1 /* 2 * Copyright (C) 2007,2008 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/slab.h> 21 #include <linux/rbtree.h> 22 #include <linux/vmalloc.h> 23 #include "ctree.h" 24 #include "disk-io.h" 25 #include "transaction.h" 26 #include "print-tree.h" 27 #include "locking.h" 28 29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 30 *root, struct btrfs_path *path, int level); 31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root 32 *root, struct btrfs_key *ins_key, 33 struct btrfs_path *path, int data_size, int extend); 34 static int push_node_left(struct btrfs_trans_handle *trans, 35 struct btrfs_root *root, struct extent_buffer *dst, 36 struct extent_buffer *src, int empty); 37 static int balance_node_right(struct btrfs_trans_handle *trans, 38 struct btrfs_root *root, 39 struct extent_buffer *dst_buf, 40 struct extent_buffer *src_buf); 41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 42 int level, int slot); 43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 44 struct extent_buffer *eb); 45 46 struct btrfs_path *btrfs_alloc_path(void) 47 { 48 struct btrfs_path *path; 49 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 50 return path; 51 } 52 53 /* 54 * set all locked nodes in the path to blocking locks. This should 55 * be done before scheduling 56 */ 57 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 58 { 59 int i; 60 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 61 if (!p->nodes[i] || !p->locks[i]) 62 continue; 63 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]); 64 if (p->locks[i] == BTRFS_READ_LOCK) 65 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 66 else if (p->locks[i] == BTRFS_WRITE_LOCK) 67 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 68 } 69 } 70 71 /* 72 * reset all the locked nodes in the patch to spinning locks. 73 * 74 * held is used to keep lockdep happy, when lockdep is enabled 75 * we set held to a blocking lock before we go around and 76 * retake all the spinlocks in the path. You can safely use NULL 77 * for held 78 */ 79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p, 80 struct extent_buffer *held, int held_rw) 81 { 82 int i; 83 84 if (held) { 85 btrfs_set_lock_blocking_rw(held, held_rw); 86 if (held_rw == BTRFS_WRITE_LOCK) 87 held_rw = BTRFS_WRITE_LOCK_BLOCKING; 88 else if (held_rw == BTRFS_READ_LOCK) 89 held_rw = BTRFS_READ_LOCK_BLOCKING; 90 } 91 btrfs_set_path_blocking(p); 92 93 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) { 94 if (p->nodes[i] && p->locks[i]) { 95 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]); 96 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING) 97 p->locks[i] = BTRFS_WRITE_LOCK; 98 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING) 99 p->locks[i] = BTRFS_READ_LOCK; 100 } 101 } 102 103 if (held) 104 btrfs_clear_lock_blocking_rw(held, held_rw); 105 } 106 107 /* this also releases the path */ 108 void btrfs_free_path(struct btrfs_path *p) 109 { 110 if (!p) 111 return; 112 btrfs_release_path(p); 113 kmem_cache_free(btrfs_path_cachep, p); 114 } 115 116 /* 117 * path release drops references on the extent buffers in the path 118 * and it drops any locks held by this path 119 * 120 * It is safe to call this on paths that no locks or extent buffers held. 121 */ 122 noinline void btrfs_release_path(struct btrfs_path *p) 123 { 124 int i; 125 126 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 127 p->slots[i] = 0; 128 if (!p->nodes[i]) 129 continue; 130 if (p->locks[i]) { 131 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 132 p->locks[i] = 0; 133 } 134 free_extent_buffer(p->nodes[i]); 135 p->nodes[i] = NULL; 136 } 137 } 138 139 /* 140 * safely gets a reference on the root node of a tree. A lock 141 * is not taken, so a concurrent writer may put a different node 142 * at the root of the tree. See btrfs_lock_root_node for the 143 * looping required. 144 * 145 * The extent buffer returned by this has a reference taken, so 146 * it won't disappear. It may stop being the root of the tree 147 * at any time because there are no locks held. 148 */ 149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 150 { 151 struct extent_buffer *eb; 152 153 while (1) { 154 rcu_read_lock(); 155 eb = rcu_dereference(root->node); 156 157 /* 158 * RCU really hurts here, we could free up the root node because 159 * it was COWed but we may not get the new root node yet so do 160 * the inc_not_zero dance and if it doesn't work then 161 * synchronize_rcu and try again. 162 */ 163 if (atomic_inc_not_zero(&eb->refs)) { 164 rcu_read_unlock(); 165 break; 166 } 167 rcu_read_unlock(); 168 synchronize_rcu(); 169 } 170 return eb; 171 } 172 173 /* loop around taking references on and locking the root node of the 174 * tree until you end up with a lock on the root. A locked buffer 175 * is returned, with a reference held. 176 */ 177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 178 { 179 struct extent_buffer *eb; 180 181 while (1) { 182 eb = btrfs_root_node(root); 183 btrfs_tree_lock(eb); 184 if (eb == root->node) 185 break; 186 btrfs_tree_unlock(eb); 187 free_extent_buffer(eb); 188 } 189 return eb; 190 } 191 192 /* loop around taking references on and locking the root node of the 193 * tree until you end up with a lock on the root. A locked buffer 194 * is returned, with a reference held. 195 */ 196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 197 { 198 struct extent_buffer *eb; 199 200 while (1) { 201 eb = btrfs_root_node(root); 202 btrfs_tree_read_lock(eb); 203 if (eb == root->node) 204 break; 205 btrfs_tree_read_unlock(eb); 206 free_extent_buffer(eb); 207 } 208 return eb; 209 } 210 211 /* cowonly root (everything not a reference counted cow subvolume), just get 212 * put onto a simple dirty list. transaction.c walks this to make sure they 213 * get properly updated on disk. 214 */ 215 static void add_root_to_dirty_list(struct btrfs_root *root) 216 { 217 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 218 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 219 return; 220 221 spin_lock(&root->fs_info->trans_lock); 222 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 223 /* Want the extent tree to be the last on the list */ 224 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID) 225 list_move_tail(&root->dirty_list, 226 &root->fs_info->dirty_cowonly_roots); 227 else 228 list_move(&root->dirty_list, 229 &root->fs_info->dirty_cowonly_roots); 230 } 231 spin_unlock(&root->fs_info->trans_lock); 232 } 233 234 /* 235 * used by snapshot creation to make a copy of a root for a tree with 236 * a given objectid. The buffer with the new root node is returned in 237 * cow_ret, and this func returns zero on success or a negative error code. 238 */ 239 int btrfs_copy_root(struct btrfs_trans_handle *trans, 240 struct btrfs_root *root, 241 struct extent_buffer *buf, 242 struct extent_buffer **cow_ret, u64 new_root_objectid) 243 { 244 struct extent_buffer *cow; 245 int ret = 0; 246 int level; 247 struct btrfs_disk_key disk_key; 248 249 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 250 trans->transid != root->fs_info->running_transaction->transid); 251 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 252 trans->transid != root->last_trans); 253 254 level = btrfs_header_level(buf); 255 if (level == 0) 256 btrfs_item_key(buf, &disk_key, 0); 257 else 258 btrfs_node_key(buf, &disk_key, 0); 259 260 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 261 &disk_key, level, buf->start, 0); 262 if (IS_ERR(cow)) 263 return PTR_ERR(cow); 264 265 copy_extent_buffer(cow, buf, 0, 0, cow->len); 266 btrfs_set_header_bytenr(cow, cow->start); 267 btrfs_set_header_generation(cow, trans->transid); 268 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 269 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 270 BTRFS_HEADER_FLAG_RELOC); 271 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 272 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 273 else 274 btrfs_set_header_owner(cow, new_root_objectid); 275 276 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 277 BTRFS_FSID_SIZE); 278 279 WARN_ON(btrfs_header_generation(buf) > trans->transid); 280 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 281 ret = btrfs_inc_ref(trans, root, cow, 1); 282 else 283 ret = btrfs_inc_ref(trans, root, cow, 0); 284 285 if (ret) 286 return ret; 287 288 btrfs_mark_buffer_dirty(cow); 289 *cow_ret = cow; 290 return 0; 291 } 292 293 enum mod_log_op { 294 MOD_LOG_KEY_REPLACE, 295 MOD_LOG_KEY_ADD, 296 MOD_LOG_KEY_REMOVE, 297 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 298 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 299 MOD_LOG_MOVE_KEYS, 300 MOD_LOG_ROOT_REPLACE, 301 }; 302 303 struct tree_mod_move { 304 int dst_slot; 305 int nr_items; 306 }; 307 308 struct tree_mod_root { 309 u64 logical; 310 u8 level; 311 }; 312 313 struct tree_mod_elem { 314 struct rb_node node; 315 u64 logical; 316 u64 seq; 317 enum mod_log_op op; 318 319 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 320 int slot; 321 322 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 323 u64 generation; 324 325 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 326 struct btrfs_disk_key key; 327 u64 blockptr; 328 329 /* this is used for op == MOD_LOG_MOVE_KEYS */ 330 struct tree_mod_move move; 331 332 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 333 struct tree_mod_root old_root; 334 }; 335 336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info) 337 { 338 read_lock(&fs_info->tree_mod_log_lock); 339 } 340 341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info) 342 { 343 read_unlock(&fs_info->tree_mod_log_lock); 344 } 345 346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info) 347 { 348 write_lock(&fs_info->tree_mod_log_lock); 349 } 350 351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info) 352 { 353 write_unlock(&fs_info->tree_mod_log_lock); 354 } 355 356 /* 357 * Pull a new tree mod seq number for our operation. 358 */ 359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 360 { 361 return atomic64_inc_return(&fs_info->tree_mod_seq); 362 } 363 364 /* 365 * This adds a new blocker to the tree mod log's blocker list if the @elem 366 * passed does not already have a sequence number set. So when a caller expects 367 * to record tree modifications, it should ensure to set elem->seq to zero 368 * before calling btrfs_get_tree_mod_seq. 369 * Returns a fresh, unused tree log modification sequence number, even if no new 370 * blocker was added. 371 */ 372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 373 struct seq_list *elem) 374 { 375 tree_mod_log_write_lock(fs_info); 376 spin_lock(&fs_info->tree_mod_seq_lock); 377 if (!elem->seq) { 378 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 379 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 380 } 381 spin_unlock(&fs_info->tree_mod_seq_lock); 382 tree_mod_log_write_unlock(fs_info); 383 384 return elem->seq; 385 } 386 387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 388 struct seq_list *elem) 389 { 390 struct rb_root *tm_root; 391 struct rb_node *node; 392 struct rb_node *next; 393 struct seq_list *cur_elem; 394 struct tree_mod_elem *tm; 395 u64 min_seq = (u64)-1; 396 u64 seq_putting = elem->seq; 397 398 if (!seq_putting) 399 return; 400 401 spin_lock(&fs_info->tree_mod_seq_lock); 402 list_del(&elem->list); 403 elem->seq = 0; 404 405 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 406 if (cur_elem->seq < min_seq) { 407 if (seq_putting > cur_elem->seq) { 408 /* 409 * blocker with lower sequence number exists, we 410 * cannot remove anything from the log 411 */ 412 spin_unlock(&fs_info->tree_mod_seq_lock); 413 return; 414 } 415 min_seq = cur_elem->seq; 416 } 417 } 418 spin_unlock(&fs_info->tree_mod_seq_lock); 419 420 /* 421 * anything that's lower than the lowest existing (read: blocked) 422 * sequence number can be removed from the tree. 423 */ 424 tree_mod_log_write_lock(fs_info); 425 tm_root = &fs_info->tree_mod_log; 426 for (node = rb_first(tm_root); node; node = next) { 427 next = rb_next(node); 428 tm = container_of(node, struct tree_mod_elem, node); 429 if (tm->seq > min_seq) 430 continue; 431 rb_erase(node, tm_root); 432 kfree(tm); 433 } 434 tree_mod_log_write_unlock(fs_info); 435 } 436 437 /* 438 * key order of the log: 439 * node/leaf start address -> sequence 440 * 441 * The 'start address' is the logical address of the *new* root node 442 * for root replace operations, or the logical address of the affected 443 * block for all other operations. 444 * 445 * Note: must be called with write lock (tree_mod_log_write_lock). 446 */ 447 static noinline int 448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 449 { 450 struct rb_root *tm_root; 451 struct rb_node **new; 452 struct rb_node *parent = NULL; 453 struct tree_mod_elem *cur; 454 455 BUG_ON(!tm); 456 457 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 458 459 tm_root = &fs_info->tree_mod_log; 460 new = &tm_root->rb_node; 461 while (*new) { 462 cur = container_of(*new, struct tree_mod_elem, node); 463 parent = *new; 464 if (cur->logical < tm->logical) 465 new = &((*new)->rb_left); 466 else if (cur->logical > tm->logical) 467 new = &((*new)->rb_right); 468 else if (cur->seq < tm->seq) 469 new = &((*new)->rb_left); 470 else if (cur->seq > tm->seq) 471 new = &((*new)->rb_right); 472 else 473 return -EEXIST; 474 } 475 476 rb_link_node(&tm->node, parent, new); 477 rb_insert_color(&tm->node, tm_root); 478 return 0; 479 } 480 481 /* 482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 483 * returns zero with the tree_mod_log_lock acquired. The caller must hold 484 * this until all tree mod log insertions are recorded in the rb tree and then 485 * call tree_mod_log_write_unlock() to release. 486 */ 487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 488 struct extent_buffer *eb) { 489 smp_mb(); 490 if (list_empty(&(fs_info)->tree_mod_seq_list)) 491 return 1; 492 if (eb && btrfs_header_level(eb) == 0) 493 return 1; 494 495 tree_mod_log_write_lock(fs_info); 496 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 497 tree_mod_log_write_unlock(fs_info); 498 return 1; 499 } 500 501 return 0; 502 } 503 504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 506 struct extent_buffer *eb) 507 { 508 smp_mb(); 509 if (list_empty(&(fs_info)->tree_mod_seq_list)) 510 return 0; 511 if (eb && btrfs_header_level(eb) == 0) 512 return 0; 513 514 return 1; 515 } 516 517 static struct tree_mod_elem * 518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 519 enum mod_log_op op, gfp_t flags) 520 { 521 struct tree_mod_elem *tm; 522 523 tm = kzalloc(sizeof(*tm), flags); 524 if (!tm) 525 return NULL; 526 527 tm->logical = eb->start; 528 if (op != MOD_LOG_KEY_ADD) { 529 btrfs_node_key(eb, &tm->key, slot); 530 tm->blockptr = btrfs_node_blockptr(eb, slot); 531 } 532 tm->op = op; 533 tm->slot = slot; 534 tm->generation = btrfs_node_ptr_generation(eb, slot); 535 RB_CLEAR_NODE(&tm->node); 536 537 return tm; 538 } 539 540 static noinline int 541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, 542 struct extent_buffer *eb, int slot, 543 enum mod_log_op op, gfp_t flags) 544 { 545 struct tree_mod_elem *tm; 546 int ret; 547 548 if (!tree_mod_need_log(fs_info, eb)) 549 return 0; 550 551 tm = alloc_tree_mod_elem(eb, slot, op, flags); 552 if (!tm) 553 return -ENOMEM; 554 555 if (tree_mod_dont_log(fs_info, eb)) { 556 kfree(tm); 557 return 0; 558 } 559 560 ret = __tree_mod_log_insert(fs_info, tm); 561 tree_mod_log_write_unlock(fs_info); 562 if (ret) 563 kfree(tm); 564 565 return ret; 566 } 567 568 static noinline int 569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info, 570 struct extent_buffer *eb, int dst_slot, int src_slot, 571 int nr_items, gfp_t flags) 572 { 573 struct tree_mod_elem *tm = NULL; 574 struct tree_mod_elem **tm_list = NULL; 575 int ret = 0; 576 int i; 577 int locked = 0; 578 579 if (!tree_mod_need_log(fs_info, eb)) 580 return 0; 581 582 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags); 583 if (!tm_list) 584 return -ENOMEM; 585 586 tm = kzalloc(sizeof(*tm), flags); 587 if (!tm) { 588 ret = -ENOMEM; 589 goto free_tms; 590 } 591 592 tm->logical = eb->start; 593 tm->slot = src_slot; 594 tm->move.dst_slot = dst_slot; 595 tm->move.nr_items = nr_items; 596 tm->op = MOD_LOG_MOVE_KEYS; 597 598 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 599 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 600 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags); 601 if (!tm_list[i]) { 602 ret = -ENOMEM; 603 goto free_tms; 604 } 605 } 606 607 if (tree_mod_dont_log(fs_info, eb)) 608 goto free_tms; 609 locked = 1; 610 611 /* 612 * When we override something during the move, we log these removals. 613 * This can only happen when we move towards the beginning of the 614 * buffer, i.e. dst_slot < src_slot. 615 */ 616 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 617 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 618 if (ret) 619 goto free_tms; 620 } 621 622 ret = __tree_mod_log_insert(fs_info, tm); 623 if (ret) 624 goto free_tms; 625 tree_mod_log_write_unlock(fs_info); 626 kfree(tm_list); 627 628 return 0; 629 free_tms: 630 for (i = 0; i < nr_items; i++) { 631 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 632 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 633 kfree(tm_list[i]); 634 } 635 if (locked) 636 tree_mod_log_write_unlock(fs_info); 637 kfree(tm_list); 638 kfree(tm); 639 640 return ret; 641 } 642 643 static inline int 644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 645 struct tree_mod_elem **tm_list, 646 int nritems) 647 { 648 int i, j; 649 int ret; 650 651 for (i = nritems - 1; i >= 0; i--) { 652 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 653 if (ret) { 654 for (j = nritems - 1; j > i; j--) 655 rb_erase(&tm_list[j]->node, 656 &fs_info->tree_mod_log); 657 return ret; 658 } 659 } 660 661 return 0; 662 } 663 664 static noinline int 665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info, 666 struct extent_buffer *old_root, 667 struct extent_buffer *new_root, gfp_t flags, 668 int log_removal) 669 { 670 struct tree_mod_elem *tm = NULL; 671 struct tree_mod_elem **tm_list = NULL; 672 int nritems = 0; 673 int ret = 0; 674 int i; 675 676 if (!tree_mod_need_log(fs_info, NULL)) 677 return 0; 678 679 if (log_removal && btrfs_header_level(old_root) > 0) { 680 nritems = btrfs_header_nritems(old_root); 681 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 682 flags); 683 if (!tm_list) { 684 ret = -ENOMEM; 685 goto free_tms; 686 } 687 for (i = 0; i < nritems; i++) { 688 tm_list[i] = alloc_tree_mod_elem(old_root, i, 689 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags); 690 if (!tm_list[i]) { 691 ret = -ENOMEM; 692 goto free_tms; 693 } 694 } 695 } 696 697 tm = kzalloc(sizeof(*tm), flags); 698 if (!tm) { 699 ret = -ENOMEM; 700 goto free_tms; 701 } 702 703 tm->logical = new_root->start; 704 tm->old_root.logical = old_root->start; 705 tm->old_root.level = btrfs_header_level(old_root); 706 tm->generation = btrfs_header_generation(old_root); 707 tm->op = MOD_LOG_ROOT_REPLACE; 708 709 if (tree_mod_dont_log(fs_info, NULL)) 710 goto free_tms; 711 712 if (tm_list) 713 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 714 if (!ret) 715 ret = __tree_mod_log_insert(fs_info, tm); 716 717 tree_mod_log_write_unlock(fs_info); 718 if (ret) 719 goto free_tms; 720 kfree(tm_list); 721 722 return ret; 723 724 free_tms: 725 if (tm_list) { 726 for (i = 0; i < nritems; i++) 727 kfree(tm_list[i]); 728 kfree(tm_list); 729 } 730 kfree(tm); 731 732 return ret; 733 } 734 735 static struct tree_mod_elem * 736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 737 int smallest) 738 { 739 struct rb_root *tm_root; 740 struct rb_node *node; 741 struct tree_mod_elem *cur = NULL; 742 struct tree_mod_elem *found = NULL; 743 744 tree_mod_log_read_lock(fs_info); 745 tm_root = &fs_info->tree_mod_log; 746 node = tm_root->rb_node; 747 while (node) { 748 cur = container_of(node, struct tree_mod_elem, node); 749 if (cur->logical < start) { 750 node = node->rb_left; 751 } else if (cur->logical > start) { 752 node = node->rb_right; 753 } else if (cur->seq < min_seq) { 754 node = node->rb_left; 755 } else if (!smallest) { 756 /* we want the node with the highest seq */ 757 if (found) 758 BUG_ON(found->seq > cur->seq); 759 found = cur; 760 node = node->rb_left; 761 } else if (cur->seq > min_seq) { 762 /* we want the node with the smallest seq */ 763 if (found) 764 BUG_ON(found->seq < cur->seq); 765 found = cur; 766 node = node->rb_right; 767 } else { 768 found = cur; 769 break; 770 } 771 } 772 tree_mod_log_read_unlock(fs_info); 773 774 return found; 775 } 776 777 /* 778 * this returns the element from the log with the smallest time sequence 779 * value that's in the log (the oldest log item). any element with a time 780 * sequence lower than min_seq will be ignored. 781 */ 782 static struct tree_mod_elem * 783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 784 u64 min_seq) 785 { 786 return __tree_mod_log_search(fs_info, start, min_seq, 1); 787 } 788 789 /* 790 * this returns the element from the log with the largest time sequence 791 * value that's in the log (the most recent log item). any element with 792 * a time sequence lower than min_seq will be ignored. 