xref: /openbmc/linux/fs/btrfs/ctree.c (revision 565d76cb)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26 
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 		      *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_key *ins_key,
31 		      struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 			  struct btrfs_root *root, struct extent_buffer *dst,
34 			  struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      struct extent_buffer *dst_buf,
38 			      struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 		   struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42 			struct btrfs_root *root, struct btrfs_path *path,
43 			struct btrfs_key *cpu_key, u32 *data_size,
44 			u32 total_data, u32 total_size, int nr);
45 
46 
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 	struct btrfs_path *path;
50 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51 	if (path)
52 		path->reada = 1;
53 	return path;
54 }
55 
56 /*
57  * set all locked nodes in the path to blocking locks.  This should
58  * be done before scheduling
59  */
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
61 {
62 	int i;
63 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64 		if (p->nodes[i] && p->locks[i])
65 			btrfs_set_lock_blocking(p->nodes[i]);
66 	}
67 }
68 
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 					struct extent_buffer *held)
79 {
80 	int i;
81 
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 	/* lockdep really cares that we take all of these spinlocks
84 	 * in the right order.  If any of the locks in the path are not
85 	 * currently blocking, it is going to complain.  So, make really
86 	 * really sure by forcing the path to blocking before we clear
87 	 * the path blocking.
88 	 */
89 	if (held)
90 		btrfs_set_lock_blocking(held);
91 	btrfs_set_path_blocking(p);
92 #endif
93 
94 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95 		if (p->nodes[i] && p->locks[i])
96 			btrfs_clear_lock_blocking(p->nodes[i]);
97 	}
98 
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 	if (held)
101 		btrfs_clear_lock_blocking(held);
102 #endif
103 }
104 
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108 	if (!p)
109 		return;
110 	btrfs_release_path(NULL, p);
111 	kmem_cache_free(btrfs_path_cachep, p);
112 }
113 
114 /*
115  * path release drops references on the extent buffers in the path
116  * and it drops any locks held by this path
117  *
118  * It is safe to call this on paths that no locks or extent buffers held.
119  */
120 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
121 {
122 	int i;
123 
124 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125 		p->slots[i] = 0;
126 		if (!p->nodes[i])
127 			continue;
128 		if (p->locks[i]) {
129 			btrfs_tree_unlock(p->nodes[i]);
130 			p->locks[i] = 0;
131 		}
132 		free_extent_buffer(p->nodes[i]);
133 		p->nodes[i] = NULL;
134 	}
135 }
136 
137 /*
138  * safely gets a reference on the root node of a tree.  A lock
139  * is not taken, so a concurrent writer may put a different node
140  * at the root of the tree.  See btrfs_lock_root_node for the
141  * looping required.
142  *
143  * The extent buffer returned by this has a reference taken, so
144  * it won't disappear.  It may stop being the root of the tree
145  * at any time because there are no locks held.
146  */
147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
148 {
149 	struct extent_buffer *eb;
150 	spin_lock(&root->node_lock);
151 	eb = root->node;
152 	extent_buffer_get(eb);
153 	spin_unlock(&root->node_lock);
154 	return eb;
155 }
156 
157 /* loop around taking references on and locking the root node of the
158  * tree until you end up with a lock on the root.  A locked buffer
159  * is returned, with a reference held.
160  */
161 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
162 {
163 	struct extent_buffer *eb;
164 
165 	while (1) {
166 		eb = btrfs_root_node(root);
167 		btrfs_tree_lock(eb);
168 
169 		spin_lock(&root->node_lock);
170 		if (eb == root->node) {
171 			spin_unlock(&root->node_lock);
172 			break;
173 		}
174 		spin_unlock(&root->node_lock);
175 
176 		btrfs_tree_unlock(eb);
177 		free_extent_buffer(eb);
178 	}
179 	return eb;
180 }
181 
182 /* cowonly root (everything not a reference counted cow subvolume), just get
183  * put onto a simple dirty list.  transaction.c walks this to make sure they
184  * get properly updated on disk.
185  */
186 static void add_root_to_dirty_list(struct btrfs_root *root)
187 {
188 	if (root->track_dirty && list_empty(&root->dirty_list)) {
189 		list_add(&root->dirty_list,
190 			 &root->fs_info->dirty_cowonly_roots);
191 	}
192 }
193 
194 /*
195  * used by snapshot creation to make a copy of a root for a tree with
196  * a given objectid.  The buffer with the new root node is returned in
197  * cow_ret, and this func returns zero on success or a negative error code.
198  */
199 int btrfs_copy_root(struct btrfs_trans_handle *trans,
200 		      struct btrfs_root *root,
201 		      struct extent_buffer *buf,
202 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
203 {
204 	struct extent_buffer *cow;
205 	int ret = 0;
206 	int level;
207 	struct btrfs_disk_key disk_key;
208 
209 	WARN_ON(root->ref_cows && trans->transid !=
210 		root->fs_info->running_transaction->transid);
211 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
212 
213 	level = btrfs_header_level(buf);
214 	if (level == 0)
215 		btrfs_item_key(buf, &disk_key, 0);
216 	else
217 		btrfs_node_key(buf, &disk_key, 0);
218 
219 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
220 				     new_root_objectid, &disk_key, level,
221 				     buf->start, 0);
222 	if (IS_ERR(cow))
223 		return PTR_ERR(cow);
224 
225 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
226 	btrfs_set_header_bytenr(cow, cow->start);
227 	btrfs_set_header_generation(cow, trans->transid);
228 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
229 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
230 				     BTRFS_HEADER_FLAG_RELOC);
231 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
232 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
233 	else
234 		btrfs_set_header_owner(cow, new_root_objectid);
235 
236 	write_extent_buffer(cow, root->fs_info->fsid,
237 			    (unsigned long)btrfs_header_fsid(cow),
238 			    BTRFS_FSID_SIZE);
239 
240 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
241 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
242 		ret = btrfs_inc_ref(trans, root, cow, 1);
243 	else
244 		ret = btrfs_inc_ref(trans, root, cow, 0);
245 
246 	if (ret)
247 		return ret;
248 
249 	btrfs_mark_buffer_dirty(cow);
250 	*cow_ret = cow;
251 	return 0;
252 }
253 
254 /*
255  * check if the tree block can be shared by multiple trees
256  */
257 int btrfs_block_can_be_shared(struct btrfs_root *root,
258 			      struct extent_buffer *buf)
259 {
260 	/*
261 	 * Tree blocks not in refernece counted trees and tree roots
262 	 * are never shared. If a block was allocated after the last
263 	 * snapshot and the block was not allocated by tree relocation,
264 	 * we know the block is not shared.
265 	 */
266 	if (root->ref_cows &&
267 	    buf != root->node && buf != root->commit_root &&
268 	    (btrfs_header_generation(buf) <=
269 	     btrfs_root_last_snapshot(&root->root_item) ||
270 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
271 		return 1;
272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
273 	if (root->ref_cows &&
274 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
275 		return 1;
276 #endif
277 	return 0;
278 }
279 
280 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
281 				       struct btrfs_root *root,
282 				       struct extent_buffer *buf,
283 				       struct extent_buffer *cow,
284 				       int *last_ref)
285 {
286 	u64 refs;
287 	u64 owner;
288 	u64 flags;
289 	u64 new_flags = 0;
290 	int ret;
291 
292 	/*
293 	 * Backrefs update rules:
294 	 *
295 	 * Always use full backrefs for extent pointers in tree block
296 	 * allocated by tree relocation.
297 	 *
298 	 * If a shared tree block is no longer referenced by its owner
299 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
300 	 * use full backrefs for extent pointers in tree block.
301 	 *
302 	 * If a tree block is been relocating
303 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
304 	 * use full backrefs for extent pointers in tree block.
305 	 * The reason for this is some operations (such as drop tree)
306 	 * are only allowed for blocks use full backrefs.
307 	 */
308 
309 	if (btrfs_block_can_be_shared(root, buf)) {
310 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
311 					       buf->len, &refs, &flags);
312 		BUG_ON(ret);
313 		BUG_ON(refs == 0);
314 	} else {
315 		refs = 1;
316 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
317 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
318 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
319 		else
320 			flags = 0;
321 	}
322 
323 	owner = btrfs_header_owner(buf);
324 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
325 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
326 
327 	if (refs > 1) {
328 		if ((owner == root->root_key.objectid ||
329 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
330 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
331 			ret = btrfs_inc_ref(trans, root, buf, 1);
332 			BUG_ON(ret);
333 
334 			if (root->root_key.objectid ==
335 			    BTRFS_TREE_RELOC_OBJECTID) {
336 				ret = btrfs_dec_ref(trans, root, buf, 0);
337 				BUG_ON(ret);
338 				ret = btrfs_inc_ref(trans, root, cow, 1);
339 				BUG_ON(ret);
340 			}
341 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
342 		} else {
343 
344 			if (root->root_key.objectid ==
345 			    BTRFS_TREE_RELOC_OBJECTID)
346 				ret = btrfs_inc_ref(trans, root, cow, 1);
347 			else
348 				ret = btrfs_inc_ref(trans, root, cow, 0);
349 			BUG_ON(ret);
350 		}
351 		if (new_flags != 0) {
352 			ret = btrfs_set_disk_extent_flags(trans, root,
353 							  buf->start,
354 							  buf->len,
355 							  new_flags, 0);
356 			BUG_ON(ret);
357 		}
358 	} else {
359 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
360 			if (root->root_key.objectid ==
361 			    BTRFS_TREE_RELOC_OBJECTID)
362 				ret = btrfs_inc_ref(trans, root, cow, 1);
363 			else
364 				ret = btrfs_inc_ref(trans, root, cow, 0);
365 			BUG_ON(ret);
366 			ret = btrfs_dec_ref(trans, root, buf, 1);
367 			BUG_ON(ret);
368 		}
369 		clean_tree_block(trans, root, buf);
370 		*last_ref = 1;
371 	}
372 	return 0;
373 }
374 
375 /*
376  * does the dirty work in cow of a single block.  The parent block (if
377  * supplied) is updated to point to the new cow copy.  The new buffer is marked
378  * dirty and returned locked.  If you modify the block it needs to be marked
379  * dirty again.
380  *
381  * search_start -- an allocation hint for the new block
382  *
383  * empty_size -- a hint that you plan on doing more cow.  This is the size in
384  * bytes the allocator should try to find free next to the block it returns.
385  * This is just a hint and may be ignored by the allocator.
386  */
387 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
388 			     struct btrfs_root *root,
389 			     struct extent_buffer *buf,
390 			     struct extent_buffer *parent, int parent_slot,
391 			     struct extent_buffer **cow_ret,
392 			     u64 search_start, u64 empty_size)
393 {
394 	struct btrfs_disk_key disk_key;
395 	struct extent_buffer *cow;
396 	int level;
397 	int last_ref = 0;
398 	int unlock_orig = 0;
399 	u64 parent_start;
400 
401 	if (*cow_ret == buf)
402 		unlock_orig = 1;
403 
404 	btrfs_assert_tree_locked(buf);
405 
406 	WARN_ON(root->ref_cows && trans->transid !=
407 		root->fs_info->running_transaction->transid);
408 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
409 
410 	level = btrfs_header_level(buf);
411 
412 	if (level == 0)
413 		btrfs_item_key(buf, &disk_key, 0);
414 	else
415 		btrfs_node_key(buf, &disk_key, 0);
416 
417 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
418 		if (parent)
419 			parent_start = parent->start;
420 		else
421 			parent_start = 0;
422 	} else
423 		parent_start = 0;
424 
425 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
426 				     root->root_key.objectid, &disk_key,
427 				     level, search_start, empty_size);
428 	if (IS_ERR(cow))
429 		return PTR_ERR(cow);
430 
431 	/* cow is set to blocking by btrfs_init_new_buffer */
432 
433 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
434 	btrfs_set_header_bytenr(cow, cow->start);
435 	btrfs_set_header_generation(cow, trans->transid);
436 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
437 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
438 				     BTRFS_HEADER_FLAG_RELOC);
439 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
440 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
441 	else
442 		btrfs_set_header_owner(cow, root->root_key.objectid);
443 
444 	write_extent_buffer(cow, root->fs_info->fsid,
445 			    (unsigned long)btrfs_header_fsid(cow),
446 			    BTRFS_FSID_SIZE);
447 
448 	update_ref_for_cow(trans, root, buf, cow, &last_ref);
449 
450 	if (root->ref_cows)
451 		btrfs_reloc_cow_block(trans, root, buf, cow);
452 
453 	if (buf == root->node) {
454 		WARN_ON(parent && parent != buf);
455 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
456 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
457 			parent_start = buf->start;
458 		else
459 			parent_start = 0;
460 
461 		spin_lock(&root->node_lock);
462 		root->node = cow;
463 		extent_buffer_get(cow);
464 		spin_unlock(&root->node_lock);
465 
466 		btrfs_free_tree_block(trans, root, buf, parent_start,
467 				      last_ref);
468 		free_extent_buffer(buf);
469 		add_root_to_dirty_list(root);
470 	} else {
471 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
472 			parent_start = parent->start;
473 		else
474 			parent_start = 0;
475 
476 		WARN_ON(trans->transid != btrfs_header_generation(parent));
477 		btrfs_set_node_blockptr(parent, parent_slot,
478 					cow->start);
479 		btrfs_set_node_ptr_generation(parent, parent_slot,
480 					      trans->transid);
481 		btrfs_mark_buffer_dirty(parent);
482 		btrfs_free_tree_block(trans, root, buf, parent_start,
483 				      last_ref);
484 	}
485 	if (unlock_orig)
486 		btrfs_tree_unlock(buf);
487 	free_extent_buffer(buf);
488 	btrfs_mark_buffer_dirty(cow);
489 	*cow_ret = cow;
490 	return 0;
491 }
492 
493 static inline int should_cow_block(struct btrfs_trans_handle *trans,
494 				   struct btrfs_root *root,
495 				   struct extent_buffer *buf)
496 {
497 	if (btrfs_header_generation(buf) == trans->transid &&
498 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
499 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
500 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
501 		return 0;
502 	return 1;
503 }
504 
505 /*
506  * cows a single block, see __btrfs_cow_block for the real work.
507  * This version of it has extra checks so that a block isn't cow'd more than
508  * once per transaction, as long as it hasn't been written yet
509  */
510 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
511 		    struct btrfs_root *root, struct extent_buffer *buf,
512 		    struct extent_buffer *parent, int parent_slot,
513 		    struct extent_buffer **cow_ret)
514 {
515 	u64 search_start;
516 	int ret;
517 
518 	if (trans->transaction != root->fs_info->running_transaction) {
519 		printk(KERN_CRIT "trans %llu running %llu\n",
520 		       (unsigned long long)trans->transid,
521 		       (unsigned long long)
522 		       root->fs_info->running_transaction->transid);
523 		WARN_ON(1);
524 	}
525 	if (trans->transid != root->fs_info->generation) {
526 		printk(KERN_CRIT "trans %llu running %llu\n",
527 		       (unsigned long long)trans->transid,
528 		       (unsigned long long)root->fs_info->generation);
529 		WARN_ON(1);
530 	}
531 
532 	if (!should_cow_block(trans, root, buf)) {
533 		*cow_ret = buf;
534 		return 0;
535 	}
536 
537 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
538 
539 	if (parent)
540 		btrfs_set_lock_blocking(parent);
541 	btrfs_set_lock_blocking(buf);
542 
543 	ret = __btrfs_cow_block(trans, root, buf, parent,
544 				 parent_slot, cow_ret, search_start, 0);
545 	return ret;
546 }
547 
548 /*
549  * helper function for defrag to decide if two blocks pointed to by a
550  * node are actually close by
551  */
552 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
553 {
554 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
555 		return 1;
556 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
557 		return 1;
558 	return 0;
559 }
560 
561 /*
562  * compare two keys in a memcmp fashion
563  */
564 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
565 {
566 	struct btrfs_key k1;
567 
568 	btrfs_disk_key_to_cpu(&k1, disk);
569 
570 	return btrfs_comp_cpu_keys(&k1, k2);
571 }
572 
573 /*
574  * same as comp_keys only with two btrfs_key's
575  */
576 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
577 {
578 	if (k1->objectid > k2->objectid)
579 		return 1;
580 	if (k1->objectid < k2->objectid)
581 		return -1;
582 	if (k1->type > k2->type)
583 		return 1;
584 	if (k1->type < k2->type)
585 		return -1;
586 	if (k1->offset > k2->offset)
587 		return 1;
588 	if (k1->offset < k2->offset)
589 		return -1;
590 	return 0;
591 }
592 
593 /*
594  * this is used by the defrag code to go through all the
595  * leaves pointed to by a node and reallocate them so that
596  * disk order is close to key order
597  */
598 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
599 		       struct btrfs_root *root, struct extent_buffer *parent,
600 		       int start_slot, int cache_only, u64 *last_ret,
601 		       struct btrfs_key *progress)
602 {
603 	struct extent_buffer *cur;
604 	u64 blocknr;
605 	u64 gen;
606 	u64 search_start = *last_ret;
607 	u64 last_block = 0;
608 	u64 other;
609 	u32 parent_nritems;
610 	int end_slot;
611 	int i;
612 	int err = 0;
613 	int parent_level;
614 	int uptodate;
615 	u32 blocksize;
616 	int progress_passed = 0;
617 	struct btrfs_disk_key disk_key;
618 
619 	parent_level = btrfs_header_level(parent);
620 	if (cache_only && parent_level != 1)
621 		return 0;
622 
623 	if (trans->transaction != root->fs_info->running_transaction)
624 		WARN_ON(1);
625 	if (trans->transid != root->fs_info->generation)
626 		WARN_ON(1);
627 
628 	parent_nritems = btrfs_header_nritems(parent);
629 	blocksize = btrfs_level_size(root, parent_level - 1);
630 	end_slot = parent_nritems;
631 
632 	if (parent_nritems == 1)
633 		return 0;
634 
635 	btrfs_set_lock_blocking(parent);
636 
637 	for (i = start_slot; i < end_slot; i++) {
638 		int close = 1;
639 
640 		if (!parent->map_token) {
641 			map_extent_buffer(parent,
642 					btrfs_node_key_ptr_offset(i),
643 					sizeof(struct btrfs_key_ptr),
644 					&parent->map_token, &parent->kaddr,
645 					&parent->map_start, &parent->map_len,
646 					KM_USER1);
647 		}
648 		btrfs_node_key(parent, &disk_key, i);
649 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
650 			continue;
651 
652 		progress_passed = 1;
653 		blocknr = btrfs_node_blockptr(parent, i);
654 		gen = btrfs_node_ptr_generation(parent, i);
655 		if (last_block == 0)
656 			last_block = blocknr;
657 
658 		if (i > 0) {
659 			other = btrfs_node_blockptr(parent, i - 1);
660 			close = close_blocks(blocknr, other, blocksize);
661 		}
662 		if (!close && i < end_slot - 2) {
663 			other = btrfs_node_blockptr(parent, i + 1);
664 			close = close_blocks(blocknr, other, blocksize);
665 		}
666 		if (close) {
667 			last_block = blocknr;
668 			continue;
669 		}
670 		if (parent->map_token) {
671 			unmap_extent_buffer(parent, parent->map_token,
672 					    KM_USER1);
673 			parent->map_token = NULL;
674 		}
675 
676 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
677 		if (cur)
678 			uptodate = btrfs_buffer_uptodate(cur, gen);
679 		else
680 			uptodate = 0;
681 		if (!cur || !uptodate) {
682 			if (cache_only) {
683 				free_extent_buffer(cur);
684 				continue;
685 			}
686 			if (!cur) {
687 				cur = read_tree_block(root, blocknr,
688 							 blocksize, gen);
689 			} else if (!uptodate) {
690 				btrfs_read_buffer(cur, gen);
691 			}
692 		}
693 		if (search_start == 0)
694 			search_start = last_block;
695 
696 		btrfs_tree_lock(cur);
697 		btrfs_set_lock_blocking(cur);
698 		err = __btrfs_cow_block(trans, root, cur, parent, i,
699 					&cur, search_start,
700 					min(16 * blocksize,
701 					    (end_slot - i) * blocksize));
702 		if (err) {
703 			btrfs_tree_unlock(cur);
704 			free_extent_buffer(cur);
705 			break;
706 		}
707 		search_start = cur->start;
708 		last_block = cur->start;
709 		*last_ret = search_start;
710 		btrfs_tree_unlock(cur);
711 		free_extent_buffer(cur);
712 	}
713 	if (parent->map_token) {
714 		unmap_extent_buffer(parent, parent->map_token,
715 				    KM_USER1);
716 		parent->map_token = NULL;
717 	}
718 	return err;
719 }
720 
721 /*
722  * The leaf data grows from end-to-front in the node.
