1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include "ctree.h" 23 #include "disk-io.h" 24 #include "transaction.h" 25 #include "print-tree.h" 26 #include "locking.h" 27 28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 29 *root, struct btrfs_path *path, int level); 30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 31 *root, struct btrfs_key *ins_key, 32 struct btrfs_path *path, int data_size, int extend); 33 static int push_node_left(struct btrfs_trans_handle *trans, 34 struct btrfs_root *root, struct extent_buffer *dst, 35 struct extent_buffer *src, int empty); 36 static int balance_node_right(struct btrfs_trans_handle *trans, 37 struct btrfs_root *root, 38 struct extent_buffer *dst_buf, 39 struct extent_buffer *src_buf); 40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 41 int level, int slot); 42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 43 struct extent_buffer *eb); 44 45 struct btrfs_path *btrfs_alloc_path(void) 46 { 47 struct btrfs_path *path; 48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 49 return path; 50 } 51 52 /* 53 * set all locked nodes in the path to blocking locks. This should 54 * be done before scheduling 55 */ 56 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 57 { 58 int i; 59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 60 if (!p->nodes[i] || !p->locks[i]) 61 continue; 62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 63 if (p->locks[i] == BTRFS_READ_LOCK) 64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 65 else if (p->locks[i] == BTRFS_WRITE_LOCK) 66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 67 } 68 } 69 70 /* 71 * reset all the locked nodes in the patch to spinning locks. 72 * 73 * held is used to keep lockdep happy, when lockdep is enabled 74 * we set held to a blocking lock before we go around and 75 * retake all the spinlocks in the path. You can safely use NULL 76 * for held 77 */ 78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 79 struct extent_buffer *held, int held_rw) 80 { 81 int i; 82 83 #ifdef CONFIG_DEBUG_LOCK_ALLOC 84 /* lockdep really cares that we take all of these spinlocks 85 * in the right order. If any of the locks in the path are not 86 * currently blocking, it is going to complain. So, make really 87 * really sure by forcing the path to blocking before we clear 88 * the path blocking. 89 */ 90 if (held) { 91 btrfs_set_lock_blocking_rw(held, held_rw); 92 if (held_rw == BTRFS_WRITE_LOCK) 93 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 94 else if (held_rw == BTRFS_READ_LOCK) 95 held_rw = BTRFS_READ_LOCK_BLOCKING; 96 } 97 btrfs_set_path_blocking(p); 98 #endif 99 100 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 101 if (p->nodes[i] && p->locks[i]) { 102 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 103 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 104 p->locks[i] = BTRFS_WRITE_LOCK; 105 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 106 p->locks[i] = BTRFS_READ_LOCK; 107 } 108 } 109 110 #ifdef CONFIG_DEBUG_LOCK_ALLOC 111 if (held) 112 btrfs_clear_lock_blocking_rw(held, held_rw); 113 #endif 114 } 115 116 /* this also releases the path */ 117 void btrfs_free_path(struct btrfs_path *p) 118 { 119 if (!p) 120 return; 121 btrfs_release_path(p); 122 kmem_cache_free(btrfs_path_cachep, p); 123 } 124 125 /* 126 * path release drops references on the extent buffers in the path 127 * and it drops any locks held by this path 128 * 129 * It is safe to call this on paths that no locks or extent buffers held. 130 */ 131 noinline void btrfs_release_path(struct btrfs_path *p) 132 { 133 int i; 134 135 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 136 p->slots[i] = 0; 137 if (!p->nodes[i]) 138 continue; 139 if (p->locks[i]) { 140 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 141 p->locks[i] = 0; 142 } 143 free_extent_buffer(p->nodes[i]); 144 p->nodes[i] = NULL; 145 } 146 } 147 148 /* 149 * safely gets a reference on the root node of a tree. A lock 150 * is not taken, so a concurrent writer may put a different node 151 * at the root of the tree. See btrfs_lock_root_node for the 152 * looping required. 153 * 154 * The extent buffer returned by this has a reference taken, so 155 * it won't disappear. It may stop being the root of the tree 156 * at any time because there are no locks held. 157 */ 158 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 159 { 160 struct extent_buffer *eb; 161 162 while (1) { 163 rcu_read_lock(); 164 eb = rcu_dereference(root->node); 165 166 /* 167 * RCU really hurts here, we could free up the root node because 168 * it was cow'ed but we may not get the new root node yet so do 169 * the inc_not_zero dance and if it doesn't work then 170 * synchronize_rcu and try again. 171 */ 172 if (atomic_inc_not_zero(&eb->refs)) { 173 rcu_read_unlock(); 174 break; 175 } 176 rcu_read_unlock(); 177 synchronize_rcu(); 178 } 179 return eb; 180 } 181 182 /* loop around taking references on and locking the root node of the 183 * tree until you end up with a lock on the root. A locked buffer 184 * is returned, with a reference held. 185 */ 186 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 187 { 188 struct extent_buffer *eb; 189 190 while (1) { 191 eb = btrfs_root_node(root); 192 btrfs_tree_lock(eb); 193 if (eb == root->node) 194 break; 195 btrfs_tree_unlock(eb); 196 free_extent_buffer(eb); 197 } 198 return eb; 199 } 200 201 /* loop around taking references on and locking the root node of the 202 * tree until you end up with a lock on the root. A locked buffer 203 * is returned, with a reference held. 204 */ 205 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 206 { 207 struct extent_buffer *eb; 208 209 while (1) { 210 eb = btrfs_root_node(root); 211 btrfs_tree_read_lock(eb); 212 if (eb == root->node) 213 break; 214 btrfs_tree_read_unlock(eb); 215 free_extent_buffer(eb); 216 } 217 return eb; 218 } 219 220 /* cowonly root (everything not a reference counted cow subvolume), just get 221 * put onto a simple dirty list. transaction.c walks this to make sure they 222 * get properly updated on disk. 223 */ 224 static void add_root_to_dirty_list(struct btrfs_root *root) 225 { 226 spin_lock(&root->fs_info->trans_lock); 227 if (root->track_dirty && list_empty(&root->dirty_list)) { 228 list_add(&root->dirty_list, 229 &root->fs_info->dirty_cowonly_roots); 230 } 231 spin_unlock(&root->fs_info->trans_lock); 232 } 233 234 /* 235 * used by snapshot creation to make a copy of a root for a tree with 236 * a given objectid. The buffer with the new root node is returned in 237 * cow_ret, and this func returns zero on success or a negative error code. 238 */ 239 int btrfs_copy_root(struct btrfs_trans_handle *trans, 240 struct btrfs_root *root, 241 struct extent_buffer *buf, 242 struct extent_buffer **cow_ret, u64 new_root_objectid) 243 { 244 struct extent_buffer *cow; 245 int ret = 0; 246 int level; 247 struct btrfs_disk_key disk_key; 248 249 WARN_ON(root->ref_cows && trans->transid != 250 root->fs_info->running_transaction->transid); 251 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 252 253 level = btrfs_header_level(buf); 254 if (level == 0) 255 btrfs_item_key(buf, &disk_key, 0); 256 else 257 btrfs_node_key(buf, &disk_key, 0); 258 259 cow = btrfs_alloc_free_block(trans, root, buf->len, 0, 260 new_root_objectid, &disk_key, level, 261 buf->start, 0); 262 if (IS_ERR(cow)) 263 return PTR_ERR(cow); 264 265 copy_extent_buffer(cow, buf, 0, 0, cow->len); 266 btrfs_set_header_bytenr(cow, cow->start); 267 btrfs_set_header_generation(cow, trans->transid); 268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 270 BTRFS_HEADER_FLAG_RELOC); 271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 273 else 274 btrfs_set_header_owner(cow, new_root_objectid); 275 276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 277 BTRFS_FSID_SIZE); 278 279 WARN_ON(btrfs_header_generation(buf) > trans->transid); 280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 281 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 282 else 283 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 284 285 if (ret) 286 return ret; 287 288 btrfs_mark_buffer_dirty(cow); 289 *cow_ret = cow; 290 return 0; 291 } 292 293 enum mod_log_op { 294 MOD_LOG_KEY_REPLACE, 295 MOD_LOG_KEY_ADD, 296 MOD_LOG_KEY_REMOVE, 297 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 298 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 299 MOD_LOG_MOVE_KEYS, 300 MOD_LOG_ROOT_REPLACE, 301 }; 302 303 struct tree_mod_move { 304 int dst_slot; 305 int nr_items; 306 }; 307 308 struct tree_mod_root { 309 u64 logical; 310 u8 level; 311 }; 312 313 struct tree_mod_elem { 314 struct rb_node node; 315 u64 index; /* shifted logical */ 316 u64 seq; 317 enum mod_log_op op; 318 319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 320 int slot; 321 322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 323 u64 generation; 324 325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 326 struct btrfs_disk_key key; 327 u64 blockptr; 328 329 /* this is used for op == MOD_LOG_MOVE_KEYS */ 330 struct tree_mod_move move; 331 332 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 333 struct tree_mod_root old_root; 334 }; 335 336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 337 { 338 read_lock(&fs_info->tree_mod_log_lock); 339 } 340 341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 342 { 343 read_unlock(&fs_info->tree_mod_log_lock); 344 } 345 346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 347 { 348 write_lock(&fs_info->tree_mod_log_lock); 349 } 350 351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 352 { 353 write_unlock(&fs_info->tree_mod_log_lock); 354 } 355 356 /* 357 * Increment the upper half of tree_mod_seq, set lower half zero. 358 * 359 * Must be called with fs_info->tree_mod_seq_lock held. 360 */ 361 static inline u64 btrfs_inc_tree_mod_seq_major(struct btrfs_fs_info *fs_info) 362 { 363 u64 seq = atomic64_read(&fs_info->tree_mod_seq); 364 seq &= 0xffffffff00000000ull; 365 seq += 1ull << 32; 366 atomic64_set(&fs_info->tree_mod_seq, seq); 367 return seq; 368 } 369 370 /* 371 * Increment the lower half of tree_mod_seq. 372 * 373 * Must be called with fs_info->tree_mod_seq_lock held. The way major numbers 374 * are generated should not technically require a spin lock here. (Rationale: 375 * incrementing the minor while incrementing the major seq number is between its 376 * atomic64_read and atomic64_set calls doesn't duplicate sequence numbers, it 377 * just returns a unique sequence number as usual.) We have decided to leave 378 * that requirement in here and rethink it once we notice it really imposes a 379 * problem on some workload. 380 */ 381 static inline u64 btrfs_inc_tree_mod_seq_minor(struct btrfs_fs_info *fs_info) 382 { 383 return atomic64_inc_return(&fs_info->tree_mod_seq); 384 } 385 386 /* 387 * return the last minor in the previous major tree_mod_seq number 388 */ 389 u64 btrfs_tree_mod_seq_prev(u64 seq) 390 { 391 return (seq & 0xffffffff00000000ull) - 1ull; 392 } 393 394 /* 395 * This adds a new blocker to the tree mod log's blocker list if the @elem 396 * passed does not already have a sequence number set. So when a caller expects 397 * to record tree modifications, it should ensure to set elem->seq to zero 398 * before calling btrfs_get_tree_mod_seq. 399 * Returns a fresh, unused tree log modification sequence number, even if no new 400 * blocker was added. 401 */ 402 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 403 struct seq_list *elem) 404 { 405 u64 seq; 406 407 tree_mod_log_write_lock(fs_info); 408 spin_lock(&fs_info->tree_mod_seq_lock); 409 if (!elem->seq) { 410 elem->seq = btrfs_inc_tree_mod_seq_major(fs_info); 411 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 412 } 413 seq = btrfs_inc_tree_mod_seq_minor(fs_info); 414 spin_unlock(&fs_info->tree_mod_seq_lock); 415 tree_mod_log_write_unlock(fs_info); 416 417 return seq; 418 } 419 420 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 421 struct seq_list *elem) 422 { 423 struct rb_root *tm_root; 424 struct rb_node *node; 425 struct rb_node *next; 426 struct seq_list *cur_elem; 427 struct tree_mod_elem *tm; 428 u64 min_seq = (u64)-1; 429 u64 seq_putting = elem->seq; 430 431 if (!seq_putting) 432 return; 433 434 spin_lock(&fs_info->tree_mod_seq_lock); 435 list_del(&elem->list); 436 elem->seq = 0; 437 438 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 439 if (cur_elem->seq < min_seq) { 440 if (seq_putting > cur_elem->seq) { 441 /* 442 * blocker with lower sequence number exists, we 443 * cannot remove anything from the log 444 */ 445 spin_unlock(&fs_info->tree_mod_seq_lock); 446 return; 447 } 448 min_seq = cur_elem->seq; 449 } 450 } 451 spin_unlock(&fs_info->tree_mod_seq_lock); 452 453 /* 454 * anything that's lower than the lowest existing (read: blocked) 455 * sequence number can be removed from the tree. 456 */ 457 tree_mod_log_write_lock(fs_info); 458 tm_root = &fs_info->tree_mod_log; 459 for (node = rb_first(tm_root); node; node = next) { 460 next = rb_next(node); 461 tm = container_of(node, struct tree_mod_elem, node); 462 if (tm->seq > min_seq) 463 continue; 464 rb_erase(node, tm_root); 465 kfree(tm); 466 } 467 tree_mod_log_write_unlock(fs_info); 468 } 469 470 /* 471 * key order of the log: 472 * index -> sequence 473 * 474 * the index is the shifted logical of the *new* root node for root replace 475 * operations, or the shifted logical of the affected block for all other 476 * operations. 477 * 478 * Note: must be called with write lock (tree_mod_log_write_lock). 479 */ 480 static noinline int 481 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 482 { 483 struct rb_root *tm_root; 484 struct rb_node **new; 485 struct rb_node *parent = NULL; 486 struct tree_mod_elem *cur; 487 488 BUG_ON(!tm); 489 490 spin_lock(&fs_info->tree_mod_seq_lock); 491 tm->seq = btrfs_inc_tree_mod_seq_minor(fs_info); 492 spin_unlock(&fs_info->tree_mod_seq_lock); 493 494 tm_root = &fs_info->tree_mod_log; 495 new = &tm_root->rb_node; 496 while (*new) { 497 cur = container_of(*new, struct tree_mod_elem, node); 498 parent = *new; 499 if (cur->index < tm->index) 500 new = &((*new)->rb_left); 501 else if (cur->index > tm->index) 502 new = &((*new)->rb_right); 503 else if (cur->seq < tm->seq) 504 new = &((*new)->rb_left); 505 else if (cur->seq > tm->seq) 506 new = &((*new)->rb_right); 507 else 508 return -EEXIST; 509 } 510 511 rb_link_node(&tm->node, parent, new); 512 rb_insert_color(&tm->node, tm_root); 513 return 0; 514 } 515 516 /* 517 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 518 * returns zero with the tree_mod_log_lock acquired. The caller must hold 519 * this until all tree mod log insertions are recorded in the rb tree and then 520 * call tree_mod_log_write_unlock() to release. 521 */ 522 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 523 struct extent_buffer *eb) { 524 smp_mb(); 525 if (list_empty(&(fs_info)->tree_mod_seq_list)) 526 return 1; 527 if (eb && btrfs_header_level(eb) == 0) 528 return 1; 529 530 tree_mod_log_write_lock(fs_info); 531 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 532 tree_mod_log_write_unlock(fs_info); 533 return 1; 534 } 535 536 return 0; 537 } 538 539 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 540 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 541 struct extent_buffer *eb) 542 { 543 smp_mb(); 544 if (list_empty(&(fs_info)->tree_mod_seq_list)) 545 return 0; 546 if (eb && btrfs_header_level(eb) == 0) 547 return 0; 548 549 return 1; 550 } 551 552 static struct tree_mod_elem * 553 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 554 enum mod_log_op op, gfp_t flags) 555 { 556 struct tree_mod_elem *tm; 557 558 tm = kzalloc(sizeof(*tm), flags); 559 if (!tm) 560 return NULL; 561 562 tm->index = eb->start >> PAGE_CACHE_SHIFT; 563 if (op != MOD_LOG_KEY_ADD) { 564 btrfs_node_key(eb, &tm->key, slot); 565 tm->blockptr = btrfs_node_blockptr(eb, slot); 566 } 567 tm->op = op; 568 tm->slot = slot; 569 tm->generation = btrfs_node_ptr_generation(eb, slot); 570 RB_CLEAR_NODE(&tm->node); 571 572 return tm; 573 } 574 575 static noinline int 576 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 577 struct extent_buffer *eb, int slot, 578 enum mod_log_op op, gfp_t flags) 579 { 580 struct tree_mod_elem *tm; 581 int ret; 582 583 if (!tree_mod_need_log(fs_info, eb)) 584 return 0; 585 586 tm = alloc_tree_mod_elem(eb, slot, op, flags); 587 if (!tm) 588 return -ENOMEM; 589 590 if (tree_mod_dont_log(fs_info, eb)) { 591 kfree(tm); 592 return 0; 593 } 594 595 ret = __tree_mod_log_insert(fs_info, tm); 596 tree_mod_log_write_unlock(fs_info); 597 if (ret) 598 kfree(tm); 599 600 return ret; 601 } 602 603 static noinline int 604 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 605 struct extent_buffer *eb, int dst_slot, int src_slot, 606 int nr_items, gfp_t flags) 607 { 608 struct tree_mod_elem *tm = NULL; 609 struct tree_mod_elem **tm_list = NULL; 610 int ret = 0; 611 int i; 612 int locked = 0; 613 614 if (!tree_mod_need_log(fs_info, eb)) 615 return 0; 616 617 tm_list = kzalloc(nr_items * sizeof(struct tree_mod_elem *), flags); 618 if (!tm_list) 619 return -ENOMEM; 620 621 tm = kzalloc(sizeof(*tm), flags); 622 if (!tm) { 623 ret = -ENOMEM; 624 goto free_tms; 625 } 626 627 tm->index = eb->start >> PAGE_CACHE_SHIFT; 628 tm->slot = src_slot; 629 tm->move.dst_slot = dst_slot; 630 tm->move.nr_items = nr_items; 631 tm->op = MOD_LOG_MOVE_KEYS; 632 633 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 634 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 635 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 636 if (!tm_list[i]) { 637 ret = -ENOMEM; 638 goto free_tms; 639 } 640 } 641 642 if (tree_mod_dont_log(fs_info, eb)) 643 goto free_tms; 644 locked = 1; 645 646 /* 647 * When we override something during the move, we log these removals. 648 * This can only happen when we move towards the beginning of the 649 * buffer, i.e. dst_slot < src_slot. 650 */ 651 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 652 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 653 if (ret) 654 goto free_tms; 655 } 656 657 ret = __tree_mod_log_insert(fs_info, tm); 658 if (ret) 659 goto free_tms; 660 tree_mod_log_write_unlock(fs_info); 661 kfree(tm_list); 662 663 return 0; 664 free_tms: 665 for (i = 0; i < nr_items; i++) { 666 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 667 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 668 kfree(tm_list[i]); 669 } 670 if (locked) 671 tree_mod_log_write_unlock(fs_info); 672 kfree(tm_list); 673 kfree(tm); 674 675 return ret; 676 } 677 678 static inline int 679 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 680 struct tree_mod_elem **tm_list, 681 int nritems) 682 { 683 int i, j; 684 int ret; 685 686 for (i = nritems - 1; i >= 0; i--) { 687 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 688 if (ret) { 689 for (j = nritems - 1; j > i; j--) 690 rb_erase(&tm_list[j]->node, 691 &fs_info->tree_mod_log); 692 return ret; 693 } 694 } 695 696 return 0; 697 } 698 699 static noinline int 700 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 701 struct extent_buffer *old_root, 702 struct extent_buffer *new_root, gfp_t flags, 703 int log_removal) 704 { 705 struct tree_mod_elem *tm = NULL; 706 struct tree_mod_elem **tm_list = NULL; 707 int nritems = 0; 708 int ret = 0; 709 int i; 710 711 if (!tree_mod_need_log(fs_info, NULL)) 712 return 0; 713 714 if (log_removal && btrfs_header_level(old_root) > 0) { 715 nritems = btrfs_header_nritems(old_root); 716 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 717 flags); 718 if (!tm_list) { 719 ret = -ENOMEM; 720 goto free_tms; 721 } 722 for (i = 0; i < nritems; i++) { 723 tm_list[i] = alloc_tree_mod_elem(old_root, i, 724 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 725 if (!tm_list[i]) { 726 ret = -ENOMEM; 727 goto free_tms; 728 } 729 } 730 } 731 732 tm = kzalloc(sizeof(*tm), flags); 733 if (!tm) { 734 ret = -ENOMEM; 735 goto free_tms; 736 } 737 738 tm->index = new_root->start >> PAGE_CACHE_SHIFT; 739 tm->old_root.logical = old_root->start; 740 tm->old_root.level = btrfs_header_level(old_root); 741 tm->generation = btrfs_header_generation(old_root); 742 tm->op = MOD_LOG_ROOT_REPLACE; 743 744 if (tree_mod_dont_log(fs_info, NULL)) 745 goto free_tms; 746 747 if (tm_list) 748 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 749 if (!ret) 750 ret = __tree_mod_log_insert(fs_info, tm); 751 752 tree_mod_log_write_unlock(fs_info); 753 if (ret) 754 goto free_tms; 755 kfree(tm_list); 756 757 return ret; 758 759 free_tms: 760 if (tm_list) { 761 for (i = 0; i < nritems; i++) 762 kfree(tm_list[i]); 763 kfree(tm_list); 764 } 765 kfree(tm); 766 767 return ret; 768 } 769 770 static struct tree_mod_elem * 771 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 772 int smallest) 773 { 774 struct rb_root *tm_root; 775 struct rb_node *node; 776 struct tree_mod_elem *cur = NULL; 777 struct tree_mod_elem *found = NULL; 778 u64 index = start >> PAGE_CACHE_SHIFT; 779 780 tree_mod_log_read_lock(fs_info); 781 tm_root = &fs_info->tree_mod_log; 782 node = tm_root->rb_node; 783 while (node) { 784 cur = container_of(node, struct tree_mod_elem, node); 785 if (cur->index < index) { 786 node = node->rb_left; 787 } else if (cur->index > index) { 788 node = node->rb_right; 789 } else if (cur->seq < min_seq) { 790 node = node->rb_left; 791 } else if (!smallest) { 792 /* we want the node with the highest seq */ 793 if (found) 794 BUG_ON(found->seq > cur->seq); 795 found = cur; 796 node = node->rb_left; 797 } else if (cur->seq > min_seq) { 798 /* we want the node with the smallest seq */ 799 if (found) 800 BUG_ON(found->seq < cur->seq); 801 found = cur; 802 node = node->rb_right; 803 } else { 804 found = cur; 805 break; 806 } 807 } 808 tree_mod_log_read_unlock(fs_info); 809 810 return found; 811 } 812 813 /* 814 * this returns the element from the log with the smallest time sequence 815 * value that's in the log (the oldest log item). any element with a time 816 * sequence lower than min_seq will be ignored. 