1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include "ctree.h" 22 #include "disk-io.h" 23 #include "transaction.h" 24 #include "print-tree.h" 25 #include "locking.h" 26 27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 28 *root, struct btrfs_path *path, int level); 29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_key *ins_key, 31 struct btrfs_path *path, int data_size, int extend); 32 static int push_node_left(struct btrfs_trans_handle *trans, 33 struct btrfs_root *root, struct extent_buffer *dst, 34 struct extent_buffer *src, int empty); 35 static int balance_node_right(struct btrfs_trans_handle *trans, 36 struct btrfs_root *root, 37 struct extent_buffer *dst_buf, 38 struct extent_buffer *src_buf); 39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 40 struct btrfs_path *path, int level, int slot); 41 static int setup_items_for_insert(struct btrfs_trans_handle *trans, 42 struct btrfs_root *root, struct btrfs_path *path, 43 struct btrfs_key *cpu_key, u32 *data_size, 44 u32 total_data, u32 total_size, int nr); 45 46 47 struct btrfs_path *btrfs_alloc_path(void) 48 { 49 struct btrfs_path *path; 50 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 51 if (path) 52 path->reada = 1; 53 return path; 54 } 55 56 /* 57 * set all locked nodes in the path to blocking locks. This should 58 * be done before scheduling 59 */ 60 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 61 { 62 int i; 63 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 64 if (p->nodes[i] && p->locks[i]) 65 btrfs_set_lock_blocking(p->nodes[i]); 66 } 67 } 68 69 /* 70 * reset all the locked nodes in the patch to spinning locks. 71 * 72 * held is used to keep lockdep happy, when lockdep is enabled 73 * we set held to a blocking lock before we go around and 74 * retake all the spinlocks in the path. You can safely use NULL 75 * for held 76 */ 77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 78 struct extent_buffer *held) 79 { 80 int i; 81 82 #ifdef CONFIG_DEBUG_LOCK_ALLOC 83 /* lockdep really cares that we take all of these spinlocks 84 * in the right order. If any of the locks in the path are not 85 * currently blocking, it is going to complain. So, make really 86 * really sure by forcing the path to blocking before we clear 87 * the path blocking. 88 */ 89 if (held) 90 btrfs_set_lock_blocking(held); 91 btrfs_set_path_blocking(p); 92 #endif 93 94 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 95 if (p->nodes[i] && p->locks[i]) 96 btrfs_clear_lock_blocking(p->nodes[i]); 97 } 98 99 #ifdef CONFIG_DEBUG_LOCK_ALLOC 100 if (held) 101 btrfs_clear_lock_blocking(held); 102 #endif 103 } 104 105 /* this also releases the path */ 106 void btrfs_free_path(struct btrfs_path *p) 107 { 108 if (!p) 109 return; 110 btrfs_release_path(NULL, p); 111 kmem_cache_free(btrfs_path_cachep, p); 112 } 113 114 /* 115 * path release drops references on the extent buffers in the path 116 * and it drops any locks held by this path 117 * 118 * It is safe to call this on paths that no locks or extent buffers held. 119 */ 120 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p) 121 { 122 int i; 123 124 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 125 p->slots[i] = 0; 126 if (!p->nodes[i]) 127 continue; 128 if (p->locks[i]) { 129 btrfs_tree_unlock(p->nodes[i]); 130 p->locks[i] = 0; 131 } 132 free_extent_buffer(p->nodes[i]); 133 p->nodes[i] = NULL; 134 } 135 } 136 137 /* 138 * safely gets a reference on the root node of a tree. A lock 139 * is not taken, so a concurrent writer may put a different node 140 * at the root of the tree. See btrfs_lock_root_node for the 141 * looping required. 142 * 143 * The extent buffer returned by this has a reference taken, so 144 * it won't disappear. It may stop being the root of the tree 145 * at any time because there are no locks held. 146 */ 147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 148 { 149 struct extent_buffer *eb; 150 spin_lock(&root->node_lock); 151 eb = root->node; 152 extent_buffer_get(eb); 153 spin_unlock(&root->node_lock); 154 return eb; 155 } 156 157 /* loop around taking references on and locking the root node of the 158 * tree until you end up with a lock on the root. A locked buffer 159 * is returned, with a reference held. 160 */ 161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 162 { 163 struct extent_buffer *eb; 164 165 while (1) { 166 eb = btrfs_root_node(root); 167 btrfs_tree_lock(eb); 168 169 spin_lock(&root->node_lock); 170 if (eb == root->node) { 171 spin_unlock(&root->node_lock); 172 break; 173 } 174 spin_unlock(&root->node_lock); 175 176 btrfs_tree_unlock(eb); 177 free_extent_buffer(eb); 178 } 179 return eb; 180 } 181 182 /* cowonly root (everything not a reference counted cow subvolume), just get 183 * put onto a simple dirty list. transaction.c walks this to make sure they 184 * get properly updated on disk. 185 */ 186 static void add_root_to_dirty_list(struct btrfs_root *root) 187 { 188 if (root->track_dirty && list_empty(&root->dirty_list)) { 189 list_add(&root->dirty_list, 190 &root->fs_info->dirty_cowonly_roots); 191 } 192 } 193 194 /* 195 * used by snapshot creation to make a copy of a root for a tree with 196 * a given objectid. The buffer with the new root node is returned in 197 * cow_ret, and this func returns zero on success or a negative error code. 198 */ 199 int btrfs_copy_root(struct btrfs_trans_handle *trans, 200 struct btrfs_root *root, 201 struct extent_buffer *buf, 202 struct extent_buffer **cow_ret, u64 new_root_objectid) 203 { 204 struct extent_buffer *cow; 205 int ret = 0; 206 int level; 207 struct btrfs_disk_key disk_key; 208 209 WARN_ON(root->ref_cows && trans->transid != 210 root->fs_info->running_transaction->transid); 211 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 212 213 level = btrfs_header_level(buf); 214 if (level == 0) 215 btrfs_item_key(buf, &disk_key, 0); 216 else 217 btrfs_node_key(buf, &disk_key, 0); 218 219 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 220 new_root_objectid, &disk_key, level, 221 buf->start, 0); 222 if (IS_ERR(cow)) 223 return PTR_ERR(cow); 224 225 copy_extent_buffer(cow, buf, 0, 0, cow->len); 226 btrfs_set_header_bytenr(cow, cow->start); 227 btrfs_set_header_generation(cow, trans->transid); 228 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 229 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 230 BTRFS_HEADER_FLAG_RELOC); 231 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 232 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 233 else 234 btrfs_set_header_owner(cow, new_root_objectid); 235 236 write_extent_buffer(cow, root->fs_info->fsid, 237 (unsigned long)btrfs_header_fsid(cow), 238 BTRFS_FSID_SIZE); 239 240 WARN_ON(btrfs_header_generation(buf) > trans->transid); 241 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 242 ret = btrfs_inc_ref(trans, root, cow, 1); 243 else 244 ret = btrfs_inc_ref(trans, root, cow, 0); 245 246 if (ret) 247 return ret; 248 249 btrfs_mark_buffer_dirty(cow); 250 *cow_ret = cow; 251 return 0; 252 } 253 254 /* 255 * check if the tree block can be shared by multiple trees 256 */ 257 int btrfs_block_can_be_shared(struct btrfs_root *root, 258 struct extent_buffer *buf) 259 { 260 /* 261 * Tree blocks not in refernece counted trees and tree roots 262 * are never shared. If a block was allocated after the last 263 * snapshot and the block was not allocated by tree relocation, 264 * we know the block is not shared. 265 */ 266 if (root->ref_cows && 267 buf != root->node && buf != root->commit_root && 268 (btrfs_header_generation(buf) <= 269 btrfs_root_last_snapshot(&root->root_item) || 270 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 271 return 1; 272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 273 if (root->ref_cows && 274 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 275 return 1; 276 #endif 277 return 0; 278 } 279 280 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 281 struct btrfs_root *root, 282 struct extent_buffer *buf, 283 struct extent_buffer *cow, 284 int *last_ref) 285 { 286 u64 refs; 287 u64 owner; 288 u64 flags; 289 u64 new_flags = 0; 290 int ret; 291 292 /* 293 * Backrefs update rules: 294 * 295 * Always use full backrefs for extent pointers in tree block 296 * allocated by tree relocation. 297 * 298 * If a shared tree block is no longer referenced by its owner 299 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 300 * use full backrefs for extent pointers in tree block. 301 * 302 * If a tree block is been relocating 303 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 304 * use full backrefs for extent pointers in tree block. 305 * The reason for this is some operations (such as drop tree) 306 * are only allowed for blocks use full backrefs. 307 */ 308 309 if (btrfs_block_can_be_shared(root, buf)) { 310 ret = btrfs_lookup_extent_info(trans, root, buf->start, 311 buf->len, &refs, &flags); 312 BUG_ON(ret); 313 BUG_ON(refs == 0); 314 } else { 315 refs = 1; 316 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 317 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 318 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 319 else 320 flags = 0; 321 } 322 323 owner = btrfs_header_owner(buf); 324 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 325 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 326 327 if (refs > 1) { 328 if ((owner == root->root_key.objectid || 329 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 330 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 331 ret = btrfs_inc_ref(trans, root, buf, 1); 332 BUG_ON(ret); 333 334 if (root->root_key.objectid == 335 BTRFS_TREE_RELOC_OBJECTID) { 336 ret = btrfs_dec_ref(trans, root, buf, 0); 337 BUG_ON(ret); 338 ret = btrfs_inc_ref(trans, root, cow, 1); 339 BUG_ON(ret); 340 } 341 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 342 } else { 343 344 if (root->root_key.objectid == 345 BTRFS_TREE_RELOC_OBJECTID) 346 ret = btrfs_inc_ref(trans, root, cow, 1); 347 else 348 ret = btrfs_inc_ref(trans, root, cow, 0); 349 BUG_ON(ret); 350 } 351 if (new_flags != 0) { 352 ret = btrfs_set_disk_extent_flags(trans, root, 353 buf->start, 354 buf->len, 355 new_flags, 0); 356 BUG_ON(ret); 357 } 358 } else { 359 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 360 if (root->root_key.objectid == 361 BTRFS_TREE_RELOC_OBJECTID) 362 ret = btrfs_inc_ref(trans, root, cow, 1); 363 else 364 ret = btrfs_inc_ref(trans, root, cow, 0); 365 BUG_ON(ret); 366 ret = btrfs_dec_ref(trans, root, buf, 1); 367 BUG_ON(ret); 368 } 369 clean_tree_block(trans, root, buf); 370 *last_ref = 1; 371 } 372 return 0; 373 } 374 375 /* 376 * does the dirty work in cow of a single block. The parent block (if 377 * supplied) is updated to point to the new cow copy. The new buffer is marked 378 * dirty and returned locked. If you modify the block it needs to be marked 379 * dirty again. 380 * 381 * search_start -- an allocation hint for the new block 382 * 383 * empty_size -- a hint that you plan on doing more cow. This is the size in 384 * bytes the allocator should try to find free next to the block it returns. 385 * This is just a hint and may be ignored by the allocator. 386 */ 387 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 388 struct btrfs_root *root, 389 struct extent_buffer *buf, 390 struct extent_buffer *parent, int parent_slot, 391 struct extent_buffer **cow_ret, 392 u64 search_start, u64 empty_size) 393 { 394 struct btrfs_disk_key disk_key; 395 struct extent_buffer *cow; 396 int level; 397 int last_ref = 0; 398 int unlock_orig = 0; 399 u64 parent_start; 400 401 if (*cow_ret == buf) 402 unlock_orig = 1; 403 404 btrfs_assert_tree_locked(buf); 405 406 WARN_ON(root->ref_cows && trans->transid != 407 root->fs_info->running_transaction->transid); 408 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 409 410 level = btrfs_header_level(buf); 411 412 if (level == 0) 413 btrfs_item_key(buf, &disk_key, 0); 414 else 415 btrfs_node_key(buf, &disk_key, 0); 416 417 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 418 if (parent) 419 parent_start = parent->start; 420 else 421 parent_start = 0; 422 } else 423 parent_start = 0; 424 425 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 426 root->root_key.objectid, &disk_key, 427 level, search_start, empty_size); 428 if (IS_ERR(cow)) 429 return PTR_ERR(cow); 430 431 /* cow is set to blocking by btrfs_init_new_buffer */ 432 433 copy_extent_buffer(cow, buf, 0, 0, cow->len); 434 btrfs_set_header_bytenr(cow, cow->start); 435 btrfs_set_header_generation(cow, trans->transid); 436 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 437 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 438 BTRFS_HEADER_FLAG_RELOC); 439 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 440 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 441 else 442 btrfs_set_header_owner(cow, root->root_key.objectid); 443 444 write_extent_buffer(cow, root->fs_info->fsid, 445 (unsigned long)btrfs_header_fsid(cow), 446 BTRFS_FSID_SIZE); 447 448 update_ref_for_cow(trans, root, buf, cow, &last_ref); 449 450 if (root->ref_cows) 451 btrfs_reloc_cow_block(trans, root, buf, cow); 452 453 if (buf == root->node) { 454 WARN_ON(parent && parent != buf); 455 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 456 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 457 parent_start = buf->start; 458 else 459 parent_start = 0; 460 461 spin_lock(&root->node_lock); 462 root->node = cow; 463 extent_buffer_get(cow); 464 spin_unlock(&root->node_lock); 465 466 btrfs_free_tree_block(trans, root, buf, parent_start, 467 last_ref); 468 free_extent_buffer(buf); 469 add_root_to_dirty_list(root); 470 } else { 471 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 472 parent_start = parent->start; 473 else 474 parent_start = 0; 475 476 WARN_ON(trans->transid != btrfs_header_generation(parent)); 477 btrfs_set_node_blockptr(parent, parent_slot, 478 cow->start); 479 btrfs_set_node_ptr_generation(parent, parent_slot, 480 trans->transid); 481 btrfs_mark_buffer_dirty(parent); 482 btrfs_free_tree_block(trans, root, buf, parent_start, 483 last_ref); 484 } 485 if (unlock_orig) 486 btrfs_tree_unlock(buf); 487 free_extent_buffer(buf); 488 btrfs_mark_buffer_dirty(cow); 489 *cow_ret = cow; 490 return 0; 491 } 492 493 static inline int should_cow_block(struct btrfs_trans_handle *trans, 494 struct btrfs_root *root, 495 struct extent_buffer *buf) 496 { 497 if (btrfs_header_generation(buf) == trans->transid && 498 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 499 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 500 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 501 return 0; 502 return 1; 503 } 504 505 /* 506 * cows a single block, see __btrfs_cow_block for the real work. 507 * This version of it has extra checks so that a block isn't cow'd more than 508 * once per transaction, as long as it hasn't been written yet 509 */ 510 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 511 struct btrfs_root *root, struct extent_buffer *buf, 512 struct extent_buffer *parent, int parent_slot, 513 struct extent_buffer **cow_ret) 514 { 515 u64 search_start; 516 int ret; 517 518 if (trans->transaction != root->fs_info->running_transaction) { 519 printk(KERN_CRIT "trans %llu running %llu\n", 520 (unsigned long long)trans->transid, 521 (unsigned long long) 522 root->fs_info->running_transaction->transid); 523 WARN_ON(1); 524 } 525 if (trans->transid != root->fs_info->generation) { 526 printk(KERN_CRIT "trans %llu running %llu\n", 527 (unsigned long long)trans->transid, 528 (unsigned long long)root->fs_info->generation); 529 WARN_ON(1); 530 } 531 532 if (!should_cow_block(trans, root, buf)) { 533 *cow_ret = buf; 534 return 0; 535 } 536 537 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 538 539 if (parent) 540 btrfs_set_lock_blocking(parent); 541 btrfs_set_lock_blocking(buf); 542 543 ret = __btrfs_cow_block(trans, root, buf, parent, 544 parent_slot, cow_ret, search_start, 0); 545 return ret; 