1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char name[10]; 35 const char driver[12]; 36 } btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42 }; 43 44 int btrfs_super_csum_size(const struct btrfs_super_block *s) 45 { 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51 } 52 53 const char *btrfs_super_csum_name(u16 csum_type) 54 { 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57 } 58 59 /* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63 const char *btrfs_super_csum_driver(u16 csum_type) 64 { 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver[0] ? 67 btrfs_csums[csum_type].driver : 68 btrfs_csums[csum_type].name; 69 } 70 71 size_t __attribute_const__ btrfs_get_num_csums(void) 72 { 73 return ARRAY_SIZE(btrfs_csums); 74 } 75 76 struct btrfs_path *btrfs_alloc_path(void) 77 { 78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 79 } 80 81 /* this also releases the path */ 82 void btrfs_free_path(struct btrfs_path *p) 83 { 84 if (!p) 85 return; 86 btrfs_release_path(p); 87 kmem_cache_free(btrfs_path_cachep, p); 88 } 89 90 /* 91 * path release drops references on the extent buffers in the path 92 * and it drops any locks held by this path 93 * 94 * It is safe to call this on paths that no locks or extent buffers held. 95 */ 96 noinline void btrfs_release_path(struct btrfs_path *p) 97 { 98 int i; 99 100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 101 p->slots[i] = 0; 102 if (!p->nodes[i]) 103 continue; 104 if (p->locks[i]) { 105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 106 p->locks[i] = 0; 107 } 108 free_extent_buffer(p->nodes[i]); 109 p->nodes[i] = NULL; 110 } 111 } 112 113 /* 114 * safely gets a reference on the root node of a tree. A lock 115 * is not taken, so a concurrent writer may put a different node 116 * at the root of the tree. See btrfs_lock_root_node for the 117 * looping required. 118 * 119 * The extent buffer returned by this has a reference taken, so 120 * it won't disappear. It may stop being the root of the tree 121 * at any time because there are no locks held. 122 */ 123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 124 { 125 struct extent_buffer *eb; 126 127 while (1) { 128 rcu_read_lock(); 129 eb = rcu_dereference(root->node); 130 131 /* 132 * RCU really hurts here, we could free up the root node because 133 * it was COWed but we may not get the new root node yet so do 134 * the inc_not_zero dance and if it doesn't work then 135 * synchronize_rcu and try again. 136 */ 137 if (atomic_inc_not_zero(&eb->refs)) { 138 rcu_read_unlock(); 139 break; 140 } 141 rcu_read_unlock(); 142 synchronize_rcu(); 143 } 144 return eb; 145 } 146 147 /* 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 149 * just get put onto a simple dirty list. Transaction walks this list to make 150 * sure they get properly updated on disk. 151 */ 152 static void add_root_to_dirty_list(struct btrfs_root *root) 153 { 154 struct btrfs_fs_info *fs_info = root->fs_info; 155 156 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 157 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 158 return; 159 160 spin_lock(&fs_info->trans_lock); 161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 162 /* Want the extent tree to be the last on the list */ 163 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 164 list_move_tail(&root->dirty_list, 165 &fs_info->dirty_cowonly_roots); 166 else 167 list_move(&root->dirty_list, 168 &fs_info->dirty_cowonly_roots); 169 } 170 spin_unlock(&fs_info->trans_lock); 171 } 172 173 /* 174 * used by snapshot creation to make a copy of a root for a tree with 175 * a given objectid. The buffer with the new root node is returned in 176 * cow_ret, and this func returns zero on success or a negative error code. 177 */ 178 int btrfs_copy_root(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct extent_buffer *buf, 181 struct extent_buffer **cow_ret, u64 new_root_objectid) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 struct extent_buffer *cow; 185 int ret = 0; 186 int level; 187 struct btrfs_disk_key disk_key; 188 189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 190 trans->transid != fs_info->running_transaction->transid); 191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 192 trans->transid != root->last_trans); 193 194 level = btrfs_header_level(buf); 195 if (level == 0) 196 btrfs_item_key(buf, &disk_key, 0); 197 else 198 btrfs_node_key(buf, &disk_key, 0); 199 200 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 201 &disk_key, level, buf->start, 0, 202 BTRFS_NESTING_NEW_ROOT); 203 if (IS_ERR(cow)) 204 return PTR_ERR(cow); 205 206 copy_extent_buffer_full(cow, buf); 207 btrfs_set_header_bytenr(cow, cow->start); 208 btrfs_set_header_generation(cow, trans->transid); 209 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 210 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 211 BTRFS_HEADER_FLAG_RELOC); 212 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 213 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 214 else 215 btrfs_set_header_owner(cow, new_root_objectid); 216 217 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 218 219 WARN_ON(btrfs_header_generation(buf) > trans->transid); 220 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 221 ret = btrfs_inc_ref(trans, root, cow, 1); 222 else 223 ret = btrfs_inc_ref(trans, root, cow, 0); 224 225 if (ret) 226 return ret; 227 228 btrfs_mark_buffer_dirty(cow); 229 *cow_ret = cow; 230 return 0; 231 } 232 233 enum mod_log_op { 234 MOD_LOG_KEY_REPLACE, 235 MOD_LOG_KEY_ADD, 236 MOD_LOG_KEY_REMOVE, 237 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 238 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 239 MOD_LOG_MOVE_KEYS, 240 MOD_LOG_ROOT_REPLACE, 241 }; 242 243 struct tree_mod_root { 244 u64 logical; 245 u8 level; 246 }; 247 248 struct tree_mod_elem { 249 struct rb_node node; 250 u64 logical; 251 u64 seq; 252 enum mod_log_op op; 253 254 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 255 int slot; 256 257 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 258 u64 generation; 259 260 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 261 struct btrfs_disk_key key; 262 u64 blockptr; 263 264 /* this is used for op == MOD_LOG_MOVE_KEYS */ 265 struct { 266 int dst_slot; 267 int nr_items; 268 } move; 269 270 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 271 struct tree_mod_root old_root; 272 }; 273 274 /* 275 * Pull a new tree mod seq number for our operation. 276 */ 277 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 278 { 279 return atomic64_inc_return(&fs_info->tree_mod_seq); 280 } 281 282 /* 283 * This adds a new blocker to the tree mod log's blocker list if the @elem 284 * passed does not already have a sequence number set. So when a caller expects 285 * to record tree modifications, it should ensure to set elem->seq to zero 286 * before calling btrfs_get_tree_mod_seq. 287 * Returns a fresh, unused tree log modification sequence number, even if no new 288 * blocker was added. 289 */ 290 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 291 struct seq_list *elem) 292 { 293 write_lock(&fs_info->tree_mod_log_lock); 294 if (!elem->seq) { 295 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 296 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 297 } 298 write_unlock(&fs_info->tree_mod_log_lock); 299 300 return elem->seq; 301 } 302 303 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 304 struct seq_list *elem) 305 { 306 struct rb_root *tm_root; 307 struct rb_node *node; 308 struct rb_node *next; 309 struct tree_mod_elem *tm; 310 u64 min_seq = (u64)-1; 311 u64 seq_putting = elem->seq; 312 313 if (!seq_putting) 314 return; 315 316 write_lock(&fs_info->tree_mod_log_lock); 317 list_del(&elem->list); 318 elem->seq = 0; 319 320 if (!list_empty(&fs_info->tree_mod_seq_list)) { 321 struct seq_list *first; 322 323 first = list_first_entry(&fs_info->tree_mod_seq_list, 324 struct seq_list, list); 325 if (seq_putting > first->seq) { 326 /* 327 * Blocker with lower sequence number exists, we 328 * cannot remove anything from the log. 329 */ 330 write_unlock(&fs_info->tree_mod_log_lock); 331 return; 332 } 333 min_seq = first->seq; 334 } 335 336 /* 337 * anything that's lower than the lowest existing (read: blocked) 338 * sequence number can be removed from the tree. 339 */ 340 tm_root = &fs_info->tree_mod_log; 341 for (node = rb_first(tm_root); node; node = next) { 342 next = rb_next(node); 343 tm = rb_entry(node, struct tree_mod_elem, node); 344 if (tm->seq >= min_seq) 345 continue; 346 rb_erase(node, tm_root); 347 kfree(tm); 348 } 349 write_unlock(&fs_info->tree_mod_log_lock); 350 } 351 352 /* 353 * key order of the log: 354 * node/leaf start address -> sequence 355 * 356 * The 'start address' is the logical address of the *new* root node 357 * for root replace operations, or the logical address of the affected 358 * block for all other operations. 359 */ 360 static noinline int 361 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 362 { 363 struct rb_root *tm_root; 364 struct rb_node **new; 365 struct rb_node *parent = NULL; 366 struct tree_mod_elem *cur; 367 368 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 369 370 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 371 372 tm_root = &fs_info->tree_mod_log; 373 new = &tm_root->rb_node; 374 while (*new) { 375 cur = rb_entry(*new, struct tree_mod_elem, node); 376 parent = *new; 377 if (cur->logical < tm->logical) 378 new = &((*new)->rb_left); 379 else if (cur->logical > tm->logical) 380 new = &((*new)->rb_right); 381 else if (cur->seq < tm->seq) 382 new = &((*new)->rb_left); 383 else if (cur->seq > tm->seq) 384 new = &((*new)->rb_right); 385 else 386 return -EEXIST; 387 } 388 389 rb_link_node(&tm->node, parent, new); 390 rb_insert_color(&tm->node, tm_root); 391 return 0; 392 } 393 394 /* 395 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 396 * returns zero with the tree_mod_log_lock acquired. The caller must hold 397 * this until all tree mod log insertions are recorded in the rb tree and then 398 * write unlock fs_info::tree_mod_log_lock. 399 */ 400 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 401 struct extent_buffer *eb) { 402 smp_mb(); 403 if (list_empty(&(fs_info)->tree_mod_seq_list)) 404 return 1; 405 if (eb && btrfs_header_level(eb) == 0) 406 return 1; 407 408 write_lock(&fs_info->tree_mod_log_lock); 409 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 410 write_unlock(&fs_info->tree_mod_log_lock); 411 return 1; 412 } 413 414 return 0; 415 } 416 417 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 418 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 419 struct extent_buffer *eb) 420 { 421 smp_mb(); 422 if (list_empty(&(fs_info)->tree_mod_seq_list)) 423 return 0; 424 if (eb && btrfs_header_level(eb) == 0) 425 return 0; 426 427 return 1; 428 } 429 430 static struct tree_mod_elem * 431 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 432 enum mod_log_op op, gfp_t flags) 433 { 434 struct tree_mod_elem *tm; 435 436 tm = kzalloc(sizeof(*tm), flags); 437 if (!tm) 438 return NULL; 439 440 tm->logical = eb->start; 441 if (op != MOD_LOG_KEY_ADD) { 442 btrfs_node_key(eb, &tm->key, slot); 443 tm->blockptr = btrfs_node_blockptr(eb, slot); 444 } 445 tm->op = op; 446 tm->slot = slot; 447 tm->generation = btrfs_node_ptr_generation(eb, slot); 448 RB_CLEAR_NODE(&tm->node); 449 450 return tm; 451 } 452 453 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 454 enum mod_log_op op, gfp_t flags) 455 { 456 struct tree_mod_elem *tm; 457 int ret; 458 459 if (!tree_mod_need_log(eb->fs_info, eb)) 460 return 0; 461 462 tm = alloc_tree_mod_elem(eb, slot, op, flags); 463 if (!tm) 464 return -ENOMEM; 465 466 if (tree_mod_dont_log(eb->fs_info, eb)) { 467 kfree(tm); 468 return 0; 469 } 470 471 ret = __tree_mod_log_insert(eb->fs_info, tm); 472 write_unlock(&eb->fs_info->tree_mod_log_lock); 473 if (ret) 474 kfree(tm); 475 476 return ret; 477 } 478 479 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 480 int dst_slot, int src_slot, int nr_items) 481 { 482 struct tree_mod_elem *tm = NULL; 483 struct tree_mod_elem **tm_list = NULL; 484 int ret = 0; 485 int i; 486 int locked = 0; 487 488 if (!tree_mod_need_log(eb->fs_info, eb)) 489 return 0; 490 491 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 492 if (!tm_list) 493 return -ENOMEM; 494 495 tm = kzalloc(sizeof(*tm), GFP_NOFS); 496 if (!tm) { 497 ret = -ENOMEM; 498 goto free_tms; 499 } 500 501 tm->logical = eb->start; 502 tm->slot = src_slot; 503 tm->move.dst_slot = dst_slot; 504 tm->move.nr_items = nr_items; 505 tm->op = MOD_LOG_MOVE_KEYS; 506 507 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 508 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 509 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 510 if (!tm_list[i]) { 511 ret = -ENOMEM; 512 goto free_tms; 513 } 514 } 515 516 if (tree_mod_dont_log(eb->fs_info, eb)) 517 goto free_tms; 518 locked = 1; 519 520 /* 521 * When we override something during the move, we log these removals. 522 * This can only happen when we move towards the beginning of the 523 * buffer, i.e. dst_slot < src_slot. 524 */ 525 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 526 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 527 if (ret) 528 goto free_tms; 529 } 530 531 ret = __tree_mod_log_insert(eb->fs_info, tm); 532 if (ret) 533 goto free_tms; 534 write_unlock(&eb->fs_info->tree_mod_log_lock); 535 kfree(tm_list); 536 537 return 0; 538 free_tms: 539 for (i = 0; i < nr_items; i++) { 540 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 541 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 542 kfree(tm_list[i]); 543 } 544 if (locked) 545 write_unlock(&eb->fs_info->tree_mod_log_lock); 546 kfree(tm_list); 547 kfree(tm); 548 549 return ret; 550 } 551 552 static inline int 553 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 554 struct tree_mod_elem **tm_list, 555 int nritems) 556 { 557 int i, j; 558 int ret; 559 560 for (i = nritems - 1; i >= 0; i--) { 561 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 562 if (ret) { 563 for (j = nritems - 1; j > i; j--) 564 rb_erase(&tm_list[j]->node, 565 &fs_info->tree_mod_log); 566 return ret; 567 } 568 } 569 570 return 0; 571 } 572 573 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 574 struct extent_buffer *new_root, int log_removal) 575 { 576 struct btrfs_fs_info *fs_info = old_root->fs_info; 577 struct tree_mod_elem *tm = NULL; 578 struct tree_mod_elem **tm_list = NULL; 579 int nritems = 0; 580 int ret = 0; 581 int i; 582 583 if (!tree_mod_need_log(fs_info, NULL)) 584 return 0; 585 586 if (log_removal && btrfs_header_level(old_root) > 0) { 587 nritems = btrfs_header_nritems(old_root); 588 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 589 GFP_NOFS); 590 if (!tm_list) { 591 ret = -ENOMEM; 592 goto free_tms; 593 } 594 for (i = 0; i < nritems; i++) { 595 tm_list[i] = alloc_tree_mod_elem(old_root, i, 596 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 597 if (!tm_list[i]) { 598 ret = -ENOMEM; 599 goto free_tms; 600 } 601 } 602 } 603 604 tm = kzalloc(sizeof(*tm), GFP_NOFS); 605 if (!tm) { 606 ret = -ENOMEM; 607 goto free_tms; 608 } 609 610 tm->logical = new_root->start; 611 tm->old_root.logical = old_root->start; 612 tm->old_root.level = btrfs_header_level(old_root); 613 tm->generation = btrfs_header_generation(old_root); 614 tm->op = MOD_LOG_ROOT_REPLACE; 615 616 if (tree_mod_dont_log(fs_info, NULL)) 617 goto free_tms; 618 619 if (tm_list) 620 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 621 if (!ret) 622 ret = __tree_mod_log_insert(fs_info, tm); 623 624 write_unlock(&fs_info->tree_mod_log_lock); 625 if (ret) 626 goto free_tms; 627 kfree(tm_list); 628 629 return ret; 630 631 free_tms: 632 if (tm_list) { 633 for (i = 0; i < nritems; i++) 634 kfree(tm_list[i]); 635 kfree(tm_list); 636 } 637 kfree(tm); 638 639 return ret; 640 } 641 642 static struct tree_mod_elem * 643 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 644 int smallest) 645 { 646 struct rb_root *tm_root; 647 struct rb_node *node; 648 struct tree_mod_elem *cur = NULL; 649 struct tree_mod_elem *found = NULL; 650 651 read_lock(&fs_info->tree_mod_log_lock); 652 tm_root = &fs_info->tree_mod_log; 653 node = tm_root->rb_node; 654 while (node) { 655 cur = rb_entry(node, struct tree_mod_elem, node); 656 if (cur->logical < start) { 657 node = node->rb_left; 658 } else if (cur->logical > start) { 659 node = node->rb_right; 660 } else if (cur->seq < min_seq) { 661 node = node->rb_left; 662 } else if (!smallest) { 663 /* we want the node with the highest seq */ 664 if (found) 665 BUG_ON(found->seq > cur->seq); 666 found = cur; 667 node = node->rb_left; 668 } else if (cur->seq > min_seq) { 669 /* we want the node with the smallest seq */ 670 if (found) 671 BUG_ON(found->seq < cur->seq); 672 found = cur; 673 node = node->rb_right; 674 } else { 675 found = cur; 676 break; 677 } 678 } 679 read_unlock(&fs_info->tree_mod_log_lock); 680 681 return found; 682 } 683 684 /* 685 * this returns the element from the log with the smallest time sequence 686 * value that's in the log (the oldest log item). any element with a time 687 * sequence lower than min_seq will be ignored. 688 */ 689 static struct tree_mod_elem * 690 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 691 u64 min_seq) 692 { 693 return __tree_mod_log_search(fs_info, start, min_seq, 1); 694 } 695 696 /* 697 * this returns the element from the log with the largest time sequence 698 * value that's in the log (the most recent log item). any element with 699 * a time sequence lower than min_seq will be ignored. 700 */ 701 static struct tree_mod_elem * 702 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 703 { 704 return __tree_mod_log_search(fs_info, start, min_seq, 0); 705 } 706 707 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 708 struct extent_buffer *src, unsigned long dst_offset, 709 unsigned long src_offset, int nr_items) 710 { 711 struct btrfs_fs_info *fs_info = dst->fs_info; 712 int ret = 0; 713 struct tree_mod_elem **tm_list = NULL; 714 struct tree_mod_elem **tm_list_add, **tm_list_rem; 715 int i; 716 int locked = 0; 717 718 if (!tree_mod_need_log(fs_info, NULL)) 719 return 0; 720 721 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 722 return 0; 723 724 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 725 GFP_NOFS); 726 if (!tm_list) 727 return -ENOMEM; 728 729 tm_list_add = tm_list; 730 tm_list_rem = tm_list + nr_items; 731 for (i = 0; i < nr_items; i++) { 732 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 733 MOD_LOG_KEY_REMOVE, GFP_NOFS); 734 if (!tm_list_rem[i]) { 735 ret = -ENOMEM; 736 goto free_tms; 737 } 738 739 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 740 MOD_LOG_KEY_ADD, GFP_NOFS); 741 if (!tm_list_add[i]) { 742 ret = -ENOMEM; 743 goto free_tms; 744 } 745 } 746 747 if (tree_mod_dont_log(fs_info, NULL)) 748 goto free_tms; 749 locked = 1; 750 751 for (i = 0; i < nr_items; i++) { 752 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 753 if (ret) 754 goto free_tms; 755 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 756 if (ret) 757 goto free_tms; 758 } 759 760 write_unlock(&fs_info->tree_mod_log_lock); 761 kfree(tm_list); 762 763 return 0; 764 765 free_tms: 766 for (i = 0; i < nr_items * 2; i++) { 767 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 768 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 769 kfree(tm_list[i]); 770 } 771 if (locked) 772 write_unlock(&fs_info->tree_mod_log_lock); 773 kfree(tm_list); 774 775 return ret; 776 } 777 778 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 779 { 780 struct tree_mod_elem **tm_list = NULL; 781 int nritems = 0; 782 int i; 783 int ret = 0; 784 785 if (btrfs_header_level(eb) == 0) 786 return 0; 787 788 if (!tree_mod_need_log(eb->fs_info, NULL)) 789 return 0; 790 791 nritems = btrfs_header_nritems(eb); 792 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 793 if (!tm_list) 794 return -ENOMEM; 795 796 for (i = 0; i < nritems; i++) { 797 tm_list[i] = alloc_tree_mod_elem(eb, i, 798 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 799 if (!tm_list[i]) { 800 ret = -ENOMEM; 801 goto free_tms; 802 } 803 } 804 805 if (tree_mod_dont_log(eb->fs_info, eb)) 806 goto free_tms; 807 808 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 809 write_unlock(&eb->fs_info->tree_mod_log_lock); 810 if (ret) 811 goto free_tms; 812 kfree(tm_list); 813 814 return 0; 815 816 free_tms: 817 for (i = 0; i < nritems; i++) 818 kfree(tm_list[i]); 819 kfree(tm_list); 820 821 return ret; 822 } 823 824 /* 825 * check if the tree block can be shared by multiple trees 826 */ 827 int btrfs_block_can_be_shared(struct btrfs_root *root, 828 struct extent_buffer *buf) 829 { 830 /* 831 * Tree blocks not in shareable trees and tree roots are never shared. 