xref: /openbmc/linux/fs/btrfs/ctree.c (revision 3f58ff6b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "messages.h"
12 #include "ctree.h"
13 #include "disk-io.h"
14 #include "transaction.h"
15 #include "print-tree.h"
16 #include "locking.h"
17 #include "volumes.h"
18 #include "qgroup.h"
19 #include "tree-mod-log.h"
20 #include "tree-checker.h"
21 #include "fs.h"
22 #include "accessors.h"
23 #include "extent-tree.h"
24 #include "relocation.h"
25 #include "file-item.h"
26 
27 static struct kmem_cache *btrfs_path_cachep;
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
32 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
33 		      int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 		    int level, int slot);
42 
43 static const struct btrfs_csums {
44 	u16		size;
45 	const char	name[10];
46 	const char	driver[12];
47 } btrfs_csums[] = {
48 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
49 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
50 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
51 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
52 				     .driver = "blake2b-256" },
53 };
54 
55 /*
56  * The leaf data grows from end-to-front in the node.  this returns the address
57  * of the start of the last item, which is the stop of the leaf data stack.
58  */
59 static unsigned int leaf_data_end(const struct extent_buffer *leaf)
60 {
61 	u32 nr = btrfs_header_nritems(leaf);
62 
63 	if (nr == 0)
64 		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
65 	return btrfs_item_offset(leaf, nr - 1);
66 }
67 
68 /*
69  * Move data in a @leaf (using memmove, safe for overlapping ranges).
70  *
71  * @leaf:	leaf that we're doing a memmove on
72  * @dst_offset:	item data offset we're moving to
73  * @src_offset:	item data offset were' moving from
74  * @len:	length of the data we're moving
75  *
76  * Wrapper around memmove_extent_buffer() that takes into account the header on
77  * the leaf.  The btrfs_item offset's start directly after the header, so we
78  * have to adjust any offsets to account for the header in the leaf.  This
79  * handles that math to simplify the callers.
80  */
81 static inline void memmove_leaf_data(const struct extent_buffer *leaf,
82 				     unsigned long dst_offset,
83 				     unsigned long src_offset,
84 				     unsigned long len)
85 {
86 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, 0) + dst_offset,
87 			      btrfs_item_nr_offset(leaf, 0) + src_offset, len);
88 }
89 
90 /*
91  * Copy item data from @src into @dst at the given @offset.
92  *
93  * @dst:	destination leaf that we're copying into
94  * @src:	source leaf that we're copying from
95  * @dst_offset:	item data offset we're copying to
96  * @src_offset:	item data offset were' copying from
97  * @len:	length of the data we're copying
98  *
99  * Wrapper around copy_extent_buffer() that takes into account the header on
100  * the leaf.  The btrfs_item offset's start directly after the header, so we
101  * have to adjust any offsets to account for the header in the leaf.  This
102  * handles that math to simplify the callers.
103  */
104 static inline void copy_leaf_data(const struct extent_buffer *dst,
105 				  const struct extent_buffer *src,
106 				  unsigned long dst_offset,
107 				  unsigned long src_offset, unsigned long len)
108 {
109 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, 0) + dst_offset,
110 			   btrfs_item_nr_offset(src, 0) + src_offset, len);
111 }
112 
113 /*
114  * Move items in a @leaf (using memmove).
115  *
116  * @dst:	destination leaf for the items
117  * @dst_item:	the item nr we're copying into
118  * @src_item:	the item nr we're copying from
119  * @nr_items:	the number of items to copy
120  *
121  * Wrapper around memmove_extent_buffer() that does the math to get the
122  * appropriate offsets into the leaf from the item numbers.
123  */
124 static inline void memmove_leaf_items(const struct extent_buffer *leaf,
125 				      int dst_item, int src_item, int nr_items)
126 {
127 	memmove_extent_buffer(leaf, btrfs_item_nr_offset(leaf, dst_item),
128 			      btrfs_item_nr_offset(leaf, src_item),
129 			      nr_items * sizeof(struct btrfs_item));
130 }
131 
132 /*
133  * Copy items from @src into @dst at the given @offset.
134  *
135  * @dst:	destination leaf for the items
136  * @src:	source leaf for the items
137  * @dst_item:	the item nr we're copying into
138  * @src_item:	the item nr we're copying from
139  * @nr_items:	the number of items to copy
140  *
141  * Wrapper around copy_extent_buffer() that does the math to get the
142  * appropriate offsets into the leaf from the item numbers.
143  */
144 static inline void copy_leaf_items(const struct extent_buffer *dst,
145 				   const struct extent_buffer *src,
146 				   int dst_item, int src_item, int nr_items)
147 {
148 	copy_extent_buffer(dst, src, btrfs_item_nr_offset(dst, dst_item),
149 			      btrfs_item_nr_offset(src, src_item),
150 			      nr_items * sizeof(struct btrfs_item));
151 }
152 
153 int btrfs_super_csum_size(const struct btrfs_super_block *s)
154 {
155 	u16 t = btrfs_super_csum_type(s);
156 	/*
157 	 * csum type is validated at mount time
158 	 */
159 	return btrfs_csums[t].size;
160 }
161 
162 const char *btrfs_super_csum_name(u16 csum_type)
163 {
164 	/* csum type is validated at mount time */
165 	return btrfs_csums[csum_type].name;
166 }
167 
168 /*
169  * Return driver name if defined, otherwise the name that's also a valid driver
170  * name
171  */
172 const char *btrfs_super_csum_driver(u16 csum_type)
173 {
174 	/* csum type is validated at mount time */
175 	return btrfs_csums[csum_type].driver[0] ?
176 		btrfs_csums[csum_type].driver :
177 		btrfs_csums[csum_type].name;
178 }
179 
180 size_t __attribute_const__ btrfs_get_num_csums(void)
181 {
182 	return ARRAY_SIZE(btrfs_csums);
183 }
184 
185 struct btrfs_path *btrfs_alloc_path(void)
186 {
187 	might_sleep();
188 
189 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
190 }
191 
192 /* this also releases the path */
193 void btrfs_free_path(struct btrfs_path *p)
194 {
195 	if (!p)
196 		return;
197 	btrfs_release_path(p);
198 	kmem_cache_free(btrfs_path_cachep, p);
199 }
200 
201 /*
202  * path release drops references on the extent buffers in the path
203  * and it drops any locks held by this path
204  *
205  * It is safe to call this on paths that no locks or extent buffers held.
206  */
207 noinline void btrfs_release_path(struct btrfs_path *p)
208 {
209 	int i;
210 
211 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
212 		p->slots[i] = 0;
213 		if (!p->nodes[i])
214 			continue;
215 		if (p->locks[i]) {
216 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
217 			p->locks[i] = 0;
218 		}
219 		free_extent_buffer(p->nodes[i]);
220 		p->nodes[i] = NULL;
221 	}
222 }
223 
224 /*
225  * We want the transaction abort to print stack trace only for errors where the
226  * cause could be a bug, eg. due to ENOSPC, and not for common errors that are
227  * caused by external factors.
228  */
229 bool __cold abort_should_print_stack(int errno)
230 {
231 	switch (errno) {
232 	case -EIO:
233 	case -EROFS:
234 	case -ENOMEM:
235 		return false;
236 	}
237 	return true;
238 }
239 
240 /*
241  * safely gets a reference on the root node of a tree.  A lock
242  * is not taken, so a concurrent writer may put a different node
243  * at the root of the tree.  See btrfs_lock_root_node for the
244  * looping required.
245  *
246  * The extent buffer returned by this has a reference taken, so
247  * it won't disappear.  It may stop being the root of the tree
248  * at any time because there are no locks held.
249  */
250 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
251 {
252 	struct extent_buffer *eb;
253 
254 	while (1) {
255 		rcu_read_lock();
256 		eb = rcu_dereference(root->node);
257 
258 		/*
259 		 * RCU really hurts here, we could free up the root node because
260 		 * it was COWed but we may not get the new root node yet so do
261 		 * the inc_not_zero dance and if it doesn't work then
262 		 * synchronize_rcu and try again.
263 		 */
264 		if (atomic_inc_not_zero(&eb->refs)) {
265 			rcu_read_unlock();
266 			break;
267 		}
268 		rcu_read_unlock();
269 		synchronize_rcu();
270 	}
271 	return eb;
272 }
273 
274 /*
275  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
276  * just get put onto a simple dirty list.  Transaction walks this list to make
277  * sure they get properly updated on disk.
278  */
279 static void add_root_to_dirty_list(struct btrfs_root *root)
280 {
281 	struct btrfs_fs_info *fs_info = root->fs_info;
282 
283 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
284 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
285 		return;
286 
287 	spin_lock(&fs_info->trans_lock);
288 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
289 		/* Want the extent tree to be the last on the list */
290 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
291 			list_move_tail(&root->dirty_list,
292 				       &fs_info->dirty_cowonly_roots);
293 		else
294 			list_move(&root->dirty_list,
295 				  &fs_info->dirty_cowonly_roots);
296 	}
297 	spin_unlock(&fs_info->trans_lock);
298 }
299 
300 /*
301  * used by snapshot creation to make a copy of a root for a tree with
302  * a given objectid.  The buffer with the new root node is returned in
303  * cow_ret, and this func returns zero on success or a negative error code.
304  */
305 int btrfs_copy_root(struct btrfs_trans_handle *trans,
306 		      struct btrfs_root *root,
307 		      struct extent_buffer *buf,
308 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
309 {
310 	struct btrfs_fs_info *fs_info = root->fs_info;
311 	struct extent_buffer *cow;
312 	int ret = 0;
313 	int level;
314 	struct btrfs_disk_key disk_key;
315 
316 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
317 		trans->transid != fs_info->running_transaction->transid);
318 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
319 		trans->transid != root->last_trans);
320 
321 	level = btrfs_header_level(buf);
322 	if (level == 0)
323 		btrfs_item_key(buf, &disk_key, 0);
324 	else
325 		btrfs_node_key(buf, &disk_key, 0);
326 
327 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
328 				     &disk_key, level, buf->start, 0,
329 				     BTRFS_NESTING_NEW_ROOT);
330 	if (IS_ERR(cow))
331 		return PTR_ERR(cow);
332 
333 	copy_extent_buffer_full(cow, buf);
334 	btrfs_set_header_bytenr(cow, cow->start);
335 	btrfs_set_header_generation(cow, trans->transid);
336 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
337 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
338 				     BTRFS_HEADER_FLAG_RELOC);
339 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
340 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
341 	else
342 		btrfs_set_header_owner(cow, new_root_objectid);
343 
344 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
345 
346 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
347 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
348 		ret = btrfs_inc_ref(trans, root, cow, 1);
349 	else
350 		ret = btrfs_inc_ref(trans, root, cow, 0);
351 	if (ret) {
352 		btrfs_tree_unlock(cow);
353 		free_extent_buffer(cow);
354 		btrfs_abort_transaction(trans, ret);
355 		return ret;
356 	}
357 
358 	btrfs_mark_buffer_dirty(cow);
359 	*cow_ret = cow;
360 	return 0;
361 }
362 
363 /*
364  * check if the tree block can be shared by multiple trees
365  */
366 int btrfs_block_can_be_shared(struct btrfs_root *root,
367 			      struct extent_buffer *buf)
368 {
369 	/*
370 	 * Tree blocks not in shareable trees and tree roots are never shared.
371 	 * If a block was allocated after the last snapshot and the block was
372 	 * not allocated by tree relocation, we know the block is not shared.
373 	 */
374 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
375 	    buf != root->node && buf != root->commit_root &&
376 	    (btrfs_header_generation(buf) <=
377 	     btrfs_root_last_snapshot(&root->root_item) ||
378 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
379 		return 1;
380 
381 	return 0;
382 }
383 
384 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
385 				       struct btrfs_root *root,
386 				       struct extent_buffer *buf,
387 				       struct extent_buffer *cow,
388 				       int *last_ref)
389 {
390 	struct btrfs_fs_info *fs_info = root->fs_info;
391 	u64 refs;
392 	u64 owner;
393 	u64 flags;
394 	u64 new_flags = 0;
395 	int ret;
396 
397 	/*
398 	 * Backrefs update rules:
399 	 *
400 	 * Always use full backrefs for extent pointers in tree block
401 	 * allocated by tree relocation.
402 	 *
403 	 * If a shared tree block is no longer referenced by its owner
404 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
405 	 * use full backrefs for extent pointers in tree block.
406 	 *
407 	 * If a tree block is been relocating
408 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
409 	 * use full backrefs for extent pointers in tree block.
410 	 * The reason for this is some operations (such as drop tree)
411 	 * are only allowed for blocks use full backrefs.
412 	 */
413 
414 	if (btrfs_block_can_be_shared(root, buf)) {
415 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
416 					       btrfs_header_level(buf), 1,
417 					       &refs, &flags);
418 		if (ret)
419 			return ret;
420 		if (refs == 0) {
421 			ret = -EROFS;
422 			btrfs_handle_fs_error(fs_info, ret, NULL);
423 			return ret;
424 		}
425 	} else {
426 		refs = 1;
427 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
428 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
429 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
430 		else
431 			flags = 0;
432 	}
433 
434 	owner = btrfs_header_owner(buf);
435 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
436 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
437 
438 	if (refs > 1) {
439 		if ((owner == root->root_key.objectid ||
440 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
441 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
442 			ret = btrfs_inc_ref(trans, root, buf, 1);
443 			if (ret)
444 				return ret;
445 
446 			if (root->root_key.objectid ==
447 			    BTRFS_TREE_RELOC_OBJECTID) {
448 				ret = btrfs_dec_ref(trans, root, buf, 0);
449 				if (ret)
450 					return ret;
451 				ret = btrfs_inc_ref(trans, root, cow, 1);
452 				if (ret)
453 					return ret;
454 			}
455 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
456 		} else {
457 
458 			if (root->root_key.objectid ==
459 			    BTRFS_TREE_RELOC_OBJECTID)
460 				ret = btrfs_inc_ref(trans, root, cow, 1);
461 			else
462 				ret = btrfs_inc_ref(trans, root, cow, 0);
463 			if (ret)
464 				return ret;
465 		}
466 		if (new_flags != 0) {
467 			int level = btrfs_header_level(buf);
468 
469 			ret = btrfs_set_disk_extent_flags(trans, buf,
470 							  new_flags, level);
471 			if (ret)
472 				return ret;
473 		}
474 	} else {
475 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
476 			if (root->root_key.objectid ==
477 			    BTRFS_TREE_RELOC_OBJECTID)
478 				ret = btrfs_inc_ref(trans, root, cow, 1);
479 			else
480 				ret = btrfs_inc_ref(trans, root, cow, 0);
481 			if (ret)
482 				return ret;
483 			ret = btrfs_dec_ref(trans, root, buf, 1);
484 			if (ret)
485 				return ret;
486 		}
487 		btrfs_clean_tree_block(buf);
488 		*last_ref = 1;
489 	}
490 	return 0;
491 }
492 
493 /*
494  * does the dirty work in cow of a single block.  The parent block (if
495  * supplied) is updated to point to the new cow copy.  The new buffer is marked
496  * dirty and returned locked.  If you modify the block it needs to be marked
497  * dirty again.
498  *
499  * search_start -- an allocation hint for the new block
500  *
501  * empty_size -- a hint that you plan on doing more cow.  This is the size in
502  * bytes the allocator should try to find free next to the block it returns.
503  * This is just a hint and may be ignored by the allocator.
504  */
505 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
506 			     struct btrfs_root *root,
507 			     struct extent_buffer *buf,
508 			     struct extent_buffer *parent, int parent_slot,
509 			     struct extent_buffer **cow_ret,
510 			     u64 search_start, u64 empty_size,
511 			     enum btrfs_lock_nesting nest)
512 {
513 	struct btrfs_fs_info *fs_info = root->fs_info;
514 	struct btrfs_disk_key disk_key;
515 	struct extent_buffer *cow;
516 	int level, ret;
517 	int last_ref = 0;
518 	int unlock_orig = 0;
519 	u64 parent_start = 0;
520 
521 	if (*cow_ret == buf)
522 		unlock_orig = 1;
523 
524 	btrfs_assert_tree_write_locked(buf);
525 
526 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
527 		trans->transid != fs_info->running_transaction->transid);
528 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
529 		trans->transid != root->last_trans);
530 
531 	level = btrfs_header_level(buf);
532 
533 	if (level == 0)
534 		btrfs_item_key(buf, &disk_key, 0);
535 	else
536 		btrfs_node_key(buf, &disk_key, 0);
537 
538 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
539 		parent_start = parent->start;
540 
541 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
542 				     root->root_key.objectid, &disk_key, level,
543 				     search_start, empty_size, nest);
544 	if (IS_ERR(cow))
545 		return PTR_ERR(cow);
546 
547 	/* cow is set to blocking by btrfs_init_new_buffer */
548 
549 	copy_extent_buffer_full(cow, buf);
550 	btrfs_set_header_bytenr(cow, cow->start);
551 	btrfs_set_header_generation(cow, trans->transid);
552 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
553 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
554 				     BTRFS_HEADER_FLAG_RELOC);
555 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
556 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
557 	else
558 		btrfs_set_header_owner(cow, root->root_key.objectid);
559 
560 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
561 
562 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
563 	if (ret) {
564 		btrfs_tree_unlock(cow);
565 		free_extent_buffer(cow);
566 		btrfs_abort_transaction(trans, ret);
567 		return ret;
568 	}
569 
570 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
571 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
572 		if (ret) {
573 			btrfs_tree_unlock(cow);
574 			free_extent_buffer(cow);
575 			btrfs_abort_transaction(trans, ret);
576 			return ret;
577 		}
578 	}
579 
580 	if (buf == root->node) {
581 		WARN_ON(parent && parent != buf);
582 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
583 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
584 			parent_start = buf->start;
585 
586 		atomic_inc(&cow->refs);
587 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
588 		BUG_ON(ret < 0);
589 		rcu_assign_pointer(root->node, cow);
590 
591 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
592 				      parent_start, last_ref);
593 		free_extent_buffer(buf);
594 		add_root_to_dirty_list(root);
595 	} else {
596 		WARN_ON(trans->transid != btrfs_header_generation(parent));
597 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
598 					      BTRFS_MOD_LOG_KEY_REPLACE);
599 		btrfs_set_node_blockptr(parent, parent_slot,
600 					cow->start);
601 		btrfs_set_node_ptr_generation(parent, parent_slot,
602 					      trans->transid);
603 		btrfs_mark_buffer_dirty(parent);
604 		if (last_ref) {
605 			ret = btrfs_tree_mod_log_free_eb(buf);
606 			if (ret) {
607 				btrfs_tree_unlock(cow);
608 				free_extent_buffer(cow);
609 				btrfs_abort_transaction(trans, ret);
610 				return ret;
611 			}
612 		}
613 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
614 				      parent_start, last_ref);
615 	}
616 	if (unlock_orig)
617 		btrfs_tree_unlock(buf);
618 	free_extent_buffer_stale(buf);
619 	btrfs_mark_buffer_dirty(cow);
620 	*cow_ret = cow;
621 	return 0;
622 }
623 
624 static inline int should_cow_block(struct btrfs_trans_handle *trans,
625 				   struct btrfs_root *root,
626 				   struct extent_buffer *buf)
627 {
628 	if (btrfs_is_testing(root->fs_info))
629 		return 0;
630 
631 	/* Ensure we can see the FORCE_COW bit */
632 	smp_mb__before_atomic();
633 
634 	/*
635 	 * We do not need to cow a block if
636 	 * 1) this block is not created or changed in this transaction;
637 	 * 2) this block does not belong to TREE_RELOC tree;
638 	 * 3) the root is not forced COW.
639 	 *
640 	 * What is forced COW:
641 	 *    when we create snapshot during committing the transaction,
642 	 *    after we've finished copying src root, we must COW the shared
643 	 *    block to ensure the metadata consistency.
644 	 */
645 	if (btrfs_header_generation(buf) == trans->transid &&
646 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
647 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
648 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
649 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
650 		return 0;
651 	return 1;
652 }
653 
654 /*
655  * cows a single block, see __btrfs_cow_block for the real work.
