xref: /openbmc/linux/fs/btrfs/ctree.c (revision 53e8558837be58c1d44d50ad87247a8c56c95c13)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19 
20 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
21 		      *root, struct btrfs_path *path, int level);
22 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
23 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
24 		      int data_size, int extend);
25 static int push_node_left(struct btrfs_trans_handle *trans,
26 			  struct extent_buffer *dst,
27 			  struct extent_buffer *src, int empty);
28 static int balance_node_right(struct btrfs_trans_handle *trans,
29 			      struct extent_buffer *dst_buf,
30 			      struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 		    int level, int slot);
33 
34 static const struct btrfs_csums {
35 	u16		size;
36 	const char	name[10];
37 	const char	driver[12];
38 } btrfs_csums[] = {
39 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
40 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
41 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
42 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
43 				     .driver = "blake2b-256" },
44 };
45 
46 int btrfs_super_csum_size(const struct btrfs_super_block *s)
47 {
48 	u16 t = btrfs_super_csum_type(s);
49 	/*
50 	 * csum type is validated at mount time
51 	 */
52 	return btrfs_csums[t].size;
53 }
54 
55 const char *btrfs_super_csum_name(u16 csum_type)
56 {
57 	/* csum type is validated at mount time */
58 	return btrfs_csums[csum_type].name;
59 }
60 
61 /*
62  * Return driver name if defined, otherwise the name that's also a valid driver
63  * name
64  */
65 const char *btrfs_super_csum_driver(u16 csum_type)
66 {
67 	/* csum type is validated at mount time */
68 	return btrfs_csums[csum_type].driver[0] ?
69 		btrfs_csums[csum_type].driver :
70 		btrfs_csums[csum_type].name;
71 }
72 
73 size_t __attribute_const__ btrfs_get_num_csums(void)
74 {
75 	return ARRAY_SIZE(btrfs_csums);
76 }
77 
78 struct btrfs_path *btrfs_alloc_path(void)
79 {
80 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81 }
82 
83 /* this also releases the path */
84 void btrfs_free_path(struct btrfs_path *p)
85 {
86 	if (!p)
87 		return;
88 	btrfs_release_path(p);
89 	kmem_cache_free(btrfs_path_cachep, p);
90 }
91 
92 /*
93  * path release drops references on the extent buffers in the path
94  * and it drops any locks held by this path
95  *
96  * It is safe to call this on paths that no locks or extent buffers held.
97  */
98 noinline void btrfs_release_path(struct btrfs_path *p)
99 {
100 	int i;
101 
102 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
103 		p->slots[i] = 0;
104 		if (!p->nodes[i])
105 			continue;
106 		if (p->locks[i]) {
107 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
108 			p->locks[i] = 0;
109 		}
110 		free_extent_buffer(p->nodes[i]);
111 		p->nodes[i] = NULL;
112 	}
113 }
114 
115 /*
116  * safely gets a reference on the root node of a tree.  A lock
117  * is not taken, so a concurrent writer may put a different node
118  * at the root of the tree.  See btrfs_lock_root_node for the
119  * looping required.
120  *
121  * The extent buffer returned by this has a reference taken, so
122  * it won't disappear.  It may stop being the root of the tree
123  * at any time because there are no locks held.
124  */
125 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126 {
127 	struct extent_buffer *eb;
128 
129 	while (1) {
130 		rcu_read_lock();
131 		eb = rcu_dereference(root->node);
132 
133 		/*
134 		 * RCU really hurts here, we could free up the root node because
135 		 * it was COWed but we may not get the new root node yet so do
136 		 * the inc_not_zero dance and if it doesn't work then
137 		 * synchronize_rcu and try again.
138 		 */
139 		if (atomic_inc_not_zero(&eb->refs)) {
140 			rcu_read_unlock();
141 			break;
142 		}
143 		rcu_read_unlock();
144 		synchronize_rcu();
145 	}
146 	return eb;
147 }
148 
149 /*
150  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
151  * just get put onto a simple dirty list.  Transaction walks this list to make
152  * sure they get properly updated on disk.
153  */
154 static void add_root_to_dirty_list(struct btrfs_root *root)
155 {
156 	struct btrfs_fs_info *fs_info = root->fs_info;
157 
158 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
159 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
160 		return;
161 
162 	spin_lock(&fs_info->trans_lock);
163 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
164 		/* Want the extent tree to be the last on the list */
165 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
166 			list_move_tail(&root->dirty_list,
167 				       &fs_info->dirty_cowonly_roots);
168 		else
169 			list_move(&root->dirty_list,
170 				  &fs_info->dirty_cowonly_roots);
171 	}
172 	spin_unlock(&fs_info->trans_lock);
173 }
174 
175 /*
176  * used by snapshot creation to make a copy of a root for a tree with
177  * a given objectid.  The buffer with the new root node is returned in
178  * cow_ret, and this func returns zero on success or a negative error code.
179  */
180 int btrfs_copy_root(struct btrfs_trans_handle *trans,
181 		      struct btrfs_root *root,
182 		      struct extent_buffer *buf,
183 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
184 {
185 	struct btrfs_fs_info *fs_info = root->fs_info;
186 	struct extent_buffer *cow;
187 	int ret = 0;
188 	int level;
189 	struct btrfs_disk_key disk_key;
190 
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != fs_info->running_transaction->transid);
193 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
194 		trans->transid != root->last_trans);
195 
196 	level = btrfs_header_level(buf);
197 	if (level == 0)
198 		btrfs_item_key(buf, &disk_key, 0);
199 	else
200 		btrfs_node_key(buf, &disk_key, 0);
201 
202 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
203 				     &disk_key, level, buf->start, 0,
204 				     BTRFS_NESTING_NEW_ROOT);
205 	if (IS_ERR(cow))
206 		return PTR_ERR(cow);
207 
208 	copy_extent_buffer_full(cow, buf);
209 	btrfs_set_header_bytenr(cow, cow->start);
210 	btrfs_set_header_generation(cow, trans->transid);
211 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
212 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
213 				     BTRFS_HEADER_FLAG_RELOC);
214 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
215 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216 	else
217 		btrfs_set_header_owner(cow, new_root_objectid);
218 
219 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220 
221 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
222 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223 		ret = btrfs_inc_ref(trans, root, cow, 1);
224 	else
225 		ret = btrfs_inc_ref(trans, root, cow, 0);
226 	if (ret) {
227 		btrfs_tree_unlock(cow);
228 		free_extent_buffer(cow);
229 		btrfs_abort_transaction(trans, ret);
230 		return ret;
231 	}
232 
233 	btrfs_mark_buffer_dirty(cow);
234 	*cow_ret = cow;
235 	return 0;
236 }
237 
238 /*
239  * check if the tree block can be shared by multiple trees
240  */
241 int btrfs_block_can_be_shared(struct btrfs_root *root,
242 			      struct extent_buffer *buf)
243 {
244 	/*
245 	 * Tree blocks not in shareable trees and tree roots are never shared.
246 	 * If a block was allocated after the last snapshot and the block was
247 	 * not allocated by tree relocation, we know the block is not shared.
248 	 */
249 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
250 	    buf != root->node && buf != root->commit_root &&
251 	    (btrfs_header_generation(buf) <=
252 	     btrfs_root_last_snapshot(&root->root_item) ||
253 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
254 		return 1;
255 
256 	return 0;
257 }
258 
259 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
260 				       struct btrfs_root *root,
261 				       struct extent_buffer *buf,
262 				       struct extent_buffer *cow,
263 				       int *last_ref)
264 {
265 	struct btrfs_fs_info *fs_info = root->fs_info;
266 	u64 refs;
267 	u64 owner;
268 	u64 flags;
269 	u64 new_flags = 0;
270 	int ret;
271 
272 	/*
273 	 * Backrefs update rules:
274 	 *
275 	 * Always use full backrefs for extent pointers in tree block
276 	 * allocated by tree relocation.
277 	 *
278 	 * If a shared tree block is no longer referenced by its owner
279 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
280 	 * use full backrefs for extent pointers in tree block.
281 	 *
282 	 * If a tree block is been relocating
283 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
284 	 * use full backrefs for extent pointers in tree block.
285 	 * The reason for this is some operations (such as drop tree)
286 	 * are only allowed for blocks use full backrefs.
287 	 */
288 
289 	if (btrfs_block_can_be_shared(root, buf)) {
290 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
291 					       btrfs_header_level(buf), 1,
292 					       &refs, &flags);
293 		if (ret)
294 			return ret;
295 		if (refs == 0) {
296 			ret = -EROFS;
297 			btrfs_handle_fs_error(fs_info, ret, NULL);
298 			return ret;
299 		}
300 	} else {
301 		refs = 1;
302 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
303 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
304 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
305 		else
306 			flags = 0;
307 	}
308 
309 	owner = btrfs_header_owner(buf);
310 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
311 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
312 
313 	if (refs > 1) {
314 		if ((owner == root->root_key.objectid ||
315 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
316 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
317 			ret = btrfs_inc_ref(trans, root, buf, 1);
318 			if (ret)
319 				return ret;
320 
321 			if (root->root_key.objectid ==
322 			    BTRFS_TREE_RELOC_OBJECTID) {
323 				ret = btrfs_dec_ref(trans, root, buf, 0);
324 				if (ret)
325 					return ret;
326 				ret = btrfs_inc_ref(trans, root, cow, 1);
327 				if (ret)
328 					return ret;
329 			}
330 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
331 		} else {
332 
333 			if (root->root_key.objectid ==
334 			    BTRFS_TREE_RELOC_OBJECTID)
335 				ret = btrfs_inc_ref(trans, root, cow, 1);
336 			else
337 				ret = btrfs_inc_ref(trans, root, cow, 0);
338 			if (ret)
339 				return ret;
340 		}
341 		if (new_flags != 0) {
342 			int level = btrfs_header_level(buf);
343 
344 			ret = btrfs_set_disk_extent_flags(trans, buf,
345 							  new_flags, level, 0);
346 			if (ret)
347 				return ret;
348 		}
349 	} else {
350 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
351 			if (root->root_key.objectid ==
352 			    BTRFS_TREE_RELOC_OBJECTID)
353 				ret = btrfs_inc_ref(trans, root, cow, 1);
354 			else
355 				ret = btrfs_inc_ref(trans, root, cow, 0);
356 			if (ret)
357 				return ret;
358 			ret = btrfs_dec_ref(trans, root, buf, 1);
359 			if (ret)
360 				return ret;
361 		}
362 		btrfs_clean_tree_block(buf);
363 		*last_ref = 1;
364 	}
365 	return 0;
366 }
367 
368 /*
369  * does the dirty work in cow of a single block.  The parent block (if
370  * supplied) is updated to point to the new cow copy.  The new buffer is marked
371  * dirty and returned locked.  If you modify the block it needs to be marked
372  * dirty again.
373  *
374  * search_start -- an allocation hint for the new block
375  *
376  * empty_size -- a hint that you plan on doing more cow.  This is the size in
377  * bytes the allocator should try to find free next to the block it returns.
378  * This is just a hint and may be ignored by the allocator.
379  */
380 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
381 			     struct btrfs_root *root,
382 			     struct extent_buffer *buf,
383 			     struct extent_buffer *parent, int parent_slot,
384 			     struct extent_buffer **cow_ret,
385 			     u64 search_start, u64 empty_size,
386 			     enum btrfs_lock_nesting nest)
387 {
388 	struct btrfs_fs_info *fs_info = root->fs_info;
389 	struct btrfs_disk_key disk_key;
390 	struct extent_buffer *cow;
391 	int level, ret;
392 	int last_ref = 0;
393 	int unlock_orig = 0;
394 	u64 parent_start = 0;
395 
396 	if (*cow_ret == buf)
397 		unlock_orig = 1;
398 
399 	btrfs_assert_tree_write_locked(buf);
400 
401 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
402 		trans->transid != fs_info->running_transaction->transid);
403 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
404 		trans->transid != root->last_trans);
405 
406 	level = btrfs_header_level(buf);
407 
408 	if (level == 0)
409 		btrfs_item_key(buf, &disk_key, 0);
410 	else
411 		btrfs_node_key(buf, &disk_key, 0);
412 
413 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
414 		parent_start = parent->start;
415 
416 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
417 				     root->root_key.objectid, &disk_key, level,
418 				     search_start, empty_size, nest);
419 	if (IS_ERR(cow))
420 		return PTR_ERR(cow);
421 
422 	/* cow is set to blocking by btrfs_init_new_buffer */
423 
424 	copy_extent_buffer_full(cow, buf);
425 	btrfs_set_header_bytenr(cow, cow->start);
426 	btrfs_set_header_generation(cow, trans->transid);
427 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429 				     BTRFS_HEADER_FLAG_RELOC);
430 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 	else
433 		btrfs_set_header_owner(cow, root->root_key.objectid);
434 
435 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436 
437 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438 	if (ret) {
439 		btrfs_tree_unlock(cow);
440 		free_extent_buffer(cow);
441 		btrfs_abort_transaction(trans, ret);
442 		return ret;
443 	}
444 
445 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
446 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447 		if (ret) {
448 			btrfs_tree_unlock(cow);
449 			free_extent_buffer(cow);
450 			btrfs_abort_transaction(trans, ret);
451 			return ret;
452 		}
453 	}
454 
455 	if (buf == root->node) {
456 		WARN_ON(parent && parent != buf);
457 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459 			parent_start = buf->start;
460 
461 		atomic_inc(&cow->refs);
462 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463 		BUG_ON(ret < 0);
464 		rcu_assign_pointer(root->node, cow);
465 
466 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
467 				      parent_start, last_ref);
468 		free_extent_buffer(buf);
469 		add_root_to_dirty_list(root);
470 	} else {
471 		WARN_ON(trans->transid != btrfs_header_generation(parent));
472 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
473 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
474 		btrfs_set_node_blockptr(parent, parent_slot,
475 					cow->start);
476 		btrfs_set_node_ptr_generation(parent, parent_slot,
477 					      trans->transid);
478 		btrfs_mark_buffer_dirty(parent);
479 		if (last_ref) {
480 			ret = btrfs_tree_mod_log_free_eb(buf);
481 			if (ret) {
482 				btrfs_tree_unlock(cow);
483 				free_extent_buffer(cow);
484 				btrfs_abort_transaction(trans, ret);
485 				return ret;
486 			}
487 		}
488 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
489 				      parent_start, last_ref);
490 	}
491 	if (unlock_orig)
492 		btrfs_tree_unlock(buf);
493 	free_extent_buffer_stale(buf);
494 	btrfs_mark_buffer_dirty(cow);
495 	*cow_ret = cow;
496 	return 0;
497 }
498 
499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
500 				   struct btrfs_root *root,
501 				   struct extent_buffer *buf)
502 {
503 	if (btrfs_is_testing(root->fs_info))
504 		return 0;
505 
506 	/* Ensure we can see the FORCE_COW bit */
507 	smp_mb__before_atomic();
508 
509 	/*
510 	 * We do not need to cow a block if
511 	 * 1) this block is not created or changed in this transaction;
512 	 * 2) this block does not belong to TREE_RELOC tree;
513 	 * 3) the root is not forced COW.
514 	 *
515 	 * What is forced COW:
516 	 *    when we create snapshot during committing the transaction,
517 	 *    after we've finished copying src root, we must COW the shared
518 	 *    block to ensure the metadata consistency.
519 	 */
520 	if (btrfs_header_generation(buf) == trans->transid &&
521 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
522 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
523 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
524 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
525 		return 0;
526 	return 1;
527 }
528 
529 /*
530  * cows a single block, see __btrfs_cow_block for the real work.
531  * This version of it has extra checks so that a block isn't COWed more than
532  * once per transaction, as long as it hasn't been written yet
533  */
534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
535 		    struct btrfs_root *root, struct extent_buffer *buf,
536 		    struct extent_buffer *parent, int parent_slot,
537 		    struct extent_buffer **cow_ret,
538 		    enum btrfs_lock_nesting nest)
539 {
540 	struct btrfs_fs_info *fs_info = root->fs_info;
541 	u64 search_start;
542 	int ret;
543 
544 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545 		btrfs_err(fs_info,
546 			"COW'ing blocks on a fs root that's being dropped");
547 
548 	if (trans->transaction != fs_info->running_transaction)
549 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
550 		       trans->transid,
551 		       fs_info->running_transaction->transid);
552 
553 	if (trans->transid != fs_info->generation)
554 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
555 		       trans->transid, fs_info->generation);
556 
557 	if (!should_cow_block(trans, root, buf)) {
558 		*cow_ret = buf;
559 		return 0;
560 	}
561 
562 	search_start = buf->start & ~((u64)SZ_1G - 1);
563 
564 	/*
565 	 * Before CoWing this block for later modification, check if it's
566 	 * the subtree root and do the delayed subtree trace if needed.
567 	 *
568 	 * Also We don't care about the error, as it's handled internally.
569 	 */
570 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
571 	ret = __btrfs_cow_block(trans, root, buf, parent,
572 				 parent_slot, cow_ret, search_start, 0, nest);
573 
574 	trace_btrfs_cow_block(root, buf, *cow_ret);
575 
576 	return ret;
577 }
578 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
579 
580 /*
581  * helper function for defrag to decide if two blocks pointed to by a
582  * node are actually close by
583  */
584 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585 {
586 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
587 		return 1;
588 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
589 		return 1;
590 	return 0;
591 }
592 
593 #ifdef __LITTLE_ENDIAN
594 
595 /*
596  * Compare two keys, on little-endian the disk order is same as CPU order and
597  * we can avoid the conversion.