832 * If a block was allocated after the last snapshot and the block was 833 * not allocated by tree relocation, we know the block is not shared. 834 */ 835 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 836 buf != root->node && buf != root->commit_root && 837 (btrfs_header_generation(buf) <= 838 btrfs_root_last_snapshot(&root->root_item) || 839 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 840 return 1; 841 842 return 0; 843 } 844 845 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 846 struct btrfs_root *root, 847 struct extent_buffer *buf, 848 struct extent_buffer *cow, 849 int *last_ref) 850 { 851 struct btrfs_fs_info *fs_info = root->fs_info; 852 u64 refs; 853 u64 owner; 854 u64 flags; 855 u64 new_flags = 0; 856 int ret; 857 858 /* 859 * Backrefs update rules: 860 * 861 * Always use full backrefs for extent pointers in tree block 862 * allocated by tree relocation. 863 * 864 * If a shared tree block is no longer referenced by its owner 865 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 866 * use full backrefs for extent pointers in tree block. 867 * 868 * If a tree block is been relocating 869 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 870 * use full backrefs for extent pointers in tree block. 871 * The reason for this is some operations (such as drop tree) 872 * are only allowed for blocks use full backrefs. 873 */ 874 875 if (btrfs_block_can_be_shared(root, buf)) { 876 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 877 btrfs_header_level(buf), 1, 878 &refs, &flags); 879 if (ret) 880 return ret; 881 if (refs == 0) { 882 ret = -EROFS; 883 btrfs_handle_fs_error(fs_info, ret, NULL); 884 return ret; 885 } 886 } else { 887 refs = 1; 888 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 889 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 890 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 891 else 892 flags = 0; 893 } 894 895 owner = btrfs_header_owner(buf); 896 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 897 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 898 899 if (refs > 1) { 900 if ((owner == root->root_key.objectid || 901 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 902 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 903 ret = btrfs_inc_ref(trans, root, buf, 1); 904 if (ret) 905 return ret; 906 907 if (root->root_key.objectid == 908 BTRFS_TREE_RELOC_OBJECTID) { 909 ret = btrfs_dec_ref(trans, root, buf, 0); 910 if (ret) 911 return ret; 912 ret = btrfs_inc_ref(trans, root, cow, 1); 913 if (ret) 914 return ret; 915 } 916 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 917 } else { 918 919 if (root->root_key.objectid == 920 BTRFS_TREE_RELOC_OBJECTID) 921 ret = btrfs_inc_ref(trans, root, cow, 1); 922 else 923 ret = btrfs_inc_ref(trans, root, cow, 0); 924 if (ret) 925 return ret; 926 } 927 if (new_flags != 0) { 928 int level = btrfs_header_level(buf); 929 930 ret = btrfs_set_disk_extent_flags(trans, buf, 931 new_flags, level, 0); 932 if (ret) 933 return ret; 934 } 935 } else { 936 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 937 if (root->root_key.objectid == 938 BTRFS_TREE_RELOC_OBJECTID) 939 ret = btrfs_inc_ref(trans, root, cow, 1); 940 else 941 ret = btrfs_inc_ref(trans, root, cow, 0); 942 if (ret) 943 return ret; 944 ret = btrfs_dec_ref(trans, root, buf, 1); 945 if (ret) 946 return ret; 947 } 948 btrfs_clean_tree_block(buf); 949 *last_ref = 1; 950 } 951 return 0; 952 } 953 954 static struct extent_buffer *alloc_tree_block_no_bg_flush( 955 struct btrfs_trans_handle *trans, 956 struct btrfs_root *root, 957 u64 parent_start, 958 const struct btrfs_disk_key *disk_key, 959 int level, 960 u64 hint, 961 u64 empty_size, 962 enum btrfs_lock_nesting nest) 963 { 964 struct btrfs_fs_info *fs_info = root->fs_info; 965 struct extent_buffer *ret; 966 967 /* 968 * If we are COWing a node/leaf from the extent, chunk, device or free 969 * space trees, make sure that we do not finish block group creation of 970 * pending block groups. We do this to avoid a deadlock. 971 * COWing can result in allocation of a new chunk, and flushing pending 972 * block groups (btrfs_create_pending_block_groups()) can be triggered 973 * when finishing allocation of a new chunk. Creation of a pending block 974 * group modifies the extent, chunk, device and free space trees, 975 * therefore we could deadlock with ourselves since we are holding a 976 * lock on an extent buffer that btrfs_create_pending_block_groups() may 977 * try to COW later. 978 * For similar reasons, we also need to delay flushing pending block 979 * groups when splitting a leaf or node, from one of those trees, since 980 * we are holding a write lock on it and its parent or when inserting a 981 * new root node for one of those trees. 982 */ 983 if (root == fs_info->extent_root || 984 root == fs_info->chunk_root || 985 root == fs_info->dev_root || 986 root == fs_info->free_space_root) 987 trans->can_flush_pending_bgs = false; 988 989 ret = btrfs_alloc_tree_block(trans, root, parent_start, 990 root->root_key.objectid, disk_key, level, 991 hint, empty_size, nest); 992 trans->can_flush_pending_bgs = true; 993 994 return ret; 995 } 996 997 /* 998 * does the dirty work in cow of a single block. The parent block (if 999 * supplied) is updated to point to the new cow copy. The new buffer is marked 1000 * dirty and returned locked. If you modify the block it needs to be marked 1001 * dirty again. 1002 * 1003 * search_start -- an allocation hint for the new block 1004 * 1005 * empty_size -- a hint that you plan on doing more cow. This is the size in 1006 * bytes the allocator should try to find free next to the block it returns. 1007 * This is just a hint and may be ignored by the allocator. 1008 */ 1009 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1010 struct btrfs_root *root, 1011 struct extent_buffer *buf, 1012 struct extent_buffer *parent, int parent_slot, 1013 struct extent_buffer **cow_ret, 1014 u64 search_start, u64 empty_size, 1015 enum btrfs_lock_nesting nest) 1016 { 1017 struct btrfs_fs_info *fs_info = root->fs_info; 1018 struct btrfs_disk_key disk_key; 1019 struct extent_buffer *cow; 1020 int level, ret; 1021 int last_ref = 0; 1022 int unlock_orig = 0; 1023 u64 parent_start = 0; 1024 1025 if (*cow_ret == buf) 1026 unlock_orig = 1; 1027 1028 btrfs_assert_tree_locked(buf); 1029 1030 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1031 trans->transid != fs_info->running_transaction->transid); 1032 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1033 trans->transid != root->last_trans); 1034 1035 level = btrfs_header_level(buf); 1036 1037 if (level == 0) 1038 btrfs_item_key(buf, &disk_key, 0); 1039 else 1040 btrfs_node_key(buf, &disk_key, 0); 1041 1042 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1043 parent_start = parent->start; 1044 1045 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1046 level, search_start, empty_size, nest); 1047 if (IS_ERR(cow)) 1048 return PTR_ERR(cow); 1049 1050 /* cow is set to blocking by btrfs_init_new_buffer */ 1051 1052 copy_extent_buffer_full(cow, buf); 1053 btrfs_set_header_bytenr(cow, cow->start); 1054 btrfs_set_header_generation(cow, trans->transid); 1055 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1056 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1057 BTRFS_HEADER_FLAG_RELOC); 1058 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1059 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1060 else 1061 btrfs_set_header_owner(cow, root->root_key.objectid); 1062 1063 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1064 1065 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1066 if (ret) { 1067 btrfs_tree_unlock(cow); 1068 free_extent_buffer(cow); 1069 btrfs_abort_transaction(trans, ret); 1070 return ret; 1071 } 1072 1073 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 1074 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1075 if (ret) { 1076 btrfs_tree_unlock(cow); 1077 free_extent_buffer(cow); 1078 btrfs_abort_transaction(trans, ret); 1079 return ret; 1080 } 1081 } 1082 1083 if (buf == root->node) { 1084 WARN_ON(parent && parent != buf); 1085 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1086 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1087 parent_start = buf->start; 1088 1089 atomic_inc(&cow->refs); 1090 ret = tree_mod_log_insert_root(root->node, cow, 1); 1091 BUG_ON(ret < 0); 1092 rcu_assign_pointer(root->node, cow); 1093 1094 btrfs_free_tree_block(trans, root, buf, parent_start, 1095 last_ref); 1096 free_extent_buffer(buf); 1097 add_root_to_dirty_list(root); 1098 } else { 1099 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1100 tree_mod_log_insert_key(parent, parent_slot, 1101 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1102 btrfs_set_node_blockptr(parent, parent_slot, 1103 cow->start); 1104 btrfs_set_node_ptr_generation(parent, parent_slot, 1105 trans->transid); 1106 btrfs_mark_buffer_dirty(parent); 1107 if (last_ref) { 1108 ret = tree_mod_log_free_eb(buf); 1109 if (ret) { 1110 btrfs_tree_unlock(cow); 1111 free_extent_buffer(cow); 1112 btrfs_abort_transaction(trans, ret); 1113 return ret; 1114 } 1115 } 1116 btrfs_free_tree_block(trans, root, buf, parent_start, 1117 last_ref); 1118 } 1119 if (unlock_orig) 1120 btrfs_tree_unlock(buf); 1121 free_extent_buffer_stale(buf); 1122 btrfs_mark_buffer_dirty(cow); 1123 *cow_ret = cow; 1124 return 0; 1125 } 1126 1127 /* 1128 * returns the logical address of the oldest predecessor of the given root. 1129 * entries older than time_seq are ignored. 1130 */ 1131 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1132 struct extent_buffer *eb_root, u64 time_seq) 1133 { 1134 struct tree_mod_elem *tm; 1135 struct tree_mod_elem *found = NULL; 1136 u64 root_logical = eb_root->start; 1137 int looped = 0; 1138 1139 if (!time_seq) 1140 return NULL; 1141 1142 /* 1143 * the very last operation that's logged for a root is the 1144 * replacement operation (if it is replaced at all). this has 1145 * the logical address of the *new* root, making it the very 1146 * first operation that's logged for this root. 1147 */ 1148 while (1) { 1149 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1150 time_seq); 1151 if (!looped && !tm) 1152 return NULL; 1153 /* 1154 * if there are no tree operation for the oldest root, we simply 1155 * return it. this should only happen if that (old) root is at 1156 * level 0. 1157 */ 1158 if (!tm) 1159 break; 1160 1161 /* 1162 * if there's an operation that's not a root replacement, we 1163 * found the oldest version of our root. normally, we'll find a 1164 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1165 */ 1166 if (tm->op != MOD_LOG_ROOT_REPLACE) 1167 break; 1168 1169 found = tm; 1170 root_logical = tm->old_root.logical; 1171 looped = 1; 1172 } 1173 1174 /* if there's no old root to return, return what we found instead */ 1175 if (!found) 1176 found = tm; 1177 1178 return found; 1179 } 1180 1181 /* 1182 * tm is a pointer to the first operation to rewind within eb. then, all 1183 * previous operations will be rewound (until we reach something older than 1184 * time_seq). 1185 */ 1186 static void 1187 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1188 u64 time_seq, struct tree_mod_elem *first_tm) 1189 { 1190 u32 n; 1191 struct rb_node *next; 1192 struct tree_mod_elem *tm = first_tm; 1193 unsigned long o_dst; 1194 unsigned long o_src; 1195 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1196 1197 n = btrfs_header_nritems(eb); 1198 read_lock(&fs_info->tree_mod_log_lock); 1199 while (tm && tm->seq >= time_seq) { 1200 /* 1201 * all the operations are recorded with the operator used for 1202 * the modification. as we're going backwards, we do the 1203 * opposite of each operation here. 1204 */ 1205 switch (tm->op) { 1206 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1207 BUG_ON(tm->slot < n); 1208 fallthrough; 1209 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1210 case MOD_LOG_KEY_REMOVE: 1211 btrfs_set_node_key(eb, &tm->key, tm->slot); 1212 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1213 btrfs_set_node_ptr_generation(eb, tm->slot, 1214 tm->generation); 1215 n++; 1216 break; 1217 case MOD_LOG_KEY_REPLACE: 1218 BUG_ON(tm->slot >= n); 1219 btrfs_set_node_key(eb, &tm->key, tm->slot); 1220 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1221 btrfs_set_node_ptr_generation(eb, tm->slot, 1222 tm->generation); 1223 break; 1224 case MOD_LOG_KEY_ADD: 1225 /* if a move operation is needed it's in the log */ 1226 n--; 1227 break; 1228 case MOD_LOG_MOVE_KEYS: 1229 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1230 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1231 memmove_extent_buffer(eb, o_dst, o_src, 1232 tm->move.nr_items * p_size); 1233 break; 1234 case MOD_LOG_ROOT_REPLACE: 1235 /* 1236 * this operation is special. for roots, this must be 1237 * handled explicitly before rewinding. 1238 * for non-roots, this operation may exist if the node 1239 * was a root: root A -> child B; then A gets empty and 1240 * B is promoted to the new root. in the mod log, we'll 1241 * have a root-replace operation for B, a tree block 1242 * that is no root. we simply ignore that operation. 1243 */ 1244 break; 1245 } 1246 next = rb_next(&tm->node); 1247 if (!next) 1248 break; 1249 tm = rb_entry(next, struct tree_mod_elem, node); 1250 if (tm->logical != first_tm->logical) 1251 break; 1252 } 1253 read_unlock(&fs_info->tree_mod_log_lock); 1254 btrfs_set_header_nritems(eb, n); 1255 } 1256 1257 /* 1258 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1259 * is returned. If rewind operations happen, a fresh buffer is returned. The 1260 * returned buffer is always read-locked. If the returned buffer is not the 1261 * input buffer, the lock on the input buffer is released and the input buffer 1262 * is freed (its refcount is decremented). 1263 */ 1264 static struct extent_buffer * 1265 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1266 struct extent_buffer *eb, u64 time_seq) 1267 { 1268 struct extent_buffer *eb_rewin; 1269 struct tree_mod_elem *tm; 1270 1271 if (!time_seq) 1272 return eb; 1273 1274 if (btrfs_header_level(eb) == 0) 1275 return eb; 1276 1277 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1278 if (!tm) 1279 return eb; 1280 1281 btrfs_set_path_blocking(path); 1282 btrfs_set_lock_blocking_read(eb); 1283 1284 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1285 BUG_ON(tm->slot != 0); 1286 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1287 if (!eb_rewin) { 1288 btrfs_tree_read_unlock_blocking(eb); 1289 free_extent_buffer(eb); 1290 return NULL; 1291 } 1292 btrfs_set_header_bytenr(eb_rewin, eb->start); 1293 btrfs_set_header_backref_rev(eb_rewin, 1294 btrfs_header_backref_rev(eb)); 1295 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1296 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1297 } else { 1298 eb_rewin = btrfs_clone_extent_buffer(eb); 1299 if (!eb_rewin) { 1300 btrfs_tree_read_unlock_blocking(eb); 1301 free_extent_buffer(eb); 1302 return NULL; 1303 } 1304 } 1305 1306 btrfs_tree_read_unlock_blocking(eb); 1307 free_extent_buffer(eb); 1308 1309 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), 1310 eb_rewin, btrfs_header_level(eb_rewin)); 1311 btrfs_tree_read_lock(eb_rewin); 1312 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1313 WARN_ON(btrfs_header_nritems(eb_rewin) > 1314 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1315 1316 return eb_rewin; 1317 } 1318 1319 /* 1320 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1321 * value. If there are no changes, the current root->root_node is returned. If 1322 * anything changed in between, there's a fresh buffer allocated on which the 1323 * rewind operations are done. In any case, the returned buffer is read locked. 1324 * Returns NULL on error (with no locks held). 1325 */ 1326 static inline struct extent_buffer * 1327 get_old_root(struct btrfs_root *root, u64 time_seq) 1328 { 1329 struct btrfs_fs_info *fs_info = root->fs_info; 1330 struct tree_mod_elem *tm; 1331 struct extent_buffer *eb = NULL; 1332 struct extent_buffer *eb_root; 1333 u64 eb_root_owner = 0; 1334 struct extent_buffer *old; 1335 struct tree_mod_root *old_root = NULL; 1336 u64 old_generation = 0; 1337 u64 logical; 1338 int level; 1339 1340 eb_root = btrfs_read_lock_root_node(root); 1341 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1342 if (!tm) 1343 return eb_root; 1344 1345 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1346 old_root = &tm->old_root; 1347 old_generation = tm->generation; 1348 logical = old_root->logical; 1349 level = old_root->level; 1350 } else { 1351 logical = eb_root->start; 1352 level = btrfs_header_level(eb_root); 1353 } 1354 1355 tm = tree_mod_log_search(fs_info, logical, time_seq); 1356 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1357 btrfs_tree_read_unlock(eb_root); 1358 free_extent_buffer(eb_root); 1359 old = read_tree_block(fs_info, logical, 0, level, NULL); 1360 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1361 if (!IS_ERR(old)) 1362 free_extent_buffer(old); 1363 btrfs_warn(fs_info, 1364 "failed to read tree block %llu from get_old_root", 1365 logical); 1366 } else { 1367 eb = btrfs_clone_extent_buffer(old); 1368 free_extent_buffer(old); 1369 } 1370 } else if (old_root) { 1371 eb_root_owner = btrfs_header_owner(eb_root); 1372 btrfs_tree_read_unlock(eb_root); 1373 free_extent_buffer(eb_root); 1374 eb = alloc_dummy_extent_buffer(fs_info, logical); 1375 } else { 1376 btrfs_set_lock_blocking_read(eb_root); 1377 eb = btrfs_clone_extent_buffer(eb_root); 1378 btrfs_tree_read_unlock_blocking(eb_root); 1379 free_extent_buffer(eb_root); 1380 } 1381 1382 if (!eb) 1383 return NULL; 1384 if (old_root) { 1385 btrfs_set_header_bytenr(eb, eb->start); 1386 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1387 btrfs_set_header_owner(eb, eb_root_owner); 1388 btrfs_set_header_level(eb, old_root->level); 1389 btrfs_set_header_generation(eb, old_generation); 1390 } 1391 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, 1392 btrfs_header_level(eb)); 1393 btrfs_tree_read_lock(eb); 1394 if (tm) 1395 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1396 else 1397 WARN_ON(btrfs_header_level(eb) != 0); 1398 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1399 1400 return eb; 1401 } 1402 1403 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1404 { 1405 struct tree_mod_elem *tm; 1406 int level; 1407 struct extent_buffer *eb_root = btrfs_root_node(root); 1408 1409 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1410 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1411 level = tm->old_root.level; 1412 } else { 1413 level = btrfs_header_level(eb_root); 1414 } 1415 free_extent_buffer(eb_root); 1416 1417 return level; 1418 } 1419 1420 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1421 struct btrfs_root *root, 1422 struct extent_buffer *buf) 1423 { 1424 if (btrfs_is_testing(root->fs_info)) 1425 return 0; 1426 1427 /* Ensure we can see the FORCE_COW bit */ 1428 smp_mb__before_atomic(); 1429 1430 /* 1431 * We do not need to cow a block if 1432 * 1) this block is not created or changed in this transaction; 1433 * 2) this block does not belong to TREE_RELOC tree; 1434 * 3) the root is not forced COW. 1435 * 1436 * What is forced COW: 1437 * when we create snapshot during committing the transaction, 1438 * after we've finished copying src root, we must COW the shared 1439 * block to ensure the metadata consistency. 