656  * This version of it has extra checks so that a block isn't COWed more than
657  * once per transaction, as long as it hasn't been written yet
658  */
659 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
660 		    struct btrfs_root *root, struct extent_buffer *buf,
661 		    struct extent_buffer *parent, int parent_slot,
662 		    struct extent_buffer **cow_ret,
663 		    enum btrfs_lock_nesting nest)
664 {
665 	struct btrfs_fs_info *fs_info = root->fs_info;
666 	u64 search_start;
667 	int ret;
668 
669 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
670 		btrfs_err(fs_info,
671 			"COW'ing blocks on a fs root that's being dropped");
672 
673 	if (trans->transaction != fs_info->running_transaction)
674 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
675 		       trans->transid,
676 		       fs_info->running_transaction->transid);
677 
678 	if (trans->transid != fs_info->generation)
679 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
680 		       trans->transid, fs_info->generation);
681 
682 	if (!should_cow_block(trans, root, buf)) {
683 		*cow_ret = buf;
684 		return 0;
685 	}
686 
687 	search_start = buf->start & ~((u64)SZ_1G - 1);
688 
689 	/*
690 	 * Before CoWing this block for later modification, check if it's
691 	 * the subtree root and do the delayed subtree trace if needed.
692 	 *
693 	 * Also We don't care about the error, as it's handled internally.
694 	 */
695 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
696 	ret = __btrfs_cow_block(trans, root, buf, parent,
697 				 parent_slot, cow_ret, search_start, 0, nest);
698 
699 	trace_btrfs_cow_block(root, buf, *cow_ret);
700 
701 	return ret;
702 }
703 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
704 
705 /*
706  * helper function for defrag to decide if two blocks pointed to by a
707  * node are actually close by
708  */
709 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
710 {
711 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
712 		return 1;
713 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
714 		return 1;
715 	return 0;
716 }
717 
718 #ifdef __LITTLE_ENDIAN
719 
720 /*
721  * Compare two keys, on little-endian the disk order is same as CPU order and
722  * we can avoid the conversion.
723  */
724 static int comp_keys(const struct btrfs_disk_key *disk_key,
725 		     const struct btrfs_key *k2)
726 {
727 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
728 
729 	return btrfs_comp_cpu_keys(k1, k2);
730 }
731 
732 #else
733 
734 /*
735  * compare two keys in a memcmp fashion
736  */
737 static int comp_keys(const struct btrfs_disk_key *disk,
738 		     const struct btrfs_key *k2)
739 {
740 	struct btrfs_key k1;
741 
742 	btrfs_disk_key_to_cpu(&k1, disk);
743 
744 	return btrfs_comp_cpu_keys(&k1, k2);
745 }
746 #endif
747 
748 /*
749  * same as comp_keys only with two btrfs_key's
750  */
751 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
752 {
753 	if (k1->objectid > k2->objectid)
754 		return 1;
755 	if (k1->objectid < k2->objectid)
756 		return -1;
757 	if (k1->type > k2->type)
758 		return 1;
759 	if (k1->type < k2->type)
760 		return -1;
761 	if (k1->offset > k2->offset)
762 		return 1;
763 	if (k1->offset < k2->offset)
764 		return -1;
765 	return 0;
766 }
767 
768 /*
769  * this is used by the defrag code to go through all the
770  * leaves pointed to by a node and reallocate them so that
771  * disk order is close to key order
772  */
773 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
774 		       struct btrfs_root *root, struct extent_buffer *parent,
775 		       int start_slot, u64 *last_ret,
776 		       struct btrfs_key *progress)
777 {
778 	struct btrfs_fs_info *fs_info = root->fs_info;
779 	struct extent_buffer *cur;
780 	u64 blocknr;
781 	u64 search_start = *last_ret;
782 	u64 last_block = 0;
783 	u64 other;
784 	u32 parent_nritems;
785 	int end_slot;
786 	int i;
787 	int err = 0;
788 	u32 blocksize;
789 	int progress_passed = 0;
790 	struct btrfs_disk_key disk_key;
791 
792 	WARN_ON(trans->transaction != fs_info->running_transaction);
793 	WARN_ON(trans->transid != fs_info->generation);
794 
795 	parent_nritems = btrfs_header_nritems(parent);
796 	blocksize = fs_info->nodesize;
797 	end_slot = parent_nritems - 1;
798 
799 	if (parent_nritems <= 1)
800 		return 0;
801 
802 	for (i = start_slot; i <= end_slot; i++) {
803 		int close = 1;
804 
805 		btrfs_node_key(parent, &disk_key, i);
806 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
807 			continue;
808 
809 		progress_passed = 1;
810 		blocknr = btrfs_node_blockptr(parent, i);
811 		if (last_block == 0)
812 			last_block = blocknr;
813 
814 		if (i > 0) {
815 			other = btrfs_node_blockptr(parent, i - 1);
816 			close = close_blocks(blocknr, other, blocksize);
817 		}
818 		if (!close && i < end_slot) {
819 			other = btrfs_node_blockptr(parent, i + 1);
820 			close = close_blocks(blocknr, other, blocksize);
821 		}
822 		if (close) {
823 			last_block = blocknr;
824 			continue;
825 		}
826 
827 		cur = btrfs_read_node_slot(parent, i);
828 		if (IS_ERR(cur))
829 			return PTR_ERR(cur);
830 		if (search_start == 0)
831 			search_start = last_block;
832 
833 		btrfs_tree_lock(cur);
834 		err = __btrfs_cow_block(trans, root, cur, parent, i,
835 					&cur, search_start,
836 					min(16 * blocksize,
837 					    (end_slot - i) * blocksize),
838 					BTRFS_NESTING_COW);
839 		if (err) {
840 			btrfs_tree_unlock(cur);
841 			free_extent_buffer(cur);
842 			break;
843 		}
844 		search_start = cur->start;
845 		last_block = cur->start;
846 		*last_ret = search_start;
847 		btrfs_tree_unlock(cur);
848 		free_extent_buffer(cur);
849 	}
850 	return err;
851 }
852 
853 /*
854  * Search for a key in the given extent_buffer.
855  *
856  * The lower boundary for the search is specified by the slot number @low. Use a
857  * value of 0 to search over the whole extent buffer.
858  *
859  * The slot in the extent buffer is returned via @slot. If the key exists in the
860  * extent buffer, then @slot will point to the slot where the key is, otherwise
861  * it points to the slot where you would insert the key.
862  *
863  * Slot may point to the total number of items (i.e. one position beyond the last
864  * key) if the key is bigger than the last key in the extent buffer.
865  */
866 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
867 				       const struct btrfs_key *key, int *slot)
868 {
869 	unsigned long p;
870 	int item_size;
871 	int high = btrfs_header_nritems(eb);
872 	int ret;
873 	const int key_size = sizeof(struct btrfs_disk_key);
874 
875 	if (low > high) {
876 		btrfs_err(eb->fs_info,
877 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
878 			  __func__, low, high, eb->start,
879 			  btrfs_header_owner(eb), btrfs_header_level(eb));
880 		return -EINVAL;
881 	}
882 
883 	if (btrfs_header_level(eb) == 0) {
884 		p = offsetof(struct btrfs_leaf, items);
885 		item_size = sizeof(struct btrfs_item);
886 	} else {
887 		p = offsetof(struct btrfs_node, ptrs);
888 		item_size = sizeof(struct btrfs_key_ptr);
889 	}
890 
891 	while (low < high) {
892 		unsigned long oip;
893 		unsigned long offset;
894 		struct btrfs_disk_key *tmp;
895 		struct btrfs_disk_key unaligned;
896 		int mid;
897 
898 		mid = (low + high) / 2;
899 		offset = p + mid * item_size;
900 		oip = offset_in_page(offset);
901 
902 		if (oip + key_size <= PAGE_SIZE) {
903 			const unsigned long idx = get_eb_page_index(offset);
904 			char *kaddr = page_address(eb->pages[idx]);
905 
906 			oip = get_eb_offset_in_page(eb, offset);
907 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
908 		} else {
909 			read_extent_buffer(eb, &unaligned, offset, key_size);
910 			tmp = &unaligned;
911 		}
912 
913 		ret = comp_keys(tmp, key);
914 
915 		if (ret < 0)
916 			low = mid + 1;
917 		else if (ret > 0)
918 			high = mid;
919 		else {
920 			*slot = mid;
921 			return 0;
922 		}
923 	}
924 	*slot = low;
925 	return 1;
926 }
927 
928 /*
929  * Simple binary search on an extent buffer. Works for both leaves and nodes, and
930  * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
931  */
932 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
933 		     int *slot)
934 {
935 	return generic_bin_search(eb, 0, key, slot);
936 }
937 
938 static void root_add_used(struct btrfs_root *root, u32 size)
939 {
940 	spin_lock(&root->accounting_lock);
941 	btrfs_set_root_used(&root->root_item,
942 			    btrfs_root_used(&root->root_item) + size);
943 	spin_unlock(&root->accounting_lock);
944 }
945 
946 static void root_sub_used(struct btrfs_root *root, u32 size)
947 {
948 	spin_lock(&root->accounting_lock);
949 	btrfs_set_root_used(&root->root_item,
950 			    btrfs_root_used(&root->root_item) - size);
951 	spin_unlock(&root->accounting_lock);
952 }
953 
954 /* given a node and slot number, this reads the blocks it points to.  The
955  * extent buffer is returned with a reference taken (but unlocked).
956  */
957 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
958 					   int slot)
959 {
960 	int level = btrfs_header_level(parent);
961 	struct btrfs_tree_parent_check check = { 0 };
962 	struct extent_buffer *eb;
963 
964 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
965 		return ERR_PTR(-ENOENT);
966 
967 	BUG_ON(level == 0);
968 
969 	check.level = level - 1;
970 	check.transid = btrfs_node_ptr_generation(parent, slot);
971 	check.owner_root = btrfs_header_owner(parent);
972 	check.has_first_key = true;
973 	btrfs_node_key_to_cpu(parent, &check.first_key, slot);
974 
975 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
976 			     &check);
977 	if (IS_ERR(eb))
978 		return eb;
979 	if (!extent_buffer_uptodate(eb)) {
980 		free_extent_buffer(eb);
981 		return ERR_PTR(-EIO);
982 	}
983 
984 	return eb;
985 }
986 
987 /*
988  * node level balancing, used to make sure nodes are in proper order for
989  * item deletion.  We balance from the top down, so we have to make sure
990  * that a deletion won't leave an node completely empty later on.
991  */
992 static noinline int balance_level(struct btrfs_trans_handle *trans,
993 			 struct btrfs_root *root,
994 			 struct btrfs_path *path, int level)
995 {
996 	struct btrfs_fs_info *fs_info = root->fs_info;
997 	struct extent_buffer *right = NULL;
998 	struct extent_buffer *mid;
999 	struct extent_buffer *left = NULL;
1000 	struct extent_buffer *parent = NULL;
1001 	int ret = 0;
1002 	int wret;
1003 	int pslot;
1004 	int orig_slot = path->slots[level];
1005 	u64 orig_ptr;
1006 
1007 	ASSERT(level > 0);
1008 
1009 	mid = path->nodes[level];
1010 
1011 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
1012 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1013 
1014 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1015 
1016 	if (level < BTRFS_MAX_LEVEL - 1) {
1017 		parent = path->nodes[level + 1];
1018 		pslot = path->slots[level + 1];
1019 	}
1020 
1021 	/*
1022 	 * deal with the case where there is only one pointer in the root
1023 	 * by promoting the node below to a root
1024 	 */
1025 	if (!parent) {
1026 		struct extent_buffer *child;
1027 
1028 		if (btrfs_header_nritems(mid) != 1)
1029 			return 0;
1030 
1031 		/* promote the child to a root */
1032 		child = btrfs_read_node_slot(mid, 0);
1033 		if (IS_ERR(child)) {
1034 			ret = PTR_ERR(child);
1035 			btrfs_handle_fs_error(fs_info, ret, NULL);
1036 			goto enospc;
1037 		}
1038 
1039 		btrfs_tree_lock(child);
1040 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
1041 				      BTRFS_NESTING_COW);
1042 		if (ret) {
1043 			btrfs_tree_unlock(child);
1044 			free_extent_buffer(child);
1045 			goto enospc;
1046 		}
1047 
1048 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
1049 		BUG_ON(ret < 0);
1050 		rcu_assign_pointer(root->node, child);
1051 
1052 		add_root_to_dirty_list(root);
1053 		btrfs_tree_unlock(child);
1054 
1055 		path->locks[level] = 0;
1056 		path->nodes[level] = NULL;
1057 		btrfs_clean_tree_block(mid);
1058 		btrfs_tree_unlock(mid);
1059 		/* once for the path */
1060 		free_extent_buffer(mid);
1061 
1062 		root_sub_used(root, mid->len);
1063 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1064 		/* once for the root ptr */
1065 		free_extent_buffer_stale(mid);
1066 		return 0;
1067 	}
1068 	if (btrfs_header_nritems(mid) >
1069 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1070 		return 0;
1071 
1072 	left = btrfs_read_node_slot(parent, pslot - 1);
1073 	if (IS_ERR(left))
1074 		left = NULL;
1075 
1076 	if (left) {
1077 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1078 		wret = btrfs_cow_block(trans, root, left,
1079 				       parent, pslot - 1, &left,
1080 				       BTRFS_NESTING_LEFT_COW);
1081 		if (wret) {
1082 			ret = wret;
1083 			goto enospc;
1084 		}
1085 	}
1086 
1087 	right = btrfs_read_node_slot(parent, pslot + 1);
1088 	if (IS_ERR(right))
1089 		right = NULL;
1090 
1091 	if (right) {
1092 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1093 		wret = btrfs_cow_block(trans, root, right,
1094 				       parent, pslot + 1, &right,
1095 				       BTRFS_NESTING_RIGHT_COW);
1096 		if (wret) {
1097 			ret = wret;
1098 			goto enospc;
1099 		}
1100 	}
1101 
1102 	/* first, try to make some room in the middle buffer */
1103 	if (left) {
1104 		orig_slot += btrfs_header_nritems(left);
1105 		wret = push_node_left(trans, left, mid, 1);
1106 		if (wret < 0)
1107 			ret = wret;
1108 	}
1109 
1110 	/*
1111 	 * then try to empty the right most buffer into the middle
1112 	 */
1113 	if (right) {
1114 		wret = push_node_left(trans, mid, right, 1);
1115 		if (wret < 0 && wret != -ENOSPC)
1116 			ret = wret;
1117 		if (btrfs_header_nritems(right) == 0) {
1118 			btrfs_clean_tree_block(right);
1119 			btrfs_tree_unlock(right);
1120 			del_ptr(root, path, level + 1, pslot + 1);
1121 			root_sub_used(root, right->len);
1122 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
1123 					      0, 1);
1124 			free_extent_buffer_stale(right);
1125 			right = NULL;
1126 		} else {
1127 			struct btrfs_disk_key right_key;
1128 			btrfs_node_key(right, &right_key, 0);
1129 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1130 					BTRFS_MOD_LOG_KEY_REPLACE);
1131 			BUG_ON(ret < 0);
1132 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1133 			btrfs_mark_buffer_dirty(parent);
1134 		}
1135 	}
1136 	if (btrfs_header_nritems(mid) == 1) {
1137 		/*
1138 		 * we're not allowed to leave a node with one item in the
1139 		 * tree during a delete.  A deletion from lower in the tree
1140 		 * could try to delete the only pointer in this node.
1141 		 * So, pull some keys from the left.
1142 		 * There has to be a left pointer at this point because
1143 		 * otherwise we would have pulled some pointers from the
1144 		 * right
1145 		 */
1146 		if (!left) {
1147 			ret = -EROFS;
1148 			btrfs_handle_fs_error(fs_info, ret, NULL);
1149 			goto enospc;
1150 		}
1151 		wret = balance_node_right(trans, mid, left);
1152 		if (wret < 0) {
1153 			ret = wret;
1154 			goto enospc;
1155 		}
1156 		if (wret == 1) {
1157 			wret = push_node_left(trans, left, mid, 1);
1158 			if (wret < 0)
1159 				ret = wret;
1160 		}
1161 		BUG_ON(wret == 1);
1162 	}
1163 	if (btrfs_header_nritems(mid) == 0) {
1164 		btrfs_clean_tree_block(mid);
1165 		btrfs_tree_unlock(mid);
1166 		del_ptr(root, path, level + 1, pslot);
1167 		root_sub_used(root, mid->len);
1168 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1169 		free_extent_buffer_stale(mid);
1170 		mid = NULL;
1171 	} else {
1172 		/* update the parent key to reflect our changes */
1173 		struct btrfs_disk_key mid_key;
1174 		btrfs_node_key(mid, &mid_key, 0);
1175 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1176 						    BTRFS_MOD_LOG_KEY_REPLACE);
1177 		BUG_ON(ret < 0);
1178 		btrfs_set_node_key(parent, &mid_key, pslot);
1179 		btrfs_mark_buffer_dirty(parent);
1180 	}
1181 
1182 	/* update the path */
1183 	if (left) {
1184 		if (btrfs_header_nritems(left) > orig_slot) {
1185 			atomic_inc(&left->refs);
1186 			/* left was locked after cow */
1187 			path->nodes[level] = left;
1188 			path->slots[level + 1] -= 1;
1189 			path->slots[level] = orig_slot;
1190 			if (mid) {
1191 				btrfs_tree_unlock(mid);
1192 				free_extent_buffer(mid);
1193 			}
1194 		} else {
1195 			orig_slot -= btrfs_header_nritems(left);
1196 			path->slots[level] = orig_slot;
1197 		}
1198 	}
1199 	/* double check we haven't messed things up */
1200 	if (orig_ptr !=
1201 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1202 		BUG();
1203 enospc:
1204 	if (right) {
1205 		btrfs_tree_unlock(right);
1206 		free_extent_buffer(right);
1207 	}
1208 	if (left) {
1209 		if (path->nodes[level] != left)
1210 			btrfs_tree_unlock(left);
1211 		free_extent_buffer(left);
1212 	}
1213 	return ret;
1214 }
1215 
1216 /* Node balancing for insertion.  Here we only split or push nodes around
1217  * when they are completely full.  This is also done top down, so we
1218  * have to be pessimistic.
1219  */
1220 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1221 					  struct btrfs_root *root,
1222 					  struct btrfs_path *path, int level)
1223 {
1224 	struct btrfs_fs_info *fs_info = root->fs_info;
1225 	struct extent_buffer *right = NULL;
1226 	struct extent_buffer *mid;
1227 	struct extent_buffer *left = NULL;
1228 	struct extent_buffer *parent = NULL;
1229 	int ret = 0;
1230 	int wret;
1231 	int pslot;
1232 	int orig_slot = path->slots[level];
1233 
1234 	if (level == 0)
1235 		return 1;
1236 
1237 	mid = path->nodes[level];
1238 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1239 
1240 	if (level < BTRFS_MAX_LEVEL - 1) {
1241 		parent = path->nodes[level + 1];
1242 		pslot = path->slots[level + 1];
1243 	}
1244 
1245 	if (!parent)
1246 		return 1;
1247 
1248 	left = btrfs_read_node_slot(parent, pslot - 1);
1249 	if (IS_ERR(left))
1250 		left = NULL;
1251 
1252 	/* first, try to make some room in the middle buffer */
1253 	if (left) {
1254 		u32 left_nr;
1255 
1256 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1257 
1258 		left_nr = btrfs_header_nritems(left);
1259 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1260 			wret = 1;
1261 		} else {
1262 			ret = btrfs_cow_block(trans, root, left, parent,
1263 					      pslot - 1, &left,
1264 					      BTRFS_NESTING_LEFT_COW);
1265 			if (ret)
1266 				wret = 1;
1267 			else {
1268 				wret = push_node_left(trans, left, mid, 0);
1269 			}
1270 		}
1271 		if (wret < 0)
1272 			ret = wret;
1273 		if (wret == 0) {
1274 			struct btrfs_disk_key disk_key;
1275 			orig_slot += left_nr;
1276 			btrfs_node_key(mid, &disk_key, 0);
1277 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1278 					BTRFS_MOD_LOG_KEY_REPLACE);
1279 			BUG_ON(ret < 0);
1280 			btrfs_set_node_key(parent, &disk_key, pslot);
1281 			btrfs_mark_buffer_dirty(parent);
1282 			if (btrfs_header_nritems(left) > orig_slot) {
1283 				path->nodes[level] = left;
1284 				path->slots[level + 1] -= 1;
1285 				path->slots[level] = orig_slot;
1286 				btrfs_tree_unlock(mid);
1287 				free_extent_buffer(mid);
1288 			} else {
1289 				orig_slot -=
1290 					btrfs_header_nritems(left);
1291 				path->slots[level] = orig_slot;
1292 				btrfs_tree_unlock(left);
1293 				free_extent_buffer(left);
1294 			}
1295 			return 0;
1296 		}
1297 		btrfs_tree_unlock(left);
1298 		free_extent_buffer(left);
1299 	}
1300 	right = btrfs_read_node_slot(parent, pslot + 1);
1301 	if (IS_ERR(right))
1302 		right = NULL;
1303 
1304 	/*
1305 	 * then try to empty the right most buffer into the middle
1306 	 */
1307 	if (right) {
1308 		u32 right_nr;
1309 
1310 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1311 
1312 		right_nr = btrfs_header_nritems(right);
1313 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1314 			wret = 1;
1315 		} else {
1316 			ret = btrfs_cow_block(trans, root, right,
1317 					      parent, pslot + 1,
1318 					      &right, BTRFS_NESTING_RIGHT_COW);
1319 			if (ret)
1320 				wret = 1;
1321 			else {
1322 				wret = balance_node_right(trans, right, mid);
1323 			}
1324 		}
1325 		if (wret < 0)
1326 			ret = wret;
1327 		if (wret == 0) {
1328 			struct btrfs_disk_key disk_key;
1329 
1330 			btrfs_node_key(right, &disk_key, 0);
1331 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1332 					BTRFS_MOD_LOG_KEY_REPLACE);
1333 			BUG_ON(ret < 0);
1334 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1335 			btrfs_mark_buffer_dirty(parent);
1336 
1337 			if (btrfs_header_nritems(mid) <= orig_slot) {
1338 				path->nodes[level] = right;
1339 				path->slots[level + 1] += 1;
1340 				path->slots[level] = orig_slot -
1341 					btrfs_header_nritems(mid);
1342 				btrfs_tree_unlock(mid);
1343 				free_extent_buffer(mid);
1344 			} else {
1345 				btrfs_tree_unlock(right);
1346 				free_extent_buffer(right);
1347 			}
1348 			return 0;
1349 		}
1350 		btrfs_tree_unlock(right);
1351 		free_extent_buffer(right);
1352 	}
1353 	return 1;
1354 }
1355 
1356 /*
1357  * readahead one full node of leaves, finding things that are close
1358  * to the block in 'slot', and triggering ra on them.