817 */ 818 static struct tree_mod_elem * 819 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 820 u64 min_seq) 821 { 822 return __tree_mod_log_search(fs_info, start, min_seq, 1); 823 } 824 825 /* 826 * this returns the element from the log with the largest time sequence 827 * value that's in the log (the most recent log item). any element with 828 * a time sequence lower than min_seq will be ignored. 829 */ 830 static struct tree_mod_elem * 831 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 832 { 833 return __tree_mod_log_search(fs_info, start, min_seq, 0); 834 } 835 836 static noinline int 837 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 838 struct extent_buffer *src, unsigned long dst_offset, 839 unsigned long src_offset, int nr_items) 840 { 841 int ret = 0; 842 struct tree_mod_elem **tm_list = NULL; 843 struct tree_mod_elem **tm_list_add, **tm_list_rem; 844 int i; 845 int locked = 0; 846 847 if (!tree_mod_need_log(fs_info, NULL)) 848 return 0; 849 850 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 851 return 0; 852 853 tm_list = kzalloc(nr_items * 2 * sizeof(struct tree_mod_elem *), 854 GFP_NOFS); 855 if (!tm_list) 856 return -ENOMEM; 857 858 tm_list_add = tm_list; 859 tm_list_rem = tm_list + nr_items; 860 for (i = 0; i < nr_items; i++) { 861 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 862 MOD_LOG_KEY_REMOVE, GFP_NOFS); 863 if (!tm_list_rem[i]) { 864 ret = -ENOMEM; 865 goto free_tms; 866 } 867 868 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 869 MOD_LOG_KEY_ADD, GFP_NOFS); 870 if (!tm_list_add[i]) { 871 ret = -ENOMEM; 872 goto free_tms; 873 } 874 } 875 876 if (tree_mod_dont_log(fs_info, NULL)) 877 goto free_tms; 878 locked = 1; 879 880 for (i = 0; i < nr_items; i++) { 881 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 882 if (ret) 883 goto free_tms; 884 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 885 if (ret) 886 goto free_tms; 887 } 888 889 tree_mod_log_write_unlock(fs_info); 890 kfree(tm_list); 891 892 return 0; 893 894 free_tms: 895 for (i = 0; i < nr_items * 2; i++) { 896 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 897 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 898 kfree(tm_list[i]); 899 } 900 if (locked) 901 tree_mod_log_write_unlock(fs_info); 902 kfree(tm_list); 903 904 return ret; 905 } 906 907 static inline void 908 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 909 int dst_offset, int src_offset, int nr_items) 910 { 911 int ret; 912 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 913 nr_items, GFP_NOFS); 914 BUG_ON(ret < 0); 915 } 916 917 static noinline void 918 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 919 struct extent_buffer *eb, int slot, int atomic) 920 { 921 int ret; 922 923 ret = tree_mod_log_insert_key(fs_info, eb, slot, 924 MOD_LOG_KEY_REPLACE, 925 atomic ? GFP_ATOMIC : GFP_NOFS); 926 BUG_ON(ret < 0); 927 } 928 929 static noinline int 930 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 931 { 932 struct tree_mod_elem **tm_list = NULL; 933 int nritems = 0; 934 int i; 935 int ret = 0; 936 937 if (btrfs_header_level(eb) == 0) 938 return 0; 939 940 if (!tree_mod_need_log(fs_info, NULL)) 941 return 0; 942 943 nritems = btrfs_header_nritems(eb); 944 tm_list = kzalloc(nritems * sizeof(struct tree_mod_elem *), 945 GFP_NOFS); 946 if (!tm_list) 947 return -ENOMEM; 948 949 for (i = 0; i < nritems; i++) { 950 tm_list[i] = alloc_tree_mod_elem(eb, i, 951 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 952 if (!tm_list[i]) { 953 ret = -ENOMEM; 954 goto free_tms; 955 } 956 } 957 958 if (tree_mod_dont_log(fs_info, eb)) 959 goto free_tms; 960 961 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 962 tree_mod_log_write_unlock(fs_info); 963 if (ret) 964 goto free_tms; 965 kfree(tm_list); 966 967 return 0; 968 969 free_tms: 970 for (i = 0; i < nritems; i++) 971 kfree(tm_list[i]); 972 kfree(tm_list); 973 974 return ret; 975 } 976 977 static noinline void 978 tree_mod_log_set_root_pointer(struct btrfs_root *root, 979 struct extent_buffer *new_root_node, 980 int log_removal) 981 { 982 int ret; 983 ret = tree_mod_log_insert_root(root->fs_info, root->node, 984 new_root_node, GFP_NOFS, log_removal); 985 BUG_ON(ret < 0); 986 } 987 988 /* 989 * check if the tree block can be shared by multiple trees 990 */ 991 int btrfs_block_can_be_shared(struct btrfs_root *root, 992 struct extent_buffer *buf) 993 { 994 /* 995 * Tree blocks not in refernece counted trees and tree roots 996 * are never shared. If a block was allocated after the last 997 * snapshot and the block was not allocated by tree relocation, 998 * we know the block is not shared. 999 */ 1000 if (root->ref_cows && 1001 buf != root->node && buf != root->commit_root && 1002 (btrfs_header_generation(buf) <= 1003 btrfs_root_last_snapshot(&root->root_item) || 1004 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 1005 return 1; 1006 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 1007 if (root->ref_cows && 1008 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1009 return 1; 1010 #endif 1011 return 0; 1012 } 1013 1014 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 1015 struct btrfs_root *root, 1016 struct extent_buffer *buf, 1017 struct extent_buffer *cow, 1018 int *last_ref) 1019 { 1020 u64 refs; 1021 u64 owner; 1022 u64 flags; 1023 u64 new_flags = 0; 1024 int ret; 1025 1026 /* 1027 * Backrefs update rules: 1028 * 1029 * Always use full backrefs for extent pointers in tree block 1030 * allocated by tree relocation. 1031 * 1032 * If a shared tree block is no longer referenced by its owner 1033 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 1034 * use full backrefs for extent pointers in tree block. 1035 * 1036 * If a tree block is been relocating 1037 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1038 * use full backrefs for extent pointers in tree block. 1039 * The reason for this is some operations (such as drop tree) 1040 * are only allowed for blocks use full backrefs. 1041 */ 1042 1043 if (btrfs_block_can_be_shared(root, buf)) { 1044 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1045 btrfs_header_level(buf), 1, 1046 &refs, &flags); 1047 if (ret) 1048 return ret; 1049 if (refs == 0) { 1050 ret = -EROFS; 1051 btrfs_std_error(root->fs_info, ret); 1052 return ret; 1053 } 1054 } else { 1055 refs = 1; 1056 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1057 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1058 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1059 else 1060 flags = 0; 1061 } 1062 1063 owner = btrfs_header_owner(buf); 1064 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1065 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1066 1067 if (refs > 1) { 1068 if ((owner == root->root_key.objectid || 1069 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1070 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1071 ret = btrfs_inc_ref(trans, root, buf, 1, 1); 1072 BUG_ON(ret); /* -ENOMEM */ 1073 1074 if (root->root_key.objectid == 1075 BTRFS_TREE_RELOC_OBJECTID) { 1076 ret = btrfs_dec_ref(trans, root, buf, 0, 1); 1077 BUG_ON(ret); /* -ENOMEM */ 1078 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 1079 BUG_ON(ret); /* -ENOMEM */ 1080 } 1081 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1082 } else { 1083 1084 if (root->root_key.objectid == 1085 BTRFS_TREE_RELOC_OBJECTID) 1086 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 1087 else 1088 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 1089 BUG_ON(ret); /* -ENOMEM */ 1090 } 1091 if (new_flags != 0) { 1092 int level = btrfs_header_level(buf); 1093 1094 ret = btrfs_set_disk_extent_flags(trans, root, 1095 buf->start, 1096 buf->len, 1097 new_flags, level, 0); 1098 if (ret) 1099 return ret; 1100 } 1101 } else { 1102 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1103 if (root->root_key.objectid == 1104 BTRFS_TREE_RELOC_OBJECTID) 1105 ret = btrfs_inc_ref(trans, root, cow, 1, 1); 1106 else 1107 ret = btrfs_inc_ref(trans, root, cow, 0, 1); 1108 BUG_ON(ret); /* -ENOMEM */ 1109 ret = btrfs_dec_ref(trans, root, buf, 1, 1); 1110 BUG_ON(ret); /* -ENOMEM */ 1111 } 1112 clean_tree_block(trans, root, buf); 1113 *last_ref = 1; 1114 } 1115 return 0; 1116 } 1117 1118 /* 1119 * does the dirty work in cow of a single block. The parent block (if 1120 * supplied) is updated to point to the new cow copy. The new buffer is marked 1121 * dirty and returned locked. If you modify the block it needs to be marked 1122 * dirty again. 1123 * 1124 * search_start -- an allocation hint for the new block 1125 * 1126 * empty_size -- a hint that you plan on doing more cow. This is the size in 1127 * bytes the allocator should try to find free next to the block it returns. 1128 * This is just a hint and may be ignored by the allocator. 1129 */ 1130 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1131 struct btrfs_root *root, 1132 struct extent_buffer *buf, 1133 struct extent_buffer *parent, int parent_slot, 1134 struct extent_buffer **cow_ret, 1135 u64 search_start, u64 empty_size) 1136 { 1137 struct btrfs_disk_key disk_key; 1138 struct extent_buffer *cow; 1139 int level, ret; 1140 int last_ref = 0; 1141 int unlock_orig = 0; 1142 u64 parent_start; 1143 1144 if (*cow_ret == buf) 1145 unlock_orig = 1; 1146 1147 btrfs_assert_tree_locked(buf); 1148 1149 WARN_ON(root->ref_cows && trans->transid != 1150 root->fs_info->running_transaction->transid); 1151 WARN_ON(root->ref_cows && trans->transid != root->last_trans); 1152 1153 level = btrfs_header_level(buf); 1154 1155 if (level == 0) 1156 btrfs_item_key(buf, &disk_key, 0); 1157 else 1158 btrfs_node_key(buf, &disk_key, 0); 1159 1160 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1161 if (parent) 1162 parent_start = parent->start; 1163 else 1164 parent_start = 0; 1165 } else 1166 parent_start = 0; 1167 1168 cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start, 1169 root->root_key.objectid, &disk_key, 1170 level, search_start, empty_size); 1171 if (IS_ERR(cow)) 1172 return PTR_ERR(cow); 1173 1174 /* cow is set to blocking by btrfs_init_new_buffer */ 1175 1176 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1177 btrfs_set_header_bytenr(cow, cow->start); 1178 btrfs_set_header_generation(cow, trans->transid); 1179 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1180 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1181 BTRFS_HEADER_FLAG_RELOC); 1182 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1183 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1184 else 1185 btrfs_set_header_owner(cow, root->root_key.objectid); 1186 1187 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1188 BTRFS_FSID_SIZE); 1189 1190 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1191 if (ret) { 1192 btrfs_abort_transaction(trans, root, ret); 1193 return ret; 1194 } 1195 1196 if (root->ref_cows) { 1197 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1198 if (ret) 1199 return ret; 1200 } 1201 1202 if (buf == root->node) { 1203 WARN_ON(parent && parent != buf); 1204 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1205 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1206 parent_start = buf->start; 1207 else 1208 parent_start = 0; 1209 1210 extent_buffer_get(cow); 1211 tree_mod_log_set_root_pointer(root, cow, 1); 1212 rcu_assign_pointer(root->node, cow); 1213 1214 btrfs_free_tree_block(trans, root, buf, parent_start, 1215 last_ref); 1216 free_extent_buffer(buf); 1217 add_root_to_dirty_list(root); 1218 } else { 1219 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1220 parent_start = parent->start; 1221 else 1222 parent_start = 0; 1223 1224 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1225 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1226 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1227 btrfs_set_node_blockptr(parent, parent_slot, 1228 cow->start); 1229 btrfs_set_node_ptr_generation(parent, parent_slot, 1230 trans->transid); 1231 btrfs_mark_buffer_dirty(parent); 1232 if (last_ref) { 1233 ret = tree_mod_log_free_eb(root->fs_info, buf); 1234 if (ret) { 1235 btrfs_abort_transaction(trans, root, ret); 1236 return ret; 1237 } 1238 } 1239 btrfs_free_tree_block(trans, root, buf, parent_start, 1240 last_ref); 1241 } 1242 if (unlock_orig) 1243 btrfs_tree_unlock(buf); 1244 free_extent_buffer_stale(buf); 1245 btrfs_mark_buffer_dirty(cow); 1246 *cow_ret = cow; 1247 return 0; 1248 } 1249 1250 /* 1251 * returns the logical address of the oldest predecessor of the given root. 1252 * entries older than time_seq are ignored. 1253 */ 1254 static struct tree_mod_elem * 1255 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1256 struct extent_buffer *eb_root, u64 time_seq) 1257 { 1258 struct tree_mod_elem *tm; 1259 struct tree_mod_elem *found = NULL; 1260 u64 root_logical = eb_root->start; 1261 int looped = 0; 1262 1263 if (!time_seq) 1264 return NULL; 1265 1266 /* 1267 * the very last operation that's logged for a root is the replacement 1268 * operation (if it is replaced at all). this has the index of the *new* 1269 * root, making it the very first operation that's logged for this root. 1270 */ 1271 while (1) { 1272 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1273 time_seq); 1274 if (!looped && !tm) 1275 return NULL; 1276 /* 1277 * if there are no tree operation for the oldest root, we simply 1278 * return it. this should only happen if that (old) root is at 1279 * level 0. 1280 */ 1281 if (!tm) 1282 break; 1283 1284 /* 1285 * if there's an operation that's not a root replacement, we 1286 * found the oldest version of our root. normally, we'll find a 1287 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1288 */ 1289 if (tm->op != MOD_LOG_ROOT_REPLACE) 1290 break; 1291 1292 found = tm; 1293 root_logical = tm->old_root.logical; 1294 looped = 1; 1295 } 1296 1297 /* if there's no old root to return, return what we found instead */ 1298 if (!found) 1299 found = tm; 1300 1301 return found; 1302 } 1303 1304 /* 1305 * tm is a pointer to the first operation to rewind within eb. then, all 1306 * previous operations will be rewinded (until we reach something older than 1307 * time_seq). 1308 */ 1309 static void 1310 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1311 u64 time_seq, struct tree_mod_elem *first_tm) 1312 { 1313 u32 n; 1314 struct rb_node *next; 1315 struct tree_mod_elem *tm = first_tm; 1316 unsigned long o_dst; 1317 unsigned long o_src; 1318 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1319 1320 n = btrfs_header_nritems(eb); 1321 tree_mod_log_read_lock(fs_info); 1322 while (tm && tm->seq >= time_seq) { 1323 /* 1324 * all the operations are recorded with the operator used for 1325 * the modification. as we're going backwards, we do the 1326 * opposite of each operation here. 1327 */ 1328 switch (tm->op) { 1329 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1330 BUG_ON(tm->slot < n); 1331 /* Fallthrough */ 1332 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1333 case MOD_LOG_KEY_REMOVE: 1334 btrfs_set_node_key(eb, &tm->key, tm->slot); 1335 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1336 btrfs_set_node_ptr_generation(eb, tm->slot, 1337 tm->generation); 1338 n++; 1339 break; 1340 case MOD_LOG_KEY_REPLACE: 1341 BUG_ON(tm->slot >= n); 1342 btrfs_set_node_key(eb, &tm->key, tm->slot); 1343 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1344 btrfs_set_node_ptr_generation(eb, tm->slot, 1345 tm->generation); 1346 break; 1347 case MOD_LOG_KEY_ADD: 1348 /* if a move operation is needed it's in the log */ 1349 n--; 1350 break; 1351 case MOD_LOG_MOVE_KEYS: 1352 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1353 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1354 memmove_extent_buffer(eb, o_dst, o_src, 1355 tm->move.nr_items * p_size); 1356 break; 1357 case MOD_LOG_ROOT_REPLACE: 1358 /* 1359 * this operation is special. for roots, this must be 1360 * handled explicitly before rewinding. 1361 * for non-roots, this operation may exist if the node 1362 * was a root: root A -> child B; then A gets empty and 1363 * B is promoted to the new root. in the mod log, we'll 1364 * have a root-replace operation for B, a tree block 1365 * that is no root. we simply ignore that operation. 1366 */ 1367 break; 1368 } 1369 next = rb_next(&tm->node); 1370 if (!next) 1371 break; 1372 tm = container_of(next, struct tree_mod_elem, node); 1373 if (tm->index != first_tm->index) 1374 break; 1375 } 1376 tree_mod_log_read_unlock(fs_info); 1377 btrfs_set_header_nritems(eb, n); 1378 } 1379 1380 /* 1381 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer 1382 * is returned. If rewind operations happen, a fresh buffer is returned. The 1383 * returned buffer is always read-locked. If the returned buffer is not the 1384 * input buffer, the lock on the input buffer is released and the input buffer 1385 * is freed (its refcount is decremented). 1386 */ 1387 static struct extent_buffer * 1388 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1389 struct extent_buffer *eb, u64 time_seq) 1390 { 1391 struct extent_buffer *eb_rewin; 1392 struct tree_mod_elem *tm; 1393 1394 if (!time_seq) 1395 return eb; 1396 1397 if (btrfs_header_level(eb) == 0) 1398 return eb; 1399 1400 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1401 if (!tm) 1402 return eb; 1403 1404 btrfs_set_path_blocking(path); 1405 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1406 1407 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1408 BUG_ON(tm->slot != 0); 1409 eb_rewin = alloc_dummy_extent_buffer(eb->start, 1410 fs_info->tree_root->nodesize); 1411 if (!eb_rewin) { 1412 btrfs_tree_read_unlock_blocking(eb); 1413 free_extent_buffer(eb); 1414 return NULL; 1415 } 1416 btrfs_set_header_bytenr(eb_rewin, eb->start); 1417 btrfs_set_header_backref_rev(eb_rewin, 1418 btrfs_header_backref_rev(eb)); 1419 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1420 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1421 } else { 1422 eb_rewin = btrfs_clone_extent_buffer(eb); 1423 if (!eb_rewin) { 1424 btrfs_tree_read_unlock_blocking(eb); 1425 free_extent_buffer(eb); 1426 return NULL; 1427 } 1428 } 1429 1430 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1431 btrfs_tree_read_unlock_blocking(eb); 1432 free_extent_buffer(eb); 1433 1434 extent_buffer_get(eb_rewin); 1435 btrfs_tree_read_lock(eb_rewin); 1436 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1437 WARN_ON(btrfs_header_nritems(eb_rewin) > 1438 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1439 1440 return eb_rewin; 1441 } 1442 1443 /* 1444 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1445 * value. If there are no changes, the current root->root_node is returned. If 1446 * anything changed in between, there's a fresh buffer allocated on which the 1447 * rewind operations are done. In any case, the returned buffer is read locked. 1448 * Returns NULL on error (with no locks held). 1449 */ 1450 static inline struct extent_buffer * 1451 get_old_root(struct btrfs_root *root, u64 time_seq) 1452 { 1453 struct tree_mod_elem *tm; 1454 struct extent_buffer *eb = NULL; 1455 struct extent_buffer *eb_root; 1456 struct extent_buffer *old; 1457 struct tree_mod_root *old_root = NULL; 1458 u64 old_generation = 0; 1459 u64 logical; 1460 u32 blocksize; 1461 1462 eb_root = btrfs_read_lock_root_node(root); 1463 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1464 if (!tm) 1465 return eb_root; 1466 1467 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1468 old_root = &tm->old_root; 1469 old_generation = tm->generation; 1470 logical = old_root->logical; 1471 } else { 1472 logical = eb_root->start; 1473 } 1474 1475 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1476 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1477 btrfs_tree_read_unlock(eb_root); 1478 free_extent_buffer(eb_root); 1479 blocksize = btrfs_level_size(root, old_root->level); 1480 old = read_tree_block(root, logical, blocksize, 0); 1481 if (WARN_ON(!old || !extent_buffer_uptodate(old))) { 1482 free_extent_buffer(old); 1483 btrfs_warn(root->fs_info, 1484 "failed to read tree block %llu from get_old_root", logical); 1485 } else { 1486 eb = btrfs_clone_extent_buffer(old); 1487 free_extent_buffer(old); 1488 } 1489 } else if (old_root) { 1490 btrfs_tree_read_unlock(eb_root); 1491 free_extent_buffer(eb_root); 1492 eb = alloc_dummy_extent_buffer(logical, root->nodesize); 1493 } else { 1494 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1495 eb = btrfs_clone_extent_buffer(eb_root); 1496 btrfs_tree_read_unlock_blocking(eb_root); 1497 free_extent_buffer(eb_root); 1498 } 1499 1500 if (!eb) 1501 return NULL; 1502 extent_buffer_get(eb); 1503 btrfs_tree_read_lock(eb); 1504 if (old_root) { 1505 btrfs_set_header_bytenr(eb, eb->start); 1506 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1507 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1508 btrfs_set_header_level(eb, old_root->level); 1509 btrfs_set_header_generation(eb, old_generation); 1510 } 1511 if (tm) 1512 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1513 else 1514 WARN_ON(btrfs_header_level(eb) != 0); 1515 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1516 1517 return eb; 1518 } 1519 1520 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1521 { 1522 struct tree_mod_elem *tm; 1523 int level; 1524 struct extent_buffer *eb_root = btrfs_root_node(root); 1525 1526 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1527 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1528 level = tm->old_root.level; 1529 } else { 1530 level = btrfs_header_level(eb_root); 1531 } 1532 free_extent_buffer(eb_root); 1533 1534 return level; 1535 } 1536 1537 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1538 struct btrfs_root *root, 1539 struct extent_buffer *buf) 1540 { 1541 /* ensure we can see the force_cow */ 1542 smp_rmb(); 1543 1544 /* 1545 * We do not need to cow a block if 1546 * 1) this block is not created or changed in this transaction; 1547 * 2) this block does not belong to TREE_RELOC tree; 1548 * 3) the root is not forced COW. 1549 * 1550 * What is forced COW: 1551 * when we create snapshot during commiting the transaction, 1552 * after we've finished coping src root, we must COW the shared 1553 * block to ensure the metadata consistency. 