546 } 547 548 /* 549 * helper function for defrag to decide if two blocks pointed to by a 550 * node are actually close by 551 */ 552 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 553 { 554 if (blocknr < other && other - (blocknr + blocksize) < 32768) 555 return 1; 556 if (blocknr > other && blocknr - (other + blocksize) < 32768) 557 return 1; 558 return 0; 559 } 560 561 /* 562 * compare two keys in a memcmp fashion 563 */ 564 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 565 { 566 struct btrfs_key k1; 567 568 btrfs_disk_key_to_cpu(&k1, disk); 569 570 return btrfs_comp_cpu_keys(&k1, k2); 571 } 572 573 /* 574 * same as comp_keys only with two btrfs_key's 575 */ 576 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 577 { 578 if (k1->objectid > k2->objectid) 579 return 1; 580 if (k1->objectid < k2->objectid) 581 return -1; 582 if (k1->type > k2->type) 583 return 1; 584 if (k1->type < k2->type) 585 return -1; 586 if (k1->offset > k2->offset) 587 return 1; 588 if (k1->offset < k2->offset) 589 return -1; 590 return 0; 591 } 592 593 /* 594 * this is used by the defrag code to go through all the 595 * leaves pointed to by a node and reallocate them so that 596 * disk order is close to key order 597 */ 598 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 599 struct btrfs_root *root, struct extent_buffer *parent, 600 int start_slot, int cache_only, u64 *last_ret, 601 struct btrfs_key *progress) 602 { 603 struct extent_buffer *cur; 604 u64 blocknr; 605 u64 gen; 606 u64 search_start = *last_ret; 607 u64 last_block = 0; 608 u64 other; 609 u32 parent_nritems; 610 int end_slot; 611 int i; 612 int err = 0; 613 int parent_level; 614 int uptodate; 615 u32 blocksize; 616 int progress_passed = 0; 617 struct btrfs_disk_key disk_key; 618 619 parent_level = btrfs_header_level(parent); 620 if (cache_only && parent_level != 1) 621 return 0; 622 623 if (trans->transaction != root->fs_info->running_transaction) 624 WARN_ON(1); 625 if (trans->transid != root->fs_info->generation) 626 WARN_ON(1); 627 628 parent_nritems = btrfs_header_nritems(parent); 629 blocksize = btrfs_level_size(root, parent_level - 1); 630 end_slot = parent_nritems; 631 632 if (parent_nritems == 1) 633 return 0; 634 635 btrfs_set_lock_blocking(parent); 636 637 for (i = start_slot; i < end_slot; i++) { 638 int close = 1; 639 640 if (!parent->map_token) { 641 map_extent_buffer(parent, 642 btrfs_node_key_ptr_offset(i), 643 sizeof(struct btrfs_key_ptr), 644 &parent->map_token, &parent->kaddr, 645 &parent->map_start, &parent->map_len, 646 KM_USER1); 647 } 648 btrfs_node_key(parent, &disk_key, i); 649 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 650 continue; 651 652 progress_passed = 1; 653 blocknr = btrfs_node_blockptr(parent, i); 654 gen = btrfs_node_ptr_generation(parent, i); 655 if (last_block == 0) 656 last_block = blocknr; 657 658 if (i > 0) { 659 other = btrfs_node_blockptr(parent, i - 1); 660 close = close_blocks(blocknr, other, blocksize); 661 } 662 if (!close && i < end_slot - 2) { 663 other = btrfs_node_blockptr(parent, i + 1); 664 close = close_blocks(blocknr, other, blocksize); 665 } 666 if (close) { 667 last_block = blocknr; 668 continue; 669 } 670 if (parent->map_token) { 671 unmap_extent_buffer(parent, parent->map_token, 672 KM_USER1); 673 parent->map_token = NULL; 674 } 675 676 cur = btrfs_find_tree_block(root, blocknr, blocksize); 677 if (cur) 678 uptodate = btrfs_buffer_uptodate(cur, gen); 679 else 680 uptodate = 0; 681 if (!cur || !uptodate) { 682 if (cache_only) { 683 free_extent_buffer(cur); 684 continue; 685 } 686 if (!cur) { 687 cur = read_tree_block(root, blocknr, 688 blocksize, gen); 689 } else if (!uptodate) { 690 btrfs_read_buffer(cur, gen); 691 } 692 } 693 if (search_start == 0) 694 search_start = last_block; 695 696 btrfs_tree_lock(cur); 697 btrfs_set_lock_blocking(cur); 698 err = __btrfs_cow_block(trans, root, cur, parent, i, 699 &cur, search_start, 700 min(16 * blocksize, 701 (end_slot - i) * blocksize)); 702 if (err) { 703 btrfs_tree_unlock(cur); 704 free_extent_buffer(cur); 705 break; 706 } 707 search_start = cur->start; 708 last_block = cur->start; 709 *last_ret = search_start; 710 btrfs_tree_unlock(cur); 711 free_extent_buffer(cur); 712 } 713 if (parent->map_token) { 714 unmap_extent_buffer(parent, parent->map_token, 715 KM_USER1); 716 parent->map_token = NULL; 717 } 718 return err; 719 } 720 721 /* 722 * The leaf data grows from end-to-front in the node. 723 * this returns the address of the start of the last item, 724 * which is the stop of the leaf data stack 725 */ 726 static inline unsigned int leaf_data_end(struct btrfs_root *root, 727 struct extent_buffer *leaf) 728 { 729 u32 nr = btrfs_header_nritems(leaf); 730 if (nr == 0) 731 return BTRFS_LEAF_DATA_SIZE(root); 732 return btrfs_item_offset_nr(leaf, nr - 1); 733 } 734 735 /* 736 * extra debugging checks to make sure all the items in a key are 737 * well formed and in the proper order 738 */ 739 static int check_node(struct btrfs_root *root, struct btrfs_path *path, 740 int level) 741 { 742 struct extent_buffer *parent = NULL; 743 struct extent_buffer *node = path->nodes[level]; 744 struct btrfs_disk_key parent_key; 745 struct btrfs_disk_key node_key; 746 int parent_slot; 747 int slot; 748 struct btrfs_key cpukey; 749 u32 nritems = btrfs_header_nritems(node); 750 751 if (path->nodes[level + 1]) 752 parent = path->nodes[level + 1]; 753 754 slot = path->slots[level]; 755 BUG_ON(nritems == 0); 756 if (parent) { 757 parent_slot = path->slots[level + 1]; 758 btrfs_node_key(parent, &parent_key, parent_slot); 759 btrfs_node_key(node, &node_key, 0); 760 BUG_ON(memcmp(&parent_key, &node_key, 761 sizeof(struct btrfs_disk_key))); 762 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 763 btrfs_header_bytenr(node)); 764 } 765 BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root)); 766 if (slot != 0) { 767 btrfs_node_key_to_cpu(node, &cpukey, slot - 1); 768 btrfs_node_key(node, &node_key, slot); 769 BUG_ON(comp_keys(&node_key, &cpukey) <= 0); 770 } 771 if (slot < nritems - 1) { 772 btrfs_node_key_to_cpu(node, &cpukey, slot + 1); 773 btrfs_node_key(node, &node_key, slot); 774 BUG_ON(comp_keys(&node_key, &cpukey) >= 0); 775 } 776 return 0; 777 } 778 779 /* 780 * extra checking to make sure all the items in a leaf are 781 * well formed and in the proper order 782 */ 783 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path, 784 int level) 785 { 786 struct extent_buffer *leaf = path->nodes[level]; 787 struct extent_buffer *parent = NULL; 788 int parent_slot; 789 struct btrfs_key cpukey; 790 struct btrfs_disk_key parent_key; 791 struct btrfs_disk_key leaf_key; 792 int slot = path->slots[0]; 793 794 u32 nritems = btrfs_header_nritems(leaf); 795 796 if (path->nodes[level + 1]) 797 parent = path->nodes[level + 1]; 798 799 if (nritems == 0) 800 return 0; 801 802 if (parent) { 803 parent_slot = path->slots[level + 1]; 804 btrfs_node_key(parent, &parent_key, parent_slot); 805 btrfs_item_key(leaf, &leaf_key, 0); 806 807 BUG_ON(memcmp(&parent_key, &leaf_key, 808 sizeof(struct btrfs_disk_key))); 809 BUG_ON(btrfs_node_blockptr(parent, parent_slot) != 810 btrfs_header_bytenr(leaf)); 811 } 812 if (slot != 0 && slot < nritems - 1) { 813 btrfs_item_key(leaf, &leaf_key, slot); 814 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1); 815 if (comp_keys(&leaf_key, &cpukey) <= 0) { 816 btrfs_print_leaf(root, leaf); 817 printk(KERN_CRIT "slot %d offset bad key\n", slot); 818 BUG_ON(1); 819 } 820 if (btrfs_item_offset_nr(leaf, slot - 1) != 821 btrfs_item_end_nr(leaf, slot)) { 822 btrfs_print_leaf(root, leaf); 823 printk(KERN_CRIT "slot %d offset bad\n", slot); 824 BUG_ON(1); 825 } 826 } 827 if (slot < nritems - 1) { 828 btrfs_item_key(leaf, &leaf_key, slot); 829 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1); 830 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0); 831 if (btrfs_item_offset_nr(leaf, slot) != 832 btrfs_item_end_nr(leaf, slot + 1)) { 833 btrfs_print_leaf(root, leaf); 834 printk(KERN_CRIT "slot %d offset bad\n", slot); 835 BUG_ON(1); 836 } 837 } 838 BUG_ON(btrfs_item_offset_nr(leaf, 0) + 839 btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root)); 840 return 0; 841 } 842 843 static noinline int check_block(struct btrfs_root *root, 844 struct btrfs_path *path, int level) 845 { 846 return 0; 847 if (level == 0) 848 return check_leaf(root, path, level); 849 return check_node(root, path, level); 850 } 851 852 /* 853 * search for key in the extent_buffer. The items start at offset p, 854 * and they are item_size apart. There are 'max' items in p. 855 * 856 * the slot in the array is returned via slot, and it points to 857 * the place where you would insert key if it is not found in 858 * the array. 859 * 860 * slot may point to max if the key is bigger than all of the keys 861 */ 862 static noinline int generic_bin_search(struct extent_buffer *eb, 863 unsigned long p, 864 int item_size, struct btrfs_key *key, 865 int max, int *slot) 866 { 867 int low = 0; 868 int high = max; 869 int mid; 870 int ret; 871 struct btrfs_disk_key *tmp = NULL; 872 struct btrfs_disk_key unaligned; 873 unsigned long offset; 874 char *map_token = NULL; 875 char *kaddr = NULL; 876 unsigned long map_start = 0; 877 unsigned long map_len = 0; 878 int err; 879 880 while (low < high) { 881 mid = (low + high) / 2; 882 offset = p + mid * item_size; 883 884 if (!map_token || offset < map_start || 885 (offset + sizeof(struct btrfs_disk_key)) > 886 map_start + map_len) { 887 if (map_token) { 888 unmap_extent_buffer(eb, map_token, KM_USER0); 889 map_token = NULL; 890 } 891 892 err = map_private_extent_buffer(eb, offset, 893 sizeof(struct btrfs_disk_key), 894 &map_token, &kaddr, 895 &map_start, &map_len, KM_USER0); 896 897 if (!err) { 898 tmp = (struct btrfs_disk_key *)(kaddr + offset - 899 map_start); 900 } else { 901 read_extent_buffer(eb, &unaligned, 902 offset, sizeof(unaligned)); 903 tmp = &unaligned; 904 } 905 906 } else { 907 tmp = (struct btrfs_disk_key *)(kaddr + offset - 908 map_start); 909 } 910 ret = comp_keys(tmp, key); 911 912 if (ret < 0) 913 low = mid + 1; 914 else if (ret > 0) 915 high = mid; 916 else { 917 *slot = mid; 918 if (map_token) 919 unmap_extent_buffer(eb, map_token, KM_USER0); 920 return 0; 921 } 922 } 923 *slot = low; 924 if (map_token) 925 unmap_extent_buffer(eb, map_token, KM_USER0); 926 return 1; 927 } 928 929 /* 930 * simple bin_search frontend that does the right thing for 931 * leaves vs nodes 932 */ 933 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 934 int level, int *slot) 935 { 936 if (level == 0) { 937 return generic_bin_search(eb, 938 offsetof(struct btrfs_leaf, items), 939 sizeof(struct btrfs_item), 940 key, btrfs_header_nritems(eb), 941 slot); 942 } else { 943 return generic_bin_search(eb, 944 offsetof(struct btrfs_node, ptrs), 945 sizeof(struct btrfs_key_ptr), 946 key, btrfs_header_nritems(eb), 947 slot); 948 } 949 return -1; 950 } 951 952 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 953 int level, int *slot) 954 { 955 return bin_search(eb, key, level, slot); 956 } 957 958 static void root_add_used(struct btrfs_root *root, u32 size) 959 { 960 spin_lock(&root->accounting_lock); 961 btrfs_set_root_used(&root->root_item, 962 btrfs_root_used(&root->root_item) + size); 963 spin_unlock(&root->accounting_lock); 964 } 965 966 static void root_sub_used(struct btrfs_root *root, u32 size) 967 { 968 spin_lock(&root->accounting_lock); 969 btrfs_set_root_used(&root->root_item, 970 btrfs_root_used(&root->root_item) - size); 971 spin_unlock(&root->accounting_lock); 972 } 973 974 /* given a node and slot number, this reads the blocks it points to. The 975 * extent buffer is returned with a reference taken (but unlocked). 976 * NULL is returned on error. 977 */ 978 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 979 struct extent_buffer *parent, int slot) 980 { 981 int level = btrfs_header_level(parent); 982 if (slot < 0) 983 return NULL; 984 if (slot >= btrfs_header_nritems(parent)) 985 return NULL; 986 987 BUG_ON(level == 0); 988 989 return read_tree_block(root, btrfs_node_blockptr(parent, slot), 990 btrfs_level_size(root, level - 1), 991 btrfs_node_ptr_generation(parent, slot)); 992 } 993 994 /* 995 * node level balancing, used to make sure nodes are in proper order for 996 * item deletion. We balance from the top down, so we have to make sure 997 * that a deletion won't leave an node completely empty later on. 998 */ 999 static noinline int balance_level(struct btrfs_trans_handle *trans, 1000 struct btrfs_root *root, 1001 struct btrfs_path *path, int level) 1002 { 1003 struct extent_buffer *right = NULL; 1004 struct extent_buffer *mid; 1005 struct extent_buffer *left = NULL; 1006 struct extent_buffer *parent = NULL; 1007 int ret = 0; 1008 int wret; 1009 int pslot; 1010 int orig_slot = path->slots[level]; 1011 u64 orig_ptr; 1012 1013 if (level == 0) 1014 return 0; 1015 1016 mid = path->nodes[level]; 1017 1018 WARN_ON(!path->locks[level]); 1019 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1020 1021 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1022 1023 if (level < BTRFS_MAX_LEVEL - 1) 1024 parent = path->nodes[level + 1]; 1025 pslot = path->slots[level + 1]; 1026 1027 /* 1028 * deal with the case where there is only one pointer in the root 1029 * by promoting the node below to a root 1030 */ 1031 if (!parent) { 1032 struct extent_buffer *child; 1033 1034 if (btrfs_header_nritems(mid) != 1) 1035 return 0; 1036 1037 /* promote the child to a root */ 1038 child = read_node_slot(root, mid, 0); 1039 BUG_ON(!child); 1040 btrfs_tree_lock(child); 1041 btrfs_set_lock_blocking(child); 1042 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1043 if (ret) { 1044 btrfs_tree_unlock(child); 1045 free_extent_buffer(child); 1046 goto enospc; 1047 } 1048 1049 spin_lock(&root->node_lock); 1050 root->node = child; 1051 spin_unlock(&root->node_lock); 1052 1053 add_root_to_dirty_list(root); 1054 btrfs_tree_unlock(child); 1055 1056 path->locks[level] = 0; 1057 path->nodes[level] = NULL; 1058 clean_tree_block(trans, root, mid); 1059 btrfs_tree_unlock(mid); 1060 /* once for the path */ 1061 free_extent_buffer(mid); 1062 1063 root_sub_used(root, mid->len); 1064 btrfs_free_tree_block(trans, root, mid, 0, 1); 1065 /* once for the root ptr */ 1066 free_extent_buffer(mid); 1067 return 0; 1068 } 1069 if (btrfs_header_nritems(mid) > 1070 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1071 return 0; 1072 1073 btrfs_header_nritems(mid); 1074 1075 left = read_node_slot(root, parent, pslot - 1); 1076 if (left) { 1077 btrfs_tree_lock(left); 1078 btrfs_set_lock_blocking(left); 1079 wret = btrfs_cow_block(trans, root, left, 1080 parent, pslot - 1, &left); 1081 if (wret) { 1082 ret = wret; 1083 goto enospc; 1084 } 1085 } 1086 right = read_node_slot(root, parent, pslot + 1); 1087 if (right) { 1088 btrfs_tree_lock(right); 1089 btrfs_set_lock_blocking(right); 1090 wret = btrfs_cow_block(trans, root, right, 1091 parent, pslot + 1, &right); 1092 if (wret) { 1093 ret = wret; 1094 goto enospc; 1095 } 1096 } 1097 1098 /* first, try to make some room in the middle buffer */ 1099 if (left) { 1100 orig_slot += btrfs_header_nritems(left); 1101 wret = push_node_left(trans, root, left, mid, 1); 1102 if (wret < 0) 1103 ret = wret; 1104 btrfs_header_nritems(mid); 1105 } 1106 1107 /* 1108 * then try to empty the right most buffer into the middle 1109 */ 1110 if (right) { 1111 wret = push_node_left(trans, root, mid, right, 1); 1112 if (wret < 0 && wret != -ENOSPC) 1113 ret = wret; 1114 if (btrfs_header_nritems(right) == 0) { 1115 clean_tree_block(trans, root, right); 1116 btrfs_tree_unlock(right); 1117 wret = del_ptr(trans, root, path, level + 1, pslot + 1118 1); 1119 if (wret) 1120 ret = wret; 1121 root_sub_used(root, right->len); 1122 btrfs_free_tree_block(trans, root, right, 0, 1); 1123 free_extent_buffer(right); 1124 right = NULL; 1125 } else { 1126 struct btrfs_disk_key right_key; 1127 btrfs_node_key(right, &right_key, 