1359  */
1360 static void reada_for_search(struct btrfs_fs_info *fs_info,
1361 			     struct btrfs_path *path,
1362 			     int level, int slot, u64 objectid)
1363 {
1364 	struct extent_buffer *node;
1365 	struct btrfs_disk_key disk_key;
1366 	u32 nritems;
1367 	u64 search;
1368 	u64 target;
1369 	u64 nread = 0;
1370 	u64 nread_max;
1371 	u32 nr;
1372 	u32 blocksize;
1373 	u32 nscan = 0;
1374 
1375 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1376 		return;
1377 
1378 	if (!path->nodes[level])
1379 		return;
1380 
1381 	node = path->nodes[level];
1382 
1383 	/*
1384 	 * Since the time between visiting leaves is much shorter than the time
1385 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1386 	 * much IO at once (possibly random).
1387 	 */
1388 	if (path->reada == READA_FORWARD_ALWAYS) {
1389 		if (level > 1)
1390 			nread_max = node->fs_info->nodesize;
1391 		else
1392 			nread_max = SZ_128K;
1393 	} else {
1394 		nread_max = SZ_64K;
1395 	}
1396 
1397 	search = btrfs_node_blockptr(node, slot);
1398 	blocksize = fs_info->nodesize;
1399 	if (path->reada != READA_FORWARD_ALWAYS) {
1400 		struct extent_buffer *eb;
1401 
1402 		eb = find_extent_buffer(fs_info, search);
1403 		if (eb) {
1404 			free_extent_buffer(eb);
1405 			return;
1406 		}
1407 	}
1408 
1409 	target = search;
1410 
1411 	nritems = btrfs_header_nritems(node);
1412 	nr = slot;
1413 
1414 	while (1) {
1415 		if (path->reada == READA_BACK) {
1416 			if (nr == 0)
1417 				break;
1418 			nr--;
1419 		} else if (path->reada == READA_FORWARD ||
1420 			   path->reada == READA_FORWARD_ALWAYS) {
1421 			nr++;
1422 			if (nr >= nritems)
1423 				break;
1424 		}
1425 		if (path->reada == READA_BACK && objectid) {
1426 			btrfs_node_key(node, &disk_key, nr);
1427 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1428 				break;
1429 		}
1430 		search = btrfs_node_blockptr(node, nr);
1431 		if (path->reada == READA_FORWARD_ALWAYS ||
1432 		    (search <= target && target - search <= 65536) ||
1433 		    (search > target && search - target <= 65536)) {
1434 			btrfs_readahead_node_child(node, nr);
1435 			nread += blocksize;
1436 		}
1437 		nscan++;
1438 		if (nread > nread_max || nscan > 32)
1439 			break;
1440 	}
1441 }
1442 
1443 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1444 {
1445 	struct extent_buffer *parent;
1446 	int slot;
1447 	int nritems;
1448 
1449 	parent = path->nodes[level + 1];
1450 	if (!parent)
1451 		return;
1452 
1453 	nritems = btrfs_header_nritems(parent);
1454 	slot = path->slots[level + 1];
1455 
1456 	if (slot > 0)
1457 		btrfs_readahead_node_child(parent, slot - 1);
1458 	if (slot + 1 < nritems)
1459 		btrfs_readahead_node_child(parent, slot + 1);
1460 }
1461 
1462 
1463 /*
1464  * when we walk down the tree, it is usually safe to unlock the higher layers
1465  * in the tree.  The exceptions are when our path goes through slot 0, because
1466  * operations on the tree might require changing key pointers higher up in the
1467  * tree.
1468  *
1469  * callers might also have set path->keep_locks, which tells this code to keep
1470  * the lock if the path points to the last slot in the block.  This is part of
1471  * walking through the tree, and selecting the next slot in the higher block.
1472  *
1473  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1474  * if lowest_unlock is 1, level 0 won't be unlocked
1475  */
1476 static noinline void unlock_up(struct btrfs_path *path, int level,
1477 			       int lowest_unlock, int min_write_lock_level,
1478 			       int *write_lock_level)
1479 {
1480 	int i;
1481 	int skip_level = level;
1482 	bool check_skip = true;
1483 
1484 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1485 		if (!path->nodes[i])
1486 			break;
1487 		if (!path->locks[i])
1488 			break;
1489 
1490 		if (check_skip) {
1491 			if (path->slots[i] == 0) {
1492 				skip_level = i + 1;
1493 				continue;
1494 			}
1495 
1496 			if (path->keep_locks) {
1497 				u32 nritems;
1498 
1499 				nritems = btrfs_header_nritems(path->nodes[i]);
1500 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1501 					skip_level = i + 1;
1502 					continue;
1503 				}
1504 			}
1505 		}
1506 
1507 		if (i >= lowest_unlock && i > skip_level) {
1508 			check_skip = false;
1509 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1510 			path->locks[i] = 0;
1511 			if (write_lock_level &&
1512 			    i > min_write_lock_level &&
1513 			    i <= *write_lock_level) {
1514 				*write_lock_level = i - 1;
1515 			}
1516 		}
1517 	}
1518 }
1519 
1520 /*
1521  * Helper function for btrfs_search_slot() and other functions that do a search
1522  * on a btree. The goal is to find a tree block in the cache (the radix tree at
1523  * fs_info->buffer_radix), but if we can't find it, or it's not up to date, read
1524  * its pages from disk.
1525  *
1526  * Returns -EAGAIN, with the path unlocked, if the caller needs to repeat the
1527  * whole btree search, starting again from the current root node.
1528  */
1529 static int
1530 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1531 		      struct extent_buffer **eb_ret, int level, int slot,
1532 		      const struct btrfs_key *key)
1533 {
1534 	struct btrfs_fs_info *fs_info = root->fs_info;
1535 	struct btrfs_tree_parent_check check = { 0 };
1536 	u64 blocknr;
1537 	u64 gen;
1538 	struct extent_buffer *tmp;
1539 	int ret;
1540 	int parent_level;
1541 	bool unlock_up;
1542 
1543 	unlock_up = ((level + 1 < BTRFS_MAX_LEVEL) && p->locks[level + 1]);
1544 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1545 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1546 	parent_level = btrfs_header_level(*eb_ret);
1547 	btrfs_node_key_to_cpu(*eb_ret, &check.first_key, slot);
1548 	check.has_first_key = true;
1549 	check.level = parent_level - 1;
1550 	check.transid = gen;
1551 	check.owner_root = root->root_key.objectid;
1552 
1553 	/*
1554 	 * If we need to read an extent buffer from disk and we are holding locks
1555 	 * on upper level nodes, we unlock all the upper nodes before reading the
1556 	 * extent buffer, and then return -EAGAIN to the caller as it needs to
1557 	 * restart the search. We don't release the lock on the current level
1558 	 * because we need to walk this node to figure out which blocks to read.
1559 	 */
1560 	tmp = find_extent_buffer(fs_info, blocknr);
1561 	if (tmp) {
1562 		if (p->reada == READA_FORWARD_ALWAYS)
1563 			reada_for_search(fs_info, p, level, slot, key->objectid);
1564 
1565 		/* first we do an atomic uptodate check */
1566 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1567 			/*
1568 			 * Do extra check for first_key, eb can be stale due to
1569 			 * being cached, read from scrub, or have multiple
1570 			 * parents (shared tree blocks).
1571 			 */
1572 			if (btrfs_verify_level_key(tmp,
1573 					parent_level - 1, &check.first_key, gen)) {
1574 				free_extent_buffer(tmp);
1575 				return -EUCLEAN;
1576 			}
1577 			*eb_ret = tmp;
1578 			return 0;
1579 		}
1580 
1581 		if (p->nowait) {
1582 			free_extent_buffer(tmp);
1583 			return -EAGAIN;
1584 		}
1585 
1586 		if (unlock_up)
1587 			btrfs_unlock_up_safe(p, level + 1);
1588 
1589 		/* now we're allowed to do a blocking uptodate check */
1590 		ret = btrfs_read_extent_buffer(tmp, &check);
1591 		if (ret) {
1592 			free_extent_buffer(tmp);
1593 			btrfs_release_path(p);
1594 			return -EIO;
1595 		}
1596 		if (btrfs_check_eb_owner(tmp, root->root_key.objectid)) {
1597 			free_extent_buffer(tmp);
1598 			btrfs_release_path(p);
1599 			return -EUCLEAN;
1600 		}
1601 
1602 		if (unlock_up)
1603 			ret = -EAGAIN;
1604 
1605 		goto out;
1606 	} else if (p->nowait) {
1607 		return -EAGAIN;
1608 	}
1609 
1610 	if (unlock_up) {
1611 		btrfs_unlock_up_safe(p, level + 1);
1612 		ret = -EAGAIN;
1613 	} else {
1614 		ret = 0;
1615 	}
1616 
1617 	if (p->reada != READA_NONE)
1618 		reada_for_search(fs_info, p, level, slot, key->objectid);
1619 
1620 	tmp = read_tree_block(fs_info, blocknr, &check);
1621 	if (IS_ERR(tmp)) {
1622 		btrfs_release_path(p);
1623 		return PTR_ERR(tmp);
1624 	}
1625 	/*
1626 	 * If the read above didn't mark this buffer up to date,
1627 	 * it will never end up being up to date.  Set ret to EIO now
1628 	 * and give up so that our caller doesn't loop forever
1629 	 * on our EAGAINs.
1630 	 */
1631 	if (!extent_buffer_uptodate(tmp))
1632 		ret = -EIO;
1633 
1634 out:
1635 	if (ret == 0) {
1636 		*eb_ret = tmp;
1637 	} else {
1638 		free_extent_buffer(tmp);
1639 		btrfs_release_path(p);
1640 	}
1641 
1642 	return ret;
1643 }
1644 
1645 /*
1646  * helper function for btrfs_search_slot.  This does all of the checks
1647  * for node-level blocks and does any balancing required based on
1648  * the ins_len.
1649  *
1650  * If no extra work was required, zero is returned.  If we had to
1651  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1652  * start over
1653  */
1654 static int
1655 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1656 		       struct btrfs_root *root, struct btrfs_path *p,
1657 		       struct extent_buffer *b, int level, int ins_len,
1658 		       int *write_lock_level)
1659 {
1660 	struct btrfs_fs_info *fs_info = root->fs_info;
1661 	int ret = 0;
1662 
1663 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1664 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1665 
1666 		if (*write_lock_level < level + 1) {
1667 			*write_lock_level = level + 1;
1668 			btrfs_release_path(p);
1669 			return -EAGAIN;
1670 		}
1671 
1672 		reada_for_balance(p, level);
1673 		ret = split_node(trans, root, p, level);
1674 
1675 		b = p->nodes[level];
1676 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1677 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1678 
1679 		if (*write_lock_level < level + 1) {
1680 			*write_lock_level = level + 1;
1681 			btrfs_release_path(p);
1682 			return -EAGAIN;
1683 		}
1684 
1685 		reada_for_balance(p, level);
1686 		ret = balance_level(trans, root, p, level);
1687 		if (ret)
1688 			return ret;
1689 
1690 		b = p->nodes[level];
1691 		if (!b) {
1692 			btrfs_release_path(p);
1693 			return -EAGAIN;
1694 		}
1695 		BUG_ON(btrfs_header_nritems(b) == 1);
1696 	}
1697 	return ret;
1698 }
1699 
1700 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1701 		u64 iobjectid, u64 ioff, u8 key_type,
1702 		struct btrfs_key *found_key)
1703 {
1704 	int ret;
1705 	struct btrfs_key key;
1706 	struct extent_buffer *eb;
1707 
1708 	ASSERT(path);
1709 	ASSERT(found_key);
1710 
1711 	key.type = key_type;
1712 	key.objectid = iobjectid;
1713 	key.offset = ioff;
1714 
1715 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1716 	if (ret < 0)
1717 		return ret;
1718 
1719 	eb = path->nodes[0];
1720 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1721 		ret = btrfs_next_leaf(fs_root, path);
1722 		if (ret)
1723 			return ret;
1724 		eb = path->nodes[0];
1725 	}
1726 
1727 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1728 	if (found_key->type != key.type ||
1729 			found_key->objectid != key.objectid)
1730 		return 1;
1731 
1732 	return 0;
1733 }
1734 
1735 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1736 							struct btrfs_path *p,
1737 							int write_lock_level)
1738 {
1739 	struct extent_buffer *b;
1740 	int root_lock = 0;
1741 	int level = 0;
1742 
1743 	if (p->search_commit_root) {
1744 		b = root->commit_root;
1745 		atomic_inc(&b->refs);
1746 		level = btrfs_header_level(b);
1747 		/*
1748 		 * Ensure that all callers have set skip_locking when
1749 		 * p->search_commit_root = 1.
1750 		 */
1751 		ASSERT(p->skip_locking == 1);
1752 
1753 		goto out;
1754 	}
1755 
1756 	if (p->skip_locking) {
1757 		b = btrfs_root_node(root);
1758 		level = btrfs_header_level(b);
1759 		goto out;
1760 	}
1761 
1762 	/* We try very hard to do read locks on the root */
1763 	root_lock = BTRFS_READ_LOCK;
1764 
1765 	/*
1766 	 * If the level is set to maximum, we can skip trying to get the read
1767 	 * lock.
1768 	 */
1769 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1770 		/*
1771 		 * We don't know the level of the root node until we actually
1772 		 * have it read locked
1773 		 */
1774 		if (p->nowait) {
1775 			b = btrfs_try_read_lock_root_node(root);
1776 			if (IS_ERR(b))
1777 				return b;
1778 		} else {
1779 			b = btrfs_read_lock_root_node(root);
1780 		}
1781 		level = btrfs_header_level(b);
1782 		if (level > write_lock_level)
1783 			goto out;
1784 
1785 		/* Whoops, must trade for write lock */
1786 		btrfs_tree_read_unlock(b);
1787 		free_extent_buffer(b);
1788 	}
1789 
1790 	b = btrfs_lock_root_node(root);
1791 	root_lock = BTRFS_WRITE_LOCK;
1792 
1793 	/* The level might have changed, check again */
1794 	level = btrfs_header_level(b);
1795 
1796 out:
1797 	/*
1798 	 * The root may have failed to write out at some point, and thus is no
1799 	 * longer valid, return an error in this case.
1800 	 */
1801 	if (!extent_buffer_uptodate(b)) {
1802 		if (root_lock)
1803 			btrfs_tree_unlock_rw(b, root_lock);
1804 		free_extent_buffer(b);
1805 		return ERR_PTR(-EIO);
1806 	}
1807 
1808 	p->nodes[level] = b;
1809 	if (!p->skip_locking)
1810 		p->locks[level] = root_lock;
1811 	/*
1812 	 * Callers are responsible for dropping b's references.
1813 	 */
1814 	return b;
1815 }
1816 
1817 /*
1818  * Replace the extent buffer at the lowest level of the path with a cloned
1819  * version. The purpose is to be able to use it safely, after releasing the
1820  * commit root semaphore, even if relocation is happening in parallel, the
1821  * transaction used for relocation is committed and the extent buffer is
1822  * reallocated in the next transaction.
1823  *
1824  * This is used in a context where the caller does not prevent transaction
1825  * commits from happening, either by holding a transaction handle or holding
1826  * some lock, while it's doing searches through a commit root.
1827  * At the moment it's only used for send operations.
1828  */
1829 static int finish_need_commit_sem_search(struct btrfs_path *path)
1830 {
1831 	const int i = path->lowest_level;
1832 	const int slot = path->slots[i];
1833 	struct extent_buffer *lowest = path->nodes[i];
1834 	struct extent_buffer *clone;
1835 
1836 	ASSERT(path->need_commit_sem);
1837 
1838 	if (!lowest)
1839 		return 0;
1840 
1841 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1842 
1843 	clone = btrfs_clone_extent_buffer(lowest);
1844 	if (!clone)
1845 		return -ENOMEM;
1846 
1847 	btrfs_release_path(path);
1848 	path->nodes[i] = clone;
1849 	path->slots[i] = slot;
1850 
1851 	return 0;
1852 }
1853 
1854 static inline int search_for_key_slot(struct extent_buffer *eb,
1855 				      int search_low_slot,
1856 				      const struct btrfs_key *key,
1857 				      int prev_cmp,
1858 				      int *slot)
1859 {
1860 	/*
1861 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1862 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1863 	 * always be at slot 0 on lower levels, since each key pointer
1864 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1865 	 * subtree it points to. Thus we can skip searching lower levels.
1866 	 */
1867 	if (prev_cmp == 0) {
1868 		*slot = 0;
1869 		return 0;
1870 	}
1871 
1872 	return generic_bin_search(eb, search_low_slot, key, slot);
1873 }
1874 
1875 static int search_leaf(struct btrfs_trans_handle *trans,
1876 		       struct btrfs_root *root,
1877 		       const struct btrfs_key *key,
1878 		       struct btrfs_path *path,
1879 		       int ins_len,
1880 		       int prev_cmp)
1881 {
1882 	struct extent_buffer *leaf = path->nodes[0];
1883 	int leaf_free_space = -1;
1884 	int search_low_slot = 0;
1885 	int ret;
1886 	bool do_bin_search = true;
1887 
1888 	/*
1889 	 * If we are doing an insertion, the leaf has enough free space and the
1890 	 * destination slot for the key is not slot 0, then we can unlock our
1891 	 * write lock on the parent, and any other upper nodes, before doing the
1892 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1893 	 * tasks to lock the parent and any other upper nodes.
1894 	 */
1895 	if (ins_len > 0) {
1896 		/*
1897 		 * Cache the leaf free space, since we will need it later and it
1898 		 * will not change until then.
1899 		 */
1900 		leaf_free_space = btrfs_leaf_free_space(leaf);
1901 
1902 		/*
1903 		 * !path->locks[1] means we have a single node tree, the leaf is
1904 		 * the root of the tree.
1905 		 */
1906 		if (path->locks[1] && leaf_free_space >= ins_len) {
1907 			struct btrfs_disk_key first_key;
1908 
1909 			ASSERT(btrfs_header_nritems(leaf) > 0);
1910 			btrfs_item_key(leaf, &first_key, 0);
1911 
1912 			/*
1913 			 * Doing the extra comparison with the first key is cheap,
1914 			 * taking into account that the first key is very likely
1915 			 * already in a cache line because it immediately follows
1916 			 * the extent buffer's header and we have recently accessed
1917 			 * the header's level field.