1440 */ 1441 if (btrfs_header_generation(buf) == trans->transid && 1442 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1443 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1444 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1445 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1446 return 0; 1447 return 1; 1448 } 1449 1450 /* 1451 * cows a single block, see __btrfs_cow_block for the real work. 1452 * This version of it has extra checks so that a block isn't COWed more than 1453 * once per transaction, as long as it hasn't been written yet 1454 */ 1455 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1456 struct btrfs_root *root, struct extent_buffer *buf, 1457 struct extent_buffer *parent, int parent_slot, 1458 struct extent_buffer **cow_ret, 1459 enum btrfs_lock_nesting nest) 1460 { 1461 struct btrfs_fs_info *fs_info = root->fs_info; 1462 u64 search_start; 1463 int ret; 1464 1465 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1466 btrfs_err(fs_info, 1467 "COW'ing blocks on a fs root that's being dropped"); 1468 1469 if (trans->transaction != fs_info->running_transaction) 1470 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1471 trans->transid, 1472 fs_info->running_transaction->transid); 1473 1474 if (trans->transid != fs_info->generation) 1475 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1476 trans->transid, fs_info->generation); 1477 1478 if (!should_cow_block(trans, root, buf)) { 1479 trans->dirty = true; 1480 *cow_ret = buf; 1481 return 0; 1482 } 1483 1484 search_start = buf->start & ~((u64)SZ_1G - 1); 1485 1486 if (parent) 1487 btrfs_set_lock_blocking_write(parent); 1488 btrfs_set_lock_blocking_write(buf); 1489 1490 /* 1491 * Before CoWing this block for later modification, check if it's 1492 * the subtree root and do the delayed subtree trace if needed. 1493 * 1494 * Also We don't care about the error, as it's handled internally. 1495 */ 1496 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1497 ret = __btrfs_cow_block(trans, root, buf, parent, 1498 parent_slot, cow_ret, search_start, 0, nest); 1499 1500 trace_btrfs_cow_block(root, buf, *cow_ret); 1501 1502 return ret; 1503 } 1504 1505 /* 1506 * helper function for defrag to decide if two blocks pointed to by a 1507 * node are actually close by 1508 */ 1509 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1510 { 1511 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1512 return 1; 1513 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1514 return 1; 1515 return 0; 1516 } 1517 1518 #ifdef __LITTLE_ENDIAN 1519 1520 /* 1521 * Compare two keys, on little-endian the disk order is same as CPU order and 1522 * we can avoid the conversion. 1523 */ 1524 static int comp_keys(const struct btrfs_disk_key *disk_key, 1525 const struct btrfs_key *k2) 1526 { 1527 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 1528 1529 return btrfs_comp_cpu_keys(k1, k2); 1530 } 1531 1532 #else 1533 1534 /* 1535 * compare two keys in a memcmp fashion 1536 */ 1537 static int comp_keys(const struct btrfs_disk_key *disk, 1538 const struct btrfs_key *k2) 1539 { 1540 struct btrfs_key k1; 1541 1542 btrfs_disk_key_to_cpu(&k1, disk); 1543 1544 return btrfs_comp_cpu_keys(&k1, k2); 1545 } 1546 #endif 1547 1548 /* 1549 * same as comp_keys only with two btrfs_key's 1550 */ 1551 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1552 { 1553 if (k1->objectid > k2->objectid) 1554 return 1; 1555 if (k1->objectid < k2->objectid) 1556 return -1; 1557 if (k1->type > k2->type) 1558 return 1; 1559 if (k1->type < k2->type) 1560 return -1; 1561 if (k1->offset > k2->offset) 1562 return 1; 1563 if (k1->offset < k2->offset) 1564 return -1; 1565 return 0; 1566 } 1567 1568 /* 1569 * this is used by the defrag code to go through all the 1570 * leaves pointed to by a node and reallocate them so that 1571 * disk order is close to key order 1572 */ 1573 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1574 struct btrfs_root *root, struct extent_buffer *parent, 1575 int start_slot, u64 *last_ret, 1576 struct btrfs_key *progress) 1577 { 1578 struct btrfs_fs_info *fs_info = root->fs_info; 1579 struct extent_buffer *cur; 1580 u64 blocknr; 1581 u64 gen; 1582 u64 search_start = *last_ret; 1583 u64 last_block = 0; 1584 u64 other; 1585 u32 parent_nritems; 1586 int end_slot; 1587 int i; 1588 int err = 0; 1589 int parent_level; 1590 int uptodate; 1591 u32 blocksize; 1592 int progress_passed = 0; 1593 struct btrfs_disk_key disk_key; 1594 1595 parent_level = btrfs_header_level(parent); 1596 1597 WARN_ON(trans->transaction != fs_info->running_transaction); 1598 WARN_ON(trans->transid != fs_info->generation); 1599 1600 parent_nritems = btrfs_header_nritems(parent); 1601 blocksize = fs_info->nodesize; 1602 end_slot = parent_nritems - 1; 1603 1604 if (parent_nritems <= 1) 1605 return 0; 1606 1607 btrfs_set_lock_blocking_write(parent); 1608 1609 for (i = start_slot; i <= end_slot; i++) { 1610 struct btrfs_key first_key; 1611 int close = 1; 1612 1613 btrfs_node_key(parent, &disk_key, i); 1614 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1615 continue; 1616 1617 progress_passed = 1; 1618 blocknr = btrfs_node_blockptr(parent, i); 1619 gen = btrfs_node_ptr_generation(parent, i); 1620 btrfs_node_key_to_cpu(parent, &first_key, i); 1621 if (last_block == 0) 1622 last_block = blocknr; 1623 1624 if (i > 0) { 1625 other = btrfs_node_blockptr(parent, i - 1); 1626 close = close_blocks(blocknr, other, blocksize); 1627 } 1628 if (!close && i < end_slot) { 1629 other = btrfs_node_blockptr(parent, i + 1); 1630 close = close_blocks(blocknr, other, blocksize); 1631 } 1632 if (close) { 1633 last_block = blocknr; 1634 continue; 1635 } 1636 1637 cur = find_extent_buffer(fs_info, blocknr); 1638 if (cur) 1639 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1640 else 1641 uptodate = 0; 1642 if (!cur || !uptodate) { 1643 if (!cur) { 1644 cur = read_tree_block(fs_info, blocknr, gen, 1645 parent_level - 1, 1646 &first_key); 1647 if (IS_ERR(cur)) { 1648 return PTR_ERR(cur); 1649 } else if (!extent_buffer_uptodate(cur)) { 1650 free_extent_buffer(cur); 1651 return -EIO; 1652 } 1653 } else if (!uptodate) { 1654 err = btrfs_read_buffer(cur, gen, 1655 parent_level - 1,&first_key); 1656 if (err) { 1657 free_extent_buffer(cur); 1658 return err; 1659 } 1660 } 1661 } 1662 if (search_start == 0) 1663 search_start = last_block; 1664 1665 btrfs_tree_lock(cur); 1666 btrfs_set_lock_blocking_write(cur); 1667 err = __btrfs_cow_block(trans, root, cur, parent, i, 1668 &cur, search_start, 1669 min(16 * blocksize, 1670 (end_slot - i) * blocksize), 1671 BTRFS_NESTING_COW); 1672 if (err) { 1673 btrfs_tree_unlock(cur); 1674 free_extent_buffer(cur); 1675 break; 1676 } 1677 search_start = cur->start; 1678 last_block = cur->start; 1679 *last_ret = search_start; 1680 btrfs_tree_unlock(cur); 1681 free_extent_buffer(cur); 1682 } 1683 return err; 1684 } 1685 1686 /* 1687 * search for key in the extent_buffer. The items start at offset p, 1688 * and they are item_size apart. There are 'max' items in p. 1689 * 1690 * the slot in the array is returned via slot, and it points to 1691 * the place where you would insert key if it is not found in 1692 * the array. 1693 * 1694 * slot may point to max if the key is bigger than all of the keys 1695 */ 1696 static noinline int generic_bin_search(struct extent_buffer *eb, 1697 unsigned long p, int item_size, 1698 const struct btrfs_key *key, 1699 int max, int *slot) 1700 { 1701 int low = 0; 1702 int high = max; 1703 int ret; 1704 const int key_size = sizeof(struct btrfs_disk_key); 1705 1706 if (low > high) { 1707 btrfs_err(eb->fs_info, 1708 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1709 __func__, low, high, eb->start, 1710 btrfs_header_owner(eb), btrfs_header_level(eb)); 1711 return -EINVAL; 1712 } 1713 1714 while (low < high) { 1715 unsigned long oip; 1716 unsigned long offset; 1717 struct btrfs_disk_key *tmp; 1718 struct btrfs_disk_key unaligned; 1719 int mid; 1720 1721 mid = (low + high) / 2; 1722 offset = p + mid * item_size; 1723 oip = offset_in_page(offset); 1724 1725 if (oip + key_size <= PAGE_SIZE) { 1726 const unsigned long idx = offset >> PAGE_SHIFT; 1727 char *kaddr = page_address(eb->pages[idx]); 1728 1729 tmp = (struct btrfs_disk_key *)(kaddr + oip); 1730 } else { 1731 read_extent_buffer(eb, &unaligned, offset, key_size); 1732 tmp = &unaligned; 1733 } 1734 1735 ret = comp_keys(tmp, key); 1736 1737 if (ret < 0) 1738 low = mid + 1; 1739 else if (ret > 0) 1740 high = mid; 1741 else { 1742 *slot = mid; 1743 return 0; 1744 } 1745 } 1746 *slot = low; 1747 return 1; 1748 } 1749 1750 /* 1751 * simple bin_search frontend that does the right thing for 1752 * leaves vs nodes 1753 */ 1754 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1755 int *slot) 1756 { 1757 if (btrfs_header_level(eb) == 0) 1758 return generic_bin_search(eb, 1759 offsetof(struct btrfs_leaf, items), 1760 sizeof(struct btrfs_item), 1761 key, btrfs_header_nritems(eb), 1762 slot); 1763 else 1764 return generic_bin_search(eb, 1765 offsetof(struct btrfs_node, ptrs), 1766 sizeof(struct btrfs_key_ptr), 1767 key, btrfs_header_nritems(eb), 1768 slot); 1769 } 1770 1771 static void root_add_used(struct btrfs_root *root, u32 size) 1772 { 1773 spin_lock(&root->accounting_lock); 1774 btrfs_set_root_used(&root->root_item, 1775 btrfs_root_used(&root->root_item) + size); 1776 spin_unlock(&root->accounting_lock); 1777 } 1778 1779 static void root_sub_used(struct btrfs_root *root, u32 size) 1780 { 1781 spin_lock(&root->accounting_lock); 1782 btrfs_set_root_used(&root->root_item, 1783 btrfs_root_used(&root->root_item) - size); 1784 spin_unlock(&root->accounting_lock); 1785 } 1786 1787 /* given a node and slot number, this reads the blocks it points to. The 1788 * extent buffer is returned with a reference taken (but unlocked). 1789 */ 1790 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1791 int slot) 1792 { 1793 int level = btrfs_header_level(parent); 1794 struct extent_buffer *eb; 1795 struct btrfs_key first_key; 1796 1797 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1798 return ERR_PTR(-ENOENT); 1799 1800 BUG_ON(level == 0); 1801 1802 btrfs_node_key_to_cpu(parent, &first_key, slot); 1803 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1804 btrfs_node_ptr_generation(parent, slot), 1805 level - 1, &first_key); 1806 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1807 free_extent_buffer(eb); 1808 eb = ERR_PTR(-EIO); 1809 } 1810 1811 return eb; 1812 } 1813 1814 /* 1815 * node level balancing, used to make sure nodes are in proper order for 1816 * item deletion. We balance from the top down, so we have to make sure 1817 * that a deletion won't leave an node completely empty later on. 1818 */ 1819 static noinline int balance_level(struct btrfs_trans_handle *trans, 1820 struct btrfs_root *root, 1821 struct btrfs_path *path, int level) 1822 { 1823 struct btrfs_fs_info *fs_info = root->fs_info; 1824 struct extent_buffer *right = NULL; 1825 struct extent_buffer *mid; 1826 struct extent_buffer *left = NULL; 1827 struct extent_buffer *parent = NULL; 1828 int ret = 0; 1829 int wret; 1830 int pslot; 1831 int orig_slot = path->slots[level]; 1832 u64 orig_ptr; 1833 1834 ASSERT(level > 0); 1835 1836 mid = path->nodes[level]; 1837 1838 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1839 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1840 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1841 1842 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1843 1844 if (level < BTRFS_MAX_LEVEL - 1) { 1845 parent = path->nodes[level + 1]; 1846 pslot = path->slots[level + 1]; 1847 } 1848 1849 /* 1850 * deal with the case where there is only one pointer in the root 1851 * by promoting the node below to a root 1852 */ 1853 if (!parent) { 1854 struct extent_buffer *child; 1855 1856 if (btrfs_header_nritems(mid) != 1) 1857 return 0; 1858 1859 /* promote the child to a root */ 1860 child = btrfs_read_node_slot(mid, 0); 1861 if (IS_ERR(child)) { 1862 ret = PTR_ERR(child); 1863 btrfs_handle_fs_error(fs_info, ret, NULL); 1864 goto enospc; 1865 } 1866 1867 btrfs_tree_lock(child); 1868 btrfs_set_lock_blocking_write(child); 1869 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 1870 BTRFS_NESTING_COW); 1871 if (ret) { 1872 btrfs_tree_unlock(child); 1873 free_extent_buffer(child); 1874 goto enospc; 1875 } 1876 1877 ret = tree_mod_log_insert_root(root->node, child, 1); 1878 BUG_ON(ret < 0); 1879 rcu_assign_pointer(root->node, child); 1880 1881 add_root_to_dirty_list(root); 1882 btrfs_tree_unlock(child); 1883 1884 path->locks[level] = 0; 1885 path->nodes[level] = NULL; 1886 btrfs_clean_tree_block(mid); 1887 btrfs_tree_unlock(mid); 1888 /* once for the path */ 1889 free_extent_buffer(mid); 1890 1891 root_sub_used(root, mid->len); 1892 btrfs_free_tree_block(trans, root, mid, 0, 1); 1893 /* once for the root ptr */ 1894 free_extent_buffer_stale(mid); 1895 return 0; 1896 } 1897 if (btrfs_header_nritems(mid) > 1898 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1899 return 0; 1900 1901 left = btrfs_read_node_slot(parent, pslot - 1); 1902 if (IS_ERR(left)) 1903 left = NULL; 1904 1905 if (left) { 1906 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1907 btrfs_set_lock_blocking_write(left); 1908 wret = btrfs_cow_block(trans, root, left, 1909 parent, pslot - 1, &left, 1910 BTRFS_NESTING_LEFT_COW); 1911 if (wret) { 1912 ret = wret; 1913 goto enospc; 1914 } 1915 } 1916 1917 right = btrfs_read_node_slot(parent, pslot + 1); 1918 if (IS_ERR(right)) 1919 right = NULL; 1920 1921 if (right) { 1922 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1923 btrfs_set_lock_blocking_write(right); 1924 wret = btrfs_cow_block(trans, root, right, 1925 parent, pslot + 1, &right, 1926 BTRFS_NESTING_RIGHT_COW); 1927 if (wret) { 1928 ret = wret; 1929 goto enospc; 1930 } 1931 } 1932 1933 /* first, try to make some room in the middle buffer */ 1934 if (left) { 1935 orig_slot += btrfs_header_nritems(left); 1936 wret = push_node_left(trans, left, mid, 1); 1937 if (wret < 0) 1938 ret = wret; 1939 } 1940 1941 /* 1942 * then try to empty the right most buffer into the middle 1943 */ 1944 if (right) { 1945 wret = push_node_left(trans, mid, right, 1); 1946 if (wret < 0 && wret != -ENOSPC) 1947 ret = wret; 1948 if (btrfs_header_nritems(right) == 0) { 1949 btrfs_clean_tree_block(right); 1950 btrfs_tree_unlock(right); 1951 del_ptr(root, path, level + 1, pslot + 1); 1952 root_sub_used(root, right->len); 1953 btrfs_free_tree_block(trans, root, right, 0, 1); 1954 free_extent_buffer_stale(right); 1955 right = NULL; 1956 } else { 1957 struct btrfs_disk_key right_key; 1958 btrfs_node_key(right, &right_key, 0); 1959 ret = tree_mod_log_insert_key(parent, pslot + 1, 1960 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1961 BUG_ON(ret < 0); 1962 btrfs_set_node_key(parent, &right_key, pslot + 1); 1963 btrfs_mark_buffer_dirty(parent); 1964 } 1965 } 1966 if (btrfs_header_nritems(mid) == 1) { 1967 /* 1968 * we're not allowed to leave a node with one item in the 1969 * tree during a delete. A deletion from lower in the tree 1970 * could try to delete the only pointer in this node. 1971 * So, pull some keys from the left. 1972 * There has to be a left pointer at this point because 1973 * otherwise we would have pulled some pointers from the 1974 * right 1975 */ 1976 if (!left) { 1977 ret = -EROFS; 1978 btrfs_handle_fs_error(fs_info, ret, NULL); 1979 goto enospc; 1980 } 1981 wret = balance_node_right(trans, mid, left); 1982 if (wret < 0) { 1983 ret = wret; 1984 goto enospc; 1985 } 1986 if (wret == 1) { 1987 wret = push_node_left(trans, left, mid, 1); 1988 if (wret < 0) 1989 ret = wret; 1990 } 1991 BUG_ON(wret == 1); 1992 } 1993 if (btrfs_header_nritems(mid) == 0) { 1994 btrfs_clean_tree_block(mid); 1995 btrfs_tree_unlock(mid); 1996 del_ptr(root, path, level + 1, pslot); 1997 root_sub_used(root, mid->len); 1998 btrfs_free_tree_block(trans, root, mid, 0, 1); 1999 free_extent_buffer_stale(mid); 2000 mid = NULL; 2001 } else { 2002 /* update the parent key to reflect our changes */ 2003 struct btrfs_disk_key mid_key; 2004 btrfs_node_key(mid, &mid_key, 0); 2005 ret = tree_mod_log_insert_key(parent, pslot, 2006 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2007 BUG_ON(ret < 0); 2008 btrfs_set_node_key(parent, &mid_key, pslot); 2009 btrfs_mark_buffer_dirty(parent); 2010 } 2011 2012 /* update the path */ 2013 if (left) { 2014 if (btrfs_header_nritems(left) > orig_slot) { 2015 atomic_inc(&left->refs); 2016 /* left was locked after cow */ 2017 path->nodes[level] = left; 2018 path->slots[level + 1] -= 1; 2019 path->slots[level] = orig_slot; 2020 if (mid) { 2021 btrfs_tree_unlock(mid); 2022 free_extent_buffer(mid); 2023 } 2024 } else { 2025 orig_slot -= btrfs_header_nritems(left); 2026 path->slots[level] = orig_slot; 2027 } 2028 } 2029 /* double check we haven't messed things up */ 2030 if (orig_ptr != 2031 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2032 BUG(); 2033 enospc: 2034 if (right) { 2035 btrfs_tree_unlock(right); 2036 free_extent_buffer(right); 2037 } 2038 if (left) { 2039 if (path->nodes[level] != left) 2040 btrfs_tree_unlock(left); 2041 free_extent_buffer(left); 2042 } 2043 return ret; 2044 } 2045 2046 /* Node balancing for insertion. Here we only split or push nodes around 2047 * when they are completely full. This is also done top down, so we 2048 * have to be pessimistic. 