1554 */ 1555 if (btrfs_header_generation(buf) == trans->transid && 1556 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1557 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1558 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1559 !root->force_cow) 1560 return 0; 1561 return 1; 1562 } 1563 1564 /* 1565 * cows a single block, see __btrfs_cow_block for the real work. 1566 * This version of it has extra checks so that a block isn't cow'd more than 1567 * once per transaction, as long as it hasn't been written yet 1568 */ 1569 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1570 struct btrfs_root *root, struct extent_buffer *buf, 1571 struct extent_buffer *parent, int parent_slot, 1572 struct extent_buffer **cow_ret) 1573 { 1574 u64 search_start; 1575 int ret; 1576 1577 if (trans->transaction != root->fs_info->running_transaction) 1578 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1579 trans->transid, 1580 root->fs_info->running_transaction->transid); 1581 1582 if (trans->transid != root->fs_info->generation) 1583 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1584 trans->transid, root->fs_info->generation); 1585 1586 if (!should_cow_block(trans, root, buf)) { 1587 *cow_ret = buf; 1588 return 0; 1589 } 1590 1591 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1); 1592 1593 if (parent) 1594 btrfs_set_lock_blocking(parent); 1595 btrfs_set_lock_blocking(buf); 1596 1597 ret = __btrfs_cow_block(trans, root, buf, parent, 1598 parent_slot, cow_ret, search_start, 0); 1599 1600 trace_btrfs_cow_block(root, buf, *cow_ret); 1601 1602 return ret; 1603 } 1604 1605 /* 1606 * helper function for defrag to decide if two blocks pointed to by a 1607 * node are actually close by 1608 */ 1609 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1610 { 1611 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1612 return 1; 1613 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1614 return 1; 1615 return 0; 1616 } 1617 1618 /* 1619 * compare two keys in a memcmp fashion 1620 */ 1621 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1622 { 1623 struct btrfs_key k1; 1624 1625 btrfs_disk_key_to_cpu(&k1, disk); 1626 1627 return btrfs_comp_cpu_keys(&k1, k2); 1628 } 1629 1630 /* 1631 * same as comp_keys only with two btrfs_key's 1632 */ 1633 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1634 { 1635 if (k1->objectid > k2->objectid) 1636 return 1; 1637 if (k1->objectid < k2->objectid) 1638 return -1; 1639 if (k1->type > k2->type) 1640 return 1; 1641 if (k1->type < k2->type) 1642 return -1; 1643 if (k1->offset > k2->offset) 1644 return 1; 1645 if (k1->offset < k2->offset) 1646 return -1; 1647 return 0; 1648 } 1649 1650 /* 1651 * this is used by the defrag code to go through all the 1652 * leaves pointed to by a node and reallocate them so that 1653 * disk order is close to key order 1654 */ 1655 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1656 struct btrfs_root *root, struct extent_buffer *parent, 1657 int start_slot, u64 *last_ret, 1658 struct btrfs_key *progress) 1659 { 1660 struct extent_buffer *cur; 1661 u64 blocknr; 1662 u64 gen; 1663 u64 search_start = *last_ret; 1664 u64 last_block = 0; 1665 u64 other; 1666 u32 parent_nritems; 1667 int end_slot; 1668 int i; 1669 int err = 0; 1670 int parent_level; 1671 int uptodate; 1672 u32 blocksize; 1673 int progress_passed = 0; 1674 struct btrfs_disk_key disk_key; 1675 1676 parent_level = btrfs_header_level(parent); 1677 1678 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1679 WARN_ON(trans->transid != root->fs_info->generation); 1680 1681 parent_nritems = btrfs_header_nritems(parent); 1682 blocksize = btrfs_level_size(root, parent_level - 1); 1683 end_slot = parent_nritems; 1684 1685 if (parent_nritems == 1) 1686 return 0; 1687 1688 btrfs_set_lock_blocking(parent); 1689 1690 for (i = start_slot; i < end_slot; i++) { 1691 int close = 1; 1692 1693 btrfs_node_key(parent, &disk_key, i); 1694 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1695 continue; 1696 1697 progress_passed = 1; 1698 blocknr = btrfs_node_blockptr(parent, i); 1699 gen = btrfs_node_ptr_generation(parent, i); 1700 if (last_block == 0) 1701 last_block = blocknr; 1702 1703 if (i > 0) { 1704 other = btrfs_node_blockptr(parent, i - 1); 1705 close = close_blocks(blocknr, other, blocksize); 1706 } 1707 if (!close && i < end_slot - 2) { 1708 other = btrfs_node_blockptr(parent, i + 1); 1709 close = close_blocks(blocknr, other, blocksize); 1710 } 1711 if (close) { 1712 last_block = blocknr; 1713 continue; 1714 } 1715 1716 cur = btrfs_find_tree_block(root, blocknr, blocksize); 1717 if (cur) 1718 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1719 else 1720 uptodate = 0; 1721 if (!cur || !uptodate) { 1722 if (!cur) { 1723 cur = read_tree_block(root, blocknr, 1724 blocksize, gen); 1725 if (!cur || !extent_buffer_uptodate(cur)) { 1726 free_extent_buffer(cur); 1727 return -EIO; 1728 } 1729 } else if (!uptodate) { 1730 err = btrfs_read_buffer(cur, gen); 1731 if (err) { 1732 free_extent_buffer(cur); 1733 return err; 1734 } 1735 } 1736 } 1737 if (search_start == 0) 1738 search_start = last_block; 1739 1740 btrfs_tree_lock(cur); 1741 btrfs_set_lock_blocking(cur); 1742 err = __btrfs_cow_block(trans, root, cur, parent, i, 1743 &cur, search_start, 1744 min(16 * blocksize, 1745 (end_slot - i) * blocksize)); 1746 if (err) { 1747 btrfs_tree_unlock(cur); 1748 free_extent_buffer(cur); 1749 break; 1750 } 1751 search_start = cur->start; 1752 last_block = cur->start; 1753 *last_ret = search_start; 1754 btrfs_tree_unlock(cur); 1755 free_extent_buffer(cur); 1756 } 1757 return err; 1758 } 1759 1760 /* 1761 * The leaf data grows from end-to-front in the node. 1762 * this returns the address of the start of the last item, 1763 * which is the stop of the leaf data stack 1764 */ 1765 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1766 struct extent_buffer *leaf) 1767 { 1768 u32 nr = btrfs_header_nritems(leaf); 1769 if (nr == 0) 1770 return BTRFS_LEAF_DATA_SIZE(root); 1771 return btrfs_item_offset_nr(leaf, nr - 1); 1772 } 1773 1774 1775 /* 1776 * search for key in the extent_buffer. The items start at offset p, 1777 * and they are item_size apart. There are 'max' items in p. 1778 * 1779 * the slot in the array is returned via slot, and it points to 1780 * the place where you would insert key if it is not found in 1781 * the array. 1782 * 1783 * slot may point to max if the key is bigger than all of the keys 1784 */ 1785 static noinline int generic_bin_search(struct extent_buffer *eb, 1786 unsigned long p, 1787 int item_size, struct btrfs_key *key, 1788 int max, int *slot) 1789 { 1790 int low = 0; 1791 int high = max; 1792 int mid; 1793 int ret; 1794 struct btrfs_disk_key *tmp = NULL; 1795 struct btrfs_disk_key unaligned; 1796 unsigned long offset; 1797 char *kaddr = NULL; 1798 unsigned long map_start = 0; 1799 unsigned long map_len = 0; 1800 int err; 1801 1802 while (low < high) { 1803 mid = (low + high) / 2; 1804 offset = p + mid * item_size; 1805 1806 if (!kaddr || offset < map_start || 1807 (offset + sizeof(struct btrfs_disk_key)) > 1808 map_start + map_len) { 1809 1810 err = map_private_extent_buffer(eb, offset, 1811 sizeof(struct btrfs_disk_key), 1812 &kaddr, &map_start, &map_len); 1813 1814 if (!err) { 1815 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1816 map_start); 1817 } else { 1818 read_extent_buffer(eb, &unaligned, 1819 offset, sizeof(unaligned)); 1820 tmp = &unaligned; 1821 } 1822 1823 } else { 1824 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1825 map_start); 1826 } 1827 ret = comp_keys(tmp, key); 1828 1829 if (ret < 0) 1830 low = mid + 1; 1831 else if (ret > 0) 1832 high = mid; 1833 else { 1834 *slot = mid; 1835 return 0; 1836 } 1837 } 1838 *slot = low; 1839 return 1; 1840 } 1841 1842 /* 1843 * simple bin_search frontend that does the right thing for 1844 * leaves vs nodes 1845 */ 1846 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1847 int level, int *slot) 1848 { 1849 if (level == 0) 1850 return generic_bin_search(eb, 1851 offsetof(struct btrfs_leaf, items), 1852 sizeof(struct btrfs_item), 1853 key, btrfs_header_nritems(eb), 1854 slot); 1855 else 1856 return generic_bin_search(eb, 1857 offsetof(struct btrfs_node, ptrs), 1858 sizeof(struct btrfs_key_ptr), 1859 key, btrfs_header_nritems(eb), 1860 slot); 1861 } 1862 1863 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1864 int level, int *slot) 1865 { 1866 return bin_search(eb, key, level, slot); 1867 } 1868 1869 static void root_add_used(struct btrfs_root *root, u32 size) 1870 { 1871 spin_lock(&root->accounting_lock); 1872 btrfs_set_root_used(&root->root_item, 1873 btrfs_root_used(&root->root_item) + size); 1874 spin_unlock(&root->accounting_lock); 1875 } 1876 1877 static void root_sub_used(struct btrfs_root *root, u32 size) 1878 { 1879 spin_lock(&root->accounting_lock); 1880 btrfs_set_root_used(&root->root_item, 1881 btrfs_root_used(&root->root_item) - size); 1882 spin_unlock(&root->accounting_lock); 1883 } 1884 1885 /* given a node and slot number, this reads the blocks it points to. The 1886 * extent buffer is returned with a reference taken (but unlocked). 1887 * NULL is returned on error. 1888 */ 1889 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1890 struct extent_buffer *parent, int slot) 1891 { 1892 int level = btrfs_header_level(parent); 1893 struct extent_buffer *eb; 1894 1895 if (slot < 0) 1896 return NULL; 1897 if (slot >= btrfs_header_nritems(parent)) 1898 return NULL; 1899 1900 BUG_ON(level == 0); 1901 1902 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1903 btrfs_level_size(root, level - 1), 1904 btrfs_node_ptr_generation(parent, slot)); 1905 if (eb && !extent_buffer_uptodate(eb)) { 1906 free_extent_buffer(eb); 1907 eb = NULL; 1908 } 1909 1910 return eb; 1911 } 1912 1913 /* 1914 * node level balancing, used to make sure nodes are in proper order for 1915 * item deletion. We balance from the top down, so we have to make sure 1916 * that a deletion won't leave an node completely empty later on. 1917 */ 1918 static noinline int balance_level(struct btrfs_trans_handle *trans, 1919 struct btrfs_root *root, 1920 struct btrfs_path *path, int level) 1921 { 1922 struct extent_buffer *right = NULL; 1923 struct extent_buffer *mid; 1924 struct extent_buffer *left = NULL; 1925 struct extent_buffer *parent = NULL; 1926 int ret = 0; 1927 int wret; 1928 int pslot; 1929 int orig_slot = path->slots[level]; 1930 u64 orig_ptr; 1931 1932 if (level == 0) 1933 return 0; 1934 1935 mid = path->nodes[level]; 1936 1937 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1938 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1939 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1940 1941 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1942 1943 if (level < BTRFS_MAX_LEVEL - 1) { 1944 parent = path->nodes[level + 1]; 1945 pslot = path->slots[level + 1]; 1946 } 1947 1948 /* 1949 * deal with the case where there is only one pointer in the root 1950 * by promoting the node below to a root 1951 */ 1952 if (!parent) { 1953 struct extent_buffer *child; 1954 1955 if (btrfs_header_nritems(mid) != 1) 1956 return 0; 1957 1958 /* promote the child to a root */ 1959 child = read_node_slot(root, mid, 0); 1960 if (!child) { 1961 ret = -EROFS; 1962 btrfs_std_error(root->fs_info, ret); 1963 goto enospc; 1964 } 1965 1966 btrfs_tree_lock(child); 1967 btrfs_set_lock_blocking(child); 1968 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1969 if (ret) { 1970 btrfs_tree_unlock(child); 1971 free_extent_buffer(child); 1972 goto enospc; 1973 } 1974 1975 tree_mod_log_set_root_pointer(root, child, 1); 1976 rcu_assign_pointer(root->node, child); 1977 1978 add_root_to_dirty_list(root); 1979 btrfs_tree_unlock(child); 1980 1981 path->locks[level] = 0; 1982 path->nodes[level] = NULL; 1983 clean_tree_block(trans, root, mid); 1984 btrfs_tree_unlock(mid); 1985 /* once for the path */ 1986 free_extent_buffer(mid); 1987 1988 root_sub_used(root, mid->len); 1989 btrfs_free_tree_block(trans, root, mid, 0, 1); 1990 /* once for the root ptr */ 1991 free_extent_buffer_stale(mid); 1992 return 0; 1993 } 1994 if (btrfs_header_nritems(mid) > 1995 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1996 return 0; 1997 1998 left = read_node_slot(root, parent, pslot - 1); 1999 if (left) { 2000 btrfs_tree_lock(left); 2001 btrfs_set_lock_blocking(left); 2002 wret = btrfs_cow_block(trans, root, left, 2003 parent, pslot - 1, &left); 2004 if (wret) { 2005 ret = wret; 2006 goto enospc; 2007 } 2008 } 2009 right = read_node_slot(root, parent, pslot + 1); 2010 if (right) { 2011 btrfs_tree_lock(right); 2012 btrfs_set_lock_blocking(right); 2013 wret = btrfs_cow_block(trans, root, right, 2014 parent, pslot + 1, &right); 2015 if (wret) { 2016 ret = wret; 2017 goto enospc; 2018 } 2019 } 2020 2021 /* first, try to make some room in the middle buffer */ 2022 if (left) { 2023 orig_slot += btrfs_header_nritems(left); 2024 wret = push_node_left(trans, root, left, mid, 1); 2025 if (wret < 0) 2026 ret = wret; 2027 } 2028 2029 /* 2030 * then try to empty the right most buffer into the middle 2031 */ 2032 if (right) { 2033 wret = push_node_left(trans, root, mid, right, 1); 2034 if (wret < 0 && wret != -ENOSPC) 2035 ret = wret; 2036 if (btrfs_header_nritems(right) == 0) { 2037 clean_tree_block(trans, root, right); 2038 btrfs_tree_unlock(right); 2039 del_ptr(root, path, level + 1, pslot + 1); 2040 root_sub_used(root, right->len); 2041 btrfs_free_tree_block(trans, root, right, 0, 1); 2042 free_extent_buffer_stale(right); 2043 right = NULL; 2044 } else { 2045 struct btrfs_disk_key right_key; 2046 btrfs_node_key(right, &right_key, 0); 2047 tree_mod_log_set_node_key(root->fs_info, parent, 2048 pslot + 1, 0); 2049 btrfs_set_node_key(parent, &right_key, pslot + 1); 2050 btrfs_mark_buffer_dirty(parent); 2051 } 2052 } 2053 if (btrfs_header_nritems(mid) == 1) { 2054 /* 2055 * we're not allowed to leave a node with one item in the 2056 * tree during a delete. A deletion from lower in the tree 2057 * could try to delete the only pointer in this node. 2058 * So, pull some keys from the left. 2059 * There has to be a left pointer at this point because 2060 * otherwise we would have pulled some pointers from the 2061 * right 2062 */ 2063 if (!left) { 2064 ret = -EROFS; 2065 btrfs_std_error(root->fs_info, ret); 2066 goto enospc; 2067 } 2068 wret = balance_node_right(trans, root, mid, left); 2069 if (wret < 0) { 2070 ret = wret; 2071 goto enospc; 2072 } 2073 if (wret == 1) { 2074 wret = push_node_left(trans, root, left, mid, 1); 2075 if (wret < 0) 2076 ret = wret; 2077 } 2078 BUG_ON(wret == 1); 2079 } 2080 if (btrfs_header_nritems(mid) == 0) { 2081 clean_tree_block(trans, root, mid); 2082 btrfs_tree_unlock(mid); 2083 del_ptr(root, path, level + 1, pslot); 2084 root_sub_used(root, mid->len); 2085 btrfs_free_tree_block(trans, root, mid, 0, 1); 2086 free_extent_buffer_stale(mid); 2087 mid = NULL; 2088 } else { 2089 /* update the parent key to reflect our changes */ 2090 struct btrfs_disk_key mid_key; 2091 btrfs_node_key(mid, &mid_key, 0); 2092 tree_mod_log_set_node_key(root->fs_info, parent, 2093 pslot, 0); 2094 btrfs_set_node_key(parent, &mid_key, pslot); 2095 btrfs_mark_buffer_dirty(parent); 2096 } 2097 2098 /* update the path */ 2099 if (left) { 2100 if (btrfs_header_nritems(left) > orig_slot) { 2101 extent_buffer_get(left); 2102 /* left was locked after cow */ 2103 path->nodes[level] = left; 2104 path->slots[level + 1] -= 1; 2105 path->slots[level] = orig_slot; 2106 if (mid) { 2107 btrfs_tree_unlock(mid); 2108 free_extent_buffer(mid); 2109 } 2110 } else { 2111 orig_slot -= btrfs_header_nritems(left); 2112 path->slots[level] = orig_slot; 2113 } 2114 } 2115 /* double check we haven't messed things up */ 2116 if (orig_ptr != 2117 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2118 BUG(); 2119 enospc: 2120 if (right) { 2121 btrfs_tree_unlock(right); 2122 free_extent_buffer(right); 2123 } 2124 if (left) { 2125 if (path->nodes[level] != left) 2126 btrfs_tree_unlock(left); 2127 free_extent_buffer(left); 2128 } 2129 return ret; 2130 } 2131 2132 /* Node balancing for insertion. Here we only split or push nodes around 2133 * when they are completely full. This is also done top down, so we 2134 * have to be pessimistic. 2135 */ 2136 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2137 struct btrfs_root *root, 2138 struct btrfs_path *path, int level) 2139 { 2140 struct extent_buffer *right = NULL; 2141 struct extent_buffer *mid; 2142 struct extent_buffer *left = NULL; 2143 struct extent_buffer *parent = NULL; 2144 int ret = 0; 2145 int wret; 2146 int pslot; 2147 int orig_slot = path->slots[level]; 2148 2149 if (level == 0) 2150 return 1; 2151 2152 mid = path->nodes[level]; 2153 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2154 2155 if (level < BTRFS_MAX_LEVEL - 1) { 2156 parent = path->nodes[level + 1]; 2157 pslot = path->slots[level + 1]; 2158 } 2159 2160 if (!parent) 2161 return 1; 2162 2163 left = read_node_slot(root, parent, pslot - 1); 2164 2165 /* first, try to make some room in the middle buffer */ 2166 if (left) { 2167 u32 left_nr; 2168 2169 btrfs_tree_lock(left); 2170 btrfs_set_lock_blocking(left); 2171 2172 left_nr = btrfs_header_nritems(left); 2173 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2174 wret = 1; 2175 } else { 2176 ret = btrfs_cow_block(trans, root, left, parent, 2177 pslot - 1, &left); 2178 if (ret) 2179 wret = 1; 2180 else { 2181 wret = push_node_left(trans, root, 2182 left, mid, 0); 2183 } 2184 } 2185 if (wret < 0) 2186 ret = wret; 2187 if (wret == 0) { 2188 struct btrfs_disk_key disk_key; 2189 orig_slot += left_nr; 2190 btrfs_node_key(mid, &disk_key, 0); 2191 tree_mod_log_set_node_key(root->fs_info, parent, 2192 pslot, 0); 2193 btrfs_set_node_key(parent, &disk_key, pslot); 2194 btrfs_mark_buffer_dirty(parent); 2195 if (btrfs_header_nritems(left) > orig_slot) { 2196 path->nodes[level] = left; 2197 path->slots[level + 1] -= 1; 2198 path->slots[level] = orig_slot; 2199 btrfs_tree_unlock(mid); 2200 free_extent_buffer(mid); 2201 } else { 2202 orig_slot -= 2203 btrfs_header_nritems(left); 2204 path->slots[level] = orig_slot; 2205 btrfs_tree_unlock(left); 2206 free_extent_buffer(left); 2207 } 2208 return 0; 2209 } 2210 btrfs_tree_unlock(left); 2211 free_extent_buffer(left); 2212 } 2213 right = read_node_slot(root, parent, pslot + 1); 2214 2215 /* 2216 * then try to empty the right most buffer into the middle 2217 */ 2218 if (right) { 2219 u32 right_nr; 2220 2221 btrfs_tree_lock(right); 2222 btrfs_set_lock_blocking(right); 2223 2224 right_nr = btrfs_header_nritems(right); 2225 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2226 wret = 1; 2227 } else { 2228 ret = btrfs_cow_block(trans, root, right, 2229 parent, pslot + 1, 2230 &right); 2231 if (ret) 2232 wret = 1; 2233 else { 2234 wret = balance_node_right(trans, root, 2235 right, mid); 2236 } 2237 } 2238 if (wret < 0) 2239 ret = wret; 2240 if (wret == 0) { 2241 struct btrfs_disk_key disk_key; 2242 2243 btrfs_node_key(right, &disk_key, 0); 2244 tree_mod_log_set_node_key(root->fs_info, parent, 2245 pslot + 1, 0); 2246 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2247 btrfs_mark_buffer_dirty(parent); 2248 2249 if (btrfs_header_nritems(mid) <= orig_slot) { 2250 path->nodes[level] = right; 2251 path->slots[level + 1] += 1; 2252 path->slots[level] = orig_slot - 2253 btrfs_header_nritems(mid); 2254 btrfs_tree_unlock(mid); 2255 free_extent_buffer(mid); 2256 } else { 2257 btrfs_tree_unlock(right); 2258 free_extent_buffer(right); 2259 } 2260 return 0; 2261 } 2262 btrfs_tree_unlock(right); 2263 free_extent_buffer(right); 2264 } 2265 return 1; 2266 } 2267 2268 /* 2269 * readahead one full node of leaves, finding things that are close 2270 * to the block in 'slot', and triggering ra on them. 2271 */ 2272 static void reada_for_search(struct btrfs_root *root, 2273 struct btrfs_path *path, 2274 int level, int slot, u64 objectid) 2275 { 2276 struct extent_buffer *node; 2277 struct btrfs_disk_key disk_key; 2278 u32 nritems; 2279 u64 search; 2280 u64 target; 2281 u64 nread = 0; 2282 u64 gen; 2283 int direction = path->reada; 2284 struct extent_buffer *eb; 2285 u32 nr; 2286 u32 blocksize; 2287 u32 nscan = 0; 2288 2289 if (level != 1) 2290 return; 2291 2292 if (!path->nodes[level]) 2293 return; 2294 2295 node = path->nodes[level]; 2296 2297 search = btrfs_node_blockptr(node, slot); 2298 blocksize = btrfs_level_size(root, level - 1); 2299 eb = btrfs_find_tree_block(root, search, blocksize); 2300 if (eb) { 2301 free_extent_buffer(eb); 2302 return; 2303 } 2304 2305 target = search; 2306 2307 nritems = btrfs_header_nritems(node); 2308 nr = slot; 2309 2310 while (1) { 2311 if (direction < 0) { 2312 if (nr == 0) 2313 break; 2314 nr--; 2315 } else if (direction > 0) { 2316 nr++; 2317 if (nr >= nritems) 2318 break; 2319 } 2320 if (path->reada < 0 && objectid) { 2321 btrfs_node_key(node, &disk_key, nr); 2322 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2323 break; 2324 } 2325 search = btrfs_node_blockptr(node, nr); 2326 if ((search <= target && target - search <= 65536) || 2327 (search > target && search - target <= 65536)) { 2328 gen = btrfs_node_ptr_generation(node, nr); 2329 readahead_tree_block(root, search, blocksize, gen); 2330 nread += blocksize; 2331 } 2332 nscan++; 2333 if ((nread > 65536 || nscan > 32)) 2334 break; 2335 } 2336 } 2337 2338 static noinline void reada_for_balance(struct btrfs_root *root, 2339 struct btrfs_path *path, int level) 2340 { 2341 int slot; 2342 int nritems; 2343 struct extent_buffer *parent; 2344 struct extent_buffer *eb; 2345 u64 gen; 2346 u64 block1 = 0; 2347 u64 block2 = 0; 2348 int blocksize; 2349 2350 parent = path->nodes[level + 1]; 2351 if (!parent) 2352 return; 2353 2354 nritems = btrfs_header_nritems(parent); 2355 slot = path->slots[level + 1]; 2356 blocksize = btrfs_level_size(root, level); 2357 2358 if (slot > 0) { 2359 block1 = btrfs_node_blockptr(parent, slot - 1); 2360 gen = btrfs_node_ptr_generation(parent, slot - 1); 2361 eb = btrfs_find_tree_block(root, block1, blocksize); 2362 /* 2363 * if we get -eagain from btrfs_buffer_uptodate, we 2364 * don't want to return eagain here. That will loop 2365 * forever 2366 */ 2367 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2368 block1 = 0; 2369 free_extent_buffer(eb); 2370 } 2371 if (slot + 1 < nritems) { 2372 block2 = btrfs_node_blockptr(parent, slot + 1); 2373 gen = btrfs_node_ptr_generation(parent, slot + 1); 2374 eb = btrfs_find_tree_block(root, block2, blocksize); 2375 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2376 block2 = 0; 2377 free_extent_buffer(eb); 2378 } 2379 2380 if (block1) 2381 readahead_tree_block(root, block1, blocksize, 0); 2382 if (block2) 2383 readahead_tree_block(root, block2, blocksize, 0); 2384 } 2385 2386 2387 /* 2388 * when we walk down the tree, it is usually safe to unlock the higher layers 2389 * in the tree. The exceptions are when our path goes through slot 0, because 2390 * operations on the tree might require changing key pointers higher up in the 2391 * tree. 2392 * 2393 * callers might also have set path->keep_locks, which tells this code to keep 2394 * the lock if the path points to the last slot in the block. This is part of 2395 * walking through the tree, and selecting the next slot in the higher block. 2396 * 2397 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2398 * if lowest_unlock is 1, level 0 won't be unlocked 2399 */ 2400 static noinline void unlock_up(struct btrfs_path *path, int level, 2401 int lowest_unlock, int min_write_lock_level, 2402 int *write_lock_level) 2403 { 2404 int i; 2405 int skip_level = level; 2406 int no_skips = 0; 2407 struct extent_buffer *t; 2408 2409 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2410 if (!path->nodes[i]) 2411 break; 2412 if (!path->locks[i]) 2413 break; 2414 if (!no_skips && path->slots[i] == 0) { 2415 skip_level = i + 1; 2416 continue; 2417 } 2418 if (!no_skips && path->keep_locks) { 2419 u32 nritems; 2420 t = path->nodes[i]; 2421 nritems = btrfs_header_nritems(t); 2422 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2423 skip_level = i + 1; 2424 continue; 2425 } 2426 } 2427 if (skip_level < i && i >= lowest_unlock) 2428 no_skips = 1; 2429 2430 t = path->nodes[i]; 2431 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2432 btrfs_tree_unlock_rw(t, path->locks[i]); 2433 path->locks[i] = 0; 2434 if (write_lock_level && 2435 i > min_write_lock_level && 2436 i <= *write_lock_level) { 2437 *write_lock_level = i - 1; 2438 } 2439 } 2440 } 2441 } 2442 2443 /* 2444 * This releases any locks held in the path starting at level and 2445 * going all the way up to the root. 2446 * 2447 * btrfs_search_slot will keep the lock held on higher nodes in a few 2448 * corner cases, such as COW of the block at slot zero in the node. This 2449 * ignores those rules, and it should only be called when there are no 2450 * more updates to be done higher up in the tree. 2451 */ 2452 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2453 { 2454 int i; 2455 2456 if (path->keep_locks) 2457 return; 2458 2459 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2460 if (!path->nodes[i]) 2461 continue; 2462 if (!path->locks[i]) 2463 continue; 2464 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2465 path->locks[i] = 0; 2466 } 2467 } 2468 2469 /* 2470 * helper function for btrfs_search_slot. The goal is to find a block 2471 * in cache without setting the path to blocking. If we find the block 2472 * we return zero and the path is unchanged. 2473 * 2474 * If we can't find the block, we set the path blocking and do some 2475 * reada. -EAGAIN is returned and the search must be repeated. 2476 */ 2477 static int 2478 read_block_for_search(struct btrfs_trans_handle *trans, 2479 struct btrfs_root *root, struct btrfs_path *p, 2480 struct extent_buffer **eb_ret, int level, int slot, 2481 struct btrfs_key *key, u64 time_seq) 2482 { 2483 u64 blocknr; 2484 u64 gen; 2485 u32 blocksize; 2486 struct extent_buffer *b = *eb_ret; 2487 struct extent_buffer *tmp; 2488 int ret; 2489 2490 blocknr = btrfs_node_blockptr(b, slot); 2491 gen = btrfs_node_ptr_generation(b, slot); 2492 blocksize = btrfs_level_size(root, level - 1); 2493 2494 tmp = btrfs_find_tree_block(root, blocknr, blocksize); 2495 if (tmp) { 2496 /* first we do an atomic uptodate check */ 2497 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2498 *eb_ret = tmp; 2499 return 0; 2500 } 2501 2502 /* the pages were up to date, but we failed 2503 * the generation number check. Do a full 2504 * read for the generation number that is correct. 2505 * We must do this without dropping locks so 2506 * we can trust our generation number 2507 */ 2508 btrfs_set_path_blocking(p); 2509 2510 /* now we're allowed to do a blocking uptodate check */ 2511 ret = btrfs_read_buffer(tmp, gen); 2512 if (!ret) { 2513 *eb_ret = tmp; 2514 return 0; 2515 } 2516 free_extent_buffer(tmp); 2517 btrfs_release_path(p); 2518 return -EIO; 2519 } 2520 2521 /* 2522 * reduce lock contention at high levels 2523 * of the btree by dropping locks before 2524 * we read. Don't release the lock on the current 2525 * level because we need to walk this node to figure 2526 * out which blocks to read. 2527 */ 2528 btrfs_unlock_up_safe(p, level + 1); 2529 btrfs_set_path_blocking(p); 2530 2531 free_extent_buffer(tmp); 2532 if (p->reada) 2533 reada_for_search(root, p, level, slot, key->objectid); 2534 2535 btrfs_release_path(p); 2536 2537 ret = -EAGAIN; 2538 tmp = read_tree_block(root, blocknr, blocksize, 0); 2539 if (tmp) { 2540 /* 2541 * If the read above didn't mark this buffer up to date, 2542 * it will never end up being up to date. Set ret to EIO now 2543 * and give up so that our caller doesn't loop forever 2544 * on our EAGAINs. 2545 */ 2546 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2547 ret = -EIO; 2548 free_extent_buffer(tmp); 2549 } 2550 return ret; 2551 } 2552 2553 /* 2554 * helper function for btrfs_search_slot. This does all of the checks 2555 * for node-level blocks and does any balancing required based on 2556 * the ins_len. 2557 * 2558 * If no extra work was required, zero is returned. If we had to 2559 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2560 * start over 2561 */ 2562 static int 2563 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2564 struct btrfs_root *root, struct btrfs_path *p, 2565 struct extent_buffer *b, int level, int ins_len, 2566 int *write_lock_level) 2567 { 2568 int ret; 2569 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2570 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2571 int sret; 2572 2573 if (*write_lock_level < level + 1) { 2574 *write_lock_level = level + 1; 2575 btrfs_release_path(p); 2576 goto again; 2577 } 2578 2579 btrfs_set_path_blocking(p); 2580 reada_for_balance(root, p, level); 2581 sret = split_node(trans, root, p, level); 2582 btrfs_clear_path_blocking(p, NULL, 0); 2583 2584 BUG_ON(sret > 0); 2585 if (sret) { 2586 ret = sret; 2587 goto done; 2588 } 2589 b = p->nodes[level]; 2590 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2591 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2592 int sret; 2593 2594 if (*write_lock_level < level + 1) { 2595 *write_lock_level = level + 1; 2596 btrfs_release_path(p); 2597 goto again; 2598 } 2599 2600 btrfs_set_path_blocking(p); 2601 reada_for_balance(root, p, level); 2602 sret = balance_level(trans, root, p, level); 2603 btrfs_clear_path_blocking(p, NULL, 0); 2604 2605 if (sret) { 2606 ret = sret; 2607 goto done; 2608 } 2609 b = p->nodes[level]; 2610 if (!b) { 2611 btrfs_release_path(p); 2612 goto again; 2613 } 2614 BUG_ON(btrfs_header_nritems(b) == 1); 2615 } 2616 return 0; 2617 2618 again: 2619 ret = -EAGAIN; 2620 done: 2621 return ret; 2622 } 2623 2624 static void key_search_validate(struct extent_buffer *b, 2625 struct btrfs_key *key, 2626 int level) 2627 { 2628 #ifdef CONFIG_BTRFS_ASSERT 2629 struct btrfs_disk_key disk_key; 2630 2631 btrfs_cpu_key_to_disk(&disk_key, key); 2632 2633 if (level == 0) 2634 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2635 offsetof(struct btrfs_leaf, items[0].key), 2636 sizeof(disk_key))); 2637 else 2638 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2639 offsetof(struct btrfs_node, ptrs[0].key), 2640 sizeof(disk_key))); 2641 #endif 2642 } 2643 2644 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2645 int level, int *prev_cmp, int *slot) 2646 { 2647 if (*prev_cmp != 0) { 2648 *prev_cmp = bin_search(b, key, level, slot); 2649 return *prev_cmp; 2650 } 2651 2652 key_search_validate(b, key, level); 2653 *slot = 0; 2654 2655 return 0; 2656 } 2657 2658 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *found_path, 2659 u64 iobjectid, u64 ioff, u8 key_type, 2660 struct btrfs_key *found_key) 2661 { 2662 int ret; 2663 struct btrfs_key key; 2664 struct extent_buffer *eb; 2665 struct btrfs_path *path; 2666 2667 key.type = key_type; 2668 key.objectid = iobjectid; 2669 key.offset = ioff; 2670 2671 if (found_path == NULL) { 2672 path = btrfs_alloc_path(); 2673 if (!path) 2674 return -ENOMEM; 2675 } else 2676 path = found_path; 2677 2678 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2679 if ((ret < 0) || (found_key == NULL)) { 2680 if (path != found_path) 2681 btrfs_free_path(path); 2682 return ret; 2683 } 2684 2685 eb = path->nodes[0]; 2686 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2687 ret = btrfs_next_leaf(fs_root, path); 2688 if (ret) 2689 return ret; 2690 eb = path->nodes[0]; 2691 } 2692 2693 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2694 if (found_key->type != key.type || 2695 found_key->objectid != key.objectid) 2696 return 1; 2697 2698 return 0; 2699 } 2700 2701 /* 2702 * look for key in the tree. path is filled in with nodes along the way 2703 * if key is found, we return zero and you can find the item in the leaf 2704 * level of the path (level 0) 2705 * 2706 * If the key isn't found, the path points to the slot where it should 2707 * be inserted, and 1 is returned. If there are other errors during the 2708 * search a negative error number is returned. 2709 * 2710 * if ins_len > 0, nodes and leaves will be split as we walk down the 2711 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2712 * possible) 2713 */ 2714 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2715 *root, struct btrfs_key *key, struct btrfs_path *p, int 2716 ins_len, int cow) 2717 { 2718 struct extent_buffer *b; 2719 int slot; 2720 int ret; 2721 int err; 2722 int level; 2723 int lowest_unlock = 1; 2724 int root_lock; 2725 /* everything at write_lock_level or lower must be write locked */ 2726 int write_lock_level = 0; 2727 u8 lowest_level = 0; 2728 int min_write_lock_level; 2729 int prev_cmp; 2730 2731 lowest_level = p->lowest_level; 2732 WARN_ON(lowest_level && ins_len > 0); 2733 WARN_ON(p->nodes[0] != NULL); 2734 BUG_ON(!cow && ins_len); 2735 2736 if (ins_len < 0) { 2737 lowest_unlock = 2; 2738 2739 /* when we are removing items, we might have to go up to level 2740 * two as we update tree pointers Make sure we keep write 2741 * for those levels as well 2742 */ 2743 write_lock_level = 2; 2744 } else if (ins_len > 0) { 2745 /* 2746 * for inserting items, make sure we have a write lock on 2747 * level 1 so we can update keys 2748 */ 2749 write_lock_level = 1; 2750 } 2751 2752 if (!cow) 2753 write_lock_level = -1; 2754 2755 if (cow && (p->keep_locks || p->lowest_level)) 2756 write_lock_level = BTRFS_MAX_LEVEL; 2757 2758 min_write_lock_level = write_lock_level; 2759 2760 again: 2761 prev_cmp = -1; 2762 /* 2763 * we try very hard to do read locks on the root 2764 */ 2765 root_lock = BTRFS_READ_LOCK; 2766 level = 0; 2767 if (p->search_commit_root) { 2768 /* 2769 * the commit roots are read only 2770 * so we always do read locks 2771 */ 2772 b = root->commit_root; 2773 extent_buffer_get(b); 2774 level = btrfs_header_level(b); 2775 if (!p->skip_locking) 2776 btrfs_tree_read_lock(b); 2777 } else { 2778 if (p->skip_locking) { 2779 b = btrfs_root_node(root); 2780 level = btrfs_header_level(b); 2781 } else { 2782 /* we don't know the level of the root node 2783 * until we actually have it read locked 2784 */ 2785 b = btrfs_read_lock_root_node(root); 2786 level = btrfs_header_level(b); 2787 if (level <= write_lock_level) { 2788 /* whoops, must trade for write lock */ 2789 btrfs_tree_read_unlock(b); 2790 free_extent_buffer(b); 2791 b = btrfs_lock_root_node(root); 2792 root_lock = BTRFS_WRITE_LOCK; 2793 2794 /* the level might have changed, check again */ 2795 level = btrfs_header_level(b); 2796 } 2797 } 2798 } 2799 p->nodes[level] = b; 2800 if (!p->skip_locking) 2801 p->locks[level] = root_lock; 2802 2803 while (b) { 2804 level = btrfs_header_level(b); 2805 2806 /* 2807 * setup the path here so we can release it under lock 2808 * contention with the cow code 2809 */ 2810 if (cow) { 2811 /* 2812 * if we don't really need to cow this block 2813 * then we don't want to set the path blocking, 2814 * so we test it here 2815 */ 2816 if (!should_cow_block(trans, root, b)) 2817 goto cow_done; 2818 2819 btrfs_set_path_blocking(p); 2820 2821 /* 2822 * must have write locks on this node and the 2823 * parent 2824 */ 2825 if (level > write_lock_level || 2826 (level + 1 > write_lock_level && 2827 level + 1 < BTRFS_MAX_LEVEL && 2828 p->nodes[level + 1])) { 2829 write_lock_level = level + 1; 2830 btrfs_release_path(p); 2831 goto again; 2832 } 2833 2834 err = btrfs_cow_block(trans, root, b, 2835 p->nodes[level + 1], 2836 p->slots[level + 1], &b); 2837 if (err) { 2838 ret = err; 2839 goto done; 2840 } 2841 } 2842 cow_done: 2843 p->nodes[level] = b; 2844 btrfs_clear_path_blocking(p, NULL, 0); 2845 2846 /* 2847 * we have a lock on b and as long as we aren't changing 2848 * the tree, there is no way to for the items in b to change. 2849 * It is safe to drop the lock on our parent before we 2850 * go through the expensive btree search on b. 2851 * 2852 * If we're inserting or deleting (ins_len != 0), then we might 2853 * be changing slot zero, which may require changing the parent. 2854 * So, we can't drop the lock until after we know which slot 2855 * we're operating on. 2856 */ 2857 if (!ins_len && !p->keep_locks) { 2858 int u = level + 1; 2859 2860 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2861 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2862 p->locks[u] = 0; 2863 } 2864 } 2865 2866 ret = key_search(b, key, level, &prev_cmp, &slot); 2867 2868 if (level != 0) { 2869 int dec = 0; 2870 if (ret && slot > 0) { 2871 dec = 1; 2872 slot -= 1; 2873 } 2874 p->slots[level] = slot; 2875 err = setup_nodes_for_search(trans, root, p, b, level, 2876 ins_len, &write_lock_level); 2877 if (err == -EAGAIN) 2878 goto again; 2879 if (err) { 2880 ret = err; 2881 goto done; 2882 } 2883 b = p->nodes[level]; 2884 slot = p->slots[level]; 2885 2886 /* 2887 * slot 0 is special, if we change the key 2888 * we have to update the parent pointer 2889 * which means we must have a write lock 2890 * on the parent 2891 */ 2892 if (slot == 0 && ins_len && 2893 write_lock_level < level + 1) { 2894 write_lock_level = level + 1; 2895 btrfs_release_path(p); 2896 goto again; 2897 } 2898 2899 unlock_up(p, level, lowest_unlock, 2900 min_write_lock_level, &write_lock_level); 2901 2902 if (level == lowest_level) { 2903 if (dec) 2904 p->slots[level]++; 2905 goto done; 2906 } 2907 2908 err = read_block_for_search(trans, root, p, 2909 &b, level, slot, key, 0); 2910 if (err == -EAGAIN) 2911 goto again; 2912 if (err) { 2913 ret = err; 2914 goto done; 2915 } 2916 2917 if (!p->skip_locking) { 2918 level = btrfs_header_level(b); 2919 if (level <= write_lock_level) { 2920 err = btrfs_try_tree_write_lock(b); 2921 if (!err) { 2922 btrfs_set_path_blocking(p); 2923 btrfs_tree_lock(b); 2924 btrfs_clear_path_blocking(p, b, 2925 BTRFS_WRITE_LOCK); 2926 } 2927 p->locks[level] = BTRFS_WRITE_LOCK; 2928 } else { 2929 err = btrfs_try_tree_read_lock(b); 2930 if (!err) { 2931 btrfs_set_path_blocking(p); 2932 btrfs_tree_read_lock(b); 2933 btrfs_clear_path_blocking(p, b, 2934 BTRFS_READ_LOCK); 2935 } 2936 p->locks[level] = BTRFS_READ_LOCK; 2937 } 2938 p->nodes[level] = b; 2939 } 2940 } else { 2941 p->slots[level] = slot; 2942 if (ins_len > 0 && 2943 btrfs_leaf_free_space(root, b) < ins_len) { 2944 if (write_lock_level < 1) { 2945 write_lock_level = 1; 2946 btrfs_release_path(p); 2947 goto again; 2948 } 2949 2950 btrfs_set_path_blocking(p); 2951 err = split_leaf(trans, root, key, 2952 p, ins_len, ret == 0); 2953 btrfs_clear_path_blocking(p, NULL, 0); 2954 2955 BUG_ON(err > 0); 2956 if (err) { 2957 ret = err; 2958 goto done; 2959 } 2960 } 2961 if (!p->search_for_split) 2962 unlock_up(p, level, lowest_unlock, 2963 min_write_lock_level, &write_lock_level); 2964 goto done; 2965 } 2966 } 2967 ret = 1; 2968 done: 2969 /* 2970 * we don't really know what they plan on doing with the path 2971 * from here on, so for now just mark it as blocking 2972 */ 2973 if (!p->leave_spinning) 2974 btrfs_set_path_blocking(p); 2975 if (ret < 0) 2976 btrfs_release_path(p); 2977 return ret; 2978 } 2979 2980 /* 2981 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2982 * current state of the tree together with the operations recorded in the tree 2983 * modification log to search for the key in a previous version of this tree, as 2984 * denoted by the time_seq parameter. 2985 * 2986 * Naturally, there is no support for insert, delete or cow operations. 2987 * 2988 * The resulting path and return value will be set up as if we called 2989 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2990 */ 2991 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2992 struct btrfs_path *p, u64 time_seq) 2993 { 2994 struct extent_buffer *b; 2995 int slot; 2996 int ret; 2997 int err; 2998 int level; 2999 int lowest_unlock = 1; 3000 u8 lowest_level = 0; 3001 int prev_cmp = -1; 3002 3003 lowest_level = p->lowest_level; 3004 WARN_ON(p->nodes[0] != NULL); 3005 3006 if (p->search_commit_root) { 3007 BUG_ON(time_seq); 3008 return btrfs_search_slot(NULL, root, key, p, 0, 0); 3009 } 3010 3011 again: 3012 b = get_old_root(root, time_seq); 3013 level = btrfs_header_level(b); 3014 p->locks[level] = BTRFS_READ_LOCK; 3015 3016 while (b) { 3017 level = btrfs_header_level(b); 3018 p->nodes[level] = b; 3019 btrfs_clear_path_blocking(p, NULL, 0); 3020 3021 /* 3022 * we have a lock on b and as long as we aren't changing 3023 * the tree, there is no way to for the items in b to change. 