598  */
599 static int comp_keys(const struct btrfs_disk_key *disk_key,
600 		     const struct btrfs_key *k2)
601 {
602 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603 
604 	return btrfs_comp_cpu_keys(k1, k2);
605 }
606 
607 #else
608 
609 /*
610  * compare two keys in a memcmp fashion
611  */
612 static int comp_keys(const struct btrfs_disk_key *disk,
613 		     const struct btrfs_key *k2)
614 {
615 	struct btrfs_key k1;
616 
617 	btrfs_disk_key_to_cpu(&k1, disk);
618 
619 	return btrfs_comp_cpu_keys(&k1, k2);
620 }
621 #endif
622 
623 /*
624  * same as comp_keys only with two btrfs_key's
625  */
626 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627 {
628 	if (k1->objectid > k2->objectid)
629 		return 1;
630 	if (k1->objectid < k2->objectid)
631 		return -1;
632 	if (k1->type > k2->type)
633 		return 1;
634 	if (k1->type < k2->type)
635 		return -1;
636 	if (k1->offset > k2->offset)
637 		return 1;
638 	if (k1->offset < k2->offset)
639 		return -1;
640 	return 0;
641 }
642 
643 /*
644  * this is used by the defrag code to go through all the
645  * leaves pointed to by a node and reallocate them so that
646  * disk order is close to key order
647  */
648 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
649 		       struct btrfs_root *root, struct extent_buffer *parent,
650 		       int start_slot, u64 *last_ret,
651 		       struct btrfs_key *progress)
652 {
653 	struct btrfs_fs_info *fs_info = root->fs_info;
654 	struct extent_buffer *cur;
655 	u64 blocknr;
656 	u64 search_start = *last_ret;
657 	u64 last_block = 0;
658 	u64 other;
659 	u32 parent_nritems;
660 	int end_slot;
661 	int i;
662 	int err = 0;
663 	u32 blocksize;
664 	int progress_passed = 0;
665 	struct btrfs_disk_key disk_key;
666 
667 	WARN_ON(trans->transaction != fs_info->running_transaction);
668 	WARN_ON(trans->transid != fs_info->generation);
669 
670 	parent_nritems = btrfs_header_nritems(parent);
671 	blocksize = fs_info->nodesize;
672 	end_slot = parent_nritems - 1;
673 
674 	if (parent_nritems <= 1)
675 		return 0;
676 
677 	for (i = start_slot; i <= end_slot; i++) {
678 		int close = 1;
679 
680 		btrfs_node_key(parent, &disk_key, i);
681 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
682 			continue;
683 
684 		progress_passed = 1;
685 		blocknr = btrfs_node_blockptr(parent, i);
686 		if (last_block == 0)
687 			last_block = blocknr;
688 
689 		if (i > 0) {
690 			other = btrfs_node_blockptr(parent, i - 1);
691 			close = close_blocks(blocknr, other, blocksize);
692 		}
693 		if (!close && i < end_slot) {
694 			other = btrfs_node_blockptr(parent, i + 1);
695 			close = close_blocks(blocknr, other, blocksize);
696 		}
697 		if (close) {
698 			last_block = blocknr;
699 			continue;
700 		}
701 
702 		cur = btrfs_read_node_slot(parent, i);
703 		if (IS_ERR(cur))
704 			return PTR_ERR(cur);
705 		if (search_start == 0)
706 			search_start = last_block;
707 
708 		btrfs_tree_lock(cur);
709 		err = __btrfs_cow_block(trans, root, cur, parent, i,
710 					&cur, search_start,
711 					min(16 * blocksize,
712 					    (end_slot - i) * blocksize),
713 					BTRFS_NESTING_COW);
714 		if (err) {
715 			btrfs_tree_unlock(cur);
716 			free_extent_buffer(cur);
717 			break;
718 		}
719 		search_start = cur->start;
720 		last_block = cur->start;
721 		*last_ret = search_start;
722 		btrfs_tree_unlock(cur);
723 		free_extent_buffer(cur);
724 	}
725 	return err;
726 }
727 
728 /*
729  * search for key in the extent_buffer.  The items start at offset p,
730  * and they are item_size apart.
731  *
732  * the slot in the array is returned via slot, and it points to
733  * the place where you would insert key if it is not found in
734  * the array.
735  *
736  * Slot may point to total number of items if the key is bigger than
737  * all of the keys
738  */
739 static noinline int generic_bin_search(struct extent_buffer *eb,
740 				       unsigned long p, int item_size,
741 				       const struct btrfs_key *key, int *slot)
742 {
743 	int low = 0;
744 	int high = btrfs_header_nritems(eb);
745 	int ret;
746 	const int key_size = sizeof(struct btrfs_disk_key);
747 
748 	if (low > high) {
749 		btrfs_err(eb->fs_info,
750 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
751 			  __func__, low, high, eb->start,
752 			  btrfs_header_owner(eb), btrfs_header_level(eb));
753 		return -EINVAL;
754 	}
755 
756 	while (low < high) {
757 		unsigned long oip;
758 		unsigned long offset;
759 		struct btrfs_disk_key *tmp;
760 		struct btrfs_disk_key unaligned;
761 		int mid;
762 
763 		mid = (low + high) / 2;
764 		offset = p + mid * item_size;
765 		oip = offset_in_page(offset);
766 
767 		if (oip + key_size <= PAGE_SIZE) {
768 			const unsigned long idx = get_eb_page_index(offset);
769 			char *kaddr = page_address(eb->pages[idx]);
770 
771 			oip = get_eb_offset_in_page(eb, offset);
772 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
773 		} else {
774 			read_extent_buffer(eb, &unaligned, offset, key_size);
775 			tmp = &unaligned;
776 		}
777 
778 		ret = comp_keys(tmp, key);
779 
780 		if (ret < 0)
781 			low = mid + 1;
782 		else if (ret > 0)
783 			high = mid;
784 		else {
785 			*slot = mid;
786 			return 0;
787 		}
788 	}
789 	*slot = low;
790 	return 1;
791 }
792 
793 /*
794  * simple bin_search frontend that does the right thing for
795  * leaves vs nodes
796  */
797 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
798 		     int *slot)
799 {
800 	if (btrfs_header_level(eb) == 0)
801 		return generic_bin_search(eb,
802 					  offsetof(struct btrfs_leaf, items),
803 					  sizeof(struct btrfs_item), key, slot);
804 	else
805 		return generic_bin_search(eb,
806 					  offsetof(struct btrfs_node, ptrs),
807 					  sizeof(struct btrfs_key_ptr), key, slot);
808 }
809 
810 static void root_add_used(struct btrfs_root *root, u32 size)
811 {
812 	spin_lock(&root->accounting_lock);
813 	btrfs_set_root_used(&root->root_item,
814 			    btrfs_root_used(&root->root_item) + size);
815 	spin_unlock(&root->accounting_lock);
816 }
817 
818 static void root_sub_used(struct btrfs_root *root, u32 size)
819 {
820 	spin_lock(&root->accounting_lock);
821 	btrfs_set_root_used(&root->root_item,
822 			    btrfs_root_used(&root->root_item) - size);
823 	spin_unlock(&root->accounting_lock);
824 }
825 
826 /* given a node and slot number, this reads the blocks it points to.  The
827  * extent buffer is returned with a reference taken (but unlocked).
828  */
829 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
830 					   int slot)
831 {
832 	int level = btrfs_header_level(parent);
833 	struct extent_buffer *eb;
834 	struct btrfs_key first_key;
835 
836 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
837 		return ERR_PTR(-ENOENT);
838 
839 	BUG_ON(level == 0);
840 
841 	btrfs_node_key_to_cpu(parent, &first_key, slot);
842 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
843 			     btrfs_header_owner(parent),
844 			     btrfs_node_ptr_generation(parent, slot),
845 			     level - 1, &first_key);
846 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
847 		free_extent_buffer(eb);
848 		eb = ERR_PTR(-EIO);
849 	}
850 
851 	return eb;
852 }
853 
854 /*
855  * node level balancing, used to make sure nodes are in proper order for
856  * item deletion.  We balance from the top down, so we have to make sure
857  * that a deletion won't leave an node completely empty later on.
858  */
859 static noinline int balance_level(struct btrfs_trans_handle *trans,
860 			 struct btrfs_root *root,
861 			 struct btrfs_path *path, int level)
862 {
863 	struct btrfs_fs_info *fs_info = root->fs_info;
864 	struct extent_buffer *right = NULL;
865 	struct extent_buffer *mid;
866 	struct extent_buffer *left = NULL;
867 	struct extent_buffer *parent = NULL;
868 	int ret = 0;
869 	int wret;
870 	int pslot;
871 	int orig_slot = path->slots[level];
872 	u64 orig_ptr;
873 
874 	ASSERT(level > 0);
875 
876 	mid = path->nodes[level];
877 
878 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
879 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
880 
881 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
882 
883 	if (level < BTRFS_MAX_LEVEL - 1) {
884 		parent = path->nodes[level + 1];
885 		pslot = path->slots[level + 1];
886 	}
887 
888 	/*
889 	 * deal with the case where there is only one pointer in the root
890 	 * by promoting the node below to a root
891 	 */
892 	if (!parent) {
893 		struct extent_buffer *child;
894 
895 		if (btrfs_header_nritems(mid) != 1)
896 			return 0;
897 
898 		/* promote the child to a root */
899 		child = btrfs_read_node_slot(mid, 0);
900 		if (IS_ERR(child)) {
901 			ret = PTR_ERR(child);
902 			btrfs_handle_fs_error(fs_info, ret, NULL);
903 			goto enospc;
904 		}
905 
906 		btrfs_tree_lock(child);
907 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
908 				      BTRFS_NESTING_COW);
909 		if (ret) {
910 			btrfs_tree_unlock(child);
911 			free_extent_buffer(child);
912 			goto enospc;
913 		}
914 
915 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
916 		BUG_ON(ret < 0);
917 		rcu_assign_pointer(root->node, child);
918 
919 		add_root_to_dirty_list(root);
920 		btrfs_tree_unlock(child);
921 
922 		path->locks[level] = 0;
923 		path->nodes[level] = NULL;
924 		btrfs_clean_tree_block(mid);
925 		btrfs_tree_unlock(mid);
926 		/* once for the path */
927 		free_extent_buffer(mid);
928 
929 		root_sub_used(root, mid->len);
930 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
931 		/* once for the root ptr */
932 		free_extent_buffer_stale(mid);
933 		return 0;
934 	}
935 	if (btrfs_header_nritems(mid) >
936 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
937 		return 0;
938 
939 	left = btrfs_read_node_slot(parent, pslot - 1);
940 	if (IS_ERR(left))
941 		left = NULL;
942 
943 	if (left) {
944 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
945 		wret = btrfs_cow_block(trans, root, left,
946 				       parent, pslot - 1, &left,
947 				       BTRFS_NESTING_LEFT_COW);
948 		if (wret) {
949 			ret = wret;
950 			goto enospc;
951 		}
952 	}
953 
954 	right = btrfs_read_node_slot(parent, pslot + 1);
955 	if (IS_ERR(right))
956 		right = NULL;
957 
958 	if (right) {
959 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
960 		wret = btrfs_cow_block(trans, root, right,
961 				       parent, pslot + 1, &right,
962 				       BTRFS_NESTING_RIGHT_COW);
963 		if (wret) {
964 			ret = wret;
965 			goto enospc;
966 		}
967 	}
968 
969 	/* first, try to make some room in the middle buffer */
970 	if (left) {
971 		orig_slot += btrfs_header_nritems(left);
972 		wret = push_node_left(trans, left, mid, 1);
973 		if (wret < 0)
974 			ret = wret;
975 	}
976 
977 	/*
978 	 * then try to empty the right most buffer into the middle
979 	 */
980 	if (right) {
981 		wret = push_node_left(trans, mid, right, 1);
982 		if (wret < 0 && wret != -ENOSPC)
983 			ret = wret;
984 		if (btrfs_header_nritems(right) == 0) {
985 			btrfs_clean_tree_block(right);
986 			btrfs_tree_unlock(right);
987 			del_ptr(root, path, level + 1, pslot + 1);
988 			root_sub_used(root, right->len);
989 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
990 					      0, 1);
991 			free_extent_buffer_stale(right);
992 			right = NULL;
993 		} else {
994 			struct btrfs_disk_key right_key;
995 			btrfs_node_key(right, &right_key, 0);
996 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
997 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
998 			BUG_ON(ret < 0);
999 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1000 			btrfs_mark_buffer_dirty(parent);
1001 		}
1002 	}
1003 	if (btrfs_header_nritems(mid) == 1) {
1004 		/*
1005 		 * we're not allowed to leave a node with one item in the
1006 		 * tree during a delete.  A deletion from lower in the tree
1007 		 * could try to delete the only pointer in this node.
1008 		 * So, pull some keys from the left.
1009 		 * There has to be a left pointer at this point because
1010 		 * otherwise we would have pulled some pointers from the
1011 		 * right
1012 		 */
1013 		if (!left) {
1014 			ret = -EROFS;
1015 			btrfs_handle_fs_error(fs_info, ret, NULL);
1016 			goto enospc;
1017 		}
1018 		wret = balance_node_right(trans, mid, left);
1019 		if (wret < 0) {
1020 			ret = wret;
1021 			goto enospc;
1022 		}
1023 		if (wret == 1) {
1024 			wret = push_node_left(trans, left, mid, 1);
1025 			if (wret < 0)
1026 				ret = wret;
1027 		}
1028 		BUG_ON(wret == 1);
1029 	}
1030 	if (btrfs_header_nritems(mid) == 0) {
1031 		btrfs_clean_tree_block(mid);
1032 		btrfs_tree_unlock(mid);
1033 		del_ptr(root, path, level + 1, pslot);
1034 		root_sub_used(root, mid->len);
1035 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1036 		free_extent_buffer_stale(mid);
1037 		mid = NULL;
1038 	} else {
1039 		/* update the parent key to reflect our changes */
1040 		struct btrfs_disk_key mid_key;
1041 		btrfs_node_key(mid, &mid_key, 0);
1042 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1043 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1044 		BUG_ON(ret < 0);
1045 		btrfs_set_node_key(parent, &mid_key, pslot);
1046 		btrfs_mark_buffer_dirty(parent);
1047 	}
1048 
1049 	/* update the path */
1050 	if (left) {
1051 		if (btrfs_header_nritems(left) > orig_slot) {
1052 			atomic_inc(&left->refs);
1053 			/* left was locked after cow */
1054 			path->nodes[level] = left;
1055 			path->slots[level + 1] -= 1;
1056 			path->slots[level] = orig_slot;
1057 			if (mid) {
1058 				btrfs_tree_unlock(mid);
1059 				free_extent_buffer(mid);
1060 			}
1061 		} else {
1062 			orig_slot -= btrfs_header_nritems(left);
1063 			path->slots[level] = orig_slot;
1064 		}
1065 	}
1066 	/* double check we haven't messed things up */
1067 	if (orig_ptr !=
1068 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1069 		BUG();
1070 enospc:
1071 	if (right) {
1072 		btrfs_tree_unlock(right);
1073 		free_extent_buffer(right);
1074 	}
1075 	if (left) {
1076 		if (path->nodes[level] != left)
1077 			btrfs_tree_unlock(left);
1078 		free_extent_buffer(left);
1079 	}
1080 	return ret;
1081 }
1082 
1083 /* Node balancing for insertion.  Here we only split or push nodes around
1084  * when they are completely full.  This is also done top down, so we
1085  * have to be pessimistic.
1086  */
1087 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1088 					  struct btrfs_root *root,
1089 					  struct btrfs_path *path, int level)
1090 {
1091 	struct btrfs_fs_info *fs_info = root->fs_info;
1092 	struct extent_buffer *right = NULL;
1093 	struct extent_buffer *mid;
1094 	struct extent_buffer *left = NULL;
1095 	struct extent_buffer *parent = NULL;
1096 	int ret = 0;
1097 	int wret;
1098 	int pslot;
1099 	int orig_slot = path->slots[level];
1100 
1101 	if (level == 0)
1102 		return 1;
1103 
1104 	mid = path->nodes[level];
1105 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1106 
1107 	if (level < BTRFS_MAX_LEVEL - 1) {
1108 		parent = path->nodes[level + 1];
1109 		pslot = path->slots[level + 1];
1110 	}
1111 
1112 	if (!parent)
1113 		return 1;
1114 
1115 	left = btrfs_read_node_slot(parent, pslot - 1);
1116 	if (IS_ERR(left))
1117 		left = NULL;
1118 
1119 	/* first, try to make some room in the middle buffer */
1120 	if (left) {
1121 		u32 left_nr;
1122 
1123 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1124 
1125 		left_nr = btrfs_header_nritems(left);
1126 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1127 			wret = 1;
1128 		} else {
1129 			ret = btrfs_cow_block(trans, root, left, parent,
1130 					      pslot - 1, &left,
1131 					      BTRFS_NESTING_LEFT_COW);
1132 			if (ret)
1133 				wret = 1;
1134 			else {
1135 				wret = push_node_left(trans, left, mid, 0);
1136 			}
1137 		}
1138 		if (wret < 0)
1139 			ret = wret;
1140 		if (wret == 0) {
1141 			struct btrfs_disk_key disk_key;
1142 			orig_slot += left_nr;
1143 			btrfs_node_key(mid, &disk_key, 0);
1144 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1145 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1146 			BUG_ON(ret < 0);
1147 			btrfs_set_node_key(parent, &disk_key, pslot);
1148 			btrfs_mark_buffer_dirty(parent);
1149 			if (btrfs_header_nritems(left) > orig_slot) {
1150 				path->nodes[level] = left;
1151 				path->slots[level + 1] -= 1;
1152 				path->slots[level] = orig_slot;
1153 				btrfs_tree_unlock(mid);
1154 				free_extent_buffer(mid);
1155 			} else {
1156 				orig_slot -=
1157 					btrfs_header_nritems(left);
1158 				path->slots[level] = orig_slot;
1159 				btrfs_tree_unlock(left);
1160 				free_extent_buffer(left);
1161 			}
1162 			return 0;
1163 		}
1164 		btrfs_tree_unlock(left);
1165 		free_extent_buffer(left);
1166 	}
1167 	right = btrfs_read_node_slot(parent, pslot + 1);
1168 	if (IS_ERR(right))
1169 		right = NULL;
1170 
1171 	/*
1172 	 * then try to empty the right most buffer into the middle
1173 	 */
1174 	if (right) {
1175 		u32 right_nr;
1176 
1177 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1178 
1179 		right_nr = btrfs_header_nritems(right);
1180 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1181 			wret = 1;
1182 		} else {
1183 			ret = btrfs_cow_block(trans, root, right,
1184 					      parent, pslot + 1,
1185 					      &right, BTRFS_NESTING_RIGHT_COW);
1186 			if (ret)
1187 				wret = 1;
1188 			else {
1189 				wret = balance_node_right(trans, right, mid);
1190 			}
1191 		}
1192 		if (wret < 0)
1193 			ret = wret;
1194 		if (wret == 0) {
1195 			struct btrfs_disk_key disk_key;
1196 
1197 			btrfs_node_key(right, &disk_key, 0);
1198 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1199 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1200 			BUG_ON(ret < 0);
1201 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1202 			btrfs_mark_buffer_dirty(parent);
1203 
1204 			if (btrfs_header_nritems(mid) <= orig_slot) {
1205 				path->nodes[level] = right;
1206 				path->slots[level + 1] += 1;
1207 				path->slots[level] = orig_slot -
1208 					btrfs_header_nritems(mid);
1209 				btrfs_tree_unlock(mid);
1210 				free_extent_buffer(mid);
1211 			} else {
1212 				btrfs_tree_unlock(right);
1213 				free_extent_buffer(right);
1214 			}
1215 			return 0;
1216 		}
1217 		btrfs_tree_unlock(right);
1218 		free_extent_buffer(right);
1219 	}
1220 	return 1;
1221 }
1222 
1223 /*
1224  * readahead one full node of leaves, finding things that are close
1225  * to the block in 'slot', and triggering ra on them.