0); 1128 btrfs_set_node_key(parent, &right_key, pslot + 1); 1129 btrfs_mark_buffer_dirty(parent); 1130 } 1131 } 1132 if (btrfs_header_nritems(mid) == 1) { 1133 /* 1134 * we're not allowed to leave a node with one item in the 1135 * tree during a delete. A deletion from lower in the tree 1136 * could try to delete the only pointer in this node. 1137 * So, pull some keys from the left. 1138 * There has to be a left pointer at this point because 1139 * otherwise we would have pulled some pointers from the 1140 * right 1141 */ 1142 BUG_ON(!left); 1143 wret = balance_node_right(trans, root, mid, left); 1144 if (wret < 0) { 1145 ret = wret; 1146 goto enospc; 1147 } 1148 if (wret == 1) { 1149 wret = push_node_left(trans, root, left, mid, 1); 1150 if (wret < 0) 1151 ret = wret; 1152 } 1153 BUG_ON(wret == 1); 1154 } 1155 if (btrfs_header_nritems(mid) == 0) { 1156 clean_tree_block(trans, root, mid); 1157 btrfs_tree_unlock(mid); 1158 wret = del_ptr(trans, root, path, level + 1, pslot); 1159 if (wret) 1160 ret = wret; 1161 root_sub_used(root, mid->len); 1162 btrfs_free_tree_block(trans, root, mid, 0, 1); 1163 free_extent_buffer(mid); 1164 mid = NULL; 1165 } else { 1166 /* update the parent key to reflect our changes */ 1167 struct btrfs_disk_key mid_key; 1168 btrfs_node_key(mid, &mid_key, 0); 1169 btrfs_set_node_key(parent, &mid_key, pslot); 1170 btrfs_mark_buffer_dirty(parent); 1171 } 1172 1173 /* update the path */ 1174 if (left) { 1175 if (btrfs_header_nritems(left) > orig_slot) { 1176 extent_buffer_get(left); 1177 /* left was locked after cow */ 1178 path->nodes[level] = left; 1179 path->slots[level + 1] -= 1; 1180 path->slots[level] = orig_slot; 1181 if (mid) { 1182 btrfs_tree_unlock(mid); 1183 free_extent_buffer(mid); 1184 } 1185 } else { 1186 orig_slot -= btrfs_header_nritems(left); 1187 path->slots[level] = orig_slot; 1188 } 1189 } 1190 /* double check we haven't messed things up */ 1191 check_block(root, path, level); 1192 if (orig_ptr != 1193 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1194 BUG(); 1195 enospc: 1196 if (right) { 1197 btrfs_tree_unlock(right); 1198 free_extent_buffer(right); 1199 } 1200 if (left) { 1201 if (path->nodes[level] != left) 1202 btrfs_tree_unlock(left); 1203 free_extent_buffer(left); 1204 } 1205 return ret; 1206 } 1207 1208 /* Node balancing for insertion. Here we only split or push nodes around 1209 * when they are completely full. This is also done top down, so we 1210 * have to be pessimistic. 1211 */ 1212 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 1213 struct btrfs_root *root, 1214 struct btrfs_path *path, int level) 1215 { 1216 struct extent_buffer *right = NULL; 1217 struct extent_buffer *mid; 1218 struct extent_buffer *left = NULL; 1219 struct extent_buffer *parent = NULL; 1220 int ret = 0; 1221 int wret; 1222 int pslot; 1223 int orig_slot = path->slots[level]; 1224 1225 if (level == 0) 1226 return 1; 1227 1228 mid = path->nodes[level]; 1229 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1230 1231 if (level < BTRFS_MAX_LEVEL - 1) 1232 parent = path->nodes[level + 1]; 1233 pslot = path->slots[level + 1]; 1234 1235 if (!parent) 1236 return 1; 1237 1238 left = read_node_slot(root, parent, pslot - 1); 1239 1240 /* first, try to make some room in the middle buffer */ 1241 if (left) { 1242 u32 left_nr; 1243 1244 btrfs_tree_lock(left); 1245 btrfs_set_lock_blocking(left); 1246 1247 left_nr = btrfs_header_nritems(left); 1248 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1249 wret = 1; 1250 } else { 1251 ret = btrfs_cow_block(trans, root, left, parent, 1252 pslot - 1, &left); 1253 if (ret) 1254 wret = 1; 1255 else { 1256 wret = push_node_left(trans, root, 1257 left, mid, 0); 1258 } 1259 } 1260 if (wret < 0) 1261 ret = wret; 1262 if (wret == 0) { 1263 struct btrfs_disk_key disk_key; 1264 orig_slot += left_nr; 1265 btrfs_node_key(mid, &disk_key, 0); 1266 btrfs_set_node_key(parent, &disk_key, pslot); 1267 btrfs_mark_buffer_dirty(parent); 1268 if (btrfs_header_nritems(left) > orig_slot) { 1269 path->nodes[level] = left; 1270 path->slots[level + 1] -= 1; 1271 path->slots[level] = orig_slot; 1272 btrfs_tree_unlock(mid); 1273 free_extent_buffer(mid); 1274 } else { 1275 orig_slot -= 1276 btrfs_header_nritems(left); 1277 path->slots[level] = orig_slot; 1278 btrfs_tree_unlock(left); 1279 free_extent_buffer(left); 1280 } 1281 return 0; 1282 } 1283 btrfs_tree_unlock(left); 1284 free_extent_buffer(left); 1285 } 1286 right = read_node_slot(root, parent, pslot + 1); 1287 1288 /* 1289 * then try to empty the right most buffer into the middle 1290 */ 1291 if (right) { 1292 u32 right_nr; 1293 1294 btrfs_tree_lock(right); 1295 btrfs_set_lock_blocking(right); 1296 1297 right_nr = btrfs_header_nritems(right); 1298 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 1299 wret = 1; 1300 } else { 1301 ret = btrfs_cow_block(trans, root, right, 1302 parent, pslot + 1, 1303 &right); 1304 if (ret) 1305 wret = 1; 1306 else { 1307 wret = balance_node_right(trans, root, 1308 right, mid); 1309 } 1310 } 1311 if (wret < 0) 1312 ret = wret; 1313 if (wret == 0) { 1314 struct btrfs_disk_key disk_key; 1315 1316 btrfs_node_key(right, &disk_key, 0); 1317 btrfs_set_node_key(parent, &disk_key, pslot + 1); 1318 btrfs_mark_buffer_dirty(parent); 1319 1320 if (btrfs_header_nritems(mid) <= orig_slot) { 1321 path->nodes[level] = right; 1322 path->slots[level + 1] += 1; 1323 path->slots[level] = orig_slot - 1324 btrfs_header_nritems(mid); 1325 btrfs_tree_unlock(mid); 1326 free_extent_buffer(mid); 1327 } else { 1328 btrfs_tree_unlock(right); 1329 free_extent_buffer(right); 1330 } 1331 return 0; 1332 } 1333 btrfs_tree_unlock(right); 1334 free_extent_buffer(right); 1335 } 1336 return 1; 1337 } 1338 1339 /* 1340 * readahead one full node of leaves, finding things that are close 1341 * to the block in 'slot', and triggering ra on them. 1342 */ 1343 static void reada_for_search(struct btrfs_root *root, 1344 struct btrfs_path *path, 1345 int level, int slot, u64 objectid) 1346 { 1347 struct extent_buffer *node; 1348 struct btrfs_disk_key disk_key; 1349 u32 nritems; 1350 u64 search; 1351 u64 target; 1352 u64 nread = 0; 1353 int direction = path->reada; 1354 struct extent_buffer *eb; 1355 u32 nr; 1356 u32 blocksize; 1357 u32 nscan = 0; 1358 1359 if (level != 1) 1360 return; 1361 1362 if (!path->nodes[level]) 1363 return; 1364 1365 node = path->nodes[level]; 1366 1367 search = btrfs_node_blockptr(node, slot); 1368 blocksize = btrfs_level_size(root, level - 1); 1369 eb = btrfs_find_tree_block(root, search, blocksize); 1370 if (eb) { 1371 free_extent_buffer(eb); 1372 return; 1373 } 1374 1375 target = search; 1376 1377 nritems = btrfs_header_nritems(node); 1378 nr = slot; 1379 while (1) { 1380 if (direction < 0) { 1381 if (nr == 0) 1382 break; 1383 nr--; 1384 } else if (direction > 0) { 1385 nr++; 1386 if (nr >= nritems) 1387 break; 1388 } 1389 if (path->reada < 0 && objectid) { 1390 btrfs_node_key(node, &disk_key, nr); 1391 if (btrfs_disk_key_objectid(&disk_key) != objectid) 1392 break; 1393 } 1394 search = btrfs_node_blockptr(node, nr); 1395 if ((search <= target && target - search <= 65536) || 1396 (search > target && search - target <= 65536)) { 1397 readahead_tree_block(root, search, blocksize, 1398 btrfs_node_ptr_generation(node, nr)); 1399 nread += blocksize; 1400 } 1401 nscan++; 1402 if ((nread > 65536 || nscan > 32)) 1403 break; 1404 } 1405 } 1406 1407 /* 1408 * returns -EAGAIN if it had to drop the path, or zero if everything was in 1409 * cache 1410 */ 1411 static noinline int reada_for_balance(struct btrfs_root *root, 1412 struct btrfs_path *path, int level) 1413 { 1414 int slot; 1415 int nritems; 1416 struct extent_buffer *parent; 1417 struct extent_buffer *eb; 1418 u64 gen; 1419 u64 block1 = 0; 1420 u64 block2 = 0; 1421 int ret = 0; 1422 int blocksize; 1423 1424 parent = path->nodes[level + 1]; 1425 if (!parent) 1426 return 0; 1427 1428 nritems = btrfs_header_nritems(parent); 1429 slot = path->slots[level + 1]; 1430 blocksize = btrfs_level_size(root, level); 1431 1432 if (slot > 0) { 1433 block1 = btrfs_node_blockptr(parent, slot - 1); 1434 gen = btrfs_node_ptr_generation(parent, slot - 1); 1435 eb = btrfs_find_tree_block(root, block1, blocksize); 1436 if (eb && btrfs_buffer_uptodate(eb, gen)) 1437 block1 = 0; 1438 free_extent_buffer(eb); 1439 } 1440 if (slot + 1 < nritems) { 1441 block2 = btrfs_node_blockptr(parent, slot + 1); 1442 gen = btrfs_node_ptr_generation(parent, slot + 1); 1443 eb = btrfs_find_tree_block(root, block2, blocksize); 1444 if (eb && btrfs_buffer_uptodate(eb, gen)) 1445 block2 = 0; 1446 free_extent_buffer(eb); 1447 } 1448 if (block1 || block2) { 1449 ret = -EAGAIN; 1450 1451 /* release the whole path */ 1452 btrfs_release_path(root, path); 1453 1454 /* read the blocks */ 1455 if (block1) 1456 readahead_tree_block(root, block1, blocksize, 0); 1457 if (block2) 1458 readahead_tree_block(root, block2, blocksize, 0); 1459 1460 if (block1) { 1461 eb = read_tree_block(root, block1, blocksize, 0); 1462 free_extent_buffer(eb); 1463 } 1464 if (block2) { 1465 eb = read_tree_block(root, block2, blocksize, 0); 1466 free_extent_buffer(eb); 1467 } 1468 } 1469 return ret; 1470 } 1471 1472 1473 /* 1474 * when we walk down the tree, it is usually safe to unlock the higher layers 1475 * in the tree. The exceptions are when our path goes through slot 0, because 1476 * operations on the tree might require changing key pointers higher up in the 1477 * tree. 1478 * 1479 * callers might also have set path->keep_locks, which tells this code to keep 1480 * the lock if the path points to the last slot in the block. This is part of 1481 * walking through the tree, and selecting the next slot in the higher block. 1482 * 1483 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 1484 * if lowest_unlock is 1, level 0 won't be unlocked 1485 */ 1486 static noinline void unlock_up(struct btrfs_path *path, int level, 1487 int lowest_unlock) 1488 { 1489 int i; 1490 int skip_level = level; 1491 int no_skips = 0; 1492 struct extent_buffer *t; 1493 1494 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1495 if (!path->nodes[i]) 1496 break; 1497 if (!path->locks[i]) 1498 break; 1499 if (!no_skips && path->slots[i] == 0) { 1500 skip_level = i + 1; 1501 continue; 1502 } 1503 if (!no_skips && path->keep_locks) { 1504 u32 nritems; 1505 t = path->nodes[i]; 1506 nritems = btrfs_header_nritems(t); 1507 if (nritems < 1 || path->slots[i] >= nritems - 1) { 1508 skip_level = i + 1; 1509 continue; 1510 } 1511 } 1512 if (skip_level < i && i >= lowest_unlock) 1513 no_skips = 1; 1514 1515 t = path->nodes[i]; 1516 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 1517 btrfs_tree_unlock(t); 1518 path->locks[i] = 0; 1519 } 1520 } 1521 } 1522 1523 /* 1524 * This releases any locks held in the path starting at level and 1525 * going all the way up to the root. 1526 * 1527 * btrfs_search_slot will keep the lock held on higher nodes in a few 1528 * corner cases, such as COW of the block at slot zero in the node. This 1529 * ignores those rules, and it should only be called when there are no 1530 * more updates to be done higher up in the tree. 1531 */ 1532 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 1533 { 1534 int i; 1535 1536 if (path->keep_locks) 1537 return; 1538 1539 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1540 if (!path->nodes[i]) 1541 continue; 1542 if (!path->locks[i]) 1543 continue; 1544 btrfs_tree_unlock(path->nodes[i]); 1545 path->locks[i] = 0; 1546 } 1547 } 1548 1549 /* 1550 * helper function for btrfs_search_slot. The goal is to find a block 1551 * in cache without setting the path to blocking. If we find the block 1552 * we return zero and the path is unchanged. 1553 * 1554 * If we can't find the block, we set the path blocking and do some 1555 * reada. -EAGAIN is returned and the search must be repeated. 1556 */ 1557 static int 1558 read_block_for_search(struct btrfs_trans_handle *trans, 1559 struct btrfs_root *root, struct btrfs_path *p, 1560 struct extent_buffer **eb_ret, int level, int slot, 1561 struct btrfs_key *key) 1562 { 1563 u64 blocknr; 1564 u64 gen; 1565 u32 blocksize; 1566 struct extent_buffer *b = *eb_ret; 1567 struct extent_buffer *tmp; 1568 int ret; 1569 1570 blocknr = btrfs_node_blockptr(b, slot); 1571 gen = btrfs_node_ptr_generation(b, slot); 1572 blocksize = btrfs_level_size(root, level - 1); 1573 1574 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 1575 if (tmp) { 1576 if (btrfs_buffer_uptodate(tmp, 0)) { 1577 if (btrfs_buffer_uptodate(tmp, gen)) { 1578 /* 1579 * we found an up to date block without 1580 * sleeping, return 1581 * right away 1582 */ 1583 *eb_ret = tmp; 1584 return 0; 1585 } 1586 /* the pages were up to date, but we failed 1587 * the generation number check. Do a full 1588 * read for the generation number that is correct. 1589 * We must do this without dropping locks so 1590 * we can trust our generation number 1591 */ 1592 free_extent_buffer(tmp); 1593 tmp = read_tree_block(root, blocknr, blocksize, gen); 1594 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 1595 *eb_ret = tmp; 1596 return 0; 1597 } 1598 free_extent_buffer(tmp); 1599 btrfs_release_path(NULL, p); 1600 return -EIO; 1601 } 1602 } 1603 1604 /* 1605 * reduce lock contention at high levels 1606 * of the btree by dropping locks before 1607 * we read. Don't release the lock on the current 1608 * level because we need to walk this node to figure 1609 * out which blocks to read. 1610 */ 1611 btrfs_unlock_up_safe(p, level + 1); 1612 btrfs_set_path_blocking(p); 1613 1614 free_extent_buffer(tmp); 1615 if (p->reada) 1616 reada_for_search(root, p, level, slot, key->objectid); 1617 1618 btrfs_release_path(NULL, p); 1619 1620 ret = -EAGAIN; 1621 tmp = read_tree_block(root, blocknr, blocksize, 0); 1622 if (tmp) { 1623 /* 1624 * If the read above didn't mark this buffer up to date, 1625 * it will never end up being up to date. Set ret to EIO now 1626 * and give up so that our caller doesn't loop forever 1627 * on our EAGAINs. 1628 */ 1629 if (!btrfs_buffer_uptodate(tmp, 0)) 1630 ret = -EIO; 1631 free_extent_buffer(tmp); 1632 } 1633 return ret; 1634 } 1635 1636 /* 1637 * helper function for btrfs_search_slot. This does all of the checks 1638 * for node-level blocks and does any balancing required based on 1639 * the ins_len. 1640 * 1641 * If no extra work was required, zero is returned. If we had to 1642 * drop the path, -EAGAIN is returned and btrfs_search_slot must 1643 * start over 1644 */ 1645 static int 1646 setup_nodes_for_search(struct btrfs_trans_handle *trans, 1647 struct btrfs_root *root, struct btrfs_path *p, 1648 struct extent_buffer *b, int level, int ins_len) 1649 { 1650 int ret; 1651 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 1652 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 1653 int sret; 1654 1655 sret = reada_for_balance(root, p, level); 1656 if (sret) 1657 goto again; 1658 1659 btrfs_set_path_blocking(p); 1660 sret = split_node(trans, root, p, level); 1661 btrfs_clear_path_blocking(p, NULL); 1662 1663 BUG_ON(sret > 0); 1664 if (sret) { 1665 ret = sret; 1666 goto done; 1667 } 1668 b = p->nodes[level]; 1669 } else if (ins_len < 0 && btrfs_header_nritems(b) < 1670 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 1671 int sret; 1672 1673 sret = reada_for_balance(root, p, level); 1674 if (sret) 1675 goto again; 1676 1677 btrfs_set_path_blocking(p); 1678 sret = balance_level(trans, root, p, level); 1679 btrfs_clear_path_blocking(p, NULL); 1680 1681 if (sret) { 1682 ret = sret; 1683 goto done; 1684 } 1685 b = p->nodes[level]; 1686 if (!b) { 1687 btrfs_release_path(NULL, p); 1688 goto again; 1689 } 1690 BUG_ON(btrfs_header_nritems(b) == 1); 1691 } 1692 return 0; 1693 1694 again: 1695 ret = -EAGAIN; 1696 done: 1697 return ret; 1698 } 1699 1700 /* 1701 * look for key in the tree. path is filled in with nodes along the way 1702 * if key is found, we return zero and you can find the item in the leaf 1703 * level of the path (level 0) 1704 * 1705 * If the key isn't found, the path points to the slot where it should 1706 * be inserted, and 1 is returned. If there are other errors during the 1707 * search a negative error number is returned. 