1918 			 */
1919 			ret = comp_keys(&first_key, key);
1920 			if (ret < 0) {
1921 				/*
1922 				 * The first key is smaller than the key we want
1923 				 * to insert, so we are safe to unlock all upper
1924 				 * nodes and we have to do the binary search.
1925 				 *
1926 				 * We do use btrfs_unlock_up_safe() and not
1927 				 * unlock_up() because the later does not unlock
1928 				 * nodes with a slot of 0 - we can safely unlock
1929 				 * any node even if its slot is 0 since in this
1930 				 * case the key does not end up at slot 0 of the
1931 				 * leaf and there's no need to split the leaf.
1932 				 */
1933 				btrfs_unlock_up_safe(path, 1);
1934 				search_low_slot = 1;
1935 			} else {
1936 				/*
1937 				 * The first key is >= then the key we want to
1938 				 * insert, so we can skip the binary search as
1939 				 * the target key will be at slot 0.
1940 				 *
1941 				 * We can not unlock upper nodes when the key is
1942 				 * less than the first key, because we will need
1943 				 * to update the key at slot 0 of the parent node
1944 				 * and possibly of other upper nodes too.
1945 				 * If the key matches the first key, then we can
1946 				 * unlock all the upper nodes, using
1947 				 * btrfs_unlock_up_safe() instead of unlock_up()
1948 				 * as stated above.
1949 				 */
1950 				if (ret == 0)
1951 					btrfs_unlock_up_safe(path, 1);
1952 				/*
1953 				 * ret is already 0 or 1, matching the result of
1954 				 * a btrfs_bin_search() call, so there is no need
1955 				 * to adjust it.
1956 				 */
1957 				do_bin_search = false;
1958 				path->slots[0] = 0;
1959 			}
1960 		}
1961 	}
1962 
1963 	if (do_bin_search) {
1964 		ret = search_for_key_slot(leaf, search_low_slot, key,
1965 					  prev_cmp, &path->slots[0]);
1966 		if (ret < 0)
1967 			return ret;
1968 	}
1969 
1970 	if (ins_len > 0) {
1971 		/*
1972 		 * Item key already exists. In this case, if we are allowed to
1973 		 * insert the item (for example, in dir_item case, item key
1974 		 * collision is allowed), it will be merged with the original
1975 		 * item. Only the item size grows, no new btrfs item will be
1976 		 * added. If search_for_extension is not set, ins_len already
1977 		 * accounts the size btrfs_item, deduct it here so leaf space
1978 		 * check will be correct.
1979 		 */
1980 		if (ret == 0 && !path->search_for_extension) {
1981 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1982 			ins_len -= sizeof(struct btrfs_item);
1983 		}
1984 
1985 		ASSERT(leaf_free_space >= 0);
1986 
1987 		if (leaf_free_space < ins_len) {
1988 			int err;
1989 
1990 			err = split_leaf(trans, root, key, path, ins_len,
1991 					 (ret == 0));
1992 			ASSERT(err <= 0);
1993 			if (WARN_ON(err > 0))
1994 				err = -EUCLEAN;
1995 			if (err)
1996 				ret = err;
1997 		}
1998 	}
1999 
2000 	return ret;
2001 }
2002 
2003 /*
2004  * btrfs_search_slot - look for a key in a tree and perform necessary
2005  * modifications to preserve tree invariants.
2006  *
2007  * @trans:	Handle of transaction, used when modifying the tree
2008  * @p:		Holds all btree nodes along the search path
2009  * @root:	The root node of the tree
2010  * @key:	The key we are looking for
2011  * @ins_len:	Indicates purpose of search:
2012  *              >0  for inserts it's size of item inserted (*)
2013  *              <0  for deletions
2014  *               0  for plain searches, not modifying the tree
2015  *
2016  *              (*) If size of item inserted doesn't include
2017  *              sizeof(struct btrfs_item), then p->search_for_extension must
2018  *              be set.
2019  * @cow:	boolean should CoW operations be performed. Must always be 1
2020  *		when modifying the tree.
2021  *
2022  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2023  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2024  *
2025  * If @key is found, 0 is returned and you can find the item in the leaf level
2026  * of the path (level 0)
2027  *
2028  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2029  * points to the slot where it should be inserted
2030  *
2031  * If an error is encountered while searching the tree a negative error number
2032  * is returned
2033  */
2034 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2035 		      const struct btrfs_key *key, struct btrfs_path *p,
2036 		      int ins_len, int cow)
2037 {
2038 	struct btrfs_fs_info *fs_info = root->fs_info;
2039 	struct extent_buffer *b;
2040 	int slot;
2041 	int ret;
2042 	int err;
2043 	int level;
2044 	int lowest_unlock = 1;
2045 	/* everything at write_lock_level or lower must be write locked */
2046 	int write_lock_level = 0;
2047 	u8 lowest_level = 0;
2048 	int min_write_lock_level;
2049 	int prev_cmp;
2050 
2051 	might_sleep();
2052 
2053 	lowest_level = p->lowest_level;
2054 	WARN_ON(lowest_level && ins_len > 0);
2055 	WARN_ON(p->nodes[0] != NULL);
2056 	BUG_ON(!cow && ins_len);
2057 
2058 	/*
2059 	 * For now only allow nowait for read only operations.  There's no
2060 	 * strict reason why we can't, we just only need it for reads so it's
2061 	 * only implemented for reads.
2062 	 */
2063 	ASSERT(!p->nowait || !cow);
2064 
2065 	if (ins_len < 0) {
2066 		lowest_unlock = 2;
2067 
2068 		/* when we are removing items, we might have to go up to level
2069 		 * two as we update tree pointers  Make sure we keep write
2070 		 * for those levels as well
2071 		 */
2072 		write_lock_level = 2;
2073 	} else if (ins_len > 0) {
2074 		/*
2075 		 * for inserting items, make sure we have a write lock on
2076 		 * level 1 so we can update keys
2077 		 */
2078 		write_lock_level = 1;
2079 	}
2080 
2081 	if (!cow)
2082 		write_lock_level = -1;
2083 
2084 	if (cow && (p->keep_locks || p->lowest_level))
2085 		write_lock_level = BTRFS_MAX_LEVEL;
2086 
2087 	min_write_lock_level = write_lock_level;
2088 
2089 	if (p->need_commit_sem) {
2090 		ASSERT(p->search_commit_root);
2091 		if (p->nowait) {
2092 			if (!down_read_trylock(&fs_info->commit_root_sem))
2093 				return -EAGAIN;
2094 		} else {
2095 			down_read(&fs_info->commit_root_sem);
2096 		}
2097 	}
2098 
2099 again:
2100 	prev_cmp = -1;
2101 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2102 	if (IS_ERR(b)) {
2103 		ret = PTR_ERR(b);
2104 		goto done;
2105 	}
2106 
2107 	while (b) {
2108 		int dec = 0;
2109 
2110 		level = btrfs_header_level(b);
2111 
2112 		if (cow) {
2113 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2114 
2115 			/*
2116 			 * if we don't really need to cow this block
2117 			 * then we don't want to set the path blocking,
2118 			 * so we test it here
2119 			 */
2120 			if (!should_cow_block(trans, root, b))
2121 				goto cow_done;
2122 
2123 			/*
2124 			 * must have write locks on this node and the
2125 			 * parent
2126 			 */
2127 			if (level > write_lock_level ||
2128 			    (level + 1 > write_lock_level &&
2129 			    level + 1 < BTRFS_MAX_LEVEL &&
2130 			    p->nodes[level + 1])) {
2131 				write_lock_level = level + 1;
2132 				btrfs_release_path(p);
2133 				goto again;
2134 			}
2135 
2136 			if (last_level)
2137 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2138 						      &b,
2139 						      BTRFS_NESTING_COW);
2140 			else
2141 				err = btrfs_cow_block(trans, root, b,
2142 						      p->nodes[level + 1],
2143 						      p->slots[level + 1], &b,
2144 						      BTRFS_NESTING_COW);
2145 			if (err) {
2146 				ret = err;
2147 				goto done;
2148 			}
2149 		}
2150 cow_done:
2151 		p->nodes[level] = b;
2152 
2153 		/*
2154 		 * we have a lock on b and as long as we aren't changing
2155 		 * the tree, there is no way to for the items in b to change.
2156 		 * It is safe to drop the lock on our parent before we
2157 		 * go through the expensive btree search on b.
2158 		 *
2159 		 * If we're inserting or deleting (ins_len != 0), then we might
2160 		 * be changing slot zero, which may require changing the parent.
2161 		 * So, we can't drop the lock until after we know which slot
2162 		 * we're operating on.
2163 		 */
2164 		if (!ins_len && !p->keep_locks) {
2165 			int u = level + 1;
2166 
2167 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2168 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2169 				p->locks[u] = 0;
2170 			}
2171 		}
2172 
2173 		if (level == 0) {
2174 			if (ins_len > 0)
2175 				ASSERT(write_lock_level >= 1);
2176 
2177 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
2178 			if (!p->search_for_split)
2179 				unlock_up(p, level, lowest_unlock,
2180 					  min_write_lock_level, NULL);
2181 			goto done;
2182 		}
2183 
2184 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2185 		if (ret < 0)
2186 			goto done;
2187 		prev_cmp = ret;
2188 
2189 		if (ret && slot > 0) {
2190 			dec = 1;
2191 			slot--;
2192 		}
2193 		p->slots[level] = slot;
2194 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2195 					     &write_lock_level);
2196 		if (err == -EAGAIN)
2197 			goto again;
2198 		if (err) {
2199 			ret = err;
2200 			goto done;
2201 		}
2202 		b = p->nodes[level];
2203 		slot = p->slots[level];
2204 
2205 		/*
2206 		 * Slot 0 is special, if we change the key we have to update
2207 		 * the parent pointer which means we must have a write lock on
2208 		 * the parent
2209 		 */
2210 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2211 			write_lock_level = level + 1;
2212 			btrfs_release_path(p);
2213 			goto again;
2214 		}
2215 
2216 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2217 			  &write_lock_level);
2218 
2219 		if (level == lowest_level) {
2220 			if (dec)
2221 				p->slots[level]++;
2222 			goto done;
2223 		}
2224 
2225 		err = read_block_for_search(root, p, &b, level, slot, key);
2226 		if (err == -EAGAIN)
2227 			goto again;
2228 		if (err) {
2229 			ret = err;
2230 			goto done;
2231 		}
2232 
2233 		if (!p->skip_locking) {
2234 			level = btrfs_header_level(b);
2235 
2236 			btrfs_maybe_reset_lockdep_class(root, b);
2237 
2238 			if (level <= write_lock_level) {
2239 				btrfs_tree_lock(b);
2240 				p->locks[level] = BTRFS_WRITE_LOCK;
2241 			} else {
2242 				if (p->nowait) {
2243 					if (!btrfs_try_tree_read_lock(b)) {
2244 						free_extent_buffer(b);
2245 						ret = -EAGAIN;
2246 						goto done;
2247 					}
2248 				} else {
2249 					btrfs_tree_read_lock(b);
2250 				}
2251 				p->locks[level] = BTRFS_READ_LOCK;
2252 			}
2253 			p->nodes[level] = b;
2254 		}
2255 	}
2256 	ret = 1;
2257 done:
2258 	if (ret < 0 && !p->skip_release_on_error)
2259 		btrfs_release_path(p);
2260 
2261 	if (p->need_commit_sem) {
2262 		int ret2;
2263 
2264 		ret2 = finish_need_commit_sem_search(p);
2265 		up_read(&fs_info->commit_root_sem);
2266 		if (ret2)
2267 			ret = ret2;
2268 	}
2269 
2270 	return ret;
2271 }
2272 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2273 
2274 /*
2275  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2276  * current state of the tree together with the operations recorded in the tree
2277  * modification log to search for the key in a previous version of this tree, as
2278  * denoted by the time_seq parameter.
2279  *
2280  * Naturally, there is no support for insert, delete or cow operations.
2281  *
2282  * The resulting path and return value will be set up as if we called
2283  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2284  */
2285 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2286 			  struct btrfs_path *p, u64 time_seq)
2287 {
2288 	struct btrfs_fs_info *fs_info = root->fs_info;
2289 	struct extent_buffer *b;
2290 	int slot;
2291 	int ret;
2292 	int err;
2293 	int level;
2294 	int lowest_unlock = 1;
2295 	u8 lowest_level = 0;
2296 
2297 	lowest_level = p->lowest_level;
2298 	WARN_ON(p->nodes[0] != NULL);
2299 	ASSERT(!p->nowait);
2300 
2301 	if (p->search_commit_root) {
2302 		BUG_ON(time_seq);
2303 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2304 	}
2305 
2306 again:
2307 	b = btrfs_get_old_root(root, time_seq);
2308 	if (!b) {
2309 		ret = -EIO;
2310 		goto done;
2311 	}
2312 	level = btrfs_header_level(b);
2313 	p->locks[level] = BTRFS_READ_LOCK;
2314 
2315 	while (b) {
2316 		int dec = 0;
2317 
2318 		level = btrfs_header_level(b);
2319 		p->nodes[level] = b;
2320 
2321 		/*
2322 		 * we have a lock on b and as long as we aren't changing
2323 		 * the tree, there is no way to for the items in b to change.
2324 		 * It is safe to drop the lock on our parent before we
2325 		 * go through the expensive btree search on b.
2326 		 */
2327 		btrfs_unlock_up_safe(p, level + 1);
2328 
2329 		ret = btrfs_bin_search(b, key, &slot);
2330 		if (ret < 0)
2331 			goto done;
2332 
2333 		if (level == 0) {
2334 			p->slots[level] = slot;
2335 			unlock_up(p, level, lowest_unlock, 0, NULL);
2336 			goto done;
2337 		}
2338 
2339 		if (ret && slot > 0) {
2340 			dec = 1;
2341 			slot--;
2342 		}
2343 		p->slots[level] = slot;
2344 		unlock_up(p, level, lowest_unlock, 0, NULL);
2345 
2346 		if (level == lowest_level) {
2347 			if (dec)
2348 				p->slots[level]++;
2349 			goto done;
2350 		}
2351 
2352 		err = read_block_for_search(root, p, &b, level, slot, key);
2353 		if (err == -EAGAIN)
2354 			goto again;
2355 		if (err) {
2356 			ret = err;
2357 			goto done;
2358 		}
2359 
2360 		level = btrfs_header_level(b);
2361 		btrfs_tree_read_lock(b);
2362 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2363 		if (!b) {
2364 			ret = -ENOMEM;
2365 			goto done;
2366 		}
2367 		p->locks[level] = BTRFS_READ_LOCK;
2368 		p->nodes[level] = b;
2369 	}
2370 	ret = 1;
2371 done:
2372 	if (ret < 0)
2373 		btrfs_release_path(p);
2374 
2375 	return ret;
2376 }
2377 
2378 /*
2379  * helper to use instead of search slot if no exact match is needed but
2380  * instead the next or previous item should be returned.
2381  * When find_higher is true, the next higher item is returned, the next lower
2382  * otherwise.
2383  * When return_any and find_higher are both true, and no higher item is found,
2384  * return the next lower instead.
2385  * When return_any is true and find_higher is false, and no lower item is found,
2386  * return the next higher instead.
2387  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2388  * < 0 on error
2389  */
2390 int btrfs_search_slot_for_read(struct btrfs_root *root,
2391 			       const struct btrfs_key *key,
2392 			       struct btrfs_path *p, int find_higher,
2393 			       int return_any)
2394 {
2395 	int ret;
2396 	struct extent_buffer *leaf;
2397 
2398 again:
2399 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2400 	if (ret <= 0)
2401 		return ret;
2402 	/*
2403 	 * a return value of 1 means the path is at the position where the
2404 	 * item should be inserted. Normally this is the next bigger item,
2405 	 * but in case the previous item is the last in a leaf, path points
2406 	 * to the first free slot in the previous leaf, i.e. at an invalid
2407 	 * item.
2408 	 */
2409 	leaf = p->nodes[0];
2410 
2411 	if (find_higher) {
2412 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2413 			ret = btrfs_next_leaf(root, p);
2414 			if (ret <= 0)
2415 				return ret;
2416 			if (!return_any)
2417 				return 1;
2418 			/*
2419 			 * no higher item found, return the next
2420 			 * lower instead
2421 			 */
2422 			return_any = 0;
2423 			find_higher = 0;
2424 			btrfs_release_path(p);
2425 			goto again;
2426 		}
2427 	} else {
2428 		if (p->slots[0] == 0) {
2429 			ret = btrfs_prev_leaf(root, p);
2430 			if (ret < 0)
2431 				return ret;
2432 			if (!ret) {
2433 				leaf = p->nodes[0];
2434 				if (p->slots[0] == btrfs_header_nritems(leaf))
2435 					p->slots[0]--;
2436 				return 0;
2437 			}
2438 			if (!return_any)
2439 				return 1;
2440 			/*
2441 			 * no lower item found, return the next
2442 			 * higher instead
2443 			 */
2444 			return_any = 0;
2445 			find_higher = 1;
2446 			btrfs_release_path(p);
2447 			goto again;
2448 		} else {
2449 			--p->slots[0];
2450 		}
2451 	}
2452 	return 0;
2453 }
2454 
2455 /*
2456  * Execute search and call btrfs_previous_item to traverse backwards if the item
2457  * was not found.
2458  *
2459  * Return 0 if found, 1 if not found and < 0 if error.
2460  */
2461 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2462 			   struct btrfs_path *path)
2463 {
2464 	int ret;
2465 
2466 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2467 	if (ret > 0)
2468 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2469 
2470 	if (ret == 0)
2471 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2472 
2473 	return ret;
2474 }
2475 
2476 /*
2477  * Search for a valid slot for the given path.
2478  *
2479  * @root:	The root node of the tree.
2480  * @key:	Will contain a valid item if found.
2481  * @path:	The starting point to validate the slot.
2482  *
2483  * Return: 0  if the item is valid
2484  *         1  if not found
2485  *         <0 if error.
2486  */
2487 int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
2488 			      struct btrfs_path *path)
2489 {
2490 	while (1) {
2491 		int ret;
2492 		const int slot = path->slots[0];
2493 		const struct extent_buffer *leaf = path->nodes[0];
2494 
2495 		/* This is where we start walking the path. */
2496 		if (slot >= btrfs_header_nritems(leaf)) {
2497 			/*
2498 			 * If we've reached the last slot in this leaf we need
2499 			 * to go to the next leaf and reset the path.
2500 			 */
2501 			ret = btrfs_next_leaf(root, path);
2502 			if (ret)
2503 				return ret;
2504 			continue;
2505 		}
2506 		/* Store the found, valid item in @key. */
2507 		btrfs_item_key_to_cpu(leaf, key, slot);
2508 		break;
2509 	}
2510 	return 0;
2511 }
2512 
2513 /*
2514  * adjust the pointers going up the tree, starting at level
2515  * making sure the right key of each node is points to 'key'.
2516  * This is used after shifting pointers to the left, so it stops
2517  * fixing up pointers when a given leaf/node is not in slot 0 of the
2518  * higher levels
2519  *
2520  */
2521 static void fixup_low_keys(struct btrfs_path *path,
2522 			   struct btrfs_disk_key *key, int level)
2523 {
2524 	int i;
2525 	struct extent_buffer *t;
2526 	int ret;
2527 
2528 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2529 		int tslot = path->slots[i];
2530 
2531 		if (!path->nodes[i])
2532 			break;
2533 		t = path->nodes[i];
2534 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2535 						    BTRFS_MOD_LOG_KEY_REPLACE);
2536 		BUG_ON(ret < 0);
2537 		btrfs_set_node_key(t, key, tslot);
2538 		btrfs_mark_buffer_dirty(path->nodes[i]);
2539 		if (tslot != 0)
2540 			break;
2541 	}
2542 }
2543 
2544 /*
2545  * update item key.