1226  */
1227 static void reada_for_search(struct btrfs_fs_info *fs_info,
1228 			     struct btrfs_path *path,
1229 			     int level, int slot, u64 objectid)
1230 {
1231 	struct extent_buffer *node;
1232 	struct btrfs_disk_key disk_key;
1233 	u32 nritems;
1234 	u64 search;
1235 	u64 target;
1236 	u64 nread = 0;
1237 	u64 nread_max;
1238 	u32 nr;
1239 	u32 blocksize;
1240 	u32 nscan = 0;
1241 
1242 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1243 		return;
1244 
1245 	if (!path->nodes[level])
1246 		return;
1247 
1248 	node = path->nodes[level];
1249 
1250 	/*
1251 	 * Since the time between visiting leaves is much shorter than the time
1252 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1253 	 * much IO at once (possibly random).
1254 	 */
1255 	if (path->reada == READA_FORWARD_ALWAYS) {
1256 		if (level > 1)
1257 			nread_max = node->fs_info->nodesize;
1258 		else
1259 			nread_max = SZ_128K;
1260 	} else {
1261 		nread_max = SZ_64K;
1262 	}
1263 
1264 	search = btrfs_node_blockptr(node, slot);
1265 	blocksize = fs_info->nodesize;
1266 	if (path->reada != READA_FORWARD_ALWAYS) {
1267 		struct extent_buffer *eb;
1268 
1269 		eb = find_extent_buffer(fs_info, search);
1270 		if (eb) {
1271 			free_extent_buffer(eb);
1272 			return;
1273 		}
1274 	}
1275 
1276 	target = search;
1277 
1278 	nritems = btrfs_header_nritems(node);
1279 	nr = slot;
1280 
1281 	while (1) {
1282 		if (path->reada == READA_BACK) {
1283 			if (nr == 0)
1284 				break;
1285 			nr--;
1286 		} else if (path->reada == READA_FORWARD ||
1287 			   path->reada == READA_FORWARD_ALWAYS) {
1288 			nr++;
1289 			if (nr >= nritems)
1290 				break;
1291 		}
1292 		if (path->reada == READA_BACK && objectid) {
1293 			btrfs_node_key(node, &disk_key, nr);
1294 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1295 				break;
1296 		}
1297 		search = btrfs_node_blockptr(node, nr);
1298 		if (path->reada == READA_FORWARD_ALWAYS ||
1299 		    (search <= target && target - search <= 65536) ||
1300 		    (search > target && search - target <= 65536)) {
1301 			btrfs_readahead_node_child(node, nr);
1302 			nread += blocksize;
1303 		}
1304 		nscan++;
1305 		if (nread > nread_max || nscan > 32)
1306 			break;
1307 	}
1308 }
1309 
1310 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1311 {
1312 	struct extent_buffer *parent;
1313 	int slot;
1314 	int nritems;
1315 
1316 	parent = path->nodes[level + 1];
1317 	if (!parent)
1318 		return;
1319 
1320 	nritems = btrfs_header_nritems(parent);
1321 	slot = path->slots[level + 1];
1322 
1323 	if (slot > 0)
1324 		btrfs_readahead_node_child(parent, slot - 1);
1325 	if (slot + 1 < nritems)
1326 		btrfs_readahead_node_child(parent, slot + 1);
1327 }
1328 
1329 
1330 /*
1331  * when we walk down the tree, it is usually safe to unlock the higher layers
1332  * in the tree.  The exceptions are when our path goes through slot 0, because
1333  * operations on the tree might require changing key pointers higher up in the
1334  * tree.
1335  *
1336  * callers might also have set path->keep_locks, which tells this code to keep
1337  * the lock if the path points to the last slot in the block.  This is part of
1338  * walking through the tree, and selecting the next slot in the higher block.
1339  *
1340  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1341  * if lowest_unlock is 1, level 0 won't be unlocked
1342  */
1343 static noinline void unlock_up(struct btrfs_path *path, int level,
1344 			       int lowest_unlock, int min_write_lock_level,
1345 			       int *write_lock_level)
1346 {
1347 	int i;
1348 	int skip_level = level;
1349 	int no_skips = 0;
1350 	struct extent_buffer *t;
1351 
1352 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1353 		if (!path->nodes[i])
1354 			break;
1355 		if (!path->locks[i])
1356 			break;
1357 		if (!no_skips && path->slots[i] == 0) {
1358 			skip_level = i + 1;
1359 			continue;
1360 		}
1361 		if (!no_skips && path->keep_locks) {
1362 			u32 nritems;
1363 			t = path->nodes[i];
1364 			nritems = btrfs_header_nritems(t);
1365 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1366 				skip_level = i + 1;
1367 				continue;
1368 			}
1369 		}
1370 		if (skip_level < i && i >= lowest_unlock)
1371 			no_skips = 1;
1372 
1373 		t = path->nodes[i];
1374 		if (i >= lowest_unlock && i > skip_level) {
1375 			btrfs_tree_unlock_rw(t, path->locks[i]);
1376 			path->locks[i] = 0;
1377 			if (write_lock_level &&
1378 			    i > min_write_lock_level &&
1379 			    i <= *write_lock_level) {
1380 				*write_lock_level = i - 1;
1381 			}
1382 		}
1383 	}
1384 }
1385 
1386 /*
1387  * helper function for btrfs_search_slot.  The goal is to find a block
1388  * in cache without setting the path to blocking.  If we find the block
1389  * we return zero and the path is unchanged.
1390  *
1391  * If we can't find the block, we set the path blocking and do some
1392  * reada.  -EAGAIN is returned and the search must be repeated.
1393  */
1394 static int
1395 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1396 		      struct extent_buffer **eb_ret, int level, int slot,
1397 		      const struct btrfs_key *key)
1398 {
1399 	struct btrfs_fs_info *fs_info = root->fs_info;
1400 	u64 blocknr;
1401 	u64 gen;
1402 	struct extent_buffer *tmp;
1403 	struct btrfs_key first_key;
1404 	int ret;
1405 	int parent_level;
1406 
1407 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1408 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1409 	parent_level = btrfs_header_level(*eb_ret);
1410 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1411 
1412 	tmp = find_extent_buffer(fs_info, blocknr);
1413 	if (tmp) {
1414 		if (p->reada == READA_FORWARD_ALWAYS)
1415 			reada_for_search(fs_info, p, level, slot, key->objectid);
1416 
1417 		/* first we do an atomic uptodate check */
1418 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1419 			/*
1420 			 * Do extra check for first_key, eb can be stale due to
1421 			 * being cached, read from scrub, or have multiple
1422 			 * parents (shared tree blocks).
1423 			 */
1424 			if (btrfs_verify_level_key(tmp,
1425 					parent_level - 1, &first_key, gen)) {
1426 				free_extent_buffer(tmp);
1427 				return -EUCLEAN;
1428 			}
1429 			*eb_ret = tmp;
1430 			return 0;
1431 		}
1432 
1433 		/* now we're allowed to do a blocking uptodate check */
1434 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1435 		if (!ret) {
1436 			*eb_ret = tmp;
1437 			return 0;
1438 		}
1439 		free_extent_buffer(tmp);
1440 		btrfs_release_path(p);
1441 		return -EIO;
1442 	}
1443 
1444 	/*
1445 	 * reduce lock contention at high levels
1446 	 * of the btree by dropping locks before
1447 	 * we read.  Don't release the lock on the current
1448 	 * level because we need to walk this node to figure
1449 	 * out which blocks to read.
1450 	 */
1451 	btrfs_unlock_up_safe(p, level + 1);
1452 
1453 	if (p->reada != READA_NONE)
1454 		reada_for_search(fs_info, p, level, slot, key->objectid);
1455 
1456 	ret = -EAGAIN;
1457 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1458 			      gen, parent_level - 1, &first_key);
1459 	if (!IS_ERR(tmp)) {
1460 		/*
1461 		 * If the read above didn't mark this buffer up to date,
1462 		 * it will never end up being up to date.  Set ret to EIO now
1463 		 * and give up so that our caller doesn't loop forever
1464 		 * on our EAGAINs.
1465 		 */
1466 		if (!extent_buffer_uptodate(tmp))
1467 			ret = -EIO;
1468 		free_extent_buffer(tmp);
1469 	} else {
1470 		ret = PTR_ERR(tmp);
1471 	}
1472 
1473 	btrfs_release_path(p);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * helper function for btrfs_search_slot.  This does all of the checks
1479  * for node-level blocks and does any balancing required based on
1480  * the ins_len.
1481  *
1482  * If no extra work was required, zero is returned.  If we had to
1483  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1484  * start over
1485  */
1486 static int
1487 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1488 		       struct btrfs_root *root, struct btrfs_path *p,
1489 		       struct extent_buffer *b, int level, int ins_len,
1490 		       int *write_lock_level)
1491 {
1492 	struct btrfs_fs_info *fs_info = root->fs_info;
1493 	int ret = 0;
1494 
1495 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1496 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1497 
1498 		if (*write_lock_level < level + 1) {
1499 			*write_lock_level = level + 1;
1500 			btrfs_release_path(p);
1501 			return -EAGAIN;
1502 		}
1503 
1504 		reada_for_balance(p, level);
1505 		ret = split_node(trans, root, p, level);
1506 
1507 		b = p->nodes[level];
1508 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1509 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1510 
1511 		if (*write_lock_level < level + 1) {
1512 			*write_lock_level = level + 1;
1513 			btrfs_release_path(p);
1514 			return -EAGAIN;
1515 		}
1516 
1517 		reada_for_balance(p, level);
1518 		ret = balance_level(trans, root, p, level);
1519 		if (ret)
1520 			return ret;
1521 
1522 		b = p->nodes[level];
1523 		if (!b) {
1524 			btrfs_release_path(p);
1525 			return -EAGAIN;
1526 		}
1527 		BUG_ON(btrfs_header_nritems(b) == 1);
1528 	}
1529 	return ret;
1530 }
1531 
1532 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1533 		u64 iobjectid, u64 ioff, u8 key_type,
1534 		struct btrfs_key *found_key)
1535 {
1536 	int ret;
1537 	struct btrfs_key key;
1538 	struct extent_buffer *eb;
1539 
1540 	ASSERT(path);
1541 	ASSERT(found_key);
1542 
1543 	key.type = key_type;
1544 	key.objectid = iobjectid;
1545 	key.offset = ioff;
1546 
1547 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1548 	if (ret < 0)
1549 		return ret;
1550 
1551 	eb = path->nodes[0];
1552 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1553 		ret = btrfs_next_leaf(fs_root, path);
1554 		if (ret)
1555 			return ret;
1556 		eb = path->nodes[0];
1557 	}
1558 
1559 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1560 	if (found_key->type != key.type ||
1561 			found_key->objectid != key.objectid)
1562 		return 1;
1563 
1564 	return 0;
1565 }
1566 
1567 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1568 							struct btrfs_path *p,
1569 							int write_lock_level)
1570 {
1571 	struct btrfs_fs_info *fs_info = root->fs_info;
1572 	struct extent_buffer *b;
1573 	int root_lock;
1574 	int level = 0;
1575 
1576 	/* We try very hard to do read locks on the root */
1577 	root_lock = BTRFS_READ_LOCK;
1578 
1579 	if (p->search_commit_root) {
1580 		/*
1581 		 * The commit roots are read only so we always do read locks,
1582 		 * and we always must hold the commit_root_sem when doing
1583 		 * searches on them, the only exception is send where we don't
1584 		 * want to block transaction commits for a long time, so
1585 		 * we need to clone the commit root in order to avoid races
1586 		 * with transaction commits that create a snapshot of one of
1587 		 * the roots used by a send operation.
1588 		 */
1589 		if (p->need_commit_sem) {
1590 			down_read(&fs_info->commit_root_sem);
1591 			b = btrfs_clone_extent_buffer(root->commit_root);
1592 			up_read(&fs_info->commit_root_sem);
1593 			if (!b)
1594 				return ERR_PTR(-ENOMEM);
1595 
1596 		} else {
1597 			b = root->commit_root;
1598 			atomic_inc(&b->refs);
1599 		}
1600 		level = btrfs_header_level(b);
1601 		/*
1602 		 * Ensure that all callers have set skip_locking when
1603 		 * p->search_commit_root = 1.
1604 		 */
1605 		ASSERT(p->skip_locking == 1);
1606 
1607 		goto out;
1608 	}
1609 
1610 	if (p->skip_locking) {
1611 		b = btrfs_root_node(root);
1612 		level = btrfs_header_level(b);
1613 		goto out;
1614 	}
1615 
1616 	/*
1617 	 * If the level is set to maximum, we can skip trying to get the read
1618 	 * lock.
1619 	 */
1620 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1621 		/*
1622 		 * We don't know the level of the root node until we actually
1623 		 * have it read locked
1624 		 */
1625 		b = btrfs_read_lock_root_node(root);
1626 		level = btrfs_header_level(b);
1627 		if (level > write_lock_level)
1628 			goto out;
1629 
1630 		/* Whoops, must trade for write lock */
1631 		btrfs_tree_read_unlock(b);
1632 		free_extent_buffer(b);
1633 	}
1634 
1635 	b = btrfs_lock_root_node(root);
1636 	root_lock = BTRFS_WRITE_LOCK;
1637 
1638 	/* The level might have changed, check again */
1639 	level = btrfs_header_level(b);
1640 
1641 out:
1642 	p->nodes[level] = b;
1643 	if (!p->skip_locking)
1644 		p->locks[level] = root_lock;
1645 	/*
1646 	 * Callers are responsible for dropping b's references.
1647 	 */
1648 	return b;
1649 }
1650 
1651 
1652 /*
1653  * btrfs_search_slot - look for a key in a tree and perform necessary
1654  * modifications to preserve tree invariants.
1655  *
1656  * @trans:	Handle of transaction, used when modifying the tree
1657  * @p:		Holds all btree nodes along the search path
1658  * @root:	The root node of the tree
1659  * @key:	The key we are looking for
1660  * @ins_len:	Indicates purpose of search:
1661  *              >0  for inserts it's size of item inserted (*)
1662  *              <0  for deletions
1663  *               0  for plain searches, not modifying the tree
1664  *
1665  *              (*) If size of item inserted doesn't include
1666  *              sizeof(struct btrfs_item), then p->search_for_extension must
1667  *              be set.
1668  * @cow:	boolean should CoW operations be performed. Must always be 1
1669  *		when modifying the tree.
1670  *
1671  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1672  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1673  *
1674  * If @key is found, 0 is returned and you can find the item in the leaf level
1675  * of the path (level 0)
1676  *
1677  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1678  * points to the slot where it should be inserted
1679  *
1680  * If an error is encountered while searching the tree a negative error number
1681  * is returned
1682  */
1683 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1684 		      const struct btrfs_key *key, struct btrfs_path *p,
1685 		      int ins_len, int cow)
1686 {
1687 	struct extent_buffer *b;
1688 	int slot;
1689 	int ret;
1690 	int err;
1691 	int level;
1692 	int lowest_unlock = 1;
1693 	/* everything at write_lock_level or lower must be write locked */
1694 	int write_lock_level = 0;
1695 	u8 lowest_level = 0;
1696 	int min_write_lock_level;
1697 	int prev_cmp;
1698 
1699 	lowest_level = p->lowest_level;
1700 	WARN_ON(lowest_level && ins_len > 0);
1701 	WARN_ON(p->nodes[0] != NULL);
1702 	BUG_ON(!cow && ins_len);
1703 
1704 	if (ins_len < 0) {
1705 		lowest_unlock = 2;
1706 
1707 		/* when we are removing items, we might have to go up to level
1708 		 * two as we update tree pointers  Make sure we keep write
1709 		 * for those levels as well
1710 		 */
1711 		write_lock_level = 2;
1712 	} else if (ins_len > 0) {
1713 		/*
1714 		 * for inserting items, make sure we have a write lock on
1715 		 * level 1 so we can update keys
1716 		 */
1717 		write_lock_level = 1;
1718 	}
1719 
1720 	if (!cow)
1721 		write_lock_level = -1;
1722 
1723 	if (cow && (p->keep_locks || p->lowest_level))
1724 		write_lock_level = BTRFS_MAX_LEVEL;
1725 
1726 	min_write_lock_level = write_lock_level;
1727 
1728 again:
1729 	prev_cmp = -1;
1730 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1731 	if (IS_ERR(b)) {
1732 		ret = PTR_ERR(b);
1733 		goto done;
1734 	}
1735 
1736 	while (b) {
1737 		int dec = 0;
1738 
1739 		level = btrfs_header_level(b);
1740 
1741 		if (cow) {
1742 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1743 
1744 			/*
1745 			 * if we don't really need to cow this block
1746 			 * then we don't want to set the path blocking,
1747 			 * so we test it here
1748 			 */
1749 			if (!should_cow_block(trans, root, b))
1750 				goto cow_done;
1751 
1752 			/*
1753 			 * must have write locks on this node and the
1754 			 * parent
1755 			 */
1756 			if (level > write_lock_level ||
1757 			    (level + 1 > write_lock_level &&
1758 			    level + 1 < BTRFS_MAX_LEVEL &&
1759 			    p->nodes[level + 1])) {
1760 				write_lock_level = level + 1;
1761 				btrfs_release_path(p);
1762 				goto again;
1763 			}
1764 
1765 			if (last_level)
1766 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1767 						      &b,
1768 						      BTRFS_NESTING_COW);
1769 			else
1770 				err = btrfs_cow_block(trans, root, b,
1771 						      p->nodes[level + 1],
1772 						      p->slots[level + 1], &b,
1773 						      BTRFS_NESTING_COW);
1774 			if (err) {
1775 				ret = err;
1776 				goto done;
1777 			}
1778 		}
1779 cow_done:
1780 		p->nodes[level] = b;
1781 		/*
1782 		 * Leave path with blocking locks to avoid massive
1783 		 * lock context switch, this is made on purpose.