1708 * 1709 * if ins_len > 0, nodes and leaves will be split as we walk down the 1710 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 1711 * possible) 1712 */ 1713 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 1714 *root, struct btrfs_key *key, struct btrfs_path *p, int 1715 ins_len, int cow) 1716 { 1717 struct extent_buffer *b; 1718 int slot; 1719 int ret; 1720 int err; 1721 int level; 1722 int lowest_unlock = 1; 1723 u8 lowest_level = 0; 1724 1725 lowest_level = p->lowest_level; 1726 WARN_ON(lowest_level && ins_len > 0); 1727 WARN_ON(p->nodes[0] != NULL); 1728 1729 if (ins_len < 0) 1730 lowest_unlock = 2; 1731 1732 again: 1733 if (p->search_commit_root) { 1734 b = root->commit_root; 1735 extent_buffer_get(b); 1736 if (!p->skip_locking) 1737 btrfs_tree_lock(b); 1738 } else { 1739 if (p->skip_locking) 1740 b = btrfs_root_node(root); 1741 else 1742 b = btrfs_lock_root_node(root); 1743 } 1744 1745 while (b) { 1746 level = btrfs_header_level(b); 1747 1748 /* 1749 * setup the path here so we can release it under lock 1750 * contention with the cow code 1751 */ 1752 p->nodes[level] = b; 1753 if (!p->skip_locking) 1754 p->locks[level] = 1; 1755 1756 if (cow) { 1757 /* 1758 * if we don't really need to cow this block 1759 * then we don't want to set the path blocking, 1760 * so we test it here 1761 */ 1762 if (!should_cow_block(trans, root, b)) 1763 goto cow_done; 1764 1765 btrfs_set_path_blocking(p); 1766 1767 err = btrfs_cow_block(trans, root, b, 1768 p->nodes[level + 1], 1769 p->slots[level + 1], &b); 1770 if (err) { 1771 ret = err; 1772 goto done; 1773 } 1774 } 1775 cow_done: 1776 BUG_ON(!cow && ins_len); 1777 if (level != btrfs_header_level(b)) 1778 WARN_ON(1); 1779 level = btrfs_header_level(b); 1780 1781 p->nodes[level] = b; 1782 if (!p->skip_locking) 1783 p->locks[level] = 1; 1784 1785 btrfs_clear_path_blocking(p, NULL); 1786 1787 /* 1788 * we have a lock on b and as long as we aren't changing 1789 * the tree, there is no way to for the items in b to change. 1790 * It is safe to drop the lock on our parent before we 1791 * go through the expensive btree search on b. 1792 * 1793 * If cow is true, then we might be changing slot zero, 1794 * which may require changing the parent. So, we can't 1795 * drop the lock until after we know which slot we're 1796 * operating on. 1797 */ 1798 if (!cow) 1799 btrfs_unlock_up_safe(p, level + 1); 1800 1801 ret = check_block(root, p, level); 1802 if (ret) { 1803 ret = -1; 1804 goto done; 1805 } 1806 1807 ret = bin_search(b, key, level, &slot); 1808 1809 if (level != 0) { 1810 int dec = 0; 1811 if (ret && slot > 0) { 1812 dec = 1; 1813 slot -= 1; 1814 } 1815 p->slots[level] = slot; 1816 err = setup_nodes_for_search(trans, root, p, b, level, 1817 ins_len); 1818 if (err == -EAGAIN) 1819 goto again; 1820 if (err) { 1821 ret = err; 1822 goto done; 1823 } 1824 b = p->nodes[level]; 1825 slot = p->slots[level]; 1826 1827 unlock_up(p, level, lowest_unlock); 1828 1829 if (level == lowest_level) { 1830 if (dec) 1831 p->slots[level]++; 1832 goto done; 1833 } 1834 1835 err = read_block_for_search(trans, root, p, 1836 &b, level, slot, key); 1837 if (err == -EAGAIN) 1838 goto again; 1839 if (err) { 1840 ret = err; 1841 goto done; 1842 } 1843 1844 if (!p->skip_locking) { 1845 btrfs_clear_path_blocking(p, NULL); 1846 err = btrfs_try_spin_lock(b); 1847 1848 if (!err) { 1849 btrfs_set_path_blocking(p); 1850 btrfs_tree_lock(b); 1851 btrfs_clear_path_blocking(p, b); 1852 } 1853 } 1854 } else { 1855 p->slots[level] = slot; 1856 if (ins_len > 0 && 1857 btrfs_leaf_free_space(root, b) < ins_len) { 1858 btrfs_set_path_blocking(p); 1859 err = split_leaf(trans, root, key, 1860 p, ins_len, ret == 0); 1861 btrfs_clear_path_blocking(p, NULL); 1862 1863 BUG_ON(err > 0); 1864 if (err) { 1865 ret = err; 1866 goto done; 1867 } 1868 } 1869 if (!p->search_for_split) 1870 unlock_up(p, level, lowest_unlock); 1871 goto done; 1872 } 1873 } 1874 ret = 1; 1875 done: 1876 /* 1877 * we don't really know what they plan on doing with the path 1878 * from here on, so for now just mark it as blocking 1879 */ 1880 if (!p->leave_spinning) 1881 btrfs_set_path_blocking(p); 1882 if (ret < 0) 1883 btrfs_release_path(root, p); 1884 return ret; 1885 } 1886 1887 /* 1888 * adjust the pointers going up the tree, starting at level 1889 * making sure the right key of each node is points to 'key'. 1890 * This is used after shifting pointers to the left, so it stops 1891 * fixing up pointers when a given leaf/node is not in slot 0 of the 1892 * higher levels 1893 * 1894 * If this fails to write a tree block, it returns -1, but continues 1895 * fixing up the blocks in ram so the tree is consistent. 1896 */ 1897 static int fixup_low_keys(struct btrfs_trans_handle *trans, 1898 struct btrfs_root *root, struct btrfs_path *path, 1899 struct btrfs_disk_key *key, int level) 1900 { 1901 int i; 1902 int ret = 0; 1903 struct extent_buffer *t; 1904 1905 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 1906 int tslot = path->slots[i]; 1907 if (!path->nodes[i]) 1908 break; 1909 t = path->nodes[i]; 1910 btrfs_set_node_key(t, key, tslot); 1911 btrfs_mark_buffer_dirty(path->nodes[i]); 1912 if (tslot != 0) 1913 break; 1914 } 1915 return ret; 1916 } 1917 1918 /* 1919 * update item key. 1920 * 1921 * This function isn't completely safe. It's the caller's responsibility 1922 * that the new key won't break the order 1923 */ 1924 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans, 1925 struct btrfs_root *root, struct btrfs_path *path, 1926 struct btrfs_key *new_key) 1927 { 1928 struct btrfs_disk_key disk_key; 1929 struct extent_buffer *eb; 1930 int slot; 1931 1932 eb = path->nodes[0]; 1933 slot = path->slots[0]; 1934 if (slot > 0) { 1935 btrfs_item_key(eb, &disk_key, slot - 1); 1936 if (comp_keys(&disk_key, new_key) >= 0) 1937 return -1; 1938 } 1939 if (slot < btrfs_header_nritems(eb) - 1) { 1940 btrfs_item_key(eb, &disk_key, slot + 1); 1941 if (comp_keys(&disk_key, new_key) <= 0) 1942 return -1; 1943 } 1944 1945 btrfs_cpu_key_to_disk(&disk_key, new_key); 1946 btrfs_set_item_key(eb, &disk_key, slot); 1947 btrfs_mark_buffer_dirty(eb); 1948 if (slot == 0) 1949 fixup_low_keys(trans, root, path, &disk_key, 1); 1950 return 0; 1951 } 1952 1953 /* 1954 * try to push data from one node into the next node left in the 1955 * tree. 1956 * 1957 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 1958 * error, and > 0 if there was no room in the left hand block. 1959 */ 1960 static int push_node_left(struct btrfs_trans_handle *trans, 1961 struct btrfs_root *root, struct extent_buffer *dst, 1962 struct extent_buffer *src, int empty) 1963 { 1964 int push_items = 0; 1965 int src_nritems; 1966 int dst_nritems; 1967 int ret = 0; 1968 1969 src_nritems = btrfs_header_nritems(src); 1970 dst_nritems = btrfs_header_nritems(dst); 1971 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 1972 WARN_ON(btrfs_header_generation(src) != trans->transid); 1973 WARN_ON(btrfs_header_generation(dst) != trans->transid); 1974 1975 if (!empty && src_nritems <= 8) 1976 return 1; 1977 1978 if (push_items <= 0) 1979 return 1; 1980 1981 if (empty) { 1982 push_items = min(src_nritems, push_items); 1983 if (push_items < src_nritems) { 1984 /* leave at least 8 pointers in the node if 1985 * we aren't going to empty it 1986 */ 1987 if (src_nritems - push_items < 8) { 1988 if (push_items <= 8) 1989 return 1; 1990 push_items -= 8; 1991 } 1992 } 1993 } else 1994 push_items = min(src_nritems - 8, push_items); 1995 1996 copy_extent_buffer(dst, src, 1997 btrfs_node_key_ptr_offset(dst_nritems), 1998 btrfs_node_key_ptr_offset(0), 1999 push_items * sizeof(struct btrfs_key_ptr)); 2000 2001 if (push_items < src_nritems) { 2002 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 2003 btrfs_node_key_ptr_offset(push_items), 2004 (src_nritems - push_items) * 2005 sizeof(struct btrfs_key_ptr)); 2006 } 2007 btrfs_set_header_nritems(src, src_nritems - push_items); 2008 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2009 btrfs_mark_buffer_dirty(src); 2010 btrfs_mark_buffer_dirty(dst); 2011 2012 return ret; 2013 } 2014 2015 /* 2016 * try to push data from one node into the next node right in the 2017 * tree. 2018 * 2019 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 2020 * error, and > 0 if there was no room in the right hand block. 2021 * 2022 * this will only push up to 1/2 the contents of the left node over 2023 */ 2024 static int balance_node_right(struct btrfs_trans_handle *trans, 2025 struct btrfs_root *root, 2026 struct extent_buffer *dst, 2027 struct extent_buffer *src) 2028 { 2029 int push_items = 0; 2030 int max_push; 2031 int src_nritems; 2032 int dst_nritems; 2033 int ret = 0; 2034 2035 WARN_ON(btrfs_header_generation(src) != trans->transid); 2036 WARN_ON(btrfs_header_generation(dst) != trans->transid); 2037 2038 src_nritems = btrfs_header_nritems(src); 2039 dst_nritems = btrfs_header_nritems(dst); 2040 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 2041 if (push_items <= 0) 2042 return 1; 2043 2044 if (src_nritems < 4) 2045 return 1; 2046 2047 max_push = src_nritems / 2 + 1; 2048 /* don't try to empty the node */ 2049 if (max_push >= src_nritems) 2050 return 1; 2051 2052 if (max_push < push_items) 2053 push_items = max_push; 2054 2055 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 2056 btrfs_node_key_ptr_offset(0), 2057 (dst_nritems) * 2058 sizeof(struct btrfs_key_ptr)); 2059 2060 copy_extent_buffer(dst, src, 2061 btrfs_node_key_ptr_offset(0), 2062 btrfs_node_key_ptr_offset(src_nritems - push_items), 2063 push_items * sizeof(struct btrfs_key_ptr)); 2064 2065 btrfs_set_header_nritems(src, src_nritems - push_items); 2066 btrfs_set_header_nritems(dst, dst_nritems + push_items); 2067 2068 btrfs_mark_buffer_dirty(src); 2069 btrfs_mark_buffer_dirty(dst); 2070 2071 return ret; 2072 } 2073 2074 /* 2075 * helper function to insert a new root level in the tree. 2076 * A new node is allocated, and a single item is inserted to 2077 * point to the existing root 2078 * 2079 * returns zero on success or < 0 on failure. 2080 */ 2081 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 2082 struct btrfs_root *root, 2083 struct btrfs_path *path, int level) 2084 { 2085 u64 lower_gen; 2086 struct extent_buffer *lower; 2087 struct extent_buffer *c; 2088 struct extent_buffer *old; 2089 struct btrfs_disk_key lower_key; 2090 2091 BUG_ON(path->nodes[level]); 2092 BUG_ON(path->nodes[level-1] != root->node); 2093 2094 lower = path->nodes[level-1]; 2095 if (level == 1) 2096 btrfs_item_key(lower, &lower_key, 0); 2097 else 2098 btrfs_node_key(lower, &lower_key, 0); 2099 2100 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2101 root->root_key.objectid, &lower_key, 2102 level, root->node->start, 0); 2103 if (IS_ERR(c)) 2104 return PTR_ERR(c); 2105 2106 root_add_used(root, root->nodesize); 2107 2108 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 2109 btrfs_set_header_nritems(c, 1); 2110 btrfs_set_header_level(c, level); 2111 btrfs_set_header_bytenr(c, c->start); 2112 btrfs_set_header_generation(c, trans->transid); 2113 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 2114 btrfs_set_header_owner(c, root->root_key.objectid); 2115 2116 write_extent_buffer(c, root->fs_info->fsid, 2117 (unsigned long)btrfs_header_fsid(c), 2118 BTRFS_FSID_SIZE); 2119 2120 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 2121 (unsigned long)btrfs_header_chunk_tree_uuid(c), 2122 BTRFS_UUID_SIZE); 2123 2124 btrfs_set_node_key(c, &lower_key, 0); 2125 btrfs_set_node_blockptr(c, 0, lower->start); 2126 lower_gen = btrfs_header_generation(lower); 2127 WARN_ON(lower_gen != trans->transid); 2128 2129 btrfs_set_node_ptr_generation(c, 0, lower_gen); 2130 2131 btrfs_mark_buffer_dirty(c); 2132 2133 spin_lock(&root->node_lock); 2134 old = root->node; 2135 root->node = c; 2136 spin_unlock(&root->node_lock); 2137 2138 /* the super has an extra ref to root->node */ 2139 free_extent_buffer(old); 2140 2141 add_root_to_dirty_list(root); 2142 extent_buffer_get(c); 2143 path->nodes[level] = c; 2144 path->locks[level] = 1; 2145 path->slots[level] = 0; 2146 return 0; 2147 } 2148 2149 /* 2150 * worker function to insert a single pointer in a node. 2151 * the node should have enough room for the pointer already 2152 * 2153 * slot and level indicate where you want the key to go, and 2154 * blocknr is the block the key points to. 2155 * 2156 * returns zero on success and < 0 on any error 2157 */ 2158 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root 2159 *root, struct btrfs_path *path, struct btrfs_disk_key 2160 *key, u64 bytenr, int slot, int level) 2161 { 2162 struct extent_buffer *lower; 2163 int nritems; 2164 2165 BUG_ON(!path->nodes[level]); 2166 btrfs_assert_tree_locked(path->nodes[level]); 2167 lower = path->nodes[level]; 2168 nritems = btrfs_header_nritems(lower); 2169 BUG_ON(slot > nritems); 2170 if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root)) 2171 BUG(); 2172 if (slot != nritems) { 2173 memmove_extent_buffer(lower, 2174 btrfs_node_key_ptr_offset(slot + 1), 2175 btrfs_node_key_ptr_offset(slot), 2176 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 2177 } 2178 btrfs_set_node_key(lower, key, slot); 2179 btrfs_set_node_blockptr(lower, slot, bytenr); 2180 WARN_ON(trans->transid == 0); 2181 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 2182 btrfs_set_header_nritems(lower, nritems + 1); 2183 btrfs_mark_buffer_dirty(lower); 2184 return 0; 2185 } 2186 2187 /* 2188 * split the node at the specified level in path in two. 2189 * The path is corrected to point to the appropriate node after the split 2190 * 2191 * Before splitting this tries to make some room in the node by pushing 2192 * left and right, if either one works, it returns right away. 2193 * 2194 * returns 0 on success and < 0 on failure 2195 */ 2196 static noinline int split_node(struct btrfs_trans_handle *trans, 2197 struct btrfs_root *root, 2198 struct btrfs_path *path, int level) 2199 { 2200 struct extent_buffer *c; 2201 struct extent_buffer *split; 2202 struct btrfs_disk_key disk_key; 2203 int mid; 2204 int ret; 2205 int wret; 2206 u32 c_nritems; 2207 2208 c = path->nodes[level]; 2209 WARN_ON(btrfs_header_generation(c) != trans->transid); 2210 if (c == root->node) { 2211 /* trying to split the root, lets make a new one */ 2212 ret = insert_new_root(trans, root, path, level + 1); 2213 if (ret) 2214 return ret; 2215 } else { 2216 ret = push_nodes_for_insert(trans, root, path, level); 2217 c = path->nodes[level]; 2218 if (!ret && btrfs_header_nritems(c) < 2219 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 2220 return 0; 2221 if (ret < 0) 2222 return ret; 2223 } 2224 2225 c_nritems = btrfs_header_nritems(c); 2226 mid = (c_nritems + 1) / 2; 2227 btrfs_node_key(c, &disk_key, mid); 2228 2229 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 2230 root->root_key.objectid, 2231 &disk_key, level, c->start, 0); 2232 if (IS_ERR(split)) 2233 return PTR_ERR(split); 2234 2235 root_add_used(root, root->nodesize); 2236 2237 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 2238 btrfs_set_header_level(split, btrfs_header_level(c)); 2239 btrfs_set_header_bytenr(split, split->start); 2240 btrfs_set_header_generation(split, trans->transid); 2241 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 2242 btrfs_set_header_owner(split, root->root_key.objectid); 2243 write_extent_buffer(split, root->fs_info->fsid, 2244 (unsigned long)btrfs_header_fsid(split), 2245 BTRFS_FSID_SIZE); 2246 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 2247 (unsigned long)btrfs_header_chunk_tree_uuid(split), 2248 BTRFS_UUID_SIZE); 2249 2250 2251 copy_extent_buffer(split, c, 2252 btrfs_node_key_ptr_offset(0), 2253 btrfs_node_key_ptr_offset(mid), 2254 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 