723  * this returns the address of the start of the last item,
724  * which is the stop of the leaf data stack
725  */
726 static inline unsigned int leaf_data_end(struct btrfs_root *root,
727 					 struct extent_buffer *leaf)
728 {
729 	u32 nr = btrfs_header_nritems(leaf);
730 	if (nr == 0)
731 		return BTRFS_LEAF_DATA_SIZE(root);
732 	return btrfs_item_offset_nr(leaf, nr - 1);
733 }
734 
735 /*
736  * extra debugging checks to make sure all the items in a key are
737  * well formed and in the proper order
738  */
739 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
740 		      int level)
741 {
742 	struct extent_buffer *parent = NULL;
743 	struct extent_buffer *node = path->nodes[level];
744 	struct btrfs_disk_key parent_key;
745 	struct btrfs_disk_key node_key;
746 	int parent_slot;
747 	int slot;
748 	struct btrfs_key cpukey;
749 	u32 nritems = btrfs_header_nritems(node);
750 
751 	if (path->nodes[level + 1])
752 		parent = path->nodes[level + 1];
753 
754 	slot = path->slots[level];
755 	BUG_ON(nritems == 0);
756 	if (parent) {
757 		parent_slot = path->slots[level + 1];
758 		btrfs_node_key(parent, &parent_key, parent_slot);
759 		btrfs_node_key(node, &node_key, 0);
760 		BUG_ON(memcmp(&parent_key, &node_key,
761 			      sizeof(struct btrfs_disk_key)));
762 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
763 		       btrfs_header_bytenr(node));
764 	}
765 	BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
766 	if (slot != 0) {
767 		btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
768 		btrfs_node_key(node, &node_key, slot);
769 		BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
770 	}
771 	if (slot < nritems - 1) {
772 		btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
773 		btrfs_node_key(node, &node_key, slot);
774 		BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
775 	}
776 	return 0;
777 }
778 
779 /*
780  * extra checking to make sure all the items in a leaf are
781  * well formed and in the proper order
782  */
783 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
784 		      int level)
785 {
786 	struct extent_buffer *leaf = path->nodes[level];
787 	struct extent_buffer *parent = NULL;
788 	int parent_slot;
789 	struct btrfs_key cpukey;
790 	struct btrfs_disk_key parent_key;
791 	struct btrfs_disk_key leaf_key;
792 	int slot = path->slots[0];
793 
794 	u32 nritems = btrfs_header_nritems(leaf);
795 
796 	if (path->nodes[level + 1])
797 		parent = path->nodes[level + 1];
798 
799 	if (nritems == 0)
800 		return 0;
801 
802 	if (parent) {
803 		parent_slot = path->slots[level + 1];
804 		btrfs_node_key(parent, &parent_key, parent_slot);
805 		btrfs_item_key(leaf, &leaf_key, 0);
806 
807 		BUG_ON(memcmp(&parent_key, &leaf_key,
808 		       sizeof(struct btrfs_disk_key)));
809 		BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
810 		       btrfs_header_bytenr(leaf));
811 	}
812 	if (slot != 0 && slot < nritems - 1) {
813 		btrfs_item_key(leaf, &leaf_key, slot);
814 		btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
815 		if (comp_keys(&leaf_key, &cpukey) <= 0) {
816 			btrfs_print_leaf(root, leaf);
817 			printk(KERN_CRIT "slot %d offset bad key\n", slot);
818 			BUG_ON(1);
819 		}
820 		if (btrfs_item_offset_nr(leaf, slot - 1) !=
821 		       btrfs_item_end_nr(leaf, slot)) {
822 			btrfs_print_leaf(root, leaf);
823 			printk(KERN_CRIT "slot %d offset bad\n", slot);
824 			BUG_ON(1);
825 		}
826 	}
827 	if (slot < nritems - 1) {
828 		btrfs_item_key(leaf, &leaf_key, slot);
829 		btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
830 		BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
831 		if (btrfs_item_offset_nr(leaf, slot) !=
832 			btrfs_item_end_nr(leaf, slot + 1)) {
833 			btrfs_print_leaf(root, leaf);
834 			printk(KERN_CRIT "slot %d offset bad\n", slot);
835 			BUG_ON(1);
836 		}
837 	}
838 	BUG_ON(btrfs_item_offset_nr(leaf, 0) +
839 	       btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
840 	return 0;
841 }
842 
843 static noinline int check_block(struct btrfs_root *root,
844 				struct btrfs_path *path, int level)
845 {
846 	return 0;
847 	if (level == 0)
848 		return check_leaf(root, path, level);
849 	return check_node(root, path, level);
850 }
851 
852 /*
853  * search for key in the extent_buffer.  The items start at offset p,
854  * and they are item_size apart.  There are 'max' items in p.
855  *
856  * the slot in the array is returned via slot, and it points to
857  * the place where you would insert key if it is not found in
858  * the array.
859  *
860  * slot may point to max if the key is bigger than all of the keys
861  */
862 static noinline int generic_bin_search(struct extent_buffer *eb,
863 				       unsigned long p,
864 				       int item_size, struct btrfs_key *key,
865 				       int max, int *slot)
866 {
867 	int low = 0;
868 	int high = max;
869 	int mid;
870 	int ret;
871 	struct btrfs_disk_key *tmp = NULL;
872 	struct btrfs_disk_key unaligned;
873 	unsigned long offset;
874 	char *map_token = NULL;
875 	char *kaddr = NULL;
876 	unsigned long map_start = 0;
877 	unsigned long map_len = 0;
878 	int err;
879 
880 	while (low < high) {
881 		mid = (low + high) / 2;
882 		offset = p + mid * item_size;
883 
884 		if (!map_token || offset < map_start ||
885 		    (offset + sizeof(struct btrfs_disk_key)) >
886 		    map_start + map_len) {
887 			if (map_token) {
888 				unmap_extent_buffer(eb, map_token, KM_USER0);
889 				map_token = NULL;
890 			}
891 
892 			err = map_private_extent_buffer(eb, offset,
893 						sizeof(struct btrfs_disk_key),
894 						&map_token, &kaddr,
895 						&map_start, &map_len, KM_USER0);
896 
897 			if (!err) {
898 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
899 							map_start);
900 			} else {
901 				read_extent_buffer(eb, &unaligned,
902 						   offset, sizeof(unaligned));
903 				tmp = &unaligned;
904 			}
905 
906 		} else {
907 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
908 							map_start);
909 		}
910 		ret = comp_keys(tmp, key);
911 
912 		if (ret < 0)
913 			low = mid + 1;
914 		else if (ret > 0)
915 			high = mid;
916 		else {
917 			*slot = mid;
918 			if (map_token)
919 				unmap_extent_buffer(eb, map_token, KM_USER0);
920 			return 0;
921 		}
922 	}
923 	*slot = low;
924 	if (map_token)
925 		unmap_extent_buffer(eb, map_token, KM_USER0);
926 	return 1;
927 }
928 
929 /*
930  * simple bin_search frontend that does the right thing for
931  * leaves vs nodes
932  */
933 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
934 		      int level, int *slot)
935 {
936 	if (level == 0) {
937 		return generic_bin_search(eb,
938 					  offsetof(struct btrfs_leaf, items),
939 					  sizeof(struct btrfs_item),
940 					  key, btrfs_header_nritems(eb),
941 					  slot);
942 	} else {
943 		return generic_bin_search(eb,
944 					  offsetof(struct btrfs_node, ptrs),
945 					  sizeof(struct btrfs_key_ptr),
946 					  key, btrfs_header_nritems(eb),
947 					  slot);
948 	}
949 	return -1;
950 }
951 
952 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
953 		     int level, int *slot)
954 {
955 	return bin_search(eb, key, level, slot);
956 }
957 
958 static void root_add_used(struct btrfs_root *root, u32 size)
959 {
960 	spin_lock(&root->accounting_lock);
961 	btrfs_set_root_used(&root->root_item,
962 			    btrfs_root_used(&root->root_item) + size);
963 	spin_unlock(&root->accounting_lock);
964 }
965 
966 static void root_sub_used(struct btrfs_root *root, u32 size)
967 {
968 	spin_lock(&root->accounting_lock);
969 	btrfs_set_root_used(&root->root_item,
970 			    btrfs_root_used(&root->root_item) - size);
971 	spin_unlock(&root->accounting_lock);
972 }
973 
974 /* given a node and slot number, this reads the blocks it points to.  The
975  * extent buffer is returned with a reference taken (but unlocked).
976  * NULL is returned on error.
977  */
978 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
979 				   struct extent_buffer *parent, int slot)
980 {
981 	int level = btrfs_header_level(parent);
982 	if (slot < 0)
983 		return NULL;
984 	if (slot >= btrfs_header_nritems(parent))
985 		return NULL;
986 
987 	BUG_ON(level == 0);
988 
989 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
990 		       btrfs_level_size(root, level - 1),
991 		       btrfs_node_ptr_generation(parent, slot));
992 }
993 
994 /*
995  * node level balancing, used to make sure nodes are in proper order for
996  * item deletion.  We balance from the top down, so we have to make sure
997  * that a deletion won't leave an node completely empty later on.
998  */
999 static noinline int balance_level(struct btrfs_trans_handle *trans,
1000 			 struct btrfs_root *root,
1001 			 struct btrfs_path *path, int level)
1002 {
1003 	struct extent_buffer *right = NULL;
1004 	struct extent_buffer *mid;
1005 	struct extent_buffer *left = NULL;
1006 	struct extent_buffer *parent = NULL;
1007 	int ret = 0;
1008 	int wret;
1009 	int pslot;
1010 	int orig_slot = path->slots[level];
1011 	u64 orig_ptr;
1012 
1013 	if (level == 0)
1014 		return 0;
1015 
1016 	mid = path->nodes[level];
1017 
1018 	WARN_ON(!path->locks[level]);
1019 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1020 
1021 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1022 
1023 	if (level < BTRFS_MAX_LEVEL - 1)
1024 		parent = path->nodes[level + 1];
1025 	pslot = path->slots[level + 1];
1026 
1027 	/*
1028 	 * deal with the case where there is only one pointer in the root
1029 	 * by promoting the node below to a root
1030 	 */
1031 	if (!parent) {
1032 		struct extent_buffer *child;
1033 
1034 		if (btrfs_header_nritems(mid) != 1)
1035 			return 0;
1036 
1037 		/* promote the child to a root */
1038 		child = read_node_slot(root, mid, 0);
1039 		BUG_ON(!child);
1040 		btrfs_tree_lock(child);
1041 		btrfs_set_lock_blocking(child);
1042 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1043 		if (ret) {
1044 			btrfs_tree_unlock(child);
1045 			free_extent_buffer(child);
1046 			goto enospc;
1047 		}
1048 
1049 		spin_lock(&root->node_lock);
1050 		root->node = child;
1051 		spin_unlock(&root->node_lock);
1052 
1053 		add_root_to_dirty_list(root);
1054 		btrfs_tree_unlock(child);
1055 
1056 		path->locks[level] = 0;
1057 		path->nodes[level] = NULL;
1058 		clean_tree_block(trans, root, mid);
1059 		btrfs_tree_unlock(mid);
1060 		/* once for the path */
1061 		free_extent_buffer(mid);
1062 
1063 		root_sub_used(root, mid->len);
1064 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1065 		/* once for the root ptr */
1066 		free_extent_buffer(mid);
1067 		return 0;
1068 	}
1069 	if (btrfs_header_nritems(mid) >
1070 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1071 		return 0;
1072 
1073 	btrfs_header_nritems(mid);
1074 
1075 	left = read_node_slot(root, parent, pslot - 1);
1076 	if (left) {
1077 		btrfs_tree_lock(left);
1078 		btrfs_set_lock_blocking(left);
1079 		wret = btrfs_cow_block(trans, root, left,
1080 				       parent, pslot - 1, &left);
1081 		if (wret) {
1082 			ret = wret;
1083 			goto enospc;
1084 		}
1085 	}
1086 	right = read_node_slot(root, parent, pslot + 1);
1087 	if (right) {
1088 		btrfs_tree_lock(right);
1089 		btrfs_set_lock_blocking(right);
1090 		wret = btrfs_cow_block(trans, root, right,
1091 				       parent, pslot + 1, &right);
1092 		if (wret) {
1093 			ret = wret;
1094 			goto enospc;
1095 		}
1096 	}
1097 
1098 	/* first, try to make some room in the middle buffer */
1099 	if (left) {
1100 		orig_slot += btrfs_header_nritems(left);
1101 		wret = push_node_left(trans, root, left, mid, 1);
1102 		if (wret < 0)
1103 			ret = wret;
1104 		btrfs_header_nritems(mid);
1105 	}
1106 
1107 	/*
1108 	 * then try to empty the right most buffer into the middle
1109 	 */
1110 	if (right) {
1111 		wret = push_node_left(trans, root, mid, right, 1);
1112 		if (wret < 0 && wret != -ENOSPC)
1113 			ret = wret;
1114 		if (btrfs_header_nritems(right) == 0) {
1115 			clean_tree_block(trans, root, right);
1116 			btrfs_tree_unlock(right);
1117 			wret = del_ptr(trans, root, path, level + 1, pslot +
1118 				       1);
1119 			if (wret)
1120 				ret = wret;
1121 			root_sub_used(root, right->len);
1122 			btrfs_free_tree_block(trans, root, right, 0, 1);
1123 			free_extent_buffer(right);
1124 			right = NULL;
1125 		} else {
1126 			struct btrfs_disk_key right_key;
1127 			btrfs_node_key(right, &right_key, 0);
1128 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1129 			btrfs_mark_buffer_dirty(parent);
1130 		}
1131 	}
1132 	if (btrfs_header_nritems(mid) == 1) {
1133 		/*
1134 		 * we're not allowed to leave a node with one item in the
1135 		 * tree during a delete.  A deletion from lower in the tree
1136 		 * could try to delete the only pointer in this node.
1137 		 * So, pull some keys from the left.
1138 		 * There has to be a left pointer at this point because
1139 		 * otherwise we would have pulled some pointers from the
1140 		 * right
1141 		 */
1142 		BUG_ON(!left);
1143 		wret = balance_node_right(trans, root, mid, left);
1144 		if (wret < 0) {
1145 			ret = wret;
1146 			goto enospc;
1147 		}
1148 		if (wret == 1) {
1149 			wret = push_node_left(trans, root, left, mid, 1);
1150 			if (wret < 0)
1151 				ret = wret;
1152 		}
1153 		BUG_ON(wret == 1);
1154 	}
1155 	if (btrfs_header_nritems(mid) == 0) {
1156 		clean_tree_block(trans, root, mid);
1157 		btrfs_tree_unlock(mid);
1158 		wret = del_ptr(trans, root, path, level + 1, pslot);
1159 		if (wret)
1160 			ret = wret;
1161 		root_sub_used(root, mid->len);
1162 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1163 		free_extent_buffer(mid);
1164 		mid = NULL;
1165 	} else {
1166 		/* update the parent key to reflect our changes */
1167 		struct btrfs_disk_key mid_key;
1168 		btrfs_node_key(mid, &mid_key, 0);
1169 		btrfs_set_node_key(parent, &mid_key, pslot);
1170 		btrfs_mark_buffer_dirty(parent);
1171 	}
1172 
1173 	/* update the path */
1174 	if (left) {
1175 		if (btrfs_header_nritems(left) > orig_slot) {
1176 			extent_buffer_get(left);
1177 			/* left was locked after cow */
1178 			path->nodes[level] = left;
1179 			path->slots[level + 1] -= 1;
1180 			path->slots[level] = orig_slot;
1181 			if (mid) {
1182 				btrfs_tree_unlock(mid);
1183 				free_extent_buffer(mid);
1184 			}
1185 		} else {
1186 			orig_slot -= btrfs_header_nritems(left);
1187 			path->slots[level] = orig_slot;
1188 		}
1189 	}
1190 	/* double check we haven't messed things up */
1191 	check_block(root, path, level);
1192 	if (orig_ptr !=
1193 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1194 		BUG();
1195 enospc:
1196 	if (right) {
1197 		btrfs_tree_unlock(right);
1198 		free_extent_buffer(right);
1199 	}
1200 	if (left) {
1201 		if (path->nodes[level] != left)
1202 			btrfs_tree_unlock(left);
1203 		free_extent_buffer(left);
1204 	}
1205 	return ret;
1206 }
1207 
1208 /* Node balancing for insertion.  Here we only split or push nodes around
1209  * when they are completely full.  This is also done top down, so we
1210  * have to be pessimistic.