793 */ 794 static struct tree_mod_elem * 795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 796 { 797 return __tree_mod_log_search(fs_info, start, min_seq, 0); 798 } 799 800 static noinline int 801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 802 struct extent_buffer *src, unsigned long dst_offset, 803 unsigned long src_offset, int nr_items) 804 { 805 int ret = 0; 806 struct tree_mod_elem **tm_list = NULL; 807 struct tree_mod_elem **tm_list_add, **tm_list_rem; 808 int i; 809 int locked = 0; 810 811 if (!tree_mod_need_log(fs_info, NULL)) 812 return 0; 813 814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 815 return 0; 816 817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 818 GFP_NOFS); 819 if (!tm_list) 820 return -ENOMEM; 821 822 tm_list_add = tm_list; 823 tm_list_rem = tm_list + nr_items; 824 for (i = 0; i < nr_items; i++) { 825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 826 MOD_LOG_KEY_REMOVE, GFP_NOFS); 827 if (!tm_list_rem[i]) { 828 ret = -ENOMEM; 829 goto free_tms; 830 } 831 832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 833 MOD_LOG_KEY_ADD, GFP_NOFS); 834 if (!tm_list_add[i]) { 835 ret = -ENOMEM; 836 goto free_tms; 837 } 838 } 839 840 if (tree_mod_dont_log(fs_info, NULL)) 841 goto free_tms; 842 locked = 1; 843 844 for (i = 0; i < nr_items; i++) { 845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 846 if (ret) 847 goto free_tms; 848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 849 if (ret) 850 goto free_tms; 851 } 852 853 tree_mod_log_write_unlock(fs_info); 854 kfree(tm_list); 855 856 return 0; 857 858 free_tms: 859 for (i = 0; i < nr_items * 2; i++) { 860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 862 kfree(tm_list[i]); 863 } 864 if (locked) 865 tree_mod_log_write_unlock(fs_info); 866 kfree(tm_list); 867 868 return ret; 869 } 870 871 static inline void 872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst, 873 int dst_offset, int src_offset, int nr_items) 874 { 875 int ret; 876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset, 877 nr_items, GFP_NOFS); 878 BUG_ON(ret < 0); 879 } 880 881 static noinline void 882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info, 883 struct extent_buffer *eb, int slot, int atomic) 884 { 885 int ret; 886 887 ret = tree_mod_log_insert_key(fs_info, eb, slot, 888 MOD_LOG_KEY_REPLACE, 889 atomic ? GFP_ATOMIC : GFP_NOFS); 890 BUG_ON(ret < 0); 891 } 892 893 static noinline int 894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb) 895 { 896 struct tree_mod_elem **tm_list = NULL; 897 int nritems = 0; 898 int i; 899 int ret = 0; 900 901 if (btrfs_header_level(eb) == 0) 902 return 0; 903 904 if (!tree_mod_need_log(fs_info, NULL)) 905 return 0; 906 907 nritems = btrfs_header_nritems(eb); 908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 909 if (!tm_list) 910 return -ENOMEM; 911 912 for (i = 0; i < nritems; i++) { 913 tm_list[i] = alloc_tree_mod_elem(eb, i, 914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 915 if (!tm_list[i]) { 916 ret = -ENOMEM; 917 goto free_tms; 918 } 919 } 920 921 if (tree_mod_dont_log(fs_info, eb)) 922 goto free_tms; 923 924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 925 tree_mod_log_write_unlock(fs_info); 926 if (ret) 927 goto free_tms; 928 kfree(tm_list); 929 930 return 0; 931 932 free_tms: 933 for (i = 0; i < nritems; i++) 934 kfree(tm_list[i]); 935 kfree(tm_list); 936 937 return ret; 938 } 939 940 static noinline void 941 tree_mod_log_set_root_pointer(struct btrfs_root *root, 942 struct extent_buffer *new_root_node, 943 int log_removal) 944 { 945 int ret; 946 ret = tree_mod_log_insert_root(root->fs_info, root->node, 947 new_root_node, GFP_NOFS, log_removal); 948 BUG_ON(ret < 0); 949 } 950 951 /* 952 * check if the tree block can be shared by multiple trees 953 */ 954 int btrfs_block_can_be_shared(struct btrfs_root *root, 955 struct extent_buffer *buf) 956 { 957 /* 958 * Tree blocks not in reference counted trees and tree roots 959 * are never shared. If a block was allocated after the last 960 * snapshot and the block was not allocated by tree relocation, 961 * we know the block is not shared. 962 */ 963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 964 buf != root->node && buf != root->commit_root && 965 (btrfs_header_generation(buf) <= 966 btrfs_root_last_snapshot(&root->root_item) || 967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 968 return 1; 969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 972 return 1; 973 #endif 974 return 0; 975 } 976 977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 978 struct btrfs_root *root, 979 struct extent_buffer *buf, 980 struct extent_buffer *cow, 981 int *last_ref) 982 { 983 u64 refs; 984 u64 owner; 985 u64 flags; 986 u64 new_flags = 0; 987 int ret; 988 989 /* 990 * Backrefs update rules: 991 * 992 * Always use full backrefs for extent pointers in tree block 993 * allocated by tree relocation. 994 * 995 * If a shared tree block is no longer referenced by its owner 996 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 997 * use full backrefs for extent pointers in tree block. 998 * 999 * If a tree block is been relocating 1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 1001 * use full backrefs for extent pointers in tree block. 1002 * The reason for this is some operations (such as drop tree) 1003 * are only allowed for blocks use full backrefs. 1004 */ 1005 1006 if (btrfs_block_can_be_shared(root, buf)) { 1007 ret = btrfs_lookup_extent_info(trans, root, buf->start, 1008 btrfs_header_level(buf), 1, 1009 &refs, &flags); 1010 if (ret) 1011 return ret; 1012 if (refs == 0) { 1013 ret = -EROFS; 1014 btrfs_handle_fs_error(root->fs_info, ret, NULL); 1015 return ret; 1016 } 1017 } else { 1018 refs = 1; 1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 1022 else 1023 flags = 0; 1024 } 1025 1026 owner = btrfs_header_owner(buf); 1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 1029 1030 if (refs > 1) { 1031 if ((owner == root->root_key.objectid || 1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 1034 ret = btrfs_inc_ref(trans, root, buf, 1); 1035 BUG_ON(ret); /* -ENOMEM */ 1036 1037 if (root->root_key.objectid == 1038 BTRFS_TREE_RELOC_OBJECTID) { 1039 ret = btrfs_dec_ref(trans, root, buf, 0); 1040 BUG_ON(ret); /* -ENOMEM */ 1041 ret = btrfs_inc_ref(trans, root, cow, 1); 1042 BUG_ON(ret); /* -ENOMEM */ 1043 } 1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 1045 } else { 1046 1047 if (root->root_key.objectid == 1048 BTRFS_TREE_RELOC_OBJECTID) 1049 ret = btrfs_inc_ref(trans, root, cow, 1); 1050 else 1051 ret = btrfs_inc_ref(trans, root, cow, 0); 1052 BUG_ON(ret); /* -ENOMEM */ 1053 } 1054 if (new_flags != 0) { 1055 int level = btrfs_header_level(buf); 1056 1057 ret = btrfs_set_disk_extent_flags(trans, root, 1058 buf->start, 1059 buf->len, 1060 new_flags, level, 0); 1061 if (ret) 1062 return ret; 1063 } 1064 } else { 1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 1066 if (root->root_key.objectid == 1067 BTRFS_TREE_RELOC_OBJECTID) 1068 ret = btrfs_inc_ref(trans, root, cow, 1); 1069 else 1070 ret = btrfs_inc_ref(trans, root, cow, 0); 1071 BUG_ON(ret); /* -ENOMEM */ 1072 ret = btrfs_dec_ref(trans, root, buf, 1); 1073 BUG_ON(ret); /* -ENOMEM */ 1074 } 1075 clean_tree_block(trans, root->fs_info, buf); 1076 *last_ref = 1; 1077 } 1078 return 0; 1079 } 1080 1081 /* 1082 * does the dirty work in cow of a single block. The parent block (if 1083 * supplied) is updated to point to the new cow copy. The new buffer is marked 1084 * dirty and returned locked. If you modify the block it needs to be marked 1085 * dirty again. 1086 * 1087 * search_start -- an allocation hint for the new block 1088 * 1089 * empty_size -- a hint that you plan on doing more cow. This is the size in 1090 * bytes the allocator should try to find free next to the block it returns. 1091 * This is just a hint and may be ignored by the allocator. 1092 */ 1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1094 struct btrfs_root *root, 1095 struct extent_buffer *buf, 1096 struct extent_buffer *parent, int parent_slot, 1097 struct extent_buffer **cow_ret, 1098 u64 search_start, u64 empty_size) 1099 { 1100 struct btrfs_disk_key disk_key; 1101 struct extent_buffer *cow; 1102 int level, ret; 1103 int last_ref = 0; 1104 int unlock_orig = 0; 1105 u64 parent_start; 1106 1107 if (*cow_ret == buf) 1108 unlock_orig = 1; 1109 1110 btrfs_assert_tree_locked(buf); 1111 1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1113 trans->transid != root->fs_info->running_transaction->transid); 1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1115 trans->transid != root->last_trans); 1116 1117 level = btrfs_header_level(buf); 1118 1119 if (level == 0) 1120 btrfs_item_key(buf, &disk_key, 0); 1121 else 1122 btrfs_node_key(buf, &disk_key, 0); 1123 1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 1125 if (parent) 1126 parent_start = parent->start; 1127 else 1128 parent_start = 0; 1129 } else 1130 parent_start = 0; 1131 1132 cow = btrfs_alloc_tree_block(trans, root, parent_start, 1133 root->root_key.objectid, &disk_key, level, 1134 search_start, empty_size); 1135 if (IS_ERR(cow)) 1136 return PTR_ERR(cow); 1137 1138 /* cow is set to blocking by btrfs_init_new_buffer */ 1139 1140 copy_extent_buffer(cow, buf, 0, 0, cow->len); 1141 btrfs_set_header_bytenr(cow, cow->start); 1142 btrfs_set_header_generation(cow, trans->transid); 1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1145 BTRFS_HEADER_FLAG_RELOC); 1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1148 else 1149 btrfs_set_header_owner(cow, root->root_key.objectid); 1150 1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(), 1152 BTRFS_FSID_SIZE); 1153 1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1155 if (ret) { 1156 btrfs_abort_transaction(trans, root, ret); 1157 return ret; 1158 } 1159 1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1162 if (ret) { 1163 btrfs_abort_transaction(trans, root, ret); 1164 return ret; 1165 } 1166 } 1167 1168 if (buf == root->node) { 1169 WARN_ON(parent && parent != buf); 1170 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1171 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1172 parent_start = buf->start; 1173 else 1174 parent_start = 0; 1175 1176 extent_buffer_get(cow); 1177 tree_mod_log_set_root_pointer(root, cow, 1); 1178 rcu_assign_pointer(root->node, cow); 1179 1180 btrfs_free_tree_block(trans, root, buf, parent_start, 1181 last_ref); 1182 free_extent_buffer(buf); 1183 add_root_to_dirty_list(root); 1184 } else { 1185 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1186 parent_start = parent->start; 1187 else 1188 parent_start = 0; 1189 1190 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1191 tree_mod_log_insert_key(root->fs_info, parent, parent_slot, 1192 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1193 btrfs_set_node_blockptr(parent, parent_slot, 1194 cow->start); 1195 btrfs_set_node_ptr_generation(parent, parent_slot, 1196 trans->transid); 1197 btrfs_mark_buffer_dirty(parent); 1198 if (last_ref) { 1199 ret = tree_mod_log_free_eb(root->fs_info, buf); 1200 if (ret) { 1201 btrfs_abort_transaction(trans, root, ret); 1202 return ret; 1203 } 1204 } 1205 btrfs_free_tree_block(trans, root, buf, parent_start, 1206 last_ref); 1207 } 1208 if (unlock_orig) 1209 btrfs_tree_unlock(buf); 1210 free_extent_buffer_stale(buf); 1211 btrfs_mark_buffer_dirty(cow); 1212 *cow_ret = cow; 1213 return 0; 1214 } 1215 1216 /* 1217 * returns the logical address of the oldest predecessor of the given root. 1218 * entries older than time_seq are ignored. 1219 */ 1220 static struct tree_mod_elem * 1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info, 1222 struct extent_buffer *eb_root, u64 time_seq) 1223 { 1224 struct tree_mod_elem *tm; 1225 struct tree_mod_elem *found = NULL; 1226 u64 root_logical = eb_root->start; 1227 int looped = 0; 1228 1229 if (!time_seq) 1230 return NULL; 1231 1232 /* 1233 * the very last operation that's logged for a root is the 1234 * replacement operation (if it is replaced at all). this has 1235 * the logical address of the *new* root, making it the very 1236 * first operation that's logged for this root. 1237 */ 1238 while (1) { 1239 tm = tree_mod_log_search_oldest(fs_info, root_logical, 1240 time_seq); 1241 if (!looped && !tm) 1242 return NULL; 1243 /* 1244 * if there are no tree operation for the oldest root, we simply 1245 * return it. this should only happen if that (old) root is at 1246 * level 0. 1247 */ 1248 if (!tm) 1249 break; 1250 1251 /* 1252 * if there's an operation that's not a root replacement, we 1253 * found the oldest version of our root. normally, we'll find a 1254 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1255 */ 1256 if (tm->op != MOD_LOG_ROOT_REPLACE) 1257 break; 1258 1259 found = tm; 1260 root_logical = tm->old_root.logical; 1261 looped = 1; 1262 } 1263 1264 /* if there's no old root to return, return what we found instead */ 1265 if (!found) 1266 found = tm; 1267 1268 return found; 1269 } 1270 1271 /* 1272 * tm is a pointer to the first operation to rewind within eb. then, all 1273 * previous operations will be rewound (until we reach something older than 1274 * time_seq). 1275 */ 1276 static void 1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1278 u64 time_seq, struct tree_mod_elem *first_tm) 1279 { 1280 u32 n; 1281 struct rb_node *next; 1282 struct tree_mod_elem *tm = first_tm; 1283 unsigned long o_dst; 1284 unsigned long o_src; 1285 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1286 1287 n = btrfs_header_nritems(eb); 1288 tree_mod_log_read_lock(fs_info); 1289 while (tm && tm->seq >= time_seq) { 1290 /* 1291 * all the operations are recorded with the operator used for 1292 * the modification. as we're going backwards, we do the 1293 * opposite of each operation here. 1294 */ 1295 switch (tm->op) { 1296 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1297 BUG_ON(tm->slot < n); 1298 /* Fallthrough */ 1299 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1300 case MOD_LOG_KEY_REMOVE: 1301 btrfs_set_node_key(eb, &tm->key, tm->slot); 1302 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1303 btrfs_set_node_ptr_generation(eb, tm->slot, 1304 tm->generation); 1305 n++; 1306 break; 1307 case MOD_LOG_KEY_REPLACE: 1308 BUG_ON(tm->slot >= n); 1309 btrfs_set_node_key(eb, &tm->key, tm->slot); 1310 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1311 btrfs_set_node_ptr_generation(eb, tm->slot, 1312 tm->generation); 1313 break; 1314 case MOD_LOG_KEY_ADD: 1315 /* if a move operation is needed it's in the log */ 1316 n--; 1317 break; 1318 case MOD_LOG_MOVE_KEYS: 1319 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1320 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1321 memmove_extent_buffer(eb, o_dst, o_src, 1322 tm->move.nr_items * p_size); 1323 break; 1324 case MOD_LOG_ROOT_REPLACE: 1325 /* 1326 * this operation is special. for roots, this must be 1327 * handled explicitly before rewinding. 1328 * for non-roots, this operation may exist if the node 1329 * was a root: root A -> child B; then A gets empty and 1330 * B is promoted to the new root. in the mod log, we'll 1331 * have a root-replace operation for B, a tree block 1332 * that is no root. we simply ignore that operation. 1333 */ 1334 break; 1335 } 1336 next = rb_next(&tm->node); 1337 if (!next) 1338 break; 1339 tm = container_of(next, struct tree_mod_elem, node); 1340 if (tm->logical != first_tm->logical) 1341 break; 1342 } 1343 tree_mod_log_read_unlock(fs_info); 1344 btrfs_set_header_nritems(eb, n); 1345 } 1346 1347 /* 1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1349 * is returned. If rewind operations happen, a fresh buffer is returned. The 1350 * returned buffer is always read-locked. If the returned buffer is not the 1351 * input buffer, the lock on the input buffer is released and the input buffer 1352 * is freed (its refcount is decremented). 1353 */ 1354 static struct extent_buffer * 1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1356 struct extent_buffer *eb, u64 time_seq) 1357 { 1358 struct extent_buffer *eb_rewin; 1359 struct tree_mod_elem *tm; 1360 1361 if (!time_seq) 1362 return eb; 1363 1364 if (btrfs_header_level(eb) == 0) 1365 return eb; 1366 1367 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1368 if (!tm) 1369 return eb; 1370 1371 btrfs_set_path_blocking(path); 1372 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK); 1373 1374 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1375 BUG_ON(tm->slot != 0); 1376 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1377 if (!eb_rewin) { 1378 btrfs_tree_read_unlock_blocking(eb); 1379 free_extent_buffer(eb); 1380 return NULL; 1381 } 1382 btrfs_set_header_bytenr(eb_rewin, eb->start); 1383 btrfs_set_header_backref_rev(eb_rewin, 1384 btrfs_header_backref_rev(eb)); 1385 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1386 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1387 } else { 1388 eb_rewin = btrfs_clone_extent_buffer(eb); 1389 if (!eb_rewin) { 1390 btrfs_tree_read_unlock_blocking(eb); 1391 free_extent_buffer(eb); 1392 return NULL; 1393 } 1394 } 1395 1396 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK); 1397 btrfs_tree_read_unlock_blocking(eb); 1398 free_extent_buffer(eb); 1399 1400 extent_buffer_get(eb_rewin); 1401 btrfs_tree_read_lock(eb_rewin); 1402 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1403 WARN_ON(btrfs_header_nritems(eb_rewin) > 1404 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root)); 1405 1406 return eb_rewin; 1407 } 1408 1409 /* 1410 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1411 * value. If there are no changes, the current root->root_node is returned. If 1412 * anything changed in between, there's a fresh buffer allocated on which the 1413 * rewind operations are done. In any case, the returned buffer is read locked. 1414 * Returns NULL on error (with no locks held). 1415 */ 1416 static inline struct extent_buffer * 1417 get_old_root(struct btrfs_root *root, u64 time_seq) 1418 { 1419 struct tree_mod_elem *tm; 1420 struct extent_buffer *eb = NULL; 1421 struct extent_buffer *eb_root; 1422 struct extent_buffer *old; 1423 struct tree_mod_root *old_root = NULL; 1424 u64 old_generation = 0; 1425 u64 logical; 1426 1427 eb_root = btrfs_read_lock_root_node(root); 1428 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1429 if (!tm) 1430 return eb_root; 1431 1432 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1433 old_root = &tm->old_root; 1434 old_generation = tm->generation; 1435 logical = old_root->logical; 1436 } else { 1437 logical = eb_root->start; 1438 } 1439 1440 tm = tree_mod_log_search(root->fs_info, logical, time_seq); 1441 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1442 btrfs_tree_read_unlock(eb_root); 1443 free_extent_buffer(eb_root); 1444 old = read_tree_block(root, logical, 0); 1445 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1446 if (!IS_ERR(old)) 1447 free_extent_buffer(old); 1448 btrfs_warn(root->fs_info, 1449 "failed to read tree block %llu from get_old_root", logical); 1450 } else { 1451 eb = btrfs_clone_extent_buffer(old); 1452 free_extent_buffer(old); 1453 } 1454 } else if (old_root) { 1455 btrfs_tree_read_unlock(eb_root); 1456 free_extent_buffer(eb_root); 1457 eb = alloc_dummy_extent_buffer(root->fs_info, logical); 1458 } else { 1459 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK); 1460 eb = btrfs_clone_extent_buffer(eb_root); 1461 btrfs_tree_read_unlock_blocking(eb_root); 1462 free_extent_buffer(eb_root); 1463 } 1464 1465 if (!eb) 1466 return NULL; 1467 extent_buffer_get(eb); 1468 btrfs_tree_read_lock(eb); 1469 if (old_root) { 1470 btrfs_set_header_bytenr(eb, eb->start); 1471 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1472 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1473 btrfs_set_header_level(eb, old_root->level); 1474 btrfs_set_header_generation(eb, old_generation); 1475 } 1476 if (tm) 1477 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm); 1478 else 1479 WARN_ON(btrfs_header_level(eb) != 0); 1480 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root)); 1481 1482 return eb; 1483 } 1484 1485 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1486 { 1487 struct tree_mod_elem *tm; 1488 int level; 1489 struct extent_buffer *eb_root = btrfs_root_node(root); 1490 1491 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq); 1492 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1493 level = tm->old_root.level; 1494 } else { 1495 level = btrfs_header_level(eb_root); 1496 } 1497 free_extent_buffer(eb_root); 1498 1499 return level; 1500 } 1501 1502 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1503 struct btrfs_root *root, 1504 struct extent_buffer *buf) 1505 { 1506 if (btrfs_test_is_dummy_root(root)) 1507 return 0; 1508 1509 /* ensure we can see the force_cow */ 1510 smp_rmb(); 1511 1512 /* 1513 * We do not need to cow a block if 1514 * 1) this block is not created or changed in this transaction; 1515 * 2) this block does not belong to TREE_RELOC tree; 1516 * 3) the root is not forced COW. 1517 * 1518 * What is forced COW: 1519 * when we create snapshot during committing the transaction, 1520 * after we've finished coping src root, we must COW the shared 1521 * block to ensure the metadata consistency. 