1784 		 */
1785 
1786 		/*
1787 		 * we have a lock on b and as long as we aren't changing
1788 		 * the tree, there is no way to for the items in b to change.
1789 		 * It is safe to drop the lock on our parent before we
1790 		 * go through the expensive btree search on b.
1791 		 *
1792 		 * If we're inserting or deleting (ins_len != 0), then we might
1793 		 * be changing slot zero, which may require changing the parent.
1794 		 * So, we can't drop the lock until after we know which slot
1795 		 * we're operating on.
1796 		 */
1797 		if (!ins_len && !p->keep_locks) {
1798 			int u = level + 1;
1799 
1800 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1801 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1802 				p->locks[u] = 0;
1803 			}
1804 		}
1805 
1806 		/*
1807 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
1808 		 * we can safely assume the target key will always be in slot 0
1809 		 * on lower levels due to the invariants BTRFS' btree provides,
1810 		 * namely that a btrfs_key_ptr entry always points to the
1811 		 * lowest key in the child node, thus we can skip searching
1812 		 * lower levels
1813 		 */
1814 		if (prev_cmp == 0) {
1815 			slot = 0;
1816 			ret = 0;
1817 		} else {
1818 			ret = btrfs_bin_search(b, key, &slot);
1819 			prev_cmp = ret;
1820 			if (ret < 0)
1821 				goto done;
1822 		}
1823 
1824 		if (level == 0) {
1825 			p->slots[level] = slot;
1826 			/*
1827 			 * Item key already exists. In this case, if we are
1828 			 * allowed to insert the item (for example, in dir_item
1829 			 * case, item key collision is allowed), it will be
1830 			 * merged with the original item. Only the item size
1831 			 * grows, no new btrfs item will be added. If
1832 			 * search_for_extension is not set, ins_len already
1833 			 * accounts the size btrfs_item, deduct it here so leaf
1834 			 * space check will be correct.
1835 			 */
1836 			if (ret == 0 && ins_len > 0 && !p->search_for_extension) {
1837 				ASSERT(ins_len >= sizeof(struct btrfs_item));
1838 				ins_len -= sizeof(struct btrfs_item);
1839 			}
1840 			if (ins_len > 0 &&
1841 			    btrfs_leaf_free_space(b) < ins_len) {
1842 				if (write_lock_level < 1) {
1843 					write_lock_level = 1;
1844 					btrfs_release_path(p);
1845 					goto again;
1846 				}
1847 
1848 				err = split_leaf(trans, root, key,
1849 						 p, ins_len, ret == 0);
1850 
1851 				BUG_ON(err > 0);
1852 				if (err) {
1853 					ret = err;
1854 					goto done;
1855 				}
1856 			}
1857 			if (!p->search_for_split)
1858 				unlock_up(p, level, lowest_unlock,
1859 					  min_write_lock_level, NULL);
1860 			goto done;
1861 		}
1862 		if (ret && slot > 0) {
1863 			dec = 1;
1864 			slot--;
1865 		}
1866 		p->slots[level] = slot;
1867 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
1868 					     &write_lock_level);
1869 		if (err == -EAGAIN)
1870 			goto again;
1871 		if (err) {
1872 			ret = err;
1873 			goto done;
1874 		}
1875 		b = p->nodes[level];
1876 		slot = p->slots[level];
1877 
1878 		/*
1879 		 * Slot 0 is special, if we change the key we have to update
1880 		 * the parent pointer which means we must have a write lock on
1881 		 * the parent
1882 		 */
1883 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
1884 			write_lock_level = level + 1;
1885 			btrfs_release_path(p);
1886 			goto again;
1887 		}
1888 
1889 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
1890 			  &write_lock_level);
1891 
1892 		if (level == lowest_level) {
1893 			if (dec)
1894 				p->slots[level]++;
1895 			goto done;
1896 		}
1897 
1898 		err = read_block_for_search(root, p, &b, level, slot, key);
1899 		if (err == -EAGAIN)
1900 			goto again;
1901 		if (err) {
1902 			ret = err;
1903 			goto done;
1904 		}
1905 
1906 		if (!p->skip_locking) {
1907 			level = btrfs_header_level(b);
1908 			if (level <= write_lock_level) {
1909 				btrfs_tree_lock(b);
1910 				p->locks[level] = BTRFS_WRITE_LOCK;
1911 			} else {
1912 				btrfs_tree_read_lock(b);
1913 				p->locks[level] = BTRFS_READ_LOCK;
1914 			}
1915 			p->nodes[level] = b;
1916 		}
1917 	}
1918 	ret = 1;
1919 done:
1920 	if (ret < 0 && !p->skip_release_on_error)
1921 		btrfs_release_path(p);
1922 	return ret;
1923 }
1924 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
1925 
1926 /*
1927  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
1928  * current state of the tree together with the operations recorded in the tree
1929  * modification log to search for the key in a previous version of this tree, as
1930  * denoted by the time_seq parameter.
1931  *
1932  * Naturally, there is no support for insert, delete or cow operations.
1933  *
1934  * The resulting path and return value will be set up as if we called
1935  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
1936  */
1937 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
1938 			  struct btrfs_path *p, u64 time_seq)
1939 {
1940 	struct btrfs_fs_info *fs_info = root->fs_info;
1941 	struct extent_buffer *b;
1942 	int slot;
1943 	int ret;
1944 	int err;
1945 	int level;
1946 	int lowest_unlock = 1;
1947 	u8 lowest_level = 0;
1948 
1949 	lowest_level = p->lowest_level;
1950 	WARN_ON(p->nodes[0] != NULL);
1951 
1952 	if (p->search_commit_root) {
1953 		BUG_ON(time_seq);
1954 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
1955 	}
1956 
1957 again:
1958 	b = btrfs_get_old_root(root, time_seq);
1959 	if (!b) {
1960 		ret = -EIO;
1961 		goto done;
1962 	}
1963 	level = btrfs_header_level(b);
1964 	p->locks[level] = BTRFS_READ_LOCK;
1965 
1966 	while (b) {
1967 		int dec = 0;
1968 
1969 		level = btrfs_header_level(b);
1970 		p->nodes[level] = b;
1971 
1972 		/*
1973 		 * we have a lock on b and as long as we aren't changing
1974 		 * the tree, there is no way to for the items in b to change.
1975 		 * It is safe to drop the lock on our parent before we
1976 		 * go through the expensive btree search on b.
1977 		 */
1978 		btrfs_unlock_up_safe(p, level + 1);
1979 
1980 		ret = btrfs_bin_search(b, key, &slot);
1981 		if (ret < 0)
1982 			goto done;
1983 
1984 		if (level == 0) {
1985 			p->slots[level] = slot;
1986 			unlock_up(p, level, lowest_unlock, 0, NULL);
1987 			goto done;
1988 		}
1989 
1990 		if (ret && slot > 0) {
1991 			dec = 1;
1992 			slot--;
1993 		}
1994 		p->slots[level] = slot;
1995 		unlock_up(p, level, lowest_unlock, 0, NULL);
1996 
1997 		if (level == lowest_level) {
1998 			if (dec)
1999 				p->slots[level]++;
2000 			goto done;
2001 		}
2002 
2003 		err = read_block_for_search(root, p, &b, level, slot, key);
2004 		if (err == -EAGAIN)
2005 			goto again;
2006 		if (err) {
2007 			ret = err;
2008 			goto done;
2009 		}
2010 
2011 		level = btrfs_header_level(b);
2012 		btrfs_tree_read_lock(b);
2013 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2014 		if (!b) {
2015 			ret = -ENOMEM;
2016 			goto done;
2017 		}
2018 		p->locks[level] = BTRFS_READ_LOCK;
2019 		p->nodes[level] = b;
2020 	}
2021 	ret = 1;
2022 done:
2023 	if (ret < 0)
2024 		btrfs_release_path(p);
2025 
2026 	return ret;
2027 }
2028 
2029 /*
2030  * helper to use instead of search slot if no exact match is needed but
2031  * instead the next or previous item should be returned.
2032  * When find_higher is true, the next higher item is returned, the next lower
2033  * otherwise.
2034  * When return_any and find_higher are both true, and no higher item is found,
2035  * return the next lower instead.
2036  * When return_any is true and find_higher is false, and no lower item is found,
2037  * return the next higher instead.
2038  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2039  * < 0 on error
2040  */
2041 int btrfs_search_slot_for_read(struct btrfs_root *root,
2042 			       const struct btrfs_key *key,
2043 			       struct btrfs_path *p, int find_higher,
2044 			       int return_any)
2045 {
2046 	int ret;
2047 	struct extent_buffer *leaf;
2048 
2049 again:
2050 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2051 	if (ret <= 0)
2052 		return ret;
2053 	/*
2054 	 * a return value of 1 means the path is at the position where the
2055 	 * item should be inserted. Normally this is the next bigger item,
2056 	 * but in case the previous item is the last in a leaf, path points
2057 	 * to the first free slot in the previous leaf, i.e. at an invalid
2058 	 * item.
2059 	 */
2060 	leaf = p->nodes[0];
2061 
2062 	if (find_higher) {
2063 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2064 			ret = btrfs_next_leaf(root, p);
2065 			if (ret <= 0)
2066 				return ret;
2067 			if (!return_any)
2068 				return 1;
2069 			/*
2070 			 * no higher item found, return the next
2071 			 * lower instead
2072 			 */
2073 			return_any = 0;
2074 			find_higher = 0;
2075 			btrfs_release_path(p);
2076 			goto again;
2077 		}
2078 	} else {
2079 		if (p->slots[0] == 0) {
2080 			ret = btrfs_prev_leaf(root, p);
2081 			if (ret < 0)
2082 				return ret;
2083 			if (!ret) {
2084 				leaf = p->nodes[0];
2085 				if (p->slots[0] == btrfs_header_nritems(leaf))
2086 					p->slots[0]--;
2087 				return 0;
2088 			}
2089 			if (!return_any)
2090 				return 1;
2091 			/*
2092 			 * no lower item found, return the next
2093 			 * higher instead
2094 			 */
2095 			return_any = 0;
2096 			find_higher = 1;
2097 			btrfs_release_path(p);
2098 			goto again;
2099 		} else {
2100 			--p->slots[0];
2101 		}
2102 	}
2103 	return 0;
2104 }
2105 
2106 /*
2107  * Execute search and call btrfs_previous_item to traverse backwards if the item
2108  * was not found.
2109  *
2110  * Return 0 if found, 1 if not found and < 0 if error.
2111  */
2112 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2113 			   struct btrfs_path *path)
2114 {
2115 	int ret;
2116 
2117 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2118 	if (ret > 0)
2119 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2120 
2121 	if (ret == 0)
2122 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2123 
2124 	return ret;
2125 }
2126 
2127 /*
2128  * adjust the pointers going up the tree, starting at level
2129  * making sure the right key of each node is points to 'key'.
2130  * This is used after shifting pointers to the left, so it stops
2131  * fixing up pointers when a given leaf/node is not in slot 0 of the
2132  * higher levels
2133  *
2134  */
2135 static void fixup_low_keys(struct btrfs_path *path,
2136 			   struct btrfs_disk_key *key, int level)
2137 {
2138 	int i;
2139 	struct extent_buffer *t;
2140 	int ret;
2141 
2142 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2143 		int tslot = path->slots[i];
2144 
2145 		if (!path->nodes[i])
2146 			break;
2147 		t = path->nodes[i];
2148 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2149 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2150 		BUG_ON(ret < 0);
2151 		btrfs_set_node_key(t, key, tslot);
2152 		btrfs_mark_buffer_dirty(path->nodes[i]);
2153 		if (tslot != 0)
2154 			break;
2155 	}
2156 }
2157 
2158 /*
2159  * update item key.
2160  *
2161  * This function isn't completely safe. It's the caller's responsibility
2162  * that the new key won't break the order
2163  */
2164 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2165 			     struct btrfs_path *path,
2166 			     const struct btrfs_key *new_key)
2167 {
2168 	struct btrfs_disk_key disk_key;
2169 	struct extent_buffer *eb;
2170 	int slot;
2171 
2172 	eb = path->nodes[0];
2173 	slot = path->slots[0];
2174 	if (slot > 0) {
2175 		btrfs_item_key(eb, &disk_key, slot - 1);
2176 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2177 			btrfs_crit(fs_info,
2178 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2179 				   slot, btrfs_disk_key_objectid(&disk_key),
2180 				   btrfs_disk_key_type(&disk_key),
2181 				   btrfs_disk_key_offset(&disk_key),
2182 				   new_key->objectid, new_key->type,
2183 				   new_key->offset);
2184 			btrfs_print_leaf(eb);
2185 			BUG();
2186 		}
2187 	}
2188 	if (slot < btrfs_header_nritems(eb) - 1) {
2189 		btrfs_item_key(eb, &disk_key, slot + 1);
2190 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2191 			btrfs_crit(fs_info,
2192 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2193 				   slot, btrfs_disk_key_objectid(&disk_key),
2194 				   btrfs_disk_key_type(&disk_key),
2195 				   btrfs_disk_key_offset(&disk_key),
2196 				   new_key->objectid, new_key->type,
2197 				   new_key->offset);
2198 			btrfs_print_leaf(eb);
2199 			BUG();
2200 		}
2201 	}
2202 
2203 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2204 	btrfs_set_item_key(eb, &disk_key, slot);
2205 	btrfs_mark_buffer_dirty(eb);
2206 	if (slot == 0)
2207 		fixup_low_keys(path, &disk_key, 1);
2208 }
2209 
2210 /*
2211  * Check key order of two sibling extent buffers.
2212  *
2213  * Return true if something is wrong.
2214  * Return false if everything is fine.
2215  *
2216  * Tree-checker only works inside one tree block, thus the following
2217  * corruption can not be detected by tree-checker:
2218  *
2219  * Leaf @left			| Leaf @right
2220  * --------------------------------------------------------------
2221  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2222  *
2223  * Key f6 in leaf @left itself is valid, but not valid when the next
2224  * key in leaf @right is 7.
2225  * This can only be checked at tree block merge time.
2226  * And since tree checker has ensured all key order in each tree block
2227  * is correct, we only need to bother the last key of @left and the first
2228  * key of @right.
2229  */
2230 static bool check_sibling_keys(struct extent_buffer *left,
2231 			       struct extent_buffer *right)
2232 {
2233 	struct btrfs_key left_last;
2234 	struct btrfs_key right_first;
2235 	int level = btrfs_header_level(left);
2236 	int nr_left = btrfs_header_nritems(left);
2237 	int nr_right = btrfs_header_nritems(right);
2238 
2239 	/* No key to check in one of the tree blocks */
2240 	if (!nr_left || !nr_right)
2241 		return false;
2242 
2243 	if (level) {
2244 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2245 		btrfs_node_key_to_cpu(right, &right_first, 0);
2246 	} else {
2247 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2248 		btrfs_item_key_to_cpu(right, &right_first, 0);
2249 	}
2250 
2251 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2252 		btrfs_crit(left->fs_info,
2253 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2254 			   left_last.objectid, left_last.type,
2255 			   left_last.offset, right_first.objectid,
2256 			   right_first.type, right_first.offset);
2257 		return true;
2258 	}
2259 	return false;
2260 }
2261 
2262 /*
2263  * try to push data from one node into the next node left in the
2264  * tree.
2265  *
2266  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2267  * error, and > 0 if there was no room in the left hand block.
2268  */
2269 static int push_node_left(struct btrfs_trans_handle *trans,
2270 			  struct extent_buffer *dst,
2271 			  struct extent_buffer *src, int empty)
2272 {
2273 	struct btrfs_fs_info *fs_info = trans->fs_info;
2274 	int push_items = 0;
2275 	int src_nritems;
2276 	int dst_nritems;
2277 	int ret = 0;
2278 
2279 	src_nritems = btrfs_header_nritems(src);
2280 	dst_nritems = btrfs_header_nritems(dst);
2281 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2282 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2283 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2284 
2285 	if (!empty && src_nritems <= 8)
2286 		return 1;
2287 
2288 	if (push_items <= 0)
2289 		return 1;
2290 
2291 	if (empty) {
2292 		push_items = min(src_nritems, push_items);
2293 		if (push_items < src_nritems) {
2294 			/* leave at least 8 pointers in the node if
2295 			 * we aren't going to empty it
2296 			 */
2297 			if (src_nritems - push_items < 8) {
2298 				if (push_items <= 8)
2299 					return 1;
2300 				push_items -= 8;
2301 			}
2302 		}
2303 	} else
2304 		push_items = min(src_nritems - 8, push_items);
2305 
2306 	/* dst is the left eb, src is the middle eb */
2307 	if (check_sibling_keys(dst, src)) {
2308 		ret = -EUCLEAN;
2309 		btrfs_abort_transaction(trans, ret);
2310 		return ret;
2311 	}
2312 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2313 	if (ret) {
2314 		btrfs_abort_transaction(trans, ret);
2315 		return ret;
2316 	}
2317 	copy_extent_buffer(dst, src,
2318 			   btrfs_node_key_ptr_offset(dst_nritems),
2319 			   btrfs_node_key_ptr_offset(0),
2320 			   push_items * sizeof(struct btrfs_key_ptr));
2321 
2322 	if (push_items < src_nritems) {
2323 		/*
2324 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2325 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2326 		 */
2327 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2328 				      btrfs_node_key_ptr_offset(push_items),
2329 				      (src_nritems - push_items) *
2330 				      sizeof(struct btrfs_key_ptr));
2331 	}
2332 	btrfs_set_header_nritems(src, src_nritems - push_items);
2333 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2334 	btrfs_mark_buffer_dirty(src);
2335 	btrfs_mark_buffer_dirty(dst);
2336 
2337 	return ret;
2338 }
2339 
2340 /*
2341  * try to push data from one node into the next node right in the
2342  * tree.
2343  *
2344  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2345  * error, and > 0 if there was no room in the right hand block.
