1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char *name; 35 const char *driver; 36 } btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42 }; 43 44 int btrfs_super_csum_size(const struct btrfs_super_block *s) 45 { 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51 } 52 53 const char *btrfs_super_csum_name(u16 csum_type) 54 { 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57 } 58 59 /* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63 const char *btrfs_super_csum_driver(u16 csum_type) 64 { 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver ?: 67 btrfs_csums[csum_type].name; 68 } 69 70 size_t __const btrfs_get_num_csums(void) 71 { 72 return ARRAY_SIZE(btrfs_csums); 73 } 74 75 struct btrfs_path *btrfs_alloc_path(void) 76 { 77 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 78 } 79 80 /* this also releases the path */ 81 void btrfs_free_path(struct btrfs_path *p) 82 { 83 if (!p) 84 return; 85 btrfs_release_path(p); 86 kmem_cache_free(btrfs_path_cachep, p); 87 } 88 89 /* 90 * path release drops references on the extent buffers in the path 91 * and it drops any locks held by this path 92 * 93 * It is safe to call this on paths that no locks or extent buffers held. 94 */ 95 noinline void btrfs_release_path(struct btrfs_path *p) 96 { 97 int i; 98 99 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 100 p->slots[i] = 0; 101 if (!p->nodes[i]) 102 continue; 103 if (p->locks[i]) { 104 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 105 p->locks[i] = 0; 106 } 107 free_extent_buffer(p->nodes[i]); 108 p->nodes[i] = NULL; 109 } 110 } 111 112 /* 113 * safely gets a reference on the root node of a tree. A lock 114 * is not taken, so a concurrent writer may put a different node 115 * at the root of the tree. See btrfs_lock_root_node for the 116 * looping required. 117 * 118 * The extent buffer returned by this has a reference taken, so 119 * it won't disappear. It may stop being the root of the tree 120 * at any time because there are no locks held. 121 */ 122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 123 { 124 struct extent_buffer *eb; 125 126 while (1) { 127 rcu_read_lock(); 128 eb = rcu_dereference(root->node); 129 130 /* 131 * RCU really hurts here, we could free up the root node because 132 * it was COWed but we may not get the new root node yet so do 133 * the inc_not_zero dance and if it doesn't work then 134 * synchronize_rcu and try again. 135 */ 136 if (atomic_inc_not_zero(&eb->refs)) { 137 rcu_read_unlock(); 138 break; 139 } 140 rcu_read_unlock(); 141 synchronize_rcu(); 142 } 143 return eb; 144 } 145 146 /* loop around taking references on and locking the root node of the 147 * tree until you end up with a lock on the root. A locked buffer 148 * is returned, with a reference held. 149 */ 150 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 151 { 152 struct extent_buffer *eb; 153 154 while (1) { 155 eb = btrfs_root_node(root); 156 btrfs_tree_lock(eb); 157 if (eb == root->node) 158 break; 159 btrfs_tree_unlock(eb); 160 free_extent_buffer(eb); 161 } 162 return eb; 163 } 164 165 /* loop around taking references on and locking the root node of the 166 * tree until you end up with a lock on the root. A locked buffer 167 * is returned, with a reference held. 168 */ 169 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 170 { 171 struct extent_buffer *eb; 172 173 while (1) { 174 eb = btrfs_root_node(root); 175 btrfs_tree_read_lock(eb); 176 if (eb == root->node) 177 break; 178 btrfs_tree_read_unlock(eb); 179 free_extent_buffer(eb); 180 } 181 return eb; 182 } 183 184 /* cowonly root (everything not a reference counted cow subvolume), just get 185 * put onto a simple dirty list. transaction.c walks this to make sure they 186 * get properly updated on disk. 187 */ 188 static void add_root_to_dirty_list(struct btrfs_root *root) 189 { 190 struct btrfs_fs_info *fs_info = root->fs_info; 191 192 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 193 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 194 return; 195 196 spin_lock(&fs_info->trans_lock); 197 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 198 /* Want the extent tree to be the last on the list */ 199 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 200 list_move_tail(&root->dirty_list, 201 &fs_info->dirty_cowonly_roots); 202 else 203 list_move(&root->dirty_list, 204 &fs_info->dirty_cowonly_roots); 205 } 206 spin_unlock(&fs_info->trans_lock); 207 } 208 209 /* 210 * used by snapshot creation to make a copy of a root for a tree with 211 * a given objectid. The buffer with the new root node is returned in 212 * cow_ret, and this func returns zero on success or a negative error code. 213 */ 214 int btrfs_copy_root(struct btrfs_trans_handle *trans, 215 struct btrfs_root *root, 216 struct extent_buffer *buf, 217 struct extent_buffer **cow_ret, u64 new_root_objectid) 218 { 219 struct btrfs_fs_info *fs_info = root->fs_info; 220 struct extent_buffer *cow; 221 int ret = 0; 222 int level; 223 struct btrfs_disk_key disk_key; 224 225 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 226 trans->transid != fs_info->running_transaction->transid); 227 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 228 trans->transid != root->last_trans); 229 230 level = btrfs_header_level(buf); 231 if (level == 0) 232 btrfs_item_key(buf, &disk_key, 0); 233 else 234 btrfs_node_key(buf, &disk_key, 0); 235 236 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 237 &disk_key, level, buf->start, 0); 238 if (IS_ERR(cow)) 239 return PTR_ERR(cow); 240 241 copy_extent_buffer_full(cow, buf); 242 btrfs_set_header_bytenr(cow, cow->start); 243 btrfs_set_header_generation(cow, trans->transid); 244 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 245 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 246 BTRFS_HEADER_FLAG_RELOC); 247 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 248 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 249 else 250 btrfs_set_header_owner(cow, new_root_objectid); 251 252 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 253 254 WARN_ON(btrfs_header_generation(buf) > trans->transid); 255 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 256 ret = btrfs_inc_ref(trans, root, cow, 1); 257 else 258 ret = btrfs_inc_ref(trans, root, cow, 0); 259 260 if (ret) 261 return ret; 262 263 btrfs_mark_buffer_dirty(cow); 264 *cow_ret = cow; 265 return 0; 266 } 267 268 enum mod_log_op { 269 MOD_LOG_KEY_REPLACE, 270 MOD_LOG_KEY_ADD, 271 MOD_LOG_KEY_REMOVE, 272 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 273 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 274 MOD_LOG_MOVE_KEYS, 275 MOD_LOG_ROOT_REPLACE, 276 }; 277 278 struct tree_mod_root { 279 u64 logical; 280 u8 level; 281 }; 282 283 struct tree_mod_elem { 284 struct rb_node node; 285 u64 logical; 286 u64 seq; 287 enum mod_log_op op; 288 289 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 290 int slot; 291 292 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 293 u64 generation; 294 295 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 296 struct btrfs_disk_key key; 297 u64 blockptr; 298 299 /* this is used for op == MOD_LOG_MOVE_KEYS */ 300 struct { 301 int dst_slot; 302 int nr_items; 303 } move; 304 305 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 306 struct tree_mod_root old_root; 307 }; 308 309 /* 310 * Pull a new tree mod seq number for our operation. 