2546  *
2547  * This function isn't completely safe. It's the caller's responsibility
2548  * that the new key won't break the order
2549  */
2550 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2551 			     struct btrfs_path *path,
2552 			     const struct btrfs_key *new_key)
2553 {
2554 	struct btrfs_disk_key disk_key;
2555 	struct extent_buffer *eb;
2556 	int slot;
2557 
2558 	eb = path->nodes[0];
2559 	slot = path->slots[0];
2560 	if (slot > 0) {
2561 		btrfs_item_key(eb, &disk_key, slot - 1);
2562 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2563 			btrfs_crit(fs_info,
2564 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2565 				   slot, btrfs_disk_key_objectid(&disk_key),
2566 				   btrfs_disk_key_type(&disk_key),
2567 				   btrfs_disk_key_offset(&disk_key),
2568 				   new_key->objectid, new_key->type,
2569 				   new_key->offset);
2570 			btrfs_print_leaf(eb);
2571 			BUG();
2572 		}
2573 	}
2574 	if (slot < btrfs_header_nritems(eb) - 1) {
2575 		btrfs_item_key(eb, &disk_key, slot + 1);
2576 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2577 			btrfs_crit(fs_info,
2578 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2579 				   slot, btrfs_disk_key_objectid(&disk_key),
2580 				   btrfs_disk_key_type(&disk_key),
2581 				   btrfs_disk_key_offset(&disk_key),
2582 				   new_key->objectid, new_key->type,
2583 				   new_key->offset);
2584 			btrfs_print_leaf(eb);
2585 			BUG();
2586 		}
2587 	}
2588 
2589 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2590 	btrfs_set_item_key(eb, &disk_key, slot);
2591 	btrfs_mark_buffer_dirty(eb);
2592 	if (slot == 0)
2593 		fixup_low_keys(path, &disk_key, 1);
2594 }
2595 
2596 /*
2597  * Check key order of two sibling extent buffers.
2598  *
2599  * Return true if something is wrong.
2600  * Return false if everything is fine.
2601  *
2602  * Tree-checker only works inside one tree block, thus the following
2603  * corruption can not be detected by tree-checker:
2604  *
2605  * Leaf @left			| Leaf @right
2606  * --------------------------------------------------------------
2607  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2608  *
2609  * Key f6 in leaf @left itself is valid, but not valid when the next
2610  * key in leaf @right is 7.
2611  * This can only be checked at tree block merge time.
2612  * And since tree checker has ensured all key order in each tree block
2613  * is correct, we only need to bother the last key of @left and the first
2614  * key of @right.
2615  */
2616 static bool check_sibling_keys(struct extent_buffer *left,
2617 			       struct extent_buffer *right)
2618 {
2619 	struct btrfs_key left_last;
2620 	struct btrfs_key right_first;
2621 	int level = btrfs_header_level(left);
2622 	int nr_left = btrfs_header_nritems(left);
2623 	int nr_right = btrfs_header_nritems(right);
2624 
2625 	/* No key to check in one of the tree blocks */
2626 	if (!nr_left || !nr_right)
2627 		return false;
2628 
2629 	if (level) {
2630 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2631 		btrfs_node_key_to_cpu(right, &right_first, 0);
2632 	} else {
2633 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2634 		btrfs_item_key_to_cpu(right, &right_first, 0);
2635 	}
2636 
2637 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2638 		btrfs_crit(left->fs_info,
2639 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2640 			   left_last.objectid, left_last.type,
2641 			   left_last.offset, right_first.objectid,
2642 			   right_first.type, right_first.offset);
2643 		return true;
2644 	}
2645 	return false;
2646 }
2647 
2648 /*
2649  * try to push data from one node into the next node left in the
2650  * tree.
2651  *
2652  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2653  * error, and > 0 if there was no room in the left hand block.
2654  */
2655 static int push_node_left(struct btrfs_trans_handle *trans,
2656 			  struct extent_buffer *dst,
2657 			  struct extent_buffer *src, int empty)
2658 {
2659 	struct btrfs_fs_info *fs_info = trans->fs_info;
2660 	int push_items = 0;
2661 	int src_nritems;
2662 	int dst_nritems;
2663 	int ret = 0;
2664 
2665 	src_nritems = btrfs_header_nritems(src);
2666 	dst_nritems = btrfs_header_nritems(dst);
2667 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2668 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2669 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2670 
2671 	if (!empty && src_nritems <= 8)
2672 		return 1;
2673 
2674 	if (push_items <= 0)
2675 		return 1;
2676 
2677 	if (empty) {
2678 		push_items = min(src_nritems, push_items);
2679 		if (push_items < src_nritems) {
2680 			/* leave at least 8 pointers in the node if
2681 			 * we aren't going to empty it
2682 			 */
2683 			if (src_nritems - push_items < 8) {
2684 				if (push_items <= 8)
2685 					return 1;
2686 				push_items -= 8;
2687 			}
2688 		}
2689 	} else
2690 		push_items = min(src_nritems - 8, push_items);
2691 
2692 	/* dst is the left eb, src is the middle eb */
2693 	if (check_sibling_keys(dst, src)) {
2694 		ret = -EUCLEAN;
2695 		btrfs_abort_transaction(trans, ret);
2696 		return ret;
2697 	}
2698 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2699 	if (ret) {
2700 		btrfs_abort_transaction(trans, ret);
2701 		return ret;
2702 	}
2703 	copy_extent_buffer(dst, src,
2704 			   btrfs_node_key_ptr_offset(dst, dst_nritems),
2705 			   btrfs_node_key_ptr_offset(src, 0),
2706 			   push_items * sizeof(struct btrfs_key_ptr));
2707 
2708 	if (push_items < src_nritems) {
2709 		/*
2710 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2711 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2712 		 */
2713 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(src, 0),
2714 				      btrfs_node_key_ptr_offset(src, push_items),
2715 				      (src_nritems - push_items) *
2716 				      sizeof(struct btrfs_key_ptr));
2717 	}
2718 	btrfs_set_header_nritems(src, src_nritems - push_items);
2719 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2720 	btrfs_mark_buffer_dirty(src);
2721 	btrfs_mark_buffer_dirty(dst);
2722 
2723 	return ret;
2724 }
2725 
2726 /*
2727  * try to push data from one node into the next node right in the
2728  * tree.
2729  *
2730  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2731  * error, and > 0 if there was no room in the right hand block.
2732  *
2733  * this will  only push up to 1/2 the contents of the left node over
2734  */
2735 static int balance_node_right(struct btrfs_trans_handle *trans,
2736 			      struct extent_buffer *dst,
2737 			      struct extent_buffer *src)
2738 {
2739 	struct btrfs_fs_info *fs_info = trans->fs_info;
2740 	int push_items = 0;
2741 	int max_push;
2742 	int src_nritems;
2743 	int dst_nritems;
2744 	int ret = 0;
2745 
2746 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2747 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2748 
2749 	src_nritems = btrfs_header_nritems(src);
2750 	dst_nritems = btrfs_header_nritems(dst);
2751 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2752 	if (push_items <= 0)
2753 		return 1;
2754 
2755 	if (src_nritems < 4)
2756 		return 1;
2757 
2758 	max_push = src_nritems / 2 + 1;
2759 	/* don't try to empty the node */
2760 	if (max_push >= src_nritems)
2761 		return 1;
2762 
2763 	if (max_push < push_items)
2764 		push_items = max_push;
2765 
2766 	/* dst is the right eb, src is the middle eb */
2767 	if (check_sibling_keys(src, dst)) {
2768 		ret = -EUCLEAN;
2769 		btrfs_abort_transaction(trans, ret);
2770 		return ret;
2771 	}
2772 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2773 	BUG_ON(ret < 0);
2774 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(dst, push_items),
2775 				      btrfs_node_key_ptr_offset(dst, 0),
2776 				      (dst_nritems) *
2777 				      sizeof(struct btrfs_key_ptr));
2778 
2779 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2780 					 push_items);
2781 	if (ret) {
2782 		btrfs_abort_transaction(trans, ret);
2783 		return ret;
2784 	}
2785 	copy_extent_buffer(dst, src,
2786 			   btrfs_node_key_ptr_offset(dst, 0),
2787 			   btrfs_node_key_ptr_offset(src, src_nritems - push_items),
2788 			   push_items * sizeof(struct btrfs_key_ptr));
2789 
2790 	btrfs_set_header_nritems(src, src_nritems - push_items);
2791 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2792 
2793 	btrfs_mark_buffer_dirty(src);
2794 	btrfs_mark_buffer_dirty(dst);
2795 
2796 	return ret;
2797 }
2798 
2799 /*
2800  * helper function to insert a new root level in the tree.
2801  * A new node is allocated, and a single item is inserted to
2802  * point to the existing root
2803  *
2804  * returns zero on success or < 0 on failure.
2805  */
2806 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2807 			   struct btrfs_root *root,
2808 			   struct btrfs_path *path, int level)
2809 {
2810 	struct btrfs_fs_info *fs_info = root->fs_info;
2811 	u64 lower_gen;
2812 	struct extent_buffer *lower;
2813 	struct extent_buffer *c;
2814 	struct extent_buffer *old;
2815 	struct btrfs_disk_key lower_key;
2816 	int ret;
2817 
2818 	BUG_ON(path->nodes[level]);
2819 	BUG_ON(path->nodes[level-1] != root->node);
2820 
2821 	lower = path->nodes[level-1];
2822 	if (level == 1)
2823 		btrfs_item_key(lower, &lower_key, 0);
2824 	else
2825 		btrfs_node_key(lower, &lower_key, 0);
2826 
2827 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2828 				   &lower_key, level, root->node->start, 0,
2829 				   BTRFS_NESTING_NEW_ROOT);
2830 	if (IS_ERR(c))
2831 		return PTR_ERR(c);
2832 
2833 	root_add_used(root, fs_info->nodesize);
2834 
2835 	btrfs_set_header_nritems(c, 1);
2836 	btrfs_set_node_key(c, &lower_key, 0);
2837 	btrfs_set_node_blockptr(c, 0, lower->start);
2838 	lower_gen = btrfs_header_generation(lower);
2839 	WARN_ON(lower_gen != trans->transid);
2840 
2841 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2842 
2843 	btrfs_mark_buffer_dirty(c);
2844 
2845 	old = root->node;
2846 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2847 	BUG_ON(ret < 0);
2848 	rcu_assign_pointer(root->node, c);
2849 
2850 	/* the super has an extra ref to root->node */
2851 	free_extent_buffer(old);
2852 
2853 	add_root_to_dirty_list(root);
2854 	atomic_inc(&c->refs);
2855 	path->nodes[level] = c;
2856 	path->locks[level] = BTRFS_WRITE_LOCK;
2857 	path->slots[level] = 0;
2858 	return 0;
2859 }
2860 
2861 /*
2862  * worker function to insert a single pointer in a node.
2863  * the node should have enough room for the pointer already
2864  *
2865  * slot and level indicate where you want the key to go, and
2866  * blocknr is the block the key points to.
2867  */
2868 static void insert_ptr(struct btrfs_trans_handle *trans,
2869 		       struct btrfs_path *path,
2870 		       struct btrfs_disk_key *key, u64 bytenr,
2871 		       int slot, int level)
2872 {
2873 	struct extent_buffer *lower;
2874 	int nritems;
2875 	int ret;
2876 
2877 	BUG_ON(!path->nodes[level]);
2878 	btrfs_assert_tree_write_locked(path->nodes[level]);
2879 	lower = path->nodes[level];
2880 	nritems = btrfs_header_nritems(lower);
2881 	BUG_ON(slot > nritems);
2882 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2883 	if (slot != nritems) {
2884 		if (level) {
2885 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2886 					slot, nritems - slot);
2887 			BUG_ON(ret < 0);
2888 		}
2889 		memmove_extent_buffer(lower,
2890 			      btrfs_node_key_ptr_offset(lower, slot + 1),
2891 			      btrfs_node_key_ptr_offset(lower, slot),
2892 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2893 	}
2894 	if (level) {
2895 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2896 						    BTRFS_MOD_LOG_KEY_ADD);
2897 		BUG_ON(ret < 0);
2898 	}
2899 	btrfs_set_node_key(lower, key, slot);
2900 	btrfs_set_node_blockptr(lower, slot, bytenr);
2901 	WARN_ON(trans->transid == 0);
2902 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2903 	btrfs_set_header_nritems(lower, nritems + 1);
2904 	btrfs_mark_buffer_dirty(lower);
2905 }
2906 
2907 /*
2908  * split the node at the specified level in path in two.
2909  * The path is corrected to point to the appropriate node after the split
2910  *
2911  * Before splitting this tries to make some room in the node by pushing
2912  * left and right, if either one works, it returns right away.
2913  *
2914  * returns 0 on success and < 0 on failure
2915  */
2916 static noinline int split_node(struct btrfs_trans_handle *trans,
2917 			       struct btrfs_root *root,
2918 			       struct btrfs_path *path, int level)
2919 {
2920 	struct btrfs_fs_info *fs_info = root->fs_info;
2921 	struct extent_buffer *c;
2922 	struct extent_buffer *split;
2923 	struct btrfs_disk_key disk_key;
2924 	int mid;
2925 	int ret;
2926 	u32 c_nritems;
2927 
2928 	c = path->nodes[level];
2929 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2930 	if (c == root->node) {
2931 		/*
2932 		 * trying to split the root, lets make a new one
2933 		 *
2934 		 * tree mod log: We don't log_removal old root in
2935 		 * insert_new_root, because that root buffer will be kept as a
2936 		 * normal node. We are going to log removal of half of the
2937 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2938 		 * holding a tree lock on the buffer, which is why we cannot
2939 		 * race with other tree_mod_log users.
2940 		 */
2941 		ret = insert_new_root(trans, root, path, level + 1);
2942 		if (ret)
2943 			return ret;
2944 	} else {
2945 		ret = push_nodes_for_insert(trans, root, path, level);
2946 		c = path->nodes[level];
2947 		if (!ret && btrfs_header_nritems(c) <
2948 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2949 			return 0;
2950 		if (ret < 0)
2951 			return ret;
2952 	}
2953 
2954 	c_nritems = btrfs_header_nritems(c);
2955 	mid = (c_nritems + 1) / 2;
2956 	btrfs_node_key(c, &disk_key, mid);
2957 
2958 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2959 				       &disk_key, level, c->start, 0,
2960 				       BTRFS_NESTING_SPLIT);
2961 	if (IS_ERR(split))
2962 		return PTR_ERR(split);
2963 
2964 	root_add_used(root, fs_info->nodesize);
2965 	ASSERT(btrfs_header_level(c) == level);
2966 
2967 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2968 	if (ret) {
2969 		btrfs_abort_transaction(trans, ret);
2970 		return ret;
2971 	}
2972 	copy_extent_buffer(split, c,
2973 			   btrfs_node_key_ptr_offset(split, 0),
2974 			   btrfs_node_key_ptr_offset(c, mid),
2975 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2976 	btrfs_set_header_nritems(split, c_nritems - mid);
2977 	btrfs_set_header_nritems(c, mid);
2978 
2979 	btrfs_mark_buffer_dirty(c);
2980 	btrfs_mark_buffer_dirty(split);
2981 
2982 	insert_ptr(trans, path, &disk_key, split->start,
2983 		   path->slots[level + 1] + 1, level + 1);
2984 
2985 	if (path->slots[level] >= mid) {
2986 		path->slots[level] -= mid;
2987 		btrfs_tree_unlock(c);
2988 		free_extent_buffer(c);
2989 		path->nodes[level] = split;
2990 		path->slots[level + 1] += 1;
2991 	} else {
2992 		btrfs_tree_unlock(split);
2993 		free_extent_buffer(split);
2994 	}
2995 	return 0;
2996 }
2997 
2998 /*
2999  * how many bytes are required to store the items in a leaf.  start
3000  * and nr indicate which items in the leaf to check.  This totals up the
3001  * space used both by the item structs and the item data
3002  */
3003 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3004 {
3005 	int data_len;
3006 	int nritems = btrfs_header_nritems(l);
3007 	int end = min(nritems, start + nr) - 1;
3008 
3009 	if (!nr)
3010 		return 0;
3011 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
3012 	data_len = data_len - btrfs_item_offset(l, end);
3013 	data_len += sizeof(struct btrfs_item) * nr;
3014 	WARN_ON(data_len < 0);
3015 	return data_len;
3016 }
3017 
3018 /*
3019  * The space between the end of the leaf items and
3020  * the start of the leaf data.  IOW, how much room
3021  * the leaf has left for both items and data
3022  */
3023 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3024 {
3025 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3026 	int nritems = btrfs_header_nritems(leaf);
3027 	int ret;
3028 
3029 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3030 	if (ret < 0) {
3031 		btrfs_crit(fs_info,
3032 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3033 			   ret,
3034 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3035 			   leaf_space_used(leaf, 0, nritems), nritems);
3036 	}
3037 	return ret;
3038 }
3039 
3040 /*
3041  * min slot controls the lowest index we're willing to push to the
3042  * right.  We'll push up to and including min_slot, but no lower
3043  */
3044 static noinline int __push_leaf_right(struct btrfs_path *path,
3045 				      int data_size, int empty,
3046 				      struct extent_buffer *right,
3047 				      int free_space, u32 left_nritems,
3048 				      u32 min_slot)
3049 {
3050 	struct btrfs_fs_info *fs_info = right->fs_info;
3051 	struct extent_buffer *left = path->nodes[0];
3052 	struct extent_buffer *upper = path->nodes[1];
3053 	struct btrfs_map_token token;
3054 	struct btrfs_disk_key disk_key;
3055 	int slot;
3056 	u32 i;
3057 	int push_space = 0;
3058 	int push_items = 0;
3059 	u32 nr;
3060 	u32 right_nritems;
3061 	u32 data_end;
3062 	u32 this_item_size;
3063 
3064 	if (empty)
3065 		nr = 0;
3066 	else
3067 		nr = max_t(u32, 1, min_slot);
3068 
3069 	if (path->slots[0] >= left_nritems)
3070 		push_space += data_size;
3071 
3072 	slot = path->slots[1];
3073 	i = left_nritems - 1;
3074 	while (i >= nr) {
3075 		if (!empty && push_items > 0) {
3076 			if (path->slots[0] > i)
3077 				break;
3078 			if (path->slots[0] == i) {
3079 				int space = btrfs_leaf_free_space(left);
3080 
3081 				if (space + push_space * 2 > free_space)
3082 					break;
3083 			}
3084 		}
3085 
3086 		if (path->slots[0] == i)
3087 			push_space += data_size;
3088 
3089 		this_item_size = btrfs_item_size(left, i);
3090 		if (this_item_size + sizeof(struct btrfs_item) +
3091 		    push_space > free_space)
3092 			break;
3093 
3094 		push_items++;
3095 		push_space += this_item_size + sizeof(struct btrfs_item);
3096 		if (i == 0)
3097 			break;
3098 		i--;
3099 	}
3100 
3101 	if (push_items == 0)
3102 		goto out_unlock;
3103 
3104 	WARN_ON(!empty && push_items == left_nritems);
3105 
3106 	/* push left to right */
3107 	right_nritems = btrfs_header_nritems(right);
3108 
3109 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
3110 	push_space -= leaf_data_end(left);
3111 
3112 	/* make room in the right data area */
3113 	data_end = leaf_data_end(right);
3114 	memmove_leaf_data(right, data_end - push_space, data_end,
3115 			  BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3116 
3117 	/* copy from the left data area */
3118 	copy_leaf_data(right, left, BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3119 		       leaf_data_end(left), push_space);
3120 
3121 	memmove_leaf_items(right, push_items, 0, right_nritems);
3122 
3123 	/* copy the items from left to right */
3124 	copy_leaf_items(right, left, 0, left_nritems - push_items, push_items);
3125 
3126 	/* update the item pointers */
3127 	btrfs_init_map_token(&token, right);
3128 	right_nritems += push_items;
3129 	btrfs_set_header_nritems(right, right_nritems);
3130 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3131 	for (i = 0; i < right_nritems; i++) {
3132 		push_space -= btrfs_token_item_size(&token, i);
3133 		btrfs_set_token_item_offset(&token, i, push_space);
3134 	}
3135 
3136 	left_nritems -= push_items;
3137 	btrfs_set_header_nritems(left, left_nritems);
3138 
3139 	if (left_nritems)
3140 		btrfs_mark_buffer_dirty(left);
3141 	else
3142 		btrfs_clean_tree_block(left);
3143 
3144 	btrfs_mark_buffer_dirty(right);
3145 
3146 	btrfs_item_key(right, &disk_key, 0);
3147 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3148 	btrfs_mark_buffer_dirty(upper);
3149 
3150 	/* then fixup the leaf pointer in the path */
3151 	if (path->slots[0] >= left_nritems) {
3152 		path->slots[0] -= left_nritems;
3153 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3154 			btrfs_clean_tree_block(path->nodes[0]);
3155 		btrfs_tree_unlock(path->nodes[0]);
3156 		free_extent_buffer(path->nodes[0]);
3157 		path->nodes[0] = right;
3158 		path->slots[1] += 1;
3159 	} else {
3160 		btrfs_tree_unlock(right);
3161 		free_extent_buffer(right);
3162 	}
3163 	return 0;
3164 
3165 out_unlock:
3166 	btrfs_tree_unlock(right);
3167 	free_extent_buffer(right);
3168 	return 1;
3169 }
3170 
3171 /*
3172  * push some data in the path leaf to the right, trying to free up at
3173  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3174  *
3175  * returns 1 if the push failed because the other node didn't have enough
3176  * room, 0 if everything worked out and < 0 if there were major errors.