2346  *
2347  * this will  only push up to 1/2 the contents of the left node over
2348  */
2349 static int balance_node_right(struct btrfs_trans_handle *trans,
2350 			      struct extent_buffer *dst,
2351 			      struct extent_buffer *src)
2352 {
2353 	struct btrfs_fs_info *fs_info = trans->fs_info;
2354 	int push_items = 0;
2355 	int max_push;
2356 	int src_nritems;
2357 	int dst_nritems;
2358 	int ret = 0;
2359 
2360 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2361 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2362 
2363 	src_nritems = btrfs_header_nritems(src);
2364 	dst_nritems = btrfs_header_nritems(dst);
2365 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2366 	if (push_items <= 0)
2367 		return 1;
2368 
2369 	if (src_nritems < 4)
2370 		return 1;
2371 
2372 	max_push = src_nritems / 2 + 1;
2373 	/* don't try to empty the node */
2374 	if (max_push >= src_nritems)
2375 		return 1;
2376 
2377 	if (max_push < push_items)
2378 		push_items = max_push;
2379 
2380 	/* dst is the right eb, src is the middle eb */
2381 	if (check_sibling_keys(src, dst)) {
2382 		ret = -EUCLEAN;
2383 		btrfs_abort_transaction(trans, ret);
2384 		return ret;
2385 	}
2386 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2387 	BUG_ON(ret < 0);
2388 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2389 				      btrfs_node_key_ptr_offset(0),
2390 				      (dst_nritems) *
2391 				      sizeof(struct btrfs_key_ptr));
2392 
2393 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2394 					 push_items);
2395 	if (ret) {
2396 		btrfs_abort_transaction(trans, ret);
2397 		return ret;
2398 	}
2399 	copy_extent_buffer(dst, src,
2400 			   btrfs_node_key_ptr_offset(0),
2401 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2402 			   push_items * sizeof(struct btrfs_key_ptr));
2403 
2404 	btrfs_set_header_nritems(src, src_nritems - push_items);
2405 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2406 
2407 	btrfs_mark_buffer_dirty(src);
2408 	btrfs_mark_buffer_dirty(dst);
2409 
2410 	return ret;
2411 }
2412 
2413 /*
2414  * helper function to insert a new root level in the tree.
2415  * A new node is allocated, and a single item is inserted to
2416  * point to the existing root
2417  *
2418  * returns zero on success or < 0 on failure.
2419  */
2420 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2421 			   struct btrfs_root *root,
2422 			   struct btrfs_path *path, int level)
2423 {
2424 	struct btrfs_fs_info *fs_info = root->fs_info;
2425 	u64 lower_gen;
2426 	struct extent_buffer *lower;
2427 	struct extent_buffer *c;
2428 	struct extent_buffer *old;
2429 	struct btrfs_disk_key lower_key;
2430 	int ret;
2431 
2432 	BUG_ON(path->nodes[level]);
2433 	BUG_ON(path->nodes[level-1] != root->node);
2434 
2435 	lower = path->nodes[level-1];
2436 	if (level == 1)
2437 		btrfs_item_key(lower, &lower_key, 0);
2438 	else
2439 		btrfs_node_key(lower, &lower_key, 0);
2440 
2441 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2442 				   &lower_key, level, root->node->start, 0,
2443 				   BTRFS_NESTING_NEW_ROOT);
2444 	if (IS_ERR(c))
2445 		return PTR_ERR(c);
2446 
2447 	root_add_used(root, fs_info->nodesize);
2448 
2449 	btrfs_set_header_nritems(c, 1);
2450 	btrfs_set_node_key(c, &lower_key, 0);
2451 	btrfs_set_node_blockptr(c, 0, lower->start);
2452 	lower_gen = btrfs_header_generation(lower);
2453 	WARN_ON(lower_gen != trans->transid);
2454 
2455 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2456 
2457 	btrfs_mark_buffer_dirty(c);
2458 
2459 	old = root->node;
2460 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2461 	BUG_ON(ret < 0);
2462 	rcu_assign_pointer(root->node, c);
2463 
2464 	/* the super has an extra ref to root->node */
2465 	free_extent_buffer(old);
2466 
2467 	add_root_to_dirty_list(root);
2468 	atomic_inc(&c->refs);
2469 	path->nodes[level] = c;
2470 	path->locks[level] = BTRFS_WRITE_LOCK;
2471 	path->slots[level] = 0;
2472 	return 0;
2473 }
2474 
2475 /*
2476  * worker function to insert a single pointer in a node.
2477  * the node should have enough room for the pointer already
2478  *
2479  * slot and level indicate where you want the key to go, and
2480  * blocknr is the block the key points to.
2481  */
2482 static void insert_ptr(struct btrfs_trans_handle *trans,
2483 		       struct btrfs_path *path,
2484 		       struct btrfs_disk_key *key, u64 bytenr,
2485 		       int slot, int level)
2486 {
2487 	struct extent_buffer *lower;
2488 	int nritems;
2489 	int ret;
2490 
2491 	BUG_ON(!path->nodes[level]);
2492 	btrfs_assert_tree_write_locked(path->nodes[level]);
2493 	lower = path->nodes[level];
2494 	nritems = btrfs_header_nritems(lower);
2495 	BUG_ON(slot > nritems);
2496 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2497 	if (slot != nritems) {
2498 		if (level) {
2499 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2500 					slot, nritems - slot);
2501 			BUG_ON(ret < 0);
2502 		}
2503 		memmove_extent_buffer(lower,
2504 			      btrfs_node_key_ptr_offset(slot + 1),
2505 			      btrfs_node_key_ptr_offset(slot),
2506 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2507 	}
2508 	if (level) {
2509 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2510 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2511 		BUG_ON(ret < 0);
2512 	}
2513 	btrfs_set_node_key(lower, key, slot);
2514 	btrfs_set_node_blockptr(lower, slot, bytenr);
2515 	WARN_ON(trans->transid == 0);
2516 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2517 	btrfs_set_header_nritems(lower, nritems + 1);
2518 	btrfs_mark_buffer_dirty(lower);
2519 }
2520 
2521 /*
2522  * split the node at the specified level in path in two.
2523  * The path is corrected to point to the appropriate node after the split
2524  *
2525  * Before splitting this tries to make some room in the node by pushing
2526  * left and right, if either one works, it returns right away.
2527  *
2528  * returns 0 on success and < 0 on failure
2529  */
2530 static noinline int split_node(struct btrfs_trans_handle *trans,
2531 			       struct btrfs_root *root,
2532 			       struct btrfs_path *path, int level)
2533 {
2534 	struct btrfs_fs_info *fs_info = root->fs_info;
2535 	struct extent_buffer *c;
2536 	struct extent_buffer *split;
2537 	struct btrfs_disk_key disk_key;
2538 	int mid;
2539 	int ret;
2540 	u32 c_nritems;
2541 
2542 	c = path->nodes[level];
2543 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2544 	if (c == root->node) {
2545 		/*
2546 		 * trying to split the root, lets make a new one
2547 		 *
2548 		 * tree mod log: We don't log_removal old root in
2549 		 * insert_new_root, because that root buffer will be kept as a
2550 		 * normal node. We are going to log removal of half of the
2551 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2552 		 * holding a tree lock on the buffer, which is why we cannot
2553 		 * race with other tree_mod_log users.
2554 		 */
2555 		ret = insert_new_root(trans, root, path, level + 1);
2556 		if (ret)
2557 			return ret;
2558 	} else {
2559 		ret = push_nodes_for_insert(trans, root, path, level);
2560 		c = path->nodes[level];
2561 		if (!ret && btrfs_header_nritems(c) <
2562 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2563 			return 0;
2564 		if (ret < 0)
2565 			return ret;
2566 	}
2567 
2568 	c_nritems = btrfs_header_nritems(c);
2569 	mid = (c_nritems + 1) / 2;
2570 	btrfs_node_key(c, &disk_key, mid);
2571 
2572 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2573 				       &disk_key, level, c->start, 0,
2574 				       BTRFS_NESTING_SPLIT);
2575 	if (IS_ERR(split))
2576 		return PTR_ERR(split);
2577 
2578 	root_add_used(root, fs_info->nodesize);
2579 	ASSERT(btrfs_header_level(c) == level);
2580 
2581 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2582 	if (ret) {
2583 		btrfs_abort_transaction(trans, ret);
2584 		return ret;
2585 	}
2586 	copy_extent_buffer(split, c,
2587 			   btrfs_node_key_ptr_offset(0),
2588 			   btrfs_node_key_ptr_offset(mid),
2589 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2590 	btrfs_set_header_nritems(split, c_nritems - mid);
2591 	btrfs_set_header_nritems(c, mid);
2592 
2593 	btrfs_mark_buffer_dirty(c);
2594 	btrfs_mark_buffer_dirty(split);
2595 
2596 	insert_ptr(trans, path, &disk_key, split->start,
2597 		   path->slots[level + 1] + 1, level + 1);
2598 
2599 	if (path->slots[level] >= mid) {
2600 		path->slots[level] -= mid;
2601 		btrfs_tree_unlock(c);
2602 		free_extent_buffer(c);
2603 		path->nodes[level] = split;
2604 		path->slots[level + 1] += 1;
2605 	} else {
2606 		btrfs_tree_unlock(split);
2607 		free_extent_buffer(split);
2608 	}
2609 	return 0;
2610 }
2611 
2612 /*
2613  * how many bytes are required to store the items in a leaf.  start
2614  * and nr indicate which items in the leaf to check.  This totals up the
2615  * space used both by the item structs and the item data
2616  */
2617 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2618 {
2619 	struct btrfs_item *start_item;
2620 	struct btrfs_item *end_item;
2621 	int data_len;
2622 	int nritems = btrfs_header_nritems(l);
2623 	int end = min(nritems, start + nr) - 1;
2624 
2625 	if (!nr)
2626 		return 0;
2627 	start_item = btrfs_item_nr(start);
2628 	end_item = btrfs_item_nr(end);
2629 	data_len = btrfs_item_offset(l, start_item) +
2630 		   btrfs_item_size(l, start_item);
2631 	data_len = data_len - btrfs_item_offset(l, end_item);
2632 	data_len += sizeof(struct btrfs_item) * nr;
2633 	WARN_ON(data_len < 0);
2634 	return data_len;
2635 }
2636 
2637 /*
2638  * The space between the end of the leaf items and
2639  * the start of the leaf data.  IOW, how much room
2640  * the leaf has left for both items and data
2641  */
2642 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2643 {
2644 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2645 	int nritems = btrfs_header_nritems(leaf);
2646 	int ret;
2647 
2648 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2649 	if (ret < 0) {
2650 		btrfs_crit(fs_info,
2651 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2652 			   ret,
2653 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2654 			   leaf_space_used(leaf, 0, nritems), nritems);
2655 	}
2656 	return ret;
2657 }
2658 
2659 /*
2660  * min slot controls the lowest index we're willing to push to the
2661  * right.  We'll push up to and including min_slot, but no lower
2662  */
2663 static noinline int __push_leaf_right(struct btrfs_path *path,
2664 				      int data_size, int empty,
2665 				      struct extent_buffer *right,
2666 				      int free_space, u32 left_nritems,
2667 				      u32 min_slot)
2668 {
2669 	struct btrfs_fs_info *fs_info = right->fs_info;
2670 	struct extent_buffer *left = path->nodes[0];
2671 	struct extent_buffer *upper = path->nodes[1];
2672 	struct btrfs_map_token token;
2673 	struct btrfs_disk_key disk_key;
2674 	int slot;
2675 	u32 i;
2676 	int push_space = 0;
2677 	int push_items = 0;
2678 	struct btrfs_item *item;
2679 	u32 nr;
2680 	u32 right_nritems;
2681 	u32 data_end;
2682 	u32 this_item_size;
2683 
2684 	if (empty)
2685 		nr = 0;
2686 	else
2687 		nr = max_t(u32, 1, min_slot);
2688 
2689 	if (path->slots[0] >= left_nritems)
2690 		push_space += data_size;
2691 
2692 	slot = path->slots[1];
2693 	i = left_nritems - 1;
2694 	while (i >= nr) {
2695 		item = btrfs_item_nr(i);
2696 
2697 		if (!empty && push_items > 0) {
2698 			if (path->slots[0] > i)
2699 				break;
2700 			if (path->slots[0] == i) {
2701 				int space = btrfs_leaf_free_space(left);
2702 
2703 				if (space + push_space * 2 > free_space)
2704 					break;
2705 			}
2706 		}
2707 
2708 		if (path->slots[0] == i)
2709 			push_space += data_size;
2710 
2711 		this_item_size = btrfs_item_size(left, item);
2712 		if (this_item_size + sizeof(*item) + push_space > free_space)
2713 			break;
2714 
2715 		push_items++;
2716 		push_space += this_item_size + sizeof(*item);
2717 		if (i == 0)
2718 			break;
2719 		i--;
2720 	}
2721 
2722 	if (push_items == 0)
2723 		goto out_unlock;
2724 
2725 	WARN_ON(!empty && push_items == left_nritems);
2726 
2727 	/* push left to right */
2728 	right_nritems = btrfs_header_nritems(right);
2729 
2730 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2731 	push_space -= leaf_data_end(left);
2732 
2733 	/* make room in the right data area */
2734 	data_end = leaf_data_end(right);
2735 	memmove_extent_buffer(right,
2736 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2737 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2738 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2739 
2740 	/* copy from the left data area */
2741 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2742 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2743 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2744 		     push_space);
2745 
2746 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2747 			      btrfs_item_nr_offset(0),
2748 			      right_nritems * sizeof(struct btrfs_item));
2749 
2750 	/* copy the items from left to right */
2751 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2752 		   btrfs_item_nr_offset(left_nritems - push_items),
2753 		   push_items * sizeof(struct btrfs_item));
2754 
2755 	/* update the item pointers */
2756 	btrfs_init_map_token(&token, right);
2757 	right_nritems += push_items;
2758 	btrfs_set_header_nritems(right, right_nritems);
2759 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2760 	for (i = 0; i < right_nritems; i++) {
2761 		item = btrfs_item_nr(i);
2762 		push_space -= btrfs_token_item_size(&token, item);
2763 		btrfs_set_token_item_offset(&token, item, push_space);
2764 	}
2765 
2766 	left_nritems -= push_items;
2767 	btrfs_set_header_nritems(left, left_nritems);
2768 
2769 	if (left_nritems)
2770 		btrfs_mark_buffer_dirty(left);
2771 	else
2772 		btrfs_clean_tree_block(left);
2773 
2774 	btrfs_mark_buffer_dirty(right);
2775 
2776 	btrfs_item_key(right, &disk_key, 0);
2777 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2778 	btrfs_mark_buffer_dirty(upper);
2779 
2780 	/* then fixup the leaf pointer in the path */
2781 	if (path->slots[0] >= left_nritems) {
2782 		path->slots[0] -= left_nritems;
2783 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2784 			btrfs_clean_tree_block(path->nodes[0]);
2785 		btrfs_tree_unlock(path->nodes[0]);
2786 		free_extent_buffer(path->nodes[0]);
2787 		path->nodes[0] = right;
2788 		path->slots[1] += 1;
2789 	} else {
2790 		btrfs_tree_unlock(right);
2791 		free_extent_buffer(right);
2792 	}
2793 	return 0;
2794 
2795 out_unlock:
2796 	btrfs_tree_unlock(right);
2797 	free_extent_buffer(right);
2798 	return 1;
2799 }
2800 
2801 /*
2802  * push some data in the path leaf to the right, trying to free up at
2803  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2804  *
2805  * returns 1 if the push failed because the other node didn't have enough
2806  * room, 0 if everything worked out and < 0 if there were major errors.
2807  *
2808  * this will push starting from min_slot to the end of the leaf.  It won't
2809  * push any slot lower than min_slot
2810  */
2811 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2812 			   *root, struct btrfs_path *path,
2813 			   int min_data_size, int data_size,
2814 			   int empty, u32 min_slot)
2815 {
2816 	struct extent_buffer *left = path->nodes[0];
2817 	struct extent_buffer *right;
2818 	struct extent_buffer *upper;
2819 	int slot;
2820 	int free_space;
2821 	u32 left_nritems;
2822 	int ret;
2823 
2824 	if (!path->nodes[1])
2825 		return 1;
2826 
2827 	slot = path->slots[1];
2828 	upper = path->nodes[1];
2829 	if (slot >= btrfs_header_nritems(upper) - 1)
2830 		return 1;
2831 
2832 	btrfs_assert_tree_write_locked(path->nodes[1]);
2833 
2834 	right = btrfs_read_node_slot(upper, slot + 1);
2835 	/*
2836 	 * slot + 1 is not valid or we fail to read the right node,
2837 	 * no big deal, just return.