3024 * It is safe to drop the lock on our parent before we 3025 * go through the expensive btree search on b. 3026 */ 3027 btrfs_unlock_up_safe(p, level + 1); 3028 3029 /* 3030 * Since we can unwind eb's we want to do a real search every 3031 * time. 3032 */ 3033 prev_cmp = -1; 3034 ret = key_search(b, key, level, &prev_cmp, &slot); 3035 3036 if (level != 0) { 3037 int dec = 0; 3038 if (ret && slot > 0) { 3039 dec = 1; 3040 slot -= 1; 3041 } 3042 p->slots[level] = slot; 3043 unlock_up(p, level, lowest_unlock, 0, NULL); 3044 3045 if (level == lowest_level) { 3046 if (dec) 3047 p->slots[level]++; 3048 goto done; 3049 } 3050 3051 err = read_block_for_search(NULL, root, p, &b, level, 3052 slot, key, time_seq); 3053 if (err == -EAGAIN) 3054 goto again; 3055 if (err) { 3056 ret = err; 3057 goto done; 3058 } 3059 3060 level = btrfs_header_level(b); 3061 err = btrfs_try_tree_read_lock(b); 3062 if (!err) { 3063 btrfs_set_path_blocking(p); 3064 btrfs_tree_read_lock(b); 3065 btrfs_clear_path_blocking(p, b, 3066 BTRFS_READ_LOCK); 3067 } 3068 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3069 if (!b) { 3070 ret = -ENOMEM; 3071 goto done; 3072 } 3073 p->locks[level] = BTRFS_READ_LOCK; 3074 p->nodes[level] = b; 3075 } else { 3076 p->slots[level] = slot; 3077 unlock_up(p, level, lowest_unlock, 0, NULL); 3078 goto done; 3079 } 3080 } 3081 ret = 1; 3082 done: 3083 if (!p->leave_spinning) 3084 btrfs_set_path_blocking(p); 3085 if (ret < 0) 3086 btrfs_release_path(p); 3087 3088 return ret; 3089 } 3090 3091 /* 3092 * helper to use instead of search slot if no exact match is needed but 3093 * instead the next or previous item should be returned. 3094 * When find_higher is true, the next higher item is returned, the next lower 3095 * otherwise. 3096 * When return_any and find_higher are both true, and no higher item is found, 3097 * return the next lower instead. 3098 * When return_any is true and find_higher is false, and no lower item is found, 3099 * return the next higher instead. 3100 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3101 * < 0 on error 3102 */ 3103 int btrfs_search_slot_for_read(struct btrfs_root *root, 3104 struct btrfs_key *key, struct btrfs_path *p, 3105 int find_higher, int return_any) 3106 { 3107 int ret; 3108 struct extent_buffer *leaf; 3109 3110 again: 3111 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3112 if (ret <= 0) 3113 return ret; 3114 /* 3115 * a return value of 1 means the path is at the position where the 3116 * item should be inserted. Normally this is the next bigger item, 3117 * but in case the previous item is the last in a leaf, path points 3118 * to the first free slot in the previous leaf, i.e. at an invalid 3119 * item. 3120 */ 3121 leaf = p->nodes[0]; 3122 3123 if (find_higher) { 3124 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3125 ret = btrfs_next_leaf(root, p); 3126 if (ret <= 0) 3127 return ret; 3128 if (!return_any) 3129 return 1; 3130 /* 3131 * no higher item found, return the next 3132 * lower instead 3133 */ 3134 return_any = 0; 3135 find_higher = 0; 3136 btrfs_release_path(p); 3137 goto again; 3138 } 3139 } else { 3140 if (p->slots[0] == 0) { 3141 ret = btrfs_prev_leaf(root, p); 3142 if (ret < 0) 3143 return ret; 3144 if (!ret) { 3145 leaf = p->nodes[0]; 3146 if (p->slots[0] == btrfs_header_nritems(leaf)) 3147 p->slots[0]--; 3148 return 0; 3149 } 3150 if (!return_any) 3151 return 1; 3152 /* 3153 * no lower item found, return the next 3154 * higher instead 3155 */ 3156 return_any = 0; 3157 find_higher = 1; 3158 btrfs_release_path(p); 3159 goto again; 3160 } else { 3161 --p->slots[0]; 3162 } 3163 } 3164 return 0; 3165 } 3166 3167 /* 3168 * adjust the pointers going up the tree, starting at level 3169 * making sure the right key of each node is points to 'key'. 3170 * This is used after shifting pointers to the left, so it stops 3171 * fixing up pointers when a given leaf/node is not in slot 0 of the 3172 * higher levels 3173 * 3174 */ 3175 static void fixup_low_keys(struct btrfs_root *root, struct btrfs_path *path, 3176 struct btrfs_disk_key *key, int level) 3177 { 3178 int i; 3179 struct extent_buffer *t; 3180 3181 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3182 int tslot = path->slots[i]; 3183 if (!path->nodes[i]) 3184 break; 3185 t = path->nodes[i]; 3186 tree_mod_log_set_node_key(root->fs_info, t, tslot, 1); 3187 btrfs_set_node_key(t, key, tslot); 3188 btrfs_mark_buffer_dirty(path->nodes[i]); 3189 if (tslot != 0) 3190 break; 3191 } 3192 } 3193 3194 /* 3195 * update item key. 3196 * 3197 * This function isn't completely safe. It's the caller's responsibility 3198 * that the new key won't break the order 3199 */ 3200 void btrfs_set_item_key_safe(struct btrfs_root *root, struct btrfs_path *path, 3201 struct btrfs_key *new_key) 3202 { 3203 struct btrfs_disk_key disk_key; 3204 struct extent_buffer *eb; 3205 int slot; 3206 3207 eb = path->nodes[0]; 3208 slot = path->slots[0]; 3209 if (slot > 0) { 3210 btrfs_item_key(eb, &disk_key, slot - 1); 3211 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3212 } 3213 if (slot < btrfs_header_nritems(eb) - 1) { 3214 btrfs_item_key(eb, &disk_key, slot + 1); 3215 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3216 } 3217 3218 btrfs_cpu_key_to_disk(&disk_key, new_key); 3219 btrfs_set_item_key(eb, &disk_key, slot); 3220 btrfs_mark_buffer_dirty(eb); 3221 if (slot == 0) 3222 fixup_low_keys(root, path, &disk_key, 1); 3223 } 3224 3225 /* 3226 * try to push data from one node into the next node left in the 3227 * tree. 3228 * 3229 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3230 * error, and > 0 if there was no room in the left hand block. 3231 */ 3232 static int push_node_left(struct btrfs_trans_handle *trans, 3233 struct btrfs_root *root, struct extent_buffer *dst, 3234 struct extent_buffer *src, int empty) 3235 { 3236 int push_items = 0; 3237 int src_nritems; 3238 int dst_nritems; 3239 int ret = 0; 3240 3241 src_nritems = btrfs_header_nritems(src); 3242 dst_nritems = btrfs_header_nritems(dst); 3243 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3244 WARN_ON(btrfs_header_generation(src) != trans->transid); 3245 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3246 3247 if (!empty && src_nritems <= 8) 3248 return 1; 3249 3250 if (push_items <= 0) 3251 return 1; 3252 3253 if (empty) { 3254 push_items = min(src_nritems, push_items); 3255 if (push_items < src_nritems) { 3256 /* leave at least 8 pointers in the node if 3257 * we aren't going to empty it 3258 */ 3259 if (src_nritems - push_items < 8) { 3260 if (push_items <= 8) 3261 return 1; 3262 push_items -= 8; 3263 } 3264 } 3265 } else 3266 push_items = min(src_nritems - 8, push_items); 3267 3268 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3269 push_items); 3270 if (ret) { 3271 btrfs_abort_transaction(trans, root, ret); 3272 return ret; 3273 } 3274 copy_extent_buffer(dst, src, 3275 btrfs_node_key_ptr_offset(dst_nritems), 3276 btrfs_node_key_ptr_offset(0), 3277 push_items * sizeof(struct btrfs_key_ptr)); 3278 3279 if (push_items < src_nritems) { 3280 /* 3281 * don't call tree_mod_log_eb_move here, key removal was already 3282 * fully logged by tree_mod_log_eb_copy above. 3283 */ 3284 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3285 btrfs_node_key_ptr_offset(push_items), 3286 (src_nritems - push_items) * 3287 sizeof(struct btrfs_key_ptr)); 3288 } 3289 btrfs_set_header_nritems(src, src_nritems - push_items); 3290 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3291 btrfs_mark_buffer_dirty(src); 3292 btrfs_mark_buffer_dirty(dst); 3293 3294 return ret; 3295 } 3296 3297 /* 3298 * try to push data from one node into the next node right in the 3299 * tree. 3300 * 3301 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3302 * error, and > 0 if there was no room in the right hand block. 3303 * 3304 * this will only push up to 1/2 the contents of the left node over 3305 */ 3306 static int balance_node_right(struct btrfs_trans_handle *trans, 3307 struct btrfs_root *root, 3308 struct extent_buffer *dst, 3309 struct extent_buffer *src) 3310 { 3311 int push_items = 0; 3312 int max_push; 3313 int src_nritems; 3314 int dst_nritems; 3315 int ret = 0; 3316 3317 WARN_ON(btrfs_header_generation(src) != trans->transid); 3318 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3319 3320 src_nritems = btrfs_header_nritems(src); 3321 dst_nritems = btrfs_header_nritems(dst); 3322 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3323 if (push_items <= 0) 3324 return 1; 3325 3326 if (src_nritems < 4) 3327 return 1; 3328 3329 max_push = src_nritems / 2 + 1; 3330 /* don't try to empty the node */ 3331 if (max_push >= src_nritems) 3332 return 1; 3333 3334 if (max_push < push_items) 3335 push_items = max_push; 3336 3337 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3338 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3339 btrfs_node_key_ptr_offset(0), 3340 (dst_nritems) * 3341 sizeof(struct btrfs_key_ptr)); 3342 3343 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3344 src_nritems - push_items, push_items); 3345 if (ret) { 3346 btrfs_abort_transaction(trans, root, ret); 3347 return ret; 3348 } 3349 copy_extent_buffer(dst, src, 3350 btrfs_node_key_ptr_offset(0), 3351 btrfs_node_key_ptr_offset(src_nritems - push_items), 3352 push_items * sizeof(struct btrfs_key_ptr)); 3353 3354 btrfs_set_header_nritems(src, src_nritems - push_items); 3355 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3356 3357 btrfs_mark_buffer_dirty(src); 3358 btrfs_mark_buffer_dirty(dst); 3359 3360 return ret; 3361 } 3362 3363 /* 3364 * helper function to insert a new root level in the tree. 3365 * A new node is allocated, and a single item is inserted to 3366 * point to the existing root 3367 * 3368 * returns zero on success or < 0 on failure. 3369 */ 3370 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3371 struct btrfs_root *root, 3372 struct btrfs_path *path, int level) 3373 { 3374 u64 lower_gen; 3375 struct extent_buffer *lower; 3376 struct extent_buffer *c; 3377 struct extent_buffer *old; 3378 struct btrfs_disk_key lower_key; 3379 3380 BUG_ON(path->nodes[level]); 3381 BUG_ON(path->nodes[level-1] != root->node); 3382 3383 lower = path->nodes[level-1]; 3384 if (level == 1) 3385 btrfs_item_key(lower, &lower_key, 0); 3386 else 3387 btrfs_node_key(lower, &lower_key, 0); 3388 3389 c = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3390 root->root_key.objectid, &lower_key, 3391 level, root->node->start, 0); 3392 if (IS_ERR(c)) 3393 return PTR_ERR(c); 3394 3395 root_add_used(root, root->nodesize); 3396 3397 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3398 btrfs_set_header_nritems(c, 1); 3399 btrfs_set_header_level(c, level); 3400 btrfs_set_header_bytenr(c, c->start); 3401 btrfs_set_header_generation(c, trans->transid); 3402 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3403 btrfs_set_header_owner(c, root->root_key.objectid); 3404 3405 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3406 BTRFS_FSID_SIZE); 3407 3408 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3409 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3410 3411 btrfs_set_node_key(c, &lower_key, 0); 3412 btrfs_set_node_blockptr(c, 0, lower->start); 3413 lower_gen = btrfs_header_generation(lower); 3414 WARN_ON(lower_gen != trans->transid); 3415 3416 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3417 3418 btrfs_mark_buffer_dirty(c); 3419 3420 old = root->node; 3421 tree_mod_log_set_root_pointer(root, c, 0); 3422 rcu_assign_pointer(root->node, c); 3423 3424 /* the super has an extra ref to root->node */ 3425 free_extent_buffer(old); 3426 3427 add_root_to_dirty_list(root); 3428 extent_buffer_get(c); 3429 path->nodes[level] = c; 3430 path->locks[level] = BTRFS_WRITE_LOCK; 3431 path->slots[level] = 0; 3432 return 0; 3433 } 3434 3435 /* 3436 * worker function to insert a single pointer in a node. 3437 * the node should have enough room for the pointer already 3438 * 3439 * slot and level indicate where you want the key to go, and 3440 * blocknr is the block the key points to. 3441 */ 3442 static void insert_ptr(struct btrfs_trans_handle *trans, 3443 struct btrfs_root *root, struct btrfs_path *path, 3444 struct btrfs_disk_key *key, u64 bytenr, 3445 int slot, int level) 3446 { 3447 struct extent_buffer *lower; 3448 int nritems; 3449 int ret; 3450 3451 BUG_ON(!path->nodes[level]); 3452 btrfs_assert_tree_locked(path->nodes[level]); 3453 lower = path->nodes[level]; 3454 nritems = btrfs_header_nritems(lower); 3455 BUG_ON(slot > nritems); 3456 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3457 if (slot != nritems) { 3458 if (level) 3459 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3460 slot, nritems - slot); 3461 memmove_extent_buffer(lower, 3462 btrfs_node_key_ptr_offset(slot + 1), 3463 btrfs_node_key_ptr_offset(slot), 3464 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3465 } 3466 if (level) { 3467 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3468 MOD_LOG_KEY_ADD, GFP_NOFS); 3469 BUG_ON(ret < 0); 3470 } 3471 btrfs_set_node_key(lower, key, slot); 3472 btrfs_set_node_blockptr(lower, slot, bytenr); 3473 WARN_ON(trans->transid == 0); 3474 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3475 btrfs_set_header_nritems(lower, nritems + 1); 3476 btrfs_mark_buffer_dirty(lower); 3477 } 3478 3479 /* 3480 * split the node at the specified level in path in two. 3481 * The path is corrected to point to the appropriate node after the split 3482 * 3483 * Before splitting this tries to make some room in the node by pushing 3484 * left and right, if either one works, it returns right away. 3485 * 3486 * returns 0 on success and < 0 on failure 3487 */ 3488 static noinline int split_node(struct btrfs_trans_handle *trans, 3489 struct btrfs_root *root, 3490 struct btrfs_path *path, int level) 3491 { 3492 struct extent_buffer *c; 3493 struct extent_buffer *split; 3494 struct btrfs_disk_key disk_key; 3495 int mid; 3496 int ret; 3497 u32 c_nritems; 3498 3499 c = path->nodes[level]; 3500 WARN_ON(btrfs_header_generation(c) != trans->transid); 3501 if (c == root->node) { 3502 /* 3503 * trying to split the root, lets make a new one 3504 * 3505 * tree mod log: We don't log_removal old root in 3506 * insert_new_root, because that root buffer will be kept as a 3507 * normal node. We are going to log removal of half of the 3508 * elements below with tree_mod_log_eb_copy. We're holding a 3509 * tree lock on the buffer, which is why we cannot race with 3510 * other tree_mod_log users. 3511 */ 3512 ret = insert_new_root(trans, root, path, level + 1); 3513 if (ret) 3514 return ret; 3515 } else { 3516 ret = push_nodes_for_insert(trans, root, path, level); 3517 c = path->nodes[level]; 3518 if (!ret && btrfs_header_nritems(c) < 3519 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3520 return 0; 3521 if (ret < 0) 3522 return ret; 3523 } 3524 3525 c_nritems = btrfs_header_nritems(c); 3526 mid = (c_nritems + 1) / 2; 3527 btrfs_node_key(c, &disk_key, mid); 3528 3529 split = btrfs_alloc_free_block(trans, root, root->nodesize, 0, 3530 root->root_key.objectid, 3531 &disk_key, level, c->start, 0); 3532 if (IS_ERR(split)) 3533 return PTR_ERR(split); 3534 3535 root_add_used(root, root->nodesize); 3536 3537 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3538 btrfs_set_header_level(split, btrfs_header_level(c)); 3539 btrfs_set_header_bytenr(split, split->start); 3540 btrfs_set_header_generation(split, trans->transid); 3541 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3542 btrfs_set_header_owner(split, root->root_key.objectid); 3543 write_extent_buffer(split, root->fs_info->fsid, 3544 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3545 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3546 btrfs_header_chunk_tree_uuid(split), 3547 BTRFS_UUID_SIZE); 3548 3549 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3550 mid, c_nritems - mid); 3551 if (ret) { 3552 btrfs_abort_transaction(trans, root, ret); 3553 return ret; 3554 } 3555 copy_extent_buffer(split, c, 3556 btrfs_node_key_ptr_offset(0), 3557 btrfs_node_key_ptr_offset(mid), 3558 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3559 btrfs_set_header_nritems(split, c_nritems - mid); 3560 btrfs_set_header_nritems(c, mid); 3561 ret = 0; 3562 3563 btrfs_mark_buffer_dirty(c); 3564 btrfs_mark_buffer_dirty(split); 3565 3566 insert_ptr(trans, root, path, &disk_key, split->start, 3567 path->slots[level + 1] + 1, level + 1); 3568 3569 if (path->slots[level] >= mid) { 3570 path->slots[level] -= mid; 3571 btrfs_tree_unlock(c); 3572 free_extent_buffer(c); 3573 path->nodes[level] = split; 3574 path->slots[level + 1] += 1; 3575 } else { 3576 btrfs_tree_unlock(split); 3577 free_extent_buffer(split); 3578 } 3579 return ret; 3580 } 3581 3582 /* 3583 * how many bytes are required to store the items in a leaf. start 3584 * and nr indicate which items in the leaf to check. This totals up the 3585 * space used both by the item structs and the item data 3586 */ 3587 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3588 { 3589 struct btrfs_item *start_item; 3590 struct btrfs_item *end_item; 3591 struct btrfs_map_token token; 3592 int data_len; 3593 int nritems = btrfs_header_nritems(l); 3594 int end = min(nritems, start + nr) - 1; 3595 3596 if (!nr) 3597 return 0; 3598 btrfs_init_map_token(&token); 3599 start_item = btrfs_item_nr(start); 3600 end_item = btrfs_item_nr(end); 3601 data_len = btrfs_token_item_offset(l, start_item, &token) + 3602 btrfs_token_item_size(l, start_item, &token); 3603 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3604 data_len += sizeof(struct btrfs_item) * nr; 3605 WARN_ON(data_len < 0); 3606 return data_len; 3607 } 3608 3609 /* 3610 * The space between the end of the leaf items and 3611 * the start of the leaf data. IOW, how much room 3612 * the leaf has left for both items and data 3613 */ 3614 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3615 struct extent_buffer *leaf) 3616 { 3617 int nritems = btrfs_header_nritems(leaf); 3618 int ret; 3619 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3620 if (ret < 0) { 3621 btrfs_crit(root->fs_info, 3622 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3623 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3624 leaf_space_used(leaf, 0, nritems), nritems); 3625 } 3626 return ret; 3627 } 3628 3629 /* 3630 * min slot controls the lowest index we're willing to push to the 3631 * right. We'll push up to and including min_slot, but no lower 3632 */ 3633 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3634 struct btrfs_root *root, 3635 struct btrfs_path *path, 3636 int data_size, int empty, 3637 struct extent_buffer *right, 3638 int free_space, u32 left_nritems, 3639 u32 min_slot) 3640 { 3641 struct extent_buffer *left = path->nodes[0]; 3642 struct extent_buffer *upper = path->nodes[1]; 3643 struct btrfs_map_token token; 3644 struct btrfs_disk_key disk_key; 3645 int slot; 3646 u32 i; 3647 int push_space = 0; 3648 int push_items = 0; 3649 struct btrfs_item *item; 3650 u32 nr; 3651 u32 right_nritems; 3652 u32 data_end; 3653 u32 this_item_size; 3654 3655 btrfs_init_map_token(&token); 3656 3657 if (empty) 3658 nr = 0; 3659 else 3660 nr = max_t(u32, 1, min_slot); 3661 3662 if (path->slots[0] >= left_nritems) 3663 push_space += data_size; 3664 3665 slot = path->slots[1]; 3666 i = left_nritems - 1; 3667 while (i >= nr) { 3668 item = btrfs_item_nr(i); 3669 3670 if (!empty && push_items > 0) { 3671 if (path->slots[0] > i) 3672 break; 3673 if (path->slots[0] == i) { 3674 int space = btrfs_leaf_free_space(root, left); 3675 if (space + push_space * 2 > free_space) 3676 break; 3677 } 3678 } 3679 3680 if (path->slots[0] == i) 3681 push_space += data_size; 3682 3683 this_item_size = btrfs_item_size(left, item); 3684 if (this_item_size + sizeof(*item) + push_space > free_space) 3685 break; 3686 3687 push_items++; 3688 push_space += this_item_size + sizeof(*item); 3689 if (i == 0) 3690 break; 3691 i--; 3692 } 3693 3694 if (push_items == 0) 3695 goto out_unlock; 3696 3697 WARN_ON(!empty && push_items == left_nritems); 3698 3699 /* push left to right */ 3700 right_nritems = btrfs_header_nritems(right); 3701 3702 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3703 push_space -= leaf_data_end(root, left); 3704 3705 /* make room in the right data area */ 3706 data_end = leaf_data_end(root, right); 3707 memmove_extent_buffer(right, 3708 btrfs_leaf_data(right) + data_end - push_space, 3709 btrfs_leaf_data(right) + data_end, 3710 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3711 3712 /* copy from the left data area */ 3713 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3714 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3715 btrfs_leaf_data(left) + leaf_data_end(root, left), 3716 push_space); 3717 3718 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3719 btrfs_item_nr_offset(0), 3720 right_nritems * sizeof(struct btrfs_item)); 3721 3722 /* copy the items from left to right */ 3723 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3724 btrfs_item_nr_offset(left_nritems - push_items), 3725 push_items * sizeof(struct btrfs_item)); 3726 3727 /* update the item pointers */ 3728 right_nritems += push_items; 3729 btrfs_set_header_nritems(right, right_nritems); 3730 push_space = BTRFS_LEAF_DATA_SIZE(root); 3731 for (i = 0; i < right_nritems; i++) { 3732 item = btrfs_item_nr(i); 3733 push_space -= btrfs_token_item_size(right, item, &token); 3734 btrfs_set_token_item_offset(right, item, push_space, &token); 3735 } 3736 3737 left_nritems -= push_items; 3738 btrfs_set_header_nritems(left, left_nritems); 3739 3740 if (left_nritems) 3741 btrfs_mark_buffer_dirty(left); 3742 else 3743 clean_tree_block(trans, root, left); 3744 3745 btrfs_mark_buffer_dirty(right); 3746 3747 btrfs_item_key(right, &disk_key, 0); 3748 btrfs_set_node_key(upper, &disk_key, slot + 1); 3749 btrfs_mark_buffer_dirty(upper); 3750 3751 /* then fixup the leaf pointer in the path */ 3752 if (path->slots[0] >= left_nritems) { 3753 path->slots[0] -= left_nritems; 3754 if (btrfs_header_nritems(path->nodes[0]) == 0) 3755 clean_tree_block(trans, root, path->nodes[0]); 3756 btrfs_tree_unlock(path->nodes[0]); 3757 free_extent_buffer(path->nodes[0]); 3758 path->nodes[0] = right; 3759 path->slots[1] += 1; 3760 } else { 3761 btrfs_tree_unlock(right); 3762 free_extent_buffer(right); 3763 } 3764 return 0; 3765 3766 out_unlock: 3767 btrfs_tree_unlock(right); 3768 free_extent_buffer(right); 3769 return 1; 3770 } 3771 3772 /* 3773 * push some data in the path leaf to the right, trying to free up at 3774 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3775 * 3776 * returns 1 if the push failed because the other node didn't have enough 3777 * room, 0 if everything worked out and < 0 if there were major errors. 