btrfs_set_header_nritems(lower, nritems + 1); 3452 btrfs_mark_buffer_dirty(lower); 3453 } 3454 3455 /* 3456 * split the node at the specified level in path in two. 3457 * The path is corrected to point to the appropriate node after the split 3458 * 3459 * Before splitting this tries to make some room in the node by pushing 3460 * left and right, if either one works, it returns right away. 3461 * 3462 * returns 0 on success and < 0 on failure 3463 */ 3464 static noinline int split_node(struct btrfs_trans_handle *trans, 3465 struct btrfs_root *root, 3466 struct btrfs_path *path, int level) 3467 { 3468 struct extent_buffer *c; 3469 struct extent_buffer *split; 3470 struct btrfs_disk_key disk_key; 3471 int mid; 3472 int ret; 3473 u32 c_nritems; 3474 3475 c = path->nodes[level]; 3476 WARN_ON(btrfs_header_generation(c) != trans->transid); 3477 if (c == root->node) { 3478 /* 3479 * trying to split the root, lets make a new one 3480 * 3481 * tree mod log: We don't log_removal old root in 3482 * insert_new_root, because that root buffer will be kept as a 3483 * normal node. We are going to log removal of half of the 3484 * elements below with tree_mod_log_eb_copy. We're holding a 3485 * tree lock on the buffer, which is why we cannot race with 3486 * other tree_mod_log users. 3487 */ 3488 ret = insert_new_root(trans, root, path, level + 1); 3489 if (ret) 3490 return ret; 3491 } else { 3492 ret = push_nodes_for_insert(trans, root, path, level); 3493 c = path->nodes[level]; 3494 if (!ret && btrfs_header_nritems(c) < 3495 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3496 return 0; 3497 if (ret < 0) 3498 return ret; 3499 } 3500 3501 c_nritems = btrfs_header_nritems(c); 3502 mid = (c_nritems + 1) / 2; 3503 btrfs_node_key(c, &disk_key, mid); 3504 3505 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3506 root->root_key.objectid, 3507 &disk_key, level, c->start, 0); 3508 if (IS_ERR(split)) 3509 return PTR_ERR(split); 3510 3511 root_add_used(root, root->nodesize); 3512 3513 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3514 btrfs_set_header_level(split, btrfs_header_level(c)); 3515 btrfs_set_header_bytenr(split, split->start); 3516 btrfs_set_header_generation(split, trans->transid); 3517 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3518 btrfs_set_header_owner(split, root->root_key.objectid); 3519 write_extent_buffer(split, root->fs_info->fsid, 3520 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3521 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3522 btrfs_header_chunk_tree_uuid(split), 3523 BTRFS_UUID_SIZE); 3524 3525 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3526 mid, c_nritems - mid); 3527 if (ret) { 3528 btrfs_abort_transaction(trans, root, ret); 3529 return ret; 3530 } 3531 copy_extent_buffer(split, c, 3532 btrfs_node_key_ptr_offset(0), 3533 btrfs_node_key_ptr_offset(mid), 3534 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3535 btrfs_set_header_nritems(split, c_nritems - mid); 3536 btrfs_set_header_nritems(c, mid); 3537 ret = 0; 3538 3539 btrfs_mark_buffer_dirty(c); 3540 btrfs_mark_buffer_dirty(split); 3541 3542 insert_ptr(trans, root, path, &disk_key, split->start, 3543 path->slots[level + 1] + 1, level + 1); 3544 3545 if (path->slots[level] >= mid) { 3546 path->slots[level] -= mid; 3547 btrfs_tree_unlock(c); 3548 free_extent_buffer(c); 3549 path->nodes[level] = split; 3550 path->slots[level + 1] += 1; 3551 } else { 3552 btrfs_tree_unlock(split); 3553 free_extent_buffer(split); 3554 } 3555 return ret; 3556 } 3557 3558 /* 3559 * how many bytes are required to store the items in a leaf. start 3560 * and nr indicate which items in the leaf to check. This totals up the 3561 * space used both by the item structs and the item data 3562 */ 3563 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3564 { 3565 struct btrfs_item *start_item; 3566 struct btrfs_item *end_item; 3567 struct btrfs_map_token token; 3568 int data_len; 3569 int nritems = btrfs_header_nritems(l); 3570 int end = min(nritems, start + nr) - 1; 3571 3572 if (!nr) 3573 return 0; 3574 btrfs_init_map_token(&token); 3575 start_item = btrfs_item_nr(start); 3576 end_item = btrfs_item_nr(end); 3577 data_len = btrfs_token_item_offset(l, start_item, &token) + 3578 btrfs_token_item_size(l, start_item, &token); 3579 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3580 data_len += sizeof(struct btrfs_item) * nr; 3581 WARN_ON(data_len < 0); 3582 return data_len; 3583 } 3584 3585 /* 3586 * The space between the end of the leaf items and 3587 * the start of the leaf data. IOW, how much room 3588 * the leaf has left for both items and data 3589 */ 3590 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3591 struct extent_buffer *leaf) 3592 { 3593 int nritems = btrfs_header_nritems(leaf); 3594 int ret; 3595 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3596 if (ret < 0) { 3597 btrfs_crit(root->fs_info, 3598 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3599 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3600 leaf_space_used(leaf, 0, nritems), nritems); 3601 } 3602 return ret; 3603 } 3604 3605 /* 3606 * min slot controls the lowest index we're willing to push to the 3607 * right. We'll push up to and including min_slot, but no lower 3608 */ 3609 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3610 struct btrfs_root *root, 3611 struct btrfs_path *path, 3612 int data_size, int empty, 3613 struct extent_buffer *right, 3614 int free_space, u32 left_nritems, 3615 u32 min_slot) 3616 { 3617 struct extent_buffer *left = path->nodes[0]; 3618 struct extent_buffer *upper = path->nodes[1]; 3619 struct btrfs_map_token token; 3620 struct btrfs_disk_key disk_key; 3621 int slot; 3622 u32 i; 3623 int push_space = 0; 3624 int push_items = 0; 3625 struct btrfs_item *item; 3626 u32 nr; 3627 u32 right_nritems; 3628 u32 data_end; 3629 u32 this_item_size; 3630 3631 btrfs_init_map_token(&token); 3632 3633 if (empty) 3634 nr = 0; 3635 else 3636 nr = max_t(u32, 1, min_slot); 3637 3638 if (path->slots[0] >= left_nritems) 3639 push_space += data_size; 3640 3641 slot = path->slots[1]; 3642 i = left_nritems - 1; 3643 while (i >= nr) { 3644 item = btrfs_item_nr(i); 3645 3646 if (!empty && push_items > 0) { 3647 if (path->slots[0] > i) 3648 break; 3649 if (path->slots[0] == i) { 3650 int space = btrfs_leaf_free_space(root, left); 3651 if (space + push_space * 2 > free_space) 3652 break; 3653 } 3654 } 3655 3656 if (path->slots[0] == i) 3657 push_space += data_size; 3658 3659 this_item_size = btrfs_item_size(left, item); 3660 if (this_item_size + sizeof(*item) + push_space > free_space) 3661 break; 3662 3663 push_items++; 3664 push_space += this_item_size + sizeof(*item); 3665 if (i == 0) 3666 break; 3667 i--; 3668 } 3669 3670 if (push_items == 0) 3671 goto out_unlock; 3672 3673 WARN_ON(!empty && push_items == left_nritems); 3674 3675 /* push left to right */ 3676 right_nritems = btrfs_header_nritems(right); 3677 3678 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3679 push_space -= leaf_data_end(root, left); 3680 3681 /* make room in the right data area */ 3682 data_end = leaf_data_end(root, right); 3683 memmove_extent_buffer(right, 3684 btrfs_leaf_data(right) + data_end - push_space, 3685 btrfs_leaf_data(right) + data_end, 3686 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3687 3688 /* copy from the left data area */ 3689 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3690 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3691 btrfs_leaf_data(left) + leaf_data_end(root, left), 3692 push_space); 3693 3694 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3695 btrfs_item_nr_offset(0), 3696 right_nritems * sizeof(struct btrfs_item)); 3697 3698 /* copy the items from left to right */ 3699 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3700 btrfs_item_nr_offset(left_nritems - push_items), 3701 push_items * sizeof(struct btrfs_item)); 3702 3703 /* update the item pointers */ 3704 right_nritems += push_items; 3705 btrfs_set_header_nritems(right, right_nritems); 3706 push_space = BTRFS_LEAF_DATA_SIZE(root); 3707 for (i = 0; i < right_nritems; i++) { 3708 item = btrfs_item_nr(i); 3709 push_space -= btrfs_token_item_size(right, item, &token); 3710 btrfs_set_token_item_offset(right, item, push_space, &token); 3711 } 3712 3713 left_nritems -= push_items; 3714 btrfs_set_header_nritems(left, left_nritems); 3715 3716 if (left_nritems) 3717 btrfs_mark_buffer_dirty(left); 3718 else 3719 clean_tree_block(trans, root, left); 3720 3721 btrfs_mark_buffer_dirty(right); 3722 3723 btrfs_item_key(right, &disk_key, 0); 3724 btrfs_set_node_key(upper, &disk_key, slot + 1); 3725 btrfs_mark_buffer_dirty(upper); 3726 3727 /* then fixup the leaf pointer in the path */ 3728 if (path->slots[0] >= left_nritems) { 3729 path->slots[0] -= left_nritems; 3730 if (btrfs_header_nritems(path->nodes[0]) == 0) 3731 clean_tree_block(trans, root, path->nodes[0]); 3732 btrfs_tree_unlock(path->nodes[0]); 3733 free_extent_buffer(path->nodes[0]); 3734 path->nodes[0] = right; 3735 path->slots[1] += 1; 3736 } else { 3737 btrfs_tree_unlock(right); 3738 free_extent_buffer(right); 3739 } 3740 return 0; 3741 3742 out_unlock: 3743 btrfs_tree_unlock(right); 3744 free_extent_buffer(right); 3745 return 1; 3746 } 3747 3748 /* 3749 * push some data in the path leaf to the right, trying to free up at 3750 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3751 * 3752 * returns 1 if the push failed because the other node didn't have enough 3753 * room, 0 if everything worked out and < 0 if there were major errors. 