3177  *
3178  * this will push starting from min_slot to the end of the leaf.  It won't
3179  * push any slot lower than min_slot
3180  */
3181 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3182 			   *root, struct btrfs_path *path,
3183 			   int min_data_size, int data_size,
3184 			   int empty, u32 min_slot)
3185 {
3186 	struct extent_buffer *left = path->nodes[0];
3187 	struct extent_buffer *right;
3188 	struct extent_buffer *upper;
3189 	int slot;
3190 	int free_space;
3191 	u32 left_nritems;
3192 	int ret;
3193 
3194 	if (!path->nodes[1])
3195 		return 1;
3196 
3197 	slot = path->slots[1];
3198 	upper = path->nodes[1];
3199 	if (slot >= btrfs_header_nritems(upper) - 1)
3200 		return 1;
3201 
3202 	btrfs_assert_tree_write_locked(path->nodes[1]);
3203 
3204 	right = btrfs_read_node_slot(upper, slot + 1);
3205 	/*
3206 	 * slot + 1 is not valid or we fail to read the right node,
3207 	 * no big deal, just return.
3208 	 */
3209 	if (IS_ERR(right))
3210 		return 1;
3211 
3212 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
3213 
3214 	free_space = btrfs_leaf_free_space(right);
3215 	if (free_space < data_size)
3216 		goto out_unlock;
3217 
3218 	ret = btrfs_cow_block(trans, root, right, upper,
3219 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
3220 	if (ret)
3221 		goto out_unlock;
3222 
3223 	left_nritems = btrfs_header_nritems(left);
3224 	if (left_nritems == 0)
3225 		goto out_unlock;
3226 
3227 	if (check_sibling_keys(left, right)) {
3228 		ret = -EUCLEAN;
3229 		btrfs_tree_unlock(right);
3230 		free_extent_buffer(right);
3231 		return ret;
3232 	}
3233 	if (path->slots[0] == left_nritems && !empty) {
3234 		/* Key greater than all keys in the leaf, right neighbor has
3235 		 * enough room for it and we're not emptying our leaf to delete
3236 		 * it, therefore use right neighbor to insert the new item and
3237 		 * no need to touch/dirty our left leaf. */
3238 		btrfs_tree_unlock(left);
3239 		free_extent_buffer(left);
3240 		path->nodes[0] = right;
3241 		path->slots[0] = 0;
3242 		path->slots[1]++;
3243 		return 0;
3244 	}
3245 
3246 	return __push_leaf_right(path, min_data_size, empty,
3247 				right, free_space, left_nritems, min_slot);
3248 out_unlock:
3249 	btrfs_tree_unlock(right);
3250 	free_extent_buffer(right);
3251 	return 1;
3252 }
3253 
3254 /*
3255  * push some data in the path leaf to the left, trying to free up at
3256  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3257  *
3258  * max_slot can put a limit on how far into the leaf we'll push items.  The
3259  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3260  * items
3261  */
3262 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3263 				     int empty, struct extent_buffer *left,
3264 				     int free_space, u32 right_nritems,
3265 				     u32 max_slot)
3266 {
3267 	struct btrfs_fs_info *fs_info = left->fs_info;
3268 	struct btrfs_disk_key disk_key;
3269 	struct extent_buffer *right = path->nodes[0];
3270 	int i;
3271 	int push_space = 0;
3272 	int push_items = 0;
3273 	u32 old_left_nritems;
3274 	u32 nr;
3275 	int ret = 0;
3276 	u32 this_item_size;
3277 	u32 old_left_item_size;
3278 	struct btrfs_map_token token;
3279 
3280 	if (empty)
3281 		nr = min(right_nritems, max_slot);
3282 	else
3283 		nr = min(right_nritems - 1, max_slot);
3284 
3285 	for (i = 0; i < nr; i++) {
3286 		if (!empty && push_items > 0) {
3287 			if (path->slots[0] < i)
3288 				break;
3289 			if (path->slots[0] == i) {
3290 				int space = btrfs_leaf_free_space(right);
3291 
3292 				if (space + push_space * 2 > free_space)
3293 					break;
3294 			}
3295 		}
3296 
3297 		if (path->slots[0] == i)
3298 			push_space += data_size;
3299 
3300 		this_item_size = btrfs_item_size(right, i);
3301 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3302 		    free_space)
3303 			break;
3304 
3305 		push_items++;
3306 		push_space += this_item_size + sizeof(struct btrfs_item);
3307 	}
3308 
3309 	if (push_items == 0) {
3310 		ret = 1;
3311 		goto out;
3312 	}
3313 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3314 
3315 	/* push data from right to left */
3316 	copy_leaf_items(left, right, btrfs_header_nritems(left), 0, push_items);
3317 
3318 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3319 		     btrfs_item_offset(right, push_items - 1);
3320 
3321 	copy_leaf_data(left, right, leaf_data_end(left) - push_space,
3322 		       btrfs_item_offset(right, push_items - 1), push_space);
3323 	old_left_nritems = btrfs_header_nritems(left);
3324 	BUG_ON(old_left_nritems <= 0);
3325 
3326 	btrfs_init_map_token(&token, left);
3327 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3328 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3329 		u32 ioff;
3330 
3331 		ioff = btrfs_token_item_offset(&token, i);
3332 		btrfs_set_token_item_offset(&token, i,
3333 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3334 	}
3335 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3336 
3337 	/* fixup right node */
3338 	if (push_items > right_nritems)
3339 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3340 		       right_nritems);
3341 
3342 	if (push_items < right_nritems) {
3343 		push_space = btrfs_item_offset(right, push_items - 1) -
3344 						  leaf_data_end(right);
3345 		memmove_leaf_data(right,
3346 				  BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3347 				  leaf_data_end(right), push_space);
3348 
3349 		memmove_leaf_items(right, 0, push_items,
3350 				   btrfs_header_nritems(right) - push_items);
3351 	}
3352 
3353 	btrfs_init_map_token(&token, right);
3354 	right_nritems -= push_items;
3355 	btrfs_set_header_nritems(right, right_nritems);
3356 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3357 	for (i = 0; i < right_nritems; i++) {
3358 		push_space = push_space - btrfs_token_item_size(&token, i);
3359 		btrfs_set_token_item_offset(&token, i, push_space);
3360 	}
3361 
3362 	btrfs_mark_buffer_dirty(left);
3363 	if (right_nritems)
3364 		btrfs_mark_buffer_dirty(right);
3365 	else
3366 		btrfs_clean_tree_block(right);
3367 
3368 	btrfs_item_key(right, &disk_key, 0);
3369 	fixup_low_keys(path, &disk_key, 1);
3370 
3371 	/* then fixup the leaf pointer in the path */
3372 	if (path->slots[0] < push_items) {
3373 		path->slots[0] += old_left_nritems;
3374 		btrfs_tree_unlock(path->nodes[0]);
3375 		free_extent_buffer(path->nodes[0]);
3376 		path->nodes[0] = left;
3377 		path->slots[1] -= 1;
3378 	} else {
3379 		btrfs_tree_unlock(left);
3380 		free_extent_buffer(left);
3381 		path->slots[0] -= push_items;
3382 	}
3383 	BUG_ON(path->slots[0] < 0);
3384 	return ret;
3385 out:
3386 	btrfs_tree_unlock(left);
3387 	free_extent_buffer(left);
3388 	return ret;
3389 }
3390 
3391 /*
3392  * push some data in the path leaf to the left, trying to free up at
3393  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3394  *
3395  * max_slot can put a limit on how far into the leaf we'll push items.  The
3396  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3397  * items
3398  */
3399 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3400 			  *root, struct btrfs_path *path, int min_data_size,
3401 			  int data_size, int empty, u32 max_slot)
3402 {
3403 	struct extent_buffer *right = path->nodes[0];
3404 	struct extent_buffer *left;
3405 	int slot;
3406 	int free_space;
3407 	u32 right_nritems;
3408 	int ret = 0;
3409 
3410 	slot = path->slots[1];
3411 	if (slot == 0)
3412 		return 1;
3413 	if (!path->nodes[1])
3414 		return 1;
3415 
3416 	right_nritems = btrfs_header_nritems(right);
3417 	if (right_nritems == 0)
3418 		return 1;
3419 
3420 	btrfs_assert_tree_write_locked(path->nodes[1]);
3421 
3422 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3423 	/*
3424 	 * slot - 1 is not valid or we fail to read the left node,
3425 	 * no big deal, just return.
3426 	 */
3427 	if (IS_ERR(left))
3428 		return 1;
3429 
3430 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3431 
3432 	free_space = btrfs_leaf_free_space(left);
3433 	if (free_space < data_size) {
3434 		ret = 1;
3435 		goto out;
3436 	}
3437 
3438 	ret = btrfs_cow_block(trans, root, left,
3439 			      path->nodes[1], slot - 1, &left,
3440 			      BTRFS_NESTING_LEFT_COW);
3441 	if (ret) {
3442 		/* we hit -ENOSPC, but it isn't fatal here */
3443 		if (ret == -ENOSPC)
3444 			ret = 1;
3445 		goto out;
3446 	}
3447 
3448 	if (check_sibling_keys(left, right)) {
3449 		ret = -EUCLEAN;
3450 		goto out;
3451 	}
3452 	return __push_leaf_left(path, min_data_size,
3453 			       empty, left, free_space, right_nritems,
3454 			       max_slot);
3455 out:
3456 	btrfs_tree_unlock(left);
3457 	free_extent_buffer(left);
3458 	return ret;
3459 }
3460 
3461 /*
3462  * split the path's leaf in two, making sure there is at least data_size
3463  * available for the resulting leaf level of the path.
3464  */
3465 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3466 				    struct btrfs_path *path,
3467 				    struct extent_buffer *l,
3468 				    struct extent_buffer *right,
3469 				    int slot, int mid, int nritems)
3470 {
3471 	struct btrfs_fs_info *fs_info = trans->fs_info;
3472 	int data_copy_size;
3473 	int rt_data_off;
3474 	int i;
3475 	struct btrfs_disk_key disk_key;
3476 	struct btrfs_map_token token;
3477 
3478 	nritems = nritems - mid;
3479 	btrfs_set_header_nritems(right, nritems);
3480 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3481 
3482 	copy_leaf_items(right, l, 0, mid, nritems);
3483 
3484 	copy_leaf_data(right, l, BTRFS_LEAF_DATA_SIZE(fs_info) - data_copy_size,
3485 		       leaf_data_end(l), data_copy_size);
3486 
3487 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3488 
3489 	btrfs_init_map_token(&token, right);
3490 	for (i = 0; i < nritems; i++) {
3491 		u32 ioff;
3492 
3493 		ioff = btrfs_token_item_offset(&token, i);
3494 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3495 	}
3496 
3497 	btrfs_set_header_nritems(l, mid);
3498 	btrfs_item_key(right, &disk_key, 0);
3499 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3500 
3501 	btrfs_mark_buffer_dirty(right);
3502 	btrfs_mark_buffer_dirty(l);
3503 	BUG_ON(path->slots[0] != slot);
3504 
3505 	if (mid <= slot) {
3506 		btrfs_tree_unlock(path->nodes[0]);
3507 		free_extent_buffer(path->nodes[0]);
3508 		path->nodes[0] = right;
3509 		path->slots[0] -= mid;
3510 		path->slots[1] += 1;
3511 	} else {
3512 		btrfs_tree_unlock(right);
3513 		free_extent_buffer(right);
3514 	}
3515 
3516 	BUG_ON(path->slots[0] < 0);
3517 }
3518 
3519 /*
3520  * double splits happen when we need to insert a big item in the middle
3521  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3522  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3523  *          A                 B                 C
3524  *
3525  * We avoid this by trying to push the items on either side of our target
3526  * into the adjacent leaves.  If all goes well we can avoid the double split
3527  * completely.
3528  */
3529 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3530 					  struct btrfs_root *root,
3531 					  struct btrfs_path *path,
3532 					  int data_size)
3533 {
3534 	int ret;
3535 	int progress = 0;
3536 	int slot;
3537 	u32 nritems;
3538 	int space_needed = data_size;
3539 
3540 	slot = path->slots[0];
3541 	if (slot < btrfs_header_nritems(path->nodes[0]))
3542 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3543 
3544 	/*
3545 	 * try to push all the items after our slot into the
3546 	 * right leaf
3547 	 */
3548 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3549 	if (ret < 0)
3550 		return ret;
3551 
3552 	if (ret == 0)
3553 		progress++;
3554 
3555 	nritems = btrfs_header_nritems(path->nodes[0]);
3556 	/*
3557 	 * our goal is to get our slot at the start or end of a leaf.  If
3558 	 * we've done so we're done
3559 	 */
3560 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3561 		return 0;
3562 
3563 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3564 		return 0;
3565 
3566 	/* try to push all the items before our slot into the next leaf */
3567 	slot = path->slots[0];
3568 	space_needed = data_size;
3569 	if (slot > 0)
3570 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3571 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3572 	if (ret < 0)
3573 		return ret;
3574 
3575 	if (ret == 0)
3576 		progress++;
3577 
3578 	if (progress)
3579 		return 0;
3580 	return 1;
3581 }
3582 
3583 /*
3584  * split the path's leaf in two, making sure there is at least data_size
3585  * available for the resulting leaf level of the path.
3586  *
3587  * returns 0 if all went well and < 0 on failure.
3588  */
3589 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3590 			       struct btrfs_root *root,
3591 			       const struct btrfs_key *ins_key,
3592 			       struct btrfs_path *path, int data_size,
3593 			       int extend)
3594 {
3595 	struct btrfs_disk_key disk_key;
3596 	struct extent_buffer *l;
3597 	u32 nritems;
3598 	int mid;
3599 	int slot;
3600 	struct extent_buffer *right;
3601 	struct btrfs_fs_info *fs_info = root->fs_info;
3602 	int ret = 0;
3603 	int wret;
3604 	int split;
3605 	int num_doubles = 0;
3606 	int tried_avoid_double = 0;
3607 
3608 	l = path->nodes[0];
3609 	slot = path->slots[0];
3610 	if (extend && data_size + btrfs_item_size(l, slot) +
3611 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3612 		return -EOVERFLOW;
3613 
3614 	/* first try to make some room by pushing left and right */
3615 	if (data_size && path->nodes[1]) {
3616 		int space_needed = data_size;
3617 
3618 		if (slot < btrfs_header_nritems(l))
3619 			space_needed -= btrfs_leaf_free_space(l);
3620 
3621 		wret = push_leaf_right(trans, root, path, space_needed,
3622 				       space_needed, 0, 0);
3623 		if (wret < 0)
3624 			return wret;
3625 		if (wret) {
3626 			space_needed = data_size;
3627 			if (slot > 0)
3628 				space_needed -= btrfs_leaf_free_space(l);
3629 			wret = push_leaf_left(trans, root, path, space_needed,
3630 					      space_needed, 0, (u32)-1);
3631 			if (wret < 0)
3632 				return wret;
3633 		}
3634 		l = path->nodes[0];
3635 
3636 		/* did the pushes work? */
3637 		if (btrfs_leaf_free_space(l) >= data_size)
3638 			return 0;
3639 	}
3640 
3641 	if (!path->nodes[1]) {
3642 		ret = insert_new_root(trans, root, path, 1);
3643 		if (ret)
3644 			return ret;
3645 	}
3646 again:
3647 	split = 1;
3648 	l = path->nodes[0];
3649 	slot = path->slots[0];
3650 	nritems = btrfs_header_nritems(l);
3651 	mid = (nritems + 1) / 2;
3652 
3653 	if (mid <= slot) {
3654 		if (nritems == 1 ||
3655 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3656 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3657 			if (slot >= nritems) {
3658 				split = 0;
3659 			} else {
3660 				mid = slot;
3661 				if (mid != nritems &&
3662 				    leaf_space_used(l, mid, nritems - mid) +
3663 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3664 					if (data_size && !tried_avoid_double)
3665 						goto push_for_double;
3666 					split = 2;
3667 				}
3668 			}
3669 		}
3670 	} else {
3671 		if (leaf_space_used(l, 0, mid) + data_size >
3672 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3673 			if (!extend && data_size && slot == 0) {
3674 				split = 0;
3675 			} else if ((extend || !data_size) && slot == 0) {
3676 				mid = 1;
3677 			} else {
3678 				mid = slot;
3679 				if (mid != nritems &&
3680 				    leaf_space_used(l, mid, nritems - mid) +
3681 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3682 					if (data_size && !tried_avoid_double)
3683 						goto push_for_double;
3684 					split = 2;
3685 				}
3686 			}
3687 		}
3688 	}
3689 
3690 	if (split == 0)
3691 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3692 	else
3693 		btrfs_item_key(l, &disk_key, mid);
3694 
3695 	/*
3696 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3697 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3698 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3699 	 * out.  In the future we could add a
3700 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3701 	 * use BTRFS_NESTING_NEW_ROOT.
3702 	 */
3703 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3704 				       &disk_key, 0, l->start, 0,
3705 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3706 				       BTRFS_NESTING_SPLIT);
3707 	if (IS_ERR(right))
3708 		return PTR_ERR(right);
3709 
3710 	root_add_used(root, fs_info->nodesize);
3711 
3712 	if (split == 0) {
3713 		if (mid <= slot) {
3714 			btrfs_set_header_nritems(right, 0);
3715 			insert_ptr(trans, path, &disk_key,
3716 				   right->start, path->slots[1] + 1, 1);
3717 			btrfs_tree_unlock(path->nodes[0]);
3718 			free_extent_buffer(path->nodes[0]);
3719 			path->nodes[0] = right;
3720 			path->slots[0] = 0;
3721 			path->slots[1] += 1;
3722 		} else {
3723 			btrfs_set_header_nritems(right, 0);
3724 			insert_ptr(trans, path, &disk_key,
3725 				   right->start, path->slots[1], 1);
3726 			btrfs_tree_unlock(path->nodes[0]);
3727 			free_extent_buffer(path->nodes[0]);
3728 			path->nodes[0] = right;
3729 			path->slots[0] = 0;
3730 			if (path->slots[1] == 0)
3731 				fixup_low_keys(path, &disk_key, 1);
3732 		}
3733 		/*
3734 		 * We create a new leaf 'right' for the required ins_len and
3735 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3736 		 * the content of ins_len to 'right'.