2255 btrfs_set_header_nritems(split, c_nritems - mid); 2256 btrfs_set_header_nritems(c, mid); 2257 ret = 0; 2258 2259 btrfs_mark_buffer_dirty(c); 2260 btrfs_mark_buffer_dirty(split); 2261 2262 wret = insert_ptr(trans, root, path, &disk_key, split->start, 2263 path->slots[level + 1] + 1, 2264 level + 1); 2265 if (wret) 2266 ret = wret; 2267 2268 if (path->slots[level] >= mid) { 2269 path->slots[level] -= mid; 2270 btrfs_tree_unlock(c); 2271 free_extent_buffer(c); 2272 path->nodes[level] = split; 2273 path->slots[level + 1] += 1; 2274 } else { 2275 btrfs_tree_unlock(split); 2276 free_extent_buffer(split); 2277 } 2278 return ret; 2279 } 2280 2281 /* 2282 * how many bytes are required to store the items in a leaf. start 2283 * and nr indicate which items in the leaf to check. This totals up the 2284 * space used both by the item structs and the item data 2285 */ 2286 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 2287 { 2288 int data_len; 2289 int nritems = btrfs_header_nritems(l); 2290 int end = min(nritems, start + nr) - 1; 2291 2292 if (!nr) 2293 return 0; 2294 data_len = btrfs_item_end_nr(l, start); 2295 data_len = data_len - btrfs_item_offset_nr(l, end); 2296 data_len += sizeof(struct btrfs_item) * nr; 2297 WARN_ON(data_len < 0); 2298 return data_len; 2299 } 2300 2301 /* 2302 * The space between the end of the leaf items and 2303 * the start of the leaf data. IOW, how much room 2304 * the leaf has left for both items and data 2305 */ 2306 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 2307 struct extent_buffer *leaf) 2308 { 2309 int nritems = btrfs_header_nritems(leaf); 2310 int ret; 2311 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 2312 if (ret < 0) { 2313 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, " 2314 "used %d nritems %d\n", 2315 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 2316 leaf_space_used(leaf, 0, nritems), nritems); 2317 } 2318 return ret; 2319 } 2320 2321 /* 2322 * min slot controls the lowest index we're willing to push to the 2323 * right. We'll push up to and including min_slot, but no lower 2324 */ 2325 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 2326 struct btrfs_root *root, 2327 struct btrfs_path *path, 2328 int data_size, int empty, 2329 struct extent_buffer *right, 2330 int free_space, u32 left_nritems, 2331 u32 min_slot) 2332 { 2333 struct extent_buffer *left = path->nodes[0]; 2334 struct extent_buffer *upper = path->nodes[1]; 2335 struct btrfs_disk_key disk_key; 2336 int slot; 2337 u32 i; 2338 int push_space = 0; 2339 int push_items = 0; 2340 struct btrfs_item *item; 2341 u32 nr; 2342 u32 right_nritems; 2343 u32 data_end; 2344 u32 this_item_size; 2345 2346 if (empty) 2347 nr = 0; 2348 else 2349 nr = max_t(u32, 1, min_slot); 2350 2351 if (path->slots[0] >= left_nritems) 2352 push_space += data_size; 2353 2354 slot = path->slots[1]; 2355 i = left_nritems - 1; 2356 while (i >= nr) { 2357 item = btrfs_item_nr(left, i); 2358 2359 if (!empty && push_items > 0) { 2360 if (path->slots[0] > i) 2361 break; 2362 if (path->slots[0] == i) { 2363 int space = btrfs_leaf_free_space(root, left); 2364 if (space + push_space * 2 > free_space) 2365 break; 2366 } 2367 } 2368 2369 if (path->slots[0] == i) 2370 push_space += data_size; 2371 2372 if (!left->map_token) { 2373 map_extent_buffer(left, (unsigned long)item, 2374 sizeof(struct btrfs_item), 2375 &left->map_token, &left->kaddr, 2376 &left->map_start, &left->map_len, 2377 KM_USER1); 2378 } 2379 2380 this_item_size = btrfs_item_size(left, item); 2381 if (this_item_size + sizeof(*item) + push_space > free_space) 2382 break; 2383 2384 push_items++; 2385 push_space += this_item_size + sizeof(*item); 2386 if (i == 0) 2387 break; 2388 i--; 2389 } 2390 if (left->map_token) { 2391 unmap_extent_buffer(left, left->map_token, KM_USER1); 2392 left->map_token = NULL; 2393 } 2394 2395 if (push_items == 0) 2396 goto out_unlock; 2397 2398 if (!empty && push_items == left_nritems) 2399 WARN_ON(1); 2400 2401 /* push left to right */ 2402 right_nritems = btrfs_header_nritems(right); 2403 2404 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 2405 push_space -= leaf_data_end(root, left); 2406 2407 /* make room in the right data area */ 2408 data_end = leaf_data_end(root, right); 2409 memmove_extent_buffer(right, 2410 btrfs_leaf_data(right) + data_end - push_space, 2411 btrfs_leaf_data(right) + data_end, 2412 BTRFS_LEAF_DATA_SIZE(root) - data_end); 2413 2414 /* copy from the left data area */ 2415 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 2416 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2417 btrfs_leaf_data(left) + leaf_data_end(root, left), 2418 push_space); 2419 2420 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 2421 btrfs_item_nr_offset(0), 2422 right_nritems * sizeof(struct btrfs_item)); 2423 2424 /* copy the items from left to right */ 2425 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 2426 btrfs_item_nr_offset(left_nritems - push_items), 2427 push_items * sizeof(struct btrfs_item)); 2428 2429 /* update the item pointers */ 2430 right_nritems += push_items; 2431 btrfs_set_header_nritems(right, right_nritems); 2432 push_space = BTRFS_LEAF_DATA_SIZE(root); 2433 for (i = 0; i < right_nritems; i++) { 2434 item = btrfs_item_nr(right, i); 2435 if (!right->map_token) { 2436 map_extent_buffer(right, (unsigned long)item, 2437 sizeof(struct btrfs_item), 2438 &right->map_token, &right->kaddr, 2439 &right->map_start, &right->map_len, 2440 KM_USER1); 2441 } 2442 push_space -= btrfs_item_size(right, item); 2443 btrfs_set_item_offset(right, item, push_space); 2444 } 2445 2446 if (right->map_token) { 2447 unmap_extent_buffer(right, right->map_token, KM_USER1); 2448 right->map_token = NULL; 2449 } 2450 left_nritems -= push_items; 2451 btrfs_set_header_nritems(left, left_nritems); 2452 2453 if (left_nritems) 2454 btrfs_mark_buffer_dirty(left); 2455 else 2456 clean_tree_block(trans, root, left); 2457 2458 btrfs_mark_buffer_dirty(right); 2459 2460 btrfs_item_key(right, &disk_key, 0); 2461 btrfs_set_node_key(upper, &disk_key, slot + 1); 2462 btrfs_mark_buffer_dirty(upper); 2463 2464 /* then fixup the leaf pointer in the path */ 2465 if (path->slots[0] >= left_nritems) { 2466 path->slots[0] -= left_nritems; 2467 if (btrfs_header_nritems(path->nodes[0]) == 0) 2468 clean_tree_block(trans, root, path->nodes[0]); 2469 btrfs_tree_unlock(path->nodes[0]); 2470 free_extent_buffer(path->nodes[0]); 2471 path->nodes[0] = right; 2472 path->slots[1] += 1; 2473 } else { 2474 btrfs_tree_unlock(right); 2475 free_extent_buffer(right); 2476 } 2477 return 0; 2478 2479 out_unlock: 2480 btrfs_tree_unlock(right); 2481 free_extent_buffer(right); 2482 return 1; 2483 } 2484 2485 /* 2486 * push some data in the path leaf to the right, trying to free up at 2487 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2488 * 2489 * returns 1 if the push failed because the other node didn't have enough 2490 * room, 0 if everything worked out and < 0 if there were major errors. 2491 * 2492 * this will push starting from min_slot to the end of the leaf. It won't 2493 * push any slot lower than min_slot 2494 */ 2495 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 2496 *root, struct btrfs_path *path, 2497 int min_data_size, int data_size, 2498 int empty, u32 min_slot) 2499 { 2500 struct extent_buffer *left = path->nodes[0]; 2501 struct extent_buffer *right; 2502 struct extent_buffer *upper; 2503 int slot; 2504 int free_space; 2505 u32 left_nritems; 2506 int ret; 2507 2508 if (!path->nodes[1]) 2509 return 1; 2510 2511 slot = path->slots[1]; 2512 upper = path->nodes[1]; 2513 if (slot >= btrfs_header_nritems(upper) - 1) 2514 return 1; 2515 2516 btrfs_assert_tree_locked(path->nodes[1]); 2517 2518 right = read_node_slot(root, upper, slot + 1); 2519 if (right == NULL) 2520 return 1; 2521 2522 btrfs_tree_lock(right); 2523 btrfs_set_lock_blocking(right); 2524 2525 free_space = btrfs_leaf_free_space(root, right); 2526 if (free_space < data_size) 2527 goto out_unlock; 2528 2529 /* cow and double check */ 2530 ret = btrfs_cow_block(trans, root, right, upper, 2531 slot + 1, &right); 2532 if (ret) 2533 goto out_unlock; 2534 2535 free_space = btrfs_leaf_free_space(root, right); 2536 if (free_space < data_size) 2537 goto out_unlock; 2538 2539 left_nritems = btrfs_header_nritems(left); 2540 if (left_nritems == 0) 2541 goto out_unlock; 2542 2543 return __push_leaf_right(trans, root, path, min_data_size, empty, 2544 right, free_space, left_nritems, min_slot); 2545 out_unlock: 2546 btrfs_tree_unlock(right); 2547 free_extent_buffer(right); 2548 return 1; 2549 } 2550 2551 /* 2552 * push some data in the path leaf to the left, trying to free up at 2553 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2554 * 2555 * max_slot can put a limit on how far into the leaf we'll push items. The 2556 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 2557 * items 2558 */ 2559 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 2560 struct btrfs_root *root, 2561 struct btrfs_path *path, int data_size, 2562 int empty, struct extent_buffer *left, 2563 int free_space, u32 right_nritems, 2564 u32 max_slot) 2565 { 2566 struct btrfs_disk_key disk_key; 2567 struct extent_buffer *right = path->nodes[0]; 2568 int i; 2569 int push_space = 0; 2570 int push_items = 0; 2571 struct btrfs_item *item; 2572 u32 old_left_nritems; 2573 u32 nr; 2574 int ret = 0; 2575 int wret; 2576 u32 this_item_size; 2577 u32 old_left_item_size; 2578 2579 if (empty) 2580 nr = min(right_nritems, max_slot); 2581 else 2582 nr = min(right_nritems - 1, max_slot); 2583 2584 for (i = 0; i < nr; i++) { 2585 item = btrfs_item_nr(right, i); 2586 if (!right->map_token) { 2587 map_extent_buffer(right, (unsigned long)item, 2588 sizeof(struct btrfs_item), 2589 &right->map_token, &right->kaddr, 2590 &right->map_start, &right->map_len, 2591 KM_USER1); 2592 } 2593 2594 if (!empty && push_items > 0) { 2595 if (path->slots[0] < i) 2596 break; 2597 if (path->slots[0] == i) { 2598 int space = btrfs_leaf_free_space(root, right); 2599 if (space + push_space * 2 > free_space) 2600 break; 2601 } 2602 } 2603 2604 if (path->slots[0] == i) 2605 push_space += data_size; 2606 2607 this_item_size = btrfs_item_size(right, item); 2608 if (this_item_size + sizeof(*item) + push_space > free_space) 2609 break; 2610 2611 push_items++; 2612 push_space += this_item_size + sizeof(*item); 2613 } 2614 2615 if (right->map_token) { 2616 unmap_extent_buffer(right, right->map_token, KM_USER1); 2617 right->map_token = NULL; 2618 } 2619 2620 if (push_items == 0) { 2621 ret = 1; 2622 goto out; 2623 } 2624 if (!empty && push_items == btrfs_header_nritems(right)) 2625 WARN_ON(1); 2626 2627 /* push data from right to left */ 2628 copy_extent_buffer(left, right, 2629 btrfs_item_nr_offset(btrfs_header_nritems(left)), 2630 btrfs_item_nr_offset(0), 2631 push_items * sizeof(struct btrfs_item)); 2632 2633 push_space = BTRFS_LEAF_DATA_SIZE(root) - 2634 btrfs_item_offset_nr(right, push_items - 1); 2635 2636 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 2637 leaf_data_end(root, left) - push_space, 2638 btrfs_leaf_data(right) + 2639 btrfs_item_offset_nr(right, push_items - 1), 2640 push_space); 2641 old_left_nritems = btrfs_header_nritems(left); 2642 BUG_ON(old_left_nritems <= 0); 2643 2644 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 2645 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 2646 u32 ioff; 2647 2648 item = btrfs_item_nr(left, i); 2649 if (!left->map_token) { 2650 map_extent_buffer(left, (unsigned long)item, 2651 sizeof(struct btrfs_item), 2652 &left->map_token, &left->kaddr, 2653 &left->map_start, &left->map_len, 2654 KM_USER1); 2655 } 2656 2657 ioff = btrfs_item_offset(left, item); 2658 btrfs_set_item_offset(left, item, 2659 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size)); 2660 } 2661 btrfs_set_header_nritems(left, old_left_nritems + push_items); 2662 if (left->map_token) { 2663 unmap_extent_buffer(left, left->map_token, KM_USER1); 2664 left->map_token = NULL; 2665 } 2666 2667 /* fixup right node */ 2668 if (push_items > right_nritems) { 2669 printk(KERN_CRIT "push items %d nr %u\n", push_items, 2670 right_nritems); 2671 WARN_ON(1); 2672 } 2673 2674 if (push_items < right_nritems) { 2675 push_space = btrfs_item_offset_nr(right, push_items - 1) - 2676 leaf_data_end(root, right); 2677 memmove_extent_buffer(right, btrfs_leaf_data(right) + 2678 BTRFS_LEAF_DATA_SIZE(root) - push_space, 2679 btrfs_leaf_data(right) + 2680 leaf_data_end(root, right), push_space); 2681 2682 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 2683 btrfs_item_nr_offset(push_items), 2684 (btrfs_header_nritems(right) - push_items) * 2685 sizeof(struct btrfs_item)); 2686 } 2687 right_nritems -= push_items; 2688 btrfs_set_header_nritems(right, right_nritems); 2689 push_space = BTRFS_LEAF_DATA_SIZE(root); 2690 for (i = 0; i < right_nritems; i++) { 2691 item = btrfs_item_nr(right, i); 2692 2693 if (!right->map_token) { 2694 map_extent_buffer(right, (unsigned long)item, 2695 sizeof(struct btrfs_item), 2696 &right->map_token, &right->kaddr, 2697 &right->map_start, &right->map_len, 2698 KM_USER1); 2699 } 2700 2701 push_space = push_space - btrfs_item_size(right, item); 2702 btrfs_set_item_offset(right, item, push_space); 2703 } 2704 if (right->map_token) { 2705 unmap_extent_buffer(right, right->map_token, KM_USER1); 2706 right->map_token = NULL; 2707 } 2708 2709 btrfs_mark_buffer_dirty(left); 2710 if (right_nritems) 2711 btrfs_mark_buffer_dirty(right); 2712 else 2713 clean_tree_block(trans, root, right); 2714 2715 btrfs_item_key(right, &disk_key, 0); 2716 wret = fixup_low_keys(trans, root, path, &disk_key, 1); 2717 if (wret) 2718 ret = wret; 2719 2720 /* then fixup the leaf pointer in the path */ 2721 if (path->slots[0] < push_items) { 2722 path->slots[0] += old_left_nritems; 2723 btrfs_tree_unlock(path->nodes[0]); 2724 free_extent_buffer(path->nodes[0]); 2725 path->nodes[0] = left; 2726 path->slots[1] -= 1; 2727 } else { 2728 btrfs_tree_unlock(left); 2729 free_extent_buffer(left); 2730 path->slots[0] -= push_items; 2731 } 2732 BUG_ON(path->slots[0] < 0); 2733 return ret; 2734 out: 2735 btrfs_tree_unlock(left); 2736 free_extent_buffer(left); 2737 return ret; 2738 } 2739 2740 /* 2741 * push some data in the path leaf to the left, trying to free up at 2742 * least data_size bytes. returns zero if the push worked, nonzero otherwise 2743 * 2744 * max_slot can put a limit on how far into the leaf we'll push items. The 2745 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 2746 * items 2747 */ 2748 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 2749 *root, struct btrfs_path *path, int min_data_size, 2750 int data_size, int empty, u32 max_slot) 2751 { 2752 struct extent_buffer *right = path->nodes[0]; 2753 struct extent_buffer *left; 2754 int slot; 2755 int free_space; 2756 u32 right_nritems; 2757 int ret = 0; 2758 2759 slot = path->slots[1]; 2760 if (slot == 0) 2761 return 1; 2762 if (!path->nodes[1]) 2763 return 1; 2764 2765 right_nritems = btrfs_header_nritems(right); 2766 if (right_nritems == 0) 2767 return 1; 2768 2769 btrfs_assert_tree_locked(path->nodes[1]); 2770 2771 left = read_node_slot(root, path->nodes[1], slot - 1); 2772 if (left == NULL) 2773 return 1; 2774 2775 btrfs_tree_lock(left); 2776 btrfs_set_lock_blocking(left); 2777 2778 free_space = btrfs_leaf_free_space(root, left); 2779 if (free_space < data_size) { 2780 ret = 1; 2781 goto out; 2782 } 2783 2784 /* cow and double check */ 2785 ret = btrfs_cow_block(trans, root, left, 2786 path->nodes[1], slot - 1, &left); 2787 if (ret) { 2788 /* we hit -ENOSPC, but it isn't fatal here */ 2789 ret = 1; 2790 goto out; 2791 } 2792 2793 free_space = btrfs_leaf_free_space(root, left); 2794 if (free_space < data_size) { 2795 ret = 1; 2796 goto out; 2797 } 2798 2799 return __push_leaf_left(trans, root, path, min_data_size, 2800 empty, left, free_space, right_nritems, 2801 max_slot); 2802 out: 2803 btrfs_tree_unlock(left); 2804 free_extent_buffer(left); 2805 return ret; 2806 } 2807 2808 /* 2809 * split the path's leaf in two, making sure there is at least data_size 2810 * available for the resulting leaf level of the path. 2811 * 2812 * returns 0 if all went well and < 0 on failure. 