1211  */
1212 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1213 					  struct btrfs_root *root,
1214 					  struct btrfs_path *path, int level)
1215 {
1216 	struct extent_buffer *right = NULL;
1217 	struct extent_buffer *mid;
1218 	struct extent_buffer *left = NULL;
1219 	struct extent_buffer *parent = NULL;
1220 	int ret = 0;
1221 	int wret;
1222 	int pslot;
1223 	int orig_slot = path->slots[level];
1224 
1225 	if (level == 0)
1226 		return 1;
1227 
1228 	mid = path->nodes[level];
1229 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1230 
1231 	if (level < BTRFS_MAX_LEVEL - 1)
1232 		parent = path->nodes[level + 1];
1233 	pslot = path->slots[level + 1];
1234 
1235 	if (!parent)
1236 		return 1;
1237 
1238 	left = read_node_slot(root, parent, pslot - 1);
1239 
1240 	/* first, try to make some room in the middle buffer */
1241 	if (left) {
1242 		u32 left_nr;
1243 
1244 		btrfs_tree_lock(left);
1245 		btrfs_set_lock_blocking(left);
1246 
1247 		left_nr = btrfs_header_nritems(left);
1248 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1249 			wret = 1;
1250 		} else {
1251 			ret = btrfs_cow_block(trans, root, left, parent,
1252 					      pslot - 1, &left);
1253 			if (ret)
1254 				wret = 1;
1255 			else {
1256 				wret = push_node_left(trans, root,
1257 						      left, mid, 0);
1258 			}
1259 		}
1260 		if (wret < 0)
1261 			ret = wret;
1262 		if (wret == 0) {
1263 			struct btrfs_disk_key disk_key;
1264 			orig_slot += left_nr;
1265 			btrfs_node_key(mid, &disk_key, 0);
1266 			btrfs_set_node_key(parent, &disk_key, pslot);
1267 			btrfs_mark_buffer_dirty(parent);
1268 			if (btrfs_header_nritems(left) > orig_slot) {
1269 				path->nodes[level] = left;
1270 				path->slots[level + 1] -= 1;
1271 				path->slots[level] = orig_slot;
1272 				btrfs_tree_unlock(mid);
1273 				free_extent_buffer(mid);
1274 			} else {
1275 				orig_slot -=
1276 					btrfs_header_nritems(left);
1277 				path->slots[level] = orig_slot;
1278 				btrfs_tree_unlock(left);
1279 				free_extent_buffer(left);
1280 			}
1281 			return 0;
1282 		}
1283 		btrfs_tree_unlock(left);
1284 		free_extent_buffer(left);
1285 	}
1286 	right = read_node_slot(root, parent, pslot + 1);
1287 
1288 	/*
1289 	 * then try to empty the right most buffer into the middle
1290 	 */
1291 	if (right) {
1292 		u32 right_nr;
1293 
1294 		btrfs_tree_lock(right);
1295 		btrfs_set_lock_blocking(right);
1296 
1297 		right_nr = btrfs_header_nritems(right);
1298 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1299 			wret = 1;
1300 		} else {
1301 			ret = btrfs_cow_block(trans, root, right,
1302 					      parent, pslot + 1,
1303 					      &right);
1304 			if (ret)
1305 				wret = 1;
1306 			else {
1307 				wret = balance_node_right(trans, root,
1308 							  right, mid);
1309 			}
1310 		}
1311 		if (wret < 0)
1312 			ret = wret;
1313 		if (wret == 0) {
1314 			struct btrfs_disk_key disk_key;
1315 
1316 			btrfs_node_key(right, &disk_key, 0);
1317 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1318 			btrfs_mark_buffer_dirty(parent);
1319 
1320 			if (btrfs_header_nritems(mid) <= orig_slot) {
1321 				path->nodes[level] = right;
1322 				path->slots[level + 1] += 1;
1323 				path->slots[level] = orig_slot -
1324 					btrfs_header_nritems(mid);
1325 				btrfs_tree_unlock(mid);
1326 				free_extent_buffer(mid);
1327 			} else {
1328 				btrfs_tree_unlock(right);
1329 				free_extent_buffer(right);
1330 			}
1331 			return 0;
1332 		}
1333 		btrfs_tree_unlock(right);
1334 		free_extent_buffer(right);
1335 	}
1336 	return 1;
1337 }
1338 
1339 /*
1340  * readahead one full node of leaves, finding things that are close
1341  * to the block in 'slot', and triggering ra on them.
1342  */
1343 static void reada_for_search(struct btrfs_root *root,
1344 			     struct btrfs_path *path,
1345 			     int level, int slot, u64 objectid)
1346 {
1347 	struct extent_buffer *node;
1348 	struct btrfs_disk_key disk_key;
1349 	u32 nritems;
1350 	u64 search;
1351 	u64 target;
1352 	u64 nread = 0;
1353 	int direction = path->reada;
1354 	struct extent_buffer *eb;
1355 	u32 nr;
1356 	u32 blocksize;
1357 	u32 nscan = 0;
1358 
1359 	if (level != 1)
1360 		return;
1361 
1362 	if (!path->nodes[level])
1363 		return;
1364 
1365 	node = path->nodes[level];
1366 
1367 	search = btrfs_node_blockptr(node, slot);
1368 	blocksize = btrfs_level_size(root, level - 1);
1369 	eb = btrfs_find_tree_block(root, search, blocksize);
1370 	if (eb) {
1371 		free_extent_buffer(eb);
1372 		return;
1373 	}
1374 
1375 	target = search;
1376 
1377 	nritems = btrfs_header_nritems(node);
1378 	nr = slot;
1379 	while (1) {
1380 		if (direction < 0) {
1381 			if (nr == 0)
1382 				break;
1383 			nr--;
1384 		} else if (direction > 0) {
1385 			nr++;
1386 			if (nr >= nritems)
1387 				break;
1388 		}
1389 		if (path->reada < 0 && objectid) {
1390 			btrfs_node_key(node, &disk_key, nr);
1391 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1392 				break;
1393 		}
1394 		search = btrfs_node_blockptr(node, nr);
1395 		if ((search <= target && target - search <= 65536) ||
1396 		    (search > target && search - target <= 65536)) {
1397 			readahead_tree_block(root, search, blocksize,
1398 				     btrfs_node_ptr_generation(node, nr));
1399 			nread += blocksize;
1400 		}
1401 		nscan++;
1402 		if ((nread > 65536 || nscan > 32))
1403 			break;
1404 	}
1405 }
1406 
1407 /*
1408  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1409  * cache
1410  */
1411 static noinline int reada_for_balance(struct btrfs_root *root,
1412 				      struct btrfs_path *path, int level)
1413 {
1414 	int slot;
1415 	int nritems;
1416 	struct extent_buffer *parent;
1417 	struct extent_buffer *eb;
1418 	u64 gen;
1419 	u64 block1 = 0;
1420 	u64 block2 = 0;
1421 	int ret = 0;
1422 	int blocksize;
1423 
1424 	parent = path->nodes[level + 1];
1425 	if (!parent)
1426 		return 0;
1427 
1428 	nritems = btrfs_header_nritems(parent);
1429 	slot = path->slots[level + 1];
1430 	blocksize = btrfs_level_size(root, level);
1431 
1432 	if (slot > 0) {
1433 		block1 = btrfs_node_blockptr(parent, slot - 1);
1434 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1435 		eb = btrfs_find_tree_block(root, block1, blocksize);
1436 		if (eb && btrfs_buffer_uptodate(eb, gen))
1437 			block1 = 0;
1438 		free_extent_buffer(eb);
1439 	}
1440 	if (slot + 1 < nritems) {
1441 		block2 = btrfs_node_blockptr(parent, slot + 1);
1442 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1443 		eb = btrfs_find_tree_block(root, block2, blocksize);
1444 		if (eb && btrfs_buffer_uptodate(eb, gen))
1445 			block2 = 0;
1446 		free_extent_buffer(eb);
1447 	}
1448 	if (block1 || block2) {
1449 		ret = -EAGAIN;
1450 
1451 		/* release the whole path */
1452 		btrfs_release_path(root, path);
1453 
1454 		/* read the blocks */
1455 		if (block1)
1456 			readahead_tree_block(root, block1, blocksize, 0);
1457 		if (block2)
1458 			readahead_tree_block(root, block2, blocksize, 0);
1459 
1460 		if (block1) {
1461 			eb = read_tree_block(root, block1, blocksize, 0);
1462 			free_extent_buffer(eb);
1463 		}
1464 		if (block2) {
1465 			eb = read_tree_block(root, block2, blocksize, 0);
1466 			free_extent_buffer(eb);
1467 		}
1468 	}
1469 	return ret;
1470 }
1471 
1472 
1473 /*
1474  * when we walk down the tree, it is usually safe to unlock the higher layers
1475  * in the tree.  The exceptions are when our path goes through slot 0, because
1476  * operations on the tree might require changing key pointers higher up in the
1477  * tree.
1478  *
1479  * callers might also have set path->keep_locks, which tells this code to keep
1480  * the lock if the path points to the last slot in the block.  This is part of
1481  * walking through the tree, and selecting the next slot in the higher block.
1482  *
1483  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1484  * if lowest_unlock is 1, level 0 won't be unlocked
1485  */
1486 static noinline void unlock_up(struct btrfs_path *path, int level,
1487 			       int lowest_unlock)
1488 {
1489 	int i;
1490 	int skip_level = level;
1491 	int no_skips = 0;
1492 	struct extent_buffer *t;
1493 
1494 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1495 		if (!path->nodes[i])
1496 			break;
1497 		if (!path->locks[i])
1498 			break;
1499 		if (!no_skips && path->slots[i] == 0) {
1500 			skip_level = i + 1;
1501 			continue;
1502 		}
1503 		if (!no_skips && path->keep_locks) {
1504 			u32 nritems;
1505 			t = path->nodes[i];
1506 			nritems = btrfs_header_nritems(t);
1507 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1508 				skip_level = i + 1;
1509 				continue;
1510 			}
1511 		}
1512 		if (skip_level < i && i >= lowest_unlock)
1513 			no_skips = 1;
1514 
1515 		t = path->nodes[i];
1516 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1517 			btrfs_tree_unlock(t);
1518 			path->locks[i] = 0;
1519 		}
1520 	}
1521 }
1522 
1523 /*
1524  * This releases any locks held in the path starting at level and
1525  * going all the way up to the root.
1526  *
1527  * btrfs_search_slot will keep the lock held on higher nodes in a few
1528  * corner cases, such as COW of the block at slot zero in the node.  This
1529  * ignores those rules, and it should only be called when there are no
1530  * more updates to be done higher up in the tree.
1531  */
1532 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1533 {
1534 	int i;
1535 
1536 	if (path->keep_locks)
1537 		return;
1538 
1539 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1540 		if (!path->nodes[i])
1541 			continue;
1542 		if (!path->locks[i])
1543 			continue;
1544 		btrfs_tree_unlock(path->nodes[i]);
1545 		path->locks[i] = 0;
1546 	}
1547 }
1548 
1549 /*
1550  * helper function for btrfs_search_slot.  The goal is to find a block
1551  * in cache without setting the path to blocking.  If we find the block
1552  * we return zero and the path is unchanged.
1553  *
1554  * If we can't find the block, we set the path blocking and do some
1555  * reada.  -EAGAIN is returned and the search must be repeated.
1556  */
1557 static int
1558 read_block_for_search(struct btrfs_trans_handle *trans,
1559 		       struct btrfs_root *root, struct btrfs_path *p,
1560 		       struct extent_buffer **eb_ret, int level, int slot,
1561 		       struct btrfs_key *key)
1562 {
1563 	u64 blocknr;
1564 	u64 gen;
1565 	u32 blocksize;
1566 	struct extent_buffer *b = *eb_ret;
1567 	struct extent_buffer *tmp;
1568 	int ret;
1569 
1570 	blocknr = btrfs_node_blockptr(b, slot);
1571 	gen = btrfs_node_ptr_generation(b, slot);
1572 	blocksize = btrfs_level_size(root, level - 1);
1573 
1574 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1575 	if (tmp) {
1576 		if (btrfs_buffer_uptodate(tmp, 0)) {
1577 			if (btrfs_buffer_uptodate(tmp, gen)) {
1578 				/*
1579 				 * we found an up to date block without
1580 				 * sleeping, return
1581 				 * right away
1582 				 */
1583 				*eb_ret = tmp;
1584 				return 0;
1585 			}
1586 			/* the pages were up to date, but we failed
1587 			 * the generation number check.  Do a full
1588 			 * read for the generation number that is correct.
1589 			 * We must do this without dropping locks so
1590 			 * we can trust our generation number
1591 			 */
1592 			free_extent_buffer(tmp);
1593 			tmp = read_tree_block(root, blocknr, blocksize, gen);
1594 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1595 				*eb_ret = tmp;
1596 				return 0;
1597 			}
1598 			free_extent_buffer(tmp);
1599 			btrfs_release_path(NULL, p);
1600 			return -EIO;
1601 		}
1602 	}
1603 
1604 	/*
1605 	 * reduce lock contention at high levels
1606 	 * of the btree by dropping locks before
1607 	 * we read.  Don't release the lock on the current
1608 	 * level because we need to walk this node to figure
1609 	 * out which blocks to read.
1610 	 */
1611 	btrfs_unlock_up_safe(p, level + 1);
1612 	btrfs_set_path_blocking(p);
1613 
1614 	free_extent_buffer(tmp);
1615 	if (p->reada)
1616 		reada_for_search(root, p, level, slot, key->objectid);
1617 
1618 	btrfs_release_path(NULL, p);
1619 
1620 	ret = -EAGAIN;
1621 	tmp = read_tree_block(root, blocknr, blocksize, 0);
1622 	if (tmp) {
1623 		/*
1624 		 * If the read above didn't mark this buffer up to date,
1625 		 * it will never end up being up to date.  Set ret to EIO now
1626 		 * and give up so that our caller doesn't loop forever
1627 		 * on our EAGAINs.
1628 		 */
1629 		if (!btrfs_buffer_uptodate(tmp, 0))
1630 			ret = -EIO;
1631 		free_extent_buffer(tmp);
1632 	}
1633 	return ret;
1634 }
1635 
1636 /*
1637  * helper function for btrfs_search_slot.  This does all of the checks
1638  * for node-level blocks and does any balancing required based on
1639  * the ins_len.
1640  *
1641  * If no extra work was required, zero is returned.  If we had to
1642  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1643  * start over
1644  */
1645 static int
1646 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1647 		       struct btrfs_root *root, struct btrfs_path *p,
1648 		       struct extent_buffer *b, int level, int ins_len)
1649 {
1650 	int ret;
1651 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1652 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1653 		int sret;
1654 
1655 		sret = reada_for_balance(root, p, level);
1656 		if (sret)
1657 			goto again;
1658 
1659 		btrfs_set_path_blocking(p);
1660 		sret = split_node(trans, root, p, level);
1661 		btrfs_clear_path_blocking(p, NULL);
1662 
1663 		BUG_ON(sret > 0);
1664 		if (sret) {
1665 			ret = sret;
1666 			goto done;
1667 		}
1668 		b = p->nodes[level];
1669 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1670 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1671 		int sret;
1672 
1673 		sret = reada_for_balance(root, p, level);
1674 		if (sret)
1675 			goto again;
1676 
1677 		btrfs_set_path_blocking(p);
1678 		sret = balance_level(trans, root, p, level);
1679 		btrfs_clear_path_blocking(p, NULL);
1680 
1681 		if (sret) {
1682 			ret = sret;
1683 			goto done;
1684 		}
1685 		b = p->nodes[level];
1686 		if (!b) {
1687 			btrfs_release_path(NULL, p);
1688 			goto again;
1689 		}
1690 		BUG_ON(btrfs_header_nritems(b) == 1);
1691 	}
1692 	return 0;
1693 
1694 again:
1695 	ret = -EAGAIN;
1696 done:
1697 	return ret;
1698 }
1699 
1700 /*
1701  * look for key in the tree.  path is filled in with nodes along the way
1702  * if key is found, we return zero and you can find the item in the leaf
1703  * level of the path (level 0)
1704  *
1705  * If the key isn't found, the path points to the slot where it should
1706  * be inserted, and 1 is returned.  If there are other errors during the
1707  * search a negative error number is returned.