311 */ 312 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 313 { 314 return atomic64_inc_return(&fs_info->tree_mod_seq); 315 } 316 317 /* 318 * This adds a new blocker to the tree mod log's blocker list if the @elem 319 * passed does not already have a sequence number set. So when a caller expects 320 * to record tree modifications, it should ensure to set elem->seq to zero 321 * before calling btrfs_get_tree_mod_seq. 322 * Returns a fresh, unused tree log modification sequence number, even if no new 323 * blocker was added. 324 */ 325 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 326 struct seq_list *elem) 327 { 328 write_lock(&fs_info->tree_mod_log_lock); 329 spin_lock(&fs_info->tree_mod_seq_lock); 330 if (!elem->seq) { 331 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 332 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 333 } 334 spin_unlock(&fs_info->tree_mod_seq_lock); 335 write_unlock(&fs_info->tree_mod_log_lock); 336 337 return elem->seq; 338 } 339 340 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 341 struct seq_list *elem) 342 { 343 struct rb_root *tm_root; 344 struct rb_node *node; 345 struct rb_node *next; 346 struct seq_list *cur_elem; 347 struct tree_mod_elem *tm; 348 u64 min_seq = (u64)-1; 349 u64 seq_putting = elem->seq; 350 351 if (!seq_putting) 352 return; 353 354 spin_lock(&fs_info->tree_mod_seq_lock); 355 list_del(&elem->list); 356 elem->seq = 0; 357 358 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 359 if (cur_elem->seq < min_seq) { 360 if (seq_putting > cur_elem->seq) { 361 /* 362 * blocker with lower sequence number exists, we 363 * cannot remove anything from the log 364 */ 365 spin_unlock(&fs_info->tree_mod_seq_lock); 366 return; 367 } 368 min_seq = cur_elem->seq; 369 } 370 } 371 spin_unlock(&fs_info->tree_mod_seq_lock); 372 373 /* 374 * anything that's lower than the lowest existing (read: blocked) 375 * sequence number can be removed from the tree. 376 */ 377 write_lock(&fs_info->tree_mod_log_lock); 378 tm_root = &fs_info->tree_mod_log; 379 for (node = rb_first(tm_root); node; node = next) { 380 next = rb_next(node); 381 tm = rb_entry(node, struct tree_mod_elem, node); 382 if (tm->seq > min_seq) 383 continue; 384 rb_erase(node, tm_root); 385 kfree(tm); 386 } 387 write_unlock(&fs_info->tree_mod_log_lock); 388 } 389 390 /* 391 * key order of the log: 392 * node/leaf start address -> sequence 393 * 394 * The 'start address' is the logical address of the *new* root node 395 * for root replace operations, or the logical address of the affected 396 * block for all other operations. 397 */ 398 static noinline int 399 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 400 { 401 struct rb_root *tm_root; 402 struct rb_node **new; 403 struct rb_node *parent = NULL; 404 struct tree_mod_elem *cur; 405 406 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 407 408 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 409 410 tm_root = &fs_info->tree_mod_log; 411 new = &tm_root->rb_node; 412 while (*new) { 413 cur = rb_entry(*new, struct tree_mod_elem, node); 414 parent = *new; 415 if (cur->logical < tm->logical) 416 new = &((*new)->rb_left); 417 else if (cur->logical > tm->logical) 418 new = &((*new)->rb_right); 419 else if (cur->seq < tm->seq) 420 new = &((*new)->rb_left); 421 else if (cur->seq > tm->seq) 422 new = &((*new)->rb_right); 423 else 424 return -EEXIST; 425 } 426 427 rb_link_node(&tm->node, parent, new); 428 rb_insert_color(&tm->node, tm_root); 429 return 0; 430 } 431 432 /* 433 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 434 * returns zero with the tree_mod_log_lock acquired. The caller must hold 435 * this until all tree mod log insertions are recorded in the rb tree and then 436 * write unlock fs_info::tree_mod_log_lock. 437 */ 438 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 439 struct extent_buffer *eb) { 440 smp_mb(); 441 if (list_empty(&(fs_info)->tree_mod_seq_list)) 442 return 1; 443 if (eb && btrfs_header_level(eb) == 0) 444 return 1; 445 446 write_lock(&fs_info->tree_mod_log_lock); 447 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 448 write_unlock(&fs_info->tree_mod_log_lock); 449 return 1; 450 } 451 452 return 0; 453 } 454 455 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 456 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 457 struct extent_buffer *eb) 458 { 459 smp_mb(); 460 if (list_empty(&(fs_info)->tree_mod_seq_list)) 461 return 0; 462 if (eb && btrfs_header_level(eb) == 0) 463 return 0; 464 465 return 1; 466 } 467 468 static struct tree_mod_elem * 469 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 470 enum mod_log_op op, gfp_t flags) 471 { 472 struct tree_mod_elem *tm; 473 474 tm = kzalloc(sizeof(*tm), flags); 475 if (!tm) 476 return NULL; 477 478 tm->logical = eb->start; 479 if (op != MOD_LOG_KEY_ADD) { 480 btrfs_node_key(eb, &tm->key, slot); 481 tm->blockptr = btrfs_node_blockptr(eb, slot); 482 } 483 tm->op = op; 484 tm->slot = slot; 485 tm->generation = btrfs_node_ptr_generation(eb, slot); 486 RB_CLEAR_NODE(&tm->node); 487 488 return tm; 489 } 490 491 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 492 enum mod_log_op op, gfp_t flags) 493 { 494 struct tree_mod_elem *tm; 495 int ret; 496 497 if (!tree_mod_need_log(eb->fs_info, eb)) 498 return 0; 499 500 tm = alloc_tree_mod_elem(eb, slot, op, flags); 501 if (!tm) 502 return -ENOMEM; 503 504 if (tree_mod_dont_log(eb->fs_info, eb)) { 505 kfree(tm); 506 return 0; 507 } 508 509 ret = __tree_mod_log_insert(eb->fs_info, tm); 510 write_unlock(&eb->fs_info->tree_mod_log_lock); 511 if (ret) 512 kfree(tm); 513 514 return ret; 515 } 516 517 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 518 int dst_slot, int src_slot, int nr_items) 519 { 520 struct tree_mod_elem *tm = NULL; 521 struct tree_mod_elem **tm_list = NULL; 522 int ret = 0; 523 int i; 524 int locked = 0; 525 526 if (!tree_mod_need_log(eb->fs_info, eb)) 527 return 0; 528 529 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 530 if (!tm_list) 531 return -ENOMEM; 532 533 tm = kzalloc(sizeof(*tm), GFP_NOFS); 534 if (!tm) { 535 ret = -ENOMEM; 536 goto free_tms; 537 } 538 539 tm->logical = eb->start; 540 tm->slot = src_slot; 541 tm->move.dst_slot = dst_slot; 542 tm->move.nr_items = nr_items; 543 tm->op = MOD_LOG_MOVE_KEYS; 544 545 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 546 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 547 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 548 if (!tm_list[i]) { 549 ret = -ENOMEM; 550 goto free_tms; 551 } 552 } 553 554 if (tree_mod_dont_log(eb->fs_info, eb)) 555 goto free_tms; 556 locked = 1; 557 558 /* 559 * When we override something during the move, we log these removals. 