2049 */ 2050 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2051 struct btrfs_root *root, 2052 struct btrfs_path *path, int level) 2053 { 2054 struct btrfs_fs_info *fs_info = root->fs_info; 2055 struct extent_buffer *right = NULL; 2056 struct extent_buffer *mid; 2057 struct extent_buffer *left = NULL; 2058 struct extent_buffer *parent = NULL; 2059 int ret = 0; 2060 int wret; 2061 int pslot; 2062 int orig_slot = path->slots[level]; 2063 2064 if (level == 0) 2065 return 1; 2066 2067 mid = path->nodes[level]; 2068 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2069 2070 if (level < BTRFS_MAX_LEVEL - 1) { 2071 parent = path->nodes[level + 1]; 2072 pslot = path->slots[level + 1]; 2073 } 2074 2075 if (!parent) 2076 return 1; 2077 2078 left = btrfs_read_node_slot(parent, pslot - 1); 2079 if (IS_ERR(left)) 2080 left = NULL; 2081 2082 /* first, try to make some room in the middle buffer */ 2083 if (left) { 2084 u32 left_nr; 2085 2086 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 2087 btrfs_set_lock_blocking_write(left); 2088 2089 left_nr = btrfs_header_nritems(left); 2090 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2091 wret = 1; 2092 } else { 2093 ret = btrfs_cow_block(trans, root, left, parent, 2094 pslot - 1, &left, 2095 BTRFS_NESTING_LEFT_COW); 2096 if (ret) 2097 wret = 1; 2098 else { 2099 wret = push_node_left(trans, left, mid, 0); 2100 } 2101 } 2102 if (wret < 0) 2103 ret = wret; 2104 if (wret == 0) { 2105 struct btrfs_disk_key disk_key; 2106 orig_slot += left_nr; 2107 btrfs_node_key(mid, &disk_key, 0); 2108 ret = tree_mod_log_insert_key(parent, pslot, 2109 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2110 BUG_ON(ret < 0); 2111 btrfs_set_node_key(parent, &disk_key, pslot); 2112 btrfs_mark_buffer_dirty(parent); 2113 if (btrfs_header_nritems(left) > orig_slot) { 2114 path->nodes[level] = left; 2115 path->slots[level + 1] -= 1; 2116 path->slots[level] = orig_slot; 2117 btrfs_tree_unlock(mid); 2118 free_extent_buffer(mid); 2119 } else { 2120 orig_slot -= 2121 btrfs_header_nritems(left); 2122 path->slots[level] = orig_slot; 2123 btrfs_tree_unlock(left); 2124 free_extent_buffer(left); 2125 } 2126 return 0; 2127 } 2128 btrfs_tree_unlock(left); 2129 free_extent_buffer(left); 2130 } 2131 right = btrfs_read_node_slot(parent, pslot + 1); 2132 if (IS_ERR(right)) 2133 right = NULL; 2134 2135 /* 2136 * then try to empty the right most buffer into the middle 2137 */ 2138 if (right) { 2139 u32 right_nr; 2140 2141 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 2142 btrfs_set_lock_blocking_write(right); 2143 2144 right_nr = btrfs_header_nritems(right); 2145 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2146 wret = 1; 2147 } else { 2148 ret = btrfs_cow_block(trans, root, right, 2149 parent, pslot + 1, 2150 &right, BTRFS_NESTING_RIGHT_COW); 2151 if (ret) 2152 wret = 1; 2153 else { 2154 wret = balance_node_right(trans, right, mid); 2155 } 2156 } 2157 if (wret < 0) 2158 ret = wret; 2159 if (wret == 0) { 2160 struct btrfs_disk_key disk_key; 2161 2162 btrfs_node_key(right, &disk_key, 0); 2163 ret = tree_mod_log_insert_key(parent, pslot + 1, 2164 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2165 BUG_ON(ret < 0); 2166 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2167 btrfs_mark_buffer_dirty(parent); 2168 2169 if (btrfs_header_nritems(mid) <= orig_slot) { 2170 path->nodes[level] = right; 2171 path->slots[level + 1] += 1; 2172 path->slots[level] = orig_slot - 2173 btrfs_header_nritems(mid); 2174 btrfs_tree_unlock(mid); 2175 free_extent_buffer(mid); 2176 } else { 2177 btrfs_tree_unlock(right); 2178 free_extent_buffer(right); 2179 } 2180 return 0; 2181 } 2182 btrfs_tree_unlock(right); 2183 free_extent_buffer(right); 2184 } 2185 return 1; 2186 } 2187 2188 /* 2189 * readahead one full node of leaves, finding things that are close 2190 * to the block in 'slot', and triggering ra on them. 2191 */ 2192 static void reada_for_search(struct btrfs_fs_info *fs_info, 2193 struct btrfs_path *path, 2194 int level, int slot, u64 objectid) 2195 { 2196 struct extent_buffer *node; 2197 struct btrfs_disk_key disk_key; 2198 u32 nritems; 2199 u64 search; 2200 u64 target; 2201 u64 nread = 0; 2202 struct extent_buffer *eb; 2203 u32 nr; 2204 u32 blocksize; 2205 u32 nscan = 0; 2206 2207 if (level != 1) 2208 return; 2209 2210 if (!path->nodes[level]) 2211 return; 2212 2213 node = path->nodes[level]; 2214 2215 search = btrfs_node_blockptr(node, slot); 2216 blocksize = fs_info->nodesize; 2217 eb = find_extent_buffer(fs_info, search); 2218 if (eb) { 2219 free_extent_buffer(eb); 2220 return; 2221 } 2222 2223 target = search; 2224 2225 nritems = btrfs_header_nritems(node); 2226 nr = slot; 2227 2228 while (1) { 2229 if (path->reada == READA_BACK) { 2230 if (nr == 0) 2231 break; 2232 nr--; 2233 } else if (path->reada == READA_FORWARD) { 2234 nr++; 2235 if (nr >= nritems) 2236 break; 2237 } 2238 if (path->reada == READA_BACK && objectid) { 2239 btrfs_node_key(node, &disk_key, nr); 2240 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2241 break; 2242 } 2243 search = btrfs_node_blockptr(node, nr); 2244 if ((search <= target && target - search <= 65536) || 2245 (search > target && search - target <= 65536)) { 2246 readahead_tree_block(fs_info, search); 2247 nread += blocksize; 2248 } 2249 nscan++; 2250 if ((nread > 65536 || nscan > 32)) 2251 break; 2252 } 2253 } 2254 2255 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2256 struct btrfs_path *path, int level) 2257 { 2258 int slot; 2259 int nritems; 2260 struct extent_buffer *parent; 2261 struct extent_buffer *eb; 2262 u64 gen; 2263 u64 block1 = 0; 2264 u64 block2 = 0; 2265 2266 parent = path->nodes[level + 1]; 2267 if (!parent) 2268 return; 2269 2270 nritems = btrfs_header_nritems(parent); 2271 slot = path->slots[level + 1]; 2272 2273 if (slot > 0) { 2274 block1 = btrfs_node_blockptr(parent, slot - 1); 2275 gen = btrfs_node_ptr_generation(parent, slot - 1); 2276 eb = find_extent_buffer(fs_info, block1); 2277 /* 2278 * if we get -eagain from btrfs_buffer_uptodate, we 2279 * don't want to return eagain here. That will loop 2280 * forever 2281 */ 2282 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2283 block1 = 0; 2284 free_extent_buffer(eb); 2285 } 2286 if (slot + 1 < nritems) { 2287 block2 = btrfs_node_blockptr(parent, slot + 1); 2288 gen = btrfs_node_ptr_generation(parent, slot + 1); 2289 eb = find_extent_buffer(fs_info, block2); 2290 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2291 block2 = 0; 2292 free_extent_buffer(eb); 2293 } 2294 2295 if (block1) 2296 readahead_tree_block(fs_info, block1); 2297 if (block2) 2298 readahead_tree_block(fs_info, block2); 2299 } 2300 2301 2302 /* 2303 * when we walk down the tree, it is usually safe to unlock the higher layers 2304 * in the tree. The exceptions are when our path goes through slot 0, because 2305 * operations on the tree might require changing key pointers higher up in the 2306 * tree. 2307 * 2308 * callers might also have set path->keep_locks, which tells this code to keep 2309 * the lock if the path points to the last slot in the block. This is part of 2310 * walking through the tree, and selecting the next slot in the higher block. 2311 * 2312 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2313 * if lowest_unlock is 1, level 0 won't be unlocked 2314 */ 2315 static noinline void unlock_up(struct btrfs_path *path, int level, 2316 int lowest_unlock, int min_write_lock_level, 2317 int *write_lock_level) 2318 { 2319 int i; 2320 int skip_level = level; 2321 int no_skips = 0; 2322 struct extent_buffer *t; 2323 2324 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2325 if (!path->nodes[i]) 2326 break; 2327 if (!path->locks[i]) 2328 break; 2329 if (!no_skips && path->slots[i] == 0) { 2330 skip_level = i + 1; 2331 continue; 2332 } 2333 if (!no_skips && path->keep_locks) { 2334 u32 nritems; 2335 t = path->nodes[i]; 2336 nritems = btrfs_header_nritems(t); 2337 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2338 skip_level = i + 1; 2339 continue; 2340 } 2341 } 2342 if (skip_level < i && i >= lowest_unlock) 2343 no_skips = 1; 2344 2345 t = path->nodes[i]; 2346 if (i >= lowest_unlock && i > skip_level) { 2347 btrfs_tree_unlock_rw(t, path->locks[i]); 2348 path->locks[i] = 0; 2349 if (write_lock_level && 2350 i > min_write_lock_level && 2351 i <= *write_lock_level) { 2352 *write_lock_level = i - 1; 2353 } 2354 } 2355 } 2356 } 2357 2358 /* 2359 * helper function for btrfs_search_slot. The goal is to find a block 2360 * in cache without setting the path to blocking. If we find the block 2361 * we return zero and the path is unchanged. 2362 * 2363 * If we can't find the block, we set the path blocking and do some 2364 * reada. -EAGAIN is returned and the search must be repeated. 2365 */ 2366 static int 2367 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2368 struct extent_buffer **eb_ret, int level, int slot, 2369 const struct btrfs_key *key) 2370 { 2371 struct btrfs_fs_info *fs_info = root->fs_info; 2372 u64 blocknr; 2373 u64 gen; 2374 struct extent_buffer *tmp; 2375 struct btrfs_key first_key; 2376 int ret; 2377 int parent_level; 2378 2379 blocknr = btrfs_node_blockptr(*eb_ret, slot); 2380 gen = btrfs_node_ptr_generation(*eb_ret, slot); 2381 parent_level = btrfs_header_level(*eb_ret); 2382 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 2383 2384 tmp = find_extent_buffer(fs_info, blocknr); 2385 if (tmp) { 2386 /* first we do an atomic uptodate check */ 2387 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2388 /* 2389 * Do extra check for first_key, eb can be stale due to 2390 * being cached, read from scrub, or have multiple 2391 * parents (shared tree blocks). 2392 */ 2393 if (btrfs_verify_level_key(tmp, 2394 parent_level - 1, &first_key, gen)) { 2395 free_extent_buffer(tmp); 2396 return -EUCLEAN; 2397 } 2398 *eb_ret = tmp; 2399 return 0; 2400 } 2401 2402 /* the pages were up to date, but we failed 2403 * the generation number check. Do a full 2404 * read for the generation number that is correct. 2405 * We must do this without dropping locks so 2406 * we can trust our generation number 2407 */ 2408 btrfs_set_path_blocking(p); 2409 2410 /* now we're allowed to do a blocking uptodate check */ 2411 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2412 if (!ret) { 2413 *eb_ret = tmp; 2414 return 0; 2415 } 2416 free_extent_buffer(tmp); 2417 btrfs_release_path(p); 2418 return -EIO; 2419 } 2420 2421 /* 2422 * reduce lock contention at high levels 2423 * of the btree by dropping locks before 2424 * we read. Don't release the lock on the current 2425 * level because we need to walk this node to figure 2426 * out which blocks to read. 2427 */ 2428 btrfs_unlock_up_safe(p, level + 1); 2429 btrfs_set_path_blocking(p); 2430 2431 if (p->reada != READA_NONE) 2432 reada_for_search(fs_info, p, level, slot, key->objectid); 2433 2434 ret = -EAGAIN; 2435 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2436 &first_key); 2437 if (!IS_ERR(tmp)) { 2438 /* 2439 * If the read above didn't mark this buffer up to date, 2440 * it will never end up being up to date. Set ret to EIO now 2441 * and give up so that our caller doesn't loop forever 2442 * on our EAGAINs. 2443 */ 2444 if (!extent_buffer_uptodate(tmp)) 2445 ret = -EIO; 2446 free_extent_buffer(tmp); 2447 } else { 2448 ret = PTR_ERR(tmp); 2449 } 2450 2451 btrfs_release_path(p); 2452 return ret; 2453 } 2454 2455 /* 2456 * helper function for btrfs_search_slot. This does all of the checks 2457 * for node-level blocks and does any balancing required based on 2458 * the ins_len. 2459 * 2460 * If no extra work was required, zero is returned. If we had to 2461 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2462 * start over 2463 */ 2464 static int 2465 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2466 struct btrfs_root *root, struct btrfs_path *p, 2467 struct extent_buffer *b, int level, int ins_len, 2468 int *write_lock_level) 2469 { 2470 struct btrfs_fs_info *fs_info = root->fs_info; 2471 int ret; 2472 2473 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2474 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2475 int sret; 2476 2477 if (*write_lock_level < level + 1) { 2478 *write_lock_level = level + 1; 2479 btrfs_release_path(p); 2480 goto again; 2481 } 2482 2483 btrfs_set_path_blocking(p); 2484 reada_for_balance(fs_info, p, level); 2485 sret = split_node(trans, root, p, level); 2486 2487 BUG_ON(sret > 0); 2488 if (sret) { 2489 ret = sret; 2490 goto done; 2491 } 2492 b = p->nodes[level]; 2493 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2494 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2495 int sret; 2496 2497 if (*write_lock_level < level + 1) { 2498 *write_lock_level = level + 1; 2499 btrfs_release_path(p); 2500 goto again; 2501 } 2502 2503 btrfs_set_path_blocking(p); 2504 reada_for_balance(fs_info, p, level); 2505 sret = balance_level(trans, root, p, level); 2506 2507 if (sret) { 2508 ret = sret; 2509 goto done; 2510 } 2511 b = p->nodes[level]; 2512 if (!b) { 2513 btrfs_release_path(p); 2514 goto again; 2515 } 2516 BUG_ON(btrfs_header_nritems(b) == 1); 2517 } 2518 return 0; 2519 2520 again: 2521 ret = -EAGAIN; 2522 done: 2523 return ret; 2524 } 2525 2526 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2527 u64 iobjectid, u64 ioff, u8 key_type, 2528 struct btrfs_key *found_key) 2529 { 2530 int ret; 2531 struct btrfs_key key; 2532 struct extent_buffer *eb; 2533 2534 ASSERT(path); 2535 ASSERT(found_key); 2536 2537 key.type = key_type; 2538 key.objectid = iobjectid; 2539 key.offset = ioff; 2540 2541 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2542 if (ret < 0) 2543 return ret; 2544 2545 eb = path->nodes[0]; 2546 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2547 ret = btrfs_next_leaf(fs_root, path); 2548 if (ret) 2549 return ret; 2550 eb = path->nodes[0]; 2551 } 2552 2553 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2554 if (found_key->type != key.type || 2555 found_key->objectid != key.objectid) 2556 return 1; 2557 2558 return 0; 2559 } 2560 2561 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2562 struct btrfs_path *p, 2563 int write_lock_level) 2564 { 2565 struct btrfs_fs_info *fs_info = root->fs_info; 2566 struct extent_buffer *b; 2567 int root_lock; 2568 int level = 0; 2569 2570 /* We try very hard to do read locks on the root */ 2571 root_lock = BTRFS_READ_LOCK; 2572 2573 if (p->search_commit_root) { 2574 /* 2575 * The commit roots are read only so we always do read locks, 2576 * and we always must hold the commit_root_sem when doing 2577 * searches on them, the only exception is send where we don't 2578 * want to block transaction commits for a long time, so 2579 * we need to clone the commit root in order to avoid races 2580 * with transaction commits that create a snapshot of one of 2581 * the roots used by a send operation. 2582 */ 2583 if (p->need_commit_sem) { 2584 down_read(&fs_info->commit_root_sem); 2585 b = btrfs_clone_extent_buffer(root->commit_root); 2586 up_read(&fs_info->commit_root_sem); 2587 if (!b) 2588 return ERR_PTR(-ENOMEM); 2589 2590 } else { 2591 b = root->commit_root; 2592 atomic_inc(&b->refs); 2593 } 2594 level = btrfs_header_level(b); 2595 /* 2596 * Ensure that all callers have set skip_locking when 2597 * p->search_commit_root = 1. 2598 */ 2599 ASSERT(p->skip_locking == 1); 2600 2601 goto out; 2602 } 2603 2604 if (p->skip_locking) { 2605 b = btrfs_root_node(root); 2606 level = btrfs_header_level(b); 2607 goto out; 2608 } 2609 2610 /* 2611 * If the level is set to maximum, we can skip trying to get the read 2612 * lock. 2613 */ 2614 if (write_lock_level < BTRFS_MAX_LEVEL) { 2615 /* 2616 * We don't know the level of the root node until we actually 2617 * have it read locked 2618 */ 2619 b = __btrfs_read_lock_root_node(root, p->recurse); 2620 level = btrfs_header_level(b); 2621 if (level > write_lock_level) 2622 goto out; 2623 2624 /* Whoops, must trade for write lock */ 2625 btrfs_tree_read_unlock(b); 2626 free_extent_buffer(b); 2627 } 2628 2629 b = btrfs_lock_root_node(root); 2630 root_lock = BTRFS_WRITE_LOCK; 2631 2632 /* The level might have changed, check again */ 2633 level = btrfs_header_level(b); 2634 2635 out: 2636 p->nodes[level] = b; 2637 if (!p->skip_locking) 2638 p->locks[level] = root_lock; 2639 /* 2640 * Callers are responsible for dropping b's references. 2641 */ 2642 return b; 2643 } 2644 2645 2646 /* 2647 * btrfs_search_slot - look for a key in a tree and perform necessary 2648 * modifications to preserve tree invariants. 2649 * 2650 * @trans: Handle of transaction, used when modifying the tree 2651 * @p: Holds all btree nodes along the search path 2652 * @root: The root node of the tree 2653 * @key: The key we are looking for 2654 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2655 * deletions it's -1. 0 for plain searches 2656 * @cow: boolean should CoW operations be performed. Must always be 1 2657 * when modifying the tree. 2658 * 2659 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2660 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2661 * 2662 * If @key is found, 0 is returned and you can find the item in the leaf level 2663 * of the path (level 0) 2664 * 2665 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2666 * points to the slot where it should be inserted 2667 * 2668 * If an error is encountered while searching the tree a negative error number 2669 * is returned 2670 */ 2671 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2672 const struct btrfs_key *key, struct btrfs_path *p, 2673 int ins_len, int cow) 2674 { 2675 struct extent_buffer *b; 2676 int slot; 2677 int ret; 2678 int err; 2679 int level; 2680 int lowest_unlock = 1; 2681 /* everything at write_lock_level or lower must be write locked */ 2682 int write_lock_level = 0; 2683 u8 lowest_level = 0; 2684 int min_write_lock_level; 2685 int prev_cmp; 2686 2687 lowest_level = p->lowest_level; 2688 WARN_ON(lowest_level && ins_len > 0); 2689 WARN_ON(p->nodes[0] != NULL); 2690 BUG_ON(!cow && ins_len); 2691 2692 if (ins_len < 0) { 2693 lowest_unlock = 2; 2694 2695 /* when we are removing items, we might have to go up to level 2696 * two as we update tree pointers Make sure we keep write 2697 * for those levels as well 2698 */ 2699 write_lock_level = 2; 2700 } else if (ins_len > 0) { 2701 /* 2702 * for inserting items, make sure we have a write lock on 2703 * level 1 so we can update keys 2704 */ 2705 write_lock_level = 1; 2706 } 2707 2708 if (!cow) 2709 write_lock_level = -1; 2710 2711 if (cow && (p->keep_locks || p->lowest_level)) 2712 write_lock_level = BTRFS_MAX_LEVEL; 2713 2714 min_write_lock_level = write_lock_level; 2715 2716 again: 2717 prev_cmp = -1; 2718 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2719 if (IS_ERR(b)) { 2720 ret = PTR_ERR(b); 2721 goto done; 2722 } 2723 2724 while (b) { 2725 int dec = 0; 2726 2727 level = btrfs_header_level(b); 2728 2729 if (cow) { 2730 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2731 2732 /* 2733 * if we don't really need to cow this block 2734 * then we don't want to set the path blocking, 2735 * so we test it here 2736 */ 2737 if (!should_cow_block(trans, root, b)) { 2738 trans->dirty = true; 2739 goto cow_done; 2740 } 2741 2742 /* 2743 * must have write locks on this node and the 2744 * parent 2745 */ 2746 if (level > write_lock_level || 2747 (level + 1 > write_lock_level && 2748 level + 1 < BTRFS_MAX_LEVEL && 2749 p->nodes[level + 1])) { 2750 write_lock_level = level + 1; 2751 btrfs_release_path(p); 2752 goto again; 2753 } 2754 2755 btrfs_set_path_blocking(p); 2756 if (last_level) 2757 err = btrfs_cow_block(trans, root, b, NULL, 0, 2758 &b, 2759 BTRFS_NESTING_COW); 2760 else 2761 err = btrfs_cow_block(trans, root, b, 2762 p->nodes[level + 1], 2763 p->slots[level + 1], &b, 2764 BTRFS_NESTING_COW); 2765 if (err) { 2766 ret = err; 2767 goto done; 2768 } 2769 } 2770 cow_done: 2771 p->nodes[level] = b; 2772 /* 2773 * Leave path with blocking locks to avoid massive 2774 * lock context switch, this is made on purpose. 2775 */ 2776 2777 /* 2778 * we have a lock on b and as long as we aren't changing 2779 * the tree, there is no way to for the items in b to change. 2780 * It is safe to drop the lock on our parent before we 2781 * go through the expensive btree search on b. 2782 * 2783 * If we're inserting or deleting (ins_len != 0), then we might 2784 * be changing slot zero, which may require changing the parent. 2785 * So, we can't drop the lock until after we know which slot 2786 * we're operating on. 2787 */ 2788 if (!ins_len && !p->keep_locks) { 2789 int u = level + 1; 2790 2791 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2792 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2793 p->locks[u] = 0; 2794 } 2795 } 2796 2797 /* 2798 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 2799 * we can safely assume the target key will always be in slot 0 2800 * on lower levels due to the invariants BTRFS' btree provides, 2801 * namely that a btrfs_key_ptr entry always points to the 2802 * lowest key in the child node, thus we can skip searching 2803 * lower levels 2804 */ 2805 if (prev_cmp == 0) { 2806 slot = 0; 2807 ret = 0; 2808 } else { 2809 ret = btrfs_bin_search(b, key, &slot); 2810 prev_cmp = ret; 2811 if (ret < 0) 2812 goto done; 2813 } 2814 2815 if (level == 0) { 2816 p->slots[level] = slot; 2817 if (ins_len > 0 && 2818 btrfs_leaf_free_space(b) < ins_len) { 2819 if (write_lock_level < 1) { 2820 write_lock_level = 1; 2821 btrfs_release_path(p); 2822 goto again; 2823 } 2824 2825 btrfs_set_path_blocking(p); 2826 err = split_leaf(trans, root, key, 2827 p, ins_len, ret == 0); 2828 2829 BUG_ON(err > 0); 2830 if (err) { 2831 ret = err; 2832 goto done; 2833 } 2834 } 2835 if (!p->search_for_split) 2836 unlock_up(p, level, lowest_unlock, 2837 min_write_lock_level, NULL); 2838 goto done; 2839 } 2840 if (ret && slot > 0) { 2841 dec = 1; 2842 slot--; 2843 } 2844 p->slots[level] = slot; 2845 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2846 &write_lock_level); 2847 if (err == -EAGAIN) 2848 goto again; 2849 if (err) { 2850 ret = err; 2851 goto done; 2852 } 2853 b = p->nodes[level]; 2854 slot = p->slots[level]; 2855 2856 /* 2857 * Slot 0 is special, if we change the key we have to update 2858 * the parent pointer which means we must have a write lock on 2859 * the parent 2860 */ 2861 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2862 write_lock_level = level + 1; 2863 btrfs_release_path(p); 2864 goto again; 2865 } 2866 2867 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2868 &write_lock_level); 2869 2870 if (level == lowest_level) { 2871 if (dec) 2872 p->slots[level]++; 2873 goto done; 2874 } 2875 2876 err = read_block_for_search(root, p, &b, level, slot, key); 2877 if (err == -EAGAIN) 2878 goto again; 2879 if (err) { 2880 ret = err; 2881 goto done; 2882 } 2883 2884 if (!p->skip_locking) { 2885 level = btrfs_header_level(b); 2886 if (level <= write_lock_level) { 2887 if (!btrfs_try_tree_write_lock(b)) { 2888 btrfs_set_path_blocking(p); 2889 btrfs_tree_lock(b); 2890 } 2891 p->locks[level] = BTRFS_WRITE_LOCK; 2892 } else { 2893 if (!btrfs_tree_read_lock_atomic(b)) { 2894 btrfs_set_path_blocking(p); 2895 __btrfs_tree_read_lock(b, BTRFS_NESTING_NORMAL, 2896 p->recurse); 2897 } 2898 p->locks[level] = BTRFS_READ_LOCK; 2899 } 2900 p->nodes[level] = b; 2901 } 2902 } 2903 ret = 1; 2904 done: 2905 /* 2906 * we don't really know what they plan on doing with the path 2907 * from here on, so for now just mark it as blocking 2908 */ 2909 if (!p->leave_spinning) 2910 btrfs_set_path_blocking(p); 2911 if (ret < 0 && !p->skip_release_on_error) 2912 btrfs_release_path(p); 2913 return ret; 2914 } 2915 2916 /* 2917 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2918 * current state of the tree together with the operations recorded in the tree 2919 * modification log to search for the key in a previous version of this tree, as 2920 * denoted by the time_seq parameter. 