1522 */ 1523 if (btrfs_header_generation(buf) == trans->transid && 1524 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1525 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1526 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1527 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1528 return 0; 1529 return 1; 1530 } 1531 1532 /* 1533 * cows a single block, see __btrfs_cow_block for the real work. 1534 * This version of it has extra checks so that a block isn't COWed more than 1535 * once per transaction, as long as it hasn't been written yet 1536 */ 1537 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1538 struct btrfs_root *root, struct extent_buffer *buf, 1539 struct extent_buffer *parent, int parent_slot, 1540 struct extent_buffer **cow_ret) 1541 { 1542 u64 search_start; 1543 int ret; 1544 1545 if (trans->transaction != root->fs_info->running_transaction) 1546 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1547 trans->transid, 1548 root->fs_info->running_transaction->transid); 1549 1550 if (trans->transid != root->fs_info->generation) 1551 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1552 trans->transid, root->fs_info->generation); 1553 1554 if (!should_cow_block(trans, root, buf)) { 1555 *cow_ret = buf; 1556 return 0; 1557 } 1558 1559 search_start = buf->start & ~((u64)SZ_1G - 1); 1560 1561 if (parent) 1562 btrfs_set_lock_blocking(parent); 1563 btrfs_set_lock_blocking(buf); 1564 1565 ret = __btrfs_cow_block(trans, root, buf, parent, 1566 parent_slot, cow_ret, search_start, 0); 1567 1568 trace_btrfs_cow_block(root, buf, *cow_ret); 1569 1570 return ret; 1571 } 1572 1573 /* 1574 * helper function for defrag to decide if two blocks pointed to by a 1575 * node are actually close by 1576 */ 1577 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1578 { 1579 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1580 return 1; 1581 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1582 return 1; 1583 return 0; 1584 } 1585 1586 /* 1587 * compare two keys in a memcmp fashion 1588 */ 1589 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2) 1590 { 1591 struct btrfs_key k1; 1592 1593 btrfs_disk_key_to_cpu(&k1, disk); 1594 1595 return btrfs_comp_cpu_keys(&k1, k2); 1596 } 1597 1598 /* 1599 * same as comp_keys only with two btrfs_key's 1600 */ 1601 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2) 1602 { 1603 if (k1->objectid > k2->objectid) 1604 return 1; 1605 if (k1->objectid < k2->objectid) 1606 return -1; 1607 if (k1->type > k2->type) 1608 return 1; 1609 if (k1->type < k2->type) 1610 return -1; 1611 if (k1->offset > k2->offset) 1612 return 1; 1613 if (k1->offset < k2->offset) 1614 return -1; 1615 return 0; 1616 } 1617 1618 /* 1619 * this is used by the defrag code to go through all the 1620 * leaves pointed to by a node and reallocate them so that 1621 * disk order is close to key order 1622 */ 1623 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1624 struct btrfs_root *root, struct extent_buffer *parent, 1625 int start_slot, u64 *last_ret, 1626 struct btrfs_key *progress) 1627 { 1628 struct extent_buffer *cur; 1629 u64 blocknr; 1630 u64 gen; 1631 u64 search_start = *last_ret; 1632 u64 last_block = 0; 1633 u64 other; 1634 u32 parent_nritems; 1635 int end_slot; 1636 int i; 1637 int err = 0; 1638 int parent_level; 1639 int uptodate; 1640 u32 blocksize; 1641 int progress_passed = 0; 1642 struct btrfs_disk_key disk_key; 1643 1644 parent_level = btrfs_header_level(parent); 1645 1646 WARN_ON(trans->transaction != root->fs_info->running_transaction); 1647 WARN_ON(trans->transid != root->fs_info->generation); 1648 1649 parent_nritems = btrfs_header_nritems(parent); 1650 blocksize = root->nodesize; 1651 end_slot = parent_nritems - 1; 1652 1653 if (parent_nritems <= 1) 1654 return 0; 1655 1656 btrfs_set_lock_blocking(parent); 1657 1658 for (i = start_slot; i <= end_slot; i++) { 1659 int close = 1; 1660 1661 btrfs_node_key(parent, &disk_key, i); 1662 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1663 continue; 1664 1665 progress_passed = 1; 1666 blocknr = btrfs_node_blockptr(parent, i); 1667 gen = btrfs_node_ptr_generation(parent, i); 1668 if (last_block == 0) 1669 last_block = blocknr; 1670 1671 if (i > 0) { 1672 other = btrfs_node_blockptr(parent, i - 1); 1673 close = close_blocks(blocknr, other, blocksize); 1674 } 1675 if (!close && i < end_slot) { 1676 other = btrfs_node_blockptr(parent, i + 1); 1677 close = close_blocks(blocknr, other, blocksize); 1678 } 1679 if (close) { 1680 last_block = blocknr; 1681 continue; 1682 } 1683 1684 cur = btrfs_find_tree_block(root->fs_info, blocknr); 1685 if (cur) 1686 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1687 else 1688 uptodate = 0; 1689 if (!cur || !uptodate) { 1690 if (!cur) { 1691 cur = read_tree_block(root, blocknr, gen); 1692 if (IS_ERR(cur)) { 1693 return PTR_ERR(cur); 1694 } else if (!extent_buffer_uptodate(cur)) { 1695 free_extent_buffer(cur); 1696 return -EIO; 1697 } 1698 } else if (!uptodate) { 1699 err = btrfs_read_buffer(cur, gen); 1700 if (err) { 1701 free_extent_buffer(cur); 1702 return err; 1703 } 1704 } 1705 } 1706 if (search_start == 0) 1707 search_start = last_block; 1708 1709 btrfs_tree_lock(cur); 1710 btrfs_set_lock_blocking(cur); 1711 err = __btrfs_cow_block(trans, root, cur, parent, i, 1712 &cur, search_start, 1713 min(16 * blocksize, 1714 (end_slot - i) * blocksize)); 1715 if (err) { 1716 btrfs_tree_unlock(cur); 1717 free_extent_buffer(cur); 1718 break; 1719 } 1720 search_start = cur->start; 1721 last_block = cur->start; 1722 *last_ret = search_start; 1723 btrfs_tree_unlock(cur); 1724 free_extent_buffer(cur); 1725 } 1726 return err; 1727 } 1728 1729 /* 1730 * The leaf data grows from end-to-front in the node. 1731 * this returns the address of the start of the last item, 1732 * which is the stop of the leaf data stack 1733 */ 1734 static inline unsigned int leaf_data_end(struct btrfs_root *root, 1735 struct extent_buffer *leaf) 1736 { 1737 u32 nr = btrfs_header_nritems(leaf); 1738 if (nr == 0) 1739 return BTRFS_LEAF_DATA_SIZE(root); 1740 return btrfs_item_offset_nr(leaf, nr - 1); 1741 } 1742 1743 1744 /* 1745 * search for key in the extent_buffer. The items start at offset p, 1746 * and they are item_size apart. There are 'max' items in p. 1747 * 1748 * the slot in the array is returned via slot, and it points to 1749 * the place where you would insert key if it is not found in 1750 * the array. 1751 * 1752 * slot may point to max if the key is bigger than all of the keys 1753 */ 1754 static noinline int generic_bin_search(struct extent_buffer *eb, 1755 unsigned long p, 1756 int item_size, struct btrfs_key *key, 1757 int max, int *slot) 1758 { 1759 int low = 0; 1760 int high = max; 1761 int mid; 1762 int ret; 1763 struct btrfs_disk_key *tmp = NULL; 1764 struct btrfs_disk_key unaligned; 1765 unsigned long offset; 1766 char *kaddr = NULL; 1767 unsigned long map_start = 0; 1768 unsigned long map_len = 0; 1769 int err; 1770 1771 while (low < high) { 1772 mid = (low + high) / 2; 1773 offset = p + mid * item_size; 1774 1775 if (!kaddr || offset < map_start || 1776 (offset + sizeof(struct btrfs_disk_key)) > 1777 map_start + map_len) { 1778 1779 err = map_private_extent_buffer(eb, offset, 1780 sizeof(struct btrfs_disk_key), 1781 &kaddr, &map_start, &map_len); 1782 1783 if (!err) { 1784 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1785 map_start); 1786 } else { 1787 read_extent_buffer(eb, &unaligned, 1788 offset, sizeof(unaligned)); 1789 tmp = &unaligned; 1790 } 1791 1792 } else { 1793 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1794 map_start); 1795 } 1796 ret = comp_keys(tmp, key); 1797 1798 if (ret < 0) 1799 low = mid + 1; 1800 else if (ret > 0) 1801 high = mid; 1802 else { 1803 *slot = mid; 1804 return 0; 1805 } 1806 } 1807 *slot = low; 1808 return 1; 1809 } 1810 1811 /* 1812 * simple bin_search frontend that does the right thing for 1813 * leaves vs nodes 1814 */ 1815 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1816 int level, int *slot) 1817 { 1818 if (level == 0) 1819 return generic_bin_search(eb, 1820 offsetof(struct btrfs_leaf, items), 1821 sizeof(struct btrfs_item), 1822 key, btrfs_header_nritems(eb), 1823 slot); 1824 else 1825 return generic_bin_search(eb, 1826 offsetof(struct btrfs_node, ptrs), 1827 sizeof(struct btrfs_key_ptr), 1828 key, btrfs_header_nritems(eb), 1829 slot); 1830 } 1831 1832 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key, 1833 int level, int *slot) 1834 { 1835 return bin_search(eb, key, level, slot); 1836 } 1837 1838 static void root_add_used(struct btrfs_root *root, u32 size) 1839 { 1840 spin_lock(&root->accounting_lock); 1841 btrfs_set_root_used(&root->root_item, 1842 btrfs_root_used(&root->root_item) + size); 1843 spin_unlock(&root->accounting_lock); 1844 } 1845 1846 static void root_sub_used(struct btrfs_root *root, u32 size) 1847 { 1848 spin_lock(&root->accounting_lock); 1849 btrfs_set_root_used(&root->root_item, 1850 btrfs_root_used(&root->root_item) - size); 1851 spin_unlock(&root->accounting_lock); 1852 } 1853 1854 /* given a node and slot number, this reads the blocks it points to. The 1855 * extent buffer is returned with a reference taken (but unlocked). 1856 * NULL is returned on error. 1857 */ 1858 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root, 1859 struct extent_buffer *parent, int slot) 1860 { 1861 int level = btrfs_header_level(parent); 1862 struct extent_buffer *eb; 1863 1864 if (slot < 0) 1865 return NULL; 1866 if (slot >= btrfs_header_nritems(parent)) 1867 return NULL; 1868 1869 BUG_ON(level == 0); 1870 1871 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot), 1872 btrfs_node_ptr_generation(parent, slot)); 1873 if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) { 1874 if (!IS_ERR(eb)) 1875 free_extent_buffer(eb); 1876 eb = NULL; 1877 } 1878 1879 return eb; 1880 } 1881 1882 /* 1883 * node level balancing, used to make sure nodes are in proper order for 1884 * item deletion. We balance from the top down, so we have to make sure 1885 * that a deletion won't leave an node completely empty later on. 1886 */ 1887 static noinline int balance_level(struct btrfs_trans_handle *trans, 1888 struct btrfs_root *root, 1889 struct btrfs_path *path, int level) 1890 { 1891 struct extent_buffer *right = NULL; 1892 struct extent_buffer *mid; 1893 struct extent_buffer *left = NULL; 1894 struct extent_buffer *parent = NULL; 1895 int ret = 0; 1896 int wret; 1897 int pslot; 1898 int orig_slot = path->slots[level]; 1899 u64 orig_ptr; 1900 1901 if (level == 0) 1902 return 0; 1903 1904 mid = path->nodes[level]; 1905 1906 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1907 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1908 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1909 1910 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1911 1912 if (level < BTRFS_MAX_LEVEL - 1) { 1913 parent = path->nodes[level + 1]; 1914 pslot = path->slots[level + 1]; 1915 } 1916 1917 /* 1918 * deal with the case where there is only one pointer in the root 1919 * by promoting the node below to a root 1920 */ 1921 if (!parent) { 1922 struct extent_buffer *child; 1923 1924 if (btrfs_header_nritems(mid) != 1) 1925 return 0; 1926 1927 /* promote the child to a root */ 1928 child = read_node_slot(root, mid, 0); 1929 if (!child) { 1930 ret = -EROFS; 1931 btrfs_handle_fs_error(root->fs_info, ret, NULL); 1932 goto enospc; 1933 } 1934 1935 btrfs_tree_lock(child); 1936 btrfs_set_lock_blocking(child); 1937 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1938 if (ret) { 1939 btrfs_tree_unlock(child); 1940 free_extent_buffer(child); 1941 goto enospc; 1942 } 1943 1944 tree_mod_log_set_root_pointer(root, child, 1); 1945 rcu_assign_pointer(root->node, child); 1946 1947 add_root_to_dirty_list(root); 1948 btrfs_tree_unlock(child); 1949 1950 path->locks[level] = 0; 1951 path->nodes[level] = NULL; 1952 clean_tree_block(trans, root->fs_info, mid); 1953 btrfs_tree_unlock(mid); 1954 /* once for the path */ 1955 free_extent_buffer(mid); 1956 1957 root_sub_used(root, mid->len); 1958 btrfs_free_tree_block(trans, root, mid, 0, 1); 1959 /* once for the root ptr */ 1960 free_extent_buffer_stale(mid); 1961 return 0; 1962 } 1963 if (btrfs_header_nritems(mid) > 1964 BTRFS_NODEPTRS_PER_BLOCK(root) / 4) 1965 return 0; 1966 1967 left = read_node_slot(root, parent, pslot - 1); 1968 if (left) { 1969 btrfs_tree_lock(left); 1970 btrfs_set_lock_blocking(left); 1971 wret = btrfs_cow_block(trans, root, left, 1972 parent, pslot - 1, &left); 1973 if (wret) { 1974 ret = wret; 1975 goto enospc; 1976 } 1977 } 1978 right = read_node_slot(root, parent, pslot + 1); 1979 if (right) { 1980 btrfs_tree_lock(right); 1981 btrfs_set_lock_blocking(right); 1982 wret = btrfs_cow_block(trans, root, right, 1983 parent, pslot + 1, &right); 1984 if (wret) { 1985 ret = wret; 1986 goto enospc; 1987 } 1988 } 1989 1990 /* first, try to make some room in the middle buffer */ 1991 if (left) { 1992 orig_slot += btrfs_header_nritems(left); 1993 wret = push_node_left(trans, root, left, mid, 1); 1994 if (wret < 0) 1995 ret = wret; 1996 } 1997 1998 /* 1999 * then try to empty the right most buffer into the middle 2000 */ 2001 if (right) { 2002 wret = push_node_left(trans, root, mid, right, 1); 2003 if (wret < 0 && wret != -ENOSPC) 2004 ret = wret; 2005 if (btrfs_header_nritems(right) == 0) { 2006 clean_tree_block(trans, root->fs_info, right); 2007 btrfs_tree_unlock(right); 2008 del_ptr(root, path, level + 1, pslot + 1); 2009 root_sub_used(root, right->len); 2010 btrfs_free_tree_block(trans, root, right, 0, 1); 2011 free_extent_buffer_stale(right); 2012 right = NULL; 2013 } else { 2014 struct btrfs_disk_key right_key; 2015 btrfs_node_key(right, &right_key, 0); 2016 tree_mod_log_set_node_key(root->fs_info, parent, 2017 pslot + 1, 0); 2018 btrfs_set_node_key(parent, &right_key, pslot + 1); 2019 btrfs_mark_buffer_dirty(parent); 2020 } 2021 } 2022 if (btrfs_header_nritems(mid) == 1) { 2023 /* 2024 * we're not allowed to leave a node with one item in the 2025 * tree during a delete. A deletion from lower in the tree 2026 * could try to delete the only pointer in this node. 2027 * So, pull some keys from the left. 2028 * There has to be a left pointer at this point because 2029 * otherwise we would have pulled some pointers from the 2030 * right 2031 */ 2032 if (!left) { 2033 ret = -EROFS; 2034 btrfs_handle_fs_error(root->fs_info, ret, NULL); 2035 goto enospc; 2036 } 2037 wret = balance_node_right(trans, root, mid, left); 2038 if (wret < 0) { 2039 ret = wret; 2040 goto enospc; 2041 } 2042 if (wret == 1) { 2043 wret = push_node_left(trans, root, left, mid, 1); 2044 if (wret < 0) 2045 ret = wret; 2046 } 2047 BUG_ON(wret == 1); 2048 } 2049 if (btrfs_header_nritems(mid) == 0) { 2050 clean_tree_block(trans, root->fs_info, mid); 2051 btrfs_tree_unlock(mid); 2052 del_ptr(root, path, level + 1, pslot); 2053 root_sub_used(root, mid->len); 2054 btrfs_free_tree_block(trans, root, mid, 0, 1); 2055 free_extent_buffer_stale(mid); 2056 mid = NULL; 2057 } else { 2058 /* update the parent key to reflect our changes */ 2059 struct btrfs_disk_key mid_key; 2060 btrfs_node_key(mid, &mid_key, 0); 2061 tree_mod_log_set_node_key(root->fs_info, parent, 2062 pslot, 0); 2063 btrfs_set_node_key(parent, &mid_key, pslot); 2064 btrfs_mark_buffer_dirty(parent); 2065 } 2066 2067 /* update the path */ 2068 if (left) { 2069 if (btrfs_header_nritems(left) > orig_slot) { 2070 extent_buffer_get(left); 2071 /* left was locked after cow */ 2072 path->nodes[level] = left; 2073 path->slots[level + 1] -= 1; 2074 path->slots[level] = orig_slot; 2075 if (mid) { 2076 btrfs_tree_unlock(mid); 2077 free_extent_buffer(mid); 2078 } 2079 } else { 2080 orig_slot -= btrfs_header_nritems(left); 2081 path->slots[level] = orig_slot; 2082 } 2083 } 2084 /* double check we haven't messed things up */ 2085 if (orig_ptr != 2086 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2087 BUG(); 2088 enospc: 2089 if (right) { 2090 btrfs_tree_unlock(right); 2091 free_extent_buffer(right); 2092 } 2093 if (left) { 2094 if (path->nodes[level] != left) 2095 btrfs_tree_unlock(left); 2096 free_extent_buffer(left); 2097 } 2098 return ret; 2099 } 2100 2101 /* Node balancing for insertion. Here we only split or push nodes around 2102 * when they are completely full. This is also done top down, so we 2103 * have to be pessimistic. 2104 */ 2105 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2106 struct btrfs_root *root, 2107 struct btrfs_path *path, int level) 2108 { 2109 struct extent_buffer *right = NULL; 2110 struct extent_buffer *mid; 2111 struct extent_buffer *left = NULL; 2112 struct extent_buffer *parent = NULL; 2113 int ret = 0; 2114 int wret; 2115 int pslot; 2116 int orig_slot = path->slots[level]; 2117 2118 if (level == 0) 2119 return 1; 2120 2121 mid = path->nodes[level]; 2122 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2123 2124 if (level < BTRFS_MAX_LEVEL - 1) { 2125 parent = path->nodes[level + 1]; 2126 pslot = path->slots[level + 1]; 2127 } 2128 2129 if (!parent) 2130 return 1; 2131 2132 left = read_node_slot(root, parent, pslot - 1); 2133 2134 /* first, try to make some room in the middle buffer */ 2135 if (left) { 2136 u32 left_nr; 2137 2138 btrfs_tree_lock(left); 2139 btrfs_set_lock_blocking(left); 2140 2141 left_nr = btrfs_header_nritems(left); 2142 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2143 wret = 1; 2144 } else { 2145 ret = btrfs_cow_block(trans, root, left, parent, 2146 pslot - 1, &left); 2147 if (ret) 2148 wret = 1; 2149 else { 2150 wret = push_node_left(trans, root, 2151 left, mid, 0); 2152 } 2153 } 2154 if (wret < 0) 2155 ret = wret; 2156 if (wret == 0) { 2157 struct btrfs_disk_key disk_key; 2158 orig_slot += left_nr; 2159 btrfs_node_key(mid, &disk_key, 0); 2160 tree_mod_log_set_node_key(root->fs_info, parent, 2161 pslot, 0); 2162 btrfs_set_node_key(parent, &disk_key, pslot); 2163 btrfs_mark_buffer_dirty(parent); 2164 if (btrfs_header_nritems(left) > orig_slot) { 2165 path->nodes[level] = left; 2166 path->slots[level + 1] -= 1; 2167 path->slots[level] = orig_slot; 2168 btrfs_tree_unlock(mid); 2169 free_extent_buffer(mid); 2170 } else { 2171 orig_slot -= 2172 btrfs_header_nritems(left); 2173 path->slots[level] = orig_slot; 2174 btrfs_tree_unlock(left); 2175 free_extent_buffer(left); 2176 } 2177 return 0; 2178 } 2179 btrfs_tree_unlock(left); 2180 free_extent_buffer(left); 2181 } 2182 right = read_node_slot(root, parent, pslot + 1); 2183 2184 /* 2185 * then try to empty the right most buffer into the middle 2186 */ 2187 if (right) { 2188 u32 right_nr; 2189 2190 btrfs_tree_lock(right); 2191 btrfs_set_lock_blocking(right); 2192 2193 right_nr = btrfs_header_nritems(right); 2194 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) { 2195 wret = 1; 2196 } else { 2197 ret = btrfs_cow_block(trans, root, right, 2198 parent, pslot + 1, 2199 &right); 2200 if (ret) 2201 wret = 1; 2202 else { 2203 wret = balance_node_right(trans, root, 2204 right, mid); 2205 } 2206 } 2207 if (wret < 0) 2208 ret = wret; 2209 if (wret == 0) { 2210 struct btrfs_disk_key disk_key; 2211 2212 btrfs_node_key(right, &disk_key, 0); 2213 tree_mod_log_set_node_key(root->fs_info, parent, 2214 pslot + 1, 0); 2215 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2216 btrfs_mark_buffer_dirty(parent); 2217 2218 if (btrfs_header_nritems(mid) <= orig_slot) { 2219 path->nodes[level] = right; 2220 path->slots[level + 1] += 1; 2221 path->slots[level] = orig_slot - 2222 btrfs_header_nritems(mid); 2223 btrfs_tree_unlock(mid); 2224 free_extent_buffer(mid); 2225 } else { 2226 btrfs_tree_unlock(right); 2227 free_extent_buffer(right); 2228 } 2229 return 0; 2230 } 2231 btrfs_tree_unlock(right); 2232 free_extent_buffer(right); 2233 } 2234 return 1; 2235 } 2236 2237 /* 2238 * readahead one full node of leaves, finding things that are close 2239 * to the block in 'slot', and triggering ra on them. 2240 */ 2241 static void reada_for_search(struct btrfs_root *root, 2242 struct btrfs_path *path, 2243 int level, int slot, u64 objectid) 2244 { 2245 struct extent_buffer *node; 2246 struct btrfs_disk_key disk_key; 2247 u32 nritems; 2248 u64 search; 2249 u64 target; 2250 u64 nread = 0; 2251 u64 gen; 2252 struct extent_buffer *eb; 2253 u32 nr; 2254 u32 blocksize; 2255 u32 nscan = 0; 2256 2257 if (level != 1) 2258 return; 2259 2260 if (!path->nodes[level]) 2261 return; 2262 2263 node = path->nodes[level]; 2264 2265 search = btrfs_node_blockptr(node, slot); 2266 blocksize = root->nodesize; 2267 eb = btrfs_find_tree_block(root->fs_info, search); 2268 if (eb) { 2269 free_extent_buffer(eb); 2270 return; 2271 } 2272 2273 target = search; 2274 2275 nritems = btrfs_header_nritems(node); 2276 nr = slot; 2277 2278 while (1) { 2279 if (path->reada == READA_BACK) { 2280 if (nr == 0) 2281 break; 2282 nr--; 2283 } else if (path->reada == READA_FORWARD) { 2284 nr++; 2285 if (nr >= nritems) 2286 break; 2287 } 2288 if (path->reada == READA_BACK && objectid) { 2289 btrfs_node_key(node, &disk_key, nr); 2290 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2291 break; 2292 } 2293 search = btrfs_node_blockptr(node, nr); 2294 if ((search <= target && target - search <= 65536) || 2295 (search > target && search - target <= 65536)) { 2296 gen = btrfs_node_ptr_generation(node, nr); 2297 readahead_tree_block(root, search); 2298 nread += blocksize; 2299 } 2300 nscan++; 2301 if ((nread > 65536 || nscan > 32)) 2302 break; 2303 } 2304 } 2305 2306 static noinline void reada_for_balance(struct btrfs_root *root, 2307 struct btrfs_path *path, int level) 2308 { 2309 int slot; 2310 int nritems; 2311 struct extent_buffer *parent; 2312 struct extent_buffer *eb; 2313 u64 gen; 2314 u64 block1 = 0; 2315 u64 block2 = 0; 2316 2317 parent = path->nodes[level + 1]; 2318 if (!parent) 2319 return; 2320 2321 nritems = btrfs_header_nritems(parent); 2322 slot = path->slots[level + 1]; 2323 2324 if (slot > 0) { 2325 block1 = btrfs_node_blockptr(parent, slot - 1); 2326 gen = btrfs_node_ptr_generation(parent, slot - 1); 2327 eb = btrfs_find_tree_block(root->fs_info, block1); 2328 /* 2329 * if we get -eagain from btrfs_buffer_uptodate, we 2330 * don't want to return eagain here. That will loop 2331 * forever 2332 */ 2333 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2334 block1 = 0; 2335 free_extent_buffer(eb); 2336 } 2337 if (slot + 1 < nritems) { 2338 block2 = btrfs_node_blockptr(parent, slot + 1); 2339 gen = btrfs_node_ptr_generation(parent, slot + 1); 2340 eb = btrfs_find_tree_block(root->fs_info, block2); 2341 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2342 block2 = 0; 2343 free_extent_buffer(eb); 2344 } 2345 2346 if (block1) 2347 readahead_tree_block(root, block1); 2348 if (block2) 2349 readahead_tree_block(root, block2); 2350 } 2351 2352 2353 /* 2354 * when we walk down the tree, it is usually safe to unlock the higher layers 2355 * in the tree. The exceptions are when our path goes through slot 0, because 2356 * operations on the tree might require changing key pointers higher up in the 2357 * tree. 2358 * 2359 * callers might also have set path->keep_locks, which tells this code to keep 2360 * the lock if the path points to the last slot in the block. This is part of 2361 * walking through the tree, and selecting the next slot in the higher block. 