560 * This can only happen when we move towards the beginning of the 561 * buffer, i.e. dst_slot < src_slot. 562 */ 563 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 564 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 565 if (ret) 566 goto free_tms; 567 } 568 569 ret = __tree_mod_log_insert(eb->fs_info, tm); 570 if (ret) 571 goto free_tms; 572 write_unlock(&eb->fs_info->tree_mod_log_lock); 573 kfree(tm_list); 574 575 return 0; 576 free_tms: 577 for (i = 0; i < nr_items; i++) { 578 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 579 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 580 kfree(tm_list[i]); 581 } 582 if (locked) 583 write_unlock(&eb->fs_info->tree_mod_log_lock); 584 kfree(tm_list); 585 kfree(tm); 586 587 return ret; 588 } 589 590 static inline int 591 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 592 struct tree_mod_elem **tm_list, 593 int nritems) 594 { 595 int i, j; 596 int ret; 597 598 for (i = nritems - 1; i >= 0; i--) { 599 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 600 if (ret) { 601 for (j = nritems - 1; j > i; j--) 602 rb_erase(&tm_list[j]->node, 603 &fs_info->tree_mod_log); 604 return ret; 605 } 606 } 607 608 return 0; 609 } 610 611 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 612 struct extent_buffer *new_root, int log_removal) 613 { 614 struct btrfs_fs_info *fs_info = old_root->fs_info; 615 struct tree_mod_elem *tm = NULL; 616 struct tree_mod_elem **tm_list = NULL; 617 int nritems = 0; 618 int ret = 0; 619 int i; 620 621 if (!tree_mod_need_log(fs_info, NULL)) 622 return 0; 623 624 if (log_removal && btrfs_header_level(old_root) > 0) { 625 nritems = btrfs_header_nritems(old_root); 626 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 627 GFP_NOFS); 628 if (!tm_list) { 629 ret = -ENOMEM; 630 goto free_tms; 631 } 632 for (i = 0; i < nritems; i++) { 633 tm_list[i] = alloc_tree_mod_elem(old_root, i, 634 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 635 if (!tm_list[i]) { 636 ret = -ENOMEM; 637 goto free_tms; 638 } 639 } 640 } 641 642 tm = kzalloc(sizeof(*tm), GFP_NOFS); 643 if (!tm) { 644 ret = -ENOMEM; 645 goto free_tms; 646 } 647 648 tm->logical = new_root->start; 649 tm->old_root.logical = old_root->start; 650 tm->old_root.level = btrfs_header_level(old_root); 651 tm->generation = btrfs_header_generation(old_root); 652 tm->op = MOD_LOG_ROOT_REPLACE; 653 654 if (tree_mod_dont_log(fs_info, NULL)) 655 goto free_tms; 656 657 if (tm_list) 658 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 659 if (!ret) 660 ret = __tree_mod_log_insert(fs_info, tm); 661 662 write_unlock(&fs_info->tree_mod_log_lock); 663 if (ret) 664 goto free_tms; 665 kfree(tm_list); 666 667 return ret; 668 669 free_tms: 670 if (tm_list) { 671 for (i = 0; i < nritems; i++) 672 kfree(tm_list[i]); 673 kfree(tm_list); 674 } 675 kfree(tm); 676 677 return ret; 678 } 679 680 static struct tree_mod_elem * 681 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 682 int smallest) 683 { 684 struct rb_root *tm_root; 685 struct rb_node *node; 686 struct tree_mod_elem *cur = NULL; 687 struct tree_mod_elem *found = NULL; 688 689 read_lock(&fs_info->tree_mod_log_lock); 690 tm_root = &fs_info->tree_mod_log; 691 node = tm_root->rb_node; 692 while (node) { 693 cur = rb_entry(node, struct tree_mod_elem, node); 694 if (cur->logical < start) { 695 node = node->rb_left; 696 } else if (cur->logical > start) { 697 node = node->rb_right; 698 } else if (cur->seq < min_seq) { 699 node = node->rb_left; 700 } else if (!smallest) { 701 /* we want the node with the highest seq */ 702 if (found) 703 BUG_ON(found->seq > cur->seq); 704 found = cur; 705 node = node->rb_left; 706 } else if (cur->seq > min_seq) { 707 /* we want the node with the smallest seq */ 708 if (found) 709 BUG_ON(found->seq < cur->seq); 710 found = cur; 711 node = node->rb_right; 712 } else { 713 found = cur; 714 break; 715 } 716 } 717 read_unlock(&fs_info->tree_mod_log_lock); 718 719 return found; 720 } 721 722 /* 723 * this returns the element from the log with the smallest time sequence 724 * value that's in the log (the oldest log item). any element with a time 725 * sequence lower than min_seq will be ignored. 726 */ 727 static struct tree_mod_elem * 728 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 729 u64 min_seq) 730 { 731 return __tree_mod_log_search(fs_info, start, min_seq, 1); 732 } 733 734 /* 735 * this returns the element from the log with the largest time sequence 736 * value that's in the log (the most recent log item). any element with 737 * a time sequence lower than min_seq will be ignored. 738 */ 739 static struct tree_mod_elem * 740 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 741 { 742 return __tree_mod_log_search(fs_info, start, min_seq, 0); 743 } 744 745 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 746 struct extent_buffer *src, unsigned long dst_offset, 747 unsigned long src_offset, int nr_items) 748 { 749 struct btrfs_fs_info *fs_info = dst->fs_info; 750 int ret = 0; 751 struct tree_mod_elem **tm_list = NULL; 752 struct tree_mod_elem **tm_list_add, **tm_list_rem; 753 int i; 754 int locked = 0; 755 756 if (!tree_mod_need_log(fs_info, NULL)) 757 return 0; 758 759 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 760 return 0; 761 762 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 763 GFP_NOFS); 764 if (!tm_list) 765 return -ENOMEM; 766 767 tm_list_add = tm_list; 768 tm_list_rem = tm_list + nr_items; 769 for (i = 0; i < nr_items; i++) { 770 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 771 MOD_LOG_KEY_REMOVE, GFP_NOFS); 772 if (!tm_list_rem[i]) { 773 ret = -ENOMEM; 774 goto free_tms; 775 } 776 777 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 778 MOD_LOG_KEY_ADD, GFP_NOFS); 779 if (!tm_list_add[i]) { 780 ret = -ENOMEM; 781 goto free_tms; 782 } 783 } 784 785 if (tree_mod_dont_log(fs_info, NULL)) 786 goto free_tms; 787 locked = 1; 788 789 for (i = 0; i < nr_items; i++) { 790 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 791 if (ret) 792 goto free_tms; 793 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 794 if (ret) 795 goto free_tms; 796 } 797 798 write_unlock(&fs_info->tree_mod_log_lock); 799 kfree(tm_list); 800 801 return 0; 802 803 free_tms: 804 for (i = 0; i < nr_items * 2; i++) { 805 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 806 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 807 kfree(tm_list[i]); 808 } 809 if (locked) 810 write_unlock(&fs_info->tree_mod_log_lock); 811 kfree(tm_list); 812 813 return ret; 814 } 815 816 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 817 { 818 struct tree_mod_elem **tm_list = NULL; 819 int nritems = 0; 820 int i; 821 int ret = 0; 822 823 if (btrfs_header_level(eb) == 0) 824 return 0; 825 826 if (!tree_mod_need_log(eb->fs_info, NULL)) 827 return 0; 828 829 nritems = btrfs_header_nritems(eb); 830 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 831 if (!tm_list) 832 return -ENOMEM; 833 834 for (i = 0; i < nritems; i++) { 835 tm_list[i] = alloc_tree_mod_elem(eb, i, 836 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 837 if (!tm_list[i]) { 838 ret = -ENOMEM; 839 goto free_tms; 840 } 841 } 842 843 if (tree_mod_dont_log(eb->fs_info, eb)) 844 goto free_tms; 845 846 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 847 write_unlock(&eb->fs_info->tree_mod_log_lock); 848 if (ret) 849 goto free_tms; 850 kfree(tm_list); 851 852 return 0; 853 854 free_tms: 855 for (i = 0; i < nritems; i++) 856 kfree(tm_list[i]); 857 kfree(tm_list); 858 859 return ret; 860 } 861 862 /* 863 * check if the tree block can be shared by multiple trees 864 */ 865 int btrfs_block_can_be_shared(struct btrfs_root *root, 866 struct extent_buffer *buf) 867 { 868 /* 869 * Tree blocks not in reference counted trees and tree roots 870 * are never shared. If a block was allocated after the last 871 * snapshot and the block was not allocated by tree relocation, 872 * we know the block is not shared. 873 */ 874 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 875 buf != root->node && buf != root->commit_root && 876 (btrfs_header_generation(buf) <= 877 btrfs_root_last_snapshot(&root->root_item) || 878 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 879 return 1; 880 881 return 0; 882 } 883 884 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 885 struct btrfs_root *root, 886 struct extent_buffer *buf, 887 struct extent_buffer *cow, 888 int *last_ref) 889 { 890 struct btrfs_fs_info *fs_info = root->fs_info; 891 u64 refs; 892 u64 owner; 893 u64 flags; 894 u64 new_flags = 0; 895 int ret; 896 897 /* 898 * Backrefs update rules: 899 * 900 * Always use full backrefs for extent pointers in tree block 901 * allocated by tree relocation. 