3737 		 */
3738 		return ret;
3739 	}
3740 
3741 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3742 
3743 	if (split == 2) {
3744 		BUG_ON(num_doubles != 0);
3745 		num_doubles++;
3746 		goto again;
3747 	}
3748 
3749 	return 0;
3750 
3751 push_for_double:
3752 	push_for_double_split(trans, root, path, data_size);
3753 	tried_avoid_double = 1;
3754 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3755 		return 0;
3756 	goto again;
3757 }
3758 
3759 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3760 					 struct btrfs_root *root,
3761 					 struct btrfs_path *path, int ins_len)
3762 {
3763 	struct btrfs_key key;
3764 	struct extent_buffer *leaf;
3765 	struct btrfs_file_extent_item *fi;
3766 	u64 extent_len = 0;
3767 	u32 item_size;
3768 	int ret;
3769 
3770 	leaf = path->nodes[0];
3771 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3772 
3773 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3774 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3775 
3776 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3777 		return 0;
3778 
3779 	item_size = btrfs_item_size(leaf, path->slots[0]);
3780 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3781 		fi = btrfs_item_ptr(leaf, path->slots[0],
3782 				    struct btrfs_file_extent_item);
3783 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3784 	}
3785 	btrfs_release_path(path);
3786 
3787 	path->keep_locks = 1;
3788 	path->search_for_split = 1;
3789 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3790 	path->search_for_split = 0;
3791 	if (ret > 0)
3792 		ret = -EAGAIN;
3793 	if (ret < 0)
3794 		goto err;
3795 
3796 	ret = -EAGAIN;
3797 	leaf = path->nodes[0];
3798 	/* if our item isn't there, return now */
3799 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3800 		goto err;
3801 
3802 	/* the leaf has  changed, it now has room.  return now */
3803 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3804 		goto err;
3805 
3806 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3807 		fi = btrfs_item_ptr(leaf, path->slots[0],
3808 				    struct btrfs_file_extent_item);
3809 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3810 			goto err;
3811 	}
3812 
3813 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3814 	if (ret)
3815 		goto err;
3816 
3817 	path->keep_locks = 0;
3818 	btrfs_unlock_up_safe(path, 1);
3819 	return 0;
3820 err:
3821 	path->keep_locks = 0;
3822 	return ret;
3823 }
3824 
3825 static noinline int split_item(struct btrfs_path *path,
3826 			       const struct btrfs_key *new_key,
3827 			       unsigned long split_offset)
3828 {
3829 	struct extent_buffer *leaf;
3830 	int orig_slot, slot;
3831 	char *buf;
3832 	u32 nritems;
3833 	u32 item_size;
3834 	u32 orig_offset;
3835 	struct btrfs_disk_key disk_key;
3836 
3837 	leaf = path->nodes[0];
3838 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3839 
3840 	orig_slot = path->slots[0];
3841 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3842 	item_size = btrfs_item_size(leaf, path->slots[0]);
3843 
3844 	buf = kmalloc(item_size, GFP_NOFS);
3845 	if (!buf)
3846 		return -ENOMEM;
3847 
3848 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3849 			    path->slots[0]), item_size);
3850 
3851 	slot = path->slots[0] + 1;
3852 	nritems = btrfs_header_nritems(leaf);
3853 	if (slot != nritems) {
3854 		/* shift the items */
3855 		memmove_leaf_items(leaf, slot + 1, slot, nritems - slot);
3856 	}
3857 
3858 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3859 	btrfs_set_item_key(leaf, &disk_key, slot);
3860 
3861 	btrfs_set_item_offset(leaf, slot, orig_offset);
3862 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3863 
3864 	btrfs_set_item_offset(leaf, orig_slot,
3865 				 orig_offset + item_size - split_offset);
3866 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3867 
3868 	btrfs_set_header_nritems(leaf, nritems + 1);
3869 
3870 	/* write the data for the start of the original item */
3871 	write_extent_buffer(leaf, buf,
3872 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3873 			    split_offset);
3874 
3875 	/* write the data for the new item */
3876 	write_extent_buffer(leaf, buf + split_offset,
3877 			    btrfs_item_ptr_offset(leaf, slot),
3878 			    item_size - split_offset);
3879 	btrfs_mark_buffer_dirty(leaf);
3880 
3881 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3882 	kfree(buf);
3883 	return 0;
3884 }
3885 
3886 /*
3887  * This function splits a single item into two items,
3888  * giving 'new_key' to the new item and splitting the
3889  * old one at split_offset (from the start of the item).
3890  *
3891  * The path may be released by this operation.  After
3892  * the split, the path is pointing to the old item.  The
3893  * new item is going to be in the same node as the old one.
3894  *
3895  * Note, the item being split must be smaller enough to live alone on
3896  * a tree block with room for one extra struct btrfs_item
3897  *
3898  * This allows us to split the item in place, keeping a lock on the
3899  * leaf the entire time.
3900  */
3901 int btrfs_split_item(struct btrfs_trans_handle *trans,
3902 		     struct btrfs_root *root,
3903 		     struct btrfs_path *path,
3904 		     const struct btrfs_key *new_key,
3905 		     unsigned long split_offset)
3906 {
3907 	int ret;
3908 	ret = setup_leaf_for_split(trans, root, path,
3909 				   sizeof(struct btrfs_item));
3910 	if (ret)
3911 		return ret;
3912 
3913 	ret = split_item(path, new_key, split_offset);
3914 	return ret;
3915 }
3916 
3917 /*
3918  * make the item pointed to by the path smaller.  new_size indicates
3919  * how small to make it, and from_end tells us if we just chop bytes
3920  * off the end of the item or if we shift the item to chop bytes off
3921  * the front.
3922  */
3923 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3924 {
3925 	int slot;
3926 	struct extent_buffer *leaf;
3927 	u32 nritems;
3928 	unsigned int data_end;
3929 	unsigned int old_data_start;
3930 	unsigned int old_size;
3931 	unsigned int size_diff;
3932 	int i;
3933 	struct btrfs_map_token token;
3934 
3935 	leaf = path->nodes[0];
3936 	slot = path->slots[0];
3937 
3938 	old_size = btrfs_item_size(leaf, slot);
3939 	if (old_size == new_size)
3940 		return;
3941 
3942 	nritems = btrfs_header_nritems(leaf);
3943 	data_end = leaf_data_end(leaf);
3944 
3945 	old_data_start = btrfs_item_offset(leaf, slot);
3946 
3947 	size_diff = old_size - new_size;
3948 
3949 	BUG_ON(slot < 0);
3950 	BUG_ON(slot >= nritems);
3951 
3952 	/*
3953 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3954 	 */
3955 	/* first correct the data pointers */
3956 	btrfs_init_map_token(&token, leaf);
3957 	for (i = slot; i < nritems; i++) {
3958 		u32 ioff;
3959 
3960 		ioff = btrfs_token_item_offset(&token, i);
3961 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3962 	}
3963 
3964 	/* shift the data */
3965 	if (from_end) {
3966 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3967 				  old_data_start + new_size - data_end);
3968 	} else {
3969 		struct btrfs_disk_key disk_key;
3970 		u64 offset;
3971 
3972 		btrfs_item_key(leaf, &disk_key, slot);
3973 
3974 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3975 			unsigned long ptr;
3976 			struct btrfs_file_extent_item *fi;
3977 
3978 			fi = btrfs_item_ptr(leaf, slot,
3979 					    struct btrfs_file_extent_item);
3980 			fi = (struct btrfs_file_extent_item *)(
3981 			     (unsigned long)fi - size_diff);
3982 
3983 			if (btrfs_file_extent_type(leaf, fi) ==
3984 			    BTRFS_FILE_EXTENT_INLINE) {
3985 				ptr = btrfs_item_ptr_offset(leaf, slot);
3986 				memmove_extent_buffer(leaf, ptr,
3987 				      (unsigned long)fi,
3988 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3989 			}
3990 		}
3991 
3992 		memmove_leaf_data(leaf, data_end + size_diff, data_end,
3993 				  old_data_start - data_end);
3994 
3995 		offset = btrfs_disk_key_offset(&disk_key);
3996 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3997 		btrfs_set_item_key(leaf, &disk_key, slot);
3998 		if (slot == 0)
3999 			fixup_low_keys(path, &disk_key, 1);
4000 	}
4001 
4002 	btrfs_set_item_size(leaf, slot, new_size);
4003 	btrfs_mark_buffer_dirty(leaf);
4004 
4005 	if (btrfs_leaf_free_space(leaf) < 0) {
4006 		btrfs_print_leaf(leaf);
4007 		BUG();
4008 	}
4009 }
4010 
4011 /*
4012  * make the item pointed to by the path bigger, data_size is the added size.
4013  */
4014 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4015 {
4016 	int slot;
4017 	struct extent_buffer *leaf;
4018 	u32 nritems;
4019 	unsigned int data_end;
4020 	unsigned int old_data;
4021 	unsigned int old_size;
4022 	int i;
4023 	struct btrfs_map_token token;
4024 
4025 	leaf = path->nodes[0];
4026 
4027 	nritems = btrfs_header_nritems(leaf);
4028 	data_end = leaf_data_end(leaf);
4029 
4030 	if (btrfs_leaf_free_space(leaf) < data_size) {
4031 		btrfs_print_leaf(leaf);
4032 		BUG();
4033 	}
4034 	slot = path->slots[0];
4035 	old_data = btrfs_item_data_end(leaf, slot);
4036 
4037 	BUG_ON(slot < 0);
4038 	if (slot >= nritems) {
4039 		btrfs_print_leaf(leaf);
4040 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4041 			   slot, nritems);
4042 		BUG();
4043 	}
4044 
4045 	/*
4046 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4047 	 */
4048 	/* first correct the data pointers */
4049 	btrfs_init_map_token(&token, leaf);
4050 	for (i = slot; i < nritems; i++) {
4051 		u32 ioff;
4052 
4053 		ioff = btrfs_token_item_offset(&token, i);
4054 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
4055 	}
4056 
4057 	/* shift the data */
4058 	memmove_leaf_data(leaf, data_end - data_size, data_end,
4059 			  old_data - data_end);
4060 
4061 	data_end = old_data;
4062 	old_size = btrfs_item_size(leaf, slot);
4063 	btrfs_set_item_size(leaf, slot, old_size + data_size);
4064 	btrfs_mark_buffer_dirty(leaf);
4065 
4066 	if (btrfs_leaf_free_space(leaf) < 0) {
4067 		btrfs_print_leaf(leaf);
4068 		BUG();
4069 	}
4070 }
4071 
4072 /*
4073  * Make space in the node before inserting one or more items.
4074  *
4075  * @root:	root we are inserting items to
4076  * @path:	points to the leaf/slot where we are going to insert new items
4077  * @batch:      information about the batch of items to insert
4078  *
4079  * Main purpose is to save stack depth by doing the bulk of the work in a
4080  * function that doesn't call btrfs_search_slot
4081  */
4082 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4083 				   const struct btrfs_item_batch *batch)
4084 {
4085 	struct btrfs_fs_info *fs_info = root->fs_info;
4086 	int i;
4087 	u32 nritems;
4088 	unsigned int data_end;
4089 	struct btrfs_disk_key disk_key;
4090 	struct extent_buffer *leaf;
4091 	int slot;
4092 	struct btrfs_map_token token;
4093 	u32 total_size;
4094 
4095 	/*
4096 	 * Before anything else, update keys in the parent and other ancestors
4097 	 * if needed, then release the write locks on them, so that other tasks
4098 	 * can use them while we modify the leaf.
4099 	 */
4100 	if (path->slots[0] == 0) {
4101 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
4102 		fixup_low_keys(path, &disk_key, 1);
4103 	}
4104 	btrfs_unlock_up_safe(path, 1);
4105 
4106 	leaf = path->nodes[0];
4107 	slot = path->slots[0];
4108 
4109 	nritems = btrfs_header_nritems(leaf);
4110 	data_end = leaf_data_end(leaf);
4111 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4112 
4113 	if (btrfs_leaf_free_space(leaf) < total_size) {
4114 		btrfs_print_leaf(leaf);
4115 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4116 			   total_size, btrfs_leaf_free_space(leaf));
4117 		BUG();
4118 	}
4119 
4120 	btrfs_init_map_token(&token, leaf);
4121 	if (slot != nritems) {
4122 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
4123 
4124 		if (old_data < data_end) {
4125 			btrfs_print_leaf(leaf);
4126 			btrfs_crit(fs_info,
4127 		"item at slot %d with data offset %u beyond data end of leaf %u",
4128 				   slot, old_data, data_end);
4129 			BUG();
4130 		}
4131 		/*
4132 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4133 		 */
4134 		/* first correct the data pointers */
4135 		for (i = slot; i < nritems; i++) {
4136 			u32 ioff;
4137 
4138 			ioff = btrfs_token_item_offset(&token, i);
4139 			btrfs_set_token_item_offset(&token, i,
4140 						       ioff - batch->total_data_size);
4141 		}
4142 		/* shift the items */
4143 		memmove_leaf_items(leaf, slot + batch->nr, slot, nritems - slot);
4144 
4145 		/* shift the data */
4146 		memmove_leaf_data(leaf, data_end - batch->total_data_size,
4147 				  data_end, old_data - data_end);
4148 		data_end = old_data;
4149 	}
4150 
4151 	/* setup the item for the new data */
4152 	for (i = 0; i < batch->nr; i++) {
4153 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
4154 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4155 		data_end -= batch->data_sizes[i];
4156 		btrfs_set_token_item_offset(&token, slot + i, data_end);
4157 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
4158 	}
4159 
4160 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
4161 	btrfs_mark_buffer_dirty(leaf);
4162 
4163 	if (btrfs_leaf_free_space(leaf) < 0) {
4164 		btrfs_print_leaf(leaf);
4165 		BUG();
4166 	}
4167 }
4168 
4169 /*
4170  * Insert a new item into a leaf.
4171  *
4172  * @root:      The root of the btree.
4173  * @path:      A path pointing to the target leaf and slot.
4174  * @key:       The key of the new item.
4175  * @data_size: The size of the data associated with the new key.
4176  */
4177 void btrfs_setup_item_for_insert(struct btrfs_root *root,
4178 				 struct btrfs_path *path,
4179 				 const struct btrfs_key *key,
4180 				 u32 data_size)
4181 {
4182 	struct btrfs_item_batch batch;
4183 
4184 	batch.keys = key;
4185 	batch.data_sizes = &data_size;
4186 	batch.total_data_size = data_size;
4187 	batch.nr = 1;
4188 
4189 	setup_items_for_insert(root, path, &batch);
4190 }
4191 
4192 /*
4193  * Given a key and some data, insert items into the tree.
4194  * This does all the path init required, making room in the tree if needed.
4195  */
4196 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4197 			    struct btrfs_root *root,
4198 			    struct btrfs_path *path,
4199 			    const struct btrfs_item_batch *batch)
4200 {
4201 	int ret = 0;
4202 	int slot;
4203 	u32 total_size;
4204 
4205 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4206 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4207 	if (ret == 0)
4208 		return -EEXIST;
4209 	if (ret < 0)
4210 		return ret;
4211 
4212 	slot = path->slots[0];
4213 	BUG_ON(slot < 0);
4214 
4215 	setup_items_for_insert(root, path, batch);
4216 	return 0;
4217 }
4218 
4219 /*
4220  * Given a key and some data, insert an item into the tree.
4221  * This does all the path init required, making room in the tree if needed.
4222  */
4223 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4224 		      const struct btrfs_key *cpu_key, void *data,
4225 		      u32 data_size)
4226 {
4227 	int ret = 0;
4228 	struct btrfs_path *path;
4229 	struct extent_buffer *leaf;
4230 	unsigned long ptr;
4231 
4232 	path = btrfs_alloc_path();
4233 	if (!path)
4234 		return -ENOMEM;
4235 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4236 	if (!ret) {
4237 		leaf = path->nodes[0];
4238 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4239 		write_extent_buffer(leaf, data, ptr, data_size);
4240 		btrfs_mark_buffer_dirty(leaf);
4241 	}
4242 	btrfs_free_path(path);
4243 	return ret;
4244 }
4245 
4246 /*
4247  * This function duplicates an item, giving 'new_key' to the new item.
4248  * It guarantees both items live in the same tree leaf and the new item is
4249  * contiguous with the original item.
4250  *
4251  * This allows us to split a file extent in place, keeping a lock on the leaf
4252  * the entire time.
4253  */
4254 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4255 			 struct btrfs_root *root,
4256 			 struct btrfs_path *path,
4257 			 const struct btrfs_key *new_key)
4258 {
4259 	struct extent_buffer *leaf;
4260 	int ret;
4261 	u32 item_size;
4262 
4263 	leaf = path->nodes[0];
4264 	item_size = btrfs_item_size(leaf, path->slots[0]);
4265 	ret = setup_leaf_for_split(trans, root, path,
4266 				   item_size + sizeof(struct btrfs_item));
4267 	if (ret)
4268 		return ret;
4269 
4270 	path->slots[0]++;
4271 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4272 	leaf = path->nodes[0];
4273 	memcpy_extent_buffer(leaf,
4274 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4275 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4276 			     item_size);
4277 	return 0;
4278 }
4279 
4280 /*
4281  * delete the pointer from a given node.
4282  *
4283  * the tree should have been previously balanced so the deletion does not
4284  * empty a node.
4285  */
4286 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4287 		    int level, int slot)
4288 {
4289 	struct extent_buffer *parent = path->nodes[level];
4290 	u32 nritems;
4291 	int ret;
4292 
4293 	nritems = btrfs_header_nritems(parent);
4294 	if (slot != nritems - 1) {
4295 		if (level) {
4296 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4297 					slot + 1, nritems - slot - 1);
4298 			BUG_ON(ret < 0);
4299 		}
4300 		memmove_extent_buffer(parent,
4301 			      btrfs_node_key_ptr_offset(parent, slot),
4302 			      btrfs_node_key_ptr_offset(parent, slot + 1),
4303 			      sizeof(struct btrfs_key_ptr) *
4304 			      (nritems - slot - 1));
4305 	} else if (level) {
4306 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4307 						    BTRFS_MOD_LOG_KEY_REMOVE);
4308 		BUG_ON(ret < 0);
4309 	}
4310 
4311 	nritems--;
4312 	btrfs_set_header_nritems(parent, nritems);
4313 	if (nritems == 0 && parent == root->node) {
4314 		BUG_ON(btrfs_header_level(root->node) != 1);
4315 		/* just turn the root into a leaf and break */
4316 		btrfs_set_header_level(root->node, 0);
4317 	} else if (slot == 0) {
4318 		struct btrfs_disk_key disk_key;
4319 
4320 		btrfs_node_key(parent, &disk_key, 0);
4321 		fixup_low_keys(path, &disk_key, level + 1);
4322 	}
4323 	btrfs_mark_buffer_dirty(parent);
4324 }
4325 
4326 /*
4327  * a helper function to delete the leaf pointed to by path->slots[1] and
4328  * path->nodes[1].
4329  *
4330  * This deletes the pointer in path->nodes[1] and frees the leaf
4331  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4332  *
4333  * The path must have already been setup for deleting the leaf, including
4334  * all the proper balancing.  path->nodes[1] must be locked.
4335  */
4336 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4337 				    struct btrfs_root *root,
4338 				    struct btrfs_path *path,
4339 				    struct extent_buffer *leaf)
4340 {
4341 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4342 	del_ptr(root, path, 1, path->slots[1]);
4343 
4344 	/*
4345 	 * btrfs_free_extent is expensive, we want to make sure we
4346 	 * aren't holding any locks when we call it
4347 	 */
4348 	btrfs_unlock_up_safe(path, 0);
4349 
4350 	root_sub_used(root, leaf->len);
4351 
4352 	atomic_inc(&leaf->refs);
4353 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4354 	free_extent_buffer_stale(leaf);
4355 }
4356 /*
4357  * delete the item at the leaf level in path.  If that empties
4358  * the leaf, remove it from the tree
4359  */
4360 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4361 		    struct btrfs_path *path, int slot, int nr)
4362 {
4363 	struct btrfs_fs_info *fs_info = root->fs_info;
4364 	struct extent_buffer *leaf;
4365 	int ret = 0;
4366 	int wret;
4367 	u32 nritems;
4368 
4369 	leaf = path->nodes[0];
4370 	nritems = btrfs_header_nritems(leaf);
4371 
4372 	if (slot + nr != nritems) {
4373 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4374 		const int data_end = leaf_data_end(leaf);
4375 		struct btrfs_map_token token;
4376 		u32 dsize = 0;
4377 		int i;
4378 
4379 		for (i = 0; i < nr; i++)
4380 			dsize += btrfs_item_size(leaf, slot + i);
4381 
4382 		memmove_leaf_data(leaf, data_end + dsize, data_end,
4383 				  last_off - data_end);
4384 
4385 		btrfs_init_map_token(&token, leaf);
4386 		for (i = slot + nr; i < nritems; i++) {
4387 			u32 ioff;
4388 
4389 			ioff = btrfs_token_item_offset(&token, i);
4390 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4391 		}
4392 
4393 		memmove_leaf_items(leaf, slot, slot + nr, nritems - slot - nr);
4394 	}
4395 	btrfs_set_header_nritems(leaf, nritems - nr);
4396 	nritems -= nr;
4397 
4398 	/* delete the leaf if we've emptied it */
4399 	if (nritems == 0) {
4400 		if (leaf == root->node) {
4401 			btrfs_set_header_level(leaf, 0);
4402 		} else {
4403 			btrfs_clean_tree_block(leaf);
4404 			btrfs_del_leaf(trans, root, path, leaf);
4405 		}
4406 	} else {
4407 		int used = leaf_space_used(leaf, 0, nritems);
4408 		if (slot == 0) {
4409 			struct btrfs_disk_key disk_key;
4410 
4411 			btrfs_item_key(leaf, &disk_key, 0);
4412 			fixup_low_keys(path, &disk_key, 1);
4413 		}
4414 
4415 		/*
4416 		 * Try to delete the leaf if it is mostly empty. We do this by
4417 		 * trying to move all its items into its left and right neighbours.