2921 * 2922 * Naturally, there is no support for insert, delete or cow operations. 2923 * 2924 * The resulting path and return value will be set up as if we called 2925 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2926 */ 2927 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2928 struct btrfs_path *p, u64 time_seq) 2929 { 2930 struct btrfs_fs_info *fs_info = root->fs_info; 2931 struct extent_buffer *b; 2932 int slot; 2933 int ret; 2934 int err; 2935 int level; 2936 int lowest_unlock = 1; 2937 u8 lowest_level = 0; 2938 2939 lowest_level = p->lowest_level; 2940 WARN_ON(p->nodes[0] != NULL); 2941 2942 if (p->search_commit_root) { 2943 BUG_ON(time_seq); 2944 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2945 } 2946 2947 again: 2948 b = get_old_root(root, time_seq); 2949 if (!b) { 2950 ret = -EIO; 2951 goto done; 2952 } 2953 level = btrfs_header_level(b); 2954 p->locks[level] = BTRFS_READ_LOCK; 2955 2956 while (b) { 2957 int dec = 0; 2958 2959 level = btrfs_header_level(b); 2960 p->nodes[level] = b; 2961 2962 /* 2963 * we have a lock on b and as long as we aren't changing 2964 * the tree, there is no way to for the items in b to change. 2965 * It is safe to drop the lock on our parent before we 2966 * go through the expensive btree search on b. 2967 */ 2968 btrfs_unlock_up_safe(p, level + 1); 2969 2970 ret = btrfs_bin_search(b, key, &slot); 2971 if (ret < 0) 2972 goto done; 2973 2974 if (level == 0) { 2975 p->slots[level] = slot; 2976 unlock_up(p, level, lowest_unlock, 0, NULL); 2977 goto done; 2978 } 2979 2980 if (ret && slot > 0) { 2981 dec = 1; 2982 slot--; 2983 } 2984 p->slots[level] = slot; 2985 unlock_up(p, level, lowest_unlock, 0, NULL); 2986 2987 if (level == lowest_level) { 2988 if (dec) 2989 p->slots[level]++; 2990 goto done; 2991 } 2992 2993 err = read_block_for_search(root, p, &b, level, slot, key); 2994 if (err == -EAGAIN) 2995 goto again; 2996 if (err) { 2997 ret = err; 2998 goto done; 2999 } 3000 3001 level = btrfs_header_level(b); 3002 if (!btrfs_tree_read_lock_atomic(b)) { 3003 btrfs_set_path_blocking(p); 3004 btrfs_tree_read_lock(b); 3005 } 3006 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3007 if (!b) { 3008 ret = -ENOMEM; 3009 goto done; 3010 } 3011 p->locks[level] = BTRFS_READ_LOCK; 3012 p->nodes[level] = b; 3013 } 3014 ret = 1; 3015 done: 3016 if (!p->leave_spinning) 3017 btrfs_set_path_blocking(p); 3018 if (ret < 0) 3019 btrfs_release_path(p); 3020 3021 return ret; 3022 } 3023 3024 /* 3025 * helper to use instead of search slot if no exact match is needed but 3026 * instead the next or previous item should be returned. 3027 * When find_higher is true, the next higher item is returned, the next lower 3028 * otherwise. 3029 * When return_any and find_higher are both true, and no higher item is found, 3030 * return the next lower instead. 3031 * When return_any is true and find_higher is false, and no lower item is found, 3032 * return the next higher instead. 3033 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3034 * < 0 on error 3035 */ 3036 int btrfs_search_slot_for_read(struct btrfs_root *root, 3037 const struct btrfs_key *key, 3038 struct btrfs_path *p, int find_higher, 3039 int return_any) 3040 { 3041 int ret; 3042 struct extent_buffer *leaf; 3043 3044 again: 3045 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3046 if (ret <= 0) 3047 return ret; 3048 /* 3049 * a return value of 1 means the path is at the position where the 3050 * item should be inserted. Normally this is the next bigger item, 3051 * but in case the previous item is the last in a leaf, path points 3052 * to the first free slot in the previous leaf, i.e. at an invalid 3053 * item. 3054 */ 3055 leaf = p->nodes[0]; 3056 3057 if (find_higher) { 3058 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3059 ret = btrfs_next_leaf(root, p); 3060 if (ret <= 0) 3061 return ret; 3062 if (!return_any) 3063 return 1; 3064 /* 3065 * no higher item found, return the next 3066 * lower instead 3067 */ 3068 return_any = 0; 3069 find_higher = 0; 3070 btrfs_release_path(p); 3071 goto again; 3072 } 3073 } else { 3074 if (p->slots[0] == 0) { 3075 ret = btrfs_prev_leaf(root, p); 3076 if (ret < 0) 3077 return ret; 3078 if (!ret) { 3079 leaf = p->nodes[0]; 3080 if (p->slots[0] == btrfs_header_nritems(leaf)) 3081 p->slots[0]--; 3082 return 0; 3083 } 3084 if (!return_any) 3085 return 1; 3086 /* 3087 * no lower item found, return the next 3088 * higher instead 3089 */ 3090 return_any = 0; 3091 find_higher = 1; 3092 btrfs_release_path(p); 3093 goto again; 3094 } else { 3095 --p->slots[0]; 3096 } 3097 } 3098 return 0; 3099 } 3100 3101 /* 3102 * adjust the pointers going up the tree, starting at level 3103 * making sure the right key of each node is points to 'key'. 3104 * This is used after shifting pointers to the left, so it stops 3105 * fixing up pointers when a given leaf/node is not in slot 0 of the 3106 * higher levels 3107 * 3108 */ 3109 static void fixup_low_keys(struct btrfs_path *path, 3110 struct btrfs_disk_key *key, int level) 3111 { 3112 int i; 3113 struct extent_buffer *t; 3114 int ret; 3115 3116 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3117 int tslot = path->slots[i]; 3118 3119 if (!path->nodes[i]) 3120 break; 3121 t = path->nodes[i]; 3122 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3123 GFP_ATOMIC); 3124 BUG_ON(ret < 0); 3125 btrfs_set_node_key(t, key, tslot); 3126 btrfs_mark_buffer_dirty(path->nodes[i]); 3127 if (tslot != 0) 3128 break; 3129 } 3130 } 3131 3132 /* 3133 * update item key. 3134 * 3135 * This function isn't completely safe. It's the caller's responsibility 3136 * that the new key won't break the order 3137 */ 3138 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3139 struct btrfs_path *path, 3140 const struct btrfs_key *new_key) 3141 { 3142 struct btrfs_disk_key disk_key; 3143 struct extent_buffer *eb; 3144 int slot; 3145 3146 eb = path->nodes[0]; 3147 slot = path->slots[0]; 3148 if (slot > 0) { 3149 btrfs_item_key(eb, &disk_key, slot - 1); 3150 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3151 btrfs_crit(fs_info, 3152 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3153 slot, btrfs_disk_key_objectid(&disk_key), 3154 btrfs_disk_key_type(&disk_key), 3155 btrfs_disk_key_offset(&disk_key), 3156 new_key->objectid, new_key->type, 3157 new_key->offset); 3158 btrfs_print_leaf(eb); 3159 BUG(); 3160 } 3161 } 3162 if (slot < btrfs_header_nritems(eb) - 1) { 3163 btrfs_item_key(eb, &disk_key, slot + 1); 3164 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3165 btrfs_crit(fs_info, 3166 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3167 slot, btrfs_disk_key_objectid(&disk_key), 3168 btrfs_disk_key_type(&disk_key), 3169 btrfs_disk_key_offset(&disk_key), 3170 new_key->objectid, new_key->type, 3171 new_key->offset); 3172 btrfs_print_leaf(eb); 3173 BUG(); 3174 } 3175 } 3176 3177 btrfs_cpu_key_to_disk(&disk_key, new_key); 3178 btrfs_set_item_key(eb, &disk_key, slot); 3179 btrfs_mark_buffer_dirty(eb); 3180 if (slot == 0) 3181 fixup_low_keys(path, &disk_key, 1); 3182 } 3183 3184 /* 3185 * Check key order of two sibling extent buffers. 3186 * 3187 * Return true if something is wrong. 3188 * Return false if everything is fine. 3189 * 3190 * Tree-checker only works inside one tree block, thus the following 3191 * corruption can not be detected by tree-checker: 3192 * 3193 * Leaf @left | Leaf @right 3194 * -------------------------------------------------------------- 3195 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 3196 * 3197 * Key f6 in leaf @left itself is valid, but not valid when the next 3198 * key in leaf @right is 7. 3199 * This can only be checked at tree block merge time. 3200 * And since tree checker has ensured all key order in each tree block 3201 * is correct, we only need to bother the last key of @left and the first 3202 * key of @right. 3203 */ 3204 static bool check_sibling_keys(struct extent_buffer *left, 3205 struct extent_buffer *right) 3206 { 3207 struct btrfs_key left_last; 3208 struct btrfs_key right_first; 3209 int level = btrfs_header_level(left); 3210 int nr_left = btrfs_header_nritems(left); 3211 int nr_right = btrfs_header_nritems(right); 3212 3213 /* No key to check in one of the tree blocks */ 3214 if (!nr_left || !nr_right) 3215 return false; 3216 3217 if (level) { 3218 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 3219 btrfs_node_key_to_cpu(right, &right_first, 0); 3220 } else { 3221 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 3222 btrfs_item_key_to_cpu(right, &right_first, 0); 3223 } 3224 3225 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 3226 btrfs_crit(left->fs_info, 3227 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 3228 left_last.objectid, left_last.type, 3229 left_last.offset, right_first.objectid, 3230 right_first.type, right_first.offset); 3231 return true; 3232 } 3233 return false; 3234 } 3235 3236 /* 3237 * try to push data from one node into the next node left in the 3238 * tree. 3239 * 3240 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3241 * error, and > 0 if there was no room in the left hand block. 3242 */ 3243 static int push_node_left(struct btrfs_trans_handle *trans, 3244 struct extent_buffer *dst, 3245 struct extent_buffer *src, int empty) 3246 { 3247 struct btrfs_fs_info *fs_info = trans->fs_info; 3248 int push_items = 0; 3249 int src_nritems; 3250 int dst_nritems; 3251 int ret = 0; 3252 3253 src_nritems = btrfs_header_nritems(src); 3254 dst_nritems = btrfs_header_nritems(dst); 3255 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3256 WARN_ON(btrfs_header_generation(src) != trans->transid); 3257 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3258 3259 if (!empty && src_nritems <= 8) 3260 return 1; 3261 3262 if (push_items <= 0) 3263 return 1; 3264 3265 if (empty) { 3266 push_items = min(src_nritems, push_items); 3267 if (push_items < src_nritems) { 3268 /* leave at least 8 pointers in the node if 3269 * we aren't going to empty it 3270 */ 3271 if (src_nritems - push_items < 8) { 3272 if (push_items <= 8) 3273 return 1; 3274 push_items -= 8; 3275 } 3276 } 3277 } else 3278 push_items = min(src_nritems - 8, push_items); 3279 3280 /* dst is the left eb, src is the middle eb */ 3281 if (check_sibling_keys(dst, src)) { 3282 ret = -EUCLEAN; 3283 btrfs_abort_transaction(trans, ret); 3284 return ret; 3285 } 3286 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3287 if (ret) { 3288 btrfs_abort_transaction(trans, ret); 3289 return ret; 3290 } 3291 copy_extent_buffer(dst, src, 3292 btrfs_node_key_ptr_offset(dst_nritems), 3293 btrfs_node_key_ptr_offset(0), 3294 push_items * sizeof(struct btrfs_key_ptr)); 3295 3296 if (push_items < src_nritems) { 3297 /* 3298 * Don't call tree_mod_log_insert_move here, key removal was 3299 * already fully logged by tree_mod_log_eb_copy above. 3300 */ 3301 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3302 btrfs_node_key_ptr_offset(push_items), 3303 (src_nritems - push_items) * 3304 sizeof(struct btrfs_key_ptr)); 3305 } 3306 btrfs_set_header_nritems(src, src_nritems - push_items); 3307 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3308 btrfs_mark_buffer_dirty(src); 3309 btrfs_mark_buffer_dirty(dst); 3310 3311 return ret; 3312 } 3313 3314 /* 3315 * try to push data from one node into the next node right in the 3316 * tree. 3317 * 3318 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3319 * error, and > 0 if there was no room in the right hand block. 3320 * 3321 * this will only push up to 1/2 the contents of the left node over 3322 */ 3323 static int balance_node_right(struct btrfs_trans_handle *trans, 3324 struct extent_buffer *dst, 3325 struct extent_buffer *src) 3326 { 3327 struct btrfs_fs_info *fs_info = trans->fs_info; 3328 int push_items = 0; 3329 int max_push; 3330 int src_nritems; 3331 int dst_nritems; 3332 int ret = 0; 3333 3334 WARN_ON(btrfs_header_generation(src) != trans->transid); 3335 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3336 3337 src_nritems = btrfs_header_nritems(src); 3338 dst_nritems = btrfs_header_nritems(dst); 3339 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3340 if (push_items <= 0) 3341 return 1; 3342 3343 if (src_nritems < 4) 3344 return 1; 3345 3346 max_push = src_nritems / 2 + 1; 3347 /* don't try to empty the node */ 3348 if (max_push >= src_nritems) 3349 return 1; 3350 3351 if (max_push < push_items) 3352 push_items = max_push; 3353 3354 /* dst is the right eb, src is the middle eb */ 3355 if (check_sibling_keys(src, dst)) { 3356 ret = -EUCLEAN; 3357 btrfs_abort_transaction(trans, ret); 3358 return ret; 3359 } 3360 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3361 BUG_ON(ret < 0); 3362 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3363 btrfs_node_key_ptr_offset(0), 3364 (dst_nritems) * 3365 sizeof(struct btrfs_key_ptr)); 3366 3367 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3368 push_items); 3369 if (ret) { 3370 btrfs_abort_transaction(trans, ret); 3371 return ret; 3372 } 3373 copy_extent_buffer(dst, src, 3374 btrfs_node_key_ptr_offset(0), 3375 btrfs_node_key_ptr_offset(src_nritems - push_items), 3376 push_items * sizeof(struct btrfs_key_ptr)); 3377 3378 btrfs_set_header_nritems(src, src_nritems - push_items); 3379 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3380 3381 btrfs_mark_buffer_dirty(src); 3382 btrfs_mark_buffer_dirty(dst); 3383 3384 return ret; 3385 } 3386 3387 /* 3388 * helper function to insert a new root level in the tree. 3389 * A new node is allocated, and a single item is inserted to 3390 * point to the existing root 3391 * 3392 * returns zero on success or < 0 on failure. 3393 */ 3394 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3395 struct btrfs_root *root, 3396 struct btrfs_path *path, int level) 3397 { 3398 struct btrfs_fs_info *fs_info = root->fs_info; 3399 u64 lower_gen; 3400 struct extent_buffer *lower; 3401 struct extent_buffer *c; 3402 struct extent_buffer *old; 3403 struct btrfs_disk_key lower_key; 3404 int ret; 3405 3406 BUG_ON(path->nodes[level]); 3407 BUG_ON(path->nodes[level-1] != root->node); 3408 3409 lower = path->nodes[level-1]; 3410 if (level == 1) 3411 btrfs_item_key(lower, &lower_key, 0); 3412 else 3413 btrfs_node_key(lower, &lower_key, 0); 3414 3415 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3416 root->node->start, 0, 3417 BTRFS_NESTING_NEW_ROOT); 3418 if (IS_ERR(c)) 3419 return PTR_ERR(c); 3420 3421 root_add_used(root, fs_info->nodesize); 3422 3423 btrfs_set_header_nritems(c, 1); 3424 btrfs_set_node_key(c, &lower_key, 0); 3425 btrfs_set_node_blockptr(c, 0, lower->start); 3426 lower_gen = btrfs_header_generation(lower); 3427 WARN_ON(lower_gen != trans->transid); 3428 3429 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3430 3431 btrfs_mark_buffer_dirty(c); 3432 3433 old = root->node; 3434 ret = tree_mod_log_insert_root(root->node, c, 0); 3435 BUG_ON(ret < 0); 3436 rcu_assign_pointer(root->node, c); 3437 3438 /* the super has an extra ref to root->node */ 3439 free_extent_buffer(old); 3440 3441 add_root_to_dirty_list(root); 3442 atomic_inc(&c->refs); 3443 path->nodes[level] = c; 3444 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3445 path->slots[level] = 0; 3446 return 0; 3447 } 3448 3449 /* 3450 * worker function to insert a single pointer in a node. 3451 * the node should have enough room for the pointer already 3452 * 3453 * slot and level indicate where you want the key to go, and 3454 * blocknr is the block the key points to. 3455 */ 3456 static void insert_ptr(struct btrfs_trans_handle *trans, 3457 struct btrfs_path *path, 3458 struct btrfs_disk_key *key, u64 bytenr, 3459 int slot, int level) 3460 { 3461 struct extent_buffer *lower; 3462 int nritems; 3463 int ret; 3464 3465 BUG_ON(!path->nodes[level]); 3466 btrfs_assert_tree_locked(path->nodes[level]); 3467 lower = path->nodes[level]; 3468 nritems = btrfs_header_nritems(lower); 3469 BUG_ON(slot > nritems); 3470 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3471 if (slot != nritems) { 3472 if (level) { 3473 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3474 nritems - slot); 3475 BUG_ON(ret < 0); 3476 } 3477 memmove_extent_buffer(lower, 3478 btrfs_node_key_ptr_offset(slot + 1), 3479 btrfs_node_key_ptr_offset(slot), 3480 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3481 } 3482 if (level) { 3483 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3484 GFP_NOFS); 3485 BUG_ON(ret < 0); 3486 } 3487 btrfs_set_node_key(lower, key, slot); 3488 btrfs_set_node_blockptr(lower, slot, bytenr); 3489 WARN_ON(trans->transid == 0); 3490 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3491 btrfs_set_header_nritems(lower, nritems + 1); 3492 btrfs_mark_buffer_dirty(lower); 3493 } 3494 3495 /* 3496 * split the node at the specified level in path in two. 3497 * The path is corrected to point to the appropriate node after the split 3498 * 3499 * Before splitting this tries to make some room in the node by pushing 3500 * left and right, if either one works, it returns right away. 3501 * 3502 * returns 0 on success and < 0 on failure 3503 */ 3504 static noinline int split_node(struct btrfs_trans_handle *trans, 3505 struct btrfs_root *root, 3506 struct btrfs_path *path, int level) 3507 { 3508 struct btrfs_fs_info *fs_info = root->fs_info; 3509 struct extent_buffer *c; 3510 struct extent_buffer *split; 3511 struct btrfs_disk_key disk_key; 3512 int mid; 3513 int ret; 3514 u32 c_nritems; 3515 3516 c = path->nodes[level]; 3517 WARN_ON(btrfs_header_generation(c) != trans->transid); 3518 if (c == root->node) { 3519 /* 3520 * trying to split the root, lets make a new one 3521 * 3522 * tree mod log: We don't log_removal old root in 3523 * insert_new_root, because that root buffer will be kept as a 3524 * normal node. We are going to log removal of half of the 3525 * elements below with tree_mod_log_eb_copy. We're holding a 3526 * tree lock on the buffer, which is why we cannot race with 3527 * other tree_mod_log users. 