902 * 903 * If a shared tree block is no longer referenced by its owner 904 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 905 * use full backrefs for extent pointers in tree block. 906 * 907 * If a tree block is been relocating 908 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 909 * use full backrefs for extent pointers in tree block. 910 * The reason for this is some operations (such as drop tree) 911 * are only allowed for blocks use full backrefs. 912 */ 913 914 if (btrfs_block_can_be_shared(root, buf)) { 915 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 916 btrfs_header_level(buf), 1, 917 &refs, &flags); 918 if (ret) 919 return ret; 920 if (refs == 0) { 921 ret = -EROFS; 922 btrfs_handle_fs_error(fs_info, ret, NULL); 923 return ret; 924 } 925 } else { 926 refs = 1; 927 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 928 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 929 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 930 else 931 flags = 0; 932 } 933 934 owner = btrfs_header_owner(buf); 935 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 936 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 937 938 if (refs > 1) { 939 if ((owner == root->root_key.objectid || 940 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 941 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 942 ret = btrfs_inc_ref(trans, root, buf, 1); 943 if (ret) 944 return ret; 945 946 if (root->root_key.objectid == 947 BTRFS_TREE_RELOC_OBJECTID) { 948 ret = btrfs_dec_ref(trans, root, buf, 0); 949 if (ret) 950 return ret; 951 ret = btrfs_inc_ref(trans, root, cow, 1); 952 if (ret) 953 return ret; 954 } 955 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 956 } else { 957 958 if (root->root_key.objectid == 959 BTRFS_TREE_RELOC_OBJECTID) 960 ret = btrfs_inc_ref(trans, root, cow, 1); 961 else 962 ret = btrfs_inc_ref(trans, root, cow, 0); 963 if (ret) 964 return ret; 965 } 966 if (new_flags != 0) { 967 int level = btrfs_header_level(buf); 968 969 ret = btrfs_set_disk_extent_flags(trans, 970 buf->start, 971 buf->len, 972 new_flags, level, 0); 973 if (ret) 974 return ret; 975 } 976 } else { 977 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 978 if (root->root_key.objectid == 979 BTRFS_TREE_RELOC_OBJECTID) 980 ret = btrfs_inc_ref(trans, root, cow, 1); 981 else 982 ret = btrfs_inc_ref(trans, root, cow, 0); 983 if (ret) 984 return ret; 985 ret = btrfs_dec_ref(trans, root, buf, 1); 986 if (ret) 987 return ret; 988 } 989 btrfs_clean_tree_block(buf); 990 *last_ref = 1; 991 } 992 return 0; 993 } 994 995 static struct extent_buffer *alloc_tree_block_no_bg_flush( 996 struct btrfs_trans_handle *trans, 997 struct btrfs_root *root, 998 u64 parent_start, 999 const struct btrfs_disk_key *disk_key, 1000 int level, 1001 u64 hint, 1002 u64 empty_size) 1003 { 1004 struct btrfs_fs_info *fs_info = root->fs_info; 1005 struct extent_buffer *ret; 1006 1007 /* 1008 * If we are COWing a node/leaf from the extent, chunk, device or free 1009 * space trees, make sure that we do not finish block group creation of 1010 * pending block groups. We do this to avoid a deadlock. 1011 * COWing can result in allocation of a new chunk, and flushing pending 1012 * block groups (btrfs_create_pending_block_groups()) can be triggered 1013 * when finishing allocation of a new chunk. Creation of a pending block 1014 * group modifies the extent, chunk, device and free space trees, 1015 * therefore we could deadlock with ourselves since we are holding a 1016 * lock on an extent buffer that btrfs_create_pending_block_groups() may 1017 * try to COW later. 1018 * For similar reasons, we also need to delay flushing pending block 1019 * groups when splitting a leaf or node, from one of those trees, since 1020 * we are holding a write lock on it and its parent or when inserting a 1021 * new root node for one of those trees. 1022 */ 1023 if (root == fs_info->extent_root || 1024 root == fs_info->chunk_root || 1025 root == fs_info->dev_root || 1026 root == fs_info->free_space_root) 1027 trans->can_flush_pending_bgs = false; 1028 1029 ret = btrfs_alloc_tree_block(trans, root, parent_start, 1030 root->root_key.objectid, disk_key, level, 1031 hint, empty_size); 1032 trans->can_flush_pending_bgs = true; 1033 1034 return ret; 1035 } 1036 1037 /* 1038 * does the dirty work in cow of a single block. The parent block (if 1039 * supplied) is updated to point to the new cow copy. The new buffer is marked 1040 * dirty and returned locked. If you modify the block it needs to be marked 1041 * dirty again. 1042 * 1043 * search_start -- an allocation hint for the new block 1044 * 1045 * empty_size -- a hint that you plan on doing more cow. This is the size in 1046 * bytes the allocator should try to find free next to the block it returns. 1047 * This is just a hint and may be ignored by the allocator. 1048 */ 1049 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1050 struct btrfs_root *root, 1051 struct extent_buffer *buf, 1052 struct extent_buffer *parent, int parent_slot, 1053 struct extent_buffer **cow_ret, 1054 u64 search_start, u64 empty_size) 1055 { 1056 struct btrfs_fs_info *fs_info = root->fs_info; 1057 struct btrfs_disk_key disk_key; 1058 struct extent_buffer *cow; 1059 int level, ret; 1060 int last_ref = 0; 1061 int unlock_orig = 0; 1062 u64 parent_start = 0; 1063 1064 if (*cow_ret == buf) 1065 unlock_orig = 1; 1066 1067 btrfs_assert_tree_locked(buf); 1068 1069 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1070 trans->transid != fs_info->running_transaction->transid); 1071 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1072 trans->transid != root->last_trans); 1073 1074 level = btrfs_header_level(buf); 1075 1076 if (level == 0) 1077 btrfs_item_key(buf, &disk_key, 0); 1078 else 1079 btrfs_node_key(buf, &disk_key, 0); 1080 1081 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1082 parent_start = parent->start; 1083 1084 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1085 level, search_start, empty_size); 1086 if (IS_ERR(cow)) 1087 return PTR_ERR(cow); 1088 1089 /* cow is set to blocking by btrfs_init_new_buffer */ 1090 1091 copy_extent_buffer_full(cow, buf); 1092 btrfs_set_header_bytenr(cow, cow->start); 1093 btrfs_set_header_generation(cow, trans->transid); 1094 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1095 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1096 BTRFS_HEADER_FLAG_RELOC); 1097 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1098 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1099 else 1100 btrfs_set_header_owner(cow, root->root_key.objectid); 1101 1102 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1103 1104 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1105 if (ret) { 1106 btrfs_abort_transaction(trans, ret); 1107 return ret; 1108 } 1109 1110 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1111 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1112 if (ret) { 1113 btrfs_abort_transaction(trans, ret); 1114 return ret; 1115 } 1116 } 1117 1118 if (buf == root->node) { 1119 WARN_ON(parent && parent != buf); 1120 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1121 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1122 parent_start = buf->start; 1123 1124 