3754 * 3755 * this will push starting from min_slot to the end of the leaf. It won't 3756 * push any slot lower than min_slot 3757 */ 3758 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3759 *root, struct btrfs_path *path, 3760 int min_data_size, int data_size, 3761 int empty, u32 min_slot) 3762 { 3763 struct extent_buffer *left = path->nodes[0]; 3764 struct extent_buffer *right; 3765 struct extent_buffer *upper; 3766 int slot; 3767 int free_space; 3768 u32 left_nritems; 3769 int ret; 3770 3771 if (!path->nodes[1]) 3772 return 1; 3773 3774 slot = path->slots[1]; 3775 upper = path->nodes[1]; 3776 if (slot >= btrfs_header_nritems(upper) - 1) 3777 return 1; 3778 3779 btrfs_assert_tree_locked(path->nodes[1]); 3780 3781 right = read_node_slot(root, upper, slot + 1); 3782 if (right == NULL) 3783 return 1; 3784 3785 btrfs_tree_lock(right); 3786 btrfs_set_lock_blocking(right); 3787 3788 free_space = btrfs_leaf_free_space(root, right); 3789 if (free_space < data_size) 3790 goto out_unlock; 3791 3792 /* cow and double check */ 3793 ret = btrfs_cow_block(trans, root, right, upper, 3794 slot + 1, &right); 3795 if (ret) 3796 goto out_unlock; 3797 3798 free_space = btrfs_leaf_free_space(root, right); 3799 if (free_space < data_size) 3800 goto out_unlock; 3801 3802 left_nritems = btrfs_header_nritems(left); 3803 if (left_nritems == 0) 3804 goto out_unlock; 3805 3806 if (path->slots[0] == left_nritems && !empty) { 3807 /* Key greater than all keys in the leaf, right neighbor has 3808 * enough room for it and we're not emptying our leaf to delete 3809 * it, therefore use right neighbor to insert the new item and 3810 * no need to touch/dirty our left leaft. */ 3811 btrfs_tree_unlock(left); 3812 free_extent_buffer(left); 3813 path->nodes[0] = right; 3814 path->slots[0] = 0; 3815 path->slots[1]++; 3816 return 0; 3817 } 3818 3819 return __push_leaf_right(trans, root, path, min_data_size, empty, 3820 right, free_space, left_nritems, min_slot); 3821 out_unlock: 3822 btrfs_tree_unlock(right); 3823 free_extent_buffer(right); 3824 return 1; 3825 } 3826 3827 /* 3828 * push some data in the path leaf to the left, trying to free up at 3829 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3830 * 3831 * max_slot can put a limit on how far into the leaf we'll push items. The 3832 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3833 * items 3834 */ 3835 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3836 struct btrfs_root *root, 3837 struct btrfs_path *path, int data_size, 3838 int empty, struct extent_buffer *left, 3839 int free_space, u32 right_nritems, 3840 u32 max_slot) 3841 { 3842 struct btrfs_disk_key disk_key; 3843 struct extent_buffer *right = path->nodes[0]; 3844 int i; 3845 int push_space = 0; 3846 int push_items = 0; 3847 struct btrfs_item *item; 3848 u32 old_left_nritems; 3849 u32 nr; 3850 int ret = 0; 3851 u32 this_item_size; 3852 u32 old_left_item_size; 3853 struct btrfs_map_token token; 3854 3855 btrfs_init_map_token(&token); 3856 3857 if (empty) 3858 nr = min(right_nritems, max_slot); 3859 else 3860 nr = min(right_nritems - 1, max_slot); 3861 3862 for (i = 0; i < nr; i++) { 3863 item = btrfs_item_nr(i); 3864 3865 if (!empty && push_items > 0) { 3866 if (path->slots[0] < i) 3867 break; 3868 if (path->slots[0] == i) { 3869 int space = btrfs_leaf_free_space(root, right); 3870 if (space + push_space * 2 > free_space) 3871 break; 3872 } 3873 } 3874 3875 if (path->slots[0] == i) 3876 push_space += data_size; 3877 3878 this_item_size = btrfs_item_size(right, item); 3879 if (this_item_size + sizeof(*item) + push_space > free_space) 3880 break; 3881 3882 push_items++; 3883 push_space += this_item_size + sizeof(*item); 3884 } 3885 3886 if (push_items == 0) { 3887 ret = 1; 3888 goto out; 3889 } 3890 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3891 3892 /* push data from right to left */ 3893 copy_extent_buffer(left, right, 3894 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3895 btrfs_item_nr_offset(0), 3896 push_items * sizeof(struct btrfs_item)); 3897 3898 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3899 btrfs_item_offset_nr(right, push_items - 1); 3900 3901 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3902 leaf_data_end(root, left) - push_space, 3903 btrfs_leaf_data(right) + 3904 btrfs_item_offset_nr(right, push_items - 1), 3905 push_space); 3906 old_left_nritems = btrfs_header_nritems(left); 3907 BUG_ON(old_left_nritems <= 0); 3908 3909 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3910 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3911 u32 ioff; 3912 3913 item = btrfs_item_nr(i); 3914 3915 ioff = btrfs_token_item_offset(left, item, &token); 3916 btrfs_set_token_item_offset(left, item, 3917 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3918 &token); 3919 } 3920 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3921 3922 /* fixup right node */ 3923 if (push_items > right_nritems) 3924 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3925 right_nritems); 3926 3927 if (push_items < right_nritems) { 3928 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3929 leaf_data_end(root, right); 3930 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3931 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3932 btrfs_leaf_data(right) + 3933 leaf_data_end(root, right), push_space); 3934 3935 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3936 btrfs_item_nr_offset(push_items), 3937 (btrfs_header_nritems(right) - push_items) * 3938 sizeof(struct btrfs_item)); 3939 } 3940 right_nritems -= push_items; 3941 btrfs_set_header_nritems(right, right_nritems); 3942 push_space = BTRFS_LEAF_DATA_SIZE(root); 3943 for (i = 0; i < right_nritems; i++) { 3944 item = btrfs_item_nr(i); 3945 3946 push_space = push_space - btrfs_token_item_size(right, 3947 item, &token); 3948 btrfs_set_token_item_offset(right, item, push_space, &token); 3949 } 3950 3951 btrfs_mark_buffer_dirty(left); 3952 if (right_nritems) 3953 btrfs_mark_buffer_dirty(right); 3954 else 3955 clean_tree_block(trans, root, right); 3956 3957 btrfs_item_key(right, &disk_key, 0); 3958 fixup_low_keys(root, path, &disk_key, 1); 3959 3960 /* then fixup the leaf pointer in the path */ 3961 if (path->slots[0] < push_items) { 3962 path->slots[0] += old_left_nritems; 3963 btrfs_tree_unlock(path->nodes[0]); 3964 free_extent_buffer(path->nodes[0]); 3965 path->nodes[0] = left; 3966 path->slots[1] -= 1; 3967 } else { 3968 btrfs_tree_unlock(left); 3969 free_extent_buffer(left); 3970 path->slots[0] -= push_items; 3971 } 3972 BUG_ON(path->slots[0] < 0); 3973 return ret; 3974 out: 3975 btrfs_tree_unlock(left); 3976 free_extent_buffer(left); 3977 return ret; 3978 } 3979 3980 /* 3981 * push some data in the path leaf to the left, trying to free up at 3982 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3983 * 3984 * max_slot can put a limit on how far into the leaf we'll push items. The 3985 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3986 * items 3987 */ 3988 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3989 *root, struct btrfs_path *path, int min_data_size, 3990 int data_size, int empty, u32 max_slot) 3991 { 3992 struct extent_buffer *right = path->nodes[0]; 3993 struct extent_buffer *left; 3994 int slot; 3995 int free_space; 3996 u32 right_nritems; 3997 int ret = 0; 3998 3999 slot = path->slots[1]; 4000 if (slot == 0) 4001 return 1; 4002 if (!path->nodes[1]) 4003 return 1; 4004 4005 right_nritems = btrfs_header_nritems(right); 4006 if (right_nritems == 0) 4007 return 1; 4008 4009 btrfs_assert_tree_locked(path->nodes[1]); 4010 4011 left = read_node_slot(root, path->nodes[1], slot - 1); 4012 if (left == NULL) 4013 return 1; 4014 4015 btrfs_tree_lock(left); 4016 btrfs_set_lock_blocking(left); 4017 4018 free_space = btrfs_leaf_free_space(root, left); 4019 if (free_space < data_size) { 4020 ret = 1; 4021 goto out; 4022 } 4023 4024 /* cow and double check */ 4025 ret = btrfs_cow_block(trans, root, left, 4026 path->nodes[1], slot - 1, &left); 4027 if (ret) { 4028 /* we hit -ENOSPC, but it isn't fatal here */ 4029 if (ret == -ENOSPC) 4030 ret = 1; 4031 goto out; 4032 } 4033 4034 free_space = btrfs_leaf_free_space(root, left); 4035 if (free_space < data_size) { 4036 ret = 1; 4037 goto out; 4038 } 4039 4040 return __push_leaf_left(trans, root, path, min_data_size, 4041 empty, left, free_space, right_nritems, 4042 max_slot); 4043 out: 4044 btrfs_tree_unlock(left); 4045 free_extent_buffer(left); 4046 return