4418 		 * If we can't move all the items, then we don't delete it - it's
4419 		 * not ideal, but future insertions might fill the leaf with more
4420 		 * items, or items from other leaves might be moved later into our
4421 		 * leaf due to deletions on those leaves.
4422 		 */
4423 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4424 			u32 min_push_space;
4425 
4426 			/* push_leaf_left fixes the path.
4427 			 * make sure the path still points to our leaf
4428 			 * for possible call to del_ptr below
4429 			 */
4430 			slot = path->slots[1];
4431 			atomic_inc(&leaf->refs);
4432 			/*
4433 			 * We want to be able to at least push one item to the
4434 			 * left neighbour leaf, and that's the first item.
4435 			 */
4436 			min_push_space = sizeof(struct btrfs_item) +
4437 				btrfs_item_size(leaf, 0);
4438 			wret = push_leaf_left(trans, root, path, 0,
4439 					      min_push_space, 1, (u32)-1);
4440 			if (wret < 0 && wret != -ENOSPC)
4441 				ret = wret;
4442 
4443 			if (path->nodes[0] == leaf &&
4444 			    btrfs_header_nritems(leaf)) {
4445 				/*
4446 				 * If we were not able to push all items from our
4447 				 * leaf to its left neighbour, then attempt to
4448 				 * either push all the remaining items to the
4449 				 * right neighbour or none. There's no advantage
4450 				 * in pushing only some items, instead of all, as
4451 				 * it's pointless to end up with a leaf having
4452 				 * too few items while the neighbours can be full
4453 				 * or nearly full.
4454 				 */
4455 				nritems = btrfs_header_nritems(leaf);
4456 				min_push_space = leaf_space_used(leaf, 0, nritems);
4457 				wret = push_leaf_right(trans, root, path, 0,
4458 						       min_push_space, 1, 0);
4459 				if (wret < 0 && wret != -ENOSPC)
4460 					ret = wret;
4461 			}
4462 
4463 			if (btrfs_header_nritems(leaf) == 0) {
4464 				path->slots[1] = slot;
4465 				btrfs_del_leaf(trans, root, path, leaf);
4466 				free_extent_buffer(leaf);
4467 				ret = 0;
4468 			} else {
4469 				/* if we're still in the path, make sure
4470 				 * we're dirty.  Otherwise, one of the
4471 				 * push_leaf functions must have already
4472 				 * dirtied this buffer
4473 				 */
4474 				if (path->nodes[0] == leaf)
4475 					btrfs_mark_buffer_dirty(leaf);
4476 				free_extent_buffer(leaf);
4477 			}
4478 		} else {
4479 			btrfs_mark_buffer_dirty(leaf);
4480 		}
4481 	}
4482 	return ret;
4483 }
4484 
4485 /*
4486  * search the tree again to find a leaf with lesser keys
4487  * returns 0 if it found something or 1 if there are no lesser leaves.
4488  * returns < 0 on io errors.
4489  *
4490  * This may release the path, and so you may lose any locks held at the
4491  * time you call it.
4492  */
4493 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4494 {
4495 	struct btrfs_key key;
4496 	struct btrfs_disk_key found_key;
4497 	int ret;
4498 
4499 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4500 
4501 	if (key.offset > 0) {
4502 		key.offset--;
4503 	} else if (key.type > 0) {
4504 		key.type--;
4505 		key.offset = (u64)-1;
4506 	} else if (key.objectid > 0) {
4507 		key.objectid--;
4508 		key.type = (u8)-1;
4509 		key.offset = (u64)-1;
4510 	} else {
4511 		return 1;
4512 	}
4513 
4514 	btrfs_release_path(path);
4515 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4516 	if (ret < 0)
4517 		return ret;
4518 	btrfs_item_key(path->nodes[0], &found_key, 0);
4519 	ret = comp_keys(&found_key, &key);
4520 	/*
4521 	 * We might have had an item with the previous key in the tree right
4522 	 * before we released our path. And after we released our path, that
4523 	 * item might have been pushed to the first slot (0) of the leaf we
4524 	 * were holding due to a tree balance. Alternatively, an item with the
4525 	 * previous key can exist as the only element of a leaf (big fat item).
4526 	 * Therefore account for these 2 cases, so that our callers (like
4527 	 * btrfs_previous_item) don't miss an existing item with a key matching
4528 	 * the previous key we computed above.
4529 	 */
4530 	if (ret <= 0)
4531 		return 0;
4532 	return 1;
4533 }
4534 
4535 /*
4536  * A helper function to walk down the tree starting at min_key, and looking
4537  * for nodes or leaves that are have a minimum transaction id.
4538  * This is used by the btree defrag code, and tree logging
4539  *
4540  * This does not cow, but it does stuff the starting key it finds back
4541  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4542  * key and get a writable path.
4543  *
4544  * This honors path->lowest_level to prevent descent past a given level
4545  * of the tree.
4546  *
4547  * min_trans indicates the oldest transaction that you are interested
4548  * in walking through.  Any nodes or leaves older than min_trans are
4549  * skipped over (without reading them).
4550  *
4551  * returns zero if something useful was found, < 0 on error and 1 if there
4552  * was nothing in the tree that matched the search criteria.
4553  */
4554 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4555 			 struct btrfs_path *path,
4556 			 u64 min_trans)
4557 {
4558 	struct extent_buffer *cur;
4559 	struct btrfs_key found_key;
4560 	int slot;
4561 	int sret;
4562 	u32 nritems;
4563 	int level;
4564 	int ret = 1;
4565 	int keep_locks = path->keep_locks;
4566 
4567 	ASSERT(!path->nowait);
4568 	path->keep_locks = 1;
4569 again:
4570 	cur = btrfs_read_lock_root_node(root);
4571 	level = btrfs_header_level(cur);
4572 	WARN_ON(path->nodes[level]);
4573 	path->nodes[level] = cur;
4574 	path->locks[level] = BTRFS_READ_LOCK;
4575 
4576 	if (btrfs_header_generation(cur) < min_trans) {
4577 		ret = 1;
4578 		goto out;
4579 	}
4580 	while (1) {
4581 		nritems = btrfs_header_nritems(cur);
4582 		level = btrfs_header_level(cur);
4583 		sret = btrfs_bin_search(cur, min_key, &slot);
4584 		if (sret < 0) {
4585 			ret = sret;
4586 			goto out;
4587 		}
4588 
4589 		/* at the lowest level, we're done, setup the path and exit */
4590 		if (level == path->lowest_level) {
4591 			if (slot >= nritems)
4592 				goto find_next_key;
4593 			ret = 0;
4594 			path->slots[level] = slot;
4595 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4596 			goto out;
4597 		}
4598 		if (sret && slot > 0)
4599 			slot--;
4600 		/*
4601 		 * check this node pointer against the min_trans parameters.
4602 		 * If it is too old, skip to the next one.
4603 		 */
4604 		while (slot < nritems) {
4605 			u64 gen;
4606 
4607 			gen = btrfs_node_ptr_generation(cur, slot);
4608 			if (gen < min_trans) {
4609 				slot++;
4610 				continue;
4611 			}
4612 			break;
4613 		}
4614 find_next_key:
4615 		/*
4616 		 * we didn't find a candidate key in this node, walk forward
4617 		 * and find another one
4618 		 */
4619 		if (slot >= nritems) {
4620 			path->slots[level] = slot;
4621 			sret = btrfs_find_next_key(root, path, min_key, level,
4622 						  min_trans);
4623 			if (sret == 0) {
4624 				btrfs_release_path(path);
4625 				goto again;
4626 			} else {
4627 				goto out;
4628 			}
4629 		}
4630 		/* save our key for returning back */
4631 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4632 		path->slots[level] = slot;
4633 		if (level == path->lowest_level) {
4634 			ret = 0;
4635 			goto out;
4636 		}
4637 		cur = btrfs_read_node_slot(cur, slot);
4638 		if (IS_ERR(cur)) {
4639 			ret = PTR_ERR(cur);
4640 			goto out;
4641 		}
4642 
4643 		btrfs_tree_read_lock(cur);
4644 
4645 		path->locks[level - 1] = BTRFS_READ_LOCK;
4646 		path->nodes[level - 1] = cur;
4647 		unlock_up(path, level, 1, 0, NULL);
4648 	}
4649 out:
4650 	path->keep_locks = keep_locks;
4651 	if (ret == 0) {
4652 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4653 		memcpy(min_key, &found_key, sizeof(found_key));
4654 	}
4655 	return ret;
4656 }
4657 
4658 /*
4659  * this is similar to btrfs_next_leaf, but does not try to preserve
4660  * and fixup the path.  It looks for and returns the next key in the
4661  * tree based on the current path and the min_trans parameters.
4662  *
4663  * 0 is returned if another key is found, < 0 if there are any errors
4664  * and 1 is returned if there are no higher keys in the tree
4665  *
4666  * path->keep_locks should be set to 1 on the search made before
4667  * calling this function.
4668  */
4669 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4670 			struct btrfs_key *key, int level, u64 min_trans)
4671 {
4672 	int slot;
4673 	struct extent_buffer *c;
4674 
4675 	WARN_ON(!path->keep_locks && !path->skip_locking);
4676 	while (level < BTRFS_MAX_LEVEL) {
4677 		if (!path->nodes[level])
4678 			return 1;
4679 
4680 		slot = path->slots[level] + 1;
4681 		c = path->nodes[level];
4682 next:
4683 		if (slot >= btrfs_header_nritems(c)) {
4684 			int ret;
4685 			int orig_lowest;
4686 			struct btrfs_key cur_key;
4687 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4688 			    !path->nodes[level + 1])
4689 				return 1;
4690 
4691 			if (path->locks[level + 1] || path->skip_locking) {
4692 				level++;
4693 				continue;
4694 			}
4695 
4696 			slot = btrfs_header_nritems(c) - 1;
4697 			if (level == 0)
4698 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4699 			else
4700 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4701 
4702 			orig_lowest = path->lowest_level;
4703 			btrfs_release_path(path);
4704 			path->lowest_level = level;
4705 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4706 						0, 0);
4707 			path->lowest_level = orig_lowest;
4708 			if (ret < 0)
4709 				return ret;
4710 
4711 			c = path->nodes[level];
4712 			slot = path->slots[level];
4713 			if (ret == 0)
4714 				slot++;
4715 			goto next;
4716 		}
4717 
4718 		if (level == 0)
4719 			btrfs_item_key_to_cpu(c, key, slot);
4720 		else {
4721 			u64 gen = btrfs_node_ptr_generation(c, slot);
4722 
4723 			if (gen < min_trans) {
4724 				slot++;
4725 				goto next;
4726 			}
4727 			btrfs_node_key_to_cpu(c, key, slot);
4728 		}
4729 		return 0;
4730 	}
4731 	return 1;
4732 }
4733 
4734 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4735 			u64 time_seq)
4736 {
4737 	int slot;
4738 	int level;
4739 	struct extent_buffer *c;
4740 	struct extent_buffer *next;
4741 	struct btrfs_fs_info *fs_info = root->fs_info;
4742 	struct btrfs_key key;
4743 	bool need_commit_sem = false;
4744 	u32 nritems;
4745 	int ret;
4746 	int i;
4747 
4748 	/*
4749 	 * The nowait semantics are used only for write paths, where we don't
4750 	 * use the tree mod log and sequence numbers.
4751 	 */
4752 	if (time_seq)
4753 		ASSERT(!path->nowait);
4754 
4755 	nritems = btrfs_header_nritems(path->nodes[0]);
4756 	if (nritems == 0)
4757 		return 1;
4758 
4759 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4760 again:
4761 	level = 1;
4762 	next = NULL;
4763 	btrfs_release_path(path);
4764 
4765 	path->keep_locks = 1;
4766 
4767 	if (time_seq) {
4768 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4769 	} else {
4770 		if (path->need_commit_sem) {
4771 			path->need_commit_sem = 0;
4772 			need_commit_sem = true;
4773 			if (path->nowait) {
4774 				if (!down_read_trylock(&fs_info->commit_root_sem)) {
4775 					ret = -EAGAIN;
4776 					goto done;
4777 				}
4778 			} else {
4779 				down_read(&fs_info->commit_root_sem);
4780 			}
4781 		}
4782 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4783 	}
4784 	path->keep_locks = 0;
4785 
4786 	if (ret < 0)
4787 		goto done;
4788 
4789 	nritems = btrfs_header_nritems(path->nodes[0]);
4790 	/*
4791 	 * by releasing the path above we dropped all our locks.  A balance
4792 	 * could have added more items next to the key that used to be
4793 	 * at the very end of the block.  So, check again here and
4794 	 * advance the path if there are now more items available.
4795 	 */
4796 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4797 		if (ret == 0)
4798 			path->slots[0]++;
4799 		ret = 0;
4800 		goto done;
4801 	}
4802 	/*
4803 	 * So the above check misses one case:
4804 	 * - after releasing the path above, someone has removed the item that
4805 	 *   used to be at the very end of the block, and balance between leafs
4806 	 *   gets another one with bigger key.offset to replace it.
4807 	 *
4808 	 * This one should be returned as well, or we can get leaf corruption
4809 	 * later(esp. in __btrfs_drop_extents()).
4810 	 *
4811 	 * And a bit more explanation about this check,
4812 	 * with ret > 0, the key isn't found, the path points to the slot
4813 	 * where it should be inserted, so the path->slots[0] item must be the
4814 	 * bigger one.
4815 	 */
4816 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4817 		ret = 0;
4818 		goto done;
4819 	}
4820 
4821 	while (level < BTRFS_MAX_LEVEL) {
4822 		if (!path->nodes[level]) {
4823 			ret = 1;
4824 			goto done;
4825 		}
4826 
4827 		slot = path->slots[level] + 1;
4828 		c = path->nodes[level];
4829 		if (slot >= btrfs_header_nritems(c)) {
4830 			level++;
4831 			if (level == BTRFS_MAX_LEVEL) {
4832 				ret = 1;
4833 				goto done;
4834 			}
4835 			continue;
4836 		}
4837 
4838 
4839 		/*
4840 		 * Our current level is where we're going to start from, and to
4841 		 * make sure lockdep doesn't complain we need to drop our locks
4842 		 * and nodes from 0 to our current level.
4843 		 */
4844 		for (i = 0; i < level; i++) {
4845 			if (path->locks[level]) {
4846 				btrfs_tree_read_unlock(path->nodes[i]);
4847 				path->locks[i] = 0;
4848 			}
4849 			free_extent_buffer(path->nodes[i]);
4850 			path->nodes[i] = NULL;
4851 		}
4852 
4853 		next = c;
4854 		ret = read_block_for_search(root, path, &next, level,
4855 					    slot, &key);
4856 		if (ret == -EAGAIN && !path->nowait)
4857 			goto again;
4858 
4859 		if (ret < 0) {
4860 			btrfs_release_path(path);
4861 			goto done;
4862 		}
4863 
4864 		if (!path->skip_locking) {
4865 			ret = btrfs_try_tree_read_lock(next);
4866 			if (!ret && path->nowait) {
4867 				ret = -EAGAIN;
4868 				goto done;
4869 			}
4870 			if (!ret && time_seq) {
4871 				/*
4872 				 * If we don't get the lock, we may be racing
4873 				 * with push_leaf_left, holding that lock while
4874 				 * itself waiting for the leaf we've currently
4875 				 * locked. To solve this situation, we give up
4876 				 * on our lock and cycle.
4877 				 */
4878 				free_extent_buffer(next);
4879 				btrfs_release_path(path);
4880 				cond_resched();
4881 				goto again;
4882 			}
4883 			if (!ret)
4884 				btrfs_tree_read_lock(next);
4885 		}
4886 		break;
4887 	}
4888 	path->slots[level] = slot;
4889 	while (1) {
4890 		level--;
4891 		path->nodes[level] = next;
4892 		path->slots[level] = 0;
4893 		if (!path->skip_locking)
4894 			path->locks[level] = BTRFS_READ_LOCK;
4895 		if (!level)
4896 			break;
4897 
4898 		ret = read_block_for_search(root, path, &next, level,
4899 					    0, &key);
4900 		if (ret == -EAGAIN && !path->nowait)
4901 			goto again;
4902 
4903 		if (ret < 0) {
4904 			btrfs_release_path(path);
4905 			goto done;
4906 		}
4907 
4908 		if (!path->skip_locking) {
4909 			if (path->nowait) {
4910 				if (!btrfs_try_tree_read_lock(next)) {
4911 					ret = -EAGAIN;
4912 					goto done;
4913 				}
4914 			} else {
4915 				btrfs_tree_read_lock(next);
4916 			}
4917 		}
4918 	}
4919 	ret = 0;
4920 done:
4921 	unlock_up(path, 0, 1, 0, NULL);
4922 	if (need_commit_sem) {
4923 		int ret2;
4924 
4925 		path->need_commit_sem = 1;
4926 		ret2 = finish_need_commit_sem_search(path);
4927 		up_read(&fs_info->commit_root_sem);
4928 		if (ret2)
4929 			ret = ret2;
4930 	}
4931 
4932 	return ret;
4933 }
4934 
4935 int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq)
4936 {
4937 	path->slots[0]++;
4938 	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
4939 		return btrfs_next_old_leaf(root, path, time_seq);
4940 	return 0;
4941 }
4942 
4943 /*
4944  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4945  * searching until it gets past min_objectid or finds an item of 'type'
4946  *
4947  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4948  */
4949 int btrfs_previous_item(struct btrfs_root *root,
4950 			struct btrfs_path *path, u64 min_objectid,
4951 			int type)
4952 {
4953 	struct btrfs_key found_key;
4954 	struct extent_buffer *leaf;
4955 	u32 nritems;
4956 	int ret;
4957 
4958 	while (1) {
4959 		if (path->slots[0] == 0) {
4960 			ret = btrfs_prev_leaf(root, path);
4961 			if (ret != 0)
4962 				return ret;
4963 		} else {
4964 			path->slots[0]--;
4965 		}
4966 		leaf = path->nodes[0];
4967 		nritems = btrfs_header_nritems(leaf);
4968 		if (nritems == 0)
4969 			return 1;
4970 		if (path->slots[0] == nritems)
4971 			path->slots[0]--;
4972 
4973 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4974 		if (found_key.objectid < min_objectid)
4975 			break;
4976 		if (found_key.type == type)
4977 			return 0;
4978 		if (found_key.objectid == min_objectid &&
4979 		    found_key.type < type)
4980 			break;
4981 	}
4982 	return 1;
4983 }
4984 
4985 /*
4986  * search in extent tree to find a previous Metadata/Data extent item with
4987  * min objecitd.
4988  *
4989  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4990  */
4991 int btrfs_previous_extent_item(struct btrfs_root *root,
4992 			struct btrfs_path *path, u64 min_objectid)
4993 {
4994 	struct btrfs_key found_key;
4995 	struct extent_buffer *leaf;
4996 	u32 nritems;
4997 	int ret;
4998 
4999 	while (1) {
5000 		if (path->slots[0] == 0) {
5001 			ret = btrfs_prev_leaf(root, path);
5002 			if (ret != 0)
5003 				return ret;
5004 		} else {
5005 			path->slots[0]--;
5006 		}
5007 		leaf = path->nodes[0];
5008 		nritems = btrfs_header_nritems(leaf);
5009 		if (nritems == 0)
5010 			return 1;
5011 		if (path->slots[0] == nritems)
5012 			path->slots[0]--;
5013 
5014 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5015 		if (found_key.objectid < min_objectid)
5016 			break;
5017 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5018 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5019 			return 0;
5020 		if (found_key.objectid == min_objectid &&
5021 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5022 			break;
5023 	}
5024 	return 1;
5025 }
5026 
5027 int __init btrfs_ctree_init(void)
5028 {
5029 	btrfs_path_cachep = kmem_cache_create("btrfs_path",
5030 			sizeof(struct btrfs_path), 0,
5031 			SLAB_MEM_SPREAD, NULL);
5032 	if (!btrfs_path_cachep)
5033 		return -ENOMEM;
5034 	return 0;
5035 }
5036 
5037 void __cold btrfs_ctree_exit(void)
5038 {
5039 	kmem_cache_destroy(btrfs_path_cachep);
5040 }
5041