2838 	 */
2839 	if (IS_ERR(right))
2840 		return 1;
2841 
2842 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2843 
2844 	free_space = btrfs_leaf_free_space(right);
2845 	if (free_space < data_size)
2846 		goto out_unlock;
2847 
2848 	/* cow and double check */
2849 	ret = btrfs_cow_block(trans, root, right, upper,
2850 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2851 	if (ret)
2852 		goto out_unlock;
2853 
2854 	free_space = btrfs_leaf_free_space(right);
2855 	if (free_space < data_size)
2856 		goto out_unlock;
2857 
2858 	left_nritems = btrfs_header_nritems(left);
2859 	if (left_nritems == 0)
2860 		goto out_unlock;
2861 
2862 	if (check_sibling_keys(left, right)) {
2863 		ret = -EUCLEAN;
2864 		btrfs_tree_unlock(right);
2865 		free_extent_buffer(right);
2866 		return ret;
2867 	}
2868 	if (path->slots[0] == left_nritems && !empty) {
2869 		/* Key greater than all keys in the leaf, right neighbor has
2870 		 * enough room for it and we're not emptying our leaf to delete
2871 		 * it, therefore use right neighbor to insert the new item and
2872 		 * no need to touch/dirty our left leaf. */
2873 		btrfs_tree_unlock(left);
2874 		free_extent_buffer(left);
2875 		path->nodes[0] = right;
2876 		path->slots[0] = 0;
2877 		path->slots[1]++;
2878 		return 0;
2879 	}
2880 
2881 	return __push_leaf_right(path, min_data_size, empty,
2882 				right, free_space, left_nritems, min_slot);
2883 out_unlock:
2884 	btrfs_tree_unlock(right);
2885 	free_extent_buffer(right);
2886 	return 1;
2887 }
2888 
2889 /*
2890  * push some data in the path leaf to the left, trying to free up at
2891  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2892  *
2893  * max_slot can put a limit on how far into the leaf we'll push items.  The
2894  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2895  * items
2896  */
2897 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
2898 				     int empty, struct extent_buffer *left,
2899 				     int free_space, u32 right_nritems,
2900 				     u32 max_slot)
2901 {
2902 	struct btrfs_fs_info *fs_info = left->fs_info;
2903 	struct btrfs_disk_key disk_key;
2904 	struct extent_buffer *right = path->nodes[0];
2905 	int i;
2906 	int push_space = 0;
2907 	int push_items = 0;
2908 	struct btrfs_item *item;
2909 	u32 old_left_nritems;
2910 	u32 nr;
2911 	int ret = 0;
2912 	u32 this_item_size;
2913 	u32 old_left_item_size;
2914 	struct btrfs_map_token token;
2915 
2916 	if (empty)
2917 		nr = min(right_nritems, max_slot);
2918 	else
2919 		nr = min(right_nritems - 1, max_slot);
2920 
2921 	for (i = 0; i < nr; i++) {
2922 		item = btrfs_item_nr(i);
2923 
2924 		if (!empty && push_items > 0) {
2925 			if (path->slots[0] < i)
2926 				break;
2927 			if (path->slots[0] == i) {
2928 				int space = btrfs_leaf_free_space(right);
2929 
2930 				if (space + push_space * 2 > free_space)
2931 					break;
2932 			}
2933 		}
2934 
2935 		if (path->slots[0] == i)
2936 			push_space += data_size;
2937 
2938 		this_item_size = btrfs_item_size(right, item);
2939 		if (this_item_size + sizeof(*item) + push_space > free_space)
2940 			break;
2941 
2942 		push_items++;
2943 		push_space += this_item_size + sizeof(*item);
2944 	}
2945 
2946 	if (push_items == 0) {
2947 		ret = 1;
2948 		goto out;
2949 	}
2950 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
2951 
2952 	/* push data from right to left */
2953 	copy_extent_buffer(left, right,
2954 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2955 			   btrfs_item_nr_offset(0),
2956 			   push_items * sizeof(struct btrfs_item));
2957 
2958 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
2959 		     btrfs_item_offset_nr(right, push_items - 1);
2960 
2961 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
2962 		     leaf_data_end(left) - push_space,
2963 		     BTRFS_LEAF_DATA_OFFSET +
2964 		     btrfs_item_offset_nr(right, push_items - 1),
2965 		     push_space);
2966 	old_left_nritems = btrfs_header_nritems(left);
2967 	BUG_ON(old_left_nritems <= 0);
2968 
2969 	btrfs_init_map_token(&token, left);
2970 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2971 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2972 		u32 ioff;
2973 
2974 		item = btrfs_item_nr(i);
2975 
2976 		ioff = btrfs_token_item_offset(&token, item);
2977 		btrfs_set_token_item_offset(&token, item,
2978 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
2979 	}
2980 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2981 
2982 	/* fixup right node */
2983 	if (push_items > right_nritems)
2984 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
2985 		       right_nritems);
2986 
2987 	if (push_items < right_nritems) {
2988 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2989 						  leaf_data_end(right);
2990 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
2991 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2992 				      BTRFS_LEAF_DATA_OFFSET +
2993 				      leaf_data_end(right), push_space);
2994 
2995 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2996 			      btrfs_item_nr_offset(push_items),
2997 			     (btrfs_header_nritems(right) - push_items) *
2998 			     sizeof(struct btrfs_item));
2999 	}
3000 
3001 	btrfs_init_map_token(&token, right);
3002 	right_nritems -= push_items;
3003 	btrfs_set_header_nritems(right, right_nritems);
3004 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3005 	for (i = 0; i < right_nritems; i++) {
3006 		item = btrfs_item_nr(i);
3007 
3008 		push_space = push_space - btrfs_token_item_size(&token, item);
3009 		btrfs_set_token_item_offset(&token, item, push_space);
3010 	}
3011 
3012 	btrfs_mark_buffer_dirty(left);
3013 	if (right_nritems)
3014 		btrfs_mark_buffer_dirty(right);
3015 	else
3016 		btrfs_clean_tree_block(right);
3017 
3018 	btrfs_item_key(right, &disk_key, 0);
3019 	fixup_low_keys(path, &disk_key, 1);
3020 
3021 	/* then fixup the leaf pointer in the path */
3022 	if (path->slots[0] < push_items) {
3023 		path->slots[0] += old_left_nritems;
3024 		btrfs_tree_unlock(path->nodes[0]);
3025 		free_extent_buffer(path->nodes[0]);
3026 		path->nodes[0] = left;
3027 		path->slots[1] -= 1;
3028 	} else {
3029 		btrfs_tree_unlock(left);
3030 		free_extent_buffer(left);
3031 		path->slots[0] -= push_items;
3032 	}
3033 	BUG_ON(path->slots[0] < 0);
3034 	return ret;
3035 out:
3036 	btrfs_tree_unlock(left);
3037 	free_extent_buffer(left);
3038 	return ret;
3039 }
3040 
3041 /*
3042  * push some data in the path leaf to the left, trying to free up at
3043  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3044  *
3045  * max_slot can put a limit on how far into the leaf we'll push items.  The
3046  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3047  * items
3048  */
3049 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3050 			  *root, struct btrfs_path *path, int min_data_size,
3051 			  int data_size, int empty, u32 max_slot)
3052 {
3053 	struct extent_buffer *right = path->nodes[0];
3054 	struct extent_buffer *left;
3055 	int slot;
3056 	int free_space;
3057 	u32 right_nritems;
3058 	int ret = 0;
3059 
3060 	slot = path->slots[1];
3061 	if (slot == 0)
3062 		return 1;
3063 	if (!path->nodes[1])
3064 		return 1;
3065 
3066 	right_nritems = btrfs_header_nritems(right);
3067 	if (right_nritems == 0)
3068 		return 1;
3069 
3070 	btrfs_assert_tree_write_locked(path->nodes[1]);
3071 
3072 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3073 	/*
3074 	 * slot - 1 is not valid or we fail to read the left node,
3075 	 * no big deal, just return.
3076 	 */
3077 	if (IS_ERR(left))
3078 		return 1;
3079 
3080 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3081 
3082 	free_space = btrfs_leaf_free_space(left);
3083 	if (free_space < data_size) {
3084 		ret = 1;
3085 		goto out;
3086 	}
3087 
3088 	/* cow and double check */
3089 	ret = btrfs_cow_block(trans, root, left,
3090 			      path->nodes[1], slot - 1, &left,
3091 			      BTRFS_NESTING_LEFT_COW);
3092 	if (ret) {
3093 		/* we hit -ENOSPC, but it isn't fatal here */
3094 		if (ret == -ENOSPC)
3095 			ret = 1;
3096 		goto out;
3097 	}
3098 
3099 	free_space = btrfs_leaf_free_space(left);
3100 	if (free_space < data_size) {
3101 		ret = 1;
3102 		goto out;
3103 	}
3104 
3105 	if (check_sibling_keys(left, right)) {
3106 		ret = -EUCLEAN;
3107 		goto out;
3108 	}
3109 	return __push_leaf_left(path, min_data_size,
3110 			       empty, left, free_space, right_nritems,
3111 			       max_slot);
3112 out:
3113 	btrfs_tree_unlock(left);
3114 	free_extent_buffer(left);
3115 	return ret;
3116 }
3117 
3118 /*
3119  * split the path's leaf in two, making sure there is at least data_size
3120  * available for the resulting leaf level of the path.
3121  */
3122 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3123 				    struct btrfs_path *path,
3124 				    struct extent_buffer *l,
3125 				    struct extent_buffer *right,
3126 				    int slot, int mid, int nritems)
3127 {
3128 	struct btrfs_fs_info *fs_info = trans->fs_info;
3129 	int data_copy_size;
3130 	int rt_data_off;
3131 	int i;
3132 	struct btrfs_disk_key disk_key;
3133 	struct btrfs_map_token token;
3134 
3135 	nritems = nritems - mid;
3136 	btrfs_set_header_nritems(right, nritems);
3137 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
3138 
3139 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3140 			   btrfs_item_nr_offset(mid),
3141 			   nritems * sizeof(struct btrfs_item));
3142 
3143 	copy_extent_buffer(right, l,
3144 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3145 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3146 		     leaf_data_end(l), data_copy_size);
3147 
3148 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
3149 
3150 	btrfs_init_map_token(&token, right);
3151 	for (i = 0; i < nritems; i++) {
3152 		struct btrfs_item *item = btrfs_item_nr(i);
3153 		u32 ioff;
3154 
3155 		ioff = btrfs_token_item_offset(&token, item);
3156 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
3157 	}
3158 
3159 	btrfs_set_header_nritems(l, mid);
3160 	btrfs_item_key(right, &disk_key, 0);
3161 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3162 
3163 	btrfs_mark_buffer_dirty(right);
3164 	btrfs_mark_buffer_dirty(l);
3165 	BUG_ON(path->slots[0] != slot);
3166 
3167 	if (mid <= slot) {
3168 		btrfs_tree_unlock(path->nodes[0]);
3169 		free_extent_buffer(path->nodes[0]);
3170 		path->nodes[0] = right;
3171 		path->slots[0] -= mid;
3172 		path->slots[1] += 1;
3173 	} else {
3174 		btrfs_tree_unlock(right);
3175 		free_extent_buffer(right);
3176 	}
3177 
3178 	BUG_ON(path->slots[0] < 0);
3179 }
3180 
3181 /*
3182  * double splits happen when we need to insert a big item in the middle
3183  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3184  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3185  *          A                 B                 C
3186  *
3187  * We avoid this by trying to push the items on either side of our target
3188  * into the adjacent leaves.  If all goes well we can avoid the double split
3189  * completely.
3190  */
3191 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3192 					  struct btrfs_root *root,
3193 					  struct btrfs_path *path,
3194 					  int data_size)
3195 {
3196 	int ret;
3197 	int progress = 0;
3198 	int slot;
3199 	u32 nritems;
3200 	int space_needed = data_size;
3201 
3202 	slot = path->slots[0];
3203 	if (slot < btrfs_header_nritems(path->nodes[0]))
3204 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3205 
3206 	/*
3207 	 * try to push all the items after our slot into the
3208 	 * right leaf
3209 	 */
3210 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3211 	if (ret < 0)
3212 		return ret;
3213 
3214 	if (ret == 0)
3215 		progress++;
3216 
3217 	nritems = btrfs_header_nritems(path->nodes[0]);
3218 	/*
3219 	 * our goal is to get our slot at the start or end of a leaf.  If
3220 	 * we've done so we're done
3221 	 */
3222 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3223 		return 0;
3224 
3225 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3226 		return 0;
3227 
3228 	/* try to push all the items before our slot into the next leaf */
3229 	slot = path->slots[0];
3230 	space_needed = data_size;
3231 	if (slot > 0)
3232 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3233 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3234 	if (ret < 0)
3235 		return ret;
3236 
3237 	if (ret == 0)
3238 		progress++;
3239 
3240 	if (progress)
3241 		return 0;
3242 	return 1;
3243 }
3244 
3245 /*
3246  * split the path's leaf in two, making sure there is at least data_size
3247  * available for the resulting leaf level of the path.
3248  *
3249  * returns 0 if all went well and < 0 on failure.
3250  */
3251 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3252 			       struct btrfs_root *root,
3253 			       const struct btrfs_key *ins_key,
3254 			       struct btrfs_path *path, int data_size,
3255 			       int extend)
3256 {
3257 	struct btrfs_disk_key disk_key;
3258 	struct extent_buffer *l;
3259 	u32 nritems;
3260 	int mid;
3261 	int slot;
3262 	struct extent_buffer *right;
3263 	struct btrfs_fs_info *fs_info = root->fs_info;
3264 	int ret = 0;
3265 	int wret;
3266 	int split;
3267 	int num_doubles = 0;
3268 	int tried_avoid_double = 0;
3269 
3270 	l = path->nodes[0];
3271 	slot = path->slots[0];
3272 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3273 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3274 		return -EOVERFLOW;
3275 
3276 	/* first try to make some room by pushing left and right */
3277 	if (data_size && path->nodes[1]) {
3278 		int space_needed = data_size;
3279 
3280 		if (slot < btrfs_header_nritems(l))
3281 			space_needed -= btrfs_leaf_free_space(l);
3282 
3283 		wret = push_leaf_right(trans, root, path, space_needed,
3284 				       space_needed, 0, 0);
3285 		if (wret < 0)
3286 			return wret;
3287 		if (wret) {
3288 			space_needed = data_size;
3289 			if (slot > 0)
3290 				space_needed -= btrfs_leaf_free_space(l);
3291 			wret = push_leaf_left(trans, root, path, space_needed,
3292 					      space_needed, 0, (u32)-1);
3293 			if (wret < 0)
3294 				return wret;
3295 		}
3296 		l = path->nodes[0];
3297 
3298 		/* did the pushes work? */
3299 		if (btrfs_leaf_free_space(l) >= data_size)
3300 			return 0;
3301 	}
3302 
3303 	if (!path->nodes[1]) {
3304 		ret = insert_new_root(trans, root, path, 1);
3305 		if (ret)
3306 			return ret;
3307 	}
3308 again:
3309 	split = 1;
3310 	l = path->nodes[0];
3311 	slot = path->slots[0];
3312 	nritems = btrfs_header_nritems(l);
3313 	mid = (nritems + 1) / 2;
3314 
3315 	if (mid <= slot) {
3316 		if (nritems == 1 ||
3317 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3318 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3319 			if (slot >= nritems) {
3320 				split = 0;
3321 			} else {
3322 				mid = slot;
3323 				if (mid != nritems &&
3324 				    leaf_space_used(l, mid, nritems - mid) +
3325 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3326 					if (data_size && !tried_avoid_double)
3327 						goto push_for_double;
3328 					split = 2;
3329 				}
3330 			}
3331 		}
3332 	} else {
3333 		if (leaf_space_used(l, 0, mid) + data_size >
3334 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3335 			if (!extend && data_size && slot == 0) {
3336 				split = 0;
3337 			} else if ((extend || !data_size) && slot == 0) {
3338 				mid = 1;
3339 			} else {
3340 				mid = slot;
3341 				if (mid != nritems &&
3342 				    leaf_space_used(l, mid, nritems - mid) +
3343 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3344 					if (data_size && !tried_avoid_double)
3345 						goto push_for_double;
3346 					split = 2;
3347 				}
3348 			}
3349 		}
3350 	}
3351 
3352 	if (split == 0)
3353 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3354 	else
3355 		btrfs_item_key(l, &disk_key, mid);
3356 
3357 	/*
3358 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3359 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3360 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3361 	 * out.  In the future we could add a
3362 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3363 	 * use BTRFS_NESTING_NEW_ROOT.
3364 	 */
3365 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3366 				       &disk_key, 0, l->start, 0,
3367 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3368 				       BTRFS_NESTING_SPLIT);
3369 	if (IS_ERR(right))
3370 		return PTR_ERR(right);
3371 
3372 	root_add_used(root, fs_info->nodesize);
3373 
3374 	if (split == 0) {
3375 		if (mid <= slot) {
3376 			btrfs_set_header_nritems(right, 0);
3377 			insert_ptr(trans, path, &disk_key,
3378 				   right->start, path->slots[1] + 1, 1);
3379 			btrfs_tree_unlock(path->nodes[0]);
3380 			free_extent_buffer(path->nodes[0]);
3381 			path->nodes[0] = right;
3382 			path->slots[0] = 0;
3383 			path->slots[1] += 1;
3384 		} else {
3385 			btrfs_set_header_nritems(right, 0);
3386 			insert_ptr(trans, path, &disk_key,
3387 				   right->start, path->slots[1], 1);
3388 			btrfs_tree_unlock(path->nodes[0]);
3389 			free_extent_buffer(path->nodes[0]);
3390 			path->nodes[0] = right;
3391 			path->slots[0] = 0;
3392 			if (path->slots[1] == 0)
3393 				fixup_low_keys(path, &disk_key, 1);
3394 		}
3395 		/*
3396 		 * We create a new leaf 'right' for the required ins_len and
3397 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3398 		 * the content of ins_len to 'right'.
3399 		 */
3400 		return ret;
3401 	}
3402 
3403 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3404 
3405 	if (split == 2) {
3406 		BUG_ON(num_doubles != 0);
3407 		num_doubles++;
3408 		goto again;
3409 	}
3410 
3411 	return 0;
3412 
3413 push_for_double:
3414 	push_for_double_split(trans, root, path, data_size);
3415 	tried_avoid_double = 1;
3416 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3417 		return 0;
3418 	goto again;
3419 }
3420 
3421 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3422 					 struct btrfs_root *root,
3423 					 struct btrfs_path *path, int ins_len)
3424 {
3425 	struct btrfs_key key;
3426 	struct extent_buffer *leaf;
3427 	struct btrfs_file_extent_item *fi;
3428 	u64 extent_len = 0;
3429 	u32 item_size;
3430 	int ret;
3431 
3432 	leaf = path->nodes[0];
3433 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3434 
3435 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3436 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3437 
3438 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3439 		return 0;
3440 
3441 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3442 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3443 		fi = btrfs_item_ptr(leaf, path->slots[0],
3444 				    struct btrfs_file_extent_item);
3445 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3446 	}
3447 	btrfs_release_path(path);
3448 
3449 	path->keep_locks = 1;
3450 	path->search_for_split = 1;
3451 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3452 	path->search_for_split = 0;
3453 	if (ret > 0)
3454 		ret = -EAGAIN;
3455 	if (ret < 0)
3456 		goto err;
3457 
3458 	ret = -EAGAIN;
3459 	leaf = path->nodes[0];
3460 	/* if our item isn't there, return now */
3461 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3462 		goto err;
3463 
3464 	/* the leaf has  changed, it now has room.  return now */
3465 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3466 		goto err;
3467 
3468 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3469 		fi = btrfs_item_ptr(leaf, path->slots[0],
3470 				    struct btrfs_file_extent_item);
3471 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3472 			goto err;
3473 	}
3474 
3475 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3476 	if (ret)
3477 		goto err;
3478 
3479 	path->keep_locks = 0;
3480 	btrfs_unlock_up_safe(path, 1);
3481 	return 0;
3482 err:
3483 	path->keep_locks = 0;
3484 	return ret;
3485 }
3486 
3487 static noinline int split_item(struct btrfs_path *path,
3488 			       const struct btrfs_key *new_key,
3489 			       unsigned long split_offset)
3490 {
3491 	struct extent_buffer *leaf;
3492 	struct btrfs_item *item;
3493 	struct btrfs_item *new_item;
3494 	int slot;
3495 	char *buf;
3496 	u32 nritems;
3497 	u32 item_size;
3498 	u32 orig_offset;
3499 	struct btrfs_disk_key disk_key;
3500 
3501 	leaf = path->nodes[0];
3502 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3503 
3504 	item = btrfs_item_nr(path->slots[0]);
3505 	orig_offset = btrfs_item_offset(leaf, item);
3506 	item_size = btrfs_item_size(leaf, item);
3507 
3508 	buf = kmalloc(item_size, GFP_NOFS);
3509 	if (!buf)
3510 		return -ENOMEM;
3511 
3512 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3513 			    path->slots[0]), item_size);
3514 
3515 	slot = path->slots[0] + 1;
3516 	nritems = btrfs_header_nritems(leaf);
3517 	if (slot != nritems) {
3518 		/* shift the items */
3519 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3520 				btrfs_item_nr_offset(slot),
3521 				(nritems - slot) * sizeof(struct btrfs_item));
3522 	}
3523 
3524 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3525 	btrfs_set_item_key(leaf, &disk_key, slot);
3526 
3527 	new_item = btrfs_item_nr(slot);
3528 
3529 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3530 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3531 
3532 	btrfs_set_item_offset(leaf, item,
3533 			      orig_offset + item_size - split_offset);
3534 	btrfs_set_item_size(leaf, item, split_offset);
3535 
3536 	btrfs_set_header_nritems(leaf, nritems + 1);
3537 
3538 	/* write the data for the start of the original item */
3539 	write_extent_buffer(leaf, buf,
3540 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3541 			    split_offset);
3542 
3543 	/* write the data for the new item */
3544 	write_extent_buffer(leaf, buf + split_offset,
3545 			    btrfs_item_ptr_offset(leaf, slot),
3546 			    item_size - split_offset);
3547 	btrfs_mark_buffer_dirty(leaf);
3548 
3549 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3550 	kfree(buf);
3551 	return 0;
3552 }
3553 
3554 /*
3555  * This function splits a single item into two items,
3556  * giving 'new_key' to the new item and splitting the
3557  * old one at split_offset (from the start of the item).