ret; 4047 } 4048 4049 /* 4050 * split the path's leaf in two, making sure there is at least data_size 4051 * available for the resulting leaf level of the path. 4052 */ 4053 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4054 struct btrfs_root *root, 4055 struct btrfs_path *path, 4056 struct extent_buffer *l, 4057 struct extent_buffer *right, 4058 int slot, int mid, int nritems) 4059 { 4060 int data_copy_size; 4061 int rt_data_off; 4062 int i; 4063 struct btrfs_disk_key disk_key; 4064 struct btrfs_map_token token; 4065 4066 btrfs_init_map_token(&token); 4067 4068 nritems = nritems - mid; 4069 btrfs_set_header_nritems(right, nritems); 4070 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4071 4072 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4073 btrfs_item_nr_offset(mid), 4074 nritems * sizeof(struct btrfs_item)); 4075 4076 copy_extent_buffer(right, l, 4077 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4078 data_copy_size, btrfs_leaf_data(l) + 4079 leaf_data_end(root, l), data_copy_size); 4080 4081 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4082 btrfs_item_end_nr(l, mid); 4083 4084 for (i = 0; i < nritems; i++) { 4085 struct btrfs_item *item = btrfs_item_nr(i); 4086 u32 ioff; 4087 4088 ioff = btrfs_token_item_offset(right, item, &token); 4089 btrfs_set_token_item_offset(right, item, 4090 ioff + rt_data_off, &token); 4091 } 4092 4093 btrfs_set_header_nritems(l, mid); 4094 btrfs_item_key(right, &disk_key, 0); 4095 insert_ptr(trans, root, path, &disk_key, right->start, 4096 path->slots[1] + 1, 1); 4097 4098 btrfs_mark_buffer_dirty(right); 4099 btrfs_mark_buffer_dirty(l); 4100 BUG_ON(path->slots[0] != slot); 4101 4102 if (mid <= slot) { 4103 btrfs_tree_unlock(path->nodes[0]); 4104 free_extent_buffer(path->nodes[0]); 4105 path->nodes[0] = right; 4106 path->slots[0] -= mid; 4107 path->slots[1] += 1; 4108 } else { 4109 btrfs_tree_unlock(right); 4110 free_extent_buffer(right); 4111 } 4112 4113 BUG_ON(path->slots[0] < 0); 4114 } 4115 4116 /* 4117 * double splits happen when we need to insert a big item in the middle 4118 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4119 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4120 * A B C 4121 * 4122 * We avoid this by trying to push the items on either side of our target 4123 * into the adjacent leaves. If all goes well we can avoid the double split 4124 * completely. 4125 */ 4126 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4127 struct btrfs_root *root, 4128 struct btrfs_path *path, 4129 int data_size) 4130 { 4131 int ret; 4132 int progress = 0; 4133 int slot; 4134 u32 nritems; 4135 int space_needed = data_size; 4136 4137 slot = path->slots[0]; 4138 if (slot < btrfs_header_nritems(path->nodes[0])) 4139 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4140 4141 /* 4142 * try to push all the items after our slot into the 4143 * right leaf 4144 */ 4145 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4146 if (ret < 0) 4147 return ret; 4148 4149 if (ret == 0) 4150 progress++; 4151 4152 nritems = btrfs_header_nritems(path->nodes[0]); 4153 /* 4154 * our goal is to get our slot at the start or end of a leaf. If 4155 * we've done so we're done 4156 */ 4157 if (path->slots[0] == 0 || path->slots[0] == nritems) 4158 return 0; 4159 4160 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4161 return 0; 4162 4163 /* try to push all the items before our slot into the next leaf */ 4164 slot = path->slots[0]; 4165 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4166 if (ret < 0) 4167 return ret; 4168 4169 if (ret == 0) 4170 progress++; 4171 4172 if (progress) 4173 return 0; 4174 return 1; 4175 } 4176 4177 /* 4178 * split the path's leaf in two, making sure there is at least data_size 4179 * available for the resulting leaf level of the path. 4180 * 4181 * returns 0 if all went well and < 0 on failure. 4182 */ 4183 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4184 struct btrfs_root *root, 4185 struct btrfs_key *ins_key, 4186 struct btrfs_path *path, int data_size, 4187 int extend) 4188 { 4189 struct btrfs_disk_key disk_key; 4190 struct extent_buffer *l; 4191 u32 nritems; 4192 int mid; 4193 int slot; 4194 struct extent_buffer *right; 4195 int ret = 0; 4196 int wret; 4197 int split; 4198 int num_doubles = 0; 4199 int tried_avoid_double = 0; 4200 4201 l = path->nodes[0]; 4202 slot = path->slots[0]; 4203 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4204 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4205 return -EOVERFLOW; 4206 4207 /* first try to make some room by pushing left and right */ 4208 if (data_size && path->nodes[1]) { 4209 int space_needed = data_size; 4210 4211 if (slot < btrfs_header_nritems(l)) 4212 space_needed -= btrfs_leaf_free_space(root, l); 4213 4214 wret = push_leaf_right(trans, root, path, space_needed, 4215 space_needed, 0, 0); 4216 if (wret < 0) 4217 return wret; 4218 if (wret) { 4219 wret = push_leaf_left(trans, root, path, space_needed, 4220 space_needed, 0, (u32)-1); 4221 if (wret < 0) 4222 return wret; 4223 } 4224 l = path->nodes[0]; 4225 4226 /* did the pushes work? */ 4227 if (btrfs_leaf_free_space(root, l) >= data_size) 4228 return 0; 4229 } 4230 4231 if (!path->nodes[1]) { 4232 ret = insert_new_root(trans, root, path, 1); 4233 if (ret) 4234 return ret; 4235 } 4236 again: 4237 split = 1; 4238 l = path->nodes[0]; 4239 slot = path->slots[0]; 4240 nritems = btrfs_header_nritems(l); 4241 mid = (nritems + 1) / 2; 4242 4243 if (mid <= slot) { 4244 if (nritems == 1 || 4245 leaf_space_used(l, mid, nritems - mid) + data_size > 4246 BTRFS_LEAF_DATA_SIZE(root)) { 4247 if (slot >= nritems) { 4248 split = 0; 4249 } else { 4250 mid = slot; 4251 if (mid != nritems && 4252 leaf_space_used(l, mid, nritems - mid) + 4253 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4254 if (data_size && !tried_avoid_double) 4255 goto push_for_double; 4256 split = 2; 4257 } 4258 } 4259 } 4260 } else { 4261 if (leaf_space_used(l, 0, mid) + data_size > 4262 BTRFS_LEAF_DATA_SIZE(root)) { 4263 if (!extend && data_size && slot == 0) { 4264 split = 0; 4265 } else if ((extend || !data_size) && slot == 0) { 4266 mid = 1; 4267 } else { 4268 mid = slot; 4269 if (mid != nritems && 4270 leaf_space_used(l, mid, nritems - mid) + 4271 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4272 if (data_size && !tried_avoid_double) 4273 goto push_for_double; 4274 split = 2; 4275 } 4276 } 4277 } 4278 } 4279 4280 if (split == 0) 4281 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4282 else 4283 btrfs_item_key(l, &disk_key, mid); 4284 4285 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4286 root->root_key.objectid, 4287 &disk_key, 0, l->start, 0); 4288 if (IS_ERR(right)) 4289 return PTR_ERR(right); 4290 4291 root_add_used(root, root->leafsize); 4292 4293 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4294 btrfs_set_header_bytenr(right, right->start); 4295 btrfs_set_header_generation(right, trans->transid); 4296 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4297 btrfs_set_header_owner(right, root->root_key.objectid); 4298 btrfs_set_header_level(right, 0); 4299 write_extent_buffer(right, root->fs_info->fsid, 4300 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4301 4302 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4303 btrfs_header_chunk_tree_uuid(right), 4304 BTRFS_UUID_SIZE); 4305 4306 if (split == 0) { 4307 if (mid <= slot) { 4308 btrfs_set_header_nritems(right, 0); 4309 insert_ptr(trans, root, path, &disk_key, right->start, 4310 path->slots[1] + 1, 1); 4311 btrfs_tree_unlock(path->nodes[0]); 4312 free_extent_buffer(path->nodes[0]); 4313 path->nodes[0] = right; 4314 path->slots[0] = 0; 4315 path->slots[1] += 1; 4316 } else { 4317 btrfs_set_header_nritems(right, 0); 4318 insert_ptr(trans, root, path, &disk_key, right->start, 4319 path->slots[1], 1); 4320 btrfs_tree_unlock(path->nodes[0]); 4321 free_extent_buffer(path->nodes[0]); 4322 path->nodes[0] = right; 4323 path->slots[0] = 0; 4324 if (path->slots[1] == 0) 4325 fixup_low_keys(root, path, &disk_key, 1); 4326 } 4327 btrfs_mark_buffer_dirty(right); 4328 return ret; 4329 } 4330 4331 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4332 4333 if (split == 2) { 4334 BUG_ON(num_doubles != 0); 4335 num_doubles++; 4336 goto again; 4337 } 4338 4339 return 0; 4340 4341 push_for_double: 4342 push_for_double_split(trans, root, path, data_size); 4343 tried_avoid_double = 1; 4344 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4345 return 0; 4346 goto again; 4347 } 4348 4349 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4350 struct btrfs_root *root, 4351 struct btrfs_path *path, int ins_len) 4352 { 4353 struct btrfs_key key; 4354 struct extent_buffer *leaf; 4355 struct btrfs_file_extent_item *fi; 4356 u64 extent_len = 0; 4357 u32 item_size; 4358 int ret; 4359 4360 leaf = path->nodes[0]; 4361 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4362 4363 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4364 key.type != BTRFS_EXTENT_CSUM_KEY); 4365 4366 