1708  *
1709  * if ins_len > 0, nodes and leaves will be split as we walk down the
1710  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1711  * possible)
1712  */
1713 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1714 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1715 		      ins_len, int cow)
1716 {
1717 	struct extent_buffer *b;
1718 	int slot;
1719 	int ret;
1720 	int err;
1721 	int level;
1722 	int lowest_unlock = 1;
1723 	u8 lowest_level = 0;
1724 
1725 	lowest_level = p->lowest_level;
1726 	WARN_ON(lowest_level && ins_len > 0);
1727 	WARN_ON(p->nodes[0] != NULL);
1728 
1729 	if (ins_len < 0)
1730 		lowest_unlock = 2;
1731 
1732 again:
1733 	if (p->search_commit_root) {
1734 		b = root->commit_root;
1735 		extent_buffer_get(b);
1736 		if (!p->skip_locking)
1737 			btrfs_tree_lock(b);
1738 	} else {
1739 		if (p->skip_locking)
1740 			b = btrfs_root_node(root);
1741 		else
1742 			b = btrfs_lock_root_node(root);
1743 	}
1744 
1745 	while (b) {
1746 		level = btrfs_header_level(b);
1747 
1748 		/*
1749 		 * setup the path here so we can release it under lock
1750 		 * contention with the cow code
1751 		 */
1752 		p->nodes[level] = b;
1753 		if (!p->skip_locking)
1754 			p->locks[level] = 1;
1755 
1756 		if (cow) {
1757 			/*
1758 			 * if we don't really need to cow this block
1759 			 * then we don't want to set the path blocking,
1760 			 * so we test it here
1761 			 */
1762 			if (!should_cow_block(trans, root, b))
1763 				goto cow_done;
1764 
1765 			btrfs_set_path_blocking(p);
1766 
1767 			err = btrfs_cow_block(trans, root, b,
1768 					      p->nodes[level + 1],
1769 					      p->slots[level + 1], &b);
1770 			if (err) {
1771 				ret = err;
1772 				goto done;
1773 			}
1774 		}
1775 cow_done:
1776 		BUG_ON(!cow && ins_len);
1777 		if (level != btrfs_header_level(b))
1778 			WARN_ON(1);
1779 		level = btrfs_header_level(b);
1780 
1781 		p->nodes[level] = b;
1782 		if (!p->skip_locking)
1783 			p->locks[level] = 1;
1784 
1785 		btrfs_clear_path_blocking(p, NULL);
1786 
1787 		/*
1788 		 * we have a lock on b and as long as we aren't changing
1789 		 * the tree, there is no way to for the items in b to change.
1790 		 * It is safe to drop the lock on our parent before we
1791 		 * go through the expensive btree search on b.
1792 		 *
1793 		 * If cow is true, then we might be changing slot zero,
1794 		 * which may require changing the parent.  So, we can't
1795 		 * drop the lock until after we know which slot we're
1796 		 * operating on.
1797 		 */
1798 		if (!cow)
1799 			btrfs_unlock_up_safe(p, level + 1);
1800 
1801 		ret = check_block(root, p, level);
1802 		if (ret) {
1803 			ret = -1;
1804 			goto done;
1805 		}
1806 
1807 		ret = bin_search(b, key, level, &slot);
1808 
1809 		if (level != 0) {
1810 			int dec = 0;
1811 			if (ret && slot > 0) {
1812 				dec = 1;
1813 				slot -= 1;
1814 			}
1815 			p->slots[level] = slot;
1816 			err = setup_nodes_for_search(trans, root, p, b, level,
1817 						     ins_len);
1818 			if (err == -EAGAIN)
1819 				goto again;
1820 			if (err) {
1821 				ret = err;
1822 				goto done;
1823 			}
1824 			b = p->nodes[level];
1825 			slot = p->slots[level];
1826 
1827 			unlock_up(p, level, lowest_unlock);
1828 
1829 			if (level == lowest_level) {
1830 				if (dec)
1831 					p->slots[level]++;
1832 				goto done;
1833 			}
1834 
1835 			err = read_block_for_search(trans, root, p,
1836 						    &b, level, slot, key);
1837 			if (err == -EAGAIN)
1838 				goto again;
1839 			if (err) {
1840 				ret = err;
1841 				goto done;
1842 			}
1843 
1844 			if (!p->skip_locking) {
1845 				btrfs_clear_path_blocking(p, NULL);
1846 				err = btrfs_try_spin_lock(b);
1847 
1848 				if (!err) {
1849 					btrfs_set_path_blocking(p);
1850 					btrfs_tree_lock(b);
1851 					btrfs_clear_path_blocking(p, b);
1852 				}
1853 			}
1854 		} else {
1855 			p->slots[level] = slot;
1856 			if (ins_len > 0 &&
1857 			    btrfs_leaf_free_space(root, b) < ins_len) {
1858 				btrfs_set_path_blocking(p);
1859 				err = split_leaf(trans, root, key,
1860 						 p, ins_len, ret == 0);
1861 				btrfs_clear_path_blocking(p, NULL);
1862 
1863 				BUG_ON(err > 0);
1864 				if (err) {
1865 					ret = err;
1866 					goto done;
1867 				}
1868 			}
1869 			if (!p->search_for_split)
1870 				unlock_up(p, level, lowest_unlock);
1871 			goto done;
1872 		}
1873 	}
1874 	ret = 1;
1875 done:
1876 	/*
1877 	 * we don't really know what they plan on doing with the path
1878 	 * from here on, so for now just mark it as blocking
1879 	 */
1880 	if (!p->leave_spinning)
1881 		btrfs_set_path_blocking(p);
1882 	if (ret < 0)
1883 		btrfs_release_path(root, p);
1884 	return ret;
1885 }
1886 
1887 /*
1888  * adjust the pointers going up the tree, starting at level
1889  * making sure the right key of each node is points to 'key'.
1890  * This is used after shifting pointers to the left, so it stops
1891  * fixing up pointers when a given leaf/node is not in slot 0 of the
1892  * higher levels
1893  *
1894  * If this fails to write a tree block, it returns -1, but continues
1895  * fixing up the blocks in ram so the tree is consistent.
1896  */
1897 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1898 			  struct btrfs_root *root, struct btrfs_path *path,
1899 			  struct btrfs_disk_key *key, int level)
1900 {
1901 	int i;
1902 	int ret = 0;
1903 	struct extent_buffer *t;
1904 
1905 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1906 		int tslot = path->slots[i];
1907 		if (!path->nodes[i])
1908 			break;
1909 		t = path->nodes[i];
1910 		btrfs_set_node_key(t, key, tslot);
1911 		btrfs_mark_buffer_dirty(path->nodes[i]);
1912 		if (tslot != 0)
1913 			break;
1914 	}
1915 	return ret;
1916 }
1917 
1918 /*
1919  * update item key.
1920  *
1921  * This function isn't completely safe. It's the caller's responsibility
1922  * that the new key won't break the order
1923  */
1924 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1925 			    struct btrfs_root *root, struct btrfs_path *path,
1926 			    struct btrfs_key *new_key)
1927 {
1928 	struct btrfs_disk_key disk_key;
1929 	struct extent_buffer *eb;
1930 	int slot;
1931 
1932 	eb = path->nodes[0];
1933 	slot = path->slots[0];
1934 	if (slot > 0) {
1935 		btrfs_item_key(eb, &disk_key, slot - 1);
1936 		if (comp_keys(&disk_key, new_key) >= 0)
1937 			return -1;
1938 	}
1939 	if (slot < btrfs_header_nritems(eb) - 1) {
1940 		btrfs_item_key(eb, &disk_key, slot + 1);
1941 		if (comp_keys(&disk_key, new_key) <= 0)
1942 			return -1;
1943 	}
1944 
1945 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1946 	btrfs_set_item_key(eb, &disk_key, slot);
1947 	btrfs_mark_buffer_dirty(eb);
1948 	if (slot == 0)
1949 		fixup_low_keys(trans, root, path, &disk_key, 1);
1950 	return 0;
1951 }
1952 
1953 /*
1954  * try to push data from one node into the next node left in the
1955  * tree.
1956  *
1957  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1958  * error, and > 0 if there was no room in the left hand block.
1959  */
1960 static int push_node_left(struct btrfs_trans_handle *trans,
1961 			  struct btrfs_root *root, struct extent_buffer *dst,
1962 			  struct extent_buffer *src, int empty)
1963 {
1964 	int push_items = 0;
1965 	int src_nritems;
1966 	int dst_nritems;
1967 	int ret = 0;
1968 
1969 	src_nritems = btrfs_header_nritems(src);
1970 	dst_nritems = btrfs_header_nritems(dst);
1971 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1972 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1973 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1974 
1975 	if (!empty && src_nritems <= 8)
1976 		return 1;
1977 
1978 	if (push_items <= 0)
1979 		return 1;
1980 
1981 	if (empty) {
1982 		push_items = min(src_nritems, push_items);
1983 		if (push_items < src_nritems) {
1984 			/* leave at least 8 pointers in the node if
1985 			 * we aren't going to empty it
1986 			 */
1987 			if (src_nritems - push_items < 8) {
1988 				if (push_items <= 8)
1989 					return 1;
1990 				push_items -= 8;
1991 			}
1992 		}
1993 	} else
1994 		push_items = min(src_nritems - 8, push_items);
1995 
1996 	copy_extent_buffer(dst, src,
1997 			   btrfs_node_key_ptr_offset(dst_nritems),
1998 			   btrfs_node_key_ptr_offset(0),
1999 			   push_items * sizeof(struct btrfs_key_ptr));
2000 
2001 	if (push_items < src_nritems) {
2002 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2003 				      btrfs_node_key_ptr_offset(push_items),
2004 				      (src_nritems - push_items) *
2005 				      sizeof(struct btrfs_key_ptr));
2006 	}
2007 	btrfs_set_header_nritems(src, src_nritems - push_items);
2008 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2009 	btrfs_mark_buffer_dirty(src);
2010 	btrfs_mark_buffer_dirty(dst);
2011 
2012 	return ret;
2013 }
2014 
2015 /*
2016  * try to push data from one node into the next node right in the
2017  * tree.
2018  *
2019  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2020  * error, and > 0 if there was no room in the right hand block.
2021  *
2022  * this will  only push up to 1/2 the contents of the left node over
2023  */
2024 static int balance_node_right(struct btrfs_trans_handle *trans,
2025 			      struct btrfs_root *root,
2026 			      struct extent_buffer *dst,
2027 			      struct extent_buffer *src)
2028 {
2029 	int push_items = 0;
2030 	int max_push;
2031 	int src_nritems;
2032 	int dst_nritems;
2033 	int ret = 0;
2034 
2035 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2036 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2037 
2038 	src_nritems = btrfs_header_nritems(src);
2039 	dst_nritems = btrfs_header_nritems(dst);
2040 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2041 	if (push_items <= 0)
2042 		return 1;
2043 
2044 	if (src_nritems < 4)
2045 		return 1;
2046 
2047 	max_push = src_nritems / 2 + 1;
2048 	/* don't try to empty the node */
2049 	if (max_push >= src_nritems)
2050 		return 1;
2051 
2052 	if (max_push < push_items)
2053 		push_items = max_push;
2054 
2055 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2056 				      btrfs_node_key_ptr_offset(0),
2057 				      (dst_nritems) *
2058 				      sizeof(struct btrfs_key_ptr));
2059 
2060 	copy_extent_buffer(dst, src,
2061 			   btrfs_node_key_ptr_offset(0),
2062 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2063 			   push_items * sizeof(struct btrfs_key_ptr));
2064 
2065 	btrfs_set_header_nritems(src, src_nritems - push_items);
2066 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2067 
2068 	btrfs_mark_buffer_dirty(src);
2069 	btrfs_mark_buffer_dirty(dst);
2070 
2071 	return ret;
2072 }
2073 
2074 /*
2075  * helper function to insert a new root level in the tree.
2076  * A new node is allocated, and a single item is inserted to
2077  * point to the existing root
2078  *
2079  * returns zero on success or < 0 on failure.
2080  */
2081 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2082 			   struct btrfs_root *root,
2083 			   struct btrfs_path *path, int level)
2084 {
2085 	u64 lower_gen;
2086 	struct extent_buffer *lower;
2087 	struct extent_buffer *c;
2088 	struct extent_buffer *old;
2089 	struct btrfs_disk_key lower_key;
2090 
2091 	BUG_ON(path->nodes[level]);
2092 	BUG_ON(path->nodes[level-1] != root->node);
2093 
2094 	lower = path->nodes[level-1];
2095 	if (level == 1)
2096 		btrfs_item_key(lower, &lower_key, 0);
2097 	else
2098 		btrfs_node_key(lower, &lower_key, 0);
2099 
2100 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2101 				   root->root_key.objectid, &lower_key,
2102 				   level, root->node->start, 0);
2103 	if (IS_ERR(c))
2104 		return PTR_ERR(c);
2105 
2106 	root_add_used(root, root->nodesize);
2107 
2108 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
2109 	btrfs_set_header_nritems(c, 1);
2110 	btrfs_set_header_level(c, level);
2111 	btrfs_set_header_bytenr(c, c->start);
2112 	btrfs_set_header_generation(c, trans->transid);
2113 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
2114 	btrfs_set_header_owner(c, root->root_key.objectid);
2115 
2116 	write_extent_buffer(c, root->fs_info->fsid,
2117 			    (unsigned long)btrfs_header_fsid(c),
2118 			    BTRFS_FSID_SIZE);
2119 
2120 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2121 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
2122 			    BTRFS_UUID_SIZE);
2123 
2124 	btrfs_set_node_key(c, &lower_key, 0);
2125 	btrfs_set_node_blockptr(c, 0, lower->start);
2126 	lower_gen = btrfs_header_generation(lower);
2127 	WARN_ON(lower_gen != trans->transid);
2128 
2129 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2130 
2131 	btrfs_mark_buffer_dirty(c);
2132 
2133 	spin_lock(&root->node_lock);
2134 	old = root->node;
2135 	root->node = c;
2136 	spin_unlock(&root->node_lock);
2137 
2138 	/* the super has an extra ref to root->node */
2139 	free_extent_buffer(old);
2140 
2141 	add_root_to_dirty_list(root);
2142 	extent_buffer_get(c);
2143 	path->nodes[level] = c;
2144 	path->locks[level] = 1;
2145 	path->slots[level] = 0;
2146 	return 0;
2147 }
2148 
2149 /*
2150  * worker function to insert a single pointer in a node.
2151  * the node should have enough room for the pointer already
2152  *
2153  * slot and level indicate where you want the key to go, and
2154  * blocknr is the block the key points to.
2155  *
2156  * returns zero on success and < 0 on any error
2157  */
2158 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2159 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2160 		      *key, u64 bytenr, int slot, int level)
2161 {
2162 	struct extent_buffer *lower;
2163 	int nritems;
2164 
2165 	BUG_ON(!path->nodes[level]);
2166 	btrfs_assert_tree_locked(path->nodes[level]);
2167 	lower = path->nodes[level];
2168 	nritems = btrfs_header_nritems(lower);
2169 	BUG_ON(slot > nritems);
2170 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2171 		BUG();
2172 	if (slot != nritems) {
2173 		memmove_extent_buffer(lower,
2174 			      btrfs_node_key_ptr_offset(slot + 1),
2175 			      btrfs_node_key_ptr_offset(slot),
2176 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2177 	}
2178 	btrfs_set_node_key(lower, key, slot);
2179 	btrfs_set_node_blockptr(lower, slot, bytenr);
2180 	WARN_ON(trans->transid == 0);
2181 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2182 	btrfs_set_header_nritems(lower, nritems + 1);
2183 	btrfs_mark_buffer_dirty(lower);
2184 	return 0;
2185 }
2186 
2187 /*
2188  * split the node at the specified level in path in two.
2189  * The path is corrected to point to the appropriate node after the split
2190  *
2191  * Before splitting this tries to make some room in the node by pushing
2192  * left and right, if either one works, it returns right away.