2362 * 2363 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2364 * if lowest_unlock is 1, level 0 won't be unlocked 2365 */ 2366 static noinline void unlock_up(struct btrfs_path *path, int level, 2367 int lowest_unlock, int min_write_lock_level, 2368 int *write_lock_level) 2369 { 2370 int i; 2371 int skip_level = level; 2372 int no_skips = 0; 2373 struct extent_buffer *t; 2374 2375 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2376 if (!path->nodes[i]) 2377 break; 2378 if (!path->locks[i]) 2379 break; 2380 if (!no_skips && path->slots[i] == 0) { 2381 skip_level = i + 1; 2382 continue; 2383 } 2384 if (!no_skips && path->keep_locks) { 2385 u32 nritems; 2386 t = path->nodes[i]; 2387 nritems = btrfs_header_nritems(t); 2388 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2389 skip_level = i + 1; 2390 continue; 2391 } 2392 } 2393 if (skip_level < i && i >= lowest_unlock) 2394 no_skips = 1; 2395 2396 t = path->nodes[i]; 2397 if (i >= lowest_unlock && i > skip_level && path->locks[i]) { 2398 btrfs_tree_unlock_rw(t, path->locks[i]); 2399 path->locks[i] = 0; 2400 if (write_lock_level && 2401 i > min_write_lock_level && 2402 i <= *write_lock_level) { 2403 *write_lock_level = i - 1; 2404 } 2405 } 2406 } 2407 } 2408 2409 /* 2410 * This releases any locks held in the path starting at level and 2411 * going all the way up to the root. 2412 * 2413 * btrfs_search_slot will keep the lock held on higher nodes in a few 2414 * corner cases, such as COW of the block at slot zero in the node. This 2415 * ignores those rules, and it should only be called when there are no 2416 * more updates to be done higher up in the tree. 2417 */ 2418 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2419 { 2420 int i; 2421 2422 if (path->keep_locks) 2423 return; 2424 2425 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2426 if (!path->nodes[i]) 2427 continue; 2428 if (!path->locks[i]) 2429 continue; 2430 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2431 path->locks[i] = 0; 2432 } 2433 } 2434 2435 /* 2436 * helper function for btrfs_search_slot. The goal is to find a block 2437 * in cache without setting the path to blocking. If we find the block 2438 * we return zero and the path is unchanged. 2439 * 2440 * If we can't find the block, we set the path blocking and do some 2441 * reada. -EAGAIN is returned and the search must be repeated. 2442 */ 2443 static int 2444 read_block_for_search(struct btrfs_trans_handle *trans, 2445 struct btrfs_root *root, struct btrfs_path *p, 2446 struct extent_buffer **eb_ret, int level, int slot, 2447 struct btrfs_key *key, u64 time_seq) 2448 { 2449 u64 blocknr; 2450 u64 gen; 2451 struct extent_buffer *b = *eb_ret; 2452 struct extent_buffer *tmp; 2453 int ret; 2454 2455 blocknr = btrfs_node_blockptr(b, slot); 2456 gen = btrfs_node_ptr_generation(b, slot); 2457 2458 tmp = btrfs_find_tree_block(root->fs_info, blocknr); 2459 if (tmp) { 2460 /* first we do an atomic uptodate check */ 2461 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2462 *eb_ret = tmp; 2463 return 0; 2464 } 2465 2466 /* the pages were up to date, but we failed 2467 * the generation number check. Do a full 2468 * read for the generation number that is correct. 2469 * We must do this without dropping locks so 2470 * we can trust our generation number 2471 */ 2472 btrfs_set_path_blocking(p); 2473 2474 /* now we're allowed to do a blocking uptodate check */ 2475 ret = btrfs_read_buffer(tmp, gen); 2476 if (!ret) { 2477 *eb_ret = tmp; 2478 return 0; 2479 } 2480 free_extent_buffer(tmp); 2481 btrfs_release_path(p); 2482 return -EIO; 2483 } 2484 2485 /* 2486 * reduce lock contention at high levels 2487 * of the btree by dropping locks before 2488 * we read. Don't release the lock on the current 2489 * level because we need to walk this node to figure 2490 * out which blocks to read. 2491 */ 2492 btrfs_unlock_up_safe(p, level + 1); 2493 btrfs_set_path_blocking(p); 2494 2495 free_extent_buffer(tmp); 2496 if (p->reada != READA_NONE) 2497 reada_for_search(root, p, level, slot, key->objectid); 2498 2499 btrfs_release_path(p); 2500 2501 ret = -EAGAIN; 2502 tmp = read_tree_block(root, blocknr, 0); 2503 if (!IS_ERR(tmp)) { 2504 /* 2505 * If the read above didn't mark this buffer up to date, 2506 * it will never end up being up to date. Set ret to EIO now 2507 * and give up so that our caller doesn't loop forever 2508 * on our EAGAINs. 2509 */ 2510 if (!btrfs_buffer_uptodate(tmp, 0, 0)) 2511 ret = -EIO; 2512 free_extent_buffer(tmp); 2513 } 2514 return ret; 2515 } 2516 2517 /* 2518 * helper function for btrfs_search_slot. This does all of the checks 2519 * for node-level blocks and does any balancing required based on 2520 * the ins_len. 2521 * 2522 * If no extra work was required, zero is returned. If we had to 2523 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2524 * start over 2525 */ 2526 static int 2527 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2528 struct btrfs_root *root, struct btrfs_path *p, 2529 struct extent_buffer *b, int level, int ins_len, 2530 int *write_lock_level) 2531 { 2532 int ret; 2533 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2534 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) { 2535 int sret; 2536 2537 if (*write_lock_level < level + 1) { 2538 *write_lock_level = level + 1; 2539 btrfs_release_path(p); 2540 goto again; 2541 } 2542 2543 btrfs_set_path_blocking(p); 2544 reada_for_balance(root, p, level); 2545 sret = split_node(trans, root, p, level); 2546 btrfs_clear_path_blocking(p, NULL, 0); 2547 2548 BUG_ON(sret > 0); 2549 if (sret) { 2550 ret = sret; 2551 goto done; 2552 } 2553 b = p->nodes[level]; 2554 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2555 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) { 2556 int sret; 2557 2558 if (*write_lock_level < level + 1) { 2559 *write_lock_level = level + 1; 2560 btrfs_release_path(p); 2561 goto again; 2562 } 2563 2564 btrfs_set_path_blocking(p); 2565 reada_for_balance(root, p, level); 2566 sret = balance_level(trans, root, p, level); 2567 btrfs_clear_path_blocking(p, NULL, 0); 2568 2569 if (sret) { 2570 ret = sret; 2571 goto done; 2572 } 2573 b = p->nodes[level]; 2574 if (!b) { 2575 btrfs_release_path(p); 2576 goto again; 2577 } 2578 BUG_ON(btrfs_header_nritems(b) == 1); 2579 } 2580 return 0; 2581 2582 again: 2583 ret = -EAGAIN; 2584 done: 2585 return ret; 2586 } 2587 2588 static void key_search_validate(struct extent_buffer *b, 2589 struct btrfs_key *key, 2590 int level) 2591 { 2592 #ifdef CONFIG_BTRFS_ASSERT 2593 struct btrfs_disk_key disk_key; 2594 2595 btrfs_cpu_key_to_disk(&disk_key, key); 2596 2597 if (level == 0) 2598 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2599 offsetof(struct btrfs_leaf, items[0].key), 2600 sizeof(disk_key))); 2601 else 2602 ASSERT(!memcmp_extent_buffer(b, &disk_key, 2603 offsetof(struct btrfs_node, ptrs[0].key), 2604 sizeof(disk_key))); 2605 #endif 2606 } 2607 2608 static int key_search(struct extent_buffer *b, struct btrfs_key *key, 2609 int level, int *prev_cmp, int *slot) 2610 { 2611 if (*prev_cmp != 0) { 2612 *prev_cmp = bin_search(b, key, level, slot); 2613 return *prev_cmp; 2614 } 2615 2616 key_search_validate(b, key, level); 2617 *slot = 0; 2618 2619 return 0; 2620 } 2621 2622 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2623 u64 iobjectid, u64 ioff, u8 key_type, 2624 struct btrfs_key *found_key) 2625 { 2626 int ret; 2627 struct btrfs_key key; 2628 struct extent_buffer *eb; 2629 2630 ASSERT(path); 2631 ASSERT(found_key); 2632 2633 key.type = key_type; 2634 key.objectid = iobjectid; 2635 key.offset = ioff; 2636 2637 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2638 if (ret < 0) 2639 return ret; 2640 2641 eb = path->nodes[0]; 2642 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2643 ret = btrfs_next_leaf(fs_root, path); 2644 if (ret) 2645 return ret; 2646 eb = path->nodes[0]; 2647 } 2648 2649 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2650 if (found_key->type != key.type || 2651 found_key->objectid != key.objectid) 2652 return 1; 2653 2654 return 0; 2655 } 2656 2657 /* 2658 * look for key in the tree. path is filled in with nodes along the way 2659 * if key is found, we return zero and you can find the item in the leaf 2660 * level of the path (level 0) 2661 * 2662 * If the key isn't found, the path points to the slot where it should 2663 * be inserted, and 1 is returned. If there are other errors during the 2664 * search a negative error number is returned. 2665 * 2666 * if ins_len > 0, nodes and leaves will be split as we walk down the 2667 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if 2668 * possible) 2669 */ 2670 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root 2671 *root, struct btrfs_key *key, struct btrfs_path *p, int 2672 ins_len, int cow) 2673 { 2674 struct extent_buffer *b; 2675 int slot; 2676 int ret; 2677 int err; 2678 int level; 2679 int lowest_unlock = 1; 2680 int root_lock; 2681 /* everything at write_lock_level or lower must be write locked */ 2682 int write_lock_level = 0; 2683 u8 lowest_level = 0; 2684 int min_write_lock_level; 2685 int prev_cmp; 2686 2687 lowest_level = p->lowest_level; 2688 WARN_ON(lowest_level && ins_len > 0); 2689 WARN_ON(p->nodes[0] != NULL); 2690 BUG_ON(!cow && ins_len); 2691 2692 if (ins_len < 0) { 2693 lowest_unlock = 2; 2694 2695 /* when we are removing items, we might have to go up to level 2696 * two as we update tree pointers Make sure we keep write 2697 * for those levels as well 2698 */ 2699 write_lock_level = 2; 2700 } else if (ins_len > 0) { 2701 /* 2702 * for inserting items, make sure we have a write lock on 2703 * level 1 so we can update keys 2704 */ 2705 write_lock_level = 1; 2706 } 2707 2708 if (!cow) 2709 write_lock_level = -1; 2710 2711 if (cow && (p->keep_locks || p->lowest_level)) 2712 write_lock_level = BTRFS_MAX_LEVEL; 2713 2714 min_write_lock_level = write_lock_level; 2715 2716 again: 2717 prev_cmp = -1; 2718 /* 2719 * we try very hard to do read locks on the root 2720 */ 2721 root_lock = BTRFS_READ_LOCK; 2722 level = 0; 2723 if (p->search_commit_root) { 2724 /* 2725 * the commit roots are read only 2726 * so we always do read locks 2727 */ 2728 if (p->need_commit_sem) 2729 down_read(&root->fs_info->commit_root_sem); 2730 b = root->commit_root; 2731 extent_buffer_get(b); 2732 level = btrfs_header_level(b); 2733 if (p->need_commit_sem) 2734 up_read(&root->fs_info->commit_root_sem); 2735 if (!p->skip_locking) 2736 btrfs_tree_read_lock(b); 2737 } else { 2738 if (p->skip_locking) { 2739 b = btrfs_root_node(root); 2740 level = btrfs_header_level(b); 2741 } else { 2742 /* we don't know the level of the root node 2743 * until we actually have it read locked 2744 */ 2745 b = btrfs_read_lock_root_node(root); 2746 level = btrfs_header_level(b); 2747 if (level <= write_lock_level) { 2748 /* whoops, must trade for write lock */ 2749 btrfs_tree_read_unlock(b); 2750 free_extent_buffer(b); 2751 b = btrfs_lock_root_node(root); 2752 root_lock = BTRFS_WRITE_LOCK; 2753 2754 /* the level might have changed, check again */ 2755 level = btrfs_header_level(b); 2756 } 2757 } 2758 } 2759 p->nodes[level] = b; 2760 if (!p->skip_locking) 2761 p->locks[level] = root_lock; 2762 2763 while (b) { 2764 level = btrfs_header_level(b); 2765 2766 /* 2767 * setup the path here so we can release it under lock 2768 * contention with the cow code 2769 */ 2770 if (cow) { 2771 /* 2772 * if we don't really need to cow this block 2773 * then we don't want to set the path blocking, 2774 * so we test it here 2775 */ 2776 if (!should_cow_block(trans, root, b)) 2777 goto cow_done; 2778 2779 /* 2780 * must have write locks on this node and the 2781 * parent 2782 */ 2783 if (level > write_lock_level || 2784 (level + 1 > write_lock_level && 2785 level + 1 < BTRFS_MAX_LEVEL && 2786 p->nodes[level + 1])) { 2787 write_lock_level = level + 1; 2788 btrfs_release_path(p); 2789 goto again; 2790 } 2791 2792 btrfs_set_path_blocking(p); 2793 err = btrfs_cow_block(trans, root, b, 2794 p->nodes[level + 1], 2795 p->slots[level + 1], &b); 2796 if (err) { 2797 ret = err; 2798 goto done; 2799 } 2800 } 2801 cow_done: 2802 p->nodes[level] = b; 2803 btrfs_clear_path_blocking(p, NULL, 0); 2804 2805 /* 2806 * we have a lock on b and as long as we aren't changing 2807 * the tree, there is no way to for the items in b to change. 2808 * It is safe to drop the lock on our parent before we 2809 * go through the expensive btree search on b. 2810 * 2811 * If we're inserting or deleting (ins_len != 0), then we might 2812 * be changing slot zero, which may require changing the parent. 2813 * So, we can't drop the lock until after we know which slot 2814 * we're operating on. 2815 */ 2816 if (!ins_len && !p->keep_locks) { 2817 int u = level + 1; 2818 2819 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2820 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2821 p->locks[u] = 0; 2822 } 2823 } 2824 2825 ret = key_search(b, key, level, &prev_cmp, &slot); 2826 2827 if (level != 0) { 2828 int dec = 0; 2829 if (ret && slot > 0) { 2830 dec = 1; 2831 slot -= 1; 2832 } 2833 p->slots[level] = slot; 2834 err = setup_nodes_for_search(trans, root, p, b, level, 2835 ins_len, &write_lock_level); 2836 if (err == -EAGAIN) 2837 goto again; 2838 if (err) { 2839 ret = err; 2840 goto done; 2841 } 2842 b = p->nodes[level]; 2843 slot = p->slots[level]; 2844 2845 /* 2846 * slot 0 is special, if we change the key 2847 * we have to update the parent pointer 2848 * which means we must have a write lock 2849 * on the parent 2850 */ 2851 if (slot == 0 && ins_len && 2852 write_lock_level < level + 1) { 2853 write_lock_level = level + 1; 2854 btrfs_release_path(p); 2855 goto again; 2856 } 2857 2858 unlock_up(p, level, lowest_unlock, 2859 min_write_lock_level, &write_lock_level); 2860 2861 if (level == lowest_level) { 2862 if (dec) 2863 p->slots[level]++; 2864 goto done; 2865 } 2866 2867 err = read_block_for_search(trans, root, p, 2868 &b, level, slot, key, 0); 2869 if (err == -EAGAIN) 2870 goto again; 2871 if (err) { 2872 ret = err; 2873 goto done; 2874 } 2875 2876 if (!p->skip_locking) { 2877 level = btrfs_header_level(b); 2878 if (level <= write_lock_level) { 2879 err = btrfs_try_tree_write_lock(b); 2880 if (!err) { 2881 btrfs_set_path_blocking(p); 2882 btrfs_tree_lock(b); 2883 btrfs_clear_path_blocking(p, b, 2884 BTRFS_WRITE_LOCK); 2885 } 2886 p->locks[level] = BTRFS_WRITE_LOCK; 2887 } else { 2888 err = btrfs_tree_read_lock_atomic(b); 2889 if (!err) { 2890 btrfs_set_path_blocking(p); 2891 btrfs_tree_read_lock(b); 2892 btrfs_clear_path_blocking(p, b, 2893 BTRFS_READ_LOCK); 2894 } 2895 p->locks[level] = BTRFS_READ_LOCK; 2896 } 2897 p->nodes[level] = b; 2898 } 2899 } else { 2900 p->slots[level] = slot; 2901 if (ins_len > 0 && 2902 btrfs_leaf_free_space(root, b) < ins_len) { 2903 if (write_lock_level < 1) { 2904 write_lock_level = 1; 2905 btrfs_release_path(p); 2906 goto again; 2907 } 2908 2909 btrfs_set_path_blocking(p); 2910 err = split_leaf(trans, root, key, 2911 p, ins_len, ret == 0); 2912 btrfs_clear_path_blocking(p, NULL, 0); 2913 2914 BUG_ON(err > 0); 2915 if (err) { 2916 ret = err; 2917 goto done; 2918 } 2919 } 2920 if (!p->search_for_split) 2921 unlock_up(p, level, lowest_unlock, 2922 min_write_lock_level, &write_lock_level); 2923 goto done; 2924 } 2925 } 2926 ret = 1; 2927 done: 2928 /* 2929 * we don't really know what they plan on doing with the path 2930 * from here on, so for now just mark it as blocking 2931 */ 2932 if (!p->leave_spinning) 2933 btrfs_set_path_blocking(p); 2934 if (ret < 0 && !p->skip_release_on_error) 2935 btrfs_release_path(p); 2936 return ret; 2937 } 2938 2939 /* 2940 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2941 * current state of the tree together with the operations recorded in the tree 2942 * modification log to search for the key in a previous version of this tree, as 2943 * denoted by the time_seq parameter. 2944 * 2945 * Naturally, there is no support for insert, delete or cow operations. 2946 * 2947 * The resulting path and return value will be set up as if we called 2948 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2949 */ 2950 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key, 2951 struct btrfs_path *p, u64 time_seq) 2952 { 2953 struct extent_buffer *b; 2954 int slot; 2955 int ret; 2956 int err; 2957 int level; 2958 int lowest_unlock = 1; 2959 u8 lowest_level = 0; 2960 int prev_cmp = -1; 2961 2962 lowest_level = p->lowest_level; 2963 WARN_ON(p->nodes[0] != NULL); 2964 2965 if (p->search_commit_root) { 2966 BUG_ON(time_seq); 2967 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2968 } 2969 2970 again: 2971 b = get_old_root(root, time_seq); 2972 level = btrfs_header_level(b); 2973 p->locks[level] = BTRFS_READ_LOCK; 2974 2975 while (b) { 2976 level = btrfs_header_level(b); 2977 p->nodes[level] = b; 2978 btrfs_clear_path_blocking(p, NULL, 0); 2979 2980 /* 2981 * we have a lock on b and as long as we aren't changing 2982 * the tree, there is no way to for the items in b to change. 2983 * It is safe to drop the lock on our parent before we 2984 * go through the expensive btree search on b. 2985 */ 2986 btrfs_unlock_up_safe(p, level + 1); 2987 2988 /* 2989 * Since we can unwind ebs we want to do a real search every 2990 * time. 2991 */ 2992 prev_cmp = -1; 2993 ret = key_search(b, key, level, &prev_cmp, &slot); 2994 2995 if (level != 0) { 2996 int dec = 0; 2997 if (ret && slot > 0) { 2998 dec = 1; 2999 slot -= 1; 3000 } 3001 p->slots[level] = slot; 3002 unlock_up(p, level, lowest_unlock, 0, NULL); 3003 3004 if (level == lowest_level) { 3005 if (dec) 3006 p->slots[level]++; 3007 goto done; 3008 } 3009 3010 err = read_block_for_search(NULL, root, p, &b, level, 3011 slot, key, time_seq); 3012 if (err == -EAGAIN) 3013 goto again; 3014 if (err) { 3015 ret = err; 3016 goto done; 3017 } 3018 3019 level = btrfs_header_level(b); 3020 err = btrfs_tree_read_lock_atomic(b); 3021 if (!err) { 3022 btrfs_set_path_blocking(p); 3023 btrfs_tree_read_lock(b); 3024 btrfs_clear_path_blocking(p, b, 3025 BTRFS_READ_LOCK); 3026 } 3027 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq); 3028 if (!b) { 3029 ret = -ENOMEM; 3030 goto done; 3031 } 3032 p->locks[level] = BTRFS_READ_LOCK; 3033 p->nodes[level] = b; 3034 } else { 3035 p->slots[level] = slot; 3036 unlock_up(p, level, lowest_unlock, 0, NULL); 3037 goto done; 3038 } 3039 } 3040 ret = 1; 3041 done: 3042 if (!p->leave_spinning) 3043 btrfs_set_path_blocking(p); 3044 if (ret < 0) 3045 btrfs_release_path(p); 3046 3047 return ret; 3048 } 3049 3050 /* 3051 * helper to use instead of search slot if no exact match is needed but 3052 * instead the next or previous item should be returned. 