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4367 return 0; 4368 4369 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4370 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4371 fi = btrfs_item_ptr(leaf, path->slots[0], 4372 struct btrfs_file_extent_item); 4373 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4374 } 4375 btrfs_release_path(path); 4376 4377 path->keep_locks = 1; 4378 path->search_for_split = 1; 4379 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4380 path->search_for_split = 0; 4381 if (ret < 0) 4382 goto err; 4383 4384 ret = -EAGAIN; 4385 leaf = path->nodes[0]; 4386 /* if our item isn't there or got smaller, return now */ 4387 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4388 goto err; 4389 4390 /* the leaf has changed, it now has room. return now */ 4391 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4392 goto err; 4393 4394 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4395 fi = btrfs_item_ptr(leaf, path->slots[0], 4396 struct btrfs_file_extent_item); 4397 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4398 goto err; 4399 } 4400 4401 btrfs_set_path_blocking(path); 4402 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4403 if (ret) 4404 goto err; 4405 4406 path->keep_locks = 0; 4407 btrfs_unlock_up_safe(path, 1); 4408 return 0; 4409 err: 4410 path->keep_locks = 0; 4411 return ret; 4412 } 4413 4414 static noinline int split_item(struct btrfs_trans_handle *trans, 4415 struct btrfs_root *root, 4416 struct btrfs_path *path, 4417 struct btrfs_key *new_key, 4418 unsigned long split_offset) 4419 { 4420 struct extent_buffer *leaf; 4421 struct btrfs_item *item; 4422 struct btrfs_item *new_item; 4423 int slot; 4424 char *buf; 4425 u32 nritems; 4426 u32 item_size; 4427 u32 orig_offset; 4428 struct btrfs_disk_key disk_key; 4429 4430 leaf = path->nodes[0]; 4431 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4432 4433 btrfs_set_path_blocking(path); 4434 4435 item = btrfs_item_nr(path->slots[0]); 4436 orig_offset = btrfs_item_offset(leaf, item); 4437 item_size = btrfs_item_size(leaf, item); 4438 4439 buf = kmalloc(item_size, GFP_NOFS); 4440 if (!buf) 4441 return -ENOMEM; 4442 4443 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4444 path->slots[0]), item_size); 4445 4446 slot = path->slots[0] + 1; 4447 nritems = btrfs_header_nritems(leaf); 4448 if (slot != nritems) { 4449 /* shift the items */ 4450 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4451 btrfs_item_nr_offset(slot), 4452 (nritems - slot) * sizeof(struct btrfs_item)); 4453 } 4454 4455 btrfs_cpu_key_to_disk(&disk_key, new_key); 4456 btrfs_set_item_key(leaf, &disk_key, slot); 4457 4458 new_item = btrfs_item_nr(slot); 4459 4460 btrfs_set_item_offset(leaf, new_item, orig_offset); 4461 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4462 4463 btrfs_set_item_offset(leaf, item, 4464 orig_offset + item_size - split_offset); 4465 btrfs_set_item_size(leaf, item, split_offset); 4466 4467 btrfs_set_header_nritems(leaf, nritems + 1); 4468 4469 /* write the data for the start of the original item */ 4470 write_extent_buffer(leaf, buf, 4471 btrfs_item_ptr_offset(leaf, path->slots[0]), 4472 split_offset); 4473 4474 /* write the data for the new item */ 4475 write_extent_buffer(leaf, buf + split_offset, 4476 btrfs_item_ptr_offset(leaf, slot), 4477 item_size - split_offset); 4478 btrfs_mark_buffer_dirty(leaf); 4479 4480 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4481 kfree(buf); 4482 return 0; 4483 } 4484 4485 /* 4486 * This function splits a single item into two items, 4487 * giving 'new_key' to the new item and splitting the 4488 * old one at split_offset (from the start of the item). 4489 * 4490 * The path may be released by this operation. After 4491 * the split, the path is pointing to the old item. The 4492 * new item is going to be in the same node as the old one. 4493 * 4494 * Note, the item being split must be smaller enough to live alone on 4495 * a tree block with room for one extra struct btrfs_item 4496 * 4497 * This allows us to split the item in place, keeping a lock on the 4498 * leaf the entire time. 4499 */ 4500 int btrfs_split_item(struct btrfs_trans_handle *trans, 4501 struct btrfs_root *root, 4502 struct btrfs_path *path, 4503 struct btrfs_key *new_key, 4504 unsigned long split_offset) 4505 { 4506 int ret; 4507 ret = setup_leaf_for_split(trans, root, path, 4508 sizeof(struct btrfs_item)); 4509 if (ret) 4510 return ret; 4511 4512 ret = split_item(trans, root, path, new_key, split_offset); 4513 return ret; 4514 } 4515 4516 /* 4517 * This function duplicate a item, giving 'new_key' to the new item. 4518 * It guarantees both items live in the same tree leaf and the new item 4519 * is contiguous with the original item. 4520 * 4521 * This allows us to split file extent in place, keeping a lock on the 4522 * leaf the entire time. 4523 */ 4524 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4525 struct btrfs_root *root, 4526 struct btrfs_path *path, 4527 struct btrfs_key *new_key) 4528 { 4529 struct extent_buffer *leaf; 4530 int ret; 4531 u32 item_size; 4532 4533 leaf = path->nodes[0]; 4534 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4535 ret = setup_leaf_for_split(trans, root, path, 4536 item_size + sizeof(struct btrfs_item)); 4537 if (ret) 4538 return ret; 4539 4540 path->slots[0]++; 4541 setup_items_for_insert(root, path, new_key, &item_size, 4542 item_size, item_size + 4543 sizeof(struct btrfs_item), 1); 4544 leaf = path->nodes[0]; 4545 memcpy_extent_buffer(leaf, 4546 btrfs_item_ptr_offset(leaf, path->slots[0]), 4547 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4548 item_size); 4549 return 0; 4550 } 4551 4552 /* 4553 * make the item pointed to by the path smaller. new_size indicates 4554 * how small to make it, and from_end tells us if we just chop bytes 4555 * off the end of the item or if we shift the item to chop bytes off 4556 * the front. 4557 */ 4558 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4559 u32 new_size, int from_end) 4560 { 4561 int slot; 4562 struct extent_buffer *leaf; 4563 struct btrfs_item *item; 4564 u32 nritems; 4565 unsigned int data_end; 4566 unsigned int old_data_start; 4567 unsigned int old_size; 4568 unsigned int size_diff; 4569 int i; 4570 struct btrfs_map_token token; 4571 4572 btrfs_init_map_token(&token); 4573 4574 leaf = path->nodes[0]; 4575 slot = path->slots[0]; 4576 4577 old_size = btrfs_item_size_nr(leaf, slot); 4578 if (old_size == new_size) 4579 return; 4580 4581 nritems = btrfs_header_nritems(leaf); 4582 data_end = leaf_data_end(root, leaf); 4583 4584 old_data_start = btrfs_item_offset_nr(leaf, slot); 4585 4586 size_diff = old_size - new_size; 4587 4588 BUG_ON(slot < 0); 4589 BUG_ON(slot >= nritems); 4590 4591 /* 4592 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4593 */ 4594 /* first correct the data pointers */ 4595 for (i = slot; i < nritems; i++) { 4596 u32 ioff; 4597 item = btrfs_item_nr(i); 4598 4599 ioff = btrfs_token_item_offset(leaf, item, &token); 4600 btrfs_set_token_item_offset(leaf, item, 4601 ioff + size_diff, &token); 4602 } 4603 4604 /* shift the data */ 4605 if (from_end) { 4606 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4607 data_end + size_diff, btrfs_leaf_data(leaf) + 4608 data_end, old_data_start + new_size - data_end); 4609 } else { 4610 struct btrfs_disk_key disk_key; 4611 u64 offset; 4612 4613 btrfs_item_key(leaf, &disk_key, slot); 4614 4615 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4616 unsigned long ptr; 4617 struct btrfs_file_extent_item *fi; 4618 4619 fi = btrfs_item_ptr(leaf, slot, 4620 struct btrfs_file_extent_item); 4621 fi = (struct btrfs_file_extent_item *)( 4622 (unsigned long)fi - size_diff); 4623 4624 if (btrfs_file_extent_type(leaf, fi) == 4625 BTRFS_FILE_EXTENT_INLINE) { 4626 ptr = btrfs_item_ptr_offset(leaf, slot); 4627 memmove_extent_buffer(leaf, ptr, 4628 (unsigned long)fi, 4629 offsetof(struct btrfs_file_extent_item, 4630 disk_bytenr)); 4631 } 4632 } 4633 4634 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4635 data_end + size_diff, btrfs_leaf_data(leaf) + 4636 data_end, old_data_start - data_end); 4637 4638 offset = btrfs_disk_key_offset(&disk_key); 4639 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4640 btrfs_set_item_key(leaf, &disk_key, slot); 4641 if (slot == 0) 4642 fixup_low_keys(root, path, &disk_key, 1); 4643 } 4644 4645 item = btrfs_item_nr(slot); 4646 btrfs_set_item_size(leaf, item, new_size); 4647 btrfs_mark_buffer_dirty(leaf); 4648 4649 if (btrfs_leaf_free_space(root, leaf) < 0) { 4650 btrfs_print_leaf(root, leaf); 4651 BUG(); 4652 } 4653 } 4654 4655 /* 4656 * make the item pointed to by the path bigger, data_size is the added size. 4657 */ 4658 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4659 u32 data_size) 4660 { 4661 int slot; 4662 struct extent_buffer *leaf; 4663 struct btrfs_item *item; 4664 u32 nritems; 4665 unsigned int data_end; 4666 unsigned int old_data; 4667 unsigned int old_size; 4668 int i; 4669 struct