2193  *
2194  * returns 0 on success and < 0 on failure
2195  */
2196 static noinline int split_node(struct btrfs_trans_handle *trans,
2197 			       struct btrfs_root *root,
2198 			       struct btrfs_path *path, int level)
2199 {
2200 	struct extent_buffer *c;
2201 	struct extent_buffer *split;
2202 	struct btrfs_disk_key disk_key;
2203 	int mid;
2204 	int ret;
2205 	int wret;
2206 	u32 c_nritems;
2207 
2208 	c = path->nodes[level];
2209 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2210 	if (c == root->node) {
2211 		/* trying to split the root, lets make a new one */
2212 		ret = insert_new_root(trans, root, path, level + 1);
2213 		if (ret)
2214 			return ret;
2215 	} else {
2216 		ret = push_nodes_for_insert(trans, root, path, level);
2217 		c = path->nodes[level];
2218 		if (!ret && btrfs_header_nritems(c) <
2219 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2220 			return 0;
2221 		if (ret < 0)
2222 			return ret;
2223 	}
2224 
2225 	c_nritems = btrfs_header_nritems(c);
2226 	mid = (c_nritems + 1) / 2;
2227 	btrfs_node_key(c, &disk_key, mid);
2228 
2229 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2230 					root->root_key.objectid,
2231 					&disk_key, level, c->start, 0);
2232 	if (IS_ERR(split))
2233 		return PTR_ERR(split);
2234 
2235 	root_add_used(root, root->nodesize);
2236 
2237 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2238 	btrfs_set_header_level(split, btrfs_header_level(c));
2239 	btrfs_set_header_bytenr(split, split->start);
2240 	btrfs_set_header_generation(split, trans->transid);
2241 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2242 	btrfs_set_header_owner(split, root->root_key.objectid);
2243 	write_extent_buffer(split, root->fs_info->fsid,
2244 			    (unsigned long)btrfs_header_fsid(split),
2245 			    BTRFS_FSID_SIZE);
2246 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2247 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2248 			    BTRFS_UUID_SIZE);
2249 
2250 
2251 	copy_extent_buffer(split, c,
2252 			   btrfs_node_key_ptr_offset(0),
2253 			   btrfs_node_key_ptr_offset(mid),
2254 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2255 	btrfs_set_header_nritems(split, c_nritems - mid);
2256 	btrfs_set_header_nritems(c, mid);
2257 	ret = 0;
2258 
2259 	btrfs_mark_buffer_dirty(c);
2260 	btrfs_mark_buffer_dirty(split);
2261 
2262 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2263 			  path->slots[level + 1] + 1,
2264 			  level + 1);
2265 	if (wret)
2266 		ret = wret;
2267 
2268 	if (path->slots[level] >= mid) {
2269 		path->slots[level] -= mid;
2270 		btrfs_tree_unlock(c);
2271 		free_extent_buffer(c);
2272 		path->nodes[level] = split;
2273 		path->slots[level + 1] += 1;
2274 	} else {
2275 		btrfs_tree_unlock(split);
2276 		free_extent_buffer(split);
2277 	}
2278 	return ret;
2279 }
2280 
2281 /*
2282  * how many bytes are required to store the items in a leaf.  start
2283  * and nr indicate which items in the leaf to check.  This totals up the
2284  * space used both by the item structs and the item data
2285  */
2286 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2287 {
2288 	int data_len;
2289 	int nritems = btrfs_header_nritems(l);
2290 	int end = min(nritems, start + nr) - 1;
2291 
2292 	if (!nr)
2293 		return 0;
2294 	data_len = btrfs_item_end_nr(l, start);
2295 	data_len = data_len - btrfs_item_offset_nr(l, end);
2296 	data_len += sizeof(struct btrfs_item) * nr;
2297 	WARN_ON(data_len < 0);
2298 	return data_len;
2299 }
2300 
2301 /*
2302  * The space between the end of the leaf items and
2303  * the start of the leaf data.  IOW, how much room
2304  * the leaf has left for both items and data
2305  */
2306 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2307 				   struct extent_buffer *leaf)
2308 {
2309 	int nritems = btrfs_header_nritems(leaf);
2310 	int ret;
2311 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2312 	if (ret < 0) {
2313 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2314 		       "used %d nritems %d\n",
2315 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2316 		       leaf_space_used(leaf, 0, nritems), nritems);
2317 	}
2318 	return ret;
2319 }
2320 
2321 /*
2322  * min slot controls the lowest index we're willing to push to the
2323  * right.  We'll push up to and including min_slot, but no lower
2324  */
2325 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2326 				      struct btrfs_root *root,
2327 				      struct btrfs_path *path,
2328 				      int data_size, int empty,
2329 				      struct extent_buffer *right,
2330 				      int free_space, u32 left_nritems,
2331 				      u32 min_slot)
2332 {
2333 	struct extent_buffer *left = path->nodes[0];
2334 	struct extent_buffer *upper = path->nodes[1];
2335 	struct btrfs_disk_key disk_key;
2336 	int slot;
2337 	u32 i;
2338 	int push_space = 0;
2339 	int push_items = 0;
2340 	struct btrfs_item *item;
2341 	u32 nr;
2342 	u32 right_nritems;
2343 	u32 data_end;
2344 	u32 this_item_size;
2345 
2346 	if (empty)
2347 		nr = 0;
2348 	else
2349 		nr = max_t(u32, 1, min_slot);
2350 
2351 	if (path->slots[0] >= left_nritems)
2352 		push_space += data_size;
2353 
2354 	slot = path->slots[1];
2355 	i = left_nritems - 1;
2356 	while (i >= nr) {
2357 		item = btrfs_item_nr(left, i);
2358 
2359 		if (!empty && push_items > 0) {
2360 			if (path->slots[0] > i)
2361 				break;
2362 			if (path->slots[0] == i) {
2363 				int space = btrfs_leaf_free_space(root, left);
2364 				if (space + push_space * 2 > free_space)
2365 					break;
2366 			}
2367 		}
2368 
2369 		if (path->slots[0] == i)
2370 			push_space += data_size;
2371 
2372 		if (!left->map_token) {
2373 			map_extent_buffer(left, (unsigned long)item,
2374 					sizeof(struct btrfs_item),
2375 					&left->map_token, &left->kaddr,
2376 					&left->map_start, &left->map_len,
2377 					KM_USER1);
2378 		}
2379 
2380 		this_item_size = btrfs_item_size(left, item);
2381 		if (this_item_size + sizeof(*item) + push_space > free_space)
2382 			break;
2383 
2384 		push_items++;
2385 		push_space += this_item_size + sizeof(*item);
2386 		if (i == 0)
2387 			break;
2388 		i--;
2389 	}
2390 	if (left->map_token) {
2391 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2392 		left->map_token = NULL;
2393 	}
2394 
2395 	if (push_items == 0)
2396 		goto out_unlock;
2397 
2398 	if (!empty && push_items == left_nritems)
2399 		WARN_ON(1);
2400 
2401 	/* push left to right */
2402 	right_nritems = btrfs_header_nritems(right);
2403 
2404 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2405 	push_space -= leaf_data_end(root, left);
2406 
2407 	/* make room in the right data area */
2408 	data_end = leaf_data_end(root, right);
2409 	memmove_extent_buffer(right,
2410 			      btrfs_leaf_data(right) + data_end - push_space,
2411 			      btrfs_leaf_data(right) + data_end,
2412 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2413 
2414 	/* copy from the left data area */
2415 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2416 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2417 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2418 		     push_space);
2419 
2420 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2421 			      btrfs_item_nr_offset(0),
2422 			      right_nritems * sizeof(struct btrfs_item));
2423 
2424 	/* copy the items from left to right */
2425 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2426 		   btrfs_item_nr_offset(left_nritems - push_items),
2427 		   push_items * sizeof(struct btrfs_item));
2428 
2429 	/* update the item pointers */
2430 	right_nritems += push_items;
2431 	btrfs_set_header_nritems(right, right_nritems);
2432 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2433 	for (i = 0; i < right_nritems; i++) {
2434 		item = btrfs_item_nr(right, i);
2435 		if (!right->map_token) {
2436 			map_extent_buffer(right, (unsigned long)item,
2437 					sizeof(struct btrfs_item),
2438 					&right->map_token, &right->kaddr,
2439 					&right->map_start, &right->map_len,
2440 					KM_USER1);
2441 		}
2442 		push_space -= btrfs_item_size(right, item);
2443 		btrfs_set_item_offset(right, item, push_space);
2444 	}
2445 
2446 	if (right->map_token) {
2447 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2448 		right->map_token = NULL;
2449 	}
2450 	left_nritems -= push_items;
2451 	btrfs_set_header_nritems(left, left_nritems);
2452 
2453 	if (left_nritems)
2454 		btrfs_mark_buffer_dirty(left);
2455 	else
2456 		clean_tree_block(trans, root, left);
2457 
2458 	btrfs_mark_buffer_dirty(right);
2459 
2460 	btrfs_item_key(right, &disk_key, 0);
2461 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2462 	btrfs_mark_buffer_dirty(upper);
2463 
2464 	/* then fixup the leaf pointer in the path */
2465 	if (path->slots[0] >= left_nritems) {
2466 		path->slots[0] -= left_nritems;
2467 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2468 			clean_tree_block(trans, root, path->nodes[0]);
2469 		btrfs_tree_unlock(path->nodes[0]);
2470 		free_extent_buffer(path->nodes[0]);
2471 		path->nodes[0] = right;
2472 		path->slots[1] += 1;
2473 	} else {
2474 		btrfs_tree_unlock(right);
2475 		free_extent_buffer(right);
2476 	}
2477 	return 0;
2478 
2479 out_unlock:
2480 	btrfs_tree_unlock(right);
2481 	free_extent_buffer(right);
2482 	return 1;
2483 }
2484 
2485 /*
2486  * push some data in the path leaf to the right, trying to free up at
2487  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2488  *
2489  * returns 1 if the push failed because the other node didn't have enough
2490  * room, 0 if everything worked out and < 0 if there were major errors.
2491  *
2492  * this will push starting from min_slot to the end of the leaf.  It won't
2493  * push any slot lower than min_slot
2494  */
2495 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2496 			   *root, struct btrfs_path *path,
2497 			   int min_data_size, int data_size,
2498 			   int empty, u32 min_slot)
2499 {
2500 	struct extent_buffer *left = path->nodes[0];
2501 	struct extent_buffer *right;
2502 	struct extent_buffer *upper;
2503 	int slot;
2504 	int free_space;
2505 	u32 left_nritems;
2506 	int ret;
2507 
2508 	if (!path->nodes[1])
2509 		return 1;
2510 
2511 	slot = path->slots[1];
2512 	upper = path->nodes[1];
2513 	if (slot >= btrfs_header_nritems(upper) - 1)
2514 		return 1;
2515 
2516 	btrfs_assert_tree_locked(path->nodes[1]);
2517 
2518 	right = read_node_slot(root, upper, slot + 1);
2519 	if (right == NULL)
2520 		return 1;
2521 
2522 	btrfs_tree_lock(right);
2523 	btrfs_set_lock_blocking(right);
2524 
2525 	free_space = btrfs_leaf_free_space(root, right);
2526 	if (free_space < data_size)
2527 		goto out_unlock;
2528 
2529 	/* cow and double check */
2530 	ret = btrfs_cow_block(trans, root, right, upper,
2531 			      slot + 1, &right);
2532 	if (ret)
2533 		goto out_unlock;
2534 
2535 	free_space = btrfs_leaf_free_space(root, right);
2536 	if (free_space < data_size)
2537 		goto out_unlock;
2538 
2539 	left_nritems = btrfs_header_nritems(left);
2540 	if (left_nritems == 0)
2541 		goto out_unlock;
2542 
2543 	return __push_leaf_right(trans, root, path, min_data_size, empty,
2544 				right, free_space, left_nritems, min_slot);
2545 out_unlock:
2546 	btrfs_tree_unlock(right);
2547 	free_extent_buffer(right);
2548 	return 1;
2549 }
2550 
2551 /*
2552  * push some data in the path leaf to the left, trying to free up at
2553  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2554  *
2555  * max_slot can put a limit on how far into the leaf we'll push items.  The
2556  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2557  * items
2558  */
2559 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2560 				     struct btrfs_root *root,
2561 				     struct btrfs_path *path, int data_size,
2562 				     int empty, struct extent_buffer *left,
2563 				     int free_space, u32 right_nritems,
2564 				     u32 max_slot)
2565 {
2566 	struct btrfs_disk_key disk_key;
2567 	struct extent_buffer *right = path->nodes[0];
2568 	int i;
2569 	int push_space = 0;
2570 	int push_items = 0;
2571 	struct btrfs_item *item;
2572 	u32 old_left_nritems;
2573 	u32 nr;
2574 	int ret = 0;
2575 	int wret;
2576 	u32 this_item_size;
2577 	u32 old_left_item_size;
2578 
2579 	if (empty)
2580 		nr = min(right_nritems, max_slot);
2581 	else
2582 		nr = min(right_nritems - 1, max_slot);
2583 
2584 	for (i = 0; i < nr; i++) {
2585 		item = btrfs_item_nr(right, i);
2586 		if (!right->map_token) {
2587 			map_extent_buffer(right, (unsigned long)item,
2588 					sizeof(struct btrfs_item),
2589 					&right->map_token, &right->kaddr,
2590 					&right->map_start, &right->map_len,
2591 					KM_USER1);
2592 		}
2593 
2594 		if (!empty && push_items > 0) {
2595 			if (path->slots[0] < i)
2596 				break;
2597 			if (path->slots[0] == i) {
2598 				int space = btrfs_leaf_free_space(root, right);
2599 				if (space + push_space * 2 > free_space)
2600 					break;
2601 			}
2602 		}
2603 
2604 		if (path->slots[0] == i)
2605 			push_space += data_size;
2606 
2607 		this_item_size = btrfs_item_size(right, item);
2608 		if (this_item_size + sizeof(*item) + push_space > free_space)
2609 			break;
2610 
2611 		push_items++;
2612 		push_space += this_item_size + sizeof(*item);
2613 	}
2614 
2615 	if (right->map_token) {
2616 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2617 		right->map_token = NULL;
2618 	}
2619 
2620 	if (push_items == 0) {
2621 		ret = 1;
2622 		goto out;
2623 	}
2624 	if (!empty && push_items == btrfs_header_nritems(right))
2625 		WARN_ON(1);
2626 
2627 	/* push data from right to left */
2628 	copy_extent_buffer(left, right,
2629 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2630 			   btrfs_item_nr_offset(0),
2631 			   push_items * sizeof(struct btrfs_item));
2632 
2633 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2634 		     btrfs_item_offset_nr(right, push_items - 1);
2635 
2636 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2637 		     leaf_data_end(root, left) - push_space,
2638 		     btrfs_leaf_data(right) +
2639 		     btrfs_item_offset_nr(right, push_items - 1),
2640 		     push_space);
2641 	old_left_nritems = btrfs_header_nritems(left);
2642 	BUG_ON(old_left_nritems <= 0);
2643 
2644 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2645 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2646 		u32 ioff;
2647 
2648 		item = btrfs_item_nr(left, i);
2649 		if (!left->map_token) {
2650 			map_extent_buffer(left, (unsigned long)item,
2651 					sizeof(struct btrfs_item),
2652 					&left->map_token, &left->kaddr,
2653 					&left->map_start, &left->map_len,
2654 					KM_USER1);
2655 		}
2656 
2657 		ioff = btrfs_item_offset(left, item);
2658 		btrfs_set_item_offset(left, item,
2659 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2660 	}
2661 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2662 	if (left->map_token) {
2663 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2664 		left->map_token = NULL;
2665 	}
2666 
2667 	/* fixup right node */
2668 	if (push_items > right_nritems) {
2669 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2670 		       right_nritems);
2671 		WARN_ON(1);
2672 	}
2673 
2674 	if (push_items < right_nritems) {
2675 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2676 						  leaf_data_end(root, right);
2677 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2678 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2679 				      btrfs_leaf_data(right) +
2680 				      leaf_data_end(root, right), push_space);
2681 
2682 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2683 			      btrfs_item_nr_offset(push_items),
2684 			     (btrfs_header_nritems(right) - push_items) *
2685 			     sizeof(struct btrfs_item));
2686 	}
2687 	right_nritems -= push_items;
2688 	btrfs_set_header_nritems(right, right_nritems);
2689 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2690 	for (i = 0; i < right_nritems; i++) {
2691 		item = btrfs_item_nr(right, i);
2692 
2693 		if (!right->map_token) {
2694 			map_extent_buffer(right, (unsigned long)item,
2695 					sizeof(struct btrfs_item),
2696 					&right->map_token, &right->kaddr,
2697 					&right->map_start, &right->map_len,
2698 					KM_USER1);
2699 		}
2700 
2701 		push_space = push_space - btrfs_item_size(right, item);
2702 		btrfs_set_item_offset(right, item, push_space);
2703 	}
2704 	if (right->map_token) {
2705 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2706 		right->map_token = NULL;
2707 	}
2708 
2709 	btrfs_mark_buffer_dirty(left);
2710 	if (right_nritems)
2711 		btrfs_mark_buffer_dirty(right);
2712 	else
2713 		clean_tree_block(trans, root, right);
2714 
2715 	btrfs_item_key(right, &disk_key, 0);
2716 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2717 	if (wret)
2718 		ret = wret;
2719 
2720 	/* then fixup the leaf pointer in the path */
2721 	if (path->slots[0] < push_items) {
2722 		path->slots[0] += old_left_nritems;
2723 		btrfs_tree_unlock(path->nodes[0]);
2724 		free_extent_buffer(path->nodes[0]);
2725 		path->nodes[0] = left;
2726 		path->slots[1] -= 1;
2727 	} else {
2728 		btrfs_tree_unlock(left);
2729 		free_extent_buffer(left);
2730 		path->slots[0] -= push_items;
2731 	}
2732 	BUG_ON(path->slots[0] < 0);
2733 	return ret;
2734 out:
2735 	btrfs_tree_unlock(left);
2736 	free_extent_buffer(left);
2737 	return ret;
2738 }
2739 
2740 /*
2741  * push some data in the path leaf to the left, trying to free up at
2742  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2743  *
2744  * max_slot can put a limit on how far into the leaf we'll push items.  The
2745  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2746  * items
2747  */
2748 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2749 			  *root, struct btrfs_path *path, int min_data_size,
2750 			  int data_size, int empty, u32 max_slot)
2751 {
2752 	struct extent_buffer *right = path->nodes[0];
2753 	struct extent_buffer *left;
2754 	int slot;
2755 	int free_space;
2756 	u32 right_nritems;
2757 	int ret = 0;
2758 
2759 	slot = path->slots[1];
2760 	if (slot == 0)
2761 		return 1;
2762 	if (!path->nodes[1])
2763 		return 1;
2764 
2765 	right_nritems = btrfs_header_nritems(right);
2766 	if (right_nritems == 0)
2767 		return 1;
2768 
2769 	btrfs_assert_tree_locked(path->nodes[1]);
2770 
2771 	left = read_node_slot(root, path->nodes[1], slot - 1);
2772 	if (left == NULL)
2773 		return 1;
2774 
2775 	btrfs_tree_lock(left);
2776 	btrfs_set_lock_blocking(left);
2777 
2778 	free_space = btrfs_leaf_free_space(root, left);
2779 	if (free_space < data_size) {
2780 		ret = 1;
2781 		goto out;
2782 	}
2783 
2784 	/* cow and double check */
2785 	ret = btrfs_cow_block(trans, root, left,
2786 			      path->nodes[1], slot - 1, &left);
2787 	if (ret) {
2788 		/* we hit -ENOSPC, but it isn't fatal here */
2789 		ret = 1;
2790 		goto out;
2791 	}
2792 
2793 	free_space = btrfs_leaf_free_space(root, left);
2794 	if (free_space < data_size) {
2795 		ret = 1;
2796 		goto out;
2797 	}
2798 
2799 	return __push_leaf_left(trans, root, path, min_data_size,
2800 			       empty, left, free_space, right_nritems,
2801 			       max_slot);
2802 out:
2803 	btrfs_tree_unlock(left);
2804 	free_extent_buffer(left);
2805 	return ret;
2806 }
2807 
2808 /*
2809  * split the path's leaf in two, making sure there is at least data_size
2810  * available for the resulting leaf level of the path.
2811  *
2812  * returns 0 if all went well and < 0 on failure.