3053 * When find_higher is true, the next higher item is returned, the next lower 3054 * otherwise. 3055 * When return_any and find_higher are both true, and no higher item is found, 3056 * return the next lower instead. 3057 * When return_any is true and find_higher is false, and no lower item is found, 3058 * return the next higher instead. 3059 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3060 * < 0 on error 3061 */ 3062 int btrfs_search_slot_for_read(struct btrfs_root *root, 3063 struct btrfs_key *key, struct btrfs_path *p, 3064 int find_higher, int return_any) 3065 { 3066 int ret; 3067 struct extent_buffer *leaf; 3068 3069 again: 3070 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3071 if (ret <= 0) 3072 return ret; 3073 /* 3074 * a return value of 1 means the path is at the position where the 3075 * item should be inserted. Normally this is the next bigger item, 3076 * but in case the previous item is the last in a leaf, path points 3077 * to the first free slot in the previous leaf, i.e. at an invalid 3078 * item. 3079 */ 3080 leaf = p->nodes[0]; 3081 3082 if (find_higher) { 3083 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3084 ret = btrfs_next_leaf(root, p); 3085 if (ret <= 0) 3086 return ret; 3087 if (!return_any) 3088 return 1; 3089 /* 3090 * no higher item found, return the next 3091 * lower instead 3092 */ 3093 return_any = 0; 3094 find_higher = 0; 3095 btrfs_release_path(p); 3096 goto again; 3097 } 3098 } else { 3099 if (p->slots[0] == 0) { 3100 ret = btrfs_prev_leaf(root, p); 3101 if (ret < 0) 3102 return ret; 3103 if (!ret) { 3104 leaf = p->nodes[0]; 3105 if (p->slots[0] == btrfs_header_nritems(leaf)) 3106 p->slots[0]--; 3107 return 0; 3108 } 3109 if (!return_any) 3110 return 1; 3111 /* 3112 * no lower item found, return the next 3113 * higher instead 3114 */ 3115 return_any = 0; 3116 find_higher = 1; 3117 btrfs_release_path(p); 3118 goto again; 3119 } else { 3120 --p->slots[0]; 3121 } 3122 } 3123 return 0; 3124 } 3125 3126 /* 3127 * adjust the pointers going up the tree, starting at level 3128 * making sure the right key of each node is points to 'key'. 3129 * This is used after shifting pointers to the left, so it stops 3130 * fixing up pointers when a given leaf/node is not in slot 0 of the 3131 * higher levels 3132 * 3133 */ 3134 static void fixup_low_keys(struct btrfs_fs_info *fs_info, 3135 struct btrfs_path *path, 3136 struct btrfs_disk_key *key, int level) 3137 { 3138 int i; 3139 struct extent_buffer *t; 3140 3141 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3142 int tslot = path->slots[i]; 3143 if (!path->nodes[i]) 3144 break; 3145 t = path->nodes[i]; 3146 tree_mod_log_set_node_key(fs_info, t, tslot, 1); 3147 btrfs_set_node_key(t, key, tslot); 3148 btrfs_mark_buffer_dirty(path->nodes[i]); 3149 if (tslot != 0) 3150 break; 3151 } 3152 } 3153 3154 /* 3155 * update item key. 3156 * 3157 * This function isn't completely safe. It's the caller's responsibility 3158 * that the new key won't break the order 3159 */ 3160 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3161 struct btrfs_path *path, 3162 struct btrfs_key *new_key) 3163 { 3164 struct btrfs_disk_key disk_key; 3165 struct extent_buffer *eb; 3166 int slot; 3167 3168 eb = path->nodes[0]; 3169 slot = path->slots[0]; 3170 if (slot > 0) { 3171 btrfs_item_key(eb, &disk_key, slot - 1); 3172 BUG_ON(comp_keys(&disk_key, new_key) >= 0); 3173 } 3174 if (slot < btrfs_header_nritems(eb) - 1) { 3175 btrfs_item_key(eb, &disk_key, slot + 1); 3176 BUG_ON(comp_keys(&disk_key, new_key) <= 0); 3177 } 3178 3179 btrfs_cpu_key_to_disk(&disk_key, new_key); 3180 btrfs_set_item_key(eb, &disk_key, slot); 3181 btrfs_mark_buffer_dirty(eb); 3182 if (slot == 0) 3183 fixup_low_keys(fs_info, path, &disk_key, 1); 3184 } 3185 3186 /* 3187 * try to push data from one node into the next node left in the 3188 * tree. 3189 * 3190 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3191 * error, and > 0 if there was no room in the left hand block. 3192 */ 3193 static int push_node_left(struct btrfs_trans_handle *trans, 3194 struct btrfs_root *root, struct extent_buffer *dst, 3195 struct extent_buffer *src, int empty) 3196 { 3197 int push_items = 0; 3198 int src_nritems; 3199 int dst_nritems; 3200 int ret = 0; 3201 3202 src_nritems = btrfs_header_nritems(src); 3203 dst_nritems = btrfs_header_nritems(dst); 3204 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3205 WARN_ON(btrfs_header_generation(src) != trans->transid); 3206 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3207 3208 if (!empty && src_nritems <= 8) 3209 return 1; 3210 3211 if (push_items <= 0) 3212 return 1; 3213 3214 if (empty) { 3215 push_items = min(src_nritems, push_items); 3216 if (push_items < src_nritems) { 3217 /* leave at least 8 pointers in the node if 3218 * we aren't going to empty it 3219 */ 3220 if (src_nritems - push_items < 8) { 3221 if (push_items <= 8) 3222 return 1; 3223 push_items -= 8; 3224 } 3225 } 3226 } else 3227 push_items = min(src_nritems - 8, push_items); 3228 3229 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0, 3230 push_items); 3231 if (ret) { 3232 btrfs_abort_transaction(trans, root, ret); 3233 return ret; 3234 } 3235 copy_extent_buffer(dst, src, 3236 btrfs_node_key_ptr_offset(dst_nritems), 3237 btrfs_node_key_ptr_offset(0), 3238 push_items * sizeof(struct btrfs_key_ptr)); 3239 3240 if (push_items < src_nritems) { 3241 /* 3242 * don't call tree_mod_log_eb_move here, key removal was already 3243 * fully logged by tree_mod_log_eb_copy above. 3244 */ 3245 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3246 btrfs_node_key_ptr_offset(push_items), 3247 (src_nritems - push_items) * 3248 sizeof(struct btrfs_key_ptr)); 3249 } 3250 btrfs_set_header_nritems(src, src_nritems - push_items); 3251 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3252 btrfs_mark_buffer_dirty(src); 3253 btrfs_mark_buffer_dirty(dst); 3254 3255 return ret; 3256 } 3257 3258 /* 3259 * try to push data from one node into the next node right in the 3260 * tree. 3261 * 3262 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3263 * error, and > 0 if there was no room in the right hand block. 3264 * 3265 * this will only push up to 1/2 the contents of the left node over 3266 */ 3267 static int balance_node_right(struct btrfs_trans_handle *trans, 3268 struct btrfs_root *root, 3269 struct extent_buffer *dst, 3270 struct extent_buffer *src) 3271 { 3272 int push_items = 0; 3273 int max_push; 3274 int src_nritems; 3275 int dst_nritems; 3276 int ret = 0; 3277 3278 WARN_ON(btrfs_header_generation(src) != trans->transid); 3279 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3280 3281 src_nritems = btrfs_header_nritems(src); 3282 dst_nritems = btrfs_header_nritems(dst); 3283 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems; 3284 if (push_items <= 0) 3285 return 1; 3286 3287 if (src_nritems < 4) 3288 return 1; 3289 3290 max_push = src_nritems / 2 + 1; 3291 /* don't try to empty the node */ 3292 if (max_push >= src_nritems) 3293 return 1; 3294 3295 if (max_push < push_items) 3296 push_items = max_push; 3297 3298 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems); 3299 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3300 btrfs_node_key_ptr_offset(0), 3301 (dst_nritems) * 3302 sizeof(struct btrfs_key_ptr)); 3303 3304 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0, 3305 src_nritems - push_items, push_items); 3306 if (ret) { 3307 btrfs_abort_transaction(trans, root, ret); 3308 return ret; 3309 } 3310 copy_extent_buffer(dst, src, 3311 btrfs_node_key_ptr_offset(0), 3312 btrfs_node_key_ptr_offset(src_nritems - push_items), 3313 push_items * sizeof(struct btrfs_key_ptr)); 3314 3315 btrfs_set_header_nritems(src, src_nritems - push_items); 3316 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3317 3318 btrfs_mark_buffer_dirty(src); 3319 btrfs_mark_buffer_dirty(dst); 3320 3321 return ret; 3322 } 3323 3324 /* 3325 * helper function to insert a new root level in the tree. 3326 * A new node is allocated, and a single item is inserted to 3327 * point to the existing root 3328 * 3329 * returns zero on success or < 0 on failure. 3330 */ 3331 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3332 struct btrfs_root *root, 3333 struct btrfs_path *path, int level) 3334 { 3335 u64 lower_gen; 3336 struct extent_buffer *lower; 3337 struct extent_buffer *c; 3338 struct extent_buffer *old; 3339 struct btrfs_disk_key lower_key; 3340 3341 BUG_ON(path->nodes[level]); 3342 BUG_ON(path->nodes[level-1] != root->node); 3343 3344 lower = path->nodes[level-1]; 3345 if (level == 1) 3346 btrfs_item_key(lower, &lower_key, 0); 3347 else 3348 btrfs_node_key(lower, &lower_key, 0); 3349 3350 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3351 &lower_key, level, root->node->start, 0); 3352 if (IS_ERR(c)) 3353 return PTR_ERR(c); 3354 3355 root_add_used(root, root->nodesize); 3356 3357 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header)); 3358 btrfs_set_header_nritems(c, 1); 3359 btrfs_set_header_level(c, level); 3360 btrfs_set_header_bytenr(c, c->start); 3361 btrfs_set_header_generation(c, trans->transid); 3362 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV); 3363 btrfs_set_header_owner(c, root->root_key.objectid); 3364 3365 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(), 3366 BTRFS_FSID_SIZE); 3367 3368 write_extent_buffer(c, root->fs_info->chunk_tree_uuid, 3369 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE); 3370 3371 btrfs_set_node_key(c, &lower_key, 0); 3372 btrfs_set_node_blockptr(c, 0, lower->start); 3373 lower_gen = btrfs_header_generation(lower); 3374 WARN_ON(lower_gen != trans->transid); 3375 3376 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3377 3378 btrfs_mark_buffer_dirty(c); 3379 3380 old = root->node; 3381 tree_mod_log_set_root_pointer(root, c, 0); 3382 rcu_assign_pointer(root->node, c); 3383 3384 /* the super has an extra ref to root->node */ 3385 free_extent_buffer(old); 3386 3387 add_root_to_dirty_list(root); 3388 extent_buffer_get(c); 3389 path->nodes[level] = c; 3390 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3391 path->slots[level] = 0; 3392 return 0; 3393 } 3394 3395 /* 3396 * worker function to insert a single pointer in a node. 3397 * the node should have enough room for the pointer already 3398 * 3399 * slot and level indicate where you want the key to go, and 3400 * blocknr is the block the key points to. 3401 */ 3402 static void insert_ptr(struct btrfs_trans_handle *trans, 3403 struct btrfs_root *root, struct btrfs_path *path, 3404 struct btrfs_disk_key *key, u64 bytenr, 3405 int slot, int level) 3406 { 3407 struct extent_buffer *lower; 3408 int nritems; 3409 int ret; 3410 3411 BUG_ON(!path->nodes[level]); 3412 btrfs_assert_tree_locked(path->nodes[level]); 3413 lower = path->nodes[level]; 3414 nritems = btrfs_header_nritems(lower); 3415 BUG_ON(slot > nritems); 3416 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root)); 3417 if (slot != nritems) { 3418 if (level) 3419 tree_mod_log_eb_move(root->fs_info, lower, slot + 1, 3420 slot, nritems - slot); 3421 memmove_extent_buffer(lower, 3422 btrfs_node_key_ptr_offset(slot + 1), 3423 btrfs_node_key_ptr_offset(slot), 3424 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3425 } 3426 if (level) { 3427 ret = tree_mod_log_insert_key(root->fs_info, lower, slot, 3428 MOD_LOG_KEY_ADD, GFP_NOFS); 3429 BUG_ON(ret < 0); 3430 } 3431 btrfs_set_node_key(lower, key, slot); 3432 btrfs_set_node_blockptr(lower, slot, bytenr); 3433 WARN_ON(trans->transid == 0); 3434 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3435 btrfs_set_header_nritems(lower, nritems + 1); 3436 btrfs_mark_buffer_dirty(lower); 3437 } 3438 3439 /* 3440 * split the node at the specified level in path in two. 3441 * The path is corrected to point to the appropriate node after the split 3442 * 3443 * Before splitting this tries to make some room in the node by pushing 3444 * left and right, if either one works, it returns right away. 3445 * 3446 * returns 0 on success and < 0 on failure 3447 */ 3448 static noinline int split_node(struct btrfs_trans_handle *trans, 3449 struct btrfs_root *root, 3450 struct btrfs_path *path, int level) 3451 { 3452 struct extent_buffer *c; 3453 struct extent_buffer *split; 3454 struct btrfs_disk_key disk_key; 3455 int mid; 3456 int ret; 3457 u32 c_nritems; 3458 3459 c = path->nodes[level]; 3460 WARN_ON(btrfs_header_generation(c) != trans->transid); 3461 if (c == root->node) { 3462 /* 3463 * trying to split the root, lets make a new one 3464 * 3465 * tree mod log: We don't log_removal old root in 3466 * insert_new_root, because that root buffer will be kept as a 3467 * normal node. We are going to log removal of half of the 3468 * elements below with tree_mod_log_eb_copy. We're holding a 3469 * tree lock on the buffer, which is why we cannot race with 3470 * other tree_mod_log users. 3471 */ 3472 ret = insert_new_root(trans, root, path, level + 1); 3473 if (ret) 3474 return ret; 3475 } else { 3476 ret = push_nodes_for_insert(trans, root, path, level); 3477 c = path->nodes[level]; 3478 if (!ret && btrfs_header_nritems(c) < 3479 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) 3480 return 0; 3481 if (ret < 0) 3482 return ret; 3483 } 3484 3485 c_nritems = btrfs_header_nritems(c); 3486 mid = (c_nritems + 1) / 2; 3487 btrfs_node_key(c, &disk_key, mid); 3488 3489 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 3490 &disk_key, level, c->start, 0); 3491 if (IS_ERR(split)) 3492 return PTR_ERR(split); 3493 3494 root_add_used(root, root->nodesize); 3495 3496 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header)); 3497 btrfs_set_header_level(split, btrfs_header_level(c)); 3498 btrfs_set_header_bytenr(split, split->start); 3499 btrfs_set_header_generation(split, trans->transid); 3500 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV); 3501 btrfs_set_header_owner(split, root->root_key.objectid); 3502 write_extent_buffer(split, root->fs_info->fsid, 3503 btrfs_header_fsid(), BTRFS_FSID_SIZE); 3504 write_extent_buffer(split, root->fs_info->chunk_tree_uuid, 3505 btrfs_header_chunk_tree_uuid(split), 3506 BTRFS_UUID_SIZE); 3507 3508 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0, 3509 mid, c_nritems - mid); 3510 if (ret) { 3511 btrfs_abort_transaction(trans, root, ret); 3512 return ret; 3513 } 3514 copy_extent_buffer(split, c, 3515 btrfs_node_key_ptr_offset(0), 3516 btrfs_node_key_ptr_offset(mid), 3517 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3518 btrfs_set_header_nritems(split, c_nritems - mid); 3519 btrfs_set_header_nritems(c, mid); 3520 ret = 0; 3521 3522 btrfs_mark_buffer_dirty(c); 3523 btrfs_mark_buffer_dirty(split); 3524 3525 insert_ptr(trans, root, path, &disk_key, split->start, 3526 path->slots[level + 1] + 1, level + 1); 3527 3528 if (path->slots[level] >= mid) { 3529 path->slots[level] -= mid; 3530 btrfs_tree_unlock(c); 3531 free_extent_buffer(c); 3532 path->nodes[level] = split; 3533 path->slots[level + 1] += 1; 3534 } else { 3535 btrfs_tree_unlock(split); 3536 free_extent_buffer(split); 3537 } 3538 return ret; 3539 } 3540 3541 /* 3542 * how many bytes are required to store the items in a leaf. start 3543 * and nr indicate which items in the leaf to check. This totals up the 3544 * space used both by the item structs and the item data 3545 */ 3546 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3547 { 3548 struct btrfs_item *start_item; 3549 struct btrfs_item *end_item; 3550 struct btrfs_map_token token; 3551 int data_len; 3552 int nritems = btrfs_header_nritems(l); 3553 int end = min(nritems, start + nr) - 1; 3554 3555 if (!nr) 3556 return 0; 3557 btrfs_init_map_token(&token); 3558 start_item = btrfs_item_nr(start); 3559 end_item = btrfs_item_nr(end); 3560 data_len = btrfs_token_item_offset(l, start_item, &token) + 3561 btrfs_token_item_size(l, start_item, &token); 3562 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3563 data_len += sizeof(struct btrfs_item) * nr; 3564 WARN_ON(data_len < 0); 3565 return data_len; 3566 } 3567 3568 /* 3569 * The space between the end of the leaf items and 3570 * the start of the leaf data. IOW, how much room 3571 * the leaf has left for both items and data 3572 */ 3573 noinline int btrfs_leaf_free_space(struct btrfs_root *root, 3574 struct extent_buffer *leaf) 3575 { 3576 int nritems = btrfs_header_nritems(leaf); 3577 int ret; 3578 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems); 3579 if (ret < 0) { 3580 btrfs_crit(root->fs_info, 3581 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3582 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root), 3583 leaf_space_used(leaf, 0, nritems), nritems); 3584 } 3585 return ret; 3586 } 3587 3588 /* 3589 * min slot controls the lowest index we're willing to push to the 3590 * right. We'll push up to and including min_slot, but no lower 3591 */ 3592 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans, 3593 struct btrfs_root *root, 3594 struct btrfs_path *path, 3595 int data_size, int empty, 3596 struct extent_buffer *right, 3597 int free_space, u32 left_nritems, 3598 u32 min_slot) 3599 { 3600 struct extent_buffer *left = path->nodes[0]; 3601 struct extent_buffer *upper = path->nodes[1]; 3602 struct btrfs_map_token token; 3603 struct btrfs_disk_key disk_key; 3604 int slot; 3605 u32 i; 3606 int push_space = 0; 3607 int push_items = 0; 3608 struct btrfs_item *item; 3609 u32 nr; 3610 u32 right_nritems; 3611 u32 data_end; 3612 u32 this_item_size; 3613 3614 btrfs_init_map_token(&token); 3615 3616 if (empty) 3617 nr = 0; 3618 else 3619 nr = max_t(u32, 1, min_slot); 3620 3621 if (path->slots[0] >= left_nritems) 3622 push_space += data_size; 3623 3624 slot = path->slots[1]; 3625 i = left_nritems - 1; 3626 while (i >= nr) { 3627 item = btrfs_item_nr(i); 3628 3629 if (!empty && push_items > 0) { 3630 if (path->slots[0] > i) 3631 break; 3632 if (path->slots[0] == i) { 3633 int space = btrfs_leaf_free_space(root, left); 3634 if (space + push_space * 2 > free_space) 3635 break; 3636 } 3637 } 3638 3639 if (path->slots[0] == i) 3640 push_space += data_size; 3641 3642 this_item_size = btrfs_item_size(left, item); 3643 if (this_item_size + sizeof(*item) + push_space > free_space) 3644 break; 3645 3646 push_items++; 3647 push_space += this_item_size + sizeof(*item); 3648 if (i == 0) 3649 break; 3650 i--; 3651 } 3652 3653 if (push_items == 0) 3654 goto out_unlock; 3655 3656 WARN_ON(!empty && push_items == left_nritems); 3657 3658 /* push left to right */ 3659 right_nritems = btrfs_header_nritems(right); 3660 3661 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3662 push_space -= leaf_data_end(root, left); 3663 3664 /* make room in the right data area */ 3665 data_end = leaf_data_end(root, right); 3666 memmove_extent_buffer(right, 3667 btrfs_leaf_data(right) + data_end - push_space, 3668 btrfs_leaf_data(right) + data_end, 3669 BTRFS_LEAF_DATA_SIZE(root) - data_end); 3670 3671 /* copy from the left data area */ 3672 copy_extent_buffer(right, left, btrfs_leaf_data(right) + 3673 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3674 btrfs_leaf_data(left) + leaf_data_end(root, left), 3675 push_space); 3676 3677 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3678 btrfs_item_nr_offset(0), 3679 right_nritems * sizeof(struct btrfs_item)); 3680 3681 /* copy the items from left to right */ 3682 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3683 btrfs_item_nr_offset(left_nritems - push_items), 3684 push_items * sizeof(struct btrfs_item)); 3685 3686 /* update the item pointers */ 3687 right_nritems += push_items; 3688 btrfs_set_header_nritems(right, right_nritems); 3689 push_space = BTRFS_LEAF_DATA_SIZE(root); 3690 for (i = 0; i < right_nritems; i++) { 3691 item = btrfs_item_nr(i); 3692 push_space -= btrfs_token_item_size(right, item, &token); 3693 btrfs_set_token_item_offset(right, item, push_space, &token); 3694 } 3695 3696 left_nritems -= push_items; 3697 btrfs_set_header_nritems(left, left_nritems); 3698 3699 if (left_nritems) 3700 btrfs_mark_buffer_dirty(left); 3701 else 3702 clean_tree_block(trans, root->fs_info, left); 3703 3704 btrfs_mark_buffer_dirty(right); 3705 3706 btrfs_item_key(right, &disk_key, 0); 3707 btrfs_set_node_key(upper, &disk_key, slot + 1); 3708 btrfs_mark_buffer_dirty(upper); 3709 3710 /* then fixup the leaf pointer in the path */ 3711 if (path->slots[0] >= left_nritems) { 3712 path->slots[0] -= left_nritems; 3713 if (btrfs_header_nritems(path->nodes[0]) == 0) 3714 clean_tree_block(trans, root->fs_info, path->nodes[0]); 3715 btrfs_tree_unlock(path->nodes[0]); 3716 free_extent_buffer(path->nodes[0]); 3717 path->nodes[0] = right; 3718 path->slots[1] += 1; 3719 } else { 3720 btrfs_tree_unlock(right); 3721 free_extent_buffer(right); 3722 } 3723 return 0; 3724 3725 out_unlock: 3726 btrfs_tree_unlock(right); 3727 free_extent_buffer(right); 3728 return 1; 3729 } 3730 3731 /* 3732 * push some data in the path leaf to the right, trying to free up at 3733 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3734 * 3735 * returns 1 if the push failed because the other node didn't have enough 3736 * room, 0 if everything worked out and < 0 if there were major errors. 