btrfs_map_token token; 4670 4671 btrfs_init_map_token(&token); 4672 4673 leaf = path->nodes[0]; 4674 4675 nritems = btrfs_header_nritems(leaf); 4676 data_end = leaf_data_end(root, leaf); 4677 4678 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4679 btrfs_print_leaf(root, leaf); 4680 BUG(); 4681 } 4682 slot = path->slots[0]; 4683 old_data = btrfs_item_end_nr(leaf, slot); 4684 4685 BUG_ON(slot < 0); 4686 if (slot >= nritems) { 4687 btrfs_print_leaf(root, leaf); 4688 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4689 slot, nritems); 4690 BUG_ON(1); 4691 } 4692 4693 /* 4694 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4695 */ 4696 /* first correct the data pointers */ 4697 for (i = slot; i < nritems; i++) { 4698 u32 ioff; 4699 item = btrfs_item_nr(i); 4700 4701 ioff = btrfs_token_item_offset(leaf, item, &token); 4702 btrfs_set_token_item_offset(leaf, item, 4703 ioff - data_size, &token); 4704 } 4705 4706 /* shift the data */ 4707 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4708 data_end - data_size, btrfs_leaf_data(leaf) + 4709 data_end, old_data - data_end); 4710 4711 data_end = old_data; 4712 old_size = btrfs_item_size_nr(leaf, slot); 4713 item = btrfs_item_nr(slot); 4714 btrfs_set_item_size(leaf, item, old_size + data_size); 4715 btrfs_mark_buffer_dirty(leaf); 4716 4717 if (btrfs_leaf_free_space(root, leaf) < 0) { 4718 btrfs_print_leaf(root, leaf); 4719 BUG(); 4720 } 4721 } 4722 4723 /* 4724 * this is a helper for btrfs_insert_empty_items, the main goal here is 4725 * to save stack depth by doing the bulk of the work in a function 4726 * that doesn't call btrfs_search_slot 4727 */ 4728 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4729 struct btrfs_key *cpu_key, u32 *data_size, 4730 u32 total_data, u32 total_size, int nr) 4731 { 4732 struct btrfs_item *item; 4733 int i; 4734 u32 nritems; 4735 unsigned int data_end; 4736 struct btrfs_disk_key disk_key; 4737 struct extent_buffer *leaf; 4738 int slot; 4739 struct btrfs_map_token token; 4740 4741 btrfs_init_map_token(&token); 4742 4743 leaf = path->nodes[0]; 4744 slot = path->slots[0]; 4745 4746 nritems = btrfs_header_nritems(leaf); 4747 data_end = leaf_data_end(root, leaf); 4748 4749 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4750 btrfs_print_leaf(root, leaf); 4751 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4752 total_size, btrfs_leaf_free_space(root, leaf)); 4753 BUG(); 4754 } 4755 4756 if (slot != nritems) { 4757 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4758 4759 if (old_data < data_end) { 4760 btrfs_print_leaf(root, leaf); 4761 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4762 slot, old_data, data_end); 4763 BUG_ON(1); 4764 } 4765 /* 4766 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4767 */ 4768 /* first correct the data pointers */ 4769 for (i = slot; i < nritems; i++) { 4770 u32 ioff; 4771 4772 item = btrfs_item_nr( i); 4773 ioff = btrfs_token_item_offset(leaf, item, &token); 4774 btrfs_set_token_item_offset(leaf, item, 4775 ioff - total_data, &token); 4776 } 4777 /* shift the items */ 4778 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4779 btrfs_item_nr_offset(slot), 4780 (nritems - slot) * sizeof(struct btrfs_item)); 4781 4782 /* shift the data */ 4783 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4784 data_end - total_data, btrfs_leaf_data(leaf) + 4785 data_end, old_data - data_end); 4786 data_end = old_data; 4787 } 4788 4789 /* setup the item for the new data */ 4790 for (i = 0; i < nr; i++) { 4791 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4792 btrfs_set_item_key(leaf, &disk_key, slot + i); 4793 item = btrfs_item_nr(slot + i); 4794 btrfs_set_token_item_offset(leaf, item, 4795 data_end - data_size[i], &token); 4796 data_end -= data_size[i]; 4797 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4798 } 4799 4800 btrfs_set_header_nritems(leaf, nritems + nr); 4801 4802 if (slot == 0) { 4803 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4804 fixup_low_keys(root, path, &disk_key, 1); 4805 } 4806 btrfs_unlock_up_safe(path, 1); 4807 btrfs_mark_buffer_dirty(leaf); 4808 4809 if (btrfs_leaf_free_space(root, leaf) < 0) { 4810 btrfs_print_leaf(root, leaf); 4811 BUG(); 4812 } 4813 } 4814 4815 /* 4816 * Given a key and some data, insert items into the tree. 4817 * This does all the path init required, making room in the tree if needed. 4818 */ 4819 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4820 struct btrfs_root *root, 4821 struct btrfs_path *path, 4822 struct btrfs_key *cpu_key, u32 *data_size, 4823 int nr) 4824 { 4825 int ret = 0; 4826 int slot; 4827 int i; 4828 u32 total_size = 0; 4829 u32 total_data = 0; 4830 4831 for (i = 0; i < nr; i++) 4832 total_data += data_size[i]; 4833 4834 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4835 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4836 if (ret == 0) 4837 return -EEXIST; 4838 if (ret < 0) 4839 return ret; 4840 4841 slot = path->slots[0]; 4842 BUG_ON(slot < 0); 4843 4844 setup_items_for_insert(root, path, cpu_key, data_size, 4845 total_data, total_size, nr); 4846 return 0; 4847 } 4848 4849 /* 4850 * Given a key and some data, insert an item into the tree. 4851 * This does all the path init required, making room in the tree if needed. 4852 */ 4853 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4854 *root, struct btrfs_key *cpu_key, void *data, u32 4855 data_size) 4856 { 4857 int ret = 0; 4858 struct btrfs_path *path; 4859 struct extent_buffer *leaf; 4860 unsigned long ptr; 4861 4862 path = btrfs_alloc_path(); 4863 if (!path) 4864 return -ENOMEM; 4865 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4866 if (!ret) { 4867 leaf = path->nodes[0]; 4868 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4869 write_extent_buffer(leaf, data, ptr, data_size); 4870 btrfs_mark_buffer_dirty(leaf); 4871 } 4872 btrfs_free_path(path); 4873 return ret; 4874 } 4875 4876 /* 4877 * delete the pointer from a given node. 4878 * 4879 * the tree should have been previously balanced so the deletion does not 4880 * empty a node. 4881 */ 4882 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4883 int level, int slot) 4884 { 4885 struct extent_buffer *parent = path->nodes[level]; 4886 u32 nritems; 4887 int ret; 4888 4889 nritems = btrfs_header_nritems(parent); 4890 if (slot != nritems - 1) { 4891 if (level) 4892 tree_mod_log_eb_move(root->fs_info, parent, slot, 4893 slot + 1, nritems - slot - 1); 4894 memmove_extent_buffer(parent, 4895 btrfs_node_key_ptr_offset(slot), 4896 btrfs_node_key_ptr_offset(slot + 1), 4897 sizeof(struct btrfs_key_ptr) * 4898 (nritems - slot - 1)); 4899 } else if (level) { 4900 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4901 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4902 BUG_ON(ret < 0); 4903 } 4904 4905 nritems--; 4906 btrfs_set_header_nritems(parent, nritems); 4907 if (nritems == 0 && parent == root->node) { 4908 BUG_ON(btrfs_header_level(root->node) != 1); 4909 /* just turn the root into a leaf and break */ 4910 btrfs_set_header_level(root->node, 0); 4911 } else if (slot == 0) { 4912 struct btrfs_disk_key disk_key; 4913 4914 btrfs_node_key(parent, &disk_key, 0); 4915 fixup_low_keys(root, path, &disk_key, level + 1); 4916 } 4917 btrfs_mark_buffer_dirty(parent); 4918 } 4919 4920 /* 4921 * a helper function to delete the leaf pointed to by path->slots[1] and 4922 * path->nodes[1]. 4923 * 4924 * This deletes the pointer in path->nodes[1] and frees the leaf 4925 * block extent. zero is returned if it all worked out, < 0 otherwise. 4926 * 4927 * The path must have already been setup for deleting the leaf, including 4928 * all the proper balancing. path->nodes[1] must be locked. 