2813  */
2814 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2815 			       struct btrfs_root *root,
2816 			       struct btrfs_path *path,
2817 			       struct extent_buffer *l,
2818 			       struct extent_buffer *right,
2819 			       int slot, int mid, int nritems)
2820 {
2821 	int data_copy_size;
2822 	int rt_data_off;
2823 	int i;
2824 	int ret = 0;
2825 	int wret;
2826 	struct btrfs_disk_key disk_key;
2827 
2828 	nritems = nritems - mid;
2829 	btrfs_set_header_nritems(right, nritems);
2830 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2831 
2832 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2833 			   btrfs_item_nr_offset(mid),
2834 			   nritems * sizeof(struct btrfs_item));
2835 
2836 	copy_extent_buffer(right, l,
2837 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2838 		     data_copy_size, btrfs_leaf_data(l) +
2839 		     leaf_data_end(root, l), data_copy_size);
2840 
2841 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2842 		      btrfs_item_end_nr(l, mid);
2843 
2844 	for (i = 0; i < nritems; i++) {
2845 		struct btrfs_item *item = btrfs_item_nr(right, i);
2846 		u32 ioff;
2847 
2848 		if (!right->map_token) {
2849 			map_extent_buffer(right, (unsigned long)item,
2850 					sizeof(struct btrfs_item),
2851 					&right->map_token, &right->kaddr,
2852 					&right->map_start, &right->map_len,
2853 					KM_USER1);
2854 		}
2855 
2856 		ioff = btrfs_item_offset(right, item);
2857 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2858 	}
2859 
2860 	if (right->map_token) {
2861 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2862 		right->map_token = NULL;
2863 	}
2864 
2865 	btrfs_set_header_nritems(l, mid);
2866 	ret = 0;
2867 	btrfs_item_key(right, &disk_key, 0);
2868 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2869 			  path->slots[1] + 1, 1);
2870 	if (wret)
2871 		ret = wret;
2872 
2873 	btrfs_mark_buffer_dirty(right);
2874 	btrfs_mark_buffer_dirty(l);
2875 	BUG_ON(path->slots[0] != slot);
2876 
2877 	if (mid <= slot) {
2878 		btrfs_tree_unlock(path->nodes[0]);
2879 		free_extent_buffer(path->nodes[0]);
2880 		path->nodes[0] = right;
2881 		path->slots[0] -= mid;
2882 		path->slots[1] += 1;
2883 	} else {
2884 		btrfs_tree_unlock(right);
2885 		free_extent_buffer(right);
2886 	}
2887 
2888 	BUG_ON(path->slots[0] < 0);
2889 
2890 	return ret;
2891 }
2892 
2893 /*
2894  * double splits happen when we need to insert a big item in the middle
2895  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2896  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2897  *          A                 B                 C
2898  *
2899  * We avoid this by trying to push the items on either side of our target
2900  * into the adjacent leaves.  If all goes well we can avoid the double split
2901  * completely.
2902  */
2903 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2904 					  struct btrfs_root *root,
2905 					  struct btrfs_path *path,
2906 					  int data_size)
2907 {
2908 	int ret;
2909 	int progress = 0;
2910 	int slot;
2911 	u32 nritems;
2912 
2913 	slot = path->slots[0];
2914 
2915 	/*
2916 	 * try to push all the items after our slot into the
2917 	 * right leaf
2918 	 */
2919 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2920 	if (ret < 0)
2921 		return ret;
2922 
2923 	if (ret == 0)
2924 		progress++;
2925 
2926 	nritems = btrfs_header_nritems(path->nodes[0]);
2927 	/*
2928 	 * our goal is to get our slot at the start or end of a leaf.  If
2929 	 * we've done so we're done
2930 	 */
2931 	if (path->slots[0] == 0 || path->slots[0] == nritems)
2932 		return 0;
2933 
2934 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2935 		return 0;
2936 
2937 	/* try to push all the items before our slot into the next leaf */
2938 	slot = path->slots[0];
2939 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2940 	if (ret < 0)
2941 		return ret;
2942 
2943 	if (ret == 0)
2944 		progress++;
2945 
2946 	if (progress)
2947 		return 0;
2948 	return 1;
2949 }
2950 
2951 /*
2952  * split the path's leaf in two, making sure there is at least data_size
2953  * available for the resulting leaf level of the path.
2954  *
2955  * returns 0 if all went well and < 0 on failure.
2956  */
2957 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2958 			       struct btrfs_root *root,
2959 			       struct btrfs_key *ins_key,
2960 			       struct btrfs_path *path, int data_size,
2961 			       int extend)
2962 {
2963 	struct btrfs_disk_key disk_key;
2964 	struct extent_buffer *l;
2965 	u32 nritems;
2966 	int mid;
2967 	int slot;
2968 	struct extent_buffer *right;
2969 	int ret = 0;
2970 	int wret;
2971 	int split;
2972 	int num_doubles = 0;
2973 	int tried_avoid_double = 0;
2974 
2975 	l = path->nodes[0];
2976 	slot = path->slots[0];
2977 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2978 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2979 		return -EOVERFLOW;
2980 
2981 	/* first try to make some room by pushing left and right */
2982 	if (data_size) {
2983 		wret = push_leaf_right(trans, root, path, data_size,
2984 				       data_size, 0, 0);
2985 		if (wret < 0)
2986 			return wret;
2987 		if (wret) {
2988 			wret = push_leaf_left(trans, root, path, data_size,
2989 					      data_size, 0, (u32)-1);
2990 			if (wret < 0)
2991 				return wret;
2992 		}
2993 		l = path->nodes[0];
2994 
2995 		/* did the pushes work? */
2996 		if (btrfs_leaf_free_space(root, l) >= data_size)
2997 			return 0;
2998 	}
2999 
3000 	if (!path->nodes[1]) {
3001 		ret = insert_new_root(trans, root, path, 1);
3002 		if (ret)
3003 			return ret;
3004 	}
3005 again:
3006 	split = 1;
3007 	l = path->nodes[0];
3008 	slot = path->slots[0];
3009 	nritems = btrfs_header_nritems(l);
3010 	mid = (nritems + 1) / 2;
3011 
3012 	if (mid <= slot) {
3013 		if (nritems == 1 ||
3014 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3015 			BTRFS_LEAF_DATA_SIZE(root)) {
3016 			if (slot >= nritems) {
3017 				split = 0;
3018 			} else {
3019 				mid = slot;
3020 				if (mid != nritems &&
3021 				    leaf_space_used(l, mid, nritems - mid) +
3022 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3023 					if (data_size && !tried_avoid_double)
3024 						goto push_for_double;
3025 					split = 2;
3026 				}
3027 			}
3028 		}
3029 	} else {
3030 		if (leaf_space_used(l, 0, mid) + data_size >
3031 			BTRFS_LEAF_DATA_SIZE(root)) {
3032 			if (!extend && data_size && slot == 0) {
3033 				split = 0;
3034 			} else if ((extend || !data_size) && slot == 0) {
3035 				mid = 1;
3036 			} else {
3037 				mid = slot;
3038 				if (mid != nritems &&
3039 				    leaf_space_used(l, mid, nritems - mid) +
3040 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3041 					if (data_size && !tried_avoid_double)
3042 						goto push_for_double;
3043 					split = 2 ;
3044 				}
3045 			}
3046 		}
3047 	}
3048 
3049 	if (split == 0)
3050 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3051 	else
3052 		btrfs_item_key(l, &disk_key, mid);
3053 
3054 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
3055 					root->root_key.objectid,
3056 					&disk_key, 0, l->start, 0);
3057 	if (IS_ERR(right))
3058 		return PTR_ERR(right);
3059 
3060 	root_add_used(root, root->leafsize);
3061 
3062 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
3063 	btrfs_set_header_bytenr(right, right->start);
3064 	btrfs_set_header_generation(right, trans->transid);
3065 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
3066 	btrfs_set_header_owner(right, root->root_key.objectid);
3067 	btrfs_set_header_level(right, 0);
3068 	write_extent_buffer(right, root->fs_info->fsid,
3069 			    (unsigned long)btrfs_header_fsid(right),
3070 			    BTRFS_FSID_SIZE);
3071 
3072 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
3073 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
3074 			    BTRFS_UUID_SIZE);
3075 
3076 	if (split == 0) {
3077 		if (mid <= slot) {
3078 			btrfs_set_header_nritems(right, 0);
3079 			wret = insert_ptr(trans, root, path,
3080 					  &disk_key, right->start,
3081 					  path->slots[1] + 1, 1);
3082 			if (wret)
3083 				ret = wret;
3084 
3085 			btrfs_tree_unlock(path->nodes[0]);
3086 			free_extent_buffer(path->nodes[0]);
3087 			path->nodes[0] = right;
3088 			path->slots[0] = 0;
3089 			path->slots[1] += 1;
3090 		} else {
3091 			btrfs_set_header_nritems(right, 0);
3092 			wret = insert_ptr(trans, root, path,
3093 					  &disk_key,
3094 					  right->start,
3095 					  path->slots[1], 1);
3096 			if (wret)
3097 				ret = wret;
3098 			btrfs_tree_unlock(path->nodes[0]);
3099 			free_extent_buffer(path->nodes[0]);
3100 			path->nodes[0] = right;
3101 			path->slots[0] = 0;
3102 			if (path->slots[1] == 0) {
3103 				wret = fixup_low_keys(trans, root,
3104 						path, &disk_key, 1);
3105 				if (wret)
3106 					ret = wret;
3107 			}
3108 		}
3109 		btrfs_mark_buffer_dirty(right);
3110 		return ret;
3111 	}
3112 
3113 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
3114 	BUG_ON(ret);
3115 
3116 	if (split == 2) {
3117 		BUG_ON(num_doubles != 0);
3118 		num_doubles++;
3119 		goto again;
3120 	}
3121 
3122 	return ret;
3123 
3124 push_for_double:
3125 	push_for_double_split(trans, root, path, data_size);
3126 	tried_avoid_double = 1;
3127 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3128 		return 0;
3129 	goto again;
3130 }
3131 
3132 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3133 					 struct btrfs_root *root,
3134 					 struct btrfs_path *path, int ins_len)
3135 {
3136 	struct btrfs_key key;
3137 	struct extent_buffer *leaf;
3138 	struct btrfs_file_extent_item *fi;
3139 	u64 extent_len = 0;
3140 	u32 item_size;
3141 	int ret;
3142 
3143 	leaf = path->nodes[0];
3144 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3145 
3146 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3147 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3148 
3149 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3150 		return 0;
3151 
3152 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3153 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3154 		fi = btrfs_item_ptr(leaf, path->slots[0],
3155 				    struct btrfs_file_extent_item);
3156 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3157 	}
3158 	btrfs_release_path(root, path);
3159 
3160 	path->keep_locks = 1;
3161 	path->search_for_split = 1;
3162 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3163 	path->search_for_split = 0;
3164 	if (ret < 0)
3165 		goto err;
3166 
3167 	ret = -EAGAIN;
3168 	leaf = path->nodes[0];
3169 	/* if our item isn't there or got smaller, return now */
3170 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3171 		goto err;
3172 
3173 	/* the leaf has  changed, it now has room.  return now */
3174 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3175 		goto err;
3176 
3177 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3178 		fi = btrfs_item_ptr(leaf, path->slots[0],
3179 				    struct btrfs_file_extent_item);
3180 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3181 			goto err;
3182 	}
3183 
3184 	btrfs_set_path_blocking(path);
3185 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3186 	if (ret)
3187 		goto err;
3188 
3189 	path->keep_locks = 0;
3190 	btrfs_unlock_up_safe(path, 1);
3191 	return 0;
3192 err:
3193 	path->keep_locks = 0;
3194 	return ret;
3195 }
3196 
3197 static noinline int split_item(struct btrfs_trans_handle *trans,
3198 			       struct btrfs_root *root,
3199 			       struct btrfs_path *path,
3200 			       struct btrfs_key *new_key,
3201 			       unsigned long split_offset)
3202 {
3203 	struct extent_buffer *leaf;
3204 	struct btrfs_item *item;
3205 	struct btrfs_item *new_item;
3206 	int slot;
3207 	char *buf;
3208 	u32 nritems;
3209 	u32 item_size;
3210 	u32 orig_offset;
3211 	struct btrfs_disk_key disk_key;
3212 
3213 	leaf = path->nodes[0];
3214 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3215 
3216 	btrfs_set_path_blocking(path);
3217 
3218 	item = btrfs_item_nr(leaf, path->slots[0]);
3219 	orig_offset = btrfs_item_offset(leaf, item);
3220 	item_size = btrfs_item_size(leaf, item);
3221 
3222 	buf = kmalloc(item_size, GFP_NOFS);
3223 	if (!buf)
3224 		return -ENOMEM;
3225 
3226 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3227 			    path->slots[0]), item_size);
3228 
3229 	slot = path->slots[0] + 1;
3230 	nritems = btrfs_header_nritems(leaf);
3231 	if (slot != nritems) {
3232 		/* shift the items */
3233 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3234 				btrfs_item_nr_offset(slot),
3235 				(nritems - slot) * sizeof(struct btrfs_item));
3236 	}
3237 
3238 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3239 	btrfs_set_item_key(leaf, &disk_key, slot);
3240 
3241 	new_item = btrfs_item_nr(leaf, slot);
3242 
3243 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3244 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3245 
3246 	btrfs_set_item_offset(leaf, item,
3247 			      orig_offset + item_size - split_offset);
3248 	btrfs_set_item_size(leaf, item, split_offset);
3249 
3250 	btrfs_set_header_nritems(leaf, nritems + 1);
3251 
3252 	/* write the data for the start of the original item */
3253 	write_extent_buffer(leaf, buf,
3254 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3255 			    split_offset);
3256 
3257 	/* write the data for the new item */
3258 	write_extent_buffer(leaf, buf + split_offset,
3259 			    btrfs_item_ptr_offset(leaf, slot),
3260 			    item_size - split_offset);
3261 	btrfs_mark_buffer_dirty(leaf);
3262 
3263 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3264 	kfree(buf);
3265 	return 0;
3266 }
3267 
3268 /*
3269  * This function splits a single item into two items,
3270  * giving 'new_key' to the new item and splitting the
3271  * old one at split_offset (from the start of the item).
3272  *
3273  * The path may be released by this operation.  After
3274  * the split, the path is pointing to the old item.  The
3275  * new item is going to be in the same node as the old one.
3276  *
3277  * Note, the item being split must be smaller enough to live alone on
3278  * a tree block with room for one extra struct btrfs_item
3279  *
3280  * This allows us to split the item in place, keeping a lock on the
3281  * leaf the entire time.
3282  */
3283 int btrfs_split_item(struct btrfs_trans_handle *trans,
3284 		     struct btrfs_root *root,
3285 		     struct btrfs_path *path,
3286 		     struct btrfs_key *new_key,
3287 		     unsigned long split_offset)
3288 {
3289 	int ret;
3290 	ret = setup_leaf_for_split(trans, root, path,
3291 				   sizeof(struct btrfs_item));
3292 	if (ret)
3293 		return ret;
3294 
3295 	ret = split_item(trans, root, path, new_key, split_offset);
3296 	return ret;
3297 }
3298 
3299 /*
3300  * This function duplicate a item, giving 'new_key' to the new item.
3301  * It guarantees both items live in the same tree leaf and the new item
3302  * is contiguous with the original item.
3303  *
3304  * This allows us to split file extent in place, keeping a lock on the
3305  * leaf the entire time.
3306  */
3307 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3308 			 struct btrfs_root *root,
3309 			 struct btrfs_path *path,
3310 			 struct btrfs_key *new_key)
3311 {
3312 	struct extent_buffer *leaf;
3313 	int ret;
3314 	u32 item_size;
3315 
3316 	leaf = path->nodes[0];
3317 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3318 	ret = setup_leaf_for_split(trans, root, path,
3319 				   item_size + sizeof(struct btrfs_item));
3320 	if (ret)
3321 		return ret;
3322 
3323 	path->slots[0]++;
3324 	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3325 				     item_size, item_size +
3326 				     sizeof(struct btrfs_item), 1);
3327 	BUG_ON(ret);
3328 
3329 	leaf = path->nodes[0];
3330 	memcpy_extent_buffer(leaf,
3331 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3332 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3333 			     item_size);
3334 	return 0;
3335 }
3336 
3337 /*
3338  * make the item pointed to by the path smaller.  new_size indicates
3339  * how small to make it, and from_end tells us if we just chop bytes
3340  * off the end of the item or if we shift the item to chop bytes off
3341  * the front.