atomic_inc(&cow->refs); 1125 ret = tree_mod_log_insert_root(root->node, cow, 1); 1126 BUG_ON(ret < 0); 1127 rcu_assign_pointer(root->node, cow); 1128 1129 btrfs_free_tree_block(trans, root, buf, parent_start, 1130 last_ref); 1131 free_extent_buffer(buf); 1132 add_root_to_dirty_list(root); 1133 } else { 1134 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1135 tree_mod_log_insert_key(parent, parent_slot, 1136 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1137 btrfs_set_node_blockptr(parent, parent_slot, 1138 cow->start); 1139 btrfs_set_node_ptr_generation(parent, parent_slot, 1140 trans->transid); 1141 btrfs_mark_buffer_dirty(parent); 1142 if (last_ref) { 1143 ret = tree_mod_log_free_eb(buf); 1144 if (ret) { 1145 btrfs_abort_transaction(trans, ret); 1146 return ret; 1147 } 1148 } 1149 btrfs_free_tree_block(trans, root, buf, parent_start, 1150 last_ref); 1151 } 1152 if (unlock_orig) 1153 btrfs_tree_unlock(buf); 1154 free_extent_buffer_stale(buf); 1155 btrfs_mark_buffer_dirty(cow); 1156 *cow_ret = cow; 1157 return 0; 1158 } 1159 1160 /* 1161 * returns the logical address of the oldest predecessor of the given root. 1162 * entries older than time_seq are ignored. 1163 */ 1164 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1165 struct extent_buffer *eb_root, u64 time_seq) 1166 { 1167 struct tree_mod_elem *tm; 1168 struct tree_mod_elem *found = NULL; 1169 u64 root_logical = eb_root->start; 1170 int looped = 0; 1171 1172 if (!time_seq) 1173 return NULL; 1174 1175 /* 1176 * the very last operation that's logged for a root is the 1177 * replacement operation (if it is replaced at all). this has 1178 * the logical address of the *new* root, making it the very 1179 * first operation that's logged for this root. 1180 */ 1181 while (1) { 1182 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1183 time_seq); 1184 if (!looped && !tm) 1185 return NULL; 1186 /* 1187 * if there are no tree operation for the oldest root, we simply 1188 * return it. this should only happen if that (old) root is at 1189 * level 0. 1190 */ 1191 if (!tm) 1192 break; 1193 1194 /* 1195 * if there's an operation that's not a root replacement, we 1196 * found the oldest version of our root. normally, we'll find a 1197 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1198 */ 1199 if (tm->op != MOD_LOG_ROOT_REPLACE) 1200 break; 1201 1202 found = tm; 1203 root_logical = tm->old_root.logical; 1204 looped = 1; 1205 } 1206 1207 /* if there's no old root to return, return what we found instead */ 1208 if (!found) 1209 found = tm; 1210 1211 return found; 1212 } 1213 1214 /* 1215 * tm is a pointer to the first operation to rewind within eb. then, all 1216 * previous operations will be rewound (until we reach something older than 1217 * time_seq). 1218 */ 1219 static void 1220 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1221 u64 time_seq, struct tree_mod_elem *first_tm) 1222 { 1223 u32 n; 1224 struct rb_node *next; 1225 struct tree_mod_elem *tm = first_tm; 1226 unsigned long o_dst; 1227 unsigned long o_src; 1228 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1229 1230 n = btrfs_header_nritems(eb); 1231 read_lock(&fs_info->tree_mod_log_lock); 1232 while (tm && tm->seq >= time_seq) { 1233 /* 1234 * all the operations are recorded with the operator used for 1235 * the modification. as we're going backwards, we do the 1236 * opposite of each operation here. 1237 */ 1238 switch (tm->op) { 1239 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1240 BUG_ON(tm->slot < n); 1241 /* Fallthrough */ 1242 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1243 case MOD_LOG_KEY_REMOVE: 1244 btrfs_set_node_key(eb, &tm->key, tm->slot); 1245 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1246 btrfs_set_node_ptr_generation(eb, tm->slot, 1247 tm->generation); 1248 n++; 1249 break; 1250 case MOD_LOG_KEY_REPLACE: 1251 BUG_ON(tm->slot >= n); 1252 btrfs_set_node_key(eb, &tm->key, tm->slot); 1253 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1254 btrfs_set_node_ptr_generation(eb, tm->slot, 1255 tm->generation); 1256 break; 1257 case MOD_LOG_KEY_ADD: 1258 /* if a move operation is needed it's in the log */ 1259 n--; 1260 break; 1261 case MOD_LOG_MOVE_KEYS: 1262 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1263 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1264 memmove_extent_buffer(eb, o_dst, o_src, 1265 tm->move.nr_items * p_size); 1266 break; 1267 case MOD_LOG_ROOT_REPLACE: 1268 /* 1269 * this operation is special. for roots, this must be 1270 * handled explicitly before rewinding. 1271 * for non-roots, this operation may exist if the node 1272 * was a root: root A -> child B; then A gets empty and 1273 * B is promoted to the new root. in the mod log, we'll 1274 * have a root-replace operation for B, a tree block 1275 * that is no root. we simply ignore that operation. 1276 */ 1277 break; 1278 } 1279 next = rb_next(&tm->node); 1280 if (!next) 1281 break; 1282 tm = rb_entry(next, struct tree_mod_elem, node); 1283 if (tm->logical != first_tm->logical) 1284 break; 1285 } 1286 read_unlock(&fs_info->tree_mod_log_lock); 1287 btrfs_set_header_nritems(eb, n); 1288 } 1289 1290 /* 1291 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1292 * is returned. If rewind operations happen, a fresh buffer is returned. The 1293 * returned buffer is always read-locked. If the returned buffer is not the 1294 * input buffer, the lock on the input buffer is released and the input buffer 1295 * is freed (its refcount is decremented). 1296 */ 1297 static struct extent_buffer * 1298 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1299 struct extent_buffer *eb, u64 time_seq) 1300 { 1301 struct extent_buffer *eb_rewin; 1302 struct tree_mod_elem *tm; 1303 1304 if (!time_seq) 1305 return eb; 1306 1307 if (btrfs_header_level(eb) == 0) 1308 return eb; 1309 1310 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1311 if (!tm) 1312 return eb; 1313 1314 btrfs_set_path_blocking(path); 1315 btrfs_set_lock_blocking_read(eb); 1316 1317 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1318 BUG_ON(tm->slot != 0); 1319 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1320 if (!eb_rewin) { 1321 btrfs_tree_read_unlock_blocking(eb); 1322 free_extent_buffer(eb); 1323 return NULL; 1324 } 1325 btrfs_set_header_bytenr(eb_rewin, eb->start); 1326 btrfs_set_header_backref_rev(eb_rewin, 1327 btrfs_header_backref_rev(eb)); 1328 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1329 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1330 } else { 1331 eb_rewin = btrfs_clone_extent_buffer(eb); 1332 if (!eb_rewin) { 1333 btrfs_tree_read_unlock_blocking(eb); 1334 free_extent_buffer(eb); 1335 return NULL; 1336 } 1337 } 1338 1339 btrfs_tree_read_unlock_blocking(eb); 1340 free_extent_buffer(eb); 1341 1342 btrfs_tree_read_lock(eb_rewin); 1343 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1344 WARN_ON(btrfs_header_nritems(eb_rewin) > 1345 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1346 1347 return eb_rewin; 1348 } 1349 1350 /* 1351 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1352 * value. If there are no changes, the current root->root_node is returned. If 1353 * anything changed in between, there's a fresh buffer allocated on which the 1354 * rewind operations are done. In any case, the returned buffer is read locked. 1355 * Returns NULL on error (with no locks held). 