4929 */ 4930 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4931 struct btrfs_root *root, 4932 struct btrfs_path *path, 4933 struct extent_buffer *leaf) 4934 { 4935 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4936 del_ptr(root, path, 1, path->slots[1]); 4937 4938 /* 4939 * btrfs_free_extent is expensive, we want to make sure we 4940 * aren't holding any locks when we call it 4941 */ 4942 btrfs_unlock_up_safe(path, 0); 4943 4944 root_sub_used(root, leaf->len); 4945 4946 extent_buffer_get(leaf); 4947 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4948 free_extent_buffer_stale(leaf); 4949 } 4950 /* 4951 * delete the item at the leaf level in path. If that empties 4952 * the leaf, remove it from the tree 4953 */ 4954 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4955 struct btrfs_path *path, int slot, int nr) 4956 { 4957 struct extent_buffer *leaf; 4958 struct btrfs_item *item; 4959 int last_off; 4960 int dsize = 0; 4961 int ret = 0; 4962 int wret; 4963 int i; 4964 u32 nritems; 4965 struct btrfs_map_token token; 4966 4967 btrfs_init_map_token(&token); 4968 4969 leaf = path->nodes[0]; 4970 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4971 4972 for (i = 0; i < nr; i++) 4973 dsize += btrfs_item_size_nr(leaf, slot + i); 4974 4975 nritems = btrfs_header_nritems(leaf); 4976 4977 if (slot + nr != nritems) { 4978 int data_end = leaf_data_end(root, leaf); 4979 4980 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4981 data_end + dsize, 4982 btrfs_leaf_data(leaf) + data_end, 4983 last_off - data_end); 4984 4985 for (i = slot + nr; i < nritems; i++) { 4986 u32 ioff; 4987 4988 item = btrfs_item_nr(i); 4989 ioff = btrfs_token_item_offset(leaf, item, &token); 4990 btrfs_set_token_item_offset(leaf, item, 4991 ioff + dsize, &token); 4992 } 4993 4994 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4995 btrfs_item_nr_offset(slot + nr), 4996 sizeof(struct btrfs_item) * 4997 (nritems - slot - nr)); 4998 } 4999 btrfs_set_header_nritems(leaf, nritems - nr); 5000 nritems -= nr; 5001 5002 /* delete the leaf if we've emptied it */ 5003 if (nritems == 0) { 5004 if (leaf == root->node) { 5005 btrfs_set_header_level(leaf, 0); 5006 } else { 5007 btrfs_set_path_blocking(path); 5008 clean_tree_block(trans, root, leaf); 5009 btrfs_del_leaf(trans, root, path, leaf); 5010 } 5011 } else { 5012 int used = leaf_space_used(leaf, 0, nritems); 5013 if (slot == 0) { 5014 struct btrfs_disk_key disk_key; 5015 5016 btrfs_item_key(leaf, &disk_key, 0); 5017 fixup_low_keys(root, path, &disk_key, 1); 5018 } 5019 5020 /* delete the leaf if it is mostly empty */ 5021 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5022 /* push_leaf_left fixes the path. 5023 * make sure the path still points to our leaf 5024 * for possible call to del_ptr below 5025 */ 5026 slot = path->slots[1]; 5027 extent_buffer_get(leaf); 5028 5029 btrfs_set_path_blocking(path); 5030 wret = push_leaf_left(trans, root, path, 1, 1, 5031 1, (u32)-1); 5032 if (wret < 0 && wret != -ENOSPC) 5033 ret = wret; 5034 5035 if (path->nodes[0] == leaf && 5036 btrfs_header_nritems(leaf)) { 5037 wret = push_leaf_right(trans, root, path, 1, 5038 1, 1, 0); 5039 if (wret < 0 && wret != -ENOSPC) 5040 ret = wret; 5041 } 5042 5043 if (btrfs_header_nritems(leaf) == 0) { 5044 path->slots[1] = slot; 5045 btrfs_del_leaf(trans, root, path, leaf); 5046 free_extent_buffer(leaf); 5047 ret = 0; 5048 } else { 5049 /* if we're still in the path, make sure 5050 * we're dirty. Otherwise, one of the 5051 * push_leaf functions must have already 5052 * dirtied this buffer 5053 */ 5054 if (path->nodes[0] == leaf) 5055 btrfs_mark_buffer_dirty(leaf); 5056 free_extent_buffer(leaf); 5057 } 5058 } else { 5059 btrfs_mark_buffer_dirty(leaf); 5060 } 5061 } 5062 return ret; 5063 } 5064 5065 /* 5066 * search the tree again to find a leaf with lesser keys 5067 * returns 0 if it found something or 1 if there are no lesser leaves. 5068 * returns < 0 on io errors. 5069 * 5070 * This may release the path, and so you may lose any locks held at the 5071 * time you call it. 5072 */ 5073 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5074 { 5075 struct btrfs_key key; 5076 struct btrfs_disk_key found_key; 5077 int ret; 5078 5079 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5080 5081 if (key.offset > 0) { 5082 key.offset--; 5083 } else if (key.type > 0) { 5084 key.type--; 5085 key.offset = (u64)-1; 5086 } else if (key.objectid > 0) { 5087 key.objectid--; 5088 key.type = (u8)-1; 5089 key.offset = (u64)-1; 5090 } else { 5091 return 1; 5092 } 5093 5094 btrfs_release_path(path); 5095 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5096 if (ret < 0) 5097 return ret; 5098 btrfs_item_key(path->nodes[0], &found_key, 0); 5099 ret = comp_keys(&found_key, &key); 5100 /* 5101 * We might have had an item with the previous key in the tree right 5102 * before we released our path. And after we released our path, that 5103 * item might have been pushed to the first slot (0) of the leaf we 5104 * were holding due to a tree balance. Alternatively, an item with the 5105 * previous key can exist as the only element of a leaf (big fat item). 5106 * Therefore account for these 2 cases, so that our callers (like 5107 * btrfs_previous_item) don't miss an existing item with a key matching 5108 * the previous key we computed above. 5109 */ 5110 if (ret <= 0) 5111 return 0; 5112 return 1; 5113 } 5114 5115 /* 5116 * A helper function to walk down the tree starting at min_key, and looking 5117 * for nodes or leaves that are have a minimum transaction id. 5118 * This is used by the btree defrag code, and tree logging 5119 * 5120 * This does not cow, but it does stuff the starting key it finds back 5121 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5122 * key and get a writable path. 5123 * 5124 * This does lock as it descends, and path->keep_locks should be set 5125 * to 1 by the caller. 5126 * 5127 * This honors path->lowest_level to prevent descent past a given level 5128 * of the tree. 5129 * 5130 * min_trans indicates the oldest transaction that you are interested 5131 * in walking through. Any nodes or leaves older than min_trans are 5132 * skipped over (without reading them). 5133 * 5134 * returns zero if something useful was found, < 0 on error and 1 if there 5135 * was nothing in the tree that matched the search criteria. 5136 */ 5137 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5138 struct btrfs_path *path, 5139 u64 min_trans) 5140 { 5141 struct extent_buffer *cur; 5142 struct btrfs_key found_key; 5143 int slot; 5144 int sret; 5145 u32 nritems; 5146 int level; 5147 int ret = 1; 5148 5149 WARN_ON(!path->keep_locks); 5150 again: 5151 cur = btrfs_read_lock_root_node(root); 5152 level = btrfs_header_level(cur); 5153 WARN_ON(path->nodes[level]); 5154 path->nodes[level] = cur; 5155 path->locks[level] = BTRFS_READ_LOCK; 5156 5157 if (btrfs_header_generation(cur) < min_trans) { 5158 ret = 1; 5159 goto out; 5160 } 5161 while (1) { 5162 nritems = btrfs_header_nritems(cur); 5163 level = btrfs_header_level(cur); 5164 sret = bin_search(cur, min_key, level, &slot); 5165 5166 /* at the lowest level, we're done, setup the path and exit */ 5167 if (level == path->lowest_level) { 5168 if (slot >= nritems) 5169 goto find_next_key; 5170 ret = 0; 5171 path->slots[level] = slot; 5172 btrfs_item_key_to_cpu(cur, &found_key, slot); 5173 goto out; 5174 } 5175 if (sret && slot > 0) 5176 slot--; 5177 /* 5178 * check this node pointer against the min_trans parameters. 5179 * If it is too old, old, skip to the next one. 5180 */ 5181 while (slot < nritems) { 5182 u64 gen; 5183 5184 gen = btrfs_node_ptr_generation(cur, slot); 5185 if (gen < min_trans) { 5186 slot++; 5187 continue; 5188 } 5189 break; 5190 } 5191 find_next_key: 5192 /* 5193 * we didn't find a candidate key in this node, walk forward 5194 * and find another one 5195 */ 5196 if (slot >= nritems) { 5197 path->slots[level] = slot; 5198 btrfs_set_path_blocking(path); 5199 sret = btrfs_find_next_key(root, path, min_key, level, 5200 min_trans); 5201 if (sret == 0) { 5202 btrfs_release_path(path); 5203 goto again; 5204 } else { 5205 goto out; 5206 } 5207 } 5208 /* save our key for returning back */ 5209 btrfs_node_key_to_cpu(cur, &found_key, slot); 5210 path->slots[level] = slot; 5211 if (level == path->lowest_level) { 5212 ret = 0; 5213 unlock_up(path, level, 1, 0, NULL); 5214 goto out; 5215 } 5216 btrfs_set_path_blocking(path); 5217 cur = read_node_slot(root, cur, slot); 5218 BUG_ON(!cur); /* -ENOMEM */ 5219 5220 btrfs_tree_read_lock(cur); 5221 5222 path->locks[level - 1] = BTRFS_READ_LOCK; 5223 path->nodes[level - 1] = cur; 5224 unlock_up(path, level, 1, 0, NULL); 5225 btrfs_clear_path_blocking(path, NULL, 0); 5226 } 5227 out: 5228 if (ret == 0) 5229 memcpy(min_key, &found_key, sizeof(found_key)); 5230 btrfs_set_path_blocking(path); 5231 return ret; 5232 } 5233 5234 static void tree_move_down(struct btrfs_root *root, 5235 struct btrfs_path *path, 5236 int *level, int root_level) 5237 { 5238 BUG_ON(*level == 0); 5239 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5240 path->slots[*level]); 5241 path->slots[*level - 1] = 0; 5242 (*level)--; 5243 } 5244 5245 static int tree_move_next_or_upnext(struct btrfs_root *root, 5246 struct btrfs_path *path, 5247 int *level, int root_level) 5248 { 5249 int ret = 0; 5250 int nritems; 5251 nritems = btrfs_header_nritems(path->nodes[*level]); 5252 5253 path->slots[*level]++; 5254 5255 while (path->slots[*level] >= nritems) { 5256 if (*level == root_level) 5257 return -1; 5258 5259 /* move upnext */ 5260 path->slots[*level] = 0; 5261 free_extent_buffer(path->nodes[*level]); 5262 path->nodes[*level] = NULL; 5263 (*level)++; 5264 path->slots[*level]++; 5265 5266 nritems = btrfs_header_nritems(path->nodes[*level]); 5267 ret = 1; 5268 } 5269 return ret; 5270 } 5271 5272 /* 5273 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5274 * or down. 5275 */ 5276 static int tree_advance(struct btrfs_root *root, 5277 struct btrfs_path *path, 5278 int *level, int root_level, 5279 int allow_down, 5280 struct btrfs_key *key) 5281 { 5282 int ret; 5283 5284 if (*level == 0 || !allow_down) { 5285 ret = tree_move_next_or_upnext(root, path, level, root_level); 5286 } else { 5287 tree_move_down(root, path, level, root_level); 5288 ret = 0; 5289 } 5290 if (ret >= 0) { 5291 if (*level == 0) 5292 btrfs_item_key_to_cpu(path->nodes[*level], key, 5293 path->slots[*level]); 5294 else 5295 btrfs_node_key_to_cpu(path->nodes[*level], key, 5296 path->slots[*level]); 5297 } 5298 return ret; 5299 } 5300 5301 static int tree_compare_item(struct btrfs_root *left_root, 5302 struct btrfs_path *left_path, 5303 struct btrfs_path *right_path, 5304 char *tmp_buf) 5305 { 5306 int cmp; 5307 int len1, len2; 5308 unsigned long off1, off2; 5309 5310 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5311 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5312 if (len1 != len2) 5313 return 1; 5314 5315 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5316 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5317 right_path->slots[0]); 5318 5319 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5320 5321 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5322 if (cmp) 5323 return 1; 5324 return 0; 5325 } 5326 5327 #define ADVANCE 1 5328 #define ADVANCE_ONLY_NEXT -1 5329 5330 /* 5331 * This function compares two trees and calls the provided callback for 5332 * every changed/new/deleted item it finds. 