3778 * 3779 * this will push starting from min_slot to the end of the leaf. It won't 3780 * push any slot lower than min_slot 3781 */ 3782 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3783 *root, struct btrfs_path *path, 3784 int min_data_size, int data_size, 3785 int empty, u32 min_slot) 3786 { 3787 struct extent_buffer *left = path->nodes[0]; 3788 struct extent_buffer *right; 3789 struct extent_buffer *upper; 3790 int slot; 3791 int free_space; 3792 u32 left_nritems; 3793 int ret; 3794 3795 if (!path->nodes[1]) 3796 return 1; 3797 3798 slot = path->slots[1]; 3799 upper = path->nodes[1]; 3800 if (slot >= btrfs_header_nritems(upper) - 1) 3801 return 1; 3802 3803 btrfs_assert_tree_locked(path->nodes[1]); 3804 3805 right = read_node_slot(root, upper, slot + 1); 3806 if (right == NULL) 3807 return 1; 3808 3809 btrfs_tree_lock(right); 3810 btrfs_set_lock_blocking(right); 3811 3812 free_space = btrfs_leaf_free_space(root, right); 3813 if (free_space < data_size) 3814 goto out_unlock; 3815 3816 /* cow and double check */ 3817 ret = btrfs_cow_block(trans, root, right, upper, 3818 slot + 1, &right); 3819 if (ret) 3820 goto out_unlock; 3821 3822 free_space = btrfs_leaf_free_space(root, right); 3823 if (free_space < data_size) 3824 goto out_unlock; 3825 3826 left_nritems = btrfs_header_nritems(left); 3827 if (left_nritems == 0) 3828 goto out_unlock; 3829 3830 if (path->slots[0] == left_nritems && !empty) { 3831 /* Key greater than all keys in the leaf, right neighbor has 3832 * enough room for it and we're not emptying our leaf to delete 3833 * it, therefore use right neighbor to insert the new item and 3834 * no need to touch/dirty our left leaft. */ 3835 btrfs_tree_unlock(left); 3836 free_extent_buffer(left); 3837 path->nodes[0] = right; 3838 path->slots[0] = 0; 3839 path->slots[1]++; 3840 return 0; 3841 } 3842 3843 return __push_leaf_right(trans, root, path, min_data_size, empty, 3844 right, free_space, left_nritems, min_slot); 3845 out_unlock: 3846 btrfs_tree_unlock(right); 3847 free_extent_buffer(right); 3848 return 1; 3849 } 3850 3851 /* 3852 * push some data in the path leaf to the left, trying to free up at 3853 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3854 * 3855 * max_slot can put a limit on how far into the leaf we'll push items. The 3856 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3857 * items 3858 */ 3859 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3860 struct btrfs_root *root, 3861 struct btrfs_path *path, int data_size, 3862 int empty, struct extent_buffer *left, 3863 int free_space, u32 right_nritems, 3864 u32 max_slot) 3865 { 3866 struct btrfs_disk_key disk_key; 3867 struct extent_buffer *right = path->nodes[0]; 3868 int i; 3869 int push_space = 0; 3870 int push_items = 0; 3871 struct btrfs_item *item; 3872 u32 old_left_nritems; 3873 u32 nr; 3874 int ret = 0; 3875 u32 this_item_size; 3876 u32 old_left_item_size; 3877 struct btrfs_map_token token; 3878 3879 btrfs_init_map_token(&token); 3880 3881 if (empty) 3882 nr = min(right_nritems, max_slot); 3883 else 3884 nr = min(right_nritems - 1, max_slot); 3885 3886 for (i = 0; i < nr; i++) { 3887 item = btrfs_item_nr(i); 3888 3889 if (!empty && push_items > 0) { 3890 if (path->slots[0] < i) 3891 break; 3892 if (path->slots[0] == i) { 3893 int space = btrfs_leaf_free_space(root, right); 3894 if (space + push_space * 2 > free_space) 3895 break; 3896 } 3897 } 3898 3899 if (path->slots[0] == i) 3900 push_space += data_size; 3901 3902 this_item_size = btrfs_item_size(right, item); 3903 if (this_item_size + sizeof(*item) + push_space > free_space) 3904 break; 3905 3906 push_items++; 3907 push_space += this_item_size + sizeof(*item); 3908 } 3909 3910 if (push_items == 0) { 3911 ret = 1; 3912 goto out; 3913 } 3914 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3915 3916 /* push data from right to left */ 3917 copy_extent_buffer(left, right, 3918 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3919 btrfs_item_nr_offset(0), 3920 push_items * sizeof(struct btrfs_item)); 3921 3922 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3923 btrfs_item_offset_nr(right, push_items - 1); 3924 3925 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3926 leaf_data_end(root, left) - push_space, 3927 btrfs_leaf_data(right) + 3928 btrfs_item_offset_nr(right, push_items - 1), 3929 push_space); 3930 old_left_nritems = btrfs_header_nritems(left); 3931 BUG_ON(old_left_nritems <= 0); 3932 3933 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3934 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3935 u32 ioff; 3936 3937 item = btrfs_item_nr(i); 3938 3939 ioff = btrfs_token_item_offset(left, item, &token); 3940 btrfs_set_token_item_offset(left, item, 3941 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3942 &token); 3943 } 3944 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3945 3946 /* fixup right node */ 3947 if (push_items > right_nritems) 3948 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3949 right_nritems); 3950 3951 if (push_items < right_nritems) { 3952 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3953 leaf_data_end(root, right); 3954 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3955 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3956 btrfs_leaf_data(right) + 3957 leaf_data_end(root, right), push_space); 3958 3959 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3960 btrfs_item_nr_offset(push_items), 3961 (btrfs_header_nritems(right) - push_items) * 3962 sizeof(struct btrfs_item)); 3963 } 3964 right_nritems -= push_items; 3965 btrfs_set_header_nritems(right, right_nritems); 3966 push_space = BTRFS_LEAF_DATA_SIZE(root); 3967 for (i = 0; i < right_nritems; i++) { 3968 item = btrfs_item_nr(i); 3969 3970 push_space = push_space - btrfs_token_item_size(right, 3971 item, &token); 3972 btrfs_set_token_item_offset(right, item, push_space, &token); 3973 } 3974 3975 btrfs_mark_buffer_dirty(left); 3976 if (right_nritems) 3977 btrfs_mark_buffer_dirty(right); 3978 else 3979 clean_tree_block(trans, root, right); 3980 3981 btrfs_item_key(right, &disk_key, 0); 3982 fixup_low_keys(root, path, &disk_key, 1); 3983 3984 /* then fixup the leaf pointer in the path */ 3985 if (path->slots[0] < push_items) { 3986 path->slots[0] += old_left_nritems; 3987 btrfs_tree_unlock(path->nodes[0]); 3988 free_extent_buffer(path->nodes[0]); 3989 path->nodes[0] = left; 3990 path->slots[1] -= 1; 3991 } else { 3992 btrfs_tree_unlock(left); 3993 free_extent_buffer(left); 3994 path->slots[0] -= push_items; 3995 } 3996 BUG_ON(path->slots[0] < 0); 3997 return ret; 3998 out: 3999 btrfs_tree_unlock(left); 4000 free_extent_buffer(left); 4001 return ret; 4002 } 4003 4004 /* 4005 * push some data in the path leaf to the left, trying to free up at 4006 * least data_size bytes. returns zero if the push worked, nonzero otherwise 4007 * 4008 * max_slot can put a limit on how far into the leaf we'll push items. The 4009 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 4010 * items 4011 */ 4012 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 4013 *root, struct btrfs_path *path, int min_data_size, 4014 int data_size, int empty, u32 max_slot) 4015 { 4016 struct extent_buffer *right = path->nodes[0]; 4017 struct extent_buffer *left; 4018 int slot; 4019 int free_space; 4020 u32 right_nritems; 4021 int ret = 0; 4022 4023 slot = path->slots[1]; 4024 if (slot == 0) 4025 return 1; 4026 if (!path->nodes[1]) 4027 return 1; 4028 4029 right_nritems = btrfs_header_nritems(right); 4030 if (right_nritems == 0) 4031 return 1; 4032 4033 btrfs_assert_tree_locked(path->nodes[1]); 4034 4035 left = read_node_slot(root, path->nodes[1], slot - 1); 4036 if (left == NULL) 4037 return 1; 4038 4039 btrfs_tree_lock(left); 4040 btrfs_set_lock_blocking(left); 4041 4042 free_space = btrfs_leaf_free_space(root, left); 4043 if (free_space < data_size) { 4044 ret = 1; 4045 goto out; 4046 } 4047 4048 /* cow and double check */ 4049 ret = btrfs_cow_block(trans, root, left, 4050 path->nodes[1], slot - 1, &left); 4051 if (ret) { 4052 /* we hit -ENOSPC, but it isn't fatal here */ 4053 if (ret == -ENOSPC) 4054 ret = 1; 4055 goto out; 4056 } 4057 4058 free_space = btrfs_leaf_free_space(root, left); 4059 if (free_space < data_size) { 4060 ret = 1; 4061 goto out; 4062 } 4063 4064 return __push_leaf_left(trans, root, path, min_data_size, 4065 empty, left, free_space, right_nritems, 4066 max_slot); 4067 out: 4068 btrfs_tree_unlock(left); 4069 free_extent_buffer(left); 4070 return ret; 4071 } 4072 4073 /* 4074 * split the path's leaf in two, making sure there is at least data_size 4075 * available for the resulting leaf level of the path. 4076 */ 4077 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4078 struct btrfs_root *root, 4079 struct btrfs_path *path, 4080 struct extent_buffer *l, 4081 struct extent_buffer *right, 4082 int slot, int mid, int nritems) 4083 { 4084 int data_copy_size; 4085 int rt_data_off; 4086 int i; 4087 struct btrfs_disk_key disk_key; 4088 struct btrfs_map_token token; 4089 4090 btrfs_init_map_token(&token); 4091 4092 nritems = nritems - mid; 4093 btrfs_set_header_nritems(right, nritems); 4094 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4095 4096 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4097 btrfs_item_nr_offset(mid), 4098 nritems * sizeof(struct btrfs_item)); 4099 4100 copy_extent_buffer(right, l, 4101 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4102 data_copy_size, btrfs_leaf_data(l) + 4103 leaf_data_end(root, l), data_copy_size); 4104 4105 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4106 btrfs_item_end_nr(l, mid); 4107 4108 for (i = 0; i < nritems; i++) { 4109 struct btrfs_item *item = btrfs_item_nr(i); 4110 u32 ioff; 4111 4112 ioff = btrfs_token_item_offset(right, item, &token); 4113 btrfs_set_token_item_offset(right, item, 4114 ioff + rt_data_off, &token); 4115 } 4116 4117 btrfs_set_header_nritems(l, mid); 4118 btrfs_item_key(right, &disk_key, 0); 4119 insert_ptr(trans, root, path, &disk_key, right->start, 4120 path->slots[1] + 1, 1); 4121 4122 btrfs_mark_buffer_dirty(right); 4123 btrfs_mark_buffer_dirty(l); 4124 BUG_ON(path->slots[0] != slot); 4125 4126 if (mid <= slot) { 4127 btrfs_tree_unlock(path->nodes[0]); 4128 free_extent_buffer(path->nodes[0]); 4129 path->nodes[0] = right; 4130 path->slots[0] -= mid; 4131 path->slots[1] += 1; 4132 } else { 4133 btrfs_tree_unlock(right); 4134 free_extent_buffer(right); 4135 } 4136 4137 BUG_ON(path->slots[0] < 0); 4138 } 4139 4140 /* 4141 * double splits happen when we need to insert a big item in the middle 4142 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4143 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4144 * A B C 4145 * 4146 * We avoid this by trying to push the items on either side of our target 4147 * into the adjacent leaves. If all goes well we can avoid the double split 4148 * completely. 4149 */ 4150 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4151 struct btrfs_root *root, 4152 struct btrfs_path *path, 4153 int data_size) 4154 { 4155 int ret; 4156 int progress = 0; 4157 int slot; 4158 u32 nritems; 4159 int space_needed = data_size; 4160 4161 slot = path->slots[0]; 4162 if (slot < btrfs_header_nritems(path->nodes[0])) 4163 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4164 4165 /* 4166 * try to push all the items after our slot into the 4167 * right leaf 4168 */ 4169 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4170 if (ret < 0) 4171 return ret; 4172 4173 if (ret == 0) 4174 progress++; 4175 4176 nritems = btrfs_header_nritems(path->nodes[0]); 4177 /* 4178 * our goal is to get our slot at the start or end of a leaf. If 4179 * we've done so we're done 4180 */ 4181 if (path->slots[0] == 0 || path->slots[0] == nritems) 4182 return 0; 4183 4184 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4185 return 0; 4186 4187 /* try to push all the items before our slot into the next leaf */ 4188 slot = path->slots[0]; 4189 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4190 if (ret < 0) 4191 return ret; 4192 4193 if (ret == 0) 4194 progress++; 4195 4196 if (progress) 4197 return 0; 4198 return 1; 4199 } 4200 4201 /* 4202 * split the path's leaf in two, making sure there is at least data_size 4203 * available for the resulting leaf level of the path. 4204 * 4205 * returns 0 if all went well and < 0 on failure. 4206 */ 4207 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4208 struct btrfs_root *root, 4209 struct btrfs_key *ins_key, 4210 struct btrfs_path *path, int data_size, 4211 int extend) 4212 { 4213 struct btrfs_disk_key disk_key; 4214 struct extent_buffer *l; 4215 u32 nritems; 4216 int mid; 4217 int slot; 4218 struct extent_buffer *right; 4219 int ret = 0; 4220 int wret; 4221 int split; 4222 int num_doubles = 0; 4223 int tried_avoid_double = 0; 4224 4225 l = path->nodes[0]; 4226 slot = path->slots[0]; 4227 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4228 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4229 return -EOVERFLOW; 4230 4231 /* first try to make some room by pushing left and right */ 4232 if (data_size && path->nodes[1]) { 4233 int space_needed = data_size; 4234 4235 if (slot < btrfs_header_nritems(l)) 4236 space_needed -= btrfs_leaf_free_space(root, l); 4237 4238 wret = push_leaf_right(trans, root, path, space_needed, 4239 space_needed, 0, 0); 4240 if (wret < 0) 4241 return wret; 4242 if (wret) { 4243 wret = push_leaf_left(trans, root, path, space_needed, 4244 space_needed, 0, (u32)-1); 4245 if (wret < 0) 4246 return wret; 4247 } 4248 l = path->nodes[0]; 4249 4250 /* did the pushes work? */ 4251 if (btrfs_leaf_free_space(root, l) >= data_size) 4252 return 0; 4253 } 4254 4255 if (!path->nodes[1]) { 4256 ret = insert_new_root(trans, root, path, 1); 4257 if (ret) 4258 return ret; 4259 } 4260 again: 4261 split = 1; 4262 l = path->nodes[0]; 4263 slot = path->slots[0]; 4264 nritems = btrfs_header_nritems(l); 4265 mid = (nritems + 1) / 2; 4266 4267 if (mid <= slot) { 4268 if (nritems == 1 || 4269 leaf_space_used(l, mid, nritems - mid) + data_size > 4270 BTRFS_LEAF_DATA_SIZE(root)) { 4271 if (slot >= nritems) { 4272 split = 0; 4273 } else { 4274 mid = slot; 4275 if (mid != nritems && 4276 leaf_space_used(l, mid, nritems - mid) + 4277 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4278 if (data_size && !tried_avoid_double) 4279 goto push_for_double; 4280 split = 2; 4281 } 4282 } 4283 } 4284 } else { 4285 if (leaf_space_used(l, 0, mid) + data_size > 4286 BTRFS_LEAF_DATA_SIZE(root)) { 4287 if (!extend && data_size && slot == 0) { 4288 split = 0; 4289 } else if ((extend || !data_size) && slot == 0) { 4290 mid = 1; 4291 } else { 4292 mid = slot; 4293 if (mid != nritems && 4294 leaf_space_used(l, mid, nritems - mid) + 4295 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4296 if (data_size && !tried_avoid_double) 4297 goto push_for_double; 4298 split = 2; 4299 } 4300 } 4301 } 4302 } 4303 4304 if (split == 0) 4305 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4306 else 4307 btrfs_item_key(l, &disk_key, mid); 4308 4309 right = btrfs_alloc_free_block(trans, root, root->leafsize, 0, 4310 root->root_key.objectid, 4311 &disk_key, 0, l->start, 0); 4312 if (IS_ERR(right)) 4313 return PTR_ERR(right); 4314 4315 root_add_used(root, root->leafsize); 4316 4317 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4318 btrfs_set_header_bytenr(right, right->start); 4319 btrfs_set_header_generation(right, trans->transid); 4320 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4321 btrfs_set_header_owner(right, root->root_key.objectid); 4322 btrfs_set_header_level(right, 0); 4323 write_extent_buffer(right, root->fs_info->fsid, 4324 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4325 4326 write_extent_buffer(right, root->fs_info->chunk_tree_uuid, 4327 btrfs_header_chunk_tree_uuid(right), 4328 BTRFS_UUID_SIZE); 4329 4330 if (split == 0) { 4331 if (mid <= slot) { 4332 btrfs_set_header_nritems(right, 0); 4333 insert_ptr(trans, root, path, &disk_key, right->start, 4334 path->slots[1] + 1, 1); 4335 btrfs_tree_unlock(path->nodes[0]); 4336 free_extent_buffer(path->nodes[0]); 4337 path->nodes[0] = right; 4338 path->slots[0] = 0; 4339 path->slots[1] += 1; 4340 } else { 4341 btrfs_set_header_nritems(right, 0); 4342 insert_ptr(trans, root, path, &disk_key, right->start, 4343 path->slots[1], 1); 4344 btrfs_tree_unlock(path->nodes[0]); 4345 free_extent_buffer(path->nodes[0]); 4346 path->nodes[0] = right; 4347 path->slots[0] = 0; 4348 if (path->slots[1] == 0) 4349 fixup_low_keys(root, path, &disk_key, 1); 4350 } 4351 btrfs_mark_buffer_dirty(right); 4352 return ret; 4353 } 4354 4355 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4356 4357 if (split == 2) { 4358 BUG_ON(num_doubles != 0); 4359 num_doubles++; 4360 goto again; 4361 } 4362 4363 return 0; 4364 4365 push_for_double: 4366 push_for_double_split(trans, root, path, data_size); 4367 tried_avoid_double = 1; 4368 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4369 return 0; 4370 goto again; 4371 } 4372 4373 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4374 struct btrfs_root *root, 4375 struct btrfs_path *path, int ins_len) 4376 { 4377 struct btrfs_key key; 4378 struct extent_buffer *leaf; 4379 struct btrfs_file_extent_item *fi; 4380 u64 extent_len = 0; 4381 u32 item_size; 4382 int ret; 4383 4384 leaf = path->nodes[0]; 4385 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4386 4387 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4388 key.type != BTRFS_EXTENT_CSUM_KEY); 4389 4390 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4391 return 0; 4392 4393 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4394 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4395 fi = btrfs_item_ptr(leaf, path->slots[0], 4396 struct btrfs_file_extent_item); 4397 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4398 } 4399 btrfs_release_path(path); 4400 4401 path->keep_locks = 1; 4402 path->search_for_split = 1; 4403 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4404 path->search_for_split = 0; 4405 if (ret < 0) 4406 goto err; 4407 4408 ret = -EAGAIN; 4409 leaf = path->nodes[0]; 4410 /* if our item isn't there or got smaller, return now */ 4411 if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4412 goto err; 4413 4414 /* the leaf has changed, it now has room. return now */ 4415 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4416 goto err; 4417 4418 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4419 fi = btrfs_item_ptr(leaf, path->slots[0], 4420 struct btrfs_file_extent_item); 4421 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4422 goto err; 4423 } 4424 4425 btrfs_set_path_blocking(path); 4426 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4427 if (ret) 4428 goto err; 4429 4430 path->keep_locks = 0; 4431 btrfs_unlock_up_safe(path, 1); 4432 return 0; 4433 err: 4434 path->keep_locks = 0; 4435 return ret; 4436 } 4437 4438 static noinline int split_item(struct btrfs_trans_handle *trans, 4439 struct btrfs_root *root, 4440 struct btrfs_path *path, 4441 struct btrfs_key *new_key, 4442 unsigned long split_offset) 4443 { 4444 struct extent_buffer *leaf; 4445 struct btrfs_item *item; 4446 struct btrfs_item *new_item; 4447 int slot; 4448 char *buf; 4449 u32 nritems; 4450 u32 item_size; 4451 u32 orig_offset; 4452 struct btrfs_disk_key disk_key; 4453 4454 leaf = path->nodes[0]; 4455 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4456 4457 btrfs_set_path_blocking(path); 4458 4459 item = btrfs_item_nr(path->slots[0]); 4460 orig_offset = btrfs_item_offset(leaf, item); 4461 item_size = btrfs_item_size(leaf, item); 4462 4463 buf = kmalloc(item_size, GFP_NOFS); 4464 if (!buf) 4465 return -ENOMEM; 4466 4467 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4468 path->slots[0]), item_size); 4469 4470 slot = path->slots[0] + 1; 4471 nritems = btrfs_header_nritems(leaf); 4472 if (slot != nritems) { 4473 /* shift the items */ 4474 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4475 btrfs_item_nr_offset(slot), 4476 (nritems - slot) * sizeof(struct btrfs_item)); 4477 } 4478 4479 btrfs_cpu_key_to_disk(&disk_key, new_key); 4480 btrfs_set_item_key(leaf, &disk_key, slot); 4481 4482 new_item = btrfs_item_nr(slot); 4483 4484 btrfs_set_item_offset(leaf, new_item, orig_offset); 4485 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4486 4487 btrfs_set_item_offset(leaf, item, 4488 orig_offset + item_size - split_offset); 4489 btrfs_set_item_size(leaf, item, split_offset); 4490 4491 btrfs_set_header_nritems(leaf, nritems + 1); 4492 4493 /* write the data for the start of the original item */ 4494 write_extent_buffer(leaf, buf, 4495 btrfs_item_ptr_offset(leaf, path->slots[0]), 4496 split_offset); 4497 4498 /* write the data for the new item */ 4499 write_extent_buffer(leaf, buf + split_offset, 4500 btrfs_item_ptr_offset(leaf, slot), 4501 item_size - split_offset); 4502 btrfs_mark_buffer_dirty(leaf); 4503 4504 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4505 kfree(buf); 4506 return 0; 4507 } 4508 4509 /* 4510 * This function splits a single item into two items, 4511 * giving 'new_key' to the new item and splitting the 4512 * old one at split_offset (from the start of the item). 