1356 */ 1357 static inline struct extent_buffer * 1358 get_old_root(struct btrfs_root *root, u64 time_seq) 1359 { 1360 struct btrfs_fs_info *fs_info = root->fs_info; 1361 struct tree_mod_elem *tm; 1362 struct extent_buffer *eb = NULL; 1363 struct extent_buffer *eb_root; 1364 u64 eb_root_owner = 0; 1365 struct extent_buffer *old; 1366 struct tree_mod_root *old_root = NULL; 1367 u64 old_generation = 0; 1368 u64 logical; 1369 int level; 1370 1371 eb_root = btrfs_read_lock_root_node(root); 1372 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1373 if (!tm) 1374 return eb_root; 1375 1376 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1377 old_root = &tm->old_root; 1378 old_generation = tm->generation; 1379 logical = old_root->logical; 1380 level = old_root->level; 1381 } else { 1382 logical = eb_root->start; 1383 level = btrfs_header_level(eb_root); 1384 } 1385 1386 tm = tree_mod_log_search(fs_info, logical, time_seq); 1387 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1388 btrfs_tree_read_unlock(eb_root); 1389 free_extent_buffer(eb_root); 1390 old = read_tree_block(fs_info, logical, 0, level, NULL); 1391 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1392 if (!IS_ERR(old)) 1393 free_extent_buffer(old); 1394 btrfs_warn(fs_info, 1395 "failed to read tree block %llu from get_old_root", 1396 logical); 1397 } else { 1398 eb = btrfs_clone_extent_buffer(old); 1399 free_extent_buffer(old); 1400 } 1401 } else if (old_root) { 1402 eb_root_owner = btrfs_header_owner(eb_root); 1403 btrfs_tree_read_unlock(eb_root); 1404 free_extent_buffer(eb_root); 1405 eb = alloc_dummy_extent_buffer(fs_info, logical); 1406 } else { 1407 btrfs_set_lock_blocking_read(eb_root); 1408 eb = btrfs_clone_extent_buffer(eb_root); 1409 btrfs_tree_read_unlock_blocking(eb_root); 1410 free_extent_buffer(eb_root); 1411 } 1412 1413 if (!eb) 1414 return NULL; 1415 btrfs_tree_read_lock(eb); 1416 if (old_root) { 1417 btrfs_set_header_bytenr(eb, eb->start); 1418 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1419 btrfs_set_header_owner(eb, eb_root_owner); 1420 btrfs_set_header_level(eb, old_root->level); 1421 btrfs_set_header_generation(eb, old_generation); 1422 } 1423 if (tm) 1424 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1425 else 1426 WARN_ON(btrfs_header_level(eb) != 0); 1427 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1428 1429 return eb; 1430 } 1431 1432 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1433 { 1434 struct tree_mod_elem *tm; 1435 int level; 1436 struct extent_buffer *eb_root = btrfs_root_node(root); 1437 1438 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1439 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1440 level = tm->old_root.level; 1441 } else { 1442 level = btrfs_header_level(eb_root); 1443 } 1444 free_extent_buffer(eb_root); 1445 1446 return level; 1447 } 1448 1449 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1450 struct btrfs_root *root, 1451 struct extent_buffer *buf) 1452 { 1453 if (btrfs_is_testing(root->fs_info)) 1454 return 0; 1455 1456 /* Ensure we can see the FORCE_COW bit */ 1457 smp_mb__before_atomic(); 1458 1459 /* 1460 * We do not need to cow a block if 1461 * 1) this block is not created or changed in this transaction; 1462 * 2) this block does not belong to TREE_RELOC tree; 1463 * 3) the root is not forced COW. 1464 * 1465 * What is forced COW: 1466 * when we create snapshot during committing the transaction, 1467 * after we've finished copying src root, we must COW the shared 1468 * block to ensure the metadata consistency. 1469 */ 1470 if (btrfs_header_generation(buf) == trans->transid && 1471 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1472 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1473 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1474 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1475 return 0; 1476 return 1; 1477 } 1478 1479 /* 1480 * cows a single block, see __btrfs_cow_block for the real work. 1481 * This version of it has extra checks so that a block isn't COWed more than 1482 * once per transaction, as long as it hasn't been written yet 1483 */ 1484 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1485 struct btrfs_root *root, struct extent_buffer *buf, 1486 struct extent_buffer *parent, int parent_slot, 1487 struct extent_buffer **cow_ret) 1488 { 1489 struct btrfs_fs_info *fs_info = root->fs_info; 1490 u64 search_start; 1491 int ret; 1492 1493 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1494 btrfs_err(fs_info, 1495 "COW'ing blocks on a fs root that's being dropped"); 1496 1497 if (trans->transaction != fs_info->running_transaction) 1498 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1499 trans->transid, 1500 fs_info->running_transaction->transid); 1501 1502 if (trans->transid != fs_info->generation) 1503 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1504 trans->transid, fs_info->generation); 1505 1506 if (!should_cow_block(trans, root, buf)) { 1507 trans->dirty = true; 1508 *cow_ret = buf; 1509 return 0; 1510 } 1511 1512 search_start = buf->start & ~((u64)SZ_1G - 1); 1513 1514 if (parent) 1515 btrfs_set_lock_blocking_write(parent); 1516 btrfs_set_lock_blocking_write(buf); 1517 1518 /* 1519 * Before CoWing this block for later modification, check if it's 1520 * the subtree root and do the delayed subtree trace if needed. 1521 * 1522 * Also We don't care about the error, as it's handled internally. 1523 */ 1524 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1525 ret = __btrfs_cow_block(trans, root, buf, parent, 1526 parent_slot, cow_ret, search_start, 0); 1527 1528 trace_btrfs_cow_block(root, buf, *cow_ret); 1529 1530 return ret; 1531 } 1532 1533 /* 1534 * helper function for defrag to decide if two blocks pointed to by a 1535 * node are actually close by 1536 */ 1537 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1538 { 1539 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1540 return 1; 1541 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1542 return 1; 1543 return 0; 1544 } 1545 1546 /* 1547 * compare two keys in a memcmp fashion 1548 */ 1549 static int comp_keys(const struct btrfs_disk_key *disk, 1550 const struct btrfs_key *k2) 1551 { 1552 struct btrfs_key k1; 1553 1554 btrfs_disk_key_to_cpu(&k1, disk); 1555 1556 return btrfs_comp_cpu_keys(&k1, k2); 1557 } 1558 1559 /* 1560 * same as comp_keys only with two btrfs_key's 1561 */ 1562 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1563 { 1564 if (k1->objectid > k2->objectid) 1565 return 1; 1566 if (k1->objectid < k2->objectid) 1567 return -1; 1568 if (k1->type > k2->type) 1569 return 1; 1570 if (k1->type < k2->type) 1571 return -1; 1572 if (k1->offset > k2->offset) 1573 return 1; 1574 if (k1->offset < k2->offset) 1575 return -1; 1576 return 0; 1577 } 1578 1579 /* 1580 * this is used by the defrag code to go through all the 1581 * leaves pointed to by a node and reallocate them so that 1582 * disk order is close to key order 1583 */ 1584 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1585 struct btrfs_root *root, struct extent_buffer *parent, 1586 int start_slot, u64 *last_ret, 1587 struct btrfs_key *progress) 1588 { 1589 struct btrfs_fs_info *fs_info = root->fs_info; 1590 struct extent_buffer *cur; 1591 u64 blocknr; 1592 u64 gen; 1593 u64 search_start = *last_ret; 1594 u64 last_block = 0; 1595 u64 other; 1596 u32 parent_nritems; 1597 int end_slot; 1598 int i; 1599 int err = 0; 1600 int parent_level; 1601 int uptodate; 1602 u32 blocksize; 1603 int progress_passed = 0; 1604 struct btrfs_disk_key disk_key; 1605 1606 parent_level = btrfs_header_level(parent); 1607 1608 WARN_ON(trans->transaction != fs_info->running_transaction); 1609 WARN_ON(trans->transid != fs_info->generation); 1610 1611 parent_nritems = btrfs_header_nritems(parent); 1612 blocksize = fs_info->nodesize; 1613 end_slot = parent_nritems - 1; 1614 1615 if (parent_nritems <= 1) 1616 return 0; 1617 1618 btrfs_set_lock_blocking_write(parent); 1619 1620 for (i = start_slot; i <= end_slot; i++) { 1621 struct btrfs_key first_key; 1622 int close = 1; 1623 1624 btrfs_node_key(parent, &disk_key, i); 1625 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1626 continue; 1627 1628 progress_passed = 1; 1629 blocknr = btrfs_node_blockptr(parent, i); 1630 gen = btrfs_node_ptr_generation(parent, i); 1631 btrfs_node_key_to_cpu(parent, &first_key, i); 1632 if (last_block == 0) 1633 last_block = blocknr; 1634 1635 if (i > 0) { 1636 other = btrfs_node_blockptr(parent, i - 1); 1637 close = close_blocks(blocknr, other, blocksize); 1638 } 1639 if (!close && i < end_slot) { 1640 other = btrfs_node_blockptr(parent, i + 1); 1641 close = close_blocks(blocknr, other, blocksize); 1642 } 1643 if (close) { 1644 last_block = blocknr; 1645 continue; 1646 } 1647 1648 cur = find_extent_buffer(fs_info, blocknr); 1649 if (cur) 1650 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1651 else 1652 uptodate = 0; 1653 if (!cur || !uptodate) { 1654 if (!cur) { 1655 cur = read_tree_block(fs_info, blocknr, gen, 1656 parent_level - 1, 1657 &first_key); 1658 if (IS_ERR(cur)) { 1659 return PTR_ERR(cur); 1660 } else if (!extent_buffer_uptodate(cur)) { 1661 free_extent_buffer(cur); 1662 return -EIO; 1663 } 1664 } else if (!uptodate) { 1665 err = btrfs_read_buffer(cur, gen, 1666 parent_level - 1,&first_key); 1667 if (err) { 1668 free_extent_buffer(cur); 1669 return err; 1670 } 1671 } 1672 } 1673 if (search_start == 0) 1674 search_start = last_block; 1675 1676 btrfs_tree_lock(cur); 1677 btrfs_set_lock_blocking_write(cur); 1678 err = __btrfs_cow_block(trans, root, cur, parent, i, 1679 &cur, search_start, 1680 min(16 * blocksize, 1681 (end_slot - i) * blocksize)); 1682 if (err) { 1683 btrfs_tree_unlock(cur); 1684 free_extent_buffer(cur); 1685 break; 1686 } 1687 search_start = cur->start; 1688 last_block = cur->start; 1689 *last_ret = search_start; 1690 btrfs_tree_unlock(cur); 1691 free_extent_buffer(cur); 1692 } 1693 return err; 1694 } 1695 1696 /* 1697 * search for key in the extent_buffer. The items start at offset p, 1698 * and they are item_size apart. There are 'max' items in p. 1699 * 1700 * the slot in the array is returned via slot, and it points to 1701 * the place where you would insert key if it is not found in 1702 * the array. 1703 * 1704 * slot may point to max if the key is bigger than all of the keys 1705 */ 1706 static noinline int generic_bin_search(struct extent_buffer *eb, 1707 unsigned long p, int item_size, 1708 const struct btrfs_key *key, 1709 int max, int *slot) 1710 { 1711 int low = 0; 1712 int high = max; 1713 int mid; 1714 int ret; 1715 struct btrfs_disk_key *tmp = NULL; 1716 struct btrfs_disk_key unaligned; 1717 unsigned long offset; 1718 char *kaddr = NULL; 1719 unsigned long map_start = 0; 1720 unsigned long map_len = 0; 1721 int err; 1722 1723 if (low > high) { 1724 btrfs_err(eb->fs_info, 1725 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1726 __func__, low, high, eb->start, 1727 btrfs_header_owner(eb), btrfs_header_level(eb)); 1728 return -EINVAL; 1729 } 1730 1731 while (low < high) { 1732 mid = (low + high) / 2; 1733 offset = p + mid * item_size; 1734 1735 if (!kaddr || offset < map_start || 1736 (offset + sizeof(struct btrfs_disk_key)) > 1737 map_start + map_len) { 1738 1739 err = map_private_extent_buffer(eb, offset, 1740 sizeof(struct btrfs_disk_key), 1741 &kaddr, &map_start, &map_len); 1742 1743 if (!err) { 1744 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1745 map_start); 1746 } else if (err == 1) { 1747 read_extent_buffer(eb, &unaligned, 1748 offset, sizeof(unaligned)); 1749 tmp = &unaligned; 1750 } else { 1751 return err; 1752 } 1753 1754 } else { 1755 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1756 map_start); 1757 } 1758 ret = comp_keys(tmp, key); 1759 1760 if (ret < 0) 1761 low = mid + 1; 1762 else if (ret > 0) 1763 high = mid; 1764 else { 1765 *slot = mid; 1766 return 0; 1767 } 1768 } 1769 *slot = low; 1770 return 1; 1771 } 1772 1773 /* 1774 * simple bin_search frontend that does the right thing for 1775 * leaves vs nodes 1776 */ 1777 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1778 int level, int *slot) 1779 { 1780 if (level == 0) 1781 return generic_bin_search(eb, 1782 offsetof(struct btrfs_leaf, items), 1783 sizeof(struct btrfs_item), 1784 key, btrfs_header_nritems(eb), 1785 slot); 1786 else 1787 return generic_bin_search(eb, 1788 offsetof(struct btrfs_node, ptrs), 1789 sizeof(struct btrfs_key_ptr), 1790 key, btrfs_header_nritems(eb), 1791 slot); 1792 } 1793 1794 static void root_add_used(struct btrfs_root *root, u32 size) 1795 { 1796 spin_lock(&root->accounting_lock); 1797 btrfs_set_root_used(&root->root_item, 1798 btrfs_root_used(&root->root_item) + size); 1799 spin_unlock(&root->accounting_lock); 1800 } 1801 1802 static void root_sub_used(struct btrfs_root *root, u32 size) 1803 { 1804 spin_lock(&root->accounting_lock); 1805 btrfs_set_root_used(&root->root_item, 1806 btrfs_root_used(&root->root_item) - size); 1807 spin_unlock(&root->accounting_lock); 1808 } 1809 1810 /* given a node and slot number, this reads the blocks it points to. The 1811 * extent buffer is returned with a reference taken (but unlocked). 1812 */ 1813 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1814 int slot) 1815 { 1816 int level = btrfs_header_level(parent); 1817 struct extent_buffer *eb; 1818 struct btrfs_key first_key; 1819 1820 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1821 return ERR_PTR(-ENOENT); 1822 1823 BUG_ON(level == 0); 1824 1825 btrfs_node_key_to_cpu(parent, &first_key, slot); 1826 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1827 btrfs_node_ptr_generation(parent, slot), 1828 level - 1, &first_key); 1829 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1830 free_extent_buffer(eb); 1831 eb = ERR_PTR(-EIO); 1832 } 1833 1834 return eb; 1835 } 1836 1837 /* 1838 * node level balancing, used to make sure nodes are in proper order for 1839 * item deletion. We balance from the top down, so we have to make sure 1840 * that a deletion won't leave an node completely empty later on. 1841 */ 1842 static noinline int balance_level(struct btrfs_trans_handle *trans, 1843 struct btrfs_root *root, 1844 struct btrfs_path *path, int level) 1845 { 1846 struct btrfs_fs_info *fs_info = root->fs_info; 1847 struct extent_buffer *right = NULL; 1848 struct extent_buffer *mid; 1849 struct extent_buffer *left = NULL; 1850 struct extent_buffer *parent = NULL; 1851 int ret = 0; 1852 int wret; 1853 int pslot; 1854 int orig_slot = path->slots[level]; 1855 u64 orig_ptr; 1856 1857 ASSERT(level > 0); 1858 1859 mid = path->nodes[level]; 1860 1861 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1862 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1863 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1864 1865 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1866 1867 if (level < BTRFS_MAX_LEVEL - 1) { 1868 parent = path->nodes[level + 1]; 1869 pslot = path->slots[level + 1]; 1870 } 1871 1872 /* 1873 * deal with the case where there is only one pointer in the root 1874 * by promoting the node below to a root 1875 */ 1876 if (!parent) { 1877 struct extent_buffer *child; 1878 1879 