3737 * 3738 * this will push starting from min_slot to the end of the leaf. It won't 3739 * push any slot lower than min_slot 3740 */ 3741 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3742 *root, struct btrfs_path *path, 3743 int min_data_size, int data_size, 3744 int empty, u32 min_slot) 3745 { 3746 struct extent_buffer *left = path->nodes[0]; 3747 struct extent_buffer *right; 3748 struct extent_buffer *upper; 3749 int slot; 3750 int free_space; 3751 u32 left_nritems; 3752 int ret; 3753 3754 if (!path->nodes[1]) 3755 return 1; 3756 3757 slot = path->slots[1]; 3758 upper = path->nodes[1]; 3759 if (slot >= btrfs_header_nritems(upper) - 1) 3760 return 1; 3761 3762 btrfs_assert_tree_locked(path->nodes[1]); 3763 3764 right = read_node_slot(root, upper, slot + 1); 3765 if (right == NULL) 3766 return 1; 3767 3768 btrfs_tree_lock(right); 3769 btrfs_set_lock_blocking(right); 3770 3771 free_space = btrfs_leaf_free_space(root, right); 3772 if (free_space < data_size) 3773 goto out_unlock; 3774 3775 /* cow and double check */ 3776 ret = btrfs_cow_block(trans, root, right, upper, 3777 slot + 1, &right); 3778 if (ret) 3779 goto out_unlock; 3780 3781 free_space = btrfs_leaf_free_space(root, right); 3782 if (free_space < data_size) 3783 goto out_unlock; 3784 3785 left_nritems = btrfs_header_nritems(left); 3786 if (left_nritems == 0) 3787 goto out_unlock; 3788 3789 if (path->slots[0] == left_nritems && !empty) { 3790 /* Key greater than all keys in the leaf, right neighbor has 3791 * enough room for it and we're not emptying our leaf to delete 3792 * it, therefore use right neighbor to insert the new item and 3793 * no need to touch/dirty our left leaft. */ 3794 btrfs_tree_unlock(left); 3795 free_extent_buffer(left); 3796 path->nodes[0] = right; 3797 path->slots[0] = 0; 3798 path->slots[1]++; 3799 return 0; 3800 } 3801 3802 return __push_leaf_right(trans, root, path, min_data_size, empty, 3803 right, free_space, left_nritems, min_slot); 3804 out_unlock: 3805 btrfs_tree_unlock(right); 3806 free_extent_buffer(right); 3807 return 1; 3808 } 3809 3810 /* 3811 * push some data in the path leaf to the left, trying to free up at 3812 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3813 * 3814 * max_slot can put a limit on how far into the leaf we'll push items. The 3815 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3816 * items 3817 */ 3818 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans, 3819 struct btrfs_root *root, 3820 struct btrfs_path *path, int data_size, 3821 int empty, struct extent_buffer *left, 3822 int free_space, u32 right_nritems, 3823 u32 max_slot) 3824 { 3825 struct btrfs_disk_key disk_key; 3826 struct extent_buffer *right = path->nodes[0]; 3827 int i; 3828 int push_space = 0; 3829 int push_items = 0; 3830 struct btrfs_item *item; 3831 u32 old_left_nritems; 3832 u32 nr; 3833 int ret = 0; 3834 u32 this_item_size; 3835 u32 old_left_item_size; 3836 struct btrfs_map_token token; 3837 3838 btrfs_init_map_token(&token); 3839 3840 if (empty) 3841 nr = min(right_nritems, max_slot); 3842 else 3843 nr = min(right_nritems - 1, max_slot); 3844 3845 for (i = 0; i < nr; i++) { 3846 item = btrfs_item_nr(i); 3847 3848 if (!empty && push_items > 0) { 3849 if (path->slots[0] < i) 3850 break; 3851 if (path->slots[0] == i) { 3852 int space = btrfs_leaf_free_space(root, right); 3853 if (space + push_space * 2 > free_space) 3854 break; 3855 } 3856 } 3857 3858 if (path->slots[0] == i) 3859 push_space += data_size; 3860 3861 this_item_size = btrfs_item_size(right, item); 3862 if (this_item_size + sizeof(*item) + push_space > free_space) 3863 break; 3864 3865 push_items++; 3866 push_space += this_item_size + sizeof(*item); 3867 } 3868 3869 if (push_items == 0) { 3870 ret = 1; 3871 goto out; 3872 } 3873 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3874 3875 /* push data from right to left */ 3876 copy_extent_buffer(left, right, 3877 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3878 btrfs_item_nr_offset(0), 3879 push_items * sizeof(struct btrfs_item)); 3880 3881 push_space = BTRFS_LEAF_DATA_SIZE(root) - 3882 btrfs_item_offset_nr(right, push_items - 1); 3883 3884 copy_extent_buffer(left, right, btrfs_leaf_data(left) + 3885 leaf_data_end(root, left) - push_space, 3886 btrfs_leaf_data(right) + 3887 btrfs_item_offset_nr(right, push_items - 1), 3888 push_space); 3889 old_left_nritems = btrfs_header_nritems(left); 3890 BUG_ON(old_left_nritems <= 0); 3891 3892 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3893 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3894 u32 ioff; 3895 3896 item = btrfs_item_nr(i); 3897 3898 ioff = btrfs_token_item_offset(left, item, &token); 3899 btrfs_set_token_item_offset(left, item, 3900 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size), 3901 &token); 3902 } 3903 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3904 3905 /* fixup right node */ 3906 if (push_items > right_nritems) 3907 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3908 right_nritems); 3909 3910 if (push_items < right_nritems) { 3911 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3912 leaf_data_end(root, right); 3913 memmove_extent_buffer(right, btrfs_leaf_data(right) + 3914 BTRFS_LEAF_DATA_SIZE(root) - push_space, 3915 btrfs_leaf_data(right) + 3916 leaf_data_end(root, right), push_space); 3917 3918 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3919 btrfs_item_nr_offset(push_items), 3920 (btrfs_header_nritems(right) - push_items) * 3921 sizeof(struct btrfs_item)); 3922 } 3923 right_nritems -= push_items; 3924 btrfs_set_header_nritems(right, right_nritems); 3925 push_space = BTRFS_LEAF_DATA_SIZE(root); 3926 for (i = 0; i < right_nritems; i++) { 3927 item = btrfs_item_nr(i); 3928 3929 push_space = push_space - btrfs_token_item_size(right, 3930 item, &token); 3931 btrfs_set_token_item_offset(right, item, push_space, &token); 3932 } 3933 3934 btrfs_mark_buffer_dirty(left); 3935 if (right_nritems) 3936 btrfs_mark_buffer_dirty(right); 3937 else 3938 clean_tree_block(trans, root->fs_info, right); 3939 3940 btrfs_item_key(right, &disk_key, 0); 3941 fixup_low_keys(root->fs_info, path, &disk_key, 1); 3942 3943 /* then fixup the leaf pointer in the path */ 3944 if (path->slots[0] < push_items) { 3945 path->slots[0] += old_left_nritems; 3946 btrfs_tree_unlock(path->nodes[0]); 3947 free_extent_buffer(path->nodes[0]); 3948 path->nodes[0] = left; 3949 path->slots[1] -= 1; 3950 } else { 3951 btrfs_tree_unlock(left); 3952 free_extent_buffer(left); 3953 path->slots[0] -= push_items; 3954 } 3955 BUG_ON(path->slots[0] < 0); 3956 return ret; 3957 out: 3958 btrfs_tree_unlock(left); 3959 free_extent_buffer(left); 3960 return ret; 3961 } 3962 3963 /* 3964 * push some data in the path leaf to the left, trying to free up at 3965 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3966 * 3967 * max_slot can put a limit on how far into the leaf we'll push items. The 3968 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3969 * items 3970 */ 3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3972 *root, struct btrfs_path *path, int min_data_size, 3973 int data_size, int empty, u32 max_slot) 3974 { 3975 struct extent_buffer *right = path->nodes[0]; 3976 struct extent_buffer *left; 3977 int slot; 3978 int free_space; 3979 u32 right_nritems; 3980 int ret = 0; 3981 3982 slot = path->slots[1]; 3983 if (slot == 0) 3984 return 1; 3985 if (!path->nodes[1]) 3986 return 1; 3987 3988 right_nritems = btrfs_header_nritems(right); 3989 if (right_nritems == 0) 3990 return 1; 3991 3992 btrfs_assert_tree_locked(path->nodes[1]); 3993 3994 left = read_node_slot(root, path->nodes[1], slot - 1); 3995 if (left == NULL) 3996 return 1; 3997 3998 btrfs_tree_lock(left); 3999 btrfs_set_lock_blocking(left); 4000 4001 free_space = btrfs_leaf_free_space(root, left); 4002 if (free_space < data_size) { 4003 ret = 1; 4004 goto out; 4005 } 4006 4007 /* cow and double check */ 4008 ret = btrfs_cow_block(trans, root, left, 4009 path->nodes[1], slot - 1, &left); 4010 if (ret) { 4011 /* we hit -ENOSPC, but it isn't fatal here */ 4012 if (ret == -ENOSPC) 4013 ret = 1; 4014 goto out; 4015 } 4016 4017 free_space = btrfs_leaf_free_space(root, left); 4018 if (free_space < data_size) { 4019 ret = 1; 4020 goto out; 4021 } 4022 4023 return __push_leaf_left(trans, root, path, min_data_size, 4024 empty, left, free_space, right_nritems, 4025 max_slot); 4026 out: 4027 btrfs_tree_unlock(left); 4028 free_extent_buffer(left); 4029 return ret; 4030 } 4031 4032 /* 4033 * split the path's leaf in two, making sure there is at least data_size 4034 * available for the resulting leaf level of the path. 4035 */ 4036 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4037 struct btrfs_root *root, 4038 struct btrfs_path *path, 4039 struct extent_buffer *l, 4040 struct extent_buffer *right, 4041 int slot, int mid, int nritems) 4042 { 4043 int data_copy_size; 4044 int rt_data_off; 4045 int i; 4046 struct btrfs_disk_key disk_key; 4047 struct btrfs_map_token token; 4048 4049 btrfs_init_map_token(&token); 4050 4051 nritems = nritems - mid; 4052 btrfs_set_header_nritems(right, nritems); 4053 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l); 4054 4055 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4056 btrfs_item_nr_offset(mid), 4057 nritems * sizeof(struct btrfs_item)); 4058 4059 copy_extent_buffer(right, l, 4060 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) - 4061 data_copy_size, btrfs_leaf_data(l) + 4062 leaf_data_end(root, l), data_copy_size); 4063 4064 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) - 4065 btrfs_item_end_nr(l, mid); 4066 4067 for (i = 0; i < nritems; i++) { 4068 struct btrfs_item *item = btrfs_item_nr(i); 4069 u32 ioff; 4070 4071 ioff = btrfs_token_item_offset(right, item, &token); 4072 btrfs_set_token_item_offset(right, item, 4073 ioff + rt_data_off, &token); 4074 } 4075 4076 btrfs_set_header_nritems(l, mid); 4077 btrfs_item_key(right, &disk_key, 0); 4078 insert_ptr(trans, root, path, &disk_key, right->start, 4079 path->slots[1] + 1, 1); 4080 4081 btrfs_mark_buffer_dirty(right); 4082 btrfs_mark_buffer_dirty(l); 4083 BUG_ON(path->slots[0] != slot); 4084 4085 if (mid <= slot) { 4086 btrfs_tree_unlock(path->nodes[0]); 4087 free_extent_buffer(path->nodes[0]); 4088 path->nodes[0] = right; 4089 path->slots[0] -= mid; 4090 path->slots[1] += 1; 4091 } else { 4092 btrfs_tree_unlock(right); 4093 free_extent_buffer(right); 4094 } 4095 4096 BUG_ON(path->slots[0] < 0); 4097 } 4098 4099 /* 4100 * double splits happen when we need to insert a big item in the middle 4101 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4102 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4103 * A B C 4104 * 4105 * We avoid this by trying to push the items on either side of our target 4106 * into the adjacent leaves. If all goes well we can avoid the double split 4107 * completely. 4108 */ 4109 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4110 struct btrfs_root *root, 4111 struct btrfs_path *path, 4112 int data_size) 4113 { 4114 int ret; 4115 int progress = 0; 4116 int slot; 4117 u32 nritems; 4118 int space_needed = data_size; 4119 4120 slot = path->slots[0]; 4121 if (slot < btrfs_header_nritems(path->nodes[0])) 4122 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]); 4123 4124 /* 4125 * try to push all the items after our slot into the 4126 * right leaf 4127 */ 4128 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4129 if (ret < 0) 4130 return ret; 4131 4132 if (ret == 0) 4133 progress++; 4134 4135 nritems = btrfs_header_nritems(path->nodes[0]); 4136 /* 4137 * our goal is to get our slot at the start or end of a leaf. If 4138 * we've done so we're done 4139 */ 4140 if (path->slots[0] == 0 || path->slots[0] == nritems) 4141 return 0; 4142 4143 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4144 return 0; 4145 4146 /* try to push all the items before our slot into the next leaf */ 4147 slot = path->slots[0]; 4148 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4149 if (ret < 0) 4150 return ret; 4151 4152 if (ret == 0) 4153 progress++; 4154 4155 if (progress) 4156 return 0; 4157 return 1; 4158 } 4159 4160 /* 4161 * split the path's leaf in two, making sure there is at least data_size 4162 * available for the resulting leaf level of the path. 4163 * 4164 * returns 0 if all went well and < 0 on failure. 4165 */ 4166 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4167 struct btrfs_root *root, 4168 struct btrfs_key *ins_key, 4169 struct btrfs_path *path, int data_size, 4170 int extend) 4171 { 4172 struct btrfs_disk_key disk_key; 4173 struct extent_buffer *l; 4174 u32 nritems; 4175 int mid; 4176 int slot; 4177 struct extent_buffer *right; 4178 struct btrfs_fs_info *fs_info = root->fs_info; 4179 int ret = 0; 4180 int wret; 4181 int split; 4182 int num_doubles = 0; 4183 int tried_avoid_double = 0; 4184 4185 l = path->nodes[0]; 4186 slot = path->slots[0]; 4187 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4188 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root)) 4189 return -EOVERFLOW; 4190 4191 /* first try to make some room by pushing left and right */ 4192 if (data_size && path->nodes[1]) { 4193 int space_needed = data_size; 4194 4195 if (slot < btrfs_header_nritems(l)) 4196 space_needed -= btrfs_leaf_free_space(root, l); 4197 4198 wret = push_leaf_right(trans, root, path, space_needed, 4199 space_needed, 0, 0); 4200 if (wret < 0) 4201 return wret; 4202 if (wret) { 4203 wret = push_leaf_left(trans, root, path, space_needed, 4204 space_needed, 0, (u32)-1); 4205 if (wret < 0) 4206 return wret; 4207 } 4208 l = path->nodes[0]; 4209 4210 /* did the pushes work? */ 4211 if (btrfs_leaf_free_space(root, l) >= data_size) 4212 return 0; 4213 } 4214 4215 if (!path->nodes[1]) { 4216 ret = insert_new_root(trans, root, path, 1); 4217 if (ret) 4218 return ret; 4219 } 4220 again: 4221 split = 1; 4222 l = path->nodes[0]; 4223 slot = path->slots[0]; 4224 nritems = btrfs_header_nritems(l); 4225 mid = (nritems + 1) / 2; 4226 4227 if (mid <= slot) { 4228 if (nritems == 1 || 4229 leaf_space_used(l, mid, nritems - mid) + data_size > 4230 BTRFS_LEAF_DATA_SIZE(root)) { 4231 if (slot >= nritems) { 4232 split = 0; 4233 } else { 4234 mid = slot; 4235 if (mid != nritems && 4236 leaf_space_used(l, mid, nritems - mid) + 4237 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4238 if (data_size && !tried_avoid_double) 4239 goto push_for_double; 4240 split = 2; 4241 } 4242 } 4243 } 4244 } else { 4245 if (leaf_space_used(l, 0, mid) + data_size > 4246 BTRFS_LEAF_DATA_SIZE(root)) { 4247 if (!extend && data_size && slot == 0) { 4248 split = 0; 4249 } else if ((extend || !data_size) && slot == 0) { 4250 mid = 1; 4251 } else { 4252 mid = slot; 4253 if (mid != nritems && 4254 leaf_space_used(l, mid, nritems - mid) + 4255 data_size > BTRFS_LEAF_DATA_SIZE(root)) { 4256 if (data_size && !tried_avoid_double) 4257 goto push_for_double; 4258 split = 2; 4259 } 4260 } 4261 } 4262 } 4263 4264 if (split == 0) 4265 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4266 else 4267 btrfs_item_key(l, &disk_key, mid); 4268 4269 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid, 4270 &disk_key, 0, l->start, 0); 4271 if (IS_ERR(right)) 4272 return PTR_ERR(right); 4273 4274 root_add_used(root, root->nodesize); 4275 4276 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header)); 4277 btrfs_set_header_bytenr(right, right->start); 4278 btrfs_set_header_generation(right, trans->transid); 4279 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV); 4280 btrfs_set_header_owner(right, root->root_key.objectid); 4281 btrfs_set_header_level(right, 0); 4282 write_extent_buffer(right, fs_info->fsid, 4283 btrfs_header_fsid(), BTRFS_FSID_SIZE); 4284 4285 write_extent_buffer(right, fs_info->chunk_tree_uuid, 4286 btrfs_header_chunk_tree_uuid(right), 4287 BTRFS_UUID_SIZE); 4288 4289 if (split == 0) { 4290 if (mid <= slot) { 4291 btrfs_set_header_nritems(right, 0); 4292 insert_ptr(trans, root, path, &disk_key, right->start, 4293 path->slots[1] + 1, 1); 4294 btrfs_tree_unlock(path->nodes[0]); 4295 free_extent_buffer(path->nodes[0]); 4296 path->nodes[0] = right; 4297 path->slots[0] = 0; 4298 path->slots[1] += 1; 4299 } else { 4300 btrfs_set_header_nritems(right, 0); 4301 insert_ptr(trans, root, path, &disk_key, right->start, 4302 path->slots[1], 1); 4303 btrfs_tree_unlock(path->nodes[0]); 4304 free_extent_buffer(path->nodes[0]); 4305 path->nodes[0] = right; 4306 path->slots[0] = 0; 4307 if (path->slots[1] == 0) 4308 fixup_low_keys(fs_info, path, &disk_key, 1); 4309 } 4310 btrfs_mark_buffer_dirty(right); 4311 return ret; 4312 } 4313 4314 copy_for_split(trans, root, path, l, right, slot, mid, nritems); 4315 4316 if (split == 2) { 4317 BUG_ON(num_doubles != 0); 4318 num_doubles++; 4319 goto again; 4320 } 4321 4322 return 0; 4323 4324 push_for_double: 4325 push_for_double_split(trans, root, path, data_size); 4326 tried_avoid_double = 1; 4327 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size) 4328 return 0; 4329 goto again; 4330 } 4331 4332 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4333 struct btrfs_root *root, 4334 struct btrfs_path *path, int ins_len) 4335 { 4336 struct btrfs_key key; 4337 struct extent_buffer *leaf; 4338 struct btrfs_file_extent_item *fi; 4339 u64 extent_len = 0; 4340 u32 item_size; 4341 int ret; 4342 4343 leaf = path->nodes[0]; 4344 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4345 4346 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4347 key.type != BTRFS_EXTENT_CSUM_KEY); 4348 4349 if (btrfs_leaf_free_space(root, leaf) >= ins_len) 4350 return 0; 4351 4352 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4353 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4354 fi = btrfs_item_ptr(leaf, path->slots[0], 4355 struct btrfs_file_extent_item); 4356 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4357 } 4358 btrfs_release_path(path); 4359 4360 path->keep_locks = 1; 4361 path->search_for_split = 1; 4362 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4363 path->search_for_split = 0; 4364 if (ret > 0) 4365 ret = -EAGAIN; 4366 if (ret < 0) 4367 goto err; 4368 4369 ret = -EAGAIN; 4370 leaf = path->nodes[0]; 4371 /* if our item isn't there, return now */ 4372 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4373 goto err; 4374 4375 /* the leaf has changed, it now has room. return now */ 4376 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len) 4377 goto err; 4378 4379 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4380 fi = btrfs_item_ptr(leaf, path->slots[0], 4381 struct btrfs_file_extent_item); 4382 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4383 goto err; 4384 } 4385 4386 btrfs_set_path_blocking(path); 4387 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4388 if (ret) 4389 goto err; 4390 4391 path->keep_locks = 0; 4392 btrfs_unlock_up_safe(path, 1); 4393 return 0; 4394 err: 4395 path->keep_locks = 0; 4396 return ret; 4397 } 4398 4399 static noinline int split_item(struct btrfs_trans_handle *trans, 4400 struct btrfs_root *root, 4401 struct btrfs_path *path, 4402 struct btrfs_key *new_key, 4403 unsigned long split_offset) 4404 { 4405 struct extent_buffer *leaf; 4406 struct btrfs_item *item; 4407 struct btrfs_item *new_item; 4408 int slot; 4409 char *buf; 4410 u32 nritems; 4411 u32 item_size; 4412 u32 orig_offset; 4413 struct btrfs_disk_key disk_key; 4414 4415 leaf = path->nodes[0]; 4416 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item)); 4417 4418 btrfs_set_path_blocking(path); 4419 4420 item = btrfs_item_nr(path->slots[0]); 4421 orig_offset = btrfs_item_offset(leaf, item); 4422 item_size = btrfs_item_size(leaf, item); 4423 4424 buf = kmalloc(item_size, GFP_NOFS); 4425 if (!buf) 4426 return -ENOMEM; 4427 4428 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4429 path->slots[0]), item_size); 4430 4431 slot = path->slots[0] + 1; 4432 nritems = btrfs_header_nritems(leaf); 4433 if (slot != nritems) { 4434 /* shift the items */ 4435 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4436 btrfs_item_nr_offset(slot), 4437 (nritems - slot) * sizeof(struct btrfs_item)); 4438 } 4439 4440 btrfs_cpu_key_to_disk(&disk_key, new_key); 4441 btrfs_set_item_key(leaf, &disk_key, slot); 4442 4443 new_item = btrfs_item_nr(slot); 4444 4445 btrfs_set_item_offset(leaf, new_item, orig_offset); 4446 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4447 4448 btrfs_set_item_offset(leaf, item, 4449 orig_offset + item_size - split_offset); 4450 btrfs_set_item_size(leaf, item, split_offset); 4451 4452 btrfs_set_header_nritems(leaf, nritems + 1); 4453 4454 /* write the data for the start of the original item */ 4455 write_extent_buffer(leaf, buf, 4456 btrfs_item_ptr_offset(leaf, path->slots[0]), 4457 split_offset); 4458 4459 /* write the data for the new item */ 4460 write_extent_buffer(leaf, buf + split_offset, 4461 btrfs_item_ptr_offset(leaf, slot), 4462 item_size - split_offset); 4463 btrfs_mark_buffer_dirty(leaf); 4464 4465 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0); 4466 kfree(buf); 4467 return 0; 4468 } 4469 4470 /* 4471 * This function splits a single item into two items, 4472 * giving 'new_key' to the new item and splitting the 4473 * old one at split_offset (from the start of the item). 