4513 * 4514 * The path may be released by this operation. After 4515 * the split, the path is pointing to the old item. The 4516 * new item is going to be in the same node as the old one. 4517 * 4518 * Note, the item being split must be smaller enough to live alone on 4519 * a tree block with room for one extra struct btrfs_item 4520 * 4521 * This allows us to split the item in place, keeping a lock on the 4522 * leaf the entire time. 4523 */ 4524 int btrfs_split_item(struct btrfs_trans_handle *trans, 4525 struct btrfs_root *root, 4526 struct btrfs_path *path, 4527 struct btrfs_key *new_key, 4528 unsigned long split_offset) 4529 { 4530 int ret; 4531 ret = setup_leaf_for_split(trans, root, path, 4532 sizeof(struct btrfs_item)); 4533 if (ret) 4534 return ret; 4535 4536 ret = split_item(trans, root, path, new_key, split_offset); 4537 return ret; 4538 } 4539 4540 /* 4541 * This function duplicate a item, giving 'new_key' to the new item. 4542 * It guarantees both items live in the same tree leaf and the new item 4543 * is contiguous with the original item. 4544 * 4545 * This allows us to split file extent in place, keeping a lock on the 4546 * leaf the entire time. 4547 */ 4548 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4549 struct btrfs_root *root, 4550 struct btrfs_path *path, 4551 struct btrfs_key *new_key) 4552 { 4553 struct extent_buffer *leaf; 4554 int ret; 4555 u32 item_size; 4556 4557 leaf = path->nodes[0]; 4558 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4559 ret = setup_leaf_for_split(trans, root, path, 4560 item_size + sizeof(struct btrfs_item)); 4561 if (ret) 4562 return ret; 4563 4564 path->slots[0]++; 4565 setup_items_for_insert(root, path, new_key, &item_size, 4566 item_size, item_size + 4567 sizeof(struct btrfs_item), 1); 4568 leaf = path->nodes[0]; 4569 memcpy_extent_buffer(leaf, 4570 btrfs_item_ptr_offset(leaf, path->slots[0]), 4571 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4572 item_size); 4573 return 0; 4574 } 4575 4576 /* 4577 * make the item pointed to by the path smaller. new_size indicates 4578 * how small to make it, and from_end tells us if we just chop bytes 4579 * off the end of the item or if we shift the item to chop bytes off 4580 * the front. 4581 */ 4582 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4583 u32 new_size, int from_end) 4584 { 4585 int slot; 4586 struct extent_buffer *leaf; 4587 struct btrfs_item *item; 4588 u32 nritems; 4589 unsigned int data_end; 4590 unsigned int old_data_start; 4591 unsigned int old_size; 4592 unsigned int size_diff; 4593 int i; 4594 struct btrfs_map_token token; 4595 4596 btrfs_init_map_token(&token); 4597 4598 leaf = path->nodes[0]; 4599 slot = path->slots[0]; 4600 4601 old_size = btrfs_item_size_nr(leaf, slot); 4602 if (old_size == new_size) 4603 return; 4604 4605 nritems = btrfs_header_nritems(leaf); 4606 data_end = leaf_data_end(root, leaf); 4607 4608 old_data_start = btrfs_item_offset_nr(leaf, slot); 4609 4610 size_diff = old_size - new_size; 4611 4612 BUG_ON(slot < 0); 4613 BUG_ON(slot >= nritems); 4614 4615 /* 4616 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4617 */ 4618 /* first correct the data pointers */ 4619 for (i = slot; i < nritems; i++) { 4620 u32 ioff; 4621 item = btrfs_item_nr(i); 4622 4623 ioff = btrfs_token_item_offset(leaf, item, &token); 4624 btrfs_set_token_item_offset(leaf, item, 4625 ioff + size_diff, &token); 4626 } 4627 4628 /* shift the data */ 4629 if (from_end) { 4630 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4631 data_end + size_diff, btrfs_leaf_data(leaf) + 4632 data_end, old_data_start + new_size - data_end); 4633 } else { 4634 struct btrfs_disk_key disk_key; 4635 u64 offset; 4636 4637 btrfs_item_key(leaf, &disk_key, slot); 4638 4639 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4640 unsigned long ptr; 4641 struct btrfs_file_extent_item *fi; 4642 4643 fi = btrfs_item_ptr(leaf, slot, 4644 struct btrfs_file_extent_item); 4645 fi = (struct btrfs_file_extent_item *)( 4646 (unsigned long)fi - size_diff); 4647 4648 if (btrfs_file_extent_type(leaf, fi) == 4649 BTRFS_FILE_EXTENT_INLINE) { 4650 ptr = btrfs_item_ptr_offset(leaf, slot); 4651 memmove_extent_buffer(leaf, ptr, 4652 (unsigned long)fi, 4653 offsetof(struct btrfs_file_extent_item, 4654 disk_bytenr)); 4655 } 4656 } 4657 4658 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4659 data_end + size_diff, btrfs_leaf_data(leaf) + 4660 data_end, old_data_start - data_end); 4661 4662 offset = btrfs_disk_key_offset(&disk_key); 4663 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4664 btrfs_set_item_key(leaf, &disk_key, slot); 4665 if (slot == 0) 4666 fixup_low_keys(root, path, &disk_key, 1); 4667 } 4668 4669 item = btrfs_item_nr(slot); 4670 btrfs_set_item_size(leaf, item, new_size); 4671 btrfs_mark_buffer_dirty(leaf); 4672 4673 if (btrfs_leaf_free_space(root, leaf) < 0) { 4674 btrfs_print_leaf(root, leaf); 4675 BUG(); 4676 } 4677 } 4678 4679 /* 4680 * make the item pointed to by the path bigger, data_size is the added size. 4681 */ 4682 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4683 u32 data_size) 4684 { 4685 int slot; 4686 struct extent_buffer *leaf; 4687 struct btrfs_item *item; 4688 u32 nritems; 4689 unsigned int data_end; 4690 unsigned int old_data; 4691 unsigned int old_size; 4692 int i; 4693 struct btrfs_map_token token; 4694 4695 btrfs_init_map_token(&token); 4696 4697 leaf = path->nodes[0]; 4698 4699 nritems = btrfs_header_nritems(leaf); 4700 data_end = leaf_data_end(root, leaf); 4701 4702 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4703 btrfs_print_leaf(root, leaf); 4704 BUG(); 4705 } 4706 slot = path->slots[0]; 4707 old_data = btrfs_item_end_nr(leaf, slot); 4708 4709 BUG_ON(slot < 0); 4710 if (slot >= nritems) { 4711 btrfs_print_leaf(root, leaf); 4712 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4713 slot, nritems); 4714 BUG_ON(1); 4715 } 4716 4717 /* 4718 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4719 */ 4720 /* first correct the data pointers */ 4721 for (i = slot; i < nritems; i++) { 4722 u32 ioff; 4723 item = btrfs_item_nr(i); 4724 4725 ioff = btrfs_token_item_offset(leaf, item, &token); 4726 btrfs_set_token_item_offset(leaf, item, 4727 ioff - data_size, &token); 4728 } 4729 4730 /* shift the data */ 4731 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4732 data_end - data_size, btrfs_leaf_data(leaf) + 4733 data_end, old_data - data_end); 4734 4735 data_end = old_data; 4736 old_size = btrfs_item_size_nr(leaf, slot); 4737 item = btrfs_item_nr(slot); 4738 btrfs_set_item_size(leaf, item, old_size + data_size); 4739 btrfs_mark_buffer_dirty(leaf); 4740 4741 if (btrfs_leaf_free_space(root, leaf) < 0) { 4742 btrfs_print_leaf(root, leaf); 4743 BUG(); 4744 } 4745 } 4746 4747 /* 4748 * this is a helper for btrfs_insert_empty_items, the main goal here is 4749 * to save stack depth by doing the bulk of the work in a function 4750 * that doesn't call btrfs_search_slot 4751 */ 4752 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4753 struct btrfs_key *cpu_key, u32 *data_size, 4754 u32 total_data, u32 total_size, int nr) 4755 { 4756 struct btrfs_item *item; 4757 int i; 4758 u32 nritems; 4759 unsigned int data_end; 4760 struct btrfs_disk_key disk_key; 4761 struct extent_buffer *leaf; 4762 int slot; 4763 struct btrfs_map_token token; 4764 4765 btrfs_init_map_token(&token); 4766 4767 leaf = path->nodes[0]; 4768 slot = path->slots[0]; 4769 4770 nritems = btrfs_header_nritems(leaf); 4771 data_end = leaf_data_end(root, leaf); 4772 4773 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4774 btrfs_print_leaf(root, leaf); 4775 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4776 total_size, btrfs_leaf_free_space(root, leaf)); 4777 BUG(); 4778 } 4779 4780 if (slot != nritems) { 4781 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4782 4783 if (old_data < data_end) { 4784 btrfs_print_leaf(root, leaf); 4785 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4786 slot, old_data, data_end); 4787 BUG_ON(1); 4788 } 4789 /* 4790 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4791 */ 4792 /* first correct the data pointers */ 4793 for (i = slot; i < nritems; i++) { 4794 u32 ioff; 4795 4796 item = btrfs_item_nr( i); 4797 ioff = btrfs_token_item_offset(leaf, item, &token); 4798 btrfs_set_token_item_offset(leaf, item, 4799 ioff - total_data, &token); 4800 } 4801 /* shift the items */ 4802 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4803 btrfs_item_nr_offset(slot), 4804 (nritems - slot) * sizeof(struct btrfs_item)); 4805 4806 /* shift the data */ 4807 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4808 data_end - total_data, btrfs_leaf_data(leaf) + 4809 data_end, old_data - data_end); 4810 data_end = old_data; 4811 } 4812 4813 /* setup the item for the new data */ 4814 for (i = 0; i < nr; i++) { 4815 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4816 btrfs_set_item_key(leaf, &disk_key, slot + i); 4817 item = btrfs_item_nr(slot + i); 4818 btrfs_set_token_item_offset(leaf, item, 4819 data_end - data_size[i], &token); 4820 data_end -= data_size[i]; 4821 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4822 } 4823 4824 btrfs_set_header_nritems(leaf, nritems + nr); 4825 4826 if (slot == 0) { 4827 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4828 fixup_low_keys(root, path, &disk_key, 1); 4829 } 4830 btrfs_unlock_up_safe(path, 1); 4831 btrfs_mark_buffer_dirty(leaf); 4832 4833 if (btrfs_leaf_free_space(root, leaf) < 0) { 4834 btrfs_print_leaf(root, leaf); 4835 BUG(); 4836 } 4837 } 4838 4839 /* 4840 * Given a key and some data, insert items into the tree. 4841 * This does all the path init required, making room in the tree if needed. 4842 */ 4843 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4844 struct btrfs_root *root, 4845 struct btrfs_path *path, 4846 struct btrfs_key *cpu_key, u32 *data_size, 4847 int nr) 4848 { 4849 int ret = 0; 4850 int slot; 4851 int i; 4852 u32 total_size = 0; 4853 u32 total_data = 0; 4854 4855 for (i = 0; i < nr; i++) 4856 total_data += data_size[i]; 4857 4858 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4859 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4860 if (ret == 0) 4861 return -EEXIST; 4862 if (ret < 0) 4863 return ret; 4864 4865 slot = path->slots[0]; 4866 BUG_ON(slot < 0); 4867 4868 setup_items_for_insert(root, path, cpu_key, data_size, 4869 total_data, total_size, nr); 4870 return 0; 4871 } 4872 4873 /* 4874 * Given a key and some data, insert an item into the tree. 4875 * This does all the path init required, making room in the tree if needed. 4876 */ 4877 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4878 *root, struct btrfs_key *cpu_key, void *data, u32 4879 data_size) 4880 { 4881 int ret = 0; 4882 struct btrfs_path *path; 4883 struct extent_buffer *leaf; 4884 unsigned long ptr; 4885 4886 path = btrfs_alloc_path(); 4887 if (!path) 4888 return -ENOMEM; 4889 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4890 if (!ret) { 4891 leaf = path->nodes[0]; 4892 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4893 write_extent_buffer(leaf, data, ptr, data_size); 4894 btrfs_mark_buffer_dirty(leaf); 4895 } 4896 btrfs_free_path(path); 4897 return ret; 4898 } 4899 4900 /* 4901 * delete the pointer from a given node. 4902 * 4903 * the tree should have been previously balanced so the deletion does not 4904 * empty a node. 4905 */ 4906 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4907 int level, int slot) 4908 { 4909 struct extent_buffer *parent = path->nodes[level]; 4910 u32 nritems; 4911 int ret; 4912 4913 nritems = btrfs_header_nritems(parent); 4914 if (slot != nritems - 1) { 4915 if (level) 4916 tree_mod_log_eb_move(root->fs_info, parent, slot, 4917 slot + 1, nritems - slot - 1); 4918 memmove_extent_buffer(parent, 4919 btrfs_node_key_ptr_offset(slot), 4920 btrfs_node_key_ptr_offset(slot + 1), 4921 sizeof(struct btrfs_key_ptr) * 4922 (nritems - slot - 1)); 4923 } else if (level) { 4924 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4925 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4926 BUG_ON(ret < 0); 4927 } 4928 4929 nritems--; 4930 btrfs_set_header_nritems(parent, nritems); 4931 if (nritems == 0 && parent == root->node) { 4932 BUG_ON(btrfs_header_level(root->node) != 1); 4933 /* just turn the root into a leaf and break */ 4934 btrfs_set_header_level(root->node, 0); 4935 } else if (slot == 0) { 4936 struct btrfs_disk_key disk_key; 4937 4938 btrfs_node_key(parent, &disk_key, 0); 4939 fixup_low_keys(root, path, &disk_key, level + 1); 4940 } 4941 btrfs_mark_buffer_dirty(parent); 4942 } 4943 4944 /* 4945 * a helper function to delete the leaf pointed to by path->slots[1] and 4946 * path->nodes[1]. 4947 * 4948 * This deletes the pointer in path->nodes[1] and frees the leaf 4949 * block extent. zero is returned if it all worked out, < 0 otherwise. 4950 * 4951 * The path must have already been setup for deleting the leaf, including 4952 * all the proper balancing. path->nodes[1] must be locked. 4953 */ 4954 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4955 struct btrfs_root *root, 4956 struct btrfs_path *path, 4957 struct extent_buffer *leaf) 4958 { 4959 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4960 del_ptr(root, path, 1, path->slots[1]); 4961 4962 /* 4963 * btrfs_free_extent is expensive, we want to make sure we 4964 * aren't holding any locks when we call it 4965 */ 4966 btrfs_unlock_up_safe(path, 0); 4967 4968 root_sub_used(root, leaf->len); 4969 4970 extent_buffer_get(leaf); 4971 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4972 free_extent_buffer_stale(leaf); 4973 } 4974 /* 4975 * delete the item at the leaf level in path. If that empties 4976 * the leaf, remove it from the tree 4977 */ 4978 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4979 struct btrfs_path *path, int slot, int nr) 4980 { 4981 struct extent_buffer *leaf; 4982 struct btrfs_item *item; 4983 int last_off; 4984 int dsize = 0; 4985 int ret = 0; 4986 int wret; 4987 int i; 4988 u32 nritems; 4989 struct btrfs_map_token token; 4990 4991 btrfs_init_map_token(&token); 4992 4993 leaf = path->nodes[0]; 4994 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4995 4996 for (i = 0; i < nr; i++) 4997 dsize += btrfs_item_size_nr(leaf, slot + i); 4998 4999 nritems = btrfs_header_nritems(leaf); 5000 5001 if (slot + nr != nritems) { 5002 int data_end = leaf_data_end(root, leaf); 5003 5004 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 5005 data_end + dsize, 5006 btrfs_leaf_data(leaf) + data_end, 5007 last_off - data_end); 5008 5009 for (i = slot + nr; i < nritems; i++) { 5010 u32 ioff; 5011 5012 item = btrfs_item_nr(i); 5013 ioff = btrfs_token_item_offset(leaf, item, &token); 5014 btrfs_set_token_item_offset(leaf, item, 5015 ioff + dsize, &token); 5016 } 5017 5018 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 5019 btrfs_item_nr_offset(slot + nr), 5020 sizeof(struct btrfs_item) * 5021 (nritems - slot - nr)); 5022 } 5023 btrfs_set_header_nritems(leaf, nritems - nr); 5024 nritems -= nr; 5025 5026 /* delete the leaf if we've emptied it */ 5027 if (nritems == 0) { 5028 if (leaf == root->node) { 5029 btrfs_set_header_level(leaf, 0); 5030 } else { 5031 btrfs_set_path_blocking(path); 5032 clean_tree_block(trans, root, leaf); 5033 btrfs_del_leaf(trans, root, path, leaf); 5034 } 5035 } else { 5036 int used = leaf_space_used(leaf, 0, nritems); 5037 if (slot == 0) { 5038 struct btrfs_disk_key disk_key; 5039 5040 btrfs_item_key(leaf, &disk_key, 0); 5041 fixup_low_keys(root, path, &disk_key, 1); 5042 } 5043 5044 /* delete the leaf if it is mostly empty */ 5045 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5046 /* push_leaf_left fixes the path. 5047 * make sure the path still points to our leaf 5048 * for possible call to del_ptr below 5049 */ 5050 slot = path->slots[1]; 5051 extent_buffer_get(leaf); 5052 5053 btrfs_set_path_blocking(path); 5054 wret = push_leaf_left(trans, root, path, 1, 1, 5055 1, (u32)-1); 5056 if (wret < 0 && wret != -ENOSPC) 5057 ret = wret; 5058 5059 if (path->nodes[0] == leaf && 5060 btrfs_header_nritems(leaf)) { 5061 wret = push_leaf_right(trans, root, path, 1, 5062 1, 1, 0); 5063 if (wret < 0 && wret != -ENOSPC) 5064 ret = wret; 5065 } 5066 5067 if (btrfs_header_nritems(leaf) == 0) { 5068 path->slots[1] = slot; 5069 btrfs_del_leaf(trans, root, path, leaf); 5070 free_extent_buffer(leaf); 5071 ret = 0; 5072 } else { 5073 /* if we're still in the path, make sure 5074 * we're dirty. Otherwise, one of the 5075 * push_leaf functions must have already 5076 * dirtied this buffer 5077 */ 5078 if (path->nodes[0] == leaf) 5079 btrfs_mark_buffer_dirty(leaf); 5080 free_extent_buffer(leaf); 5081 } 5082 } else { 5083 btrfs_mark_buffer_dirty(leaf); 5084 } 5085 } 5086 return ret; 5087 } 5088 5089 /* 5090 * search the tree again to find a leaf with lesser keys 5091 * returns 0 if it found something or 1 if there are no lesser leaves. 5092 * returns < 0 on io errors. 5093 * 5094 * This may release the path, and so you may lose any locks held at the 5095 * time you call it. 5096 */ 5097 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5098 { 5099 struct btrfs_key key; 5100 struct btrfs_disk_key found_key; 5101 int ret; 5102 5103 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5104 5105 if (key.offset > 0) { 5106 key.offset--; 5107 } else if (key.type > 0) { 5108 key.type--; 5109 key.offset = (u64)-1; 5110 } else if (key.objectid > 0) { 5111 key.objectid--; 5112 key.type = (u8)-1; 5113 key.offset = (u64)-1; 5114 } else { 5115 return 1; 5116 } 5117 5118 btrfs_release_path(path); 5119 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5120 if (ret < 0) 5121 return ret; 5122 btrfs_item_key(path->nodes[0], &found_key, 0); 5123 ret = comp_keys(&found_key, &key); 5124 if (ret < 0) 5125 return 0; 5126 return 1; 5127 } 5128 5129 /* 5130 * A helper function to walk down the tree starting at min_key, and looking 5131 * for nodes or leaves that are have a minimum transaction id. 5132 * This is used by the btree defrag code, and tree logging 5133 * 5134 * This does not cow, but it does stuff the starting key it finds back 5135 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5136 * key and get a writable path. 5137 * 5138 * This does lock as it descends, and path->keep_locks should be set 5139 * to 1 by the caller. 5140 * 5141 * This honors path->lowest_level to prevent descent past a given level 5142 * of the tree. 5143 * 5144 * min_trans indicates the oldest transaction that you are interested 5145 * in walking through. Any nodes or leaves older than min_trans are 5146 * skipped over (without reading them). 5147 * 5148 * returns zero if something useful was found, < 0 on error and 1 if there 5149 * was nothing in the tree that matched the search criteria. 5150 */ 5151 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5152 struct btrfs_path *path, 5153 u64 min_trans) 5154 { 5155 struct extent_buffer *cur; 5156 struct btrfs_key found_key; 5157 int slot; 5158 int sret; 5159 u32 nritems; 5160 int level; 5161 int ret = 1; 5162 5163 WARN_ON(!path->keep_locks); 5164 again: 5165 cur = btrfs_read_lock_root_node(root); 5166 level = btrfs_header_level(cur); 5167 WARN_ON(path->nodes[level]); 5168 path->nodes[level] = cur; 5169 path->locks[level] = BTRFS_READ_LOCK; 5170 5171 if (btrfs_header_generation(cur) < min_trans) { 5172 ret = 1; 5173 goto out; 5174 } 5175 while (1) { 5176 nritems = btrfs_header_nritems(cur); 5177 level = btrfs_header_level(cur); 5178 sret = bin_search(cur, min_key, level, &slot); 5179 5180 /* at the lowest level, we're done, setup the path and exit */ 5181 if (level == path->lowest_level) { 5182 if (slot >= nritems) 5183 goto find_next_key; 5184 ret = 0; 5185 path->slots[level] = slot; 5186 btrfs_item_key_to_cpu(cur, &found_key, slot); 5187 goto out; 5188 } 5189 if (sret && slot > 0) 5190 slot--; 5191 /* 5192 * check this node pointer against the min_trans parameters. 