3528 */ 3529 ret = insert_new_root(trans, root, path, level + 1); 3530 if (ret) 3531 return ret; 3532 } else { 3533 ret = push_nodes_for_insert(trans, root, path, level); 3534 c = path->nodes[level]; 3535 if (!ret && btrfs_header_nritems(c) < 3536 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3537 return 0; 3538 if (ret < 0) 3539 return ret; 3540 } 3541 3542 c_nritems = btrfs_header_nritems(c); 3543 mid = (c_nritems + 1) / 2; 3544 btrfs_node_key(c, &disk_key, mid); 3545 3546 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3547 c->start, 0, BTRFS_NESTING_SPLIT); 3548 if (IS_ERR(split)) 3549 return PTR_ERR(split); 3550 3551 root_add_used(root, fs_info->nodesize); 3552 ASSERT(btrfs_header_level(c) == level); 3553 3554 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3555 if (ret) { 3556 btrfs_abort_transaction(trans, ret); 3557 return ret; 3558 } 3559 copy_extent_buffer(split, c, 3560 btrfs_node_key_ptr_offset(0), 3561 btrfs_node_key_ptr_offset(mid), 3562 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3563 btrfs_set_header_nritems(split, c_nritems - mid); 3564 btrfs_set_header_nritems(c, mid); 3565 ret = 0; 3566 3567 btrfs_mark_buffer_dirty(c); 3568 btrfs_mark_buffer_dirty(split); 3569 3570 insert_ptr(trans, path, &disk_key, split->start, 3571 path->slots[level + 1] + 1, level + 1); 3572 3573 if (path->slots[level] >= mid) { 3574 path->slots[level] -= mid; 3575 btrfs_tree_unlock(c); 3576 free_extent_buffer(c); 3577 path->nodes[level] = split; 3578 path->slots[level + 1] += 1; 3579 } else { 3580 btrfs_tree_unlock(split); 3581 free_extent_buffer(split); 3582 } 3583 return ret; 3584 } 3585 3586 /* 3587 * how many bytes are required to store the items in a leaf. start 3588 * and nr indicate which items in the leaf to check. This totals up the 3589 * space used both by the item structs and the item data 3590 */ 3591 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3592 { 3593 struct btrfs_item *start_item; 3594 struct btrfs_item *end_item; 3595 int data_len; 3596 int nritems = btrfs_header_nritems(l); 3597 int end = min(nritems, start + nr) - 1; 3598 3599 if (!nr) 3600 return 0; 3601 start_item = btrfs_item_nr(start); 3602 end_item = btrfs_item_nr(end); 3603 data_len = btrfs_item_offset(l, start_item) + 3604 btrfs_item_size(l, start_item); 3605 data_len = data_len - btrfs_item_offset(l, end_item); 3606 data_len += sizeof(struct btrfs_item) * nr; 3607 WARN_ON(data_len < 0); 3608 return data_len; 3609 } 3610 3611 /* 3612 * The space between the end of the leaf items and 3613 * the start of the leaf data. IOW, how much room 3614 * the leaf has left for both items and data 3615 */ 3616 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3617 { 3618 struct btrfs_fs_info *fs_info = leaf->fs_info; 3619 int nritems = btrfs_header_nritems(leaf); 3620 int ret; 3621 3622 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3623 if (ret < 0) { 3624 btrfs_crit(fs_info, 3625 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3626 ret, 3627 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3628 leaf_space_used(leaf, 0, nritems), nritems); 3629 } 3630 return ret; 3631 } 3632 3633 /* 3634 * min slot controls the lowest index we're willing to push to the 3635 * right. We'll push up to and including min_slot, but no lower 3636 */ 3637 static noinline int __push_leaf_right(struct btrfs_path *path, 3638 int data_size, int empty, 3639 struct extent_buffer *right, 3640 int free_space, u32 left_nritems, 3641 u32 min_slot) 3642 { 3643 struct btrfs_fs_info *fs_info = right->fs_info; 3644 struct extent_buffer *left = path->nodes[0]; 3645 struct extent_buffer *upper = path->nodes[1]; 3646 struct btrfs_map_token token; 3647 struct btrfs_disk_key disk_key; 3648 int slot; 3649 u32 i; 3650 int push_space = 0; 3651 int push_items = 0; 3652 struct btrfs_item *item; 3653 u32 nr; 3654 u32 right_nritems; 3655 u32 data_end; 3656 u32 this_item_size; 3657 3658 if (empty) 3659 nr = 0; 3660 else 3661 nr = max_t(u32, 1, min_slot); 3662 3663 if (path->slots[0] >= left_nritems) 3664 push_space += data_size; 3665 3666 slot = path->slots[1]; 3667 i = left_nritems - 1; 3668 while (i >= nr) { 3669 item = btrfs_item_nr(i); 3670 3671 if (!empty && push_items > 0) { 3672 if (path->slots[0] > i) 3673 break; 3674 if (path->slots[0] == i) { 3675 int space = btrfs_leaf_free_space(left); 3676 3677 if (space + push_space * 2 > free_space) 3678 break; 3679 } 3680 } 3681 3682 if (path->slots[0] == i) 3683 push_space += data_size; 3684 3685 this_item_size = btrfs_item_size(left, item); 3686 if (this_item_size + sizeof(*item) + push_space > free_space) 3687 break; 3688 3689 push_items++; 3690 push_space += this_item_size + sizeof(*item); 3691 if (i == 0) 3692 break; 3693 i--; 3694 } 3695 3696 if (push_items == 0) 3697 goto out_unlock; 3698 3699 WARN_ON(!empty && push_items == left_nritems); 3700 3701 /* push left to right */ 3702 right_nritems = btrfs_header_nritems(right); 3703 3704 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3705 push_space -= leaf_data_end(left); 3706 3707 /* make room in the right data area */ 3708 data_end = leaf_data_end(right); 3709 memmove_extent_buffer(right, 3710 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3711 BTRFS_LEAF_DATA_OFFSET + data_end, 3712 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3713 3714 /* copy from the left data area */ 3715 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3716 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3717 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3718 push_space); 3719 3720 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3721 btrfs_item_nr_offset(0), 3722 right_nritems * sizeof(struct btrfs_item)); 3723 3724 /* copy the items from left to right */ 3725 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3726 btrfs_item_nr_offset(left_nritems - push_items), 3727 push_items * sizeof(struct btrfs_item)); 3728 3729 /* update the item pointers */ 3730 btrfs_init_map_token(&token, right); 3731 right_nritems += push_items; 3732 btrfs_set_header_nritems(right, right_nritems); 3733 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3734 for (i = 0; i < right_nritems; i++) { 3735 item = btrfs_item_nr(i); 3736 push_space -= btrfs_token_item_size(&token, item); 3737 btrfs_set_token_item_offset(&token, item, push_space); 3738 } 3739 3740 left_nritems -= push_items; 3741 btrfs_set_header_nritems(left, left_nritems); 3742 3743 if (left_nritems) 3744 btrfs_mark_buffer_dirty(left); 3745 else 3746 btrfs_clean_tree_block(left); 3747 3748 btrfs_mark_buffer_dirty(right); 3749 3750 btrfs_item_key(right, &disk_key, 0); 3751 btrfs_set_node_key(upper, &disk_key, slot + 1); 3752 btrfs_mark_buffer_dirty(upper); 3753 3754 /* then fixup the leaf pointer in the path */ 3755 if (path->slots[0] >= left_nritems) { 3756 path->slots[0] -= left_nritems; 3757 if (btrfs_header_nritems(path->nodes[0]) == 0) 3758 btrfs_clean_tree_block(path->nodes[0]); 3759 btrfs_tree_unlock(path->nodes[0]); 3760 free_extent_buffer(path->nodes[0]); 3761 path->nodes[0] = right; 3762 path->slots[1] += 1; 3763 } else { 3764 btrfs_tree_unlock(right); 3765 free_extent_buffer(right); 3766 } 3767 return 0; 3768 3769 out_unlock: 3770 btrfs_tree_unlock(right); 3771 free_extent_buffer(right); 3772 return 1; 3773 } 3774 3775 /* 3776 * push some data in the path leaf to the right, trying to free up at 3777 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3778 * 3779 * returns 1 if the push failed because the other node didn't have enough 3780 * room, 0 if everything worked out and < 0 if there were major errors. 3781 * 3782 * this will push starting from min_slot to the end of the leaf. It won't 3783 * push any slot lower than min_slot 3784 */ 3785 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3786 *root, struct btrfs_path *path, 3787 int min_data_size, int data_size, 3788 int empty, u32 min_slot) 3789 { 3790 struct extent_buffer *left = path->nodes[0]; 3791 struct extent_buffer *right; 3792 struct extent_buffer *upper; 3793 int slot; 3794 int free_space; 3795 u32 left_nritems; 3796 int ret; 3797 3798 if (!path->nodes[1]) 3799 return 1; 3800 3801 slot = path->slots[1]; 3802 upper = path->nodes[1]; 3803 if (slot >= btrfs_header_nritems(upper) - 1) 3804 return 1; 3805 3806 btrfs_assert_tree_locked(path->nodes[1]); 3807 3808 right = btrfs_read_node_slot(upper, slot + 1); 3809 /* 3810 * slot + 1 is not valid or we fail to read the right node, 3811 * no big deal, just return. 3812 */ 3813 if (IS_ERR(right)) 3814 return 1; 3815 3816 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 3817 btrfs_set_lock_blocking_write(right); 3818 3819 free_space = btrfs_leaf_free_space(right); 3820 if (free_space < data_size) 3821 goto out_unlock; 3822 3823 /* cow and double check */ 3824 ret = btrfs_cow_block(trans, root, right, upper, 3825 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3826 if (ret) 3827 goto out_unlock; 3828 3829 free_space = btrfs_leaf_free_space(right); 3830 if (free_space < data_size) 3831 goto out_unlock; 3832 3833 left_nritems = btrfs_header_nritems(left); 3834 if (left_nritems == 0) 3835 goto out_unlock; 3836 3837 if (check_sibling_keys(left, right)) { 3838 ret = -EUCLEAN; 3839 btrfs_tree_unlock(right); 3840 free_extent_buffer(right); 3841 return ret; 3842 } 3843 if (path->slots[0] == left_nritems && !empty) { 3844 /* Key greater than all keys in the leaf, right neighbor has 3845 * enough room for it and we're not emptying our leaf to delete 3846 * it, therefore use right neighbor to insert the new item and 3847 * no need to touch/dirty our left leaf. */ 3848 btrfs_tree_unlock(left); 3849 free_extent_buffer(left); 3850 path->nodes[0] = right; 3851 path->slots[0] = 0; 3852 path->slots[1]++; 3853 return 0; 3854 } 3855 3856 return __push_leaf_right(path, min_data_size, empty, 3857 right, free_space, left_nritems, min_slot); 3858 out_unlock: 3859 btrfs_tree_unlock(right); 3860 free_extent_buffer(right); 3861 return 1; 3862 } 3863 3864 /* 3865 * push some data in the path leaf to the left, trying to free up at 3866 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3867 * 3868 * max_slot can put a limit on how far into the leaf we'll push items. The 3869 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3870 * items 3871 */ 3872 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3873 int empty, struct extent_buffer *left, 3874 int free_space, u32 right_nritems, 3875 u32 max_slot) 3876 { 3877 struct btrfs_fs_info *fs_info = left->fs_info; 3878 struct btrfs_disk_key disk_key; 3879 struct extent_buffer *right = path->nodes[0]; 3880 int i; 3881 int push_space = 0; 3882 int push_items = 0; 3883 struct btrfs_item *item; 3884 u32 old_left_nritems; 3885 u32 nr; 3886 int ret = 0; 3887 u32 this_item_size; 3888 u32 old_left_item_size; 3889 struct btrfs_map_token token; 3890 3891 if (empty) 3892 nr = min(right_nritems, max_slot); 3893 else 3894 nr = min(right_nritems - 1, max_slot); 3895 3896 for (i = 0; i < nr; i++) { 3897 item = btrfs_item_nr(i); 3898 3899 if (!empty && push_items > 0) { 3900 if (path->slots[0] < i) 3901 break; 3902 if (path->slots[0] == i) { 3903 int space = btrfs_leaf_free_space(right); 3904 3905 if (space + push_space * 2 > free_space) 3906 break; 3907 } 3908 } 3909 3910 if (path->slots[0] == i) 3911 push_space += data_size; 3912 3913 this_item_size = btrfs_item_size(right, item); 3914 if (this_item_size + sizeof(*item) + push_space > free_space) 3915 break; 3916 3917 push_items++; 3918 push_space += this_item_size + sizeof(*item); 3919 } 3920 3921 if (push_items == 0) { 3922 ret = 1; 3923 goto out; 3924 } 3925 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3926 3927 /* push data from right to left */ 3928 copy_extent_buffer(left, right, 3929 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3930 btrfs_item_nr_offset(0), 3931 push_items * sizeof(struct btrfs_item)); 3932 3933 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3934 btrfs_item_offset_nr(right, push_items - 1); 3935 3936 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3937 leaf_data_end(left) - push_space, 3938 BTRFS_LEAF_DATA_OFFSET + 3939 btrfs_item_offset_nr(right, push_items - 1), 3940 push_space); 3941 old_left_nritems = btrfs_header_nritems(left); 3942 BUG_ON(old_left_nritems <= 0); 3943 3944 btrfs_init_map_token(&token, left); 3945 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3946 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3947 u32 ioff; 3948 3949 item = btrfs_item_nr(i); 3950 3951 ioff = btrfs_token_item_offset(&token, item); 3952 btrfs_set_token_item_offset(&token, item, 3953 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3954 } 3955 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3956 3957 /* fixup right node */ 3958 if (push_items > right_nritems) 3959 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3960 right_nritems); 3961 3962 if (push_items < right_nritems) { 3963 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3964 leaf_data_end(right); 3965 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3966 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3967 BTRFS_LEAF_DATA_OFFSET + 3968 leaf_data_end(right), push_space); 3969 3970 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3971 btrfs_item_nr_offset(push_items), 3972 (btrfs_header_nritems(right) - push_items) * 3973 sizeof(struct btrfs_item)); 3974 } 3975 3976 btrfs_init_map_token(&token, right); 3977 right_nritems -= push_items; 3978 btrfs_set_header_nritems(right, right_nritems); 3979 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3980 for (i = 0; i < right_nritems; i++) { 3981 item = btrfs_item_nr(i); 3982 3983 push_space = push_space - btrfs_token_item_size(&token, item); 3984 btrfs_set_token_item_offset(&token, item, push_space); 3985 } 3986 3987 btrfs_mark_buffer_dirty(left); 3988 if (right_nritems) 3989 btrfs_mark_buffer_dirty(right); 3990 else 3991 btrfs_clean_tree_block(right); 3992 3993 btrfs_item_key(right, &disk_key, 0); 3994 fixup_low_keys(path, &disk_key, 1); 3995 3996 /* then fixup the leaf pointer in the path */ 3997 if (path->slots[0] < push_items) { 3998 path->slots[0] += old_left_nritems; 3999 btrfs_tree_unlock(path->nodes[0]); 4000 free_extent_buffer(path->nodes[0]); 4001 path->nodes[0] = left; 4002 path->slots[1] -= 1; 4003 } else { 4004 btrfs_tree_unlock(left); 4005 free_extent_buffer(left); 4006 path->slots[0] -= push_items; 4007 } 4008 BUG_ON(path->slots[0] < 0); 4009 return ret; 4010 out: 4011 btrfs_tree_unlock(left); 4012 free_extent_buffer(left); 4013 return ret; 4014 } 4015 4016 /* 4017 * push some data in the path leaf to the left, trying to free up at 4018 * least data_size bytes. returns zero if the push worked, nonzero otherwise 4019 * 4020 * max_slot can put a limit on how far into the leaf we'll push items. The 4021 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 4022 * items 4023 */ 4024 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 4025 *root, struct btrfs_path *path, int min_data_size, 4026 int data_size, int empty, u32 max_slot) 4027 { 4028 struct extent_buffer *right = path->nodes[0]; 4029 struct extent_buffer *left; 4030 int slot; 4031 int free_space; 4032 u32 right_nritems; 4033 int ret = 0; 4034 4035 slot = path->slots[1]; 4036 if (slot == 0) 4037 return 1; 4038 if (!path->nodes[1]) 4039 return 1; 4040 4041 right_nritems = btrfs_header_nritems(right); 4042 if (right_nritems == 0) 4043 return 1; 4044 4045 btrfs_assert_tree_locked(path->nodes[1]); 4046 4047 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 4048 /* 4049 * slot - 1 is not valid or we fail to read the left node, 4050 * no big deal, just return. 4051 */ 4052 if (IS_ERR(left)) 4053 return 1; 4054 4055 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 4056 btrfs_set_lock_blocking_write(left); 4057 4058 free_space = btrfs_leaf_free_space(left); 4059 if (free_space < data_size) { 4060 ret = 1; 4061 goto out; 4062 } 4063 4064 /* cow and double check */ 4065 ret = btrfs_cow_block(trans, root, left, 4066 path->nodes[1], slot - 1, &left, 4067 BTRFS_NESTING_LEFT_COW); 4068 if (ret) { 4069 /* we hit -ENOSPC, but it isn't fatal here */ 4070 if (ret == -ENOSPC) 4071 ret = 1; 4072 goto out; 4073 } 4074 4075 free_space = btrfs_leaf_free_space(left); 4076 if (free_space < data_size) { 4077 ret = 1; 4078 goto out; 4079 } 4080 4081 if (check_sibling_keys(left, right)) { 4082 ret = -EUCLEAN; 4083 goto out; 4084 } 4085 return __push_leaf_left(path, min_data_size, 4086 empty, left, free_space, right_nritems, 4087 max_slot); 4088 out: 4089 btrfs_tree_unlock(left); 4090 free_extent_buffer(left); 4091 return ret; 4092 } 4093 4094 /* 4095 * split the path's leaf in two, making sure there is at least data_size 4096 * available for the resulting leaf level of the path. 4097 */ 4098 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4099 struct btrfs_path *path, 4100 struct extent_buffer *l, 4101 struct extent_buffer *right, 4102 int slot, int mid, int nritems) 4103 { 4104 struct btrfs_fs_info *fs_info = trans->fs_info; 4105 int data_copy_size; 4106 int rt_data_off; 4107 int i; 4108 struct btrfs_disk_key disk_key; 4109 struct btrfs_map_token token; 4110 4111 nritems = nritems - mid; 4112 btrfs_set_header_nritems(right, nritems); 4113 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4114 4115 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4116 btrfs_item_nr_offset(mid), 4117 nritems * sizeof(struct btrfs_item)); 4118 4119 copy_extent_buffer(right, l, 4120 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4121 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4122 leaf_data_end(l), data_copy_size); 4123 4124 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4125 4126 btrfs_init_map_token(&token, right); 4127 for (i = 0; i < nritems; i++) { 4128 struct btrfs_item *item = btrfs_item_nr(i); 4129 u32 ioff; 4130 4131 ioff = btrfs_token_item_offset(&token, item); 4132 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 4133 } 4134 4135 btrfs_set_header_nritems(l, mid); 4136 btrfs_item_key(right, &disk_key, 0); 4137 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4138 4139 btrfs_mark_buffer_dirty(right); 4140 btrfs_mark_buffer_dirty(l); 4141 BUG_ON(path->slots[0] != slot); 4142 4143 if (mid <= slot) { 4144 btrfs_tree_unlock(path->nodes[0]); 4145 free_extent_buffer(path->nodes[0]); 4146 path->nodes[0] = right; 4147 path->slots[0] -= mid; 4148 path->slots[1] += 1; 4149 } else { 4150 btrfs_tree_unlock(right); 4151 free_extent_buffer(right); 4152 } 4153 4154 BUG_ON(path->slots[0] < 0); 4155 } 4156 4157 /* 4158 * double splits happen when we need to insert a big item in the middle 4159 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4160 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4161 * A B C 4162 * 4163 * We avoid this by trying to push the items on either side of our target 4164 * into the adjacent leaves. If all goes well we can avoid the double split 4165 * completely. 4166 */ 4167 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4168 struct btrfs_root *root, 4169 struct btrfs_path *path, 4170 int data_size) 4171 { 4172 int ret; 4173 int progress = 0; 4174 int slot; 4175 u32 nritems; 4176 int space_needed = data_size; 4177 4178 slot = path->slots[0]; 4179 if (slot < btrfs_header_nritems(path->nodes[0])) 4180 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4181 4182 /* 4183 * try to push all the items after our slot into the 4184 * right leaf 4185 */ 4186 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4187 if (ret < 0) 4188 return ret; 4189 4190 if (ret == 0) 4191 progress++; 4192 4193 nritems = btrfs_header_nritems(path->nodes[0]); 4194 /* 4195 * our goal is to get our slot at the start or end of a leaf. If 4196 * we've done so we're done 4197 */ 4198 if (path->slots[0] == 0 || path->slots[0] == nritems) 4199 return 0; 4200 4201 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4202 return 0; 4203 4204 /* try to push all the items before our slot into the next leaf */ 4205 slot = path->slots[0]; 4206 space_needed = data_size; 4207 if (slot > 0) 4208 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4209 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4210 if (ret < 0) 4211 return ret; 4212 4213 if (ret == 0) 4214 progress++; 4215 4216 if (progress) 4217 return 0; 4218 return 1; 4219 } 4220 4221 /* 4222 * split the path's leaf in two, making sure there is at least data_size 4223 * available for the resulting leaf level of the path. 4224 * 4225 * returns 0 if all went well and < 0 on failure. 