4474 * 4475 * The path may be released by this operation. After 4476 * the split, the path is pointing to the old item. The 4477 * new item is going to be in the same node as the old one. 4478 * 4479 * Note, the item being split must be smaller enough to live alone on 4480 * a tree block with room for one extra struct btrfs_item 4481 * 4482 * This allows us to split the item in place, keeping a lock on the 4483 * leaf the entire time. 4484 */ 4485 int btrfs_split_item(struct btrfs_trans_handle *trans, 4486 struct btrfs_root *root, 4487 struct btrfs_path *path, 4488 struct btrfs_key *new_key, 4489 unsigned long split_offset) 4490 { 4491 int ret; 4492 ret = setup_leaf_for_split(trans, root, path, 4493 sizeof(struct btrfs_item)); 4494 if (ret) 4495 return ret; 4496 4497 ret = split_item(trans, root, path, new_key, split_offset); 4498 return ret; 4499 } 4500 4501 /* 4502 * This function duplicate a item, giving 'new_key' to the new item. 4503 * It guarantees both items live in the same tree leaf and the new item 4504 * is contiguous with the original item. 4505 * 4506 * This allows us to split file extent in place, keeping a lock on the 4507 * leaf the entire time. 4508 */ 4509 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4510 struct btrfs_root *root, 4511 struct btrfs_path *path, 4512 struct btrfs_key *new_key) 4513 { 4514 struct extent_buffer *leaf; 4515 int ret; 4516 u32 item_size; 4517 4518 leaf = path->nodes[0]; 4519 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4520 ret = setup_leaf_for_split(trans, root, path, 4521 item_size + sizeof(struct btrfs_item)); 4522 if (ret) 4523 return ret; 4524 4525 path->slots[0]++; 4526 setup_items_for_insert(root, path, new_key, &item_size, 4527 item_size, item_size + 4528 sizeof(struct btrfs_item), 1); 4529 leaf = path->nodes[0]; 4530 memcpy_extent_buffer(leaf, 4531 btrfs_item_ptr_offset(leaf, path->slots[0]), 4532 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4533 item_size); 4534 return 0; 4535 } 4536 4537 /* 4538 * make the item pointed to by the path smaller. new_size indicates 4539 * how small to make it, and from_end tells us if we just chop bytes 4540 * off the end of the item or if we shift the item to chop bytes off 4541 * the front. 4542 */ 4543 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path, 4544 u32 new_size, int from_end) 4545 { 4546 int slot; 4547 struct extent_buffer *leaf; 4548 struct btrfs_item *item; 4549 u32 nritems; 4550 unsigned int data_end; 4551 unsigned int old_data_start; 4552 unsigned int old_size; 4553 unsigned int size_diff; 4554 int i; 4555 struct btrfs_map_token token; 4556 4557 btrfs_init_map_token(&token); 4558 4559 leaf = path->nodes[0]; 4560 slot = path->slots[0]; 4561 4562 old_size = btrfs_item_size_nr(leaf, slot); 4563 if (old_size == new_size) 4564 return; 4565 4566 nritems = btrfs_header_nritems(leaf); 4567 data_end = leaf_data_end(root, leaf); 4568 4569 old_data_start = btrfs_item_offset_nr(leaf, slot); 4570 4571 size_diff = old_size - new_size; 4572 4573 BUG_ON(slot < 0); 4574 BUG_ON(slot >= nritems); 4575 4576 /* 4577 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4578 */ 4579 /* first correct the data pointers */ 4580 for (i = slot; i < nritems; i++) { 4581 u32 ioff; 4582 item = btrfs_item_nr(i); 4583 4584 ioff = btrfs_token_item_offset(leaf, item, &token); 4585 btrfs_set_token_item_offset(leaf, item, 4586 ioff + size_diff, &token); 4587 } 4588 4589 /* shift the data */ 4590 if (from_end) { 4591 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4592 data_end + size_diff, btrfs_leaf_data(leaf) + 4593 data_end, old_data_start + new_size - data_end); 4594 } else { 4595 struct btrfs_disk_key disk_key; 4596 u64 offset; 4597 4598 btrfs_item_key(leaf, &disk_key, slot); 4599 4600 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4601 unsigned long ptr; 4602 struct btrfs_file_extent_item *fi; 4603 4604 fi = btrfs_item_ptr(leaf, slot, 4605 struct btrfs_file_extent_item); 4606 fi = (struct btrfs_file_extent_item *)( 4607 (unsigned long)fi - size_diff); 4608 4609 if (btrfs_file_extent_type(leaf, fi) == 4610 BTRFS_FILE_EXTENT_INLINE) { 4611 ptr = btrfs_item_ptr_offset(leaf, slot); 4612 memmove_extent_buffer(leaf, ptr, 4613 (unsigned long)fi, 4614 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4615 } 4616 } 4617 4618 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4619 data_end + size_diff, btrfs_leaf_data(leaf) + 4620 data_end, old_data_start - data_end); 4621 4622 offset = btrfs_disk_key_offset(&disk_key); 4623 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4624 btrfs_set_item_key(leaf, &disk_key, slot); 4625 if (slot == 0) 4626 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4627 } 4628 4629 item = btrfs_item_nr(slot); 4630 btrfs_set_item_size(leaf, item, new_size); 4631 btrfs_mark_buffer_dirty(leaf); 4632 4633 if (btrfs_leaf_free_space(root, leaf) < 0) { 4634 btrfs_print_leaf(root, leaf); 4635 BUG(); 4636 } 4637 } 4638 4639 /* 4640 * make the item pointed to by the path bigger, data_size is the added size. 4641 */ 4642 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path, 4643 u32 data_size) 4644 { 4645 int slot; 4646 struct extent_buffer *leaf; 4647 struct btrfs_item *item; 4648 u32 nritems; 4649 unsigned int data_end; 4650 unsigned int old_data; 4651 unsigned int old_size; 4652 int i; 4653 struct btrfs_map_token token; 4654 4655 btrfs_init_map_token(&token); 4656 4657 leaf = path->nodes[0]; 4658 4659 nritems = btrfs_header_nritems(leaf); 4660 data_end = leaf_data_end(root, leaf); 4661 4662 if (btrfs_leaf_free_space(root, leaf) < data_size) { 4663 btrfs_print_leaf(root, leaf); 4664 BUG(); 4665 } 4666 slot = path->slots[0]; 4667 old_data = btrfs_item_end_nr(leaf, slot); 4668 4669 BUG_ON(slot < 0); 4670 if (slot >= nritems) { 4671 btrfs_print_leaf(root, leaf); 4672 btrfs_crit(root->fs_info, "slot %d too large, nritems %d", 4673 slot, nritems); 4674 BUG_ON(1); 4675 } 4676 4677 /* 4678 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4679 */ 4680 /* first correct the data pointers */ 4681 for (i = slot; i < nritems; i++) { 4682 u32 ioff; 4683 item = btrfs_item_nr(i); 4684 4685 ioff = btrfs_token_item_offset(leaf, item, &token); 4686 btrfs_set_token_item_offset(leaf, item, 4687 ioff - data_size, &token); 4688 } 4689 4690 /* shift the data */ 4691 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4692 data_end - data_size, btrfs_leaf_data(leaf) + 4693 data_end, old_data - data_end); 4694 4695 data_end = old_data; 4696 old_size = btrfs_item_size_nr(leaf, slot); 4697 item = btrfs_item_nr(slot); 4698 btrfs_set_item_size(leaf, item, old_size + data_size); 4699 btrfs_mark_buffer_dirty(leaf); 4700 4701 if (btrfs_leaf_free_space(root, leaf) < 0) { 4702 btrfs_print_leaf(root, leaf); 4703 BUG(); 4704 } 4705 } 4706 4707 /* 4708 * this is a helper for btrfs_insert_empty_items, the main goal here is 4709 * to save stack depth by doing the bulk of the work in a function 4710 * that doesn't call btrfs_search_slot 4711 */ 4712 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4713 struct btrfs_key *cpu_key, u32 *data_size, 4714 u32 total_data, u32 total_size, int nr) 4715 { 4716 struct btrfs_item *item; 4717 int i; 4718 u32 nritems; 4719 unsigned int data_end; 4720 struct btrfs_disk_key disk_key; 4721 struct extent_buffer *leaf; 4722 int slot; 4723 struct btrfs_map_token token; 4724 4725 if (path->slots[0] == 0) { 4726 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4727 fixup_low_keys(root->fs_info, path, &disk_key, 1); 4728 } 4729 btrfs_unlock_up_safe(path, 1); 4730 4731 btrfs_init_map_token(&token); 4732 4733 leaf = path->nodes[0]; 4734 slot = path->slots[0]; 4735 4736 nritems = btrfs_header_nritems(leaf); 4737 data_end = leaf_data_end(root, leaf); 4738 4739 if (btrfs_leaf_free_space(root, leaf) < total_size) { 4740 btrfs_print_leaf(root, leaf); 4741 btrfs_crit(root->fs_info, "not enough freespace need %u have %d", 4742 total_size, btrfs_leaf_free_space(root, leaf)); 4743 BUG(); 4744 } 4745 4746 if (slot != nritems) { 4747 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4748 4749 if (old_data < data_end) { 4750 btrfs_print_leaf(root, leaf); 4751 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d", 4752 slot, old_data, data_end); 4753 BUG_ON(1); 4754 } 4755 /* 4756 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4757 */ 4758 /* first correct the data pointers */ 4759 for (i = slot; i < nritems; i++) { 4760 u32 ioff; 4761 4762 item = btrfs_item_nr( i); 4763 ioff = btrfs_token_item_offset(leaf, item, &token); 4764 btrfs_set_token_item_offset(leaf, item, 4765 ioff - total_data, &token); 4766 } 4767 /* shift the items */ 4768 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4769 btrfs_item_nr_offset(slot), 4770 (nritems - slot) * sizeof(struct btrfs_item)); 4771 4772 /* shift the data */ 4773 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4774 data_end - total_data, btrfs_leaf_data(leaf) + 4775 data_end, old_data - data_end); 4776 data_end = old_data; 4777 } 4778 4779 /* setup the item for the new data */ 4780 for (i = 0; i < nr; i++) { 4781 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4782 btrfs_set_item_key(leaf, &disk_key, slot + i); 4783 item = btrfs_item_nr(slot + i); 4784 btrfs_set_token_item_offset(leaf, item, 4785 data_end - data_size[i], &token); 4786 data_end -= data_size[i]; 4787 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4788 } 4789 4790 btrfs_set_header_nritems(leaf, nritems + nr); 4791 btrfs_mark_buffer_dirty(leaf); 4792 4793 if (btrfs_leaf_free_space(root, leaf) < 0) { 4794 btrfs_print_leaf(root, leaf); 4795 BUG(); 4796 } 4797 } 4798 4799 /* 4800 * Given a key and some data, insert items into the tree. 4801 * This does all the path init required, making room in the tree if needed. 4802 */ 4803 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4804 struct btrfs_root *root, 4805 struct btrfs_path *path, 4806 struct btrfs_key *cpu_key, u32 *data_size, 4807 int nr) 4808 { 4809 int ret = 0; 4810 int slot; 4811 int i; 4812 u32 total_size = 0; 4813 u32 total_data = 0; 4814 4815 for (i = 0; i < nr; i++) 4816 total_data += data_size[i]; 4817 4818 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4819 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4820 if (ret == 0) 4821 return -EEXIST; 4822 if (ret < 0) 4823 return ret; 4824 4825 slot = path->slots[0]; 4826 BUG_ON(slot < 0); 4827 4828 setup_items_for_insert(root, path, cpu_key, data_size, 4829 total_data, total_size, nr); 4830 return 0; 4831 } 4832 4833 /* 4834 * Given a key and some data, insert an item into the tree. 4835 * This does all the path init required, making room in the tree if needed. 4836 */ 4837 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root 4838 *root, struct btrfs_key *cpu_key, void *data, u32 4839 data_size) 4840 { 4841 int ret = 0; 4842 struct btrfs_path *path; 4843 struct extent_buffer *leaf; 4844 unsigned long ptr; 4845 4846 path = btrfs_alloc_path(); 4847 if (!path) 4848 return -ENOMEM; 4849 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4850 if (!ret) { 4851 leaf = path->nodes[0]; 4852 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4853 write_extent_buffer(leaf, data, ptr, data_size); 4854 btrfs_mark_buffer_dirty(leaf); 4855 } 4856 btrfs_free_path(path); 4857 return ret; 4858 } 4859 4860 /* 4861 * delete the pointer from a given node. 4862 * 4863 * the tree should have been previously balanced so the deletion does not 4864 * empty a node. 4865 */ 4866 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4867 int level, int slot) 4868 { 4869 struct extent_buffer *parent = path->nodes[level]; 4870 u32 nritems; 4871 int ret; 4872 4873 nritems = btrfs_header_nritems(parent); 4874 if (slot != nritems - 1) { 4875 if (level) 4876 tree_mod_log_eb_move(root->fs_info, parent, slot, 4877 slot + 1, nritems - slot - 1); 4878 memmove_extent_buffer(parent, 4879 btrfs_node_key_ptr_offset(slot), 4880 btrfs_node_key_ptr_offset(slot + 1), 4881 sizeof(struct btrfs_key_ptr) * 4882 (nritems - slot - 1)); 4883 } else if (level) { 4884 ret = tree_mod_log_insert_key(root->fs_info, parent, slot, 4885 MOD_LOG_KEY_REMOVE, GFP_NOFS); 4886 BUG_ON(ret < 0); 4887 } 4888 4889 nritems--; 4890 btrfs_set_header_nritems(parent, nritems); 4891 if (nritems == 0 && parent == root->node) { 4892 BUG_ON(btrfs_header_level(root->node) != 1); 4893 /* just turn the root into a leaf and break */ 4894 btrfs_set_header_level(root->node, 0); 4895 } else if (slot == 0) { 4896 struct btrfs_disk_key disk_key; 4897 4898 btrfs_node_key(parent, &disk_key, 0); 4899 fixup_low_keys(root->fs_info, path, &disk_key, level + 1); 4900 } 4901 btrfs_mark_buffer_dirty(parent); 4902 } 4903 4904 /* 4905 * a helper function to delete the leaf pointed to by path->slots[1] and 4906 * path->nodes[1]. 4907 * 4908 * This deletes the pointer in path->nodes[1] and frees the leaf 4909 * block extent. zero is returned if it all worked out, < 0 otherwise. 4910 * 4911 * The path must have already been setup for deleting the leaf, including 4912 * all the proper balancing. path->nodes[1] must be locked. 4913 */ 4914 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4915 struct btrfs_root *root, 4916 struct btrfs_path *path, 4917 struct extent_buffer *leaf) 4918 { 4919 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4920 del_ptr(root, path, 1, path->slots[1]); 4921 4922 /* 4923 * btrfs_free_extent is expensive, we want to make sure we 4924 * aren't holding any locks when we call it 4925 */ 4926 btrfs_unlock_up_safe(path, 0); 4927 4928 root_sub_used(root, leaf->len); 4929 4930 extent_buffer_get(leaf); 4931 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4932 free_extent_buffer_stale(leaf); 4933 } 4934 /* 4935 * delete the item at the leaf level in path. If that empties 4936 * the leaf, remove it from the tree 4937 */ 4938 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4939 struct btrfs_path *path, int slot, int nr) 4940 { 4941 struct extent_buffer *leaf; 4942 struct btrfs_item *item; 4943 u32 last_off; 4944 u32 dsize = 0; 4945 int ret = 0; 4946 int wret; 4947 int i; 4948 u32 nritems; 4949 struct btrfs_map_token token; 4950 4951 btrfs_init_map_token(&token); 4952 4953 leaf = path->nodes[0]; 4954 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4955 4956 for (i = 0; i < nr; i++) 4957 dsize += btrfs_item_size_nr(leaf, slot + i); 4958 4959 nritems = btrfs_header_nritems(leaf); 4960 4961 if (slot + nr != nritems) { 4962 int data_end = leaf_data_end(root, leaf); 4963 4964 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) + 4965 data_end + dsize, 4966 btrfs_leaf_data(leaf) + data_end, 4967 last_off - data_end); 4968 4969 for (i = slot + nr; i < nritems; i++) { 4970 u32 ioff; 4971 4972 item = btrfs_item_nr(i); 4973 ioff = btrfs_token_item_offset(leaf, item, &token); 4974 btrfs_set_token_item_offset(leaf, item, 4975 ioff + dsize, &token); 4976 } 4977 4978 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4979 btrfs_item_nr_offset(slot + nr), 4980 sizeof(struct btrfs_item) * 4981 (nritems - slot - nr)); 4982 } 4983 btrfs_set_header_nritems(leaf, nritems - nr); 4984 nritems -= nr; 4985 4986 /* delete the leaf if we've emptied it */ 4987 if (nritems == 0) { 4988 if (leaf == root->node) { 4989 btrfs_set_header_level(leaf, 0); 4990 } else { 4991 btrfs_set_path_blocking(path); 4992 clean_tree_block(trans, root->fs_info, leaf); 4993 btrfs_del_leaf(trans, root, path, leaf); 4994 } 4995 } else { 4996 int used = leaf_space_used(leaf, 0, nritems); 4997 if (slot == 0) { 4998 struct btrfs_disk_key disk_key; 4999 5000 btrfs_item_key(leaf, &disk_key, 0); 5001 fixup_low_keys(root->fs_info, path, &disk_key, 1); 5002 } 5003 5004 /* delete the leaf if it is mostly empty */ 5005 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) { 5006 /* push_leaf_left fixes the path. 5007 * make sure the path still points to our leaf 5008 * for possible call to del_ptr below 5009 */ 5010 slot = path->slots[1]; 5011 extent_buffer_get(leaf); 5012 5013 btrfs_set_path_blocking(path); 5014 wret = push_leaf_left(trans, root, path, 1, 1, 5015 1, (u32)-1); 5016 if (wret < 0 && wret != -ENOSPC) 5017 ret = wret; 5018 5019 if (path->nodes[0] == leaf && 5020 btrfs_header_nritems(leaf)) { 5021 wret = push_leaf_right(trans, root, path, 1, 5022 1, 1, 0); 5023 if (wret < 0 && wret != -ENOSPC) 5024 ret = wret; 5025 } 5026 5027 if (btrfs_header_nritems(leaf) == 0) { 5028 path->slots[1] = slot; 5029 btrfs_del_leaf(trans, root, path, leaf); 5030 free_extent_buffer(leaf); 5031 ret = 0; 5032 } else { 5033 /* if we're still in the path, make sure 5034 * we're dirty. Otherwise, one of the 5035 * push_leaf functions must have already 5036 * dirtied this buffer 5037 */ 5038 if (path->nodes[0] == leaf) 5039 btrfs_mark_buffer_dirty(leaf); 5040 free_extent_buffer(leaf); 5041 } 5042 } else { 5043 btrfs_mark_buffer_dirty(leaf); 5044 } 5045 } 5046 return ret; 5047 } 5048 5049 /* 5050 * search the tree again to find a leaf with lesser keys 5051 * returns 0 if it found something or 1 if there are no lesser leaves. 5052 * returns < 0 on io errors. 5053 * 5054 * This may release the path, and so you may lose any locks held at the 5055 * time you call it. 5056 */ 5057 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5058 { 5059 struct btrfs_key key; 5060 struct btrfs_disk_key found_key; 5061 int ret; 5062 5063 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5064 5065 if (key.offset > 0) { 5066 key.offset--; 5067 } else if (key.type > 0) { 5068 key.type--; 5069 key.offset = (u64)-1; 5070 } else if (key.objectid > 0) { 5071 key.objectid--; 5072 key.type = (u8)-1; 5073 key.offset = (u64)-1; 5074 } else { 5075 return 1; 5076 } 5077 5078 btrfs_release_path(path); 5079 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5080 if (ret < 0) 5081 return ret; 5082 btrfs_item_key(path->nodes[0], &found_key, 0); 5083 ret = comp_keys(&found_key, &key); 5084 /* 5085 * We might have had an item with the previous key in the tree right 5086 * before we released our path. And after we released our path, that 5087 * item might have been pushed to the first slot (0) of the leaf we 5088 * were holding due to a tree balance. Alternatively, an item with the 5089 * previous key can exist as the only element of a leaf (big fat item). 5090 * Therefore account for these 2 cases, so that our callers (like 5091 * btrfs_previous_item) don't miss an existing item with a key matching 5092 * the previous key we computed above. 5093 */ 5094 if (ret <= 0) 5095 return 0; 5096 return 1; 5097 } 5098 5099 /* 5100 * A helper function to walk down the tree starting at min_key, and looking 5101 * for nodes or leaves that are have a minimum transaction id. 5102 * This is used by the btree defrag code, and tree logging 5103 * 5104 * This does not cow, but it does stuff the starting key it finds back 5105 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5106 * key and get a writable path. 5107 * 5108 * This does lock as it descends, and path->keep_locks should be set 5109 * to 1 by the caller. 5110 * 5111 * This honors path->lowest_level to prevent descent past a given level 5112 * of the tree. 5113 * 5114 * min_trans indicates the oldest transaction that you are interested 5115 * in walking through. Any nodes or leaves older than min_trans are 5116 * skipped over (without reading them). 5117 * 5118 * returns zero if something useful was found, < 0 on error and 1 if there 5119 * was nothing in the tree that matched the search criteria. 5120 */ 5121 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5122 struct btrfs_path *path, 5123 u64 min_trans) 5124 { 5125 struct extent_buffer *cur; 5126 struct btrfs_key found_key; 5127 int slot; 5128 int sret; 5129 u32 nritems; 5130 int level; 5131 int ret = 1; 5132 int keep_locks = path->keep_locks; 5133 5134 path->keep_locks = 1; 5135 again: 5136 cur = btrfs_read_lock_root_node(root); 5137 level = btrfs_header_level(cur); 5138 WARN_ON(path->nodes[level]); 5139 path->nodes[level] = cur; 5140 path->locks[level] = BTRFS_READ_LOCK; 5141 5142 if (btrfs_header_generation(cur) < min_trans) { 5143 ret = 1; 5144 goto out; 5145 } 5146 while (1) { 5147 nritems = btrfs_header_nritems(cur); 5148 level = btrfs_header_level(cur); 5149 sret = bin_search(cur, min_key, level, &slot); 5150 5151 /* at the lowest level, we're done, setup the path and exit */ 5152 if (level == path->lowest_level) { 5153 if (slot >= nritems) 5154 goto find_next_key; 5155 ret = 0; 5156 path->slots[level] = slot; 5157 btrfs_item_key_to_cpu(cur, &found_key, slot); 5158 goto out; 5159 } 5160 if (sret && slot > 0) 5161 slot--; 5162 /* 5163 * check this node pointer against the min_trans parameters. 