2813 */ 2814 static noinline int copy_for_split(struct btrfs_trans_handle *trans, 2815 struct btrfs_root *root, 2816 struct btrfs_path *path, 2817 struct extent_buffer *l, 2818 struct extent_buffer *right, 2819 int slot, int mid, int nritems) 2820 { 2821 int data_copy_size; 2822 int rt_data_off; 2823 int i; 2824 int ret = 0; 2825 int wret; 2826 struct btrfs_disk_key disk_key; 2827 2828 nritems = nritems - mid; 2829 btrfs_set_header_nritems(right, nritems); 2830 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 2831 2832 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 2833 btrfs_item_nr_offset(mid), 2834 nritems * sizeof(struct btrfs_item)); 2835 2836 copy_extent_buffer(right, l, 2837 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 2838 data_copy_size, btrfs_leaf_data(l) + 2839 leaf_data_end(root, l), data_copy_size); 2840 2841 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 2842 btrfs_item_end_nr(l, mid); 2843 2844 for (i = 0; i < nritems; i++) { 2845 struct btrfs_item *item = btrfs_item_nr(right, i); 2846 u32 ioff; 2847 2848 if (!right->map_token) { 2849 map_extent_buffer(right, (unsigned long)item, 2850 sizeof(struct btrfs_item), 2851 &right->map_token, &right->kaddr, 2852 &right->map_start, &right->map_len, 2853 KM_USER1); 2854 } 2855 2856 ioff = btrfs_item_offset(right, item); 2857 btrfs_set_item_offset(right, item, ioff + rt_data_off); 2858 } 2859 2860 if (right->map_token) { 2861 unmap_extent_buffer(right, right->map_token, KM_USER1); 2862 right->map_token = NULL; 2863 } 2864 2865 btrfs_set_header_nritems(l, mid); 2866 ret = 0; 2867 btrfs_item_key(right, &disk_key, 0); 2868 wret = insert_ptr(trans, root, path, &disk_key, right->start, 2869 path->slots[1] + 1, 1); 2870 if (wret) 2871 ret = wret; 2872 2873 btrfs_mark_buffer_dirty(right); 2874 btrfs_mark_buffer_dirty(l); 2875 BUG_ON(path->slots[0] != slot); 2876 2877 if (mid <= slot) { 2878 btrfs_tree_unlock(path->nodes[0]); 2879 free_extent_buffer(path->nodes[0]); 2880 path->nodes[0] = right; 2881 path->slots[0] -= mid; 2882 path->slots[1] += 1; 2883 } else { 2884 btrfs_tree_unlock(right); 2885 free_extent_buffer(right); 2886 } 2887 2888 BUG_ON(path->slots[0] < 0); 2889 2890 return ret; 2891 } 2892 2893 /* 2894 * double splits happen when we need to insert a big item in the middle 2895 * of a leaf. A double split can leave us with 3 mostly empty leaves: 2896 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 2897 * A B C 2898 * 2899 * We avoid this by trying to push the items on either side of our target 2900 * into the adjacent leaves. If all goes well we can avoid the double split 2901 * completely. 2902 */ 2903 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 2904 struct btrfs_root *root, 2905 struct btrfs_path *path, 2906 int data_size) 2907 { 2908 int ret; 2909 int progress = 0; 2910 int slot; 2911 u32 nritems; 2912 2913 slot = path->slots[0]; 2914 2915 /* 2916 * try to push all the items after our slot into the 2917 * right leaf 2918 */ 2919 ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot); 2920 if (ret < 0) 2921 return ret; 2922 2923 if (ret == 0) 2924 progress++; 2925 2926 nritems = btrfs_header_nritems(path->nodes[0]); 2927 /* 2928 * our goal is to get our slot at the start or end of a leaf. If 2929 * we've done so we're done 2930 */ 2931 if (path->slots[0] == 0 || path->slots[0] == nritems) 2932 return 0; 2933 2934 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 2935 return 0; 2936 2937 /* try to push all the items before our slot into the next leaf */ 2938 slot = path->slots[0]; 2939 ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot); 2940 if (ret < 0) 2941 return ret; 2942 2943 if (ret == 0) 2944 progress++; 2945 2946 if (progress) 2947 return 0; 2948 return 1; 2949 } 2950 2951 /* 2952 * split the path's leaf in two, making sure there is at least data_size 2953 * available for the resulting leaf level of the path. 2954 * 2955 * returns 0 if all went well and < 0 on failure. 2956 */ 2957 static noinline int split_leaf(struct btrfs_trans_handle *trans, 2958 struct btrfs_root *root, 2959 struct btrfs_key *ins_key, 2960 struct btrfs_path *path, int data_size, 2961 int extend) 2962 { 2963 struct btrfs_disk_key disk_key; 2964 struct extent_buffer *l; 2965 u32 nritems; 2966 int mid; 2967 int slot; 2968 struct extent_buffer *right; 2969 int ret = 0; 2970 int wret; 2971 int split; 2972 int num_doubles = 0; 2973 int tried_avoid_double = 0; 2974 2975 l = path->nodes[0]; 2976 slot = path->slots[0]; 2977 if (extend && data_size + btrfs_item_size_nr(l, slot) + 2978 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 2979 return -EOVERFLOW; 2980 2981 /* first try to make some room by pushing left and right */ 2982 if (data_size) { 2983 wret = push_leaf_right(trans, root, path, data_size, 2984 data_size, 0, 0); 2985 if (wret < 0) 2986 return wret; 2987 if (wret) { 2988 wret = push_leaf_left(trans, root, path, data_size, 2989 data_size, 0, (u32)-1); 2990 if (wret < 0) 2991 return wret; 2992 } 2993 l = path->nodes[0]; 2994 2995 /* did the pushes work? */ 2996 if (btrfs_leaf_free_space(root, l) >= data_size) 2997 return 0; 2998 } 2999 3000 if (!path->nodes[1]) { 3001 ret = insert_new_root(trans, root, path, 1); 3002 if (ret) 3003 return ret; 3004 } 3005 again: 3006 split = 1; 3007 l = path->nodes[0]; 3008 slot = path->slots[0]; 3009 nritems = btrfs_header_nritems(l); 3010 mid = (nritems + 1) / 2; 3011 3012 if (mid <= slot) { 3013 if (nritems == 1 || 3014 leaf_space_used(l, mid, nritems - mid) + data_size > 3015 BTRFS_LEAF_DATA_SIZE(root)) { 3016 if (slot >= nritems) { 3017 split = 0; 3018 } else { 3019 mid = slot; 3020 if (mid != nritems && 3021 leaf_space_used(l, mid, nritems - mid) + 3022 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3023 if (data_size && !tried_avoid_double) 3024 goto push_for_double; 3025 split = 2; 3026 } 3027 } 3028 } 3029 } else { 3030 if (leaf_space_used(l, 0, mid) + data_size > 3031 BTRFS_LEAF_DATA_SIZE(root)) { 3032 if (!extend && data_size && slot == 0) { 3033 split = 0; 3034 } else if ((extend || !data_size) && slot == 0) { 3035 mid = 1; 3036 } else { 3037 mid = slot; 3038 if (mid != nritems && 3039 leaf_space_used(l, mid, nritems - mid) + 3040 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 3041 if (data_size && !tried_avoid_double) 3042 goto push_for_double; 3043 split = 2 ; 3044 } 3045 } 3046 } 3047 } 3048 3049 if (split == 0) 3050 btrfs_cpu_key_to_disk(&disk_key, ins_key); 3051 else 3052 btrfs_item_key(l, &disk_key, mid); 3053 3054 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 3055 root->root_key.objectid, 3056 &disk_key, 0, l->start, 0); 3057 if (IS_ERR(right)) 3058 return PTR_ERR(right); 3059 3060 root_add_used(root, root->leafsize); 3061 3062 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 3063 btrfs_set_header_bytenr(right, right->start); 3064 btrfs_set_header_generation(right, trans->transid); 3065 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 3066 btrfs_set_header_owner(right, root->root_key.objectid); 3067 btrfs_set_header_level(right, 0); 3068 write_extent_buffer(right, root->fs_info->fsid, 3069 (unsigned long)btrfs_header_fsid(right), 3070 BTRFS_FSID_SIZE); 3071 3072 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 3073 (unsigned long)btrfs_header_chunk_tree_uuid(right), 3074 BTRFS_UUID_SIZE); 3075 3076 if (split == 0) { 3077 if (mid <= slot) { 3078 btrfs_set_header_nritems(right, 0); 3079 wret = insert_ptr(trans, root, path, 3080 &disk_key, right->start, 3081 path->slots[1] + 1, 1); 3082 if (wret) 3083 ret = wret; 3084 3085 btrfs_tree_unlock(path->nodes[0]); 3086 free_extent_buffer(path->nodes[0]); 3087 path->nodes[0] = right; 3088 path->slots[0] = 0; 3089 path->slots[1] += 1; 3090 } else { 3091 btrfs_set_header_nritems(right, 0); 3092 wret = insert_ptr(trans, root, path, 3093 &disk_key, 3094 right->start, 3095 path->slots[1], 1); 3096 if (wret) 3097 ret = wret; 3098 btrfs_tree_unlock(path->nodes[0]); 3099 free_extent_buffer(path->nodes[0]); 3100 path->nodes[0] = right; 3101 path->slots[0] = 0; 3102 if (path->slots[1] == 0) { 3103 wret = fixup_low_keys(trans, root, 3104 path, &disk_key, 1); 3105 if (wret) 3106 ret = wret; 3107 } 3108 } 3109 btrfs_mark_buffer_dirty(right); 3110 return ret; 3111 } 3112 3113 ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems); 3114 BUG_ON(ret); 3115 3116 if (split == 2) { 3117 BUG_ON(num_doubles != 0); 3118 num_doubles++; 3119 goto again; 3120 } 3121 3122 return ret; 3123 3124 push_for_double: 3125 push_for_double_split(trans, root, path, data_size); 3126 tried_avoid_double = 1; 3127 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 3128 return 0; 3129 goto again; 3130 } 3131 3132 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 3133 struct btrfs_root *root, 3134 struct btrfs_path *path, int ins_len) 3135 { 3136 struct btrfs_key key; 3137 struct extent_buffer *leaf; 3138 struct btrfs_file_extent_item *fi; 3139 u64 extent_len = 0; 3140 u32 item_size; 3141 int ret; 3142 3143 leaf = path->nodes[0]; 3144 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3145 3146 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 3147 key.type != BTRFS_EXTENT_CSUM_KEY); 3148 3149 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 3150 return 0; 3151 3152 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3153 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3154 fi = btrfs_item_ptr(leaf, path->slots[0], 3155 struct btrfs_file_extent_item); 3156 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 3157 } 3158 btrfs_release_path(root, path); 3159 3160 path->keep_locks = 1; 3161 path->search_for_split = 1; 3162 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 3163 path->search_for_split = 0; 3164 if (ret < 0) 3165 goto err; 3166 3167 ret = -EAGAIN; 3168 leaf = path->nodes[0]; 3169 /* if our item isn't there or got smaller, return now */ 3170 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 3171 goto err; 3172 3173 /* the leaf has changed, it now has room. return now */ 3174 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 3175 goto err; 3176 3177 if (key.type == BTRFS_EXTENT_DATA_KEY) { 3178 fi = btrfs_item_ptr(leaf, path->slots[0], 3179 struct btrfs_file_extent_item); 3180 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 3181 goto err; 3182 } 3183 3184 btrfs_set_path_blocking(path); 3185 ret = split_leaf(trans, root, &key, path, ins_len, 1); 3186 if (ret) 3187 goto err; 3188 3189 path->keep_locks = 0; 3190 btrfs_unlock_up_safe(path, 1); 3191 return 0; 3192 err: 3193 path->keep_locks = 0; 3194 return ret; 3195 } 3196 3197 static noinline int split_item(struct btrfs_trans_handle *trans, 3198 struct btrfs_root *root, 3199 struct btrfs_path *path, 3200 struct btrfs_key *new_key, 3201 unsigned long split_offset) 3202 { 3203 struct extent_buffer *leaf; 3204 struct btrfs_item *item; 3205 struct btrfs_item *new_item; 3206 int slot; 3207 char *buf; 3208 u32 nritems; 3209 u32 item_size; 3210 u32 orig_offset; 3211 struct btrfs_disk_key disk_key; 3212 3213 leaf = path->nodes[0]; 3214 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 3215 3216 btrfs_set_path_blocking(path); 3217 3218 item = btrfs_item_nr(leaf, path->slots[0]); 3219 orig_offset = btrfs_item_offset(leaf, item); 3220 item_size = btrfs_item_size(leaf, item); 3221 3222 buf = kmalloc(item_size, GFP_NOFS); 3223 if (!buf) 3224 return -ENOMEM; 3225 3226 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 3227 path->slots[0]), item_size); 3228 3229 slot = path->slots[0] + 1; 3230 nritems = btrfs_header_nritems(leaf); 3231 if (slot != nritems) { 3232 /* shift the items */ 3233 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 3234 btrfs_item_nr_offset(slot), 3235 (nritems - slot) * sizeof(struct btrfs_item)); 3236 } 3237 3238 btrfs_cpu_key_to_disk(&disk_key, new_key); 3239 btrfs_set_item_key(leaf, &disk_key, slot); 3240 3241 new_item = btrfs_item_nr(leaf, slot); 3242 3243 btrfs_set_item_offset(leaf, new_item, orig_offset); 3244 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 3245 3246 btrfs_set_item_offset(leaf, item, 3247 orig_offset + item_size - split_offset); 3248 btrfs_set_item_size(leaf, item, split_offset); 3249 3250 btrfs_set_header_nritems(leaf, nritems + 1); 3251 3252 /* write the data for the start of the original item */ 3253 write_extent_buffer(leaf, buf, 3254 btrfs_item_ptr_offset(leaf, path->slots[0]), 3255 split_offset); 3256 3257 /* write the data for the new item */ 3258 write_extent_buffer(leaf, buf + split_offset, 3259 btrfs_item_ptr_offset(leaf, slot), 3260 item_size - split_offset); 3261 btrfs_mark_buffer_dirty(leaf); 3262 3263 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 3264 kfree(buf); 3265 return 0; 3266 } 3267 3268 /* 3269 * This function splits a single item into two items, 3270 * giving 'new_key' to the new item and splitting the 3271 * old one at split_offset (from the start of the item). 3272 * 3273 * The path may be released by this operation. After 3274 * the split, the path is pointing to the old item. The 3275 * new item is going to be in the same node as the old one. 3276 * 3277 * Note, the item being split must be smaller enough to live alone on 3278 * a tree block with room for one extra struct btrfs_item 3279 * 3280 * This allows us to split the item in place, keeping a lock on the 3281 * leaf the entire time. 3282 */ 3283 int btrfs_split_item(struct btrfs_trans_handle *trans, 3284 struct btrfs_root *root, 3285 struct btrfs_path *path, 3286 struct btrfs_key *new_key, 3287 unsigned long split_offset) 3288 { 3289 int ret; 3290 ret = setup_leaf_for_split(trans, root, path, 3291 sizeof(struct btrfs_item)); 3292 if (ret) 3293 return ret; 3294 3295 ret = split_item(trans, root, path, new_key, split_offset); 3296 return ret; 3297 } 3298 3299 /* 3300 * This function duplicate a item, giving 'new_key' to the new item. 3301 * It guarantees both items live in the same tree leaf and the new item 3302 * is contiguous with the original item. 3303 * 3304 * This allows us to split file extent in place, keeping a lock on the 3305 * leaf the entire time. 3306 */ 3307 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 3308 struct btrfs_root *root, 3309 struct btrfs_path *path, 3310 struct btrfs_key *new_key) 3311 { 3312 struct extent_buffer *leaf; 3313 int ret; 3314 u32 item_size; 3315 3316 leaf = path->nodes[0]; 3317 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 3318 ret = setup_leaf_for_split(trans, root, path, 3319 item_size + sizeof(struct btrfs_item)); 3320 if (ret) 3321 return ret; 3322 3323 path->slots[0]++; 3324 ret = setup_items_for_insert(trans, root, path, new_key, &item_size, 3325 item_size, item_size + 3326 sizeof(struct btrfs_item), 1); 3327 BUG_ON(ret); 3328 3329 leaf = path->nodes[0]; 3330 memcpy_extent_buffer(leaf, 3331 btrfs_item_ptr_offset(leaf, path->slots[0]), 3332 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 3333 item_size); 3334 return 0; 3335 } 3336 3337 /* 3338 * make the item pointed to by the path smaller. new_size indicates 3339 * how small to make it, and from_end tells us if we just chop bytes 3340 * off the end of the item or if we shift the item to chop bytes off 3341 * the front. 