3342  */
3343 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3344 			struct btrfs_root *root,
3345 			struct btrfs_path *path,
3346 			u32 new_size, int from_end)
3347 {
3348 	int ret = 0;
3349 	int slot;
3350 	struct extent_buffer *leaf;
3351 	struct btrfs_item *item;
3352 	u32 nritems;
3353 	unsigned int data_end;
3354 	unsigned int old_data_start;
3355 	unsigned int old_size;
3356 	unsigned int size_diff;
3357 	int i;
3358 
3359 	leaf = path->nodes[0];
3360 	slot = path->slots[0];
3361 
3362 	old_size = btrfs_item_size_nr(leaf, slot);
3363 	if (old_size == new_size)
3364 		return 0;
3365 
3366 	nritems = btrfs_header_nritems(leaf);
3367 	data_end = leaf_data_end(root, leaf);
3368 
3369 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3370 
3371 	size_diff = old_size - new_size;
3372 
3373 	BUG_ON(slot < 0);
3374 	BUG_ON(slot >= nritems);
3375 
3376 	/*
3377 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3378 	 */
3379 	/* first correct the data pointers */
3380 	for (i = slot; i < nritems; i++) {
3381 		u32 ioff;
3382 		item = btrfs_item_nr(leaf, i);
3383 
3384 		if (!leaf->map_token) {
3385 			map_extent_buffer(leaf, (unsigned long)item,
3386 					sizeof(struct btrfs_item),
3387 					&leaf->map_token, &leaf->kaddr,
3388 					&leaf->map_start, &leaf->map_len,
3389 					KM_USER1);
3390 		}
3391 
3392 		ioff = btrfs_item_offset(leaf, item);
3393 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3394 	}
3395 
3396 	if (leaf->map_token) {
3397 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3398 		leaf->map_token = NULL;
3399 	}
3400 
3401 	/* shift the data */
3402 	if (from_end) {
3403 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3404 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3405 			      data_end, old_data_start + new_size - data_end);
3406 	} else {
3407 		struct btrfs_disk_key disk_key;
3408 		u64 offset;
3409 
3410 		btrfs_item_key(leaf, &disk_key, slot);
3411 
3412 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3413 			unsigned long ptr;
3414 			struct btrfs_file_extent_item *fi;
3415 
3416 			fi = btrfs_item_ptr(leaf, slot,
3417 					    struct btrfs_file_extent_item);
3418 			fi = (struct btrfs_file_extent_item *)(
3419 			     (unsigned long)fi - size_diff);
3420 
3421 			if (btrfs_file_extent_type(leaf, fi) ==
3422 			    BTRFS_FILE_EXTENT_INLINE) {
3423 				ptr = btrfs_item_ptr_offset(leaf, slot);
3424 				memmove_extent_buffer(leaf, ptr,
3425 				      (unsigned long)fi,
3426 				      offsetof(struct btrfs_file_extent_item,
3427 						 disk_bytenr));
3428 			}
3429 		}
3430 
3431 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3432 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3433 			      data_end, old_data_start - data_end);
3434 
3435 		offset = btrfs_disk_key_offset(&disk_key);
3436 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3437 		btrfs_set_item_key(leaf, &disk_key, slot);
3438 		if (slot == 0)
3439 			fixup_low_keys(trans, root, path, &disk_key, 1);
3440 	}
3441 
3442 	item = btrfs_item_nr(leaf, slot);
3443 	btrfs_set_item_size(leaf, item, new_size);
3444 	btrfs_mark_buffer_dirty(leaf);
3445 
3446 	ret = 0;
3447 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3448 		btrfs_print_leaf(root, leaf);
3449 		BUG();
3450 	}
3451 	return ret;
3452 }
3453 
3454 /*
3455  * make the item pointed to by the path bigger, data_size is the new size.
3456  */
3457 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3458 		      struct btrfs_root *root, struct btrfs_path *path,
3459 		      u32 data_size)
3460 {
3461 	int ret = 0;
3462 	int slot;
3463 	struct extent_buffer *leaf;
3464 	struct btrfs_item *item;
3465 	u32 nritems;
3466 	unsigned int data_end;
3467 	unsigned int old_data;
3468 	unsigned int old_size;
3469 	int i;
3470 
3471 	leaf = path->nodes[0];
3472 
3473 	nritems = btrfs_header_nritems(leaf);
3474 	data_end = leaf_data_end(root, leaf);
3475 
3476 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3477 		btrfs_print_leaf(root, leaf);
3478 		BUG();
3479 	}
3480 	slot = path->slots[0];
3481 	old_data = btrfs_item_end_nr(leaf, slot);
3482 
3483 	BUG_ON(slot < 0);
3484 	if (slot >= nritems) {
3485 		btrfs_print_leaf(root, leaf);
3486 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3487 		       slot, nritems);
3488 		BUG_ON(1);
3489 	}
3490 
3491 	/*
3492 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3493 	 */
3494 	/* first correct the data pointers */
3495 	for (i = slot; i < nritems; i++) {
3496 		u32 ioff;
3497 		item = btrfs_item_nr(leaf, i);
3498 
3499 		if (!leaf->map_token) {
3500 			map_extent_buffer(leaf, (unsigned long)item,
3501 					sizeof(struct btrfs_item),
3502 					&leaf->map_token, &leaf->kaddr,
3503 					&leaf->map_start, &leaf->map_len,
3504 					KM_USER1);
3505 		}
3506 		ioff = btrfs_item_offset(leaf, item);
3507 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3508 	}
3509 
3510 	if (leaf->map_token) {
3511 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3512 		leaf->map_token = NULL;
3513 	}
3514 
3515 	/* shift the data */
3516 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3517 		      data_end - data_size, btrfs_leaf_data(leaf) +
3518 		      data_end, old_data - data_end);
3519 
3520 	data_end = old_data;
3521 	old_size = btrfs_item_size_nr(leaf, slot);
3522 	item = btrfs_item_nr(leaf, slot);
3523 	btrfs_set_item_size(leaf, item, old_size + data_size);
3524 	btrfs_mark_buffer_dirty(leaf);
3525 
3526 	ret = 0;
3527 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3528 		btrfs_print_leaf(root, leaf);
3529 		BUG();
3530 	}
3531 	return ret;
3532 }
3533 
3534 /*
3535  * Given a key and some data, insert items into the tree.
3536  * This does all the path init required, making room in the tree if needed.
3537  * Returns the number of keys that were inserted.
3538  */
3539 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3540 			    struct btrfs_root *root,
3541 			    struct btrfs_path *path,
3542 			    struct btrfs_key *cpu_key, u32 *data_size,
3543 			    int nr)
3544 {
3545 	struct extent_buffer *leaf;
3546 	struct btrfs_item *item;
3547 	int ret = 0;
3548 	int slot;
3549 	int i;
3550 	u32 nritems;
3551 	u32 total_data = 0;
3552 	u32 total_size = 0;
3553 	unsigned int data_end;
3554 	struct btrfs_disk_key disk_key;
3555 	struct btrfs_key found_key;
3556 
3557 	for (i = 0; i < nr; i++) {
3558 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3559 		    BTRFS_LEAF_DATA_SIZE(root)) {
3560 			break;
3561 			nr = i;
3562 		}
3563 		total_data += data_size[i];
3564 		total_size += data_size[i] + sizeof(struct btrfs_item);
3565 	}
3566 	BUG_ON(nr == 0);
3567 
3568 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3569 	if (ret == 0)
3570 		return -EEXIST;
3571 	if (ret < 0)
3572 		goto out;
3573 
3574 	leaf = path->nodes[0];
3575 
3576 	nritems = btrfs_header_nritems(leaf);
3577 	data_end = leaf_data_end(root, leaf);
3578 
3579 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3580 		for (i = nr; i >= 0; i--) {
3581 			total_data -= data_size[i];
3582 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3583 			if (total_size < btrfs_leaf_free_space(root, leaf))
3584 				break;
3585 		}
3586 		nr = i;
3587 	}
3588 
3589 	slot = path->slots[0];
3590 	BUG_ON(slot < 0);
3591 
3592 	if (slot != nritems) {
3593 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3594 
3595 		item = btrfs_item_nr(leaf, slot);
3596 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3597 
3598 		/* figure out how many keys we can insert in here */
3599 		total_data = data_size[0];
3600 		for (i = 1; i < nr; i++) {
3601 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3602 				break;
3603 			total_data += data_size[i];
3604 		}
3605 		nr = i;
3606 
3607 		if (old_data < data_end) {
3608 			btrfs_print_leaf(root, leaf);
3609 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3610 			       slot, old_data, data_end);
3611 			BUG_ON(1);
3612 		}
3613 		/*
3614 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3615 		 */
3616 		/* first correct the data pointers */
3617 		WARN_ON(leaf->map_token);
3618 		for (i = slot; i < nritems; i++) {
3619 			u32 ioff;
3620 
3621 			item = btrfs_item_nr(leaf, i);
3622 			if (!leaf->map_token) {
3623 				map_extent_buffer(leaf, (unsigned long)item,
3624 					sizeof(struct btrfs_item),
3625 					&leaf->map_token, &leaf->kaddr,
3626 					&leaf->map_start, &leaf->map_len,
3627 					KM_USER1);
3628 			}
3629 
3630 			ioff = btrfs_item_offset(leaf, item);
3631 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3632 		}
3633 		if (leaf->map_token) {
3634 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3635 			leaf->map_token = NULL;
3636 		}
3637 
3638 		/* shift the items */
3639 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3640 			      btrfs_item_nr_offset(slot),
3641 			      (nritems - slot) * sizeof(struct btrfs_item));
3642 
3643 		/* shift the data */
3644 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3645 			      data_end - total_data, btrfs_leaf_data(leaf) +
3646 			      data_end, old_data - data_end);
3647 		data_end = old_data;
3648 	} else {
3649 		/*
3650 		 * this sucks but it has to be done, if we are inserting at
3651 		 * the end of the leaf only insert 1 of the items, since we
3652 		 * have no way of knowing whats on the next leaf and we'd have
3653 		 * to drop our current locks to figure it out
3654 		 */
3655 		nr = 1;
3656 	}
3657 
3658 	/* setup the item for the new data */
3659 	for (i = 0; i < nr; i++) {
3660 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3661 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3662 		item = btrfs_item_nr(leaf, slot + i);
3663 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3664 		data_end -= data_size[i];
3665 		btrfs_set_item_size(leaf, item, data_size[i]);
3666 	}
3667 	btrfs_set_header_nritems(leaf, nritems + nr);
3668 	btrfs_mark_buffer_dirty(leaf);
3669 
3670 	ret = 0;
3671 	if (slot == 0) {
3672 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3673 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3674 	}
3675 
3676 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3677 		btrfs_print_leaf(root, leaf);
3678 		BUG();
3679 	}
3680 out:
3681 	if (!ret)
3682 		ret = nr;
3683 	return ret;
3684 }
3685 
3686 /*
3687  * this is a helper for btrfs_insert_empty_items, the main goal here is
3688  * to save stack depth by doing the bulk of the work in a function
3689  * that doesn't call btrfs_search_slot
3690  */
3691 static noinline_for_stack int
3692 setup_items_for_insert(struct btrfs_trans_handle *trans,
3693 		      struct btrfs_root *root, struct btrfs_path *path,
3694 		      struct btrfs_key *cpu_key, u32 *data_size,
3695 		      u32 total_data, u32 total_size, int nr)
3696 {
3697 	struct btrfs_item *item;
3698 	int i;
3699 	u32 nritems;
3700 	unsigned int data_end;
3701 	struct btrfs_disk_key disk_key;
3702 	int ret;
3703 	struct extent_buffer *leaf;
3704 	int slot;
3705 
3706 	leaf = path->nodes[0];
3707 	slot = path->slots[0];
3708 
3709 	nritems = btrfs_header_nritems(leaf);
3710 	data_end = leaf_data_end(root, leaf);
3711 
3712 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3713 		btrfs_print_leaf(root, leaf);
3714 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3715 		       total_size, btrfs_leaf_free_space(root, leaf));
3716 		BUG();
3717 	}
3718 
3719 	if (slot != nritems) {
3720 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3721 
3722 		if (old_data < data_end) {
3723 			btrfs_print_leaf(root, leaf);
3724 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3725 			       slot, old_data, data_end);
3726 			BUG_ON(1);
3727 		}
3728 		/*
3729 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3730 		 */
3731 		/* first correct the data pointers */
3732 		WARN_ON(leaf->map_token);
3733 		for (i = slot; i < nritems; i++) {
3734 			u32 ioff;
3735 
3736 			item = btrfs_item_nr(leaf, i);
3737 			if (!leaf->map_token) {
3738 				map_extent_buffer(leaf, (unsigned long)item,
3739 					sizeof(struct btrfs_item),
3740 					&leaf->map_token, &leaf->kaddr,
3741 					&leaf->map_start, &leaf->map_len,
3742 					KM_USER1);
3743 			}
3744 
3745 			ioff = btrfs_item_offset(leaf, item);
3746 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3747 		}
3748 		if (leaf->map_token) {
3749 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3750 			leaf->map_token = NULL;
3751 		}
3752 
3753 		/* shift the items */
3754 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3755 			      btrfs_item_nr_offset(slot),
3756 			      (nritems - slot) * sizeof(struct btrfs_item));
3757 
3758 		/* shift the data */
3759 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3760 			      data_end - total_data, btrfs_leaf_data(leaf) +
3761 			      data_end, old_data - data_end);
3762 		data_end = old_data;
3763 	}
3764 
3765 	/* setup the item for the new data */
3766 	for (i = 0; i < nr; i++) {
3767 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3768 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3769 		item = btrfs_item_nr(leaf, slot + i);
3770 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3771 		data_end -= data_size[i];
3772 		btrfs_set_item_size(leaf, item, data_size[i]);
3773 	}
3774 
3775 	btrfs_set_header_nritems(leaf, nritems + nr);
3776 
3777 	ret = 0;
3778 	if (slot == 0) {
3779 		struct btrfs_disk_key disk_key;
3780 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3781 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3782 	}
3783 	btrfs_unlock_up_safe(path, 1);
3784 	btrfs_mark_buffer_dirty(leaf);
3785 
3786 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3787 		btrfs_print_leaf(root, leaf);
3788 		BUG();
3789 	}
3790 	return ret;
3791 }
3792 
3793 /*
3794  * Given a key and some data, insert items into the tree.
3795  * This does all the path init required, making room in the tree if needed.
3796  */
3797 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3798 			    struct btrfs_root *root,
3799 			    struct btrfs_path *path,
3800 			    struct btrfs_key *cpu_key, u32 *data_size,
3801 			    int nr)
3802 {
3803 	int ret = 0;
3804 	int slot;
3805 	int i;
3806 	u32 total_size = 0;
3807 	u32 total_data = 0;
3808 
3809 	for (i = 0; i < nr; i++)
3810 		total_data += data_size[i];
3811 
3812 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3813 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3814 	if (ret == 0)
3815 		return -EEXIST;
3816 	if (ret < 0)
3817 		goto out;
3818 
3819 	slot = path->slots[0];
3820 	BUG_ON(slot < 0);
3821 
3822 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3823 			       total_data, total_size, nr);
3824 
3825 out:
3826 	return ret;
3827 }
3828 
3829 /*
3830  * Given a key and some data, insert an item into the tree.
3831  * This does all the path init required, making room in the tree if needed.
3832  */
3833 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3834 		      *root, struct btrfs_key *cpu_key, void *data, u32
3835 		      data_size)
3836 {
3837 	int ret = 0;
3838 	struct btrfs_path *path;
3839 	struct extent_buffer *leaf;
3840 	unsigned long ptr;
3841 
3842 	path = btrfs_alloc_path();
3843 	BUG_ON(!path);
3844 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3845 	if (!ret) {
3846 		leaf = path->nodes[0];
3847 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3848 		write_extent_buffer(leaf, data, ptr, data_size);
3849 		btrfs_mark_buffer_dirty(leaf);
3850 	}
3851 	btrfs_free_path(path);
3852 	return ret;
3853 }
3854 
3855 /*
3856  * delete the pointer from a given node.
3857  *
3858  * the tree should have been previously balanced so the deletion does not
3859  * empty a node.
3860  */
3861 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3862 		   struct btrfs_path *path, int level, int slot)
3863 {
3864 	struct extent_buffer *parent = path->nodes[level];
3865 	u32 nritems;
3866 	int ret = 0;
3867 	int wret;
3868 
3869 	nritems = btrfs_header_nritems(parent);
3870 	if (slot != nritems - 1) {
3871 		memmove_extent_buffer(parent,
3872 			      btrfs_node_key_ptr_offset(slot),
3873 			      btrfs_node_key_ptr_offset(slot + 1),
3874 			      sizeof(struct btrfs_key_ptr) *
3875 			      (nritems - slot - 1));
3876 	}
3877 	nritems--;
3878 	btrfs_set_header_nritems(parent, nritems);
3879 	if (nritems == 0 && parent == root->node) {
3880 		BUG_ON(btrfs_header_level(root->node) != 1);
3881 		/* just turn the root into a leaf and break */
3882 		btrfs_set_header_level(root->node, 0);
3883 	} else if (slot == 0) {
3884 		struct btrfs_disk_key disk_key;
3885 
3886 		btrfs_node_key(parent, &disk_key, 0);
3887 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3888 		if (wret)
3889 			ret = wret;
3890 	}
3891 	btrfs_mark_buffer_dirty(parent);
3892 	return ret;
3893 }
3894 
3895 /*
3896  * a helper function to delete the leaf pointed to by path->slots[1] and
3897  * path->nodes[1].
3898  *
3899  * This deletes the pointer in path->nodes[1] and frees the leaf
3900  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3901  *
3902  * The path must have already been setup for deleting the leaf, including
3903  * all the proper balancing.  path->nodes[1] must be locked.