5333 * If shared tree blocks are encountered, whole subtrees are skipped, making 5334 * the compare pretty fast on snapshotted subvolumes. 5335 * 5336 * This currently works on commit roots only. As commit roots are read only, 5337 * we don't do any locking. The commit roots are protected with transactions. 5338 * Transactions are ended and rejoined when a commit is tried in between. 5339 * 5340 * This function checks for modifications done to the trees while comparing. 5341 * If it detects a change, it aborts immediately. 5342 */ 5343 int btrfs_compare_trees(struct btrfs_root *left_root, 5344 struct btrfs_root *right_root, 5345 btrfs_changed_cb_t changed_cb, void *ctx) 5346 { 5347 int ret; 5348 int cmp; 5349 struct btrfs_path *left_path = NULL; 5350 struct btrfs_path *right_path = NULL; 5351 struct btrfs_key left_key; 5352 struct btrfs_key right_key; 5353 char *tmp_buf = NULL; 5354 int left_root_level; 5355 int right_root_level; 5356 int left_level; 5357 int right_level; 5358 int left_end_reached; 5359 int right_end_reached; 5360 int advance_left; 5361 int advance_right; 5362 u64 left_blockptr; 5363 u64 right_blockptr; 5364 u64 left_gen; 5365 u64 right_gen; 5366 5367 left_path = btrfs_alloc_path(); 5368 if (!left_path) { 5369 ret = -ENOMEM; 5370 goto out; 5371 } 5372 right_path = btrfs_alloc_path(); 5373 if (!right_path) { 5374 ret = -ENOMEM; 5375 goto out; 5376 } 5377 5378 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5379 if (!tmp_buf) { 5380 ret = -ENOMEM; 5381 goto out; 5382 } 5383 5384 left_path->search_commit_root = 1; 5385 left_path->skip_locking = 1; 5386 right_path->search_commit_root = 1; 5387 right_path->skip_locking = 1; 5388 5389 /* 5390 * Strategy: Go to the first items of both trees. Then do 5391 * 5392 * If both trees are at level 0 5393 * Compare keys of current items 5394 * If left < right treat left item as new, advance left tree 5395 * and repeat 5396 * If left > right treat right item as deleted, advance right tree 5397 * and repeat 5398 * If left == right do deep compare of items, treat as changed if 5399 * needed, advance both trees and repeat 5400 * If both trees are at the same level but not at level 0 5401 * Compare keys of current nodes/leafs 5402 * If left < right advance left tree and repeat 5403 * If left > right advance right tree and repeat 5404 * If left == right compare blockptrs of the next nodes/leafs 5405 * If they match advance both trees but stay at the same level 5406 * and repeat 5407 * If they don't match advance both trees while allowing to go 5408 * deeper and repeat 5409 * If tree levels are different 5410 * Advance the tree that needs it and repeat 5411 * 5412 * Advancing a tree means: 5413 * If we are at level 0, try to go to the next slot. If that's not 5414 * possible, go one level up and repeat. Stop when we found a level 5415 * where we could go to the next slot. We may at this point be on a 5416 * node or a leaf. 5417 * 5418 * If we are not at level 0 and not on shared tree blocks, go one 5419 * level deeper. 5420 * 5421 * If we are not at level 0 and on shared tree blocks, go one slot to 5422 * the right if possible or go up and right. 5423 */ 5424 5425 down_read(&left_root->fs_info->commit_root_sem); 5426 left_level = btrfs_header_level(left_root->commit_root); 5427 left_root_level = left_level; 5428 left_path->nodes[left_level] = left_root->commit_root; 5429 extent_buffer_get(left_path->nodes[left_level]); 5430 5431 right_level = btrfs_header_level(right_root->commit_root); 5432 right_root_level = right_level; 5433 right_path->nodes[right_level] = right_root->commit_root; 5434 extent_buffer_get(right_path->nodes[right_level]); 5435 up_read(&left_root->fs_info->commit_root_sem); 5436 5437 if (left_level == 0) 5438 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5439 &left_key, left_path->slots[left_level]); 5440 else 5441 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5442 &left_key, left_path->slots[left_level]); 5443 if (right_level == 0) 5444 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5445 &right_key, right_path->slots[right_level]); 5446 else 5447 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5448 &right_key, right_path->slots[right_level]); 5449 5450 left_end_reached = right_end_reached = 0; 5451 advance_left = advance_right = 0; 5452 5453 while (1) { 5454 if (advance_left && !left_end_reached) { 5455 ret = tree_advance(left_root, left_path, &left_level, 5456 left_root_level, 5457 advance_left != ADVANCE_ONLY_NEXT, 5458 &left_key); 5459 if (ret < 0) 5460 left_end_reached = ADVANCE; 5461 advance_left = 0; 5462 } 5463 if (advance_right && !right_end_reached) { 5464 ret = tree_advance(right_root, right_path, &right_level, 5465 right_root_level, 5466 advance_right != ADVANCE_ONLY_NEXT, 5467 &right_key); 5468 if (ret < 0) 5469 right_end_reached = ADVANCE; 5470 advance_right = 0; 5471 } 5472 5473 if (left_end_reached && right_end_reached) { 5474 ret = 0; 5475 goto out; 5476 } else if (left_end_reached) { 5477 if (right_level == 0) { 5478 ret = changed_cb(left_root, right_root, 5479 left_path, right_path, 5480 &right_key, 5481 BTRFS_COMPARE_TREE_DELETED, 5482 ctx); 5483 if (ret < 0) 5484 goto out; 5485 } 5486 advance_right = ADVANCE; 5487 continue; 5488 } else if (right_end_reached) { 5489 if (left_level == 0) { 5490 ret = changed_cb(left_root, right_root, 5491 left_path, right_path, 5492 &left_key, 5493 BTRFS_COMPARE_TREE_NEW, 5494 ctx); 5495 if (ret < 0) 5496 goto out; 5497 } 5498 advance_left = ADVANCE; 5499 continue; 5500 } 5501 5502 if (left_level == 0 && right_level == 0) { 5503 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5504 if (cmp < 0) { 5505 ret = changed_cb(left_root, right_root, 5506 left_path, right_path, 5507 &left_key, 5508 BTRFS_COMPARE_TREE_NEW, 5509 ctx); 5510 if (ret < 0) 5511 goto out; 5512 advance_left = ADVANCE; 5513 } else if (cmp > 0) { 5514 ret = changed_cb(left_root, right_root, 5515 left_path, right_path, 5516 &right_key, 5517 BTRFS_COMPARE_TREE_DELETED, 5518 ctx); 5519 if (ret < 0) 5520 goto out; 5521 advance_right = ADVANCE; 5522 } else { 5523 enum btrfs_compare_tree_result cmp; 5524 5525 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5526 ret = tree_compare_item(left_root, left_path, 5527 right_path, tmp_buf); 5528 if (ret) 5529 cmp = BTRFS_COMPARE_TREE_CHANGED; 5530 else 5531 cmp = BTRFS_COMPARE_TREE_SAME; 5532 ret = changed_cb(left_root, right_root, 5533 left_path, right_path, 5534 &left_key, cmp, ctx); 5535 if (ret < 0) 5536 goto out; 5537 advance_left = ADVANCE; 5538 advance_right = ADVANCE; 5539 } 5540 } else if (left_level == right_level) { 5541 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5542 if (cmp < 0) { 5543 advance_left = ADVANCE; 5544 } else if (cmp > 0) { 5545 advance_right = ADVANCE; 5546 } else { 5547 left_blockptr = btrfs_node_blockptr( 5548 left_path->nodes[left_level], 5549 left_path->slots[left_level]); 5550 right_blockptr = btrfs_node_blockptr( 5551 right_path->nodes[right_level], 5552 right_path->slots[right_level]); 5553 left_gen = btrfs_node_ptr_generation( 5554 left_path->nodes[left_level], 5555 left_path->slots[left_level]); 5556 right_gen = btrfs_node_ptr_generation( 5557 right_path->nodes[right_level], 5558 right_path->slots[right_level]); 5559 if (left_blockptr == right_blockptr && 5560 left_gen == right_gen) { 5561 /* 5562 * As we're on a shared block, don't 5563 * allow to go deeper. 5564 */ 5565 advance_left = ADVANCE_ONLY_NEXT; 5566 advance_right = ADVANCE_ONLY_NEXT; 5567 } else { 5568 advance_left = ADVANCE; 5569 advance_right = ADVANCE; 5570 } 5571 } 5572 } else if (left_level < right_level) { 5573 advance_right = ADVANCE; 5574 } else { 5575 advance_left = ADVANCE; 5576 } 5577 } 5578 5579 out: 5580 btrfs_free_path(left_path); 5581 btrfs_free_path(right_path); 5582 kfree(tmp_buf); 5583 return ret; 5584 } 5585 5586 /* 5587 * this is similar to btrfs_next_leaf, but does not try to preserve 5588 * and fixup the path. It looks for and returns the next key in the 5589 * tree based on the current path and the min_trans parameters. 