3558  *
3559  * The path may be released by this operation.  After
3560  * the split, the path is pointing to the old item.  The
3561  * new item is going to be in the same node as the old one.
3562  *
3563  * Note, the item being split must be smaller enough to live alone on
3564  * a tree block with room for one extra struct btrfs_item
3565  *
3566  * This allows us to split the item in place, keeping a lock on the
3567  * leaf the entire time.
3568  */
3569 int btrfs_split_item(struct btrfs_trans_handle *trans,
3570 		     struct btrfs_root *root,
3571 		     struct btrfs_path *path,
3572 		     const struct btrfs_key *new_key,
3573 		     unsigned long split_offset)
3574 {
3575 	int ret;
3576 	ret = setup_leaf_for_split(trans, root, path,
3577 				   sizeof(struct btrfs_item));
3578 	if (ret)
3579 		return ret;
3580 
3581 	ret = split_item(path, new_key, split_offset);
3582 	return ret;
3583 }
3584 
3585 /*
3586  * make the item pointed to by the path smaller.  new_size indicates
3587  * how small to make it, and from_end tells us if we just chop bytes
3588  * off the end of the item or if we shift the item to chop bytes off
3589  * the front.
3590  */
3591 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3592 {
3593 	int slot;
3594 	struct extent_buffer *leaf;
3595 	struct btrfs_item *item;
3596 	u32 nritems;
3597 	unsigned int data_end;
3598 	unsigned int old_data_start;
3599 	unsigned int old_size;
3600 	unsigned int size_diff;
3601 	int i;
3602 	struct btrfs_map_token token;
3603 
3604 	leaf = path->nodes[0];
3605 	slot = path->slots[0];
3606 
3607 	old_size = btrfs_item_size_nr(leaf, slot);
3608 	if (old_size == new_size)
3609 		return;
3610 
3611 	nritems = btrfs_header_nritems(leaf);
3612 	data_end = leaf_data_end(leaf);
3613 
3614 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3615 
3616 	size_diff = old_size - new_size;
3617 
3618 	BUG_ON(slot < 0);
3619 	BUG_ON(slot >= nritems);
3620 
3621 	/*
3622 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3623 	 */
3624 	/* first correct the data pointers */
3625 	btrfs_init_map_token(&token, leaf);
3626 	for (i = slot; i < nritems; i++) {
3627 		u32 ioff;
3628 		item = btrfs_item_nr(i);
3629 
3630 		ioff = btrfs_token_item_offset(&token, item);
3631 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
3632 	}
3633 
3634 	/* shift the data */
3635 	if (from_end) {
3636 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3637 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3638 			      data_end, old_data_start + new_size - data_end);
3639 	} else {
3640 		struct btrfs_disk_key disk_key;
3641 		u64 offset;
3642 
3643 		btrfs_item_key(leaf, &disk_key, slot);
3644 
3645 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3646 			unsigned long ptr;
3647 			struct btrfs_file_extent_item *fi;
3648 
3649 			fi = btrfs_item_ptr(leaf, slot,
3650 					    struct btrfs_file_extent_item);
3651 			fi = (struct btrfs_file_extent_item *)(
3652 			     (unsigned long)fi - size_diff);
3653 
3654 			if (btrfs_file_extent_type(leaf, fi) ==
3655 			    BTRFS_FILE_EXTENT_INLINE) {
3656 				ptr = btrfs_item_ptr_offset(leaf, slot);
3657 				memmove_extent_buffer(leaf, ptr,
3658 				      (unsigned long)fi,
3659 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3660 			}
3661 		}
3662 
3663 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3664 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3665 			      data_end, old_data_start - data_end);
3666 
3667 		offset = btrfs_disk_key_offset(&disk_key);
3668 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3669 		btrfs_set_item_key(leaf, &disk_key, slot);
3670 		if (slot == 0)
3671 			fixup_low_keys(path, &disk_key, 1);
3672 	}
3673 
3674 	item = btrfs_item_nr(slot);
3675 	btrfs_set_item_size(leaf, item, new_size);
3676 	btrfs_mark_buffer_dirty(leaf);
3677 
3678 	if (btrfs_leaf_free_space(leaf) < 0) {
3679 		btrfs_print_leaf(leaf);
3680 		BUG();
3681 	}
3682 }
3683 
3684 /*
3685  * make the item pointed to by the path bigger, data_size is the added size.
3686  */
3687 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3688 {
3689 	int slot;
3690 	struct extent_buffer *leaf;
3691 	struct btrfs_item *item;
3692 	u32 nritems;
3693 	unsigned int data_end;
3694 	unsigned int old_data;
3695 	unsigned int old_size;
3696 	int i;
3697 	struct btrfs_map_token token;
3698 
3699 	leaf = path->nodes[0];
3700 
3701 	nritems = btrfs_header_nritems(leaf);
3702 	data_end = leaf_data_end(leaf);
3703 
3704 	if (btrfs_leaf_free_space(leaf) < data_size) {
3705 		btrfs_print_leaf(leaf);
3706 		BUG();
3707 	}
3708 	slot = path->slots[0];
3709 	old_data = btrfs_item_end_nr(leaf, slot);
3710 
3711 	BUG_ON(slot < 0);
3712 	if (slot >= nritems) {
3713 		btrfs_print_leaf(leaf);
3714 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3715 			   slot, nritems);
3716 		BUG();
3717 	}
3718 
3719 	/*
3720 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3721 	 */
3722 	/* first correct the data pointers */
3723 	btrfs_init_map_token(&token, leaf);
3724 	for (i = slot; i < nritems; i++) {
3725 		u32 ioff;
3726 		item = btrfs_item_nr(i);
3727 
3728 		ioff = btrfs_token_item_offset(&token, item);
3729 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
3730 	}
3731 
3732 	/* shift the data */
3733 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3734 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3735 		      data_end, old_data - data_end);
3736 
3737 	data_end = old_data;
3738 	old_size = btrfs_item_size_nr(leaf, slot);
3739 	item = btrfs_item_nr(slot);
3740 	btrfs_set_item_size(leaf, item, old_size + data_size);
3741 	btrfs_mark_buffer_dirty(leaf);
3742 
3743 	if (btrfs_leaf_free_space(leaf) < 0) {
3744 		btrfs_print_leaf(leaf);
3745 		BUG();
3746 	}
3747 }
3748 
3749 /**
3750  * setup_items_for_insert - Helper called before inserting one or more items
3751  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3752  * in a function that doesn't call btrfs_search_slot
3753  *
3754  * @root:	root we are inserting items to
3755  * @path:	points to the leaf/slot where we are going to insert new items
3756  * @batch:      information about the batch of items to insert
3757  */
3758 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3759 				   const struct btrfs_item_batch *batch)
3760 {
3761 	struct btrfs_fs_info *fs_info = root->fs_info;
3762 	struct btrfs_item *item;
3763 	int i;
3764 	u32 nritems;
3765 	unsigned int data_end;
3766 	struct btrfs_disk_key disk_key;
3767 	struct extent_buffer *leaf;
3768 	int slot;
3769 	struct btrfs_map_token token;
3770 	u32 total_size;
3771 
3772 	/*
3773 	 * Before anything else, update keys in the parent and other ancestors
3774 	 * if needed, then release the write locks on them, so that other tasks
3775 	 * can use them while we modify the leaf.
3776 	 */
3777 	if (path->slots[0] == 0) {
3778 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3779 		fixup_low_keys(path, &disk_key, 1);
3780 	}
3781 	btrfs_unlock_up_safe(path, 1);
3782 
3783 	leaf = path->nodes[0];
3784 	slot = path->slots[0];
3785 
3786 	nritems = btrfs_header_nritems(leaf);
3787 	data_end = leaf_data_end(leaf);
3788 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3789 
3790 	if (btrfs_leaf_free_space(leaf) < total_size) {
3791 		btrfs_print_leaf(leaf);
3792 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3793 			   total_size, btrfs_leaf_free_space(leaf));
3794 		BUG();
3795 	}
3796 
3797 	btrfs_init_map_token(&token, leaf);
3798 	if (slot != nritems) {
3799 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3800 
3801 		if (old_data < data_end) {
3802 			btrfs_print_leaf(leaf);
3803 			btrfs_crit(fs_info,
3804 		"item at slot %d with data offset %u beyond data end of leaf %u",
3805 				   slot, old_data, data_end);
3806 			BUG();
3807 		}
3808 		/*
3809 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3810 		 */
3811 		/* first correct the data pointers */
3812 		for (i = slot; i < nritems; i++) {
3813 			u32 ioff;
3814 
3815 			item = btrfs_item_nr(i);
3816 			ioff = btrfs_token_item_offset(&token, item);
3817 			btrfs_set_token_item_offset(&token, item,
3818 						    ioff - batch->total_data_size);
3819 		}
3820 		/* shift the items */
3821 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3822 			      btrfs_item_nr_offset(slot),
3823 			      (nritems - slot) * sizeof(struct btrfs_item));
3824 
3825 		/* shift the data */
3826 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3827 				      data_end - batch->total_data_size,
3828 				      BTRFS_LEAF_DATA_OFFSET + data_end,
3829 				      old_data - data_end);
3830 		data_end = old_data;
3831 	}
3832 
3833 	/* setup the item for the new data */
3834 	for (i = 0; i < batch->nr; i++) {
3835 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3836 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3837 		item = btrfs_item_nr(slot + i);
3838 		data_end -= batch->data_sizes[i];
3839 		btrfs_set_token_item_offset(&token, item, data_end);
3840 		btrfs_set_token_item_size(&token, item, batch->data_sizes[i]);
3841 	}
3842 
3843 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
3844 	btrfs_mark_buffer_dirty(leaf);
3845 
3846 	if (btrfs_leaf_free_space(leaf) < 0) {
3847 		btrfs_print_leaf(leaf);
3848 		BUG();
3849 	}
3850 }
3851 
3852 /*
3853  * Insert a new item into a leaf.
3854  *
3855  * @root:      The root of the btree.
3856  * @path:      A path pointing to the target leaf and slot.
3857  * @key:       The key of the new item.
3858  * @data_size: The size of the data associated with the new key.
3859  */
3860 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3861 				 struct btrfs_path *path,
3862 				 const struct btrfs_key *key,
3863 				 u32 data_size)
3864 {
3865 	struct btrfs_item_batch batch;
3866 
3867 	batch.keys = key;
3868 	batch.data_sizes = &data_size;
3869 	batch.total_data_size = data_size;
3870 	batch.nr = 1;
3871 
3872 	setup_items_for_insert(root, path, &batch);
3873 }
3874 
3875 /*
3876  * Given a key and some data, insert items into the tree.
3877  * This does all the path init required, making room in the tree if needed.
3878  */
3879 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3880 			    struct btrfs_root *root,
3881 			    struct btrfs_path *path,
3882 			    const struct btrfs_item_batch *batch)
3883 {
3884 	int ret = 0;
3885 	int slot;
3886 	u32 total_size;
3887 
3888 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3889 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
3890 	if (ret == 0)
3891 		return -EEXIST;
3892 	if (ret < 0)
3893 		return ret;
3894 
3895 	slot = path->slots[0];
3896 	BUG_ON(slot < 0);
3897 
3898 	setup_items_for_insert(root, path, batch);
3899 	return 0;
3900 }
3901 
3902 /*
3903  * Given a key and some data, insert an item into the tree.
3904  * This does all the path init required, making room in the tree if needed.
3905  */
3906 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3907 		      const struct btrfs_key *cpu_key, void *data,
3908 		      u32 data_size)
3909 {
3910 	int ret = 0;
3911 	struct btrfs_path *path;
3912 	struct extent_buffer *leaf;
3913 	unsigned long ptr;
3914 
3915 	path = btrfs_alloc_path();
3916 	if (!path)
3917 		return -ENOMEM;
3918 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3919 	if (!ret) {
3920 		leaf = path->nodes[0];
3921 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3922 		write_extent_buffer(leaf, data, ptr, data_size);
3923 		btrfs_mark_buffer_dirty(leaf);
3924 	}
3925 	btrfs_free_path(path);
3926 	return ret;
3927 }
3928 
3929 /*
3930  * This function duplicates an item, giving 'new_key' to the new item.
3931  * It guarantees both items live in the same tree leaf and the new item is
3932  * contiguous with the original item.
3933  *
3934  * This allows us to split a file extent in place, keeping a lock on the leaf
3935  * the entire time.
3936  */
3937 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3938 			 struct btrfs_root *root,
3939 			 struct btrfs_path *path,
3940 			 const struct btrfs_key *new_key)
3941 {
3942 	struct extent_buffer *leaf;
3943 	int ret;
3944 	u32 item_size;
3945 
3946 	leaf = path->nodes[0];
3947 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3948 	ret = setup_leaf_for_split(trans, root, path,
3949 				   item_size + sizeof(struct btrfs_item));
3950 	if (ret)
3951 		return ret;
3952 
3953 	path->slots[0]++;
3954 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
3955 	leaf = path->nodes[0];
3956 	memcpy_extent_buffer(leaf,
3957 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3958 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3959 			     item_size);
3960 	return 0;
3961 }
3962 
3963 /*
3964  * delete the pointer from a given node.
3965  *
3966  * the tree should have been previously balanced so the deletion does not
3967  * empty a node.
3968  */
3969 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
3970 		    int level, int slot)
3971 {
3972 	struct extent_buffer *parent = path->nodes[level];
3973 	u32 nritems;
3974 	int ret;
3975 
3976 	nritems = btrfs_header_nritems(parent);
3977 	if (slot != nritems - 1) {
3978 		if (level) {
3979 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
3980 					slot + 1, nritems - slot - 1);
3981 			BUG_ON(ret < 0);
3982 		}
3983 		memmove_extent_buffer(parent,
3984 			      btrfs_node_key_ptr_offset(slot),
3985 			      btrfs_node_key_ptr_offset(slot + 1),
3986 			      sizeof(struct btrfs_key_ptr) *
3987 			      (nritems - slot - 1));
3988 	} else if (level) {
3989 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
3990 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
3991 		BUG_ON(ret < 0);
3992 	}
3993 
3994 	nritems--;
3995 	btrfs_set_header_nritems(parent, nritems);
3996 	if (nritems == 0 && parent == root->node) {
3997 		BUG_ON(btrfs_header_level(root->node) != 1);
3998 		/* just turn the root into a leaf and break */
3999 		btrfs_set_header_level(root->node, 0);
4000 	} else if (slot == 0) {
4001 		struct btrfs_disk_key disk_key;
4002 
4003 		btrfs_node_key(parent, &disk_key, 0);
4004 		fixup_low_keys(path, &disk_key, level + 1);
4005 	}
4006 	btrfs_mark_buffer_dirty(parent);
4007 }
4008 
4009 /*
4010  * a helper function to delete the leaf pointed to by path->slots[1] and
4011  * path->nodes[1].
4012  *
4013  * This deletes the pointer in path->nodes[1] and frees the leaf
4014  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4015  *
4016  * The path must have already been setup for deleting the leaf, including
4017  * all the proper balancing.  path->nodes[1] must be locked.