5193 * If it is too old, old, skip to the next one. 5194 */ 5195 while (slot < nritems) { 5196 u64 gen; 5197 5198 gen = btrfs_node_ptr_generation(cur, slot); 5199 if (gen < min_trans) { 5200 slot++; 5201 continue; 5202 } 5203 break; 5204 } 5205 find_next_key: 5206 /* 5207 * we didn't find a candidate key in this node, walk forward 5208 * and find another one 5209 */ 5210 if (slot >= nritems) { 5211 path->slots[level] = slot; 5212 btrfs_set_path_blocking(path); 5213 sret = btrfs_find_next_key(root, path, min_key, level, 5214 min_trans); 5215 if (sret == 0) { 5216 btrfs_release_path(path); 5217 goto again; 5218 } else { 5219 goto out; 5220 } 5221 } 5222 /* save our key for returning back */ 5223 btrfs_node_key_to_cpu(cur, &found_key, slot); 5224 path->slots[level] = slot; 5225 if (level == path->lowest_level) { 5226 ret = 0; 5227 unlock_up(path, level, 1, 0, NULL); 5228 goto out; 5229 } 5230 btrfs_set_path_blocking(path); 5231 cur = read_node_slot(root, cur, slot); 5232 BUG_ON(!cur); /* -ENOMEM */ 5233 5234 btrfs_tree_read_lock(cur); 5235 5236 path->locks[level - 1] = BTRFS_READ_LOCK; 5237 path->nodes[level - 1] = cur; 5238 unlock_up(path, level, 1, 0, NULL); 5239 btrfs_clear_path_blocking(path, NULL, 0); 5240 } 5241 out: 5242 if (ret == 0) 5243 memcpy(min_key, &found_key, sizeof(found_key)); 5244 btrfs_set_path_blocking(path); 5245 return ret; 5246 } 5247 5248 static void tree_move_down(struct btrfs_root *root, 5249 struct btrfs_path *path, 5250 int *level, int root_level) 5251 { 5252 BUG_ON(*level == 0); 5253 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5254 path->slots[*level]); 5255 path->slots[*level - 1] = 0; 5256 (*level)--; 5257 } 5258 5259 static int tree_move_next_or_upnext(struct btrfs_root *root, 5260 struct btrfs_path *path, 5261 int *level, int root_level) 5262 { 5263 int ret = 0; 5264 int nritems; 5265 nritems = btrfs_header_nritems(path->nodes[*level]); 5266 5267 path->slots[*level]++; 5268 5269 while (path->slots[*level] >= nritems) { 5270 if (*level == root_level) 5271 return -1; 5272 5273 /* move upnext */ 5274 path->slots[*level] = 0; 5275 free_extent_buffer(path->nodes[*level]); 5276 path->nodes[*level] = NULL; 5277 (*level)++; 5278 path->slots[*level]++; 5279 5280 nritems = btrfs_header_nritems(path->nodes[*level]); 5281 ret = 1; 5282 } 5283 return ret; 5284 } 5285 5286 /* 5287 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5288 * or down. 5289 */ 5290 static int tree_advance(struct btrfs_root *root, 5291 struct btrfs_path *path, 5292 int *level, int root_level, 5293 int allow_down, 5294 struct btrfs_key *key) 5295 { 5296 int ret; 5297 5298 if (*level == 0 || !allow_down) { 5299 ret = tree_move_next_or_upnext(root, path, level, root_level); 5300 } else { 5301 tree_move_down(root, path, level, root_level); 5302 ret = 0; 5303 } 5304 if (ret >= 0) { 5305 if (*level == 0) 5306 btrfs_item_key_to_cpu(path->nodes[*level], key, 5307 path->slots[*level]); 5308 else 5309 btrfs_node_key_to_cpu(path->nodes[*level], key, 5310 path->slots[*level]); 5311 } 5312 return ret; 5313 } 5314 5315 static int tree_compare_item(struct btrfs_root *left_root, 5316 struct btrfs_path *left_path, 5317 struct btrfs_path *right_path, 5318 char *tmp_buf) 5319 { 5320 int cmp; 5321 int len1, len2; 5322 unsigned long off1, off2; 5323 5324 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5325 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5326 if (len1 != len2) 5327 return 1; 5328 5329 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5330 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5331 right_path->slots[0]); 5332 5333 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5334 5335 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5336 if (cmp) 5337 return 1; 5338 return 0; 5339 } 5340 5341 #define ADVANCE 1 5342 #define ADVANCE_ONLY_NEXT -1 5343 5344 /* 5345 * This function compares two trees and calls the provided callback for 5346 * every changed/new/deleted item it finds. 5347 * If shared tree blocks are encountered, whole subtrees are skipped, making 5348 * the compare pretty fast on snapshotted subvolumes. 5349 * 5350 * This currently works on commit roots only. As commit roots are read only, 5351 * we don't do any locking. The commit roots are protected with transactions. 5352 * Transactions are ended and rejoined when a commit is tried in between. 5353 * 5354 * This function checks for modifications done to the trees while comparing. 5355 * If it detects a change, it aborts immediately. 5356 */ 5357 int btrfs_compare_trees(struct btrfs_root *left_root, 5358 struct btrfs_root *right_root, 5359 btrfs_changed_cb_t changed_cb, void *ctx) 5360 { 5361 int ret; 5362 int cmp; 5363 struct btrfs_trans_handle *trans = NULL; 5364 struct btrfs_path *left_path = NULL; 5365 struct btrfs_path *right_path = NULL; 5366 struct btrfs_key left_key; 5367 struct btrfs_key right_key; 5368 char *tmp_buf = NULL; 5369 int left_root_level; 5370 int right_root_level; 5371 int left_level; 5372 int right_level; 5373 int left_end_reached; 5374 int right_end_reached; 5375 int advance_left; 5376 int advance_right; 5377 u64 left_blockptr; 5378 u64 right_blockptr; 5379 u64 left_start_ctransid; 5380 u64 right_start_ctransid; 5381 u64 ctransid; 5382 5383 left_path = btrfs_alloc_path(); 5384 if (!left_path) { 5385 ret = -ENOMEM; 5386 goto out; 5387 } 5388 right_path = btrfs_alloc_path(); 5389 if (!right_path) { 5390 ret = -ENOMEM; 5391 goto out; 5392 } 5393 5394 tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS); 5395 if (!tmp_buf) { 5396 ret = -ENOMEM; 5397 goto out; 5398 } 5399 5400 left_path->search_commit_root = 1; 5401 left_path->skip_locking = 1; 5402 right_path->search_commit_root = 1; 5403 right_path->skip_locking = 1; 5404 5405 spin_lock(&left_root->root_item_lock); 5406 left_start_ctransid = btrfs_root_ctransid(&left_root->root_item); 5407 spin_unlock(&left_root->root_item_lock); 5408 5409 spin_lock(&right_root->root_item_lock); 5410 right_start_ctransid = btrfs_root_ctransid(&right_root->root_item); 5411 spin_unlock(&right_root->root_item_lock); 5412 5413 trans = btrfs_join_transaction(left_root); 5414 if (IS_ERR(trans)) { 5415 ret = PTR_ERR(trans); 5416 trans = NULL; 5417 goto out; 5418 } 5419 5420 /* 5421 * Strategy: Go to the first items of both trees. Then do 5422 * 5423 * If both trees are at level 0 5424 * Compare keys of current items 5425 * If left < right treat left item as new, advance left tree 5426 * and repeat 5427 * If left > right treat right item as deleted, advance right tree 5428 * and repeat 5429 * If left == right do deep compare of items, treat as changed if 5430 * needed, advance both trees and repeat 5431 * If both trees are at the same level but not at level 0 5432 * Compare keys of current nodes/leafs 5433 * If left < right advance left tree and repeat 5434 * If left > right advance right tree and repeat 5435 * If left == right compare blockptrs of the next nodes/leafs 5436 * If they match advance both trees but stay at the same level 5437 * and repeat 5438 * If they don't match advance both trees while allowing to go 5439 * deeper and repeat 5440 * If tree levels are different 5441 * Advance the tree that needs it and repeat 5442 * 5443 * Advancing a tree means: 5444 * If we are at level 0, try to go to the next slot. If that's not 5445 * possible, go one level up and repeat. Stop when we found a level 5446 * where we could go to the next slot. We may at this point be on a 5447 * node or a leaf. 5448 * 5449 * If we are not at level 0 and not on shared tree blocks, go one 5450 * level deeper. 5451 * 5452 * If we are not at level 0 and on shared tree blocks, go one slot to 5453 * the right if possible or go up and right. 5454 */ 5455 5456 left_level = btrfs_header_level(left_root->commit_root); 5457 left_root_level = left_level; 5458 left_path->nodes[left_level] = left_root->commit_root; 5459 extent_buffer_get(left_path->nodes[left_level]); 5460 5461 right_level = btrfs_header_level(right_root->commit_root); 5462 right_root_level = right_level; 5463 right_path->nodes[right_level] = right_root->commit_root; 5464 extent_buffer_get(right_path->nodes[right_level]); 5465 5466 if (left_level == 0) 5467 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5468 &left_key, left_path->slots[left_level]); 5469 else 5470 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5471 &left_key, left_path->slots[left_level]); 5472 if (right_level == 0) 5473 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5474 &right_key, right_path->slots[right_level]); 5475 else 5476 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5477 &right_key, right_path->slots[right_level]); 5478 5479 left_end_reached = right_end_reached = 0; 5480 advance_left = advance_right = 0; 5481 5482 while (1) { 5483 /* 5484 * We need to make sure the transaction does not get committed 5485 * while we do anything on commit roots. This means, we need to 5486 * join and leave transactions for every item that we process. 5487 */ 5488 if (trans && btrfs_should_end_transaction(trans, left_root)) { 5489 btrfs_release_path(left_path); 5490 btrfs_release_path(right_path); 5491 5492 ret = btrfs_end_transaction(trans, left_root); 5493 trans = NULL; 5494 if (ret < 0) 5495 goto out; 5496 } 5497 /* now rejoin the transaction */ 5498 if (!trans) { 5499 trans = btrfs_join_transaction(left_root); 5500 if (IS_ERR(trans)) { 5501 ret = PTR_ERR(trans); 5502 trans = NULL; 5503 goto out; 5504 } 5505 5506 spin_lock(&left_root->root_item_lock); 5507 ctransid = btrfs_root_ctransid(&left_root->root_item); 5508 spin_unlock(&left_root->root_item_lock); 5509 if (ctransid != left_start_ctransid) 5510 left_start_ctransid = 0; 5511 5512 spin_lock(&right_root->root_item_lock); 5513 ctransid = btrfs_root_ctransid(&right_root->root_item); 5514 spin_unlock(&right_root->root_item_lock); 5515 if (ctransid != right_start_ctransid) 5516 right_start_ctransid = 0; 5517 5518 if (!left_start_ctransid || !right_start_ctransid) { 5519 WARN(1, KERN_WARNING 5520 "BTRFS: btrfs_compare_tree detected " 5521 "a change in one of the trees while " 5522 "iterating. This is probably a " 5523 "bug.\n"); 5524 ret = -EIO; 5525 goto out; 5526 } 5527 5528 /* 5529 * the commit root may have changed, so start again 5530 * where we stopped 5531 */ 5532 left_path->lowest_level = left_level; 5533 right_path->lowest_level = right_level; 5534 ret = btrfs_search_slot(NULL, left_root, 5535 &left_key, left_path, 0, 0); 5536 if (ret < 0) 5537 goto out; 5538 ret = btrfs_search_slot(NULL, right_root, 5539 &right_key, right_path, 0, 0); 5540 if (ret < 0) 5541 goto out; 5542 } 5543 5544 if (advance_left && !left_end_reached) { 5545 ret = tree_advance(left_root, left_path, &left_level, 5546 left_root_level, 5547 advance_left != ADVANCE_ONLY_NEXT, 5548 &left_key); 5549 if (ret < 0) 5550 left_end_reached = ADVANCE; 5551 advance_left = 0; 5552 } 5553 if (advance_right && !right_end_reached) { 5554 ret = tree_advance(right_root, right_path, &right_level, 5555 right_root_level, 5556 advance_right != ADVANCE_ONLY_NEXT, 5557 &right_key); 5558 if (ret < 0) 5559 right_end_reached = ADVANCE; 5560 advance_right = 0; 5561 } 5562 5563 if (left_end_reached && right_end_reached) { 5564 ret = 0; 5565 goto out; 5566 } else if (left_end_reached) { 5567 if (right_level == 0) { 5568 ret = changed_cb(left_root, right_root, 5569 left_path, right_path, 5570 &right_key, 5571 BTRFS_COMPARE_TREE_DELETED, 5572 ctx); 5573 if (ret < 0) 5574 goto out; 5575 } 5576 advance_right = ADVANCE; 5577 continue; 5578 } else if (right_end_reached) { 5579 if (left_level == 0) { 5580 ret = changed_cb(left_root, right_root, 5581 left_path, right_path, 5582 &left_key, 5583 BTRFS_COMPARE_TREE_NEW, 5584 ctx); 5585 if (ret < 0) 5586 goto out; 5587 } 5588 advance_left = ADVANCE; 5589 continue; 5590 } 5591 5592 if (left_level == 0 && right_level == 0) { 5593 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5594 if (cmp < 0) { 5595 ret = changed_cb(left_root, right_root, 5596 left_path, right_path, 5597 &left_key, 5598 BTRFS_COMPARE_TREE_NEW, 5599 ctx); 5600 if (ret < 0) 5601 goto out; 5602 advance_left = ADVANCE; 5603 } else if (cmp > 0) { 5604 ret = changed_cb(left_root, right_root, 5605 left_path, right_path, 5606 &right_key, 5607 BTRFS_COMPARE_TREE_DELETED, 5608 ctx); 5609 if (ret < 0) 5610 goto out; 5611 advance_right = ADVANCE; 5612 } else { 5613 enum btrfs_compare_tree_result cmp; 5614 5615 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5616 ret = tree_compare_item(left_root, left_path, 5617 right_path, tmp_buf); 5618 if (ret) 5619 cmp = BTRFS_COMPARE_TREE_CHANGED; 5620 else 5621 cmp = BTRFS_COMPARE_TREE_SAME; 5622 ret = changed_cb(left_root, right_root, 5623 left_path, right_path, 5624 &left_key, cmp, ctx); 5625 if (ret < 0) 5626 goto out; 5627 advance_left = ADVANCE; 5628 advance_right = ADVANCE; 5629 } 5630 } else if (left_level == right_level) { 5631 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5632 if (cmp < 0) { 5633 advance_left = ADVANCE; 5634 } else if (cmp > 0) { 5635 advance_right = ADVANCE; 5636 } else { 5637 left_blockptr = btrfs_node_blockptr( 5638 left_path->nodes[left_level], 5639 left_path->slots[left_level]); 5640 right_blockptr = btrfs_node_blockptr( 5641 right_path->nodes[right_level], 5642 right_path->slots[right_level]); 5643 if (left_blockptr == right_blockptr) { 5644 /* 5645 * As we're on a shared block, don't 5646 * allow to go deeper. 5647 */ 5648 advance_left = ADVANCE_ONLY_NEXT; 5649 advance_right = ADVANCE_ONLY_NEXT; 5650 } else { 5651 advance_left = ADVANCE; 5652 advance_right = ADVANCE; 5653 } 5654 } 5655 } else if (left_level < right_level) { 5656 advance_right = ADVANCE; 5657 } else { 5658 advance_left = ADVANCE; 5659 } 5660 } 5661 5662 out: 5663 btrfs_free_path(left_path); 5664 btrfs_free_path(right_path); 5665 kfree(tmp_buf); 5666 5667 if (trans) { 5668 if (!ret) 5669 ret = btrfs_end_transaction(trans, left_root); 5670 else 5671 btrfs_end_transaction(trans, left_root); 5672 } 5673 5674 return ret; 5675 } 5676 5677 /* 5678 * this is similar to btrfs_next_leaf, but does not try to preserve 5679 * and fixup the path. It looks for and returns the next key in the 5680 * tree based on the current path and the min_trans parameters. 5681 * 5682 * 0 is returned if another key is found, < 0 if there are any errors 5683 * and 1 is returned if there are no higher keys in the tree 5684 * 5685 * path->keep_locks should be set to 1 on the search made before 5686 * calling this function. 5687 */ 5688 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5689 struct btrfs_key *key, int level, u64 min_trans) 5690 { 5691 int slot; 5692 struct extent_buffer *c; 5693 5694 WARN_ON(!path->keep_locks); 5695 while (level < BTRFS_MAX_LEVEL) { 5696 if (!path->nodes[level]) 5697 return 1; 5698 5699 slot = path->slots[level] + 1; 5700 c = path->nodes[level]; 5701 next: 5702 if (slot >= btrfs_header_nritems(c)) { 5703 int ret; 5704 int orig_lowest; 5705 struct btrfs_key cur_key; 5706 if (level + 1 >= BTRFS_MAX_LEVEL || 5707 !path->nodes[level + 1]) 5708 return 1; 5709 5710 if (path->locks[level + 1]) { 5711 level++; 5712 continue; 5713 } 5714 5715 slot = btrfs_header_nritems(c) - 1; 5716 if (level == 0) 5717 btrfs_item_key_to_cpu(c, &cur_key, slot); 5718 else 5719 btrfs_node_key_to_cpu(c, &cur_key, slot); 5720 5721 orig_lowest = path->lowest_level; 5722 btrfs_release_path(path); 5723 path->lowest_level = level; 5724 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5725 0, 0); 5726 path->lowest_level = orig_lowest; 5727 if (ret < 0) 5728 return ret; 5729 5730 c = path->nodes[level]; 5731 slot = path->slots[level]; 5732 if (ret == 0) 5733 slot++; 5734 goto next; 5735 } 5736 5737 if (level == 0) 5738 btrfs_item_key_to_cpu(c, key, slot); 5739 else { 5740 u64 gen = btrfs_node_ptr_generation(c, slot); 5741 5742 if (gen < min_trans) { 5743 slot++; 5744 goto next; 5745 } 5746 btrfs_node_key_to_cpu(c, key, slot); 5747 } 5748 return 0; 5749 } 5750 return 1; 5751 } 5752 5753 /* 5754 * search the tree again to find a leaf with greater keys 5755 * returns 0 if it found something or 1 if there are no greater leaves. 5756 * returns < 0 on io errors. 5757 */ 5758 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5759 { 5760 return btrfs_next_old_leaf(root, path, 0); 5761 } 5762 5763 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5764 u64 time_seq) 5765 { 5766 int slot; 5767 int level; 5768 struct extent_buffer *c; 5769 struct extent_buffer *next; 5770 struct btrfs_key key; 5771 u32 nritems; 5772 int ret; 5773 int old_spinning = path->leave_spinning; 5774 int next_rw_lock = 0; 5775 5776 nritems = btrfs_header_nritems(path->nodes[0]); 5777 if (nritems == 0) 5778 return 1; 5779 5780 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5781 again: 5782 level = 1; 5783 next = NULL; 5784 next_rw_lock = 0; 5785 btrfs_release_path(path); 5786 5787 path->keep_locks = 1; 5788 path->leave_spinning = 1; 5789 5790 if (time_seq) 5791 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5792 else 5793 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5794 path->keep_locks = 0; 5795 5796 if (ret < 0) 5797 return ret; 5798 5799 nritems = btrfs_header_nritems(path->nodes[0]); 5800 /* 5801 * by releasing the path above we dropped all our locks. A balance 5802 * could have added more items next to the key that used to be 5803 * at the very end of the block. So, check again here and 5804 * advance the path if there are now more items available. 5805 */ 5806 if (nritems > 0 && path->slots[0] < nritems - 1) { 5807 if (ret == 0) 5808 path->slots[0]++; 5809 ret = 0; 5810 goto done; 5811 } 5812 5813 while (level < BTRFS_MAX_LEVEL) { 5814 if (!path->nodes[level]) { 5815 ret = 1; 5816 goto done; 5817 } 5818 5819 slot = path->slots[level] + 1; 5820 c = path->nodes[level]; 5821 if (slot >= btrfs_header_nritems(c)) { 5822 level++; 5823 if (level == BTRFS_MAX_LEVEL) { 5824 ret = 1; 5825 goto done; 5826 } 5827 continue; 5828 } 5829 5830 if (next) { 5831 btrfs_tree_unlock_rw(next, next_rw_lock); 5832 free_extent_buffer(next); 5833 } 5834 5835 next = c; 5836 next_rw_lock = path->locks[level]; 5837 ret = read_block_for_search(NULL, root, path, &next, level, 5838 slot, &key, 0); 5839 if (ret == -EAGAIN) 5840 goto again; 5841 5842 if (ret < 0) { 5843 btrfs_release_path(path); 5844 goto done; 5845 } 5846 5847 if (!path->skip_locking) { 5848 ret = btrfs_try_tree_read_lock(next); 5849 if (!ret && time_seq) { 5850 /* 5851 * If we don't get the lock, we may be racing 5852 * with push_leaf_left, holding that lock while 5853 * itself waiting for the leaf we've currently 5854 * locked. To solve this situation, we give up 5855 * on our lock and cycle. 5856 */ 5857 free_extent_buffer(next); 5858 btrfs_release_path(path); 5859 cond_resched(); 5860 goto again; 5861 } 5862 if (!ret) { 5863 btrfs_set_path_blocking(path); 5864 btrfs_tree_read_lock(next); 5865 btrfs_clear_path_blocking(path, next, 5866 BTRFS_READ_LOCK); 5867 } 5868 next_rw_lock = BTRFS_READ_LOCK; 5869 } 5870 break; 5871 } 5872 path->slots[level] = slot; 5873 while (1) { 5874 level--; 5875 c = path->nodes[level]; 5876 if (path->locks[level]) 5877 btrfs_tree_unlock_rw(c, path->locks[level]); 5878 5879 free_extent_buffer(c); 5880 path->nodes[level] = next; 5881 path->slots[level] = 0; 5882 if (!path->skip_locking) 5883 path->locks[level] = next_rw_lock; 5884 if (!level) 5885 break; 5886 5887 ret = read_block_for_search(NULL, root, path, &next, level, 5888 0, &key, 0); 5889 if (ret == -EAGAIN) 5890 goto again; 5891 5892 if (ret < 0) { 5893 btrfs_release_path(path); 5894 goto done; 5895 } 5896 5897 if (!path->skip_locking) { 5898 ret = btrfs_try_tree_read_lock(next); 5899 if (!ret) { 5900 btrfs_set_path_blocking(path); 5901 btrfs_tree_read_lock(next); 5902 btrfs_clear_path_blocking(path, next, 5903 BTRFS_READ_LOCK); 5904 } 5905 next_rw_lock = BTRFS_READ_LOCK; 5906 } 5907 } 5908 ret = 0; 5909 done: 5910 unlock_up(path, 0, 1, 0, NULL); 5911 path->leave_spinning = old_spinning; 5912 if (!old_spinning) 5913 btrfs_set_path_blocking(path); 5914 5915 return ret; 5916 } 5917 5918 /* 5919 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5920 * searching until it gets past min_objectid or finds an item of 'type' 5921 * 5922 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5923 */ 5924 int btrfs_previous_item(struct btrfs_root *root, 5925 struct btrfs_path *path, u64 min_objectid, 5926 int type) 5927 { 5928 struct btrfs_key found_key; 5929 struct extent_buffer *leaf; 5930 u32 nritems; 5931 int ret; 5932 5933 while (1) { 5934 if (path->slots[0] == 0) { 5935 btrfs_set_path_blocking(path); 5936 ret = btrfs_prev_leaf(root, path); 5937 if (ret != 0) 5938 return ret; 5939 } else { 5940 path->slots[0]--; 5941 } 5942 leaf = path->nodes[0]; 5943 nritems = btrfs_header_nritems(leaf); 5944 if (nritems == 0) 5945 return 1; 5946 if (path->slots[0] == nritems) 5947 path->slots[0]--; 5948 5949 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5950 if (found_key.objectid < min_objectid) 5951 break; 5952 if (found_key.type == type) 5953 return 0; 5954 if (found_key.objectid == min_objectid && 5955 found_key.type < type) 5956 break; 5957 } 5958 return 1; 5959 } 5960 5961 /* 5962 * search in extent tree to find a previous Metadata/Data extent item with 5963 * min objecitd. 5964 * 5965 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5966 */ 5967 int btrfs_previous_extent_item(struct btrfs_root *root, 5968 struct btrfs_path *path, u64 min_objectid) 5969 { 5970 struct btrfs_key found_key; 5971 struct extent_buffer *leaf; 5972 u32 nritems; 5973 int ret; 5974 5975 while (1) { 5976 if (path->slots[0] == 0) { 5977 btrfs_set_path_blocking(path); 5978 ret = btrfs_prev_leaf(root, path); 5979 if (ret != 0) 5980 return ret; 5981 } else { 5982 path->slots[0]--; 5983 } 5984 leaf = path->nodes[0]; 5985 nritems = btrfs_header_nritems(leaf); 5986 if (nritems == 0) 5987 return 1; 5988 if (path->slots[0] == nritems) 5989 path->slots[0]--; 5990 5991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5992 if (found_key.objectid < min_objectid) 5993 break; 5994 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5995 found_key.type == BTRFS_METADATA_ITEM_KEY) 5996 return 0; 5997 if (found_key.objectid == min_objectid && 5998 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5999 break; 6000 } 6001 return 1; 6002 } 6003