4226 */ 4227 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4228 struct btrfs_root *root, 4229 const struct btrfs_key *ins_key, 4230 struct btrfs_path *path, int data_size, 4231 int extend) 4232 { 4233 struct btrfs_disk_key disk_key; 4234 struct extent_buffer *l; 4235 u32 nritems; 4236 int mid; 4237 int slot; 4238 struct extent_buffer *right; 4239 struct btrfs_fs_info *fs_info = root->fs_info; 4240 int ret = 0; 4241 int wret; 4242 int split; 4243 int num_doubles = 0; 4244 int tried_avoid_double = 0; 4245 4246 l = path->nodes[0]; 4247 slot = path->slots[0]; 4248 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4249 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4250 return -EOVERFLOW; 4251 4252 /* first try to make some room by pushing left and right */ 4253 if (data_size && path->nodes[1]) { 4254 int space_needed = data_size; 4255 4256 if (slot < btrfs_header_nritems(l)) 4257 space_needed -= btrfs_leaf_free_space(l); 4258 4259 wret = push_leaf_right(trans, root, path, space_needed, 4260 space_needed, 0, 0); 4261 if (wret < 0) 4262 return wret; 4263 if (wret) { 4264 space_needed = data_size; 4265 if (slot > 0) 4266 space_needed -= btrfs_leaf_free_space(l); 4267 wret = push_leaf_left(trans, root, path, space_needed, 4268 space_needed, 0, (u32)-1); 4269 if (wret < 0) 4270 return wret; 4271 } 4272 l = path->nodes[0]; 4273 4274 /* did the pushes work? */ 4275 if (btrfs_leaf_free_space(l) >= data_size) 4276 return 0; 4277 } 4278 4279 if (!path->nodes[1]) { 4280 ret = insert_new_root(trans, root, path, 1); 4281 if (ret) 4282 return ret; 4283 } 4284 again: 4285 split = 1; 4286 l = path->nodes[0]; 4287 slot = path->slots[0]; 4288 nritems = btrfs_header_nritems(l); 4289 mid = (nritems + 1) / 2; 4290 4291 if (mid <= slot) { 4292 if (nritems == 1 || 4293 leaf_space_used(l, mid, nritems - mid) + data_size > 4294 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4295 if (slot >= nritems) { 4296 split = 0; 4297 } else { 4298 mid = slot; 4299 if (mid != nritems && 4300 leaf_space_used(l, mid, nritems - mid) + 4301 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4302 if (data_size && !tried_avoid_double) 4303 goto push_for_double; 4304 split = 2; 4305 } 4306 } 4307 } 4308 } else { 4309 if (leaf_space_used(l, 0, mid) + data_size > 4310 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4311 if (!extend && data_size && slot == 0) { 4312 split = 0; 4313 } else if ((extend || !data_size) && slot == 0) { 4314 mid = 1; 4315 } else { 4316 mid = slot; 4317 if (mid != nritems && 4318 leaf_space_used(l, mid, nritems - mid) + 4319 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4320 if (data_size && !tried_avoid_double) 4321 goto push_for_double; 4322 split = 2; 4323 } 4324 } 4325 } 4326 } 4327 4328 if (split == 0) 4329 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4330 else 4331 btrfs_item_key(l, &disk_key, mid); 4332 4333 /* 4334 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 4335 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 4336 * subclasses, which is 8 at the time of this patch, and we've maxed it 4337 * out. In the future we could add a 4338 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 4339 * use BTRFS_NESTING_NEW_ROOT. 4340 */ 4341 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4342 l->start, 0, num_doubles ? 4343 BTRFS_NESTING_NEW_ROOT : 4344 BTRFS_NESTING_SPLIT); 4345 if (IS_ERR(right)) 4346 return PTR_ERR(right); 4347 4348 root_add_used(root, fs_info->nodesize); 4349 4350 if (split == 0) { 4351 if (mid <= slot) { 4352 btrfs_set_header_nritems(right, 0); 4353 insert_ptr(trans, path, &disk_key, 4354 right->start, path->slots[1] + 1, 1); 4355 btrfs_tree_unlock(path->nodes[0]); 4356 free_extent_buffer(path->nodes[0]); 4357 path->nodes[0] = right; 4358 path->slots[0] = 0; 4359 path->slots[1] += 1; 4360 } else { 4361 btrfs_set_header_nritems(right, 0); 4362 insert_ptr(trans, path, &disk_key, 4363 right->start, path->slots[1], 1); 4364 btrfs_tree_unlock(path->nodes[0]); 4365 free_extent_buffer(path->nodes[0]); 4366 path->nodes[0] = right; 4367 path->slots[0] = 0; 4368 if (path->slots[1] == 0) 4369 fixup_low_keys(path, &disk_key, 1); 4370 } 4371 /* 4372 * We create a new leaf 'right' for the required ins_len and 4373 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4374 * the content of ins_len to 'right'. 4375 */ 4376 return ret; 4377 } 4378 4379 copy_for_split(trans, path, l, right, slot, mid, nritems); 4380 4381 if (split == 2) { 4382 BUG_ON(num_doubles != 0); 4383 num_doubles++; 4384 goto again; 4385 } 4386 4387 return 0; 4388 4389 push_for_double: 4390 push_for_double_split(trans, root, path, data_size); 4391 tried_avoid_double = 1; 4392 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4393 return 0; 4394 goto again; 4395 } 4396 4397 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4398 struct btrfs_root *root, 4399 struct btrfs_path *path, int ins_len) 4400 { 4401 struct btrfs_key key; 4402 struct extent_buffer *leaf; 4403 struct btrfs_file_extent_item *fi; 4404 u64 extent_len = 0; 4405 u32 item_size; 4406 int ret; 4407 4408 leaf = path->nodes[0]; 4409 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4410 4411 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4412 key.type != BTRFS_EXTENT_CSUM_KEY); 4413 4414 if (btrfs_leaf_free_space(leaf) >= ins_len) 4415 return 0; 4416 4417 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4418 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4419 fi = btrfs_item_ptr(leaf, path->slots[0], 4420 struct btrfs_file_extent_item); 4421 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4422 } 4423 btrfs_release_path(path); 4424 4425 path->keep_locks = 1; 4426 path->search_for_split = 1; 4427 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4428 path->search_for_split = 0; 4429 if (ret > 0) 4430 ret = -EAGAIN; 4431 if (ret < 0) 4432 goto err; 4433 4434 ret = -EAGAIN; 4435 leaf = path->nodes[0]; 4436 /* if our item isn't there, return now */ 4437 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4438 goto err; 4439 4440 /* the leaf has changed, it now has room. return now */ 4441 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4442 goto err; 4443 4444 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4445 fi = btrfs_item_ptr(leaf, path->slots[0], 4446 struct btrfs_file_extent_item); 4447 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4448 goto err; 4449 } 4450 4451 btrfs_set_path_blocking(path); 4452 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4453 if (ret) 4454 goto err; 4455 4456 path->keep_locks = 0; 4457 btrfs_unlock_up_safe(path, 1); 4458 return 0; 4459 err: 4460 path->keep_locks = 0; 4461 return ret; 4462 } 4463 4464 static noinline int split_item(struct btrfs_path *path, 4465 const struct btrfs_key *new_key, 4466 unsigned long split_offset) 4467 { 4468 struct extent_buffer *leaf; 4469 struct btrfs_item *item; 4470 struct btrfs_item *new_item; 4471 int slot; 4472 char *buf; 4473 u32 nritems; 4474 u32 item_size; 4475 u32 orig_offset; 4476 struct btrfs_disk_key disk_key; 4477 4478 leaf = path->nodes[0]; 4479 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4480 4481 btrfs_set_path_blocking(path); 4482 4483 item = btrfs_item_nr(path->slots[0]); 4484 orig_offset = btrfs_item_offset(leaf, item); 4485 item_size = btrfs_item_size(leaf, item); 4486 4487 buf = kmalloc(item_size, GFP_NOFS); 4488 if (!buf) 4489 return -ENOMEM; 4490 4491 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4492 path->slots[0]), item_size); 4493 4494 slot = path->slots[0] + 1; 4495 nritems = btrfs_header_nritems(leaf); 4496 if (slot != nritems) { 4497 /* shift the items */ 4498 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4499 btrfs_item_nr_offset(slot), 4500 (nritems - slot) * sizeof(struct btrfs_item)); 4501 } 4502 4503 btrfs_cpu_key_to_disk(&disk_key, new_key); 4504 btrfs_set_item_key(leaf, &disk_key, slot); 4505 4506 new_item = btrfs_item_nr(slot); 4507 4508 btrfs_set_item_offset(leaf, new_item, orig_offset); 4509 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4510 4511 btrfs_set_item_offset(leaf, item, 4512 orig_offset + item_size - split_offset); 4513 btrfs_set_item_size(leaf, item, split_offset); 4514 4515 btrfs_set_header_nritems(leaf, nritems + 1); 4516 4517 /* write the data for the start of the original item */ 4518 write_extent_buffer(leaf, buf, 4519 btrfs_item_ptr_offset(leaf, path->slots[0]), 4520 split_offset); 4521 4522 /* write the data for the new item */ 4523 write_extent_buffer(leaf, buf + split_offset, 4524 btrfs_item_ptr_offset(leaf, slot), 4525 item_size - split_offset); 4526 btrfs_mark_buffer_dirty(leaf); 4527 4528 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4529 kfree(buf); 4530 return 0; 4531 } 4532 4533 /* 4534 * This function splits a single item into two items, 4535 * giving 'new_key' to the new item and splitting the 4536 * old one at split_offset (from the start of the item). 4537 * 4538 * The path may be released by this operation. After 4539 * the split, the path is pointing to the old item. The 4540 * new item is going to be in the same node as the old one. 4541 * 4542 * Note, the item being split must be smaller enough to live alone on 4543 * a tree block with room for one extra struct btrfs_item 4544 * 4545 * This allows us to split the item in place, keeping a lock on the 4546 * leaf the entire time. 4547 */ 4548 int btrfs_split_item(struct btrfs_trans_handle *trans, 4549 struct btrfs_root *root, 4550 struct btrfs_path *path, 4551 const struct btrfs_key *new_key, 4552 unsigned long split_offset) 4553 { 4554 int ret; 4555 ret = setup_leaf_for_split(trans, root, path, 4556 sizeof(struct btrfs_item)); 4557 if (ret) 4558 return ret; 4559 4560 ret = split_item(path, new_key, split_offset); 4561 return ret; 4562 } 4563 4564 /* 4565 * This function duplicate a item, giving 'new_key' to the new item. 4566 * It guarantees both items live in the same tree leaf and the new item 4567 * is contiguous with the original item. 4568 * 4569 * This allows us to split file extent in place, keeping a lock on the 4570 * leaf the entire time. 4571 */ 4572 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4573 struct btrfs_root *root, 4574 struct btrfs_path *path, 4575 const struct btrfs_key *new_key) 4576 { 4577 struct extent_buffer *leaf; 4578 int ret; 4579 u32 item_size; 4580 4581 leaf = path->nodes[0]; 4582 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4583 ret = setup_leaf_for_split(trans, root, path, 4584 item_size + sizeof(struct btrfs_item)); 4585 if (ret) 4586 return ret; 4587 4588 path->slots[0]++; 4589 setup_items_for_insert(root, path, new_key, &item_size, 1); 4590 leaf = path->nodes[0]; 4591 memcpy_extent_buffer(leaf, 4592 btrfs_item_ptr_offset(leaf, path->slots[0]), 4593 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4594 item_size); 4595 return 0; 4596 } 4597 4598 /* 4599 * make the item pointed to by the path smaller. new_size indicates 4600 * how small to make it, and from_end tells us if we just chop bytes 4601 * off the end of the item or if we shift the item to chop bytes off 4602 * the front. 4603 */ 4604 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4605 { 4606 int slot; 4607 struct extent_buffer *leaf; 4608 struct btrfs_item *item; 4609 u32 nritems; 4610 unsigned int data_end; 4611 unsigned int old_data_start; 4612 unsigned int old_size; 4613 unsigned int size_diff; 4614 int i; 4615 struct btrfs_map_token token; 4616 4617 leaf = path->nodes[0]; 4618 slot = path->slots[0]; 4619 4620 old_size = btrfs_item_size_nr(leaf, slot); 4621 if (old_size == new_size) 4622 return; 4623 4624 nritems = btrfs_header_nritems(leaf); 4625 data_end = leaf_data_end(leaf); 4626 4627 old_data_start = btrfs_item_offset_nr(leaf, slot); 4628 4629 size_diff = old_size - new_size; 4630 4631 BUG_ON(slot < 0); 4632 BUG_ON(slot >= nritems); 4633 4634 /* 4635 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4636 */ 4637 /* first correct the data pointers */ 4638 btrfs_init_map_token(&token, leaf); 4639 for (i = slot; i < nritems; i++) { 4640 u32 ioff; 4641 item = btrfs_item_nr(i); 4642 4643 ioff = btrfs_token_item_offset(&token, item); 4644 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 4645 } 4646 4647 /* shift the data */ 4648 if (from_end) { 4649 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4650 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4651 data_end, old_data_start + new_size - data_end); 4652 } else { 4653 struct btrfs_disk_key disk_key; 4654 u64 offset; 4655 4656 btrfs_item_key(leaf, &disk_key, slot); 4657 4658 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4659 unsigned long ptr; 4660 struct btrfs_file_extent_item *fi; 4661 4662 fi = btrfs_item_ptr(leaf, slot, 4663 struct btrfs_file_extent_item); 4664 fi = (struct btrfs_file_extent_item *)( 4665 (unsigned long)fi - size_diff); 4666 4667 if (btrfs_file_extent_type(leaf, fi) == 4668 BTRFS_FILE_EXTENT_INLINE) { 4669 ptr = btrfs_item_ptr_offset(leaf, slot); 4670 memmove_extent_buffer(leaf, ptr, 4671 (unsigned long)fi, 4672 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4673 } 4674 } 4675 4676 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4677 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4678 data_end, old_data_start - data_end); 4679 4680 offset = btrfs_disk_key_offset(&disk_key); 4681 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4682 btrfs_set_item_key(leaf, &disk_key, slot); 4683 if (slot == 0) 4684 fixup_low_keys(path, &disk_key, 1); 4685 } 4686 4687 item = btrfs_item_nr(slot); 4688 btrfs_set_item_size(leaf, item, new_size); 4689 btrfs_mark_buffer_dirty(leaf); 4690 4691 if (btrfs_leaf_free_space(leaf) < 0) { 4692 btrfs_print_leaf(leaf); 4693 BUG(); 4694 } 4695 } 4696 4697 /* 4698 * make the item pointed to by the path bigger, data_size is the added size. 4699 */ 4700 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4701 { 4702 int slot; 4703 struct extent_buffer *leaf; 4704 struct btrfs_item *item; 4705 u32 nritems; 4706 unsigned int data_end; 4707 unsigned int old_data; 4708 unsigned int old_size; 4709 int i; 4710 struct btrfs_map_token token; 4711 4712 leaf = path->nodes[0]; 4713 4714 nritems = btrfs_header_nritems(leaf); 4715 data_end = leaf_data_end(leaf); 4716 4717 if (btrfs_leaf_free_space(leaf) < data_size) { 4718 btrfs_print_leaf(leaf); 4719 BUG(); 4720 } 4721 slot = path->slots[0]; 4722 old_data = btrfs_item_end_nr(leaf, slot); 4723 4724 BUG_ON(slot < 0); 4725 if (slot >= nritems) { 4726 btrfs_print_leaf(leaf); 4727 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4728 slot, nritems); 4729 BUG(); 4730 } 4731 4732 /* 4733 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4734 */ 4735 /* first correct the data pointers */ 4736 btrfs_init_map_token(&token, leaf); 4737 for (i = slot; i < nritems; i++) { 4738 u32 ioff; 4739 item = btrfs_item_nr(i); 4740 4741 ioff = btrfs_token_item_offset(&token, item); 4742 btrfs_set_token_item_offset(&token, item, ioff - data_size); 4743 } 4744 4745 /* shift the data */ 4746 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4747 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4748 data_end, old_data - data_end); 4749 4750 data_end = old_data; 4751 old_size = btrfs_item_size_nr(leaf, slot); 4752 item = btrfs_item_nr(slot); 4753 btrfs_set_item_size(leaf, item, old_size + data_size); 4754 btrfs_mark_buffer_dirty(leaf); 4755 4756 if (btrfs_leaf_free_space(leaf) < 0) { 4757 btrfs_print_leaf(leaf); 4758 BUG(); 4759 } 4760 } 4761 4762 /** 4763 * setup_items_for_insert - Helper called before inserting one or more items 4764 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 4765 * in a function that doesn't call btrfs_search_slot 4766 * 4767 * @root: root we are inserting items to 4768 * @path: points to the leaf/slot where we are going to insert new items 4769 * @cpu_key: array of keys for items to be inserted 4770 * @data_size: size of the body of each item we are going to insert 4771 * @nr: size of @cpu_key/@data_size arrays 4772 */ 4773 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4774 const struct btrfs_key *cpu_key, u32 *data_size, 4775 int nr) 4776 { 4777 struct btrfs_fs_info *fs_info = root->fs_info; 4778 struct btrfs_item *item; 4779 int i; 4780 u32 nritems; 4781 unsigned int data_end; 4782 struct btrfs_disk_key disk_key; 4783 struct extent_buffer *leaf; 4784 int slot; 4785 struct btrfs_map_token token; 4786 u32 total_size; 4787 u32 total_data = 0; 4788 4789 for (i = 0; i < nr; i++) 4790 total_data += data_size[i]; 4791 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4792 4793 if (path->slots[0] == 0) { 4794 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4795 fixup_low_keys(path, &disk_key, 1); 4796 } 4797 btrfs_unlock_up_safe(path, 1); 4798 4799 leaf = path->nodes[0]; 4800 slot = path->slots[0]; 4801 4802 nritems = btrfs_header_nritems(leaf); 4803 data_end = leaf_data_end(leaf); 4804 4805 if (btrfs_leaf_free_space(leaf) < total_size) { 4806 btrfs_print_leaf(leaf); 4807 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4808 total_size, btrfs_leaf_free_space(leaf)); 4809 BUG(); 4810 } 4811 4812 btrfs_init_map_token(&token, leaf); 4813 if (slot != nritems) { 4814 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4815 4816 if (old_data < data_end) { 4817 btrfs_print_leaf(leaf); 4818 btrfs_crit(fs_info, 4819 "item at slot %d with data offset %u beyond data end of leaf %u", 4820 slot, old_data, data_end); 4821 BUG(); 4822 } 4823 /* 4824 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4825 */ 4826 /* first correct the data pointers */ 4827 for (i = slot; i < nritems; i++) { 4828 u32 ioff; 4829 4830 item = btrfs_item_nr(i); 4831 ioff = btrfs_token_item_offset(&token, item); 4832 btrfs_set_token_item_offset(&token, item, 4833 ioff - total_data); 4834 } 4835 /* shift the items */ 4836 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4837 btrfs_item_nr_offset(slot), 4838 (nritems - slot) * sizeof(struct btrfs_item)); 4839 4840 /* shift the data */ 4841 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4842 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4843 data_end, old_data - data_end); 4844 data_end = old_data; 4845 } 4846 4847 /* setup the item for the new data */ 4848 for (i = 0; i < nr; i++) { 4849 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4850 btrfs_set_item_key(leaf, &disk_key, slot + i); 4851 item = btrfs_item_nr(slot + i); 4852 data_end -= data_size[i]; 4853 btrfs_set_token_item_offset(&token, item, data_end); 4854 btrfs_set_token_item_size(&token, item, data_size[i]); 4855 } 4856 4857 btrfs_set_header_nritems(leaf, nritems + nr); 4858 btrfs_mark_buffer_dirty(leaf); 4859 4860 if (btrfs_leaf_free_space(leaf) < 0) { 4861 btrfs_print_leaf(leaf); 4862 BUG(); 4863 } 4864 } 4865 4866 /* 4867 * Given a key and some data, insert items into the tree. 4868 * This does all the path init required, making room in the tree if needed. 4869 */ 4870 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4871 struct btrfs_root *root, 4872 struct btrfs_path *path, 4873 const struct btrfs_key *cpu_key, u32 *data_size, 4874 int nr) 4875 { 4876 int ret = 0; 4877 int slot; 4878 int i; 4879 u32 total_size = 0; 4880 u32 total_data = 0; 4881 4882 for (i = 0; i < nr; i++) 4883 total_data += data_size[i]; 4884 4885 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4886 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4887 if (ret == 0) 4888 return -EEXIST; 4889 if (ret < 0) 4890 return ret; 4891 4892 slot = path->slots[0]; 4893 BUG_ON(slot < 0); 4894 4895 setup_items_for_insert(root, path, cpu_key, data_size, nr); 4896 return 0; 4897 } 4898 4899 /* 4900 * Given a key and some data, insert an item into the tree. 4901 * This does all the path init required, making room in the tree if needed. 