4018  */
4019 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4020 				    struct btrfs_root *root,
4021 				    struct btrfs_path *path,
4022 				    struct extent_buffer *leaf)
4023 {
4024 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4025 	del_ptr(root, path, 1, path->slots[1]);
4026 
4027 	/*
4028 	 * btrfs_free_extent is expensive, we want to make sure we
4029 	 * aren't holding any locks when we call it
4030 	 */
4031 	btrfs_unlock_up_safe(path, 0);
4032 
4033 	root_sub_used(root, leaf->len);
4034 
4035 	atomic_inc(&leaf->refs);
4036 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4037 	free_extent_buffer_stale(leaf);
4038 }
4039 /*
4040  * delete the item at the leaf level in path.  If that empties
4041  * the leaf, remove it from the tree
4042  */
4043 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4044 		    struct btrfs_path *path, int slot, int nr)
4045 {
4046 	struct btrfs_fs_info *fs_info = root->fs_info;
4047 	struct extent_buffer *leaf;
4048 	struct btrfs_item *item;
4049 	u32 last_off;
4050 	u32 dsize = 0;
4051 	int ret = 0;
4052 	int wret;
4053 	int i;
4054 	u32 nritems;
4055 
4056 	leaf = path->nodes[0];
4057 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4058 
4059 	for (i = 0; i < nr; i++)
4060 		dsize += btrfs_item_size_nr(leaf, slot + i);
4061 
4062 	nritems = btrfs_header_nritems(leaf);
4063 
4064 	if (slot + nr != nritems) {
4065 		int data_end = leaf_data_end(leaf);
4066 		struct btrfs_map_token token;
4067 
4068 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4069 			      data_end + dsize,
4070 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4071 			      last_off - data_end);
4072 
4073 		btrfs_init_map_token(&token, leaf);
4074 		for (i = slot + nr; i < nritems; i++) {
4075 			u32 ioff;
4076 
4077 			item = btrfs_item_nr(i);
4078 			ioff = btrfs_token_item_offset(&token, item);
4079 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4080 		}
4081 
4082 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4083 			      btrfs_item_nr_offset(slot + nr),
4084 			      sizeof(struct btrfs_item) *
4085 			      (nritems - slot - nr));
4086 	}
4087 	btrfs_set_header_nritems(leaf, nritems - nr);
4088 	nritems -= nr;
4089 
4090 	/* delete the leaf if we've emptied it */
4091 	if (nritems == 0) {
4092 		if (leaf == root->node) {
4093 			btrfs_set_header_level(leaf, 0);
4094 		} else {
4095 			btrfs_clean_tree_block(leaf);
4096 			btrfs_del_leaf(trans, root, path, leaf);
4097 		}
4098 	} else {
4099 		int used = leaf_space_used(leaf, 0, nritems);
4100 		if (slot == 0) {
4101 			struct btrfs_disk_key disk_key;
4102 
4103 			btrfs_item_key(leaf, &disk_key, 0);
4104 			fixup_low_keys(path, &disk_key, 1);
4105 		}
4106 
4107 		/* delete the leaf if it is mostly empty */
4108 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4109 			/* push_leaf_left fixes the path.
4110 			 * make sure the path still points to our leaf
4111 			 * for possible call to del_ptr below
4112 			 */
4113 			slot = path->slots[1];
4114 			atomic_inc(&leaf->refs);
4115 
4116 			wret = push_leaf_left(trans, root, path, 1, 1,
4117 					      1, (u32)-1);
4118 			if (wret < 0 && wret != -ENOSPC)
4119 				ret = wret;
4120 
4121 			if (path->nodes[0] == leaf &&
4122 			    btrfs_header_nritems(leaf)) {
4123 				wret = push_leaf_right(trans, root, path, 1,
4124 						       1, 1, 0);
4125 				if (wret < 0 && wret != -ENOSPC)
4126 					ret = wret;
4127 			}
4128 
4129 			if (btrfs_header_nritems(leaf) == 0) {
4130 				path->slots[1] = slot;
4131 				btrfs_del_leaf(trans, root, path, leaf);
4132 				free_extent_buffer(leaf);
4133 				ret = 0;
4134 			} else {
4135 				/* if we're still in the path, make sure
4136 				 * we're dirty.  Otherwise, one of the
4137 				 * push_leaf functions must have already
4138 				 * dirtied this buffer
4139 				 */
4140 				if (path->nodes[0] == leaf)
4141 					btrfs_mark_buffer_dirty(leaf);
4142 				free_extent_buffer(leaf);
4143 			}
4144 		} else {
4145 			btrfs_mark_buffer_dirty(leaf);
4146 		}
4147 	}
4148 	return ret;
4149 }
4150 
4151 /*
4152  * search the tree again to find a leaf with lesser keys
4153  * returns 0 if it found something or 1 if there are no lesser leaves.
4154  * returns < 0 on io errors.
4155  *
4156  * This may release the path, and so you may lose any locks held at the
4157  * time you call it.
4158  */
4159 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4160 {
4161 	struct btrfs_key key;
4162 	struct btrfs_disk_key found_key;
4163 	int ret;
4164 
4165 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4166 
4167 	if (key.offset > 0) {
4168 		key.offset--;
4169 	} else if (key.type > 0) {
4170 		key.type--;
4171 		key.offset = (u64)-1;
4172 	} else if (key.objectid > 0) {
4173 		key.objectid--;
4174 		key.type = (u8)-1;
4175 		key.offset = (u64)-1;
4176 	} else {
4177 		return 1;
4178 	}
4179 
4180 	btrfs_release_path(path);
4181 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4182 	if (ret < 0)
4183 		return ret;
4184 	btrfs_item_key(path->nodes[0], &found_key, 0);
4185 	ret = comp_keys(&found_key, &key);
4186 	/*
4187 	 * We might have had an item with the previous key in the tree right
4188 	 * before we released our path. And after we released our path, that
4189 	 * item might have been pushed to the first slot (0) of the leaf we
4190 	 * were holding due to a tree balance. Alternatively, an item with the
4191 	 * previous key can exist as the only element of a leaf (big fat item).
4192 	 * Therefore account for these 2 cases, so that our callers (like
4193 	 * btrfs_previous_item) don't miss an existing item with a key matching
4194 	 * the previous key we computed above.
4195 	 */
4196 	if (ret <= 0)
4197 		return 0;
4198 	return 1;
4199 }
4200 
4201 /*
4202  * A helper function to walk down the tree starting at min_key, and looking
4203  * for nodes or leaves that are have a minimum transaction id.
4204  * This is used by the btree defrag code, and tree logging
4205  *
4206  * This does not cow, but it does stuff the starting key it finds back
4207  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4208  * key and get a writable path.
4209  *
4210  * This honors path->lowest_level to prevent descent past a given level
4211  * of the tree.
4212  *
4213  * min_trans indicates the oldest transaction that you are interested
4214  * in walking through.  Any nodes or leaves older than min_trans are
4215  * skipped over (without reading them).
4216  *
4217  * returns zero if something useful was found, < 0 on error and 1 if there
4218  * was nothing in the tree that matched the search criteria.
4219  */
4220 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4221 			 struct btrfs_path *path,
4222 			 u64 min_trans)
4223 {
4224 	struct extent_buffer *cur;
4225 	struct btrfs_key found_key;
4226 	int slot;
4227 	int sret;
4228 	u32 nritems;
4229 	int level;
4230 	int ret = 1;
4231 	int keep_locks = path->keep_locks;
4232 
4233 	path->keep_locks = 1;
4234 again:
4235 	cur = btrfs_read_lock_root_node(root);
4236 	level = btrfs_header_level(cur);
4237 	WARN_ON(path->nodes[level]);
4238 	path->nodes[level] = cur;
4239 	path->locks[level] = BTRFS_READ_LOCK;
4240 
4241 	if (btrfs_header_generation(cur) < min_trans) {
4242 		ret = 1;
4243 		goto out;
4244 	}
4245 	while (1) {
4246 		nritems = btrfs_header_nritems(cur);
4247 		level = btrfs_header_level(cur);
4248 		sret = btrfs_bin_search(cur, min_key, &slot);
4249 		if (sret < 0) {
4250 			ret = sret;
4251 			goto out;
4252 		}
4253 
4254 		/* at the lowest level, we're done, setup the path and exit */
4255 		if (level == path->lowest_level) {
4256 			if (slot >= nritems)
4257 				goto find_next_key;
4258 			ret = 0;
4259 			path->slots[level] = slot;
4260 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4261 			goto out;
4262 		}
4263 		if (sret && slot > 0)
4264 			slot--;
4265 		/*
4266 		 * check this node pointer against the min_trans parameters.
4267 		 * If it is too old, skip to the next one.
4268 		 */
4269 		while (slot < nritems) {
4270 			u64 gen;
4271 
4272 			gen = btrfs_node_ptr_generation(cur, slot);
4273 			if (gen < min_trans) {
4274 				slot++;
4275 				continue;
4276 			}
4277 			break;
4278 		}
4279 find_next_key:
4280 		/*
4281 		 * we didn't find a candidate key in this node, walk forward
4282 		 * and find another one
4283 		 */
4284 		if (slot >= nritems) {
4285 			path->slots[level] = slot;
4286 			sret = btrfs_find_next_key(root, path, min_key, level,
4287 						  min_trans);
4288 			if (sret == 0) {
4289 				btrfs_release_path(path);
4290 				goto again;
4291 			} else {
4292 				goto out;
4293 			}
4294 		}
4295 		/* save our key for returning back */
4296 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4297 		path->slots[level] = slot;
4298 		if (level == path->lowest_level) {
4299 			ret = 0;
4300 			goto out;
4301 		}
4302 		cur = btrfs_read_node_slot(cur, slot);
4303 		if (IS_ERR(cur)) {
4304 			ret = PTR_ERR(cur);
4305 			goto out;
4306 		}
4307 
4308 		btrfs_tree_read_lock(cur);
4309 
4310 		path->locks[level - 1] = BTRFS_READ_LOCK;
4311 		path->nodes[level - 1] = cur;
4312 		unlock_up(path, level, 1, 0, NULL);
4313 	}
4314 out:
4315 	path->keep_locks = keep_locks;
4316 	if (ret == 0) {
4317 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4318 		memcpy(min_key, &found_key, sizeof(found_key));
4319 	}
4320 	return ret;
4321 }
4322 
4323 /*
4324  * this is similar to btrfs_next_leaf, but does not try to preserve
4325  * and fixup the path.  It looks for and returns the next key in the
4326  * tree based on the current path and the min_trans parameters.
4327  *
4328  * 0 is returned if another key is found, < 0 if there are any errors
4329  * and 1 is returned if there are no higher keys in the tree
4330  *
4331  * path->keep_locks should be set to 1 on the search made before
4332  * calling this function.
4333  */
4334 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4335 			struct btrfs_key *key, int level, u64 min_trans)
4336 {
4337 	int slot;
4338 	struct extent_buffer *c;
4339 
4340 	WARN_ON(!path->keep_locks && !path->skip_locking);
4341 	while (level < BTRFS_MAX_LEVEL) {
4342 		if (!path->nodes[level])
4343 			return 1;
4344 
4345 		slot = path->slots[level] + 1;
4346 		c = path->nodes[level];
4347 next:
4348 		if (slot >= btrfs_header_nritems(c)) {
4349 			int ret;
4350 			int orig_lowest;
4351 			struct btrfs_key cur_key;
4352 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4353 			    !path->nodes[level + 1])
4354 				return 1;
4355 
4356 			if (path->locks[level + 1] || path->skip_locking) {
4357 				level++;
4358 				continue;
4359 			}
4360 
4361 			slot = btrfs_header_nritems(c) - 1;
4362 			if (level == 0)
4363 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4364 			else
4365 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4366 
4367 			orig_lowest = path->lowest_level;
4368 			btrfs_release_path(path);
4369 			path->lowest_level = level;
4370 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4371 						0, 0);
4372 			path->lowest_level = orig_lowest;
4373 			if (ret < 0)
4374 				return ret;
4375 
4376 			c = path->nodes[level];
4377 			slot = path->slots[level];
4378 			if (ret == 0)
4379 				slot++;
4380 			goto next;
4381 		}
4382 
4383 		if (level == 0)
4384 			btrfs_item_key_to_cpu(c, key, slot);
4385 		else {
4386 			u64 gen = btrfs_node_ptr_generation(c, slot);
4387 
4388 			if (gen < min_trans) {
4389 				slot++;
4390 				goto next;
4391 			}
4392 			btrfs_node_key_to_cpu(c, key, slot);
4393 		}
4394 		return 0;
4395 	}
4396 	return 1;
4397 }
4398 
4399 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4400 			u64 time_seq)
4401 {
4402 	int slot;
4403 	int level;
4404 	struct extent_buffer *c;
4405 	struct extent_buffer *next;
4406 	struct btrfs_key key;
4407 	u32 nritems;
4408 	int ret;
4409 	int i;
4410 
4411 	nritems = btrfs_header_nritems(path->nodes[0]);
4412 	if (nritems == 0)
4413 		return 1;
4414 
4415 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4416 again:
4417 	level = 1;
4418 	next = NULL;
4419 	btrfs_release_path(path);
4420 
4421 	path->keep_locks = 1;
4422 
4423 	if (time_seq)
4424 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4425 	else
4426 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4427 	path->keep_locks = 0;
4428 
4429 	if (ret < 0)
4430 		return ret;
4431 
4432 	nritems = btrfs_header_nritems(path->nodes[0]);
4433 	/*
4434 	 * by releasing the path above we dropped all our locks.  A balance
4435 	 * could have added more items next to the key that used to be
4436 	 * at the very end of the block.  So, check again here and
4437 	 * advance the path if there are now more items available.
4438 	 */
4439 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4440 		if (ret == 0)
4441 			path->slots[0]++;
4442 		ret = 0;
4443 		goto done;
4444 	}
4445 	/*
4446 	 * So the above check misses one case:
4447 	 * - after releasing the path above, someone has removed the item that
4448 	 *   used to be at the very end of the block, and balance between leafs
4449 	 *   gets another one with bigger key.offset to replace it.
4450 	 *
4451 	 * This one should be returned as well, or we can get leaf corruption
4452 	 * later(esp. in __btrfs_drop_extents()).
4453 	 *
4454 	 * And a bit more explanation about this check,
4455 	 * with ret > 0, the key isn't found, the path points to the slot
4456 	 * where it should be inserted, so the path->slots[0] item must be the
4457 	 * bigger one.
4458 	 */
4459 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4460 		ret = 0;
4461 		goto done;
4462 	}
4463 
4464 	while (level < BTRFS_MAX_LEVEL) {
4465 		if (!path->nodes[level]) {
4466 			ret = 1;
4467 			goto done;
4468 		}
4469 
4470 		slot = path->slots[level] + 1;
4471 		c = path->nodes[level];
4472 		if (slot >= btrfs_header_nritems(c)) {
4473 			level++;
4474 			if (level == BTRFS_MAX_LEVEL) {
4475 				ret = 1;
4476 				goto done;
4477 			}
4478 			continue;
4479 		}
4480 
4481 
4482 		/*
4483 		 * Our current level is where we're going to start from, and to
4484 		 * make sure lockdep doesn't complain we need to drop our locks
4485 		 * and nodes from 0 to our current level.
4486 		 */
4487 		for (i = 0; i < level; i++) {
4488 			if (path->locks[level]) {
4489 				btrfs_tree_read_unlock(path->nodes[i]);
4490 				path->locks[i] = 0;
4491 			}
4492 			free_extent_buffer(path->nodes[i]);
4493 			path->nodes[i] = NULL;
4494 		}
4495 
4496 		next = c;
4497 		ret = read_block_for_search(root, path, &next, level,
4498 					    slot, &key);
4499 		if (ret == -EAGAIN)
4500 			goto again;
4501 
4502 		if (ret < 0) {
4503 			btrfs_release_path(path);
4504 			goto done;
4505 		}
4506 
4507 		if (!path->skip_locking) {
4508 			ret = btrfs_try_tree_read_lock(next);
4509 			if (!ret && time_seq) {
4510 				/*
4511 				 * If we don't get the lock, we may be racing
4512 				 * with push_leaf_left, holding that lock while
4513 				 * itself waiting for the leaf we've currently
4514 				 * locked. To solve this situation, we give up
4515 				 * on our lock and cycle.
4516 				 */
4517 				free_extent_buffer(next);
4518 				btrfs_release_path(path);
4519 				cond_resched();
4520 				goto again;
4521 			}
4522 			if (!ret)
4523 				btrfs_tree_read_lock(next);
4524 		}
4525 		break;
4526 	}
4527 	path->slots[level] = slot;
4528 	while (1) {
4529 		level--;
4530 		path->nodes[level] = next;
4531 		path->slots[level] = 0;
4532 		if (!path->skip_locking)
4533 			path->locks[level] = BTRFS_READ_LOCK;
4534 		if (!level)
4535 			break;
4536 
4537 		ret = read_block_for_search(root, path, &next, level,
4538 					    0, &key);
4539 		if (ret == -EAGAIN)
4540 			goto again;
4541 
4542 		if (ret < 0) {
4543 			btrfs_release_path(path);
4544 			goto done;
4545 		}
4546 
4547 		if (!path->skip_locking)
4548 			btrfs_tree_read_lock(next);
4549 	}
4550 	ret = 0;
4551 done:
4552 	unlock_up(path, 0, 1, 0, NULL);
4553 
4554 	return ret;
4555 }
4556 
4557 /*
4558  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4559  * searching until it gets past min_objectid or finds an item of 'type'
4560  *
4561  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4562  */
4563 int btrfs_previous_item(struct btrfs_root *root,
4564 			struct btrfs_path *path, u64 min_objectid,
4565 			int type)
4566 {
4567 	struct btrfs_key found_key;
4568 	struct extent_buffer *leaf;
4569 	u32 nritems;
4570 	int ret;
4571 
4572 	while (1) {
4573 		if (path->slots[0] == 0) {
4574 			ret = btrfs_prev_leaf(root, path);
4575 			if (ret != 0)
4576 				return ret;
4577 		} else {
4578 			path->slots[0]--;
4579 		}
4580 		leaf = path->nodes[0];
4581 		nritems = btrfs_header_nritems(leaf);
4582 		if (nritems == 0)
4583 			return 1;
4584 		if (path->slots[0] == nritems)
4585 			path->slots[0]--;
4586 
4587 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4588 		if (found_key.objectid < min_objectid)
4589 			break;
4590 		if (found_key.type == type)
4591 			return 0;
4592 		if (found_key.objectid == min_objectid &&
4593 		    found_key.type < type)
4594 			break;
4595 	}
4596 	return 1;
4597 }
4598 
4599 /*
4600  * search in extent tree to find a previous Metadata/Data extent item with
4601  * min objecitd.
4602  *
4603  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4604  */
4605 int btrfs_previous_extent_item(struct btrfs_root *root,
4606 			struct btrfs_path *path, u64 min_objectid)
4607 {
4608 	struct btrfs_key found_key;
4609 	struct extent_buffer *leaf;
4610 	u32 nritems;
4611 	int ret;
4612 
4613 	while (1) {
4614 		if (path->slots[0] == 0) {
4615 			ret = btrfs_prev_leaf(root, path);
4616 			if (ret != 0)
4617 				return ret;
4618 		} else {
4619 			path->slots[0]--;
4620 		}
4621 		leaf = path->nodes[0];
4622 		nritems = btrfs_header_nritems(leaf);
4623 		if (nritems == 0)
4624 			return 1;
4625 		if (path->slots[0] == nritems)
4626 			path->slots[0]--;
4627 
4628 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4629 		if (found_key.objectid < min_objectid)
4630 			break;
4631 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4632 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4633 			return 0;
4634 		if (found_key.objectid == min_objectid &&
4635 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4636 			break;
4637 	}
4638 	return 1;
4639 }
4640