3342 */ 3343 int btrfs_truncate_item(struct btrfs_trans_handle *trans, 3344 struct btrfs_root *root, 3345 struct btrfs_path *path, 3346 u32 new_size, int from_end) 3347 { 3348 int ret = 0; 3349 int slot; 3350 struct extent_buffer *leaf; 3351 struct btrfs_item *item; 3352 u32 nritems; 3353 unsigned int data_end; 3354 unsigned int old_data_start; 3355 unsigned int old_size; 3356 unsigned int size_diff; 3357 int i; 3358 3359 leaf = path->nodes[0]; 3360 slot = path->slots[0]; 3361 3362 old_size = btrfs_item_size_nr(leaf, slot); 3363 if (old_size == new_size) 3364 return 0; 3365 3366 nritems = btrfs_header_nritems(leaf); 3367 data_end = leaf_data_end(root, leaf); 3368 3369 old_data_start = btrfs_item_offset_nr(leaf, slot); 3370 3371 size_diff = old_size - new_size; 3372 3373 BUG_ON(slot < 0); 3374 BUG_ON(slot >= nritems); 3375 3376 /* 3377 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3378 */ 3379 /* first correct the data pointers */ 3380 for (i = slot; i < nritems; i++) { 3381 u32 ioff; 3382 item = btrfs_item_nr(leaf, i); 3383 3384 if (!leaf->map_token) { 3385 map_extent_buffer(leaf, (unsigned long)item, 3386 sizeof(struct btrfs_item), 3387 &leaf->map_token, &leaf->kaddr, 3388 &leaf->map_start, &leaf->map_len, 3389 KM_USER1); 3390 } 3391 3392 ioff = btrfs_item_offset(leaf, item); 3393 btrfs_set_item_offset(leaf, item, ioff + size_diff); 3394 } 3395 3396 if (leaf->map_token) { 3397 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3398 leaf->map_token = NULL; 3399 } 3400 3401 /* shift the data */ 3402 if (from_end) { 3403 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3404 data_end + size_diff, btrfs_leaf_data(leaf) + 3405 data_end, old_data_start + new_size - data_end); 3406 } else { 3407 struct btrfs_disk_key disk_key; 3408 u64 offset; 3409 3410 btrfs_item_key(leaf, &disk_key, slot); 3411 3412 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 3413 unsigned long ptr; 3414 struct btrfs_file_extent_item *fi; 3415 3416 fi = btrfs_item_ptr(leaf, slot, 3417 struct btrfs_file_extent_item); 3418 fi = (struct btrfs_file_extent_item *)( 3419 (unsigned long)fi - size_diff); 3420 3421 if (btrfs_file_extent_type(leaf, fi) == 3422 BTRFS_FILE_EXTENT_INLINE) { 3423 ptr = btrfs_item_ptr_offset(leaf, slot); 3424 memmove_extent_buffer(leaf, ptr, 3425 (unsigned long)fi, 3426 offsetof(struct btrfs_file_extent_item, 3427 disk_bytenr)); 3428 } 3429 } 3430 3431 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3432 data_end + size_diff, btrfs_leaf_data(leaf) + 3433 data_end, old_data_start - data_end); 3434 3435 offset = btrfs_disk_key_offset(&disk_key); 3436 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 3437 btrfs_set_item_key(leaf, &disk_key, slot); 3438 if (slot == 0) 3439 fixup_low_keys(trans, root, path, &disk_key, 1); 3440 } 3441 3442 item = btrfs_item_nr(leaf, slot); 3443 btrfs_set_item_size(leaf, item, new_size); 3444 btrfs_mark_buffer_dirty(leaf); 3445 3446 ret = 0; 3447 if (btrfs_leaf_free_space(root, leaf) < 0) { 3448 btrfs_print_leaf(root, leaf); 3449 BUG(); 3450 } 3451 return ret; 3452 } 3453 3454 /* 3455 * make the item pointed to by the path bigger, data_size is the new size. 3456 */ 3457 int btrfs_extend_item(struct btrfs_trans_handle *trans, 3458 struct btrfs_root *root, struct btrfs_path *path, 3459 u32 data_size) 3460 { 3461 int ret = 0; 3462 int slot; 3463 struct extent_buffer *leaf; 3464 struct btrfs_item *item; 3465 u32 nritems; 3466 unsigned int data_end; 3467 unsigned int old_data; 3468 unsigned int old_size; 3469 int i; 3470 3471 leaf = path->nodes[0]; 3472 3473 nritems = btrfs_header_nritems(leaf); 3474 data_end = leaf_data_end(root, leaf); 3475 3476 if (btrfs_leaf_free_space(root, leaf) < data_size) { 3477 btrfs_print_leaf(root, leaf); 3478 BUG(); 3479 } 3480 slot = path->slots[0]; 3481 old_data = btrfs_item_end_nr(leaf, slot); 3482 3483 BUG_ON(slot < 0); 3484 if (slot >= nritems) { 3485 btrfs_print_leaf(root, leaf); 3486 printk(KERN_CRIT "slot %d too large, nritems %d\n", 3487 slot, nritems); 3488 BUG_ON(1); 3489 } 3490 3491 /* 3492 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3493 */ 3494 /* first correct the data pointers */ 3495 for (i = slot; i < nritems; i++) { 3496 u32 ioff; 3497 item = btrfs_item_nr(leaf, i); 3498 3499 if (!leaf->map_token) { 3500 map_extent_buffer(leaf, (unsigned long)item, 3501 sizeof(struct btrfs_item), 3502 &leaf->map_token, &leaf->kaddr, 3503 &leaf->map_start, &leaf->map_len, 3504 KM_USER1); 3505 } 3506 ioff = btrfs_item_offset(leaf, item); 3507 btrfs_set_item_offset(leaf, item, ioff - data_size); 3508 } 3509 3510 if (leaf->map_token) { 3511 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3512 leaf->map_token = NULL; 3513 } 3514 3515 /* shift the data */ 3516 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3517 data_end - data_size, btrfs_leaf_data(leaf) + 3518 data_end, old_data - data_end); 3519 3520 data_end = old_data; 3521 old_size = btrfs_item_size_nr(leaf, slot); 3522 item = btrfs_item_nr(leaf, slot); 3523 btrfs_set_item_size(leaf, item, old_size + data_size); 3524 btrfs_mark_buffer_dirty(leaf); 3525 3526 ret = 0; 3527 if (btrfs_leaf_free_space(root, leaf) < 0) { 3528 btrfs_print_leaf(root, leaf); 3529 BUG(); 3530 } 3531 return ret; 3532 } 3533 3534 /* 3535 * Given a key and some data, insert items into the tree. 3536 * This does all the path init required, making room in the tree if needed. 3537 * Returns the number of keys that were inserted. 3538 */ 3539 int btrfs_insert_some_items(struct btrfs_trans_handle *trans, 3540 struct btrfs_root *root, 3541 struct btrfs_path *path, 3542 struct btrfs_key *cpu_key, u32 *data_size, 3543 int nr) 3544 { 3545 struct extent_buffer *leaf; 3546 struct btrfs_item *item; 3547 int ret = 0; 3548 int slot; 3549 int i; 3550 u32 nritems; 3551 u32 total_data = 0; 3552 u32 total_size = 0; 3553 unsigned int data_end; 3554 struct btrfs_disk_key disk_key; 3555 struct btrfs_key found_key; 3556 3557 for (i = 0; i < nr; i++) { 3558 if (total_size + data_size[i] + sizeof(struct btrfs_item) > 3559 BTRFS_LEAF_DATA_SIZE(root)) { 3560 break; 3561 nr = i; 3562 } 3563 total_data += data_size[i]; 3564 total_size += data_size[i] + sizeof(struct btrfs_item); 3565 } 3566 BUG_ON(nr == 0); 3567 3568 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3569 if (ret == 0) 3570 return -EEXIST; 3571 if (ret < 0) 3572 goto out; 3573 3574 leaf = path->nodes[0]; 3575 3576 nritems = btrfs_header_nritems(leaf); 3577 data_end = leaf_data_end(root, leaf); 3578 3579 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3580 for (i = nr; i >= 0; i--) { 3581 total_data -= data_size[i]; 3582 total_size -= data_size[i] + sizeof(struct btrfs_item); 3583 if (total_size < btrfs_leaf_free_space(root, leaf)) 3584 break; 3585 } 3586 nr = i; 3587 } 3588 3589 slot = path->slots[0]; 3590 BUG_ON(slot < 0); 3591 3592 if (slot != nritems) { 3593 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3594 3595 item = btrfs_item_nr(leaf, slot); 3596 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3597 3598 /* figure out how many keys we can insert in here */ 3599 total_data = data_size[0]; 3600 for (i = 1; i < nr; i++) { 3601 if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0) 3602 break; 3603 total_data += data_size[i]; 3604 } 3605 nr = i; 3606 3607 if (old_data < data_end) { 3608 btrfs_print_leaf(root, leaf); 3609 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3610 slot, old_data, data_end); 3611 BUG_ON(1); 3612 } 3613 /* 3614 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3615 */ 3616 /* first correct the data pointers */ 3617 WARN_ON(leaf->map_token); 3618 for (i = slot; i < nritems; i++) { 3619 u32 ioff; 3620 3621 item = btrfs_item_nr(leaf, i); 3622 if (!leaf->map_token) { 3623 map_extent_buffer(leaf, (unsigned long)item, 3624 sizeof(struct btrfs_item), 3625 &leaf->map_token, &leaf->kaddr, 3626 &leaf->map_start, &leaf->map_len, 3627 KM_USER1); 3628 } 3629 3630 ioff = btrfs_item_offset(leaf, item); 3631 btrfs_set_item_offset(leaf, item, ioff - total_data); 3632 } 3633 if (leaf->map_token) { 3634 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3635 leaf->map_token = NULL; 3636 } 3637 3638 /* shift the items */ 3639 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3640 btrfs_item_nr_offset(slot), 3641 (nritems - slot) * sizeof(struct btrfs_item)); 3642 3643 /* shift the data */ 3644 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3645 data_end - total_data, btrfs_leaf_data(leaf) + 3646 data_end, old_data - data_end); 3647 data_end = old_data; 3648 } else { 3649 /* 3650 * this sucks but it has to be done, if we are inserting at 3651 * the end of the leaf only insert 1 of the items, since we 3652 * have no way of knowing whats on the next leaf and we'd have 3653 * to drop our current locks to figure it out 3654 */ 3655 nr = 1; 3656 } 3657 3658 /* setup the item for the new data */ 3659 for (i = 0; i < nr; i++) { 3660 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3661 btrfs_set_item_key(leaf, &disk_key, slot + i); 3662 item = btrfs_item_nr(leaf, slot + i); 3663 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3664 data_end -= data_size[i]; 3665 btrfs_set_item_size(leaf, item, data_size[i]); 3666 } 3667 btrfs_set_header_nritems(leaf, nritems + nr); 3668 btrfs_mark_buffer_dirty(leaf); 3669 3670 ret = 0; 3671 if (slot == 0) { 3672 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3673 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3674 } 3675 3676 if (btrfs_leaf_free_space(root, leaf) < 0) { 3677 btrfs_print_leaf(root, leaf); 3678 BUG(); 3679 } 3680 out: 3681 if (!ret) 3682 ret = nr; 3683 return ret; 3684 } 3685 3686 /* 3687 * this is a helper for btrfs_insert_empty_items, the main goal here is 3688 * to save stack depth by doing the bulk of the work in a function 3689 * that doesn't call btrfs_search_slot 3690 */ 3691 static noinline_for_stack int 3692 setup_items_for_insert(struct btrfs_trans_handle *trans, 3693 struct btrfs_root *root, struct btrfs_path *path, 3694 struct btrfs_key *cpu_key, u32 *data_size, 3695 u32 total_data, u32 total_size, int nr) 3696 { 3697 struct btrfs_item *item; 3698 int i; 3699 u32 nritems; 3700 unsigned int data_end; 3701 struct btrfs_disk_key disk_key; 3702 int ret; 3703 struct extent_buffer *leaf; 3704 int slot; 3705 3706 leaf = path->nodes[0]; 3707 slot = path->slots[0]; 3708 3709 nritems = btrfs_header_nritems(leaf); 3710 data_end = leaf_data_end(root, leaf); 3711 3712 if (btrfs_leaf_free_space(root, leaf) < total_size) { 3713 btrfs_print_leaf(root, leaf); 3714 printk(KERN_CRIT "not enough freespace need %u have %d\n", 3715 total_size, btrfs_leaf_free_space(root, leaf)); 3716 BUG(); 3717 } 3718 3719 if (slot != nritems) { 3720 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 3721 3722 if (old_data < data_end) { 3723 btrfs_print_leaf(root, leaf); 3724 printk(KERN_CRIT "slot %d old_data %d data_end %d\n", 3725 slot, old_data, data_end); 3726 BUG_ON(1); 3727 } 3728 /* 3729 * item0..itemN ... dataN.offset..dataN.size .. data0.size 3730 */ 3731 /* first correct the data pointers */ 3732 WARN_ON(leaf->map_token); 3733 for (i = slot; i < nritems; i++) { 3734 u32 ioff; 3735 3736 item = btrfs_item_nr(leaf, i); 3737 if (!leaf->map_token) { 3738 map_extent_buffer(leaf, (unsigned long)item, 3739 sizeof(struct btrfs_item), 3740 &leaf->map_token, &leaf->kaddr, 3741 &leaf->map_start, &leaf->map_len, 3742 KM_USER1); 3743 } 3744 3745 ioff = btrfs_item_offset(leaf, item); 3746 btrfs_set_item_offset(leaf, item, ioff - total_data); 3747 } 3748 if (leaf->map_token) { 3749 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3750 leaf->map_token = NULL; 3751 } 3752 3753 /* shift the items */ 3754 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 3755 btrfs_item_nr_offset(slot), 3756 (nritems - slot) * sizeof(struct btrfs_item)); 3757 3758 /* shift the data */ 3759 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3760 data_end - total_data, btrfs_leaf_data(leaf) + 3761 data_end, old_data - data_end); 3762 data_end = old_data; 3763 } 3764 3765 /* setup the item for the new data */ 3766 for (i = 0; i < nr; i++) { 3767 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 3768 btrfs_set_item_key(leaf, &disk_key, slot + i); 3769 item = btrfs_item_nr(leaf, slot + i); 3770 btrfs_set_item_offset(leaf, item, data_end - data_size[i]); 3771 data_end -= data_size[i]; 3772 btrfs_set_item_size(leaf, item, data_size[i]); 3773 } 3774 3775 btrfs_set_header_nritems(leaf, nritems + nr); 3776 3777 ret = 0; 3778 if (slot == 0) { 3779 struct btrfs_disk_key disk_key; 3780 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 3781 ret = fixup_low_keys(trans, root, path, &disk_key, 1); 3782 } 3783 btrfs_unlock_up_safe(path, 1); 3784 btrfs_mark_buffer_dirty(leaf); 3785 3786 if (btrfs_leaf_free_space(root, leaf) < 0) { 3787 btrfs_print_leaf(root, leaf); 3788 BUG(); 3789 } 3790 return ret; 3791 } 3792 3793 /* 3794 * Given a key and some data, insert items into the tree. 3795 * This does all the path init required, making room in the tree if needed. 3796 */ 3797 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 3798 struct btrfs_root *root, 3799 struct btrfs_path *path, 3800 struct btrfs_key *cpu_key, u32 *data_size, 3801 int nr) 3802 { 3803 int ret = 0; 3804 int slot; 3805 int i; 3806 u32 total_size = 0; 3807 u32 total_data = 0; 3808 3809 for (i = 0; i < nr; i++) 3810 total_data += data_size[i]; 3811 3812 total_size = total_data + (nr * sizeof(struct btrfs_item)); 3813 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 3814 if (ret == 0) 3815 return -EEXIST; 3816 if (ret < 0) 3817 goto out; 3818 3819 slot = path->slots[0]; 3820 BUG_ON(slot < 0); 3821 3822 ret = setup_items_for_insert(trans, root, path, cpu_key, data_size, 3823 total_data, total_size, nr); 3824 3825 out: 3826 return ret; 3827 } 3828 3829 /* 3830 * Given a key and some data, insert an item into the tree. 3831 * This does all the path init required, making room in the tree if needed. 3832 */ 3833 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 3834 *root, struct btrfs_key *cpu_key, void *data, u32 3835 data_size) 3836 { 3837 int ret = 0; 3838 struct btrfs_path *path; 3839 struct extent_buffer *leaf; 3840 unsigned long ptr; 3841 3842 path = btrfs_alloc_path(); 3843 BUG_ON(!path); 3844 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 3845 if (!ret) { 3846 leaf = path->nodes[0]; 3847 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 3848 write_extent_buffer(leaf, data, ptr, data_size); 3849 btrfs_mark_buffer_dirty(leaf); 3850 } 3851 btrfs_free_path(path); 3852 return ret; 3853 } 3854 3855 /* 3856 * delete the pointer from a given node. 3857 * 3858 * the tree should have been previously balanced so the deletion does not 3859 * empty a node. 3860 */ 3861 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3862 struct btrfs_path *path, int level, int slot) 3863 { 3864 struct extent_buffer *parent = path->nodes[level]; 3865 u32 nritems; 3866 int ret = 0; 3867 int wret; 3868 3869 nritems = btrfs_header_nritems(parent); 3870 if (slot != nritems - 1) { 3871 memmove_extent_buffer(parent, 3872 btrfs_node_key_ptr_offset(slot), 3873 btrfs_node_key_ptr_offset(slot + 1), 3874 sizeof(struct btrfs_key_ptr) * 3875 (nritems - slot - 1)); 3876 } 3877 nritems--; 3878 btrfs_set_header_nritems(parent, nritems); 3879 if (nritems == 0 && parent == root->node) { 3880 BUG_ON(btrfs_header_level(root->node) != 1); 3881 /* just turn the root into a leaf and break */ 3882 btrfs_set_header_level(root->node, 0); 3883 } else if (slot == 0) { 3884 struct btrfs_disk_key disk_key; 3885 3886 btrfs_node_key(parent, &disk_key, 0); 3887 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1); 3888 if (wret) 3889 ret = wret; 3890 } 3891 btrfs_mark_buffer_dirty(parent); 3892 return ret; 3893 } 3894 3895 /* 3896 * a helper function to delete the leaf pointed to by path->slots[1] and 3897 * path->nodes[1]. 3898 * 3899 * This deletes the pointer in path->nodes[1] and frees the leaf 3900 * block extent. zero is returned if it all worked out, < 0 otherwise. 3901 * 3902 * The path must have already been setup for deleting the leaf, including 3903 * all the proper balancing. path->nodes[1] must be locked. 