4902 */ 4903 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4904 const struct btrfs_key *cpu_key, void *data, 4905 u32 data_size) 4906 { 4907 int ret = 0; 4908 struct btrfs_path *path; 4909 struct extent_buffer *leaf; 4910 unsigned long ptr; 4911 4912 path = btrfs_alloc_path(); 4913 if (!path) 4914 return -ENOMEM; 4915 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4916 if (!ret) { 4917 leaf = path->nodes[0]; 4918 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4919 write_extent_buffer(leaf, data, ptr, data_size); 4920 btrfs_mark_buffer_dirty(leaf); 4921 } 4922 btrfs_free_path(path); 4923 return ret; 4924 } 4925 4926 /* 4927 * delete the pointer from a given node. 4928 * 4929 * the tree should have been previously balanced so the deletion does not 4930 * empty a node. 4931 */ 4932 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4933 int level, int slot) 4934 { 4935 struct extent_buffer *parent = path->nodes[level]; 4936 u32 nritems; 4937 int ret; 4938 4939 nritems = btrfs_header_nritems(parent); 4940 if (slot != nritems - 1) { 4941 if (level) { 4942 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4943 nritems - slot - 1); 4944 BUG_ON(ret < 0); 4945 } 4946 memmove_extent_buffer(parent, 4947 btrfs_node_key_ptr_offset(slot), 4948 btrfs_node_key_ptr_offset(slot + 1), 4949 sizeof(struct btrfs_key_ptr) * 4950 (nritems - slot - 1)); 4951 } else if (level) { 4952 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4953 GFP_NOFS); 4954 BUG_ON(ret < 0); 4955 } 4956 4957 nritems--; 4958 btrfs_set_header_nritems(parent, nritems); 4959 if (nritems == 0 && parent == root->node) { 4960 BUG_ON(btrfs_header_level(root->node) != 1); 4961 /* just turn the root into a leaf and break */ 4962 btrfs_set_header_level(root->node, 0); 4963 } else if (slot == 0) { 4964 struct btrfs_disk_key disk_key; 4965 4966 btrfs_node_key(parent, &disk_key, 0); 4967 fixup_low_keys(path, &disk_key, level + 1); 4968 } 4969 btrfs_mark_buffer_dirty(parent); 4970 } 4971 4972 /* 4973 * a helper function to delete the leaf pointed to by path->slots[1] and 4974 * path->nodes[1]. 4975 * 4976 * This deletes the pointer in path->nodes[1] and frees the leaf 4977 * block extent. zero is returned if it all worked out, < 0 otherwise. 4978 * 4979 * The path must have already been setup for deleting the leaf, including 4980 * all the proper balancing. path->nodes[1] must be locked. 4981 */ 4982 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4983 struct btrfs_root *root, 4984 struct btrfs_path *path, 4985 struct extent_buffer *leaf) 4986 { 4987 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4988 del_ptr(root, path, 1, path->slots[1]); 4989 4990 /* 4991 * btrfs_free_extent is expensive, we want to make sure we 4992 * aren't holding any locks when we call it 4993 */ 4994 btrfs_unlock_up_safe(path, 0); 4995 4996 root_sub_used(root, leaf->len); 4997 4998 atomic_inc(&leaf->refs); 4999 btrfs_free_tree_block(trans, root, leaf, 0, 1); 5000 free_extent_buffer_stale(leaf); 5001 } 5002 /* 5003 * delete the item at the leaf level in path. If that empties 5004 * the leaf, remove it from the tree 5005 */ 5006 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 5007 struct btrfs_path *path, int slot, int nr) 5008 { 5009 struct btrfs_fs_info *fs_info = root->fs_info; 5010 struct extent_buffer *leaf; 5011 struct btrfs_item *item; 5012 u32 last_off; 5013 u32 dsize = 0; 5014 int ret = 0; 5015 int wret; 5016 int i; 5017 u32 nritems; 5018 5019 leaf = path->nodes[0]; 5020 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 5021 5022 for (i = 0; i < nr; i++) 5023 dsize += btrfs_item_size_nr(leaf, slot + i); 5024 5025 nritems = btrfs_header_nritems(leaf); 5026 5027 if (slot + nr != nritems) { 5028 int data_end = leaf_data_end(leaf); 5029 struct btrfs_map_token token; 5030 5031 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 5032 data_end + dsize, 5033 BTRFS_LEAF_DATA_OFFSET + data_end, 5034 last_off - data_end); 5035 5036 btrfs_init_map_token(&token, leaf); 5037 for (i = slot + nr; i < nritems; i++) { 5038 u32 ioff; 5039 5040 item = btrfs_item_nr(i); 5041 ioff = btrfs_token_item_offset(&token, item); 5042 btrfs_set_token_item_offset(&token, item, ioff + dsize); 5043 } 5044 5045 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 5046 btrfs_item_nr_offset(slot + nr), 5047 sizeof(struct btrfs_item) * 5048 (nritems - slot - nr)); 5049 } 5050 btrfs_set_header_nritems(leaf, nritems - nr); 5051 nritems -= nr; 5052 5053 /* delete the leaf if we've emptied it */ 5054 if (nritems == 0) { 5055 if (leaf == root->node) { 5056 btrfs_set_header_level(leaf, 0); 5057 } else { 5058 btrfs_set_path_blocking(path); 5059 btrfs_clean_tree_block(leaf); 5060 btrfs_del_leaf(trans, root, path, leaf); 5061 } 5062 } else { 5063 int used = leaf_space_used(leaf, 0, nritems); 5064 if (slot == 0) { 5065 struct btrfs_disk_key disk_key; 5066 5067 btrfs_item_key(leaf, &disk_key, 0); 5068 fixup_low_keys(path, &disk_key, 1); 5069 } 5070 5071 /* delete the leaf if it is mostly empty */ 5072 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5073 /* push_leaf_left fixes the path. 5074 * make sure the path still points to our leaf 5075 * for possible call to del_ptr below 5076 */ 5077 slot = path->slots[1]; 5078 atomic_inc(&leaf->refs); 5079 5080 btrfs_set_path_blocking(path); 5081 wret = push_leaf_left(trans, root, path, 1, 1, 5082 1, (u32)-1); 5083 if (wret < 0 && wret != -ENOSPC) 5084 ret = wret; 5085 5086 if (path->nodes[0] == leaf && 5087 btrfs_header_nritems(leaf)) { 5088 wret = push_leaf_right(trans, root, path, 1, 5089 1, 1, 0); 5090 if (wret < 0 && wret != -ENOSPC) 5091 ret = wret; 5092 } 5093 5094 if (btrfs_header_nritems(leaf) == 0) { 5095 path->slots[1] = slot; 5096 btrfs_del_leaf(trans, root, path, leaf); 5097 free_extent_buffer(leaf); 5098 ret = 0; 5099 } else { 5100 /* if we're still in the path, make sure 5101 * we're dirty. Otherwise, one of the 5102 * push_leaf functions must have already 5103 * dirtied this buffer 5104 */ 5105 if (path->nodes[0] == leaf) 5106 btrfs_mark_buffer_dirty(leaf); 5107 free_extent_buffer(leaf); 5108 } 5109 } else { 5110 btrfs_mark_buffer_dirty(leaf); 5111 } 5112 } 5113 return ret; 5114 } 5115 5116 /* 5117 * search the tree again to find a leaf with lesser keys 5118 * returns 0 if it found something or 1 if there are no lesser leaves. 5119 * returns < 0 on io errors. 5120 * 5121 * This may release the path, and so you may lose any locks held at the 5122 * time you call it. 5123 */ 5124 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5125 { 5126 struct btrfs_key key; 5127 struct btrfs_disk_key found_key; 5128 int ret; 5129 5130 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5131 5132 if (key.offset > 0) { 5133 key.offset--; 5134 } else if (key.type > 0) { 5135 key.type--; 5136 key.offset = (u64)-1; 5137 } else if (key.objectid > 0) { 5138 key.objectid--; 5139 key.type = (u8)-1; 5140 key.offset = (u64)-1; 5141 } else { 5142 return 1; 5143 } 5144 5145 btrfs_release_path(path); 5146 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5147 if (ret < 0) 5148 return ret; 5149 btrfs_item_key(path->nodes[0], &found_key, 0); 5150 ret = comp_keys(&found_key, &key); 5151 /* 5152 * We might have had an item with the previous key in the tree right 5153 * before we released our path. And after we released our path, that 5154 * item might have been pushed to the first slot (0) of the leaf we 5155 * were holding due to a tree balance. Alternatively, an item with the 5156 * previous key can exist as the only element of a leaf (big fat item). 5157 * Therefore account for these 2 cases, so that our callers (like 5158 * btrfs_previous_item) don't miss an existing item with a key matching 5159 * the previous key we computed above. 5160 */ 5161 if (ret <= 0) 5162 return 0; 5163 return 1; 5164 } 5165 5166 /* 5167 * A helper function to walk down the tree starting at min_key, and looking 5168 * for nodes or leaves that are have a minimum transaction id. 5169 * This is used by the btree defrag code, and tree logging 5170 * 5171 * This does not cow, but it does stuff the starting key it finds back 5172 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5173 * key and get a writable path. 5174 * 5175 * This honors path->lowest_level to prevent descent past a given level 5176 * of the tree. 5177 * 5178 * min_trans indicates the oldest transaction that you are interested 5179 * in walking through. Any nodes or leaves older than min_trans are 5180 * skipped over (without reading them). 5181 * 5182 * returns zero if something useful was found, < 0 on error and 1 if there 5183 * was nothing in the tree that matched the search criteria. 5184 */ 5185 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5186 struct btrfs_path *path, 5187 u64 min_trans) 5188 { 5189 struct extent_buffer *cur; 5190 struct btrfs_key found_key; 5191 int slot; 5192 int sret; 5193 u32 nritems; 5194 int level; 5195 int ret = 1; 5196 int keep_locks = path->keep_locks; 5197 5198 path->keep_locks = 1; 5199 again: 5200 cur = btrfs_read_lock_root_node(root); 5201 level = btrfs_header_level(cur); 5202 WARN_ON(path->nodes[level]); 5203 path->nodes[level] = cur; 5204 path->locks[level] = BTRFS_READ_LOCK; 5205 5206 if (btrfs_header_generation(cur) < min_trans) { 5207 ret = 1; 5208 goto out; 5209 } 5210 while (1) { 5211 nritems = btrfs_header_nritems(cur); 5212 level = btrfs_header_level(cur); 5213 sret = btrfs_bin_search(cur, min_key, &slot); 5214 if (sret < 0) { 5215 ret = sret; 5216 goto out; 5217 } 5218 5219 /* at the lowest level, we're done, setup the path and exit */ 5220 if (level == path->lowest_level) { 5221 if (slot >= nritems) 5222 goto find_next_key; 5223 ret = 0; 5224 path->slots[level] = slot; 5225 btrfs_item_key_to_cpu(cur, &found_key, slot); 5226 goto out; 5227 } 5228 if (sret && slot > 0) 5229 slot--; 5230 /* 5231 * check this node pointer against the min_trans parameters. 5232 * If it is too old, skip to the next one. 5233 */ 5234 while (slot < nritems) { 5235 u64 gen; 5236 5237 gen = btrfs_node_ptr_generation(cur, slot); 5238 if (gen < min_trans) { 5239 slot++; 5240 continue; 5241 } 5242 break; 5243 } 5244 find_next_key: 5245 /* 5246 * we didn't find a candidate key in this node, walk forward 5247 * and find another one 5248 */ 5249 if (slot >= nritems) { 5250 path->slots[level] = slot; 5251 btrfs_set_path_blocking(path); 5252 sret = btrfs_find_next_key(root, path, min_key, level, 5253 min_trans); 5254 if (sret == 0) { 5255 btrfs_release_path(path); 5256 goto again; 5257 } else { 5258 goto out; 5259 } 5260 } 5261 /* save our key for returning back */ 5262 btrfs_node_key_to_cpu(cur, &found_key, slot); 5263 path->slots[level] = slot; 5264 if (level == path->lowest_level) { 5265 ret = 0; 5266 goto out; 5267 } 5268 btrfs_set_path_blocking(path); 5269 cur = btrfs_read_node_slot(cur, slot); 5270 if (IS_ERR(cur)) { 5271 ret = PTR_ERR(cur); 5272 goto out; 5273 } 5274 5275 btrfs_tree_read_lock(cur); 5276 5277 path->locks[level - 1] = BTRFS_READ_LOCK; 5278 path->nodes[level - 1] = cur; 5279 unlock_up(path, level, 1, 0, NULL); 5280 } 5281 out: 5282 path->keep_locks = keep_locks; 5283 if (ret == 0) { 5284 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5285 btrfs_set_path_blocking(path); 5286 memcpy(min_key, &found_key, sizeof(found_key)); 5287 } 5288 return ret; 5289 } 5290 5291 /* 5292 * this is similar to btrfs_next_leaf, but does not try to preserve 5293 * and fixup the path. It looks for and returns the next key in the 5294 * tree based on the current path and the min_trans parameters. 5295 * 5296 * 0 is returned if another key is found, < 0 if there are any errors 5297 * and 1 is returned if there are no higher keys in the tree 5298 * 5299 * path->keep_locks should be set to 1 on the search made before 5300 * calling this function. 5301 */ 5302 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5303 struct btrfs_key *key, int level, u64 min_trans) 5304 { 5305 int slot; 5306 struct extent_buffer *c; 5307 5308 WARN_ON(!path->keep_locks && !path->skip_locking); 5309 while (level < BTRFS_MAX_LEVEL) { 5310 if (!path->nodes[level]) 5311 return 1; 5312 5313 slot = path->slots[level] + 1; 5314 c = path->nodes[level]; 5315 next: 5316 if (slot >= btrfs_header_nritems(c)) { 5317 int ret; 5318 int orig_lowest; 5319 struct btrfs_key cur_key; 5320 if (level + 1 >= BTRFS_MAX_LEVEL || 5321 !path->nodes[level + 1]) 5322 return 1; 5323 5324 if (path->locks[level + 1] || path->skip_locking) { 5325 level++; 5326 continue; 5327 } 5328 5329 slot = btrfs_header_nritems(c) - 1; 5330 if (level == 0) 5331 btrfs_item_key_to_cpu(c, &cur_key, slot); 5332 else 5333 btrfs_node_key_to_cpu(c, &cur_key, slot); 5334 5335 orig_lowest = path->lowest_level; 5336 btrfs_release_path(path); 5337 path->lowest_level = level; 5338 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5339 0, 0); 5340 path->lowest_level = orig_lowest; 5341 if (ret < 0) 5342 return ret; 5343 5344 c = path->nodes[level]; 5345 slot = path->slots[level]; 5346 if (ret == 0) 5347 slot++; 5348 goto next; 5349 } 5350 5351 if (level == 0) 5352 btrfs_item_key_to_cpu(c, key, slot); 5353 else { 5354 u64 gen = btrfs_node_ptr_generation(c, slot); 5355 5356 if (gen < min_trans) { 5357 slot++; 5358 goto next; 5359 } 5360 btrfs_node_key_to_cpu(c, key, slot); 5361 } 5362 return 0; 5363 } 5364 return 1; 5365 } 5366 5367 /* 5368 * search the tree again to find a leaf with greater keys 5369 * returns 0 if it found something or 1 if there are no greater leaves. 5370 * returns < 0 on io errors. 5371 */ 5372 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5373 { 5374 return btrfs_next_old_leaf(root, path, 0); 5375 } 5376 5377 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5378 u64 time_seq) 5379 { 5380 int slot; 5381 int level; 5382 struct extent_buffer *c; 5383 struct extent_buffer *next; 5384 struct btrfs_key key; 5385 u32 nritems; 5386 int ret; 5387 int old_spinning = path->leave_spinning; 5388 int next_rw_lock = 0; 5389 5390 nritems = btrfs_header_nritems(path->nodes[0]); 5391 if (nritems == 0) 5392 return 1; 5393 5394 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5395 again: 5396 level = 1; 5397 next = NULL; 5398 next_rw_lock = 0; 5399 btrfs_release_path(path); 5400 5401 path->keep_locks = 1; 5402 path->leave_spinning = 1; 5403 5404 if (time_seq) 5405 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5406 else 5407 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5408 path->keep_locks = 0; 5409 5410 if (ret < 0) 5411 return ret; 5412 5413 nritems = btrfs_header_nritems(path->nodes[0]); 5414 /* 5415 * by releasing the path above we dropped all our locks. A balance 5416 * could have added more items next to the key that used to be 5417 * at the very end of the block. So, check again here and 5418 * advance the path if there are now more items available. 5419 */ 5420 if (nritems > 0 && path->slots[0] < nritems - 1) { 5421 if (ret == 0) 5422 path->slots[0]++; 5423 ret = 0; 5424 goto done; 5425 } 5426 /* 5427 * So the above check misses one case: 5428 * - after releasing the path above, someone has removed the item that 5429 * used to be at the very end of the block, and balance between leafs 5430 * gets another one with bigger key.offset to replace it. 5431 * 5432 * This one should be returned as well, or we can get leaf corruption 5433 * later(esp. in __btrfs_drop_extents()). 5434 * 5435 * And a bit more explanation about this check, 5436 * with ret > 0, the key isn't found, the path points to the slot 5437 * where it should be inserted, so the path->slots[0] item must be the 5438 * bigger one. 5439 */ 5440 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5441 ret = 0; 5442 goto done; 5443 } 5444 5445 while (level < BTRFS_MAX_LEVEL) { 5446 if (!path->nodes[level]) { 5447 ret = 1; 5448 goto done; 5449 } 5450 5451 slot = path->slots[level] + 1; 5452 c = path->nodes[level]; 5453 if (slot >= btrfs_header_nritems(c)) { 5454 level++; 5455 if (level == BTRFS_MAX_LEVEL) { 5456 ret = 1; 5457 goto done; 5458 } 5459 continue; 5460 } 5461 5462 if (next) { 5463 btrfs_tree_unlock_rw(next, next_rw_lock); 5464 free_extent_buffer(next); 5465 } 5466 5467 next = c; 5468 next_rw_lock = path->locks[level]; 5469 ret = read_block_for_search(root, path, &next, level, 5470 slot, &key); 5471 if (ret == -EAGAIN) 5472 goto again; 5473 5474 if (ret < 0) { 5475 btrfs_release_path(path); 5476 goto done; 5477 } 5478 5479 if (!path->skip_locking) { 5480 ret = btrfs_try_tree_read_lock(next); 5481 if (!ret && time_seq) { 5482 /* 5483 * If we don't get the lock, we may be racing 5484 * with push_leaf_left, holding that lock while 5485 * itself waiting for the leaf we've currently 5486 * locked. To solve this situation, we give up 5487 * on our lock and cycle. 5488 */ 5489 free_extent_buffer(next); 5490 btrfs_release_path(path); 5491 cond_resched(); 5492 goto again; 5493 } 5494 if (!ret) { 5495 btrfs_set_path_blocking(path); 5496 __btrfs_tree_read_lock(next, 5497 BTRFS_NESTING_RIGHT, 5498 path->recurse); 5499 } 5500 next_rw_lock = BTRFS_READ_LOCK; 5501 } 5502 break; 5503 } 5504 path->slots[level] = slot; 5505 while (1) { 5506 level--; 5507 c = path->nodes[level]; 5508 if (path->locks[level]) 5509 btrfs_tree_unlock_rw(c, path->locks[level]); 5510 5511 free_extent_buffer(c); 5512 path->nodes[level] = next; 5513 path->slots[level] = 0; 5514 if (!path->skip_locking) 5515 path->locks[level] = next_rw_lock; 5516 if (!level) 5517 break; 5518 5519 ret = read_block_for_search(root, path, &next, level, 5520 0, &key); 5521 if (ret == -EAGAIN) 5522 goto again; 5523 5524 if (ret < 0) { 5525 btrfs_release_path(path); 5526 goto done; 5527 } 5528 5529 if (!path->skip_locking) { 5530 ret = btrfs_try_tree_read_lock(next); 5531 if (!ret) { 5532 btrfs_set_path_blocking(path); 5533 __btrfs_tree_read_lock(next, 5534 BTRFS_NESTING_RIGHT, 5535 path->recurse); 5536 } 5537 next_rw_lock = BTRFS_READ_LOCK; 5538 } 5539 } 5540 ret = 0; 5541 done: 5542 unlock_up(path, 0, 1, 0, NULL); 5543 path->leave_spinning = old_spinning; 5544 if (!old_spinning) 5545 btrfs_set_path_blocking(path); 5546 5547 return ret; 5548 } 5549 5550 /* 5551 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5552 * searching until it gets past min_objectid or finds an item of 'type' 5553 * 5554 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5555 */ 5556 int btrfs_previous_item(struct btrfs_root *root, 5557 struct btrfs_path *path, u64 min_objectid, 5558 int type) 5559 { 5560 struct btrfs_key found_key; 5561 struct extent_buffer *leaf; 5562 u32 nritems; 5563 int ret; 5564 5565 while (1) { 5566 if (path->slots[0] == 0) { 5567 btrfs_set_path_blocking(path); 5568 ret = btrfs_prev_leaf(root, path); 5569 if (ret != 0) 5570 return ret; 5571 } else { 5572 path->slots[0]--; 5573 } 5574 leaf = path->nodes[0]; 5575 nritems = btrfs_header_nritems(leaf); 5576 if (nritems == 0) 5577 return 1; 5578 if (path->slots[0] == nritems) 5579 path->slots[0]--; 5580 5581 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5582 if (found_key.objectid < min_objectid) 5583 break; 5584 if (found_key.type == type) 5585 return 0; 5586 if (found_key.objectid == min_objectid && 5587 found_key.type < type) 5588 break; 5589 } 5590 return 1; 5591 } 5592 5593 /* 5594 * search in extent tree to find a previous Metadata/Data extent item with 5595 * min objecitd. 5596 * 5597 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5598 */ 5599 int btrfs_previous_extent_item(struct btrfs_root *root, 5600 struct btrfs_path *path, u64 min_objectid) 5601 { 5602 struct btrfs_key found_key; 5603 struct extent_buffer *leaf; 5604 u32 nritems; 5605 int ret; 5606 5607 while (1) { 5608 if (path->slots[0] == 0) { 5609 btrfs_set_path_blocking(path); 5610 ret = btrfs_prev_leaf(root, path); 5611 if (ret != 0) 5612 return ret; 5613 } else { 5614 path->slots[0]--; 5615 } 5616 leaf = path->nodes[0]; 5617 nritems = btrfs_header_nritems(leaf); 5618 if (nritems == 0) 5619 return 1; 5620 if (path->slots[0] == nritems) 5621 path->slots[0]--; 5622 5623 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5624 if (found_key.objectid < min_objectid) 5625 break; 5626 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5627 found_key.type == BTRFS_METADATA_ITEM_KEY) 5628 return 0; 5629 if (found_key.objectid == min_objectid && 5630 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5631 break; 5632 } 5633 return 1; 5634 } 5635