5164 * If it is too old, old, skip to the next one. 5165 */ 5166 while (slot < nritems) { 5167 u64 gen; 5168 5169 gen = btrfs_node_ptr_generation(cur, slot); 5170 if (gen < min_trans) { 5171 slot++; 5172 continue; 5173 } 5174 break; 5175 } 5176 find_next_key: 5177 /* 5178 * we didn't find a candidate key in this node, walk forward 5179 * and find another one 5180 */ 5181 if (slot >= nritems) { 5182 path->slots[level] = slot; 5183 btrfs_set_path_blocking(path); 5184 sret = btrfs_find_next_key(root, path, min_key, level, 5185 min_trans); 5186 if (sret == 0) { 5187 btrfs_release_path(path); 5188 goto again; 5189 } else { 5190 goto out; 5191 } 5192 } 5193 /* save our key for returning back */ 5194 btrfs_node_key_to_cpu(cur, &found_key, slot); 5195 path->slots[level] = slot; 5196 if (level == path->lowest_level) { 5197 ret = 0; 5198 goto out; 5199 } 5200 btrfs_set_path_blocking(path); 5201 cur = read_node_slot(root, cur, slot); 5202 BUG_ON(!cur); /* -ENOMEM */ 5203 5204 btrfs_tree_read_lock(cur); 5205 5206 path->locks[level - 1] = BTRFS_READ_LOCK; 5207 path->nodes[level - 1] = cur; 5208 unlock_up(path, level, 1, 0, NULL); 5209 btrfs_clear_path_blocking(path, NULL, 0); 5210 } 5211 out: 5212 path->keep_locks = keep_locks; 5213 if (ret == 0) { 5214 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5215 btrfs_set_path_blocking(path); 5216 memcpy(min_key, &found_key, sizeof(found_key)); 5217 } 5218 return ret; 5219 } 5220 5221 static void tree_move_down(struct btrfs_root *root, 5222 struct btrfs_path *path, 5223 int *level, int root_level) 5224 { 5225 BUG_ON(*level == 0); 5226 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level], 5227 path->slots[*level]); 5228 path->slots[*level - 1] = 0; 5229 (*level)--; 5230 } 5231 5232 static int tree_move_next_or_upnext(struct btrfs_root *root, 5233 struct btrfs_path *path, 5234 int *level, int root_level) 5235 { 5236 int ret = 0; 5237 int nritems; 5238 nritems = btrfs_header_nritems(path->nodes[*level]); 5239 5240 path->slots[*level]++; 5241 5242 while (path->slots[*level] >= nritems) { 5243 if (*level == root_level) 5244 return -1; 5245 5246 /* move upnext */ 5247 path->slots[*level] = 0; 5248 free_extent_buffer(path->nodes[*level]); 5249 path->nodes[*level] = NULL; 5250 (*level)++; 5251 path->slots[*level]++; 5252 5253 nritems = btrfs_header_nritems(path->nodes[*level]); 5254 ret = 1; 5255 } 5256 return ret; 5257 } 5258 5259 /* 5260 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5261 * or down. 5262 */ 5263 static int tree_advance(struct btrfs_root *root, 5264 struct btrfs_path *path, 5265 int *level, int root_level, 5266 int allow_down, 5267 struct btrfs_key *key) 5268 { 5269 int ret; 5270 5271 if (*level == 0 || !allow_down) { 5272 ret = tree_move_next_or_upnext(root, path, level, root_level); 5273 } else { 5274 tree_move_down(root, path, level, root_level); 5275 ret = 0; 5276 } 5277 if (ret >= 0) { 5278 if (*level == 0) 5279 btrfs_item_key_to_cpu(path->nodes[*level], key, 5280 path->slots[*level]); 5281 else 5282 btrfs_node_key_to_cpu(path->nodes[*level], key, 5283 path->slots[*level]); 5284 } 5285 return ret; 5286 } 5287 5288 static int tree_compare_item(struct btrfs_root *left_root, 5289 struct btrfs_path *left_path, 5290 struct btrfs_path *right_path, 5291 char *tmp_buf) 5292 { 5293 int cmp; 5294 int len1, len2; 5295 unsigned long off1, off2; 5296 5297 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5298 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5299 if (len1 != len2) 5300 return 1; 5301 5302 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5303 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5304 right_path->slots[0]); 5305 5306 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5307 5308 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5309 if (cmp) 5310 return 1; 5311 return 0; 5312 } 5313 5314 #define ADVANCE 1 5315 #define ADVANCE_ONLY_NEXT -1 5316 5317 /* 5318 * This function compares two trees and calls the provided callback for 5319 * every changed/new/deleted item it finds. 5320 * If shared tree blocks are encountered, whole subtrees are skipped, making 5321 * the compare pretty fast on snapshotted subvolumes. 5322 * 5323 * This currently works on commit roots only. As commit roots are read only, 5324 * we don't do any locking. The commit roots are protected with transactions. 5325 * Transactions are ended and rejoined when a commit is tried in between. 5326 * 5327 * This function checks for modifications done to the trees while comparing. 5328 * If it detects a change, it aborts immediately. 5329 */ 5330 int btrfs_compare_trees(struct btrfs_root *left_root, 5331 struct btrfs_root *right_root, 5332 btrfs_changed_cb_t changed_cb, void *ctx) 5333 { 5334 int ret; 5335 int cmp; 5336 struct btrfs_path *left_path = NULL; 5337 struct btrfs_path *right_path = NULL; 5338 struct btrfs_key left_key; 5339 struct btrfs_key right_key; 5340 char *tmp_buf = NULL; 5341 int left_root_level; 5342 int right_root_level; 5343 int left_level; 5344 int right_level; 5345 int left_end_reached; 5346 int right_end_reached; 5347 int advance_left; 5348 int advance_right; 5349 u64 left_blockptr; 5350 u64 right_blockptr; 5351 u64 left_gen; 5352 u64 right_gen; 5353 5354 left_path = btrfs_alloc_path(); 5355 if (!left_path) { 5356 ret = -ENOMEM; 5357 goto out; 5358 } 5359 right_path = btrfs_alloc_path(); 5360 if (!right_path) { 5361 ret = -ENOMEM; 5362 goto out; 5363 } 5364 5365 tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN); 5366 if (!tmp_buf) { 5367 tmp_buf = vmalloc(left_root->nodesize); 5368 if (!tmp_buf) { 5369 ret = -ENOMEM; 5370 goto out; 5371 } 5372 } 5373 5374 left_path->search_commit_root = 1; 5375 left_path->skip_locking = 1; 5376 right_path->search_commit_root = 1; 5377 right_path->skip_locking = 1; 5378 5379 /* 5380 * Strategy: Go to the first items of both trees. Then do 5381 * 5382 * If both trees are at level 0 5383 * Compare keys of current items 5384 * If left < right treat left item as new, advance left tree 5385 * and repeat 5386 * If left > right treat right item as deleted, advance right tree 5387 * and repeat 5388 * If left == right do deep compare of items, treat as changed if 5389 * needed, advance both trees and repeat 5390 * If both trees are at the same level but not at level 0 5391 * Compare keys of current nodes/leafs 5392 * If left < right advance left tree and repeat 5393 * If left > right advance right tree and repeat 5394 * If left == right compare blockptrs of the next nodes/leafs 5395 * If they match advance both trees but stay at the same level 5396 * and repeat 5397 * If they don't match advance both trees while allowing to go 5398 * deeper and repeat 5399 * If tree levels are different 5400 * Advance the tree that needs it and repeat 5401 * 5402 * Advancing a tree means: 5403 * If we are at level 0, try to go to the next slot. If that's not 5404 * possible, go one level up and repeat. Stop when we found a level 5405 * where we could go to the next slot. We may at this point be on a 5406 * node or a leaf. 5407 * 5408 * If we are not at level 0 and not on shared tree blocks, go one 5409 * level deeper. 5410 * 5411 * If we are not at level 0 and on shared tree blocks, go one slot to 5412 * the right if possible or go up and right. 5413 */ 5414 5415 down_read(&left_root->fs_info->commit_root_sem); 5416 left_level = btrfs_header_level(left_root->commit_root); 5417 left_root_level = left_level; 5418 left_path->nodes[left_level] = left_root->commit_root; 5419 extent_buffer_get(left_path->nodes[left_level]); 5420 5421 right_level = btrfs_header_level(right_root->commit_root); 5422 right_root_level = right_level; 5423 right_path->nodes[right_level] = right_root->commit_root; 5424 extent_buffer_get(right_path->nodes[right_level]); 5425 up_read(&left_root->fs_info->commit_root_sem); 5426 5427 if (left_level == 0) 5428 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5429 &left_key, left_path->slots[left_level]); 5430 else 5431 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5432 &left_key, left_path->slots[left_level]); 5433 if (right_level == 0) 5434 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5435 &right_key, right_path->slots[right_level]); 5436 else 5437 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5438 &right_key, right_path->slots[right_level]); 5439 5440 left_end_reached = right_end_reached = 0; 5441 advance_left = advance_right = 0; 5442 5443 while (1) { 5444 if (advance_left && !left_end_reached) { 5445 ret = tree_advance(left_root, left_path, &left_level, 5446 left_root_level, 5447 advance_left != ADVANCE_ONLY_NEXT, 5448 &left_key); 5449 if (ret < 0) 5450 left_end_reached = ADVANCE; 5451 advance_left = 0; 5452 } 5453 if (advance_right && !right_end_reached) { 5454 ret = tree_advance(right_root, right_path, &right_level, 5455 right_root_level, 5456 advance_right != ADVANCE_ONLY_NEXT, 5457 &right_key); 5458 if (ret < 0) 5459 right_end_reached = ADVANCE; 5460 advance_right = 0; 5461 } 5462 5463 if (left_end_reached && right_end_reached) { 5464 ret = 0; 5465 goto out; 5466 } else if (left_end_reached) { 5467 if (right_level == 0) { 5468 ret = changed_cb(left_root, right_root, 5469 left_path, right_path, 5470 &right_key, 5471 BTRFS_COMPARE_TREE_DELETED, 5472 ctx); 5473 if (ret < 0) 5474 goto out; 5475 } 5476 advance_right = ADVANCE; 5477 continue; 5478 } else if (right_end_reached) { 5479 if (left_level == 0) { 5480 ret = changed_cb(left_root, right_root, 5481 left_path, right_path, 5482 &left_key, 5483 BTRFS_COMPARE_TREE_NEW, 5484 ctx); 5485 if (ret < 0) 5486 goto out; 5487 } 5488 advance_left = ADVANCE; 5489 continue; 5490 } 5491 5492 if (left_level == 0 && right_level == 0) { 5493 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5494 if (cmp < 0) { 5495 ret = changed_cb(left_root, right_root, 5496 left_path, right_path, 5497 &left_key, 5498 BTRFS_COMPARE_TREE_NEW, 5499 ctx); 5500 if (ret < 0) 5501 goto out; 5502 advance_left = ADVANCE; 5503 } else if (cmp > 0) { 5504 ret = changed_cb(left_root, right_root, 5505 left_path, right_path, 5506 &right_key, 5507 BTRFS_COMPARE_TREE_DELETED, 5508 ctx); 5509 if (ret < 0) 5510 goto out; 5511 advance_right = ADVANCE; 5512 } else { 5513 enum btrfs_compare_tree_result result; 5514 5515 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5516 ret = tree_compare_item(left_root, left_path, 5517 right_path, tmp_buf); 5518 if (ret) 5519 result = BTRFS_COMPARE_TREE_CHANGED; 5520 else 5521 result = BTRFS_COMPARE_TREE_SAME; 5522 ret = changed_cb(left_root, right_root, 5523 left_path, right_path, 5524 &left_key, result, ctx); 5525 if (ret < 0) 5526 goto out; 5527 advance_left = ADVANCE; 5528 advance_right = ADVANCE; 5529 } 5530 } else if (left_level == right_level) { 5531 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5532 if (cmp < 0) { 5533 advance_left = ADVANCE; 5534 } else if (cmp > 0) { 5535 advance_right = ADVANCE; 5536 } else { 5537 left_blockptr = btrfs_node_blockptr( 5538 left_path->nodes[left_level], 5539 left_path->slots[left_level]); 5540 right_blockptr = btrfs_node_blockptr( 5541 right_path->nodes[right_level], 5542 right_path->slots[right_level]); 5543 left_gen = btrfs_node_ptr_generation( 5544 left_path->nodes[left_level], 5545 left_path->slots[left_level]); 5546 right_gen = btrfs_node_ptr_generation( 5547 right_path->nodes[right_level], 5548 right_path->slots[right_level]); 5549 if (left_blockptr == right_blockptr && 5550 left_gen == right_gen) { 5551 /* 5552 * As we're on a shared block, don't 5553 * allow to go deeper. 5554 */ 5555 advance_left = ADVANCE_ONLY_NEXT; 5556 advance_right = ADVANCE_ONLY_NEXT; 5557 } else { 5558 advance_left = ADVANCE; 5559 advance_right = ADVANCE; 5560 } 5561 } 5562 } else if (left_level < right_level) { 5563 advance_right = ADVANCE; 5564 } else { 5565 advance_left = ADVANCE; 5566 } 5567 } 5568 5569 out: 5570 btrfs_free_path(left_path); 5571 btrfs_free_path(right_path); 5572 kvfree(tmp_buf); 5573 return ret; 5574 } 5575 5576 /* 5577 * this is similar to btrfs_next_leaf, but does not try to preserve 5578 * and fixup the path. It looks for and returns the next key in the 5579 * tree based on the current path and the min_trans parameters. 5580 * 5581 * 0 is returned if another key is found, < 0 if there are any errors 5582 * and 1 is returned if there are no higher keys in the tree 5583 * 5584 * path->keep_locks should be set to 1 on the search made before 5585 * calling this function. 5586 */ 5587 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5588 struct btrfs_key *key, int level, u64 min_trans) 5589 { 5590 int slot; 5591 struct extent_buffer *c; 5592 5593 WARN_ON(!path->keep_locks); 5594 while (level < BTRFS_MAX_LEVEL) { 5595 if (!path->nodes[level]) 5596 return 1; 5597 5598 slot = path->slots[level] + 1; 5599 c = path->nodes[level]; 5600 next: 5601 if (slot >= btrfs_header_nritems(c)) { 5602 int ret; 5603 int orig_lowest; 5604 struct btrfs_key cur_key; 5605 if (level + 1 >= BTRFS_MAX_LEVEL || 5606 !path->nodes[level + 1]) 5607 return 1; 5608 5609 if (path->locks[level + 1]) { 5610 level++; 5611 continue; 5612 } 5613 5614 slot = btrfs_header_nritems(c) - 1; 5615 if (level == 0) 5616 btrfs_item_key_to_cpu(c, &cur_key, slot); 5617 else 5618 btrfs_node_key_to_cpu(c, &cur_key, slot); 5619 5620 orig_lowest = path->lowest_level; 5621 btrfs_release_path(path); 5622 path->lowest_level = level; 5623 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5624 0, 0); 5625 path->lowest_level = orig_lowest; 5626 if (ret < 0) 5627 return ret; 5628 5629 c = path->nodes[level]; 5630 slot = path->slots[level]; 5631 if (ret == 0) 5632 slot++; 5633 goto next; 5634 } 5635 5636 if (level == 0) 5637 btrfs_item_key_to_cpu(c, key, slot); 5638 else { 5639 u64 gen = btrfs_node_ptr_generation(c, slot); 5640 5641 if (gen < min_trans) { 5642 slot++; 5643 goto next; 5644 } 5645 btrfs_node_key_to_cpu(c, key, slot); 5646 } 5647 return 0; 5648 } 5649 return 1; 5650 } 5651 5652 /* 5653 * search the tree again to find a leaf with greater keys 5654 * returns 0 if it found something or 1 if there are no greater leaves. 5655 * returns < 0 on io errors. 5656 */ 5657 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5658 { 5659 return btrfs_next_old_leaf(root, path, 0); 5660 } 5661 5662 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5663 u64 time_seq) 5664 { 5665 int slot; 5666 int level; 5667 struct extent_buffer *c; 5668 struct extent_buffer *next; 5669 struct btrfs_key key; 5670 u32 nritems; 5671 int ret; 5672 int old_spinning = path->leave_spinning; 5673 int next_rw_lock = 0; 5674 5675 nritems = btrfs_header_nritems(path->nodes[0]); 5676 if (nritems == 0) 5677 return 1; 5678 5679 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5680 again: 5681 level = 1; 5682 next = NULL; 5683 next_rw_lock = 0; 5684 btrfs_release_path(path); 5685 5686 path->keep_locks = 1; 5687 path->leave_spinning = 1; 5688 5689 if (time_seq) 5690 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5691 else 5692 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5693 path->keep_locks = 0; 5694 5695 if (ret < 0) 5696 return ret; 5697 5698 nritems = btrfs_header_nritems(path->nodes[0]); 5699 /* 5700 * by releasing the path above we dropped all our locks. A balance 5701 * could have added more items next to the key that used to be 5702 * at the very end of the block. So, check again here and 5703 * advance the path if there are now more items available. 5704 */ 5705 if (nritems > 0 && path->slots[0] < nritems - 1) { 5706 if (ret == 0) 5707 path->slots[0]++; 5708 ret = 0; 5709 goto done; 5710 } 5711 /* 5712 * So the above check misses one case: 5713 * - after releasing the path above, someone has removed the item that 5714 * used to be at the very end of the block, and balance between leafs 5715 * gets another one with bigger key.offset to replace it. 5716 * 5717 * This one should be returned as well, or we can get leaf corruption 5718 * later(esp. in __btrfs_drop_extents()). 5719 * 5720 * And a bit more explanation about this check, 5721 * with ret > 0, the key isn't found, the path points to the slot 5722 * where it should be inserted, so the path->slots[0] item must be the 5723 * bigger one. 5724 */ 5725 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5726 ret = 0; 5727 goto done; 5728 } 5729 5730 while (level < BTRFS_MAX_LEVEL) { 5731 if (!path->nodes[level]) { 5732 ret = 1; 5733 goto done; 5734 } 5735 5736 slot = path->slots[level] + 1; 5737 c = path->nodes[level]; 5738 if (slot >= btrfs_header_nritems(c)) { 5739 level++; 5740 if (level == BTRFS_MAX_LEVEL) { 5741 ret = 1; 5742 goto done; 5743 } 5744 continue; 5745 } 5746 5747 if (next) { 5748 btrfs_tree_unlock_rw(next, next_rw_lock); 5749 free_extent_buffer(next); 5750 } 5751 5752 next = c; 5753 next_rw_lock = path->locks[level]; 5754 ret = read_block_for_search(NULL, root, path, &next, level, 5755 slot, &key, 0); 5756 if (ret == -EAGAIN) 5757 goto again; 5758 5759 if (ret < 0) { 5760 btrfs_release_path(path); 5761 goto done; 5762 } 5763 5764 if (!path->skip_locking) { 5765 ret = btrfs_try_tree_read_lock(next); 5766 if (!ret && time_seq) { 5767 /* 5768 * If we don't get the lock, we may be racing 5769 * with push_leaf_left, holding that lock while 5770 * itself waiting for the leaf we've currently 5771 * locked. To solve this situation, we give up 5772 * on our lock and cycle. 5773 */ 5774 free_extent_buffer(next); 5775 btrfs_release_path(path); 5776 cond_resched(); 5777 goto again; 5778 } 5779 if (!ret) { 5780 btrfs_set_path_blocking(path); 5781 btrfs_tree_read_lock(next); 5782 btrfs_clear_path_blocking(path, next, 5783 BTRFS_READ_LOCK); 5784 } 5785 next_rw_lock = BTRFS_READ_LOCK; 5786 } 5787 break; 5788 } 5789 path->slots[level] = slot; 5790 while (1) { 5791 level--; 5792 c = path->nodes[level]; 5793 if (path->locks[level]) 5794 btrfs_tree_unlock_rw(c, path->locks[level]); 5795 5796 free_extent_buffer(c); 5797 path->nodes[level] = next; 5798 path->slots[level] = 0; 5799 if (!path->skip_locking) 5800 path->locks[level] = next_rw_lock; 5801 if (!level) 5802 break; 5803 5804 ret = read_block_for_search(NULL, root, path, &next, level, 5805 0, &key, 0); 5806 if (ret == -EAGAIN) 5807 goto again; 5808 5809 if (ret < 0) { 5810 btrfs_release_path(path); 5811 goto done; 5812 } 5813 5814 if (!path->skip_locking) { 5815 ret = btrfs_try_tree_read_lock(next); 5816 if (!ret) { 5817 btrfs_set_path_blocking(path); 5818 btrfs_tree_read_lock(next); 5819 btrfs_clear_path_blocking(path, next, 5820 BTRFS_READ_LOCK); 5821 } 5822 next_rw_lock = BTRFS_READ_LOCK; 5823 } 5824 } 5825 ret = 0; 5826 done: 5827 unlock_up(path, 0, 1, 0, NULL); 5828 path->leave_spinning = old_spinning; 5829 if (!old_spinning) 5830 btrfs_set_path_blocking(path); 5831 5832 return ret; 5833 } 5834 5835 /* 5836 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5837 * searching until it gets past min_objectid or finds an item of 'type' 5838 * 5839 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5840 */ 5841 int btrfs_previous_item(struct btrfs_root *root, 5842 struct btrfs_path *path, u64 min_objectid, 5843 int type) 5844 { 5845 struct btrfs_key found_key; 5846 struct extent_buffer *leaf; 5847 u32 nritems; 5848 int ret; 5849 5850 while (1) { 5851 if (path->slots[0] == 0) { 5852 btrfs_set_path_blocking(path); 5853 ret = btrfs_prev_leaf(root, path); 5854 if (ret != 0) 5855 return ret; 5856 } else { 5857 path->slots[0]--; 5858 } 5859 leaf = path->nodes[0]; 5860 nritems = btrfs_header_nritems(leaf); 5861 if (nritems == 0) 5862 return 1; 5863 if (path->slots[0] == nritems) 5864 path->slots[0]--; 5865 5866 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5867 if (found_key.objectid < min_objectid) 5868 break; 5869 if (found_key.type == type) 5870 return 0; 5871 if (found_key.objectid == min_objectid && 5872 found_key.type < type) 5873 break; 5874 } 5875 return 1; 5876 } 5877 5878 /* 5879 * search in extent tree to find a previous Metadata/Data extent item with 5880 * min objecitd. 5881 * 5882 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5883 */ 5884 int btrfs_previous_extent_item(struct btrfs_root *root, 5885 struct btrfs_path *path, u64 min_objectid) 5886 { 5887 struct btrfs_key found_key; 5888 struct extent_buffer *leaf; 5889 u32 nritems; 5890 int ret; 5891 5892 while (1) { 5893 if (path->slots[0] == 0) { 5894 btrfs_set_path_blocking(path); 5895 ret = btrfs_prev_leaf(root, path); 5896 if (ret != 0) 5897 return ret; 5898 } else { 5899 path->slots[0]--; 5900 } 5901 leaf = path->nodes[0]; 5902 nritems = btrfs_header_nritems(leaf); 5903 if (nritems == 0) 5904 return 1; 5905 if (path->slots[0] == nritems) 5906 path->slots[0]--; 5907 5908 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5909 if (found_key.objectid < min_objectid) 5910 break; 5911 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5912 found_key.type == BTRFS_METADATA_ITEM_KEY) 5913 return 0; 5914 if (found_key.objectid == min_objectid && 5915 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5916 break; 5917 } 5918 return 1; 5919 } 5920