3904 */ 3905 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans, 3906 struct btrfs_root *root, 3907 struct btrfs_path *path, 3908 struct extent_buffer *leaf) 3909 { 3910 int ret; 3911 3912 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 3913 ret = del_ptr(trans, root, path, 1, path->slots[1]); 3914 if (ret) 3915 return ret; 3916 3917 /* 3918 * btrfs_free_extent is expensive, we want to make sure we 3919 * aren't holding any locks when we call it 3920 */ 3921 btrfs_unlock_up_safe(path, 0); 3922 3923 root_sub_used(root, leaf->len); 3924 3925 btrfs_free_tree_block(trans, root, leaf, 0, 1); 3926 return 0; 3927 } 3928 /* 3929 * delete the item at the leaf level in path. If that empties 3930 * the leaf, remove it from the tree 3931 */ 3932 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3933 struct btrfs_path *path, int slot, int nr) 3934 { 3935 struct extent_buffer *leaf; 3936 struct btrfs_item *item; 3937 int last_off; 3938 int dsize = 0; 3939 int ret = 0; 3940 int wret; 3941 int i; 3942 u32 nritems; 3943 3944 leaf = path->nodes[0]; 3945 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 3946 3947 for (i = 0; i < nr; i++) 3948 dsize += btrfs_item_size_nr(leaf, slot + i); 3949 3950 nritems = btrfs_header_nritems(leaf); 3951 3952 if (slot + nr != nritems) { 3953 int data_end = leaf_data_end(root, leaf); 3954 3955 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 3956 data_end + dsize, 3957 btrfs_leaf_data(leaf) + data_end, 3958 last_off - data_end); 3959 3960 for (i = slot + nr; i < nritems; i++) { 3961 u32 ioff; 3962 3963 item = btrfs_item_nr(leaf, i); 3964 if (!leaf->map_token) { 3965 map_extent_buffer(leaf, (unsigned long)item, 3966 sizeof(struct btrfs_item), 3967 &leaf->map_token, &leaf->kaddr, 3968 &leaf->map_start, &leaf->map_len, 3969 KM_USER1); 3970 } 3971 ioff = btrfs_item_offset(leaf, item); 3972 btrfs_set_item_offset(leaf, item, ioff + dsize); 3973 } 3974 3975 if (leaf->map_token) { 3976 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1); 3977 leaf->map_token = NULL; 3978 } 3979 3980 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 3981 btrfs_item_nr_offset(slot + nr), 3982 sizeof(struct btrfs_item) * 3983 (nritems - slot - nr)); 3984 } 3985 btrfs_set_header_nritems(leaf, nritems - nr); 3986 nritems -= nr; 3987 3988 /* delete the leaf if we've emptied it */ 3989 if (nritems == 0) { 3990 if (leaf == root->node) { 3991 btrfs_set_header_level(leaf, 0); 3992 } else { 3993 btrfs_set_path_blocking(path); 3994 clean_tree_block(trans, root, leaf); 3995 ret = btrfs_del_leaf(trans, root, path, leaf); 3996 BUG_ON(ret); 3997 } 3998 } else { 3999 int used = leaf_space_used(leaf, 0, nritems); 4000 if (slot == 0) { 4001 struct btrfs_disk_key disk_key; 4002 4003 btrfs_item_key(leaf, &disk_key, 0); 4004 wret = fixup_low_keys(trans, root, path, 4005 &disk_key, 1); 4006 if (wret) 4007 ret = wret; 4008 } 4009 4010 /* delete the leaf if it is mostly empty */ 4011 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 4012 /* push_leaf_left fixes the path. 4013 * make sure the path still points to our leaf 4014 * for possible call to del_ptr below 4015 */ 4016 slot = path->slots[1]; 4017 extent_buffer_get(leaf); 4018 4019 btrfs_set_path_blocking(path); 4020 wret = push_leaf_left(trans, root, path, 1, 1, 4021 1, (u32)-1); 4022 if (wret < 0 && wret != -ENOSPC) 4023 ret = wret; 4024 4025 if (path->nodes[0] == leaf && 4026 btrfs_header_nritems(leaf)) { 4027 wret = push_leaf_right(trans, root, path, 1, 4028 1, 1, 0); 4029 if (wret < 0 && wret != -ENOSPC) 4030 ret = wret; 4031 } 4032 4033 if (btrfs_header_nritems(leaf) == 0) { 4034 path->slots[1] = slot; 4035 ret = btrfs_del_leaf(trans, root, path, leaf); 4036 BUG_ON(ret); 4037 free_extent_buffer(leaf); 4038 } else { 4039 /* if we're still in the path, make sure 4040 * we're dirty. Otherwise, one of the 4041 * push_leaf functions must have already 4042 * dirtied this buffer 4043 */ 4044 if (path->nodes[0] == leaf) 4045 btrfs_mark_buffer_dirty(leaf); 4046 free_extent_buffer(leaf); 4047 } 4048 } else { 4049 btrfs_mark_buffer_dirty(leaf); 4050 } 4051 } 4052 return ret; 4053 } 4054 4055 /* 4056 * search the tree again to find a leaf with lesser keys 4057 * returns 0 if it found something or 1 if there are no lesser leaves. 4058 * returns < 0 on io errors. 4059 * 4060 * This may release the path, and so you may lose any locks held at the 4061 * time you call it. 4062 */ 4063 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 4064 { 4065 struct btrfs_key key; 4066 struct btrfs_disk_key found_key; 4067 int ret; 4068 4069 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 4070 4071 if (key.offset > 0) 4072 key.offset--; 4073 else if (key.type > 0) 4074 key.type--; 4075 else if (key.objectid > 0) 4076 key.objectid--; 4077 else 4078 return 1; 4079 4080 btrfs_release_path(root, path); 4081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4082 if (ret < 0) 4083 return ret; 4084 btrfs_item_key(path->nodes[0], &found_key, 0); 4085 ret = comp_keys(&found_key, &key); 4086 if (ret < 0) 4087 return 0; 4088 return 1; 4089 } 4090 4091 /* 4092 * A helper function to walk down the tree starting at min_key, and looking 4093 * for nodes or leaves that are either in cache or have a minimum 4094 * transaction id. This is used by the btree defrag code, and tree logging 4095 * 4096 * This does not cow, but it does stuff the starting key it finds back 4097 * into min_key, so you can call btrfs_search_slot with cow=1 on the 4098 * key and get a writable path. 4099 * 4100 * This does lock as it descends, and path->keep_locks should be set 4101 * to 1 by the caller. 4102 * 4103 * This honors path->lowest_level to prevent descent past a given level 4104 * of the tree. 4105 * 4106 * min_trans indicates the oldest transaction that you are interested 4107 * in walking through. Any nodes or leaves older than min_trans are 4108 * skipped over (without reading them). 4109 * 4110 * returns zero if something useful was found, < 0 on error and 1 if there 4111 * was nothing in the tree that matched the search criteria. 4112 */ 4113 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 4114 struct btrfs_key *max_key, 4115 struct btrfs_path *path, int cache_only, 4116 u64 min_trans) 4117 { 4118 struct extent_buffer *cur; 4119 struct btrfs_key found_key; 4120 int slot; 4121 int sret; 4122 u32 nritems; 4123 int level; 4124 int ret = 1; 4125 4126 WARN_ON(!path->keep_locks); 4127 again: 4128 cur = btrfs_lock_root_node(root); 4129 level = btrfs_header_level(cur); 4130 WARN_ON(path->nodes[level]); 4131 path->nodes[level] = cur; 4132 path->locks[level] = 1; 4133 4134 if (btrfs_header_generation(cur) < min_trans) { 4135 ret = 1; 4136 goto out; 4137 } 4138 while (1) { 4139 nritems = btrfs_header_nritems(cur); 4140 level = btrfs_header_level(cur); 4141 sret = bin_search(cur, min_key, level, &slot); 4142 4143 /* at the lowest level, we're done, setup the path and exit */ 4144 if (level == path->lowest_level) { 4145 if (slot >= nritems) 4146 goto find_next_key; 4147 ret = 0; 4148 path->slots[level] = slot; 4149 btrfs_item_key_to_cpu(cur, &found_key, slot); 4150 goto out; 4151 } 4152 if (sret && slot > 0) 4153 slot--; 4154 /* 4155 * check this node pointer against the cache_only and 4156 * min_trans parameters. If it isn't in cache or is too 4157 * old, skip to the next one. 4158 */ 4159 while (slot < nritems) { 4160 u64 blockptr; 4161 u64 gen; 4162 struct extent_buffer *tmp; 4163 struct btrfs_disk_key disk_key; 4164 4165 blockptr = btrfs_node_blockptr(cur, slot); 4166 gen = btrfs_node_ptr_generation(cur, slot); 4167 if (gen < min_trans) { 4168 slot++; 4169 continue; 4170 } 4171 if (!cache_only) 4172 break; 4173 4174 if (max_key) { 4175 btrfs_node_key(cur, &disk_key, slot); 4176 if (comp_keys(&disk_key, max_key) >= 0) { 4177 ret = 1; 4178 goto out; 4179 } 4180 } 4181 4182 tmp = btrfs_find_tree_block(root, blockptr, 4183 btrfs_level_size(root, level - 1)); 4184 4185 if (tmp && btrfs_buffer_uptodate(tmp, gen)) { 4186 free_extent_buffer(tmp); 4187 break; 4188 } 4189 if (tmp) 4190 free_extent_buffer(tmp); 4191 slot++; 4192 } 4193 find_next_key: 4194 /* 4195 * we didn't find a candidate key in this node, walk forward 4196 * and find another one 4197 */ 4198 if (slot >= nritems) { 4199 path->slots[level] = slot; 4200 btrfs_set_path_blocking(path); 4201 sret = btrfs_find_next_key(root, path, min_key, level, 4202 cache_only, min_trans); 4203 if (sret == 0) { 4204 btrfs_release_path(root, path); 4205 goto again; 4206 } else { 4207 goto out; 4208 } 4209 } 4210 /* save our key for returning back */ 4211 btrfs_node_key_to_cpu(cur, &found_key, slot); 4212 path->slots[level] = slot; 4213 if (level == path->lowest_level) { 4214 ret = 0; 4215 unlock_up(path, level, 1); 4216 goto out; 4217 } 4218 btrfs_set_path_blocking(path); 4219 cur = read_node_slot(root, cur, slot); 4220 4221 btrfs_tree_lock(cur); 4222 4223 path->locks[level - 1] = 1; 4224 path->nodes[level - 1] = cur; 4225 unlock_up(path, level, 1); 4226 btrfs_clear_path_blocking(path, NULL); 4227 } 4228 out: 4229 if (ret == 0) 4230 memcpy(min_key, &found_key, sizeof(found_key)); 4231 btrfs_set_path_blocking(path); 4232 return ret; 4233 } 4234 4235 /* 4236 * this is similar to btrfs_next_leaf, but does not try to preserve 4237 * and fixup the path. It looks for and returns the next key in the 4238 * tree based on the current path and the cache_only and min_trans 4239 * parameters. 4240 * 4241 * 0 is returned if another key is found, < 0 if there are any errors 4242 * and 1 is returned if there are no higher keys in the tree 4243 * 4244 * path->keep_locks should be set to 1 on the search made before 4245 * calling this function. 4246 */ 4247 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 4248 struct btrfs_key *key, int level, 4249 int cache_only, u64 min_trans) 4250 { 4251 int slot; 4252 struct extent_buffer *c; 4253 4254 WARN_ON(!path->keep_locks); 4255 while (level < BTRFS_MAX_LEVEL) { 4256 if (!path->nodes[level]) 4257 return 1; 4258 4259 slot = path->slots[level] + 1; 4260 c = path->nodes[level]; 4261 next: 4262 if (slot >= btrfs_header_nritems(c)) { 4263 int ret; 4264 int orig_lowest; 4265 struct btrfs_key cur_key; 4266 if (level + 1 >= BTRFS_MAX_LEVEL || 4267 !path->nodes[level + 1]) 4268 return 1; 4269 4270 if (path->locks[level + 1]) { 4271 level++; 4272 continue; 4273 } 4274 4275 slot = btrfs_header_nritems(c) - 1; 4276 if (level == 0) 4277 btrfs_item_key_to_cpu(c, &cur_key, slot); 4278 else 4279 btrfs_node_key_to_cpu(c, &cur_key, slot); 4280 4281 orig_lowest = path->lowest_level; 4282 btrfs_release_path(root, path); 4283 path->lowest_level = level; 4284 ret = btrfs_search_slot(NULL, root, &cur_key, path, 4285 0, 0); 4286 path->lowest_level = orig_lowest; 4287 if (ret < 0) 4288 return ret; 4289 4290 c = path->nodes[level]; 4291 slot = path->slots[level]; 4292 if (ret == 0) 4293 slot++; 4294 goto next; 4295 } 4296 4297 if (level == 0) 4298 btrfs_item_key_to_cpu(c, key, slot); 4299 else { 4300 u64 blockptr = btrfs_node_blockptr(c, slot); 4301 u64 gen = btrfs_node_ptr_generation(c, slot); 4302 4303 if (cache_only) { 4304 struct extent_buffer *cur; 4305 cur = btrfs_find_tree_block(root, blockptr, 4306 btrfs_level_size(root, level - 1)); 4307 if (!cur || !btrfs_buffer_uptodate(cur, gen)) { 4308 slot++; 4309 if (cur) 4310 free_extent_buffer(cur); 4311 goto next; 4312 } 4313 free_extent_buffer(cur); 4314 } 4315 if (gen < min_trans) { 4316 slot++; 4317 goto next; 4318 } 4319 btrfs_node_key_to_cpu(c, key, slot); 4320 } 4321 return 0; 4322 } 4323 return 1; 4324 } 4325 4326 /* 4327 * search the tree again to find a leaf with greater keys 4328 * returns 0 if it found something or 1 if there are no greater leaves. 4329 * returns < 0 on io errors. 4330 */ 4331 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 4332 { 4333 int slot; 4334 int level; 4335 struct extent_buffer *c; 4336 struct extent_buffer *next; 4337 struct btrfs_key key; 4338 u32 nritems; 4339 int ret; 4340 int old_spinning = path->leave_spinning; 4341 int force_blocking = 0; 4342 4343 nritems = btrfs_header_nritems(path->nodes[0]); 4344 if (nritems == 0) 4345 return 1; 4346 4347 /* 4348 * we take the blocks in an order that upsets lockdep. Using 4349 * blocking mode is the only way around it. 4350 */ 4351 #ifdef CONFIG_DEBUG_LOCK_ALLOC 4352 force_blocking = 1; 4353 #endif 4354 4355 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 4356 again: 4357 level = 1; 4358 next = NULL; 4359 btrfs_release_path(root, path); 4360 4361 path->keep_locks = 1; 4362 4363 if (!force_blocking) 4364 path->leave_spinning = 1; 4365 4366 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4367 path->keep_locks = 0; 4368 4369 if (ret < 0) 4370 return ret; 4371 4372 nritems = btrfs_header_nritems(path->nodes[0]); 4373 /* 4374 * by releasing the path above we dropped all our locks. A balance 4375 * could have added more items next to the key that used to be 4376 * at the very end of the block. So, check again here and 4377 * advance the path if there are now more items available. 4378 */ 4379 if (nritems > 0 && path->slots[0] < nritems - 1) { 4380 if (ret == 0) 4381 path->slots[0]++; 4382 ret = 0; 4383 goto done; 4384 } 4385 4386 while (level < BTRFS_MAX_LEVEL) { 4387 if (!path->nodes[level]) { 4388 ret = 1; 4389 goto done; 4390 } 4391 4392 slot = path->slots[level] + 1; 4393 c = path->nodes[level]; 4394 if (slot >= btrfs_header_nritems(c)) { 4395 level++; 4396 if (level == BTRFS_MAX_LEVEL) { 4397 ret = 1; 4398 goto done; 4399 } 4400 continue; 4401 } 4402 4403 if (next) { 4404 btrfs_tree_unlock(next); 4405 free_extent_buffer(next); 4406 } 4407 4408 next = c; 4409 ret = read_block_for_search(NULL, root, path, &next, level, 4410 slot, &key); 4411 if (ret == -EAGAIN) 4412 goto again; 4413 4414 if (ret < 0) { 4415 btrfs_release_path(root, path); 4416 goto done; 4417 } 4418 4419 if (!path->skip_locking) { 4420 ret = btrfs_try_spin_lock(next); 4421 if (!ret) { 4422 btrfs_set_path_blocking(path); 4423 btrfs_tree_lock(next); 4424 if (!force_blocking) 4425 btrfs_clear_path_blocking(path, next); 4426 } 4427 if (force_blocking) 4428 btrfs_set_lock_blocking(next); 4429 } 4430 break; 4431 } 4432 path->slots[level] = slot; 4433 while (1) { 4434 level--; 4435 c = path->nodes[level]; 4436 if (path->locks[level]) 4437 btrfs_tree_unlock(c); 4438 4439 free_extent_buffer(c); 4440 path->nodes[level] = next; 4441 path->slots[level] = 0; 4442 if (!path->skip_locking) 4443 path->locks[level] = 1; 4444 4445 if (!level) 4446 break; 4447 4448 ret = read_block_for_search(NULL, root, path, &next, level, 4449 0, &key); 4450 if (ret == -EAGAIN) 4451 goto again; 4452 4453 if (ret < 0) { 4454 btrfs_release_path(root, path); 4455 goto done; 4456 } 4457 4458 if (!path->skip_locking) { 4459 btrfs_assert_tree_locked(path->nodes[level]); 4460 ret = btrfs_try_spin_lock(next); 4461 if (!ret) { 4462 btrfs_set_path_blocking(path); 4463 btrfs_tree_lock(next); 4464 if (!force_blocking) 4465 btrfs_clear_path_blocking(path, next); 4466 } 4467 if (force_blocking) 4468 btrfs_set_lock_blocking(next); 4469 } 4470 } 4471 ret = 0; 4472 done: 4473 unlock_up(path, 0, 1); 4474 path->leave_spinning = old_spinning; 4475 if (!old_spinning) 4476 btrfs_set_path_blocking(path); 4477 4478 return ret; 4479 } 4480 4481 /* 4482 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 4483 * searching until it gets past min_objectid or finds an item of 'type' 4484 * 4485 * returns 0 if something is found, 1 if nothing was found and < 0 on error 4486 */ 4487 int btrfs_previous_item(struct btrfs_root *root, 4488 struct btrfs_path *path, u64 min_objectid, 4489 int type) 4490 { 4491 struct btrfs_key found_key; 4492 struct extent_buffer *leaf; 4493 u32 nritems; 4494 int ret; 4495 4496 while (1) { 4497 if (path->slots[0] == 0) { 4498 btrfs_set_path_blocking(path); 4499 ret = btrfs_prev_leaf(root, path); 4500 if (ret != 0) 4501 return ret; 4502 } else { 4503 path->slots[0]--; 4504 } 4505 leaf = path->nodes[0]; 4506 nritems = btrfs_header_nritems(leaf); 4507 if (nritems == 0) 4508 return 1; 4509 if (path->slots[0] == nritems) 4510 path->slots[0]--; 4511 4512 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 4513 if (found_key.objectid < min_objectid) 4514 break; 4515 if (found_key.type == type) 4516 return 0; 4517 if (found_key.objectid == min_objectid && 4518 found_key.type < type) 4519 break; 4520 } 4521 return 1; 4522 } 4523