5590 * 5591 * 0 is returned if another key is found, < 0 if there are any errors 5592 * and 1 is returned if there are no higher keys in the tree 5593 * 5594 * path->keep_locks should be set to 1 on the search made before 5595 * calling this function. 5596 */ 5597 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5598 struct btrfs_key *key, int level, u64 min_trans) 5599 { 5600 int slot; 5601 struct extent_buffer *c; 5602 5603 WARN_ON(!path->keep_locks); 5604 while (level < BTRFS_MAX_LEVEL) { 5605 if (!path->nodes[level]) 5606 return 1; 5607 5608 slot = path->slots[level] + 1; 5609 c = path->nodes[level]; 5610 next: 5611 if (slot >= btrfs_header_nritems(c)) { 5612 int ret; 5613 int orig_lowest; 5614 struct btrfs_key cur_key; 5615 if (level + 1 >= BTRFS_MAX_LEVEL || 5616 !path->nodes[level + 1]) 5617 return 1; 5618 5619 if (path->locks[level + 1]) { 5620 level++; 5621 continue; 5622 } 5623 5624 slot = btrfs_header_nritems(c) - 1; 5625 if (level == 0) 5626 btrfs_item_key_to_cpu(c, &cur_key, slot); 5627 else 5628 btrfs_node_key_to_cpu(c, &cur_key, slot); 5629 5630 orig_lowest = path->lowest_level; 5631 btrfs_release_path(path); 5632 path->lowest_level = level; 5633 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5634 0, 0); 5635 path->lowest_level = orig_lowest; 5636 if (ret < 0) 5637 return ret; 5638 5639 c = path->nodes[level]; 5640 slot = path->slots[level]; 5641 if (ret == 0) 5642 slot++; 5643 goto next; 5644 } 5645 5646 if (level == 0) 5647 btrfs_item_key_to_cpu(c, key, slot); 5648 else { 5649 u64 gen = btrfs_node_ptr_generation(c, slot); 5650 5651 if (gen < min_trans) { 5652 slot++; 5653 goto next; 5654 } 5655 btrfs_node_key_to_cpu(c, key, slot); 5656 } 5657 return 0; 5658 } 5659 return 1; 5660 } 5661 5662 /* 5663 * search the tree again to find a leaf with greater keys 5664 * returns 0 if it found something or 1 if there are no greater leaves. 5665 * returns < 0 on io errors. 5666 */ 5667 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5668 { 5669 return btrfs_next_old_leaf(root, path, 0); 5670 } 5671 5672 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5673 u64 time_seq) 5674 { 5675 int slot; 5676 int level; 5677 struct extent_buffer *c; 5678 struct extent_buffer *next; 5679 struct btrfs_key key; 5680 u32 nritems; 5681 int ret; 5682 int old_spinning = path->leave_spinning; 5683 int next_rw_lock = 0; 5684 5685 nritems = btrfs_header_nritems(path->nodes[0]); 5686 if (nritems == 0) 5687 return 1; 5688 5689 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5690 again: 5691 level = 1; 5692 next = NULL; 5693 next_rw_lock = 0; 5694 btrfs_release_path(path); 5695 5696 path->keep_locks = 1; 5697 path->leave_spinning = 1; 5698 5699 if (time_seq) 5700 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5701 else 5702 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5703 path->keep_locks = 0; 5704 5705 if (ret < 0) 5706 return ret; 5707 5708 nritems = btrfs_header_nritems(path->nodes[0]); 5709 /* 5710 * by releasing the path above we dropped all our locks. A balance 5711 * could have added more items next to the key that used to be 5712 * at the very end of the block. So, check again here and 5713 * advance the path if there are now more items available. 5714 */ 5715 if (nritems > 0 && path->slots[0] < nritems - 1) { 5716 if (ret == 0) 5717 path->slots[0]++; 5718 ret = 0; 5719 goto done; 5720 } 5721 /* 5722 * So the above check misses one case: 5723 * - after releasing the path above, someone has removed the item that 5724 * used to be at the very end of the block, and balance between leafs 5725 * gets another one with bigger key.offset to replace it. 5726 * 5727 * This one should be returned as well, or we can get leaf corruption 5728 * later(esp. in __btrfs_drop_extents()). 5729 * 5730 * And a bit more explanation about this check, 5731 * with ret > 0, the key isn't found, the path points to the slot 5732 * where it should be inserted, so the path->slots[0] item must be the 5733 * bigger one. 5734 */ 5735 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5736 ret = 0; 5737 goto done; 5738 } 5739 5740 while (level < BTRFS_MAX_LEVEL) { 5741 if (!path->nodes[level]) { 5742 ret = 1; 5743 goto done; 5744 } 5745 5746 slot = path->slots[level] + 1; 5747 c = path->nodes[level]; 5748 if (slot >= btrfs_header_nritems(c)) { 5749 level++; 5750 if (level == BTRFS_MAX_LEVEL) { 5751 ret = 1; 5752 goto done; 5753 } 5754 continue; 5755 } 5756 5757 if (next) { 5758 btrfs_tree_unlock_rw(next, next_rw_lock); 5759 free_extent_buffer(next); 5760 } 5761 5762 next = c; 5763 next_rw_lock = path->locks[level]; 5764 ret = read_block_for_search(NULL, root, path, &next, level, 5765 slot, &key, 0); 5766 if (ret == -EAGAIN) 5767 goto again; 5768 5769 if (ret < 0) { 5770 btrfs_release_path(path); 5771 goto done; 5772 } 5773 5774 if (!path->skip_locking) { 5775 ret = btrfs_try_tree_read_lock(next); 5776 if (!ret && time_seq) { 5777 /* 5778 * If we don't get the lock, we may be racing 5779 * with push_leaf_left, holding that lock while 5780 * itself waiting for the leaf we've currently 5781 * locked. To solve this situation, we give up 5782 * on our lock and cycle. 5783 */ 5784 free_extent_buffer(next); 5785 btrfs_release_path(path); 5786 cond_resched(); 5787 goto again; 5788 } 5789 if (!ret) { 5790 btrfs_set_path_blocking(path); 5791 btrfs_tree_read_lock(next); 5792 btrfs_clear_path_blocking(path, next, 5793 BTRFS_READ_LOCK); 5794 } 5795 next_rw_lock = BTRFS_READ_LOCK; 5796 } 5797 break; 5798 } 5799 path->slots[level] = slot; 5800 while (1) { 5801 level--; 5802 c = path->nodes[level]; 5803 if (path->locks[level]) 5804 btrfs_tree_unlock_rw(c, path->locks[level]); 5805 5806 free_extent_buffer(c); 5807 path->nodes[level] = next; 5808 path->slots[level] = 0; 5809 if (!path->skip_locking) 5810 path->locks[level] = next_rw_lock; 5811 if (!level) 5812 break; 5813 5814 ret = read_block_for_search(NULL, root, path, &next, level, 5815 0, &key, 0); 5816 if (ret == -EAGAIN) 5817 goto again; 5818 5819 if (ret < 0) { 5820 btrfs_release_path(path); 5821 goto done; 5822 } 5823 5824 if (!path->skip_locking) { 5825 ret = btrfs_try_tree_read_lock(next); 5826 if (!ret) { 5827 btrfs_set_path_blocking(path); 5828 btrfs_tree_read_lock(next); 5829 btrfs_clear_path_blocking(path, next, 5830 BTRFS_READ_LOCK); 5831 } 5832 next_rw_lock = BTRFS_READ_LOCK; 5833 } 5834 } 5835 ret = 0; 5836 done: 5837 unlock_up(path, 0, 1, 0, NULL); 5838 path->leave_spinning = old_spinning; 5839 if (!old_spinning) 5840 btrfs_set_path_blocking(path); 5841 5842 return ret; 5843 } 5844 5845 /* 5846 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5847 * searching until it gets past min_objectid or finds an item of 'type' 5848 * 5849 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5850 */ 5851 int btrfs_previous_item(struct btrfs_root *root, 5852 struct btrfs_path *path, u64 min_objectid, 5853 int type) 5854 { 5855 struct btrfs_key found_key; 5856 struct extent_buffer *leaf; 5857 u32 nritems; 5858 int ret; 5859 5860 while (1) { 5861 if (path->slots[0] == 0) { 5862 btrfs_set_path_blocking(path); 5863 ret = btrfs_prev_leaf(root, path); 5864 if (ret != 0) 5865 return ret; 5866 } else { 5867 path->slots[0]--; 5868 } 5869 leaf = path->nodes[0]; 5870 nritems = btrfs_header_nritems(leaf); 5871 if (nritems == 0) 5872 return 1; 5873 if (path->slots[0] == nritems) 5874 path->slots[0]--; 5875 5876 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5877 if (found_key.objectid < min_objectid) 5878 break; 5879 if (found_key.type == type) 5880 return 0; 5881 if (found_key.objectid == min_objectid && 5882 found_key.type < type) 5883 break; 5884 } 5885 return 1; 5886 } 5887 5888 /* 5889 * search in extent tree to find a previous Metadata/Data extent item with 5890 * min objecitd. 5891 * 5892 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5893 */ 5894 int btrfs_previous_extent_item(struct btrfs_root *root, 5895 struct btrfs_path *path, u64 min_objectid) 5896 { 5897 struct btrfs_key found_key; 5898 struct extent_buffer *leaf; 5899 u32 nritems; 5900 int ret; 5901 5902 while (1) { 5903 if (path->slots[0] == 0) { 5904 btrfs_set_path_blocking(path); 5905 ret = btrfs_prev_leaf(root, path); 5906 if (ret != 0) 5907 return ret; 5908 } else { 5909 path->slots[0]--; 5910 } 5911 leaf = path->nodes[0]; 5912 nritems = btrfs_header_nritems(leaf); 5913 if (nritems == 0) 5914 return 1; 5915 if (path->slots[0] == nritems) 5916 path->slots[0]--; 5917 5918 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5919 if (found_key.objectid < min_objectid) 5920 break; 5921 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5922 found_key.type == BTRFS_METADATA_ITEM_KEY) 5923 return 0; 5924 if (found_key.objectid == min_objectid && 5925 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5926 break; 5927 } 5928 return 1; 5929 } 5930