3904  */
3905 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3906 				   struct btrfs_root *root,
3907 				   struct btrfs_path *path,
3908 				   struct extent_buffer *leaf)
3909 {
3910 	int ret;
3911 
3912 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3913 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3914 	if (ret)
3915 		return ret;
3916 
3917 	/*
3918 	 * btrfs_free_extent is expensive, we want to make sure we
3919 	 * aren't holding any locks when we call it
3920 	 */
3921 	btrfs_unlock_up_safe(path, 0);
3922 
3923 	root_sub_used(root, leaf->len);
3924 
3925 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3926 	return 0;
3927 }
3928 /*
3929  * delete the item at the leaf level in path.  If that empties
3930  * the leaf, remove it from the tree
3931  */
3932 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3933 		    struct btrfs_path *path, int slot, int nr)
3934 {
3935 	struct extent_buffer *leaf;
3936 	struct btrfs_item *item;
3937 	int last_off;
3938 	int dsize = 0;
3939 	int ret = 0;
3940 	int wret;
3941 	int i;
3942 	u32 nritems;
3943 
3944 	leaf = path->nodes[0];
3945 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3946 
3947 	for (i = 0; i < nr; i++)
3948 		dsize += btrfs_item_size_nr(leaf, slot + i);
3949 
3950 	nritems = btrfs_header_nritems(leaf);
3951 
3952 	if (slot + nr != nritems) {
3953 		int data_end = leaf_data_end(root, leaf);
3954 
3955 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3956 			      data_end + dsize,
3957 			      btrfs_leaf_data(leaf) + data_end,
3958 			      last_off - data_end);
3959 
3960 		for (i = slot + nr; i < nritems; i++) {
3961 			u32 ioff;
3962 
3963 			item = btrfs_item_nr(leaf, i);
3964 			if (!leaf->map_token) {
3965 				map_extent_buffer(leaf, (unsigned long)item,
3966 					sizeof(struct btrfs_item),
3967 					&leaf->map_token, &leaf->kaddr,
3968 					&leaf->map_start, &leaf->map_len,
3969 					KM_USER1);
3970 			}
3971 			ioff = btrfs_item_offset(leaf, item);
3972 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3973 		}
3974 
3975 		if (leaf->map_token) {
3976 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3977 			leaf->map_token = NULL;
3978 		}
3979 
3980 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3981 			      btrfs_item_nr_offset(slot + nr),
3982 			      sizeof(struct btrfs_item) *
3983 			      (nritems - slot - nr));
3984 	}
3985 	btrfs_set_header_nritems(leaf, nritems - nr);
3986 	nritems -= nr;
3987 
3988 	/* delete the leaf if we've emptied it */
3989 	if (nritems == 0) {
3990 		if (leaf == root->node) {
3991 			btrfs_set_header_level(leaf, 0);
3992 		} else {
3993 			btrfs_set_path_blocking(path);
3994 			clean_tree_block(trans, root, leaf);
3995 			ret = btrfs_del_leaf(trans, root, path, leaf);
3996 			BUG_ON(ret);
3997 		}
3998 	} else {
3999 		int used = leaf_space_used(leaf, 0, nritems);
4000 		if (slot == 0) {
4001 			struct btrfs_disk_key disk_key;
4002 
4003 			btrfs_item_key(leaf, &disk_key, 0);
4004 			wret = fixup_low_keys(trans, root, path,
4005 					      &disk_key, 1);
4006 			if (wret)
4007 				ret = wret;
4008 		}
4009 
4010 		/* delete the leaf if it is mostly empty */
4011 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4012 			/* push_leaf_left fixes the path.
4013 			 * make sure the path still points to our leaf
4014 			 * for possible call to del_ptr below
4015 			 */
4016 			slot = path->slots[1];
4017 			extent_buffer_get(leaf);
4018 
4019 			btrfs_set_path_blocking(path);
4020 			wret = push_leaf_left(trans, root, path, 1, 1,
4021 					      1, (u32)-1);
4022 			if (wret < 0 && wret != -ENOSPC)
4023 				ret = wret;
4024 
4025 			if (path->nodes[0] == leaf &&
4026 			    btrfs_header_nritems(leaf)) {
4027 				wret = push_leaf_right(trans, root, path, 1,
4028 						       1, 1, 0);
4029 				if (wret < 0 && wret != -ENOSPC)
4030 					ret = wret;
4031 			}
4032 
4033 			if (btrfs_header_nritems(leaf) == 0) {
4034 				path->slots[1] = slot;
4035 				ret = btrfs_del_leaf(trans, root, path, leaf);
4036 				BUG_ON(ret);
4037 				free_extent_buffer(leaf);
4038 			} else {
4039 				/* if we're still in the path, make sure
4040 				 * we're dirty.  Otherwise, one of the
4041 				 * push_leaf functions must have already
4042 				 * dirtied this buffer
4043 				 */
4044 				if (path->nodes[0] == leaf)
4045 					btrfs_mark_buffer_dirty(leaf);
4046 				free_extent_buffer(leaf);
4047 			}
4048 		} else {
4049 			btrfs_mark_buffer_dirty(leaf);
4050 		}
4051 	}
4052 	return ret;
4053 }
4054 
4055 /*
4056  * search the tree again to find a leaf with lesser keys
4057  * returns 0 if it found something or 1 if there are no lesser leaves.
4058  * returns < 0 on io errors.
4059  *
4060  * This may release the path, and so you may lose any locks held at the
4061  * time you call it.
4062  */
4063 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4064 {
4065 	struct btrfs_key key;
4066 	struct btrfs_disk_key found_key;
4067 	int ret;
4068 
4069 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4070 
4071 	if (key.offset > 0)
4072 		key.offset--;
4073 	else if (key.type > 0)
4074 		key.type--;
4075 	else if (key.objectid > 0)
4076 		key.objectid--;
4077 	else
4078 		return 1;
4079 
4080 	btrfs_release_path(root, path);
4081 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4082 	if (ret < 0)
4083 		return ret;
4084 	btrfs_item_key(path->nodes[0], &found_key, 0);
4085 	ret = comp_keys(&found_key, &key);
4086 	if (ret < 0)
4087 		return 0;
4088 	return 1;
4089 }
4090 
4091 /*
4092  * A helper function to walk down the tree starting at min_key, and looking
4093  * for nodes or leaves that are either in cache or have a minimum
4094  * transaction id.  This is used by the btree defrag code, and tree logging
4095  *
4096  * This does not cow, but it does stuff the starting key it finds back
4097  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4098  * key and get a writable path.
4099  *
4100  * This does lock as it descends, and path->keep_locks should be set
4101  * to 1 by the caller.
4102  *
4103  * This honors path->lowest_level to prevent descent past a given level
4104  * of the tree.
4105  *
4106  * min_trans indicates the oldest transaction that you are interested
4107  * in walking through.  Any nodes or leaves older than min_trans are
4108  * skipped over (without reading them).
4109  *
4110  * returns zero if something useful was found, < 0 on error and 1 if there
4111  * was nothing in the tree that matched the search criteria.
4112  */
4113 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4114 			 struct btrfs_key *max_key,
4115 			 struct btrfs_path *path, int cache_only,
4116 			 u64 min_trans)
4117 {
4118 	struct extent_buffer *cur;
4119 	struct btrfs_key found_key;
4120 	int slot;
4121 	int sret;
4122 	u32 nritems;
4123 	int level;
4124 	int ret = 1;
4125 
4126 	WARN_ON(!path->keep_locks);
4127 again:
4128 	cur = btrfs_lock_root_node(root);
4129 	level = btrfs_header_level(cur);
4130 	WARN_ON(path->nodes[level]);
4131 	path->nodes[level] = cur;
4132 	path->locks[level] = 1;
4133 
4134 	if (btrfs_header_generation(cur) < min_trans) {
4135 		ret = 1;
4136 		goto out;
4137 	}
4138 	while (1) {
4139 		nritems = btrfs_header_nritems(cur);
4140 		level = btrfs_header_level(cur);
4141 		sret = bin_search(cur, min_key, level, &slot);
4142 
4143 		/* at the lowest level, we're done, setup the path and exit */
4144 		if (level == path->lowest_level) {
4145 			if (slot >= nritems)
4146 				goto find_next_key;
4147 			ret = 0;
4148 			path->slots[level] = slot;
4149 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4150 			goto out;
4151 		}
4152 		if (sret && slot > 0)
4153 			slot--;
4154 		/*
4155 		 * check this node pointer against the cache_only and
4156 		 * min_trans parameters.  If it isn't in cache or is too
4157 		 * old, skip to the next one.
4158 		 */
4159 		while (slot < nritems) {
4160 			u64 blockptr;
4161 			u64 gen;
4162 			struct extent_buffer *tmp;
4163 			struct btrfs_disk_key disk_key;
4164 
4165 			blockptr = btrfs_node_blockptr(cur, slot);
4166 			gen = btrfs_node_ptr_generation(cur, slot);
4167 			if (gen < min_trans) {
4168 				slot++;
4169 				continue;
4170 			}
4171 			if (!cache_only)
4172 				break;
4173 
4174 			if (max_key) {
4175 				btrfs_node_key(cur, &disk_key, slot);
4176 				if (comp_keys(&disk_key, max_key) >= 0) {
4177 					ret = 1;
4178 					goto out;
4179 				}
4180 			}
4181 
4182 			tmp = btrfs_find_tree_block(root, blockptr,
4183 					    btrfs_level_size(root, level - 1));
4184 
4185 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4186 				free_extent_buffer(tmp);
4187 				break;
4188 			}
4189 			if (tmp)
4190 				free_extent_buffer(tmp);
4191 			slot++;
4192 		}
4193 find_next_key:
4194 		/*
4195 		 * we didn't find a candidate key in this node, walk forward
4196 		 * and find another one
4197 		 */
4198 		if (slot >= nritems) {
4199 			path->slots[level] = slot;
4200 			btrfs_set_path_blocking(path);
4201 			sret = btrfs_find_next_key(root, path, min_key, level,
4202 						  cache_only, min_trans);
4203 			if (sret == 0) {
4204 				btrfs_release_path(root, path);
4205 				goto again;
4206 			} else {
4207 				goto out;
4208 			}
4209 		}
4210 		/* save our key for returning back */
4211 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4212 		path->slots[level] = slot;
4213 		if (level == path->lowest_level) {
4214 			ret = 0;
4215 			unlock_up(path, level, 1);
4216 			goto out;
4217 		}
4218 		btrfs_set_path_blocking(path);
4219 		cur = read_node_slot(root, cur, slot);
4220 
4221 		btrfs_tree_lock(cur);
4222 
4223 		path->locks[level - 1] = 1;
4224 		path->nodes[level - 1] = cur;
4225 		unlock_up(path, level, 1);
4226 		btrfs_clear_path_blocking(path, NULL);
4227 	}
4228 out:
4229 	if (ret == 0)
4230 		memcpy(min_key, &found_key, sizeof(found_key));
4231 	btrfs_set_path_blocking(path);
4232 	return ret;
4233 }
4234 
4235 /*
4236  * this is similar to btrfs_next_leaf, but does not try to preserve
4237  * and fixup the path.  It looks for and returns the next key in the
4238  * tree based on the current path and the cache_only and min_trans
4239  * parameters.
4240  *
4241  * 0 is returned if another key is found, < 0 if there are any errors
4242  * and 1 is returned if there are no higher keys in the tree
4243  *
4244  * path->keep_locks should be set to 1 on the search made before
4245  * calling this function.
4246  */
4247 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4248 			struct btrfs_key *key, int level,
4249 			int cache_only, u64 min_trans)
4250 {
4251 	int slot;
4252 	struct extent_buffer *c;
4253 
4254 	WARN_ON(!path->keep_locks);
4255 	while (level < BTRFS_MAX_LEVEL) {
4256 		if (!path->nodes[level])
4257 			return 1;
4258 
4259 		slot = path->slots[level] + 1;
4260 		c = path->nodes[level];
4261 next:
4262 		if (slot >= btrfs_header_nritems(c)) {
4263 			int ret;
4264 			int orig_lowest;
4265 			struct btrfs_key cur_key;
4266 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4267 			    !path->nodes[level + 1])
4268 				return 1;
4269 
4270 			if (path->locks[level + 1]) {
4271 				level++;
4272 				continue;
4273 			}
4274 
4275 			slot = btrfs_header_nritems(c) - 1;
4276 			if (level == 0)
4277 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4278 			else
4279 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4280 
4281 			orig_lowest = path->lowest_level;
4282 			btrfs_release_path(root, path);
4283 			path->lowest_level = level;
4284 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4285 						0, 0);
4286 			path->lowest_level = orig_lowest;
4287 			if (ret < 0)
4288 				return ret;
4289 
4290 			c = path->nodes[level];
4291 			slot = path->slots[level];
4292 			if (ret == 0)
4293 				slot++;
4294 			goto next;
4295 		}
4296 
4297 		if (level == 0)
4298 			btrfs_item_key_to_cpu(c, key, slot);
4299 		else {
4300 			u64 blockptr = btrfs_node_blockptr(c, slot);
4301 			u64 gen = btrfs_node_ptr_generation(c, slot);
4302 
4303 			if (cache_only) {
4304 				struct extent_buffer *cur;
4305 				cur = btrfs_find_tree_block(root, blockptr,
4306 					    btrfs_level_size(root, level - 1));
4307 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4308 					slot++;
4309 					if (cur)
4310 						free_extent_buffer(cur);
4311 					goto next;
4312 				}
4313 				free_extent_buffer(cur);
4314 			}
4315 			if (gen < min_trans) {
4316 				slot++;
4317 				goto next;
4318 			}
4319 			btrfs_node_key_to_cpu(c, key, slot);
4320 		}
4321 		return 0;
4322 	}
4323 	return 1;
4324 }
4325 
4326 /*
4327  * search the tree again to find a leaf with greater keys
4328  * returns 0 if it found something or 1 if there are no greater leaves.
4329  * returns < 0 on io errors.
4330  */
4331 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4332 {
4333 	int slot;
4334 	int level;
4335 	struct extent_buffer *c;
4336 	struct extent_buffer *next;
4337 	struct btrfs_key key;
4338 	u32 nritems;
4339 	int ret;
4340 	int old_spinning = path->leave_spinning;
4341 	int force_blocking = 0;
4342 
4343 	nritems = btrfs_header_nritems(path->nodes[0]);
4344 	if (nritems == 0)
4345 		return 1;
4346 
4347 	/*
4348 	 * we take the blocks in an order that upsets lockdep.  Using
4349 	 * blocking mode is the only way around it.
4350 	 */
4351 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4352 	force_blocking = 1;
4353 #endif
4354 
4355 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4356 again:
4357 	level = 1;
4358 	next = NULL;
4359 	btrfs_release_path(root, path);
4360 
4361 	path->keep_locks = 1;
4362 
4363 	if (!force_blocking)
4364 		path->leave_spinning = 1;
4365 
4366 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4367 	path->keep_locks = 0;
4368 
4369 	if (ret < 0)
4370 		return ret;
4371 
4372 	nritems = btrfs_header_nritems(path->nodes[0]);
4373 	/*
4374 	 * by releasing the path above we dropped all our locks.  A balance
4375 	 * could have added more items next to the key that used to be
4376 	 * at the very end of the block.  So, check again here and
4377 	 * advance the path if there are now more items available.
4378 	 */
4379 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4380 		if (ret == 0)
4381 			path->slots[0]++;
4382 		ret = 0;
4383 		goto done;
4384 	}
4385 
4386 	while (level < BTRFS_MAX_LEVEL) {
4387 		if (!path->nodes[level]) {
4388 			ret = 1;
4389 			goto done;
4390 		}
4391 
4392 		slot = path->slots[level] + 1;
4393 		c = path->nodes[level];
4394 		if (slot >= btrfs_header_nritems(c)) {
4395 			level++;
4396 			if (level == BTRFS_MAX_LEVEL) {
4397 				ret = 1;
4398 				goto done;
4399 			}
4400 			continue;
4401 		}
4402 
4403 		if (next) {
4404 			btrfs_tree_unlock(next);
4405 			free_extent_buffer(next);
4406 		}
4407 
4408 		next = c;
4409 		ret = read_block_for_search(NULL, root, path, &next, level,
4410 					    slot, &key);
4411 		if (ret == -EAGAIN)
4412 			goto again;
4413 
4414 		if (ret < 0) {
4415 			btrfs_release_path(root, path);
4416 			goto done;
4417 		}
4418 
4419 		if (!path->skip_locking) {
4420 			ret = btrfs_try_spin_lock(next);
4421 			if (!ret) {
4422 				btrfs_set_path_blocking(path);
4423 				btrfs_tree_lock(next);
4424 				if (!force_blocking)
4425 					btrfs_clear_path_blocking(path, next);
4426 			}
4427 			if (force_blocking)
4428 				btrfs_set_lock_blocking(next);
4429 		}
4430 		break;
4431 	}
4432 	path->slots[level] = slot;
4433 	while (1) {
4434 		level--;
4435 		c = path->nodes[level];
4436 		if (path->locks[level])
4437 			btrfs_tree_unlock(c);
4438 
4439 		free_extent_buffer(c);
4440 		path->nodes[level] = next;
4441 		path->slots[level] = 0;
4442 		if (!path->skip_locking)
4443 			path->locks[level] = 1;
4444 
4445 		if (!level)
4446 			break;
4447 
4448 		ret = read_block_for_search(NULL, root, path, &next, level,
4449 					    0, &key);
4450 		if (ret == -EAGAIN)
4451 			goto again;
4452 
4453 		if (ret < 0) {
4454 			btrfs_release_path(root, path);
4455 			goto done;
4456 		}
4457 
4458 		if (!path->skip_locking) {
4459 			btrfs_assert_tree_locked(path->nodes[level]);
4460 			ret = btrfs_try_spin_lock(next);
4461 			if (!ret) {
4462 				btrfs_set_path_blocking(path);
4463 				btrfs_tree_lock(next);
4464 				if (!force_blocking)
4465 					btrfs_clear_path_blocking(path, next);
4466 			}
4467 			if (force_blocking)
4468 				btrfs_set_lock_blocking(next);
4469 		}
4470 	}
4471 	ret = 0;
4472 done:
4473 	unlock_up(path, 0, 1);
4474 	path->leave_spinning = old_spinning;
4475 	if (!old_spinning)
4476 		btrfs_set_path_blocking(path);
4477 
4478 	return ret;
4479 }
4480 
4481 /*
4482  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4483  * searching until it gets past min_objectid or finds an item of 'type'
4484  *
4485  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4486  */
4487 int btrfs_previous_item(struct btrfs_root *root,
4488 			struct btrfs_path *path, u64 min_objectid,
4489 			int type)
4490 {
4491 	struct btrfs_key found_key;
4492 	struct extent_buffer *leaf;
4493 	u32 nritems;
4494 	int ret;
4495 
4496 	while (1) {
4497 		if (path->slots[0] == 0) {
4498 			btrfs_set_path_blocking(path);
4499 			ret = btrfs_prev_leaf(root, path);
4500 			if (ret != 0)
4501 				return ret;
4502 		} else {
4503 			path->slots[0]--;
4504 		}
4505 		leaf = path->nodes[0];
4506 		nritems = btrfs_header_nritems(leaf);
4507 		if (nritems == 0)
4508 			return 1;
4509 		if (path->slots[0] == nritems)
4510 			path->slots[0]--;
4511 
4512 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4513 		if (found_key.objectid < min_objectid)
4514 			break;
4515 		if (found_key.type == type)
4516 			return 0;
4517 		if (found_key.objectid == min_objectid &&
4518 		    found_key.type < type)
4519 			break;
4520 	}
4521 	return 1;
4522 }
4523