if (btrfs_header_nritems(mid) != 1) 1880 return 0; 1881 1882 /* promote the child to a root */ 1883 child = btrfs_read_node_slot(mid, 0); 1884 if (IS_ERR(child)) { 1885 ret = PTR_ERR(child); 1886 btrfs_handle_fs_error(fs_info, ret, NULL); 1887 goto enospc; 1888 } 1889 1890 btrfs_tree_lock(child); 1891 btrfs_set_lock_blocking_write(child); 1892 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1893 if (ret) { 1894 btrfs_tree_unlock(child); 1895 free_extent_buffer(child); 1896 goto enospc; 1897 } 1898 1899 ret = tree_mod_log_insert_root(root->node, child, 1); 1900 BUG_ON(ret < 0); 1901 rcu_assign_pointer(root->node, child); 1902 1903 add_root_to_dirty_list(root); 1904 btrfs_tree_unlock(child); 1905 1906 path->locks[level] = 0; 1907 path->nodes[level] = NULL; 1908 btrfs_clean_tree_block(mid); 1909 btrfs_tree_unlock(mid); 1910 /* once for the path */ 1911 free_extent_buffer(mid); 1912 1913 root_sub_used(root, mid->len); 1914 btrfs_free_tree_block(trans, root, mid, 0, 1); 1915 /* once for the root ptr */ 1916 free_extent_buffer_stale(mid); 1917 return 0; 1918 } 1919 if (btrfs_header_nritems(mid) > 1920 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1921 return 0; 1922 1923 left = btrfs_read_node_slot(parent, pslot - 1); 1924 if (IS_ERR(left)) 1925 left = NULL; 1926 1927 if (left) { 1928 btrfs_tree_lock(left); 1929 btrfs_set_lock_blocking_write(left); 1930 wret = btrfs_cow_block(trans, root, left, 1931 parent, pslot - 1, &left); 1932 if (wret) { 1933 ret = wret; 1934 goto enospc; 1935 } 1936 } 1937 1938 right = btrfs_read_node_slot(parent, pslot + 1); 1939 if (IS_ERR(right)) 1940 right = NULL; 1941 1942 if (right) { 1943 btrfs_tree_lock(right); 1944 btrfs_set_lock_blocking_write(right); 1945 wret = btrfs_cow_block(trans, root, right, 1946 parent, pslot + 1, &right); 1947 if (wret) { 1948 ret = wret; 1949 goto enospc; 1950 } 1951 } 1952 1953 /* first, try to make some room in the middle buffer */ 1954 if (left) { 1955 orig_slot += btrfs_header_nritems(left); 1956 wret = push_node_left(trans, left, mid, 1); 1957 if (wret < 0) 1958 ret = wret; 1959 } 1960 1961 /* 1962 * then try to empty the right most buffer into the middle 1963 */ 1964 if (right) { 1965 wret = push_node_left(trans, mid, right, 1); 1966 if (wret < 0 && wret != -ENOSPC) 1967 ret = wret; 1968 if (btrfs_header_nritems(right) == 0) { 1969 btrfs_clean_tree_block(right); 1970 btrfs_tree_unlock(right); 1971 del_ptr(root, path, level + 1, pslot + 1); 1972 root_sub_used(root, right->len); 1973 btrfs_free_tree_block(trans, root, right, 0, 1); 1974 free_extent_buffer_stale(right); 1975 right = NULL; 1976 } else { 1977 struct btrfs_disk_key right_key; 1978 btrfs_node_key(right, &right_key, 0); 1979 ret = tree_mod_log_insert_key(parent, pslot + 1, 1980 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1981 BUG_ON(ret < 0); 1982 btrfs_set_node_key(parent, &right_key, pslot + 1); 1983 btrfs_mark_buffer_dirty(parent); 1984 } 1985 } 1986 if (btrfs_header_nritems(mid) == 1) { 1987 /* 1988 * we're not allowed to leave a node with one item in the 1989 * tree during a delete. A deletion from lower in the tree 1990 * could try to delete the only pointer in this node. 1991 * So, pull some keys from the left. 1992 * There has to be a left pointer at this point because 1993 * otherwise we would have pulled some pointers from the 1994 * right 1995 */ 1996 if (!left) { 1997 ret = -EROFS; 1998 btrfs_handle_fs_error(fs_info, ret, NULL); 1999 goto enospc; 2000 } 2001 wret = balance_node_right(trans, mid, left); 2002 if (wret < 0) { 2003 ret = wret; 2004 goto enospc; 2005 } 2006 if (wret == 1) { 2007 wret = push_node_left(trans, left, mid, 1); 2008 if (wret < 0) 2009 ret = wret; 2010 } 2011 BUG_ON(wret == 1); 2012 } 2013 if (btrfs_header_nritems(mid) == 0) { 2014 btrfs_clean_tree_block(mid); 2015 btrfs_tree_unlock(mid); 2016 del_ptr(root, path, level + 1, pslot); 2017 root_sub_used(root, mid->len); 2018 btrfs_free_tree_block(trans, root, mid, 0, 1); 2019 free_extent_buffer_stale(mid); 2020 mid = NULL; 2021 } else { 2022 /* update the parent key to reflect our changes */ 2023 struct btrfs_disk_key mid_key; 2024 btrfs_node_key(mid, &mid_key, 0); 2025 ret = tree_mod_log_insert_key(parent, pslot, 2026 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2027 BUG_ON(ret < 0); 2028 btrfs_set_node_key(parent, &mid_key, pslot); 2029 btrfs_mark_buffer_dirty(parent); 2030 } 2031 2032 /* update the path */ 2033 if (left) { 2034 if (btrfs_header_nritems(left) > orig_slot) { 2035 atomic_inc(&left->refs); 2036 /* left was locked after cow */ 2037 path->nodes[level] = left; 2038 path->slots[level + 1] -= 1; 2039 path->slots[level] = orig_slot; 2040 if (mid) { 2041 btrfs_tree_unlock(mid); 2042 free_extent_buffer(mid); 2043 } 2044 } else { 2045 orig_slot -= btrfs_header_nritems(left); 2046 path->slots[level] = orig_slot; 2047 } 2048 } 2049 /* double check we haven't messed things up */ 2050 if (orig_ptr != 2051 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2052 BUG(); 2053 enospc: 2054 if (right) { 2055 btrfs_tree_unlock(right); 2056 free_extent_buffer(right); 2057 } 2058 if (left) { 2059 if (path->nodes[level] != left) 2060 btrfs_tree_unlock(left); 2061 free_extent_buffer(left); 2062 } 2063 return ret; 2064 } 2065 2066 /* Node balancing for insertion. Here we only split or push nodes around 2067 * when they are completely full. This is also done top down, so we 2068 * have to be pessimistic. 2069 */ 2070 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2071 struct btrfs_root *root, 2072 struct btrfs_path *path, int level) 2073 { 2074 struct btrfs_fs_info *fs_info = root->fs_info; 2075 struct extent_buffer *right = NULL; 2076 struct extent_buffer *mid; 2077 struct extent_buffer *left = NULL; 2078 struct extent_buffer *parent = NULL; 2079 int ret = 0; 2080 int wret; 2081 int pslot; 2082 int orig_slot = path->slots[level]; 2083 2084 if (level == 0) 2085 return 1; 2086 2087 mid = path->nodes[level]; 2088 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2089 2090 if (level < BTRFS_MAX_LEVEL - 1) { 2091 parent = path->nodes[level + 1]; 2092 pslot = path->slots[level + 1]; 2093 } 2094 2095 if (!parent) 2096 return 1; 2097 2098 left = btrfs_read_node_slot(parent, pslot - 1); 2099 if (IS_ERR(left)) 2100 left = NULL; 2101 2102 /* first, try to make some room in the middle buffer */ 2103 if (left) { 2104 u32 left_nr; 2105 2106 btrfs_tree_lock(left); 2107 btrfs_set_lock_blocking_write(left); 2108 2109 left_nr = btrfs_header_nritems(left); 2110 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2111 wret = 1; 2112 } else { 2113 ret = btrfs_cow_block(trans, root, left, parent, 2114 pslot - 1, &left); 2115 if (ret) 2116 wret = 1; 2117 else { 2118 wret = push_node_left(trans, left, mid, 0); 2119 } 2120 } 2121 if (wret < 0) 2122 ret = wret; 2123 if (wret == 0) { 2124 struct btrfs_disk_key disk_key; 2125 orig_slot += left_nr; 2126 btrfs_node_key(mid, &disk_key, 0); 2127 ret = tree_mod_log_insert_key(parent, pslot, 2128 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2129 BUG_ON(ret < 0); 2130 btrfs_set_node_key(parent, &disk_key, pslot); 2131 btrfs_mark_buffer_dirty(parent); 2132 if (btrfs_header_nritems(left) > orig_slot) { 2133 path->nodes[level] = left; 2134 path->slots[level + 1] -= 1; 2135 path->slots[level] = orig_slot; 2136 btrfs_tree_unlock(mid); 2137 free_extent_buffer(mid); 2138 } else { 2139 orig_slot -= 2140 btrfs_header_nritems(left); 2141 path->slots[level] = orig_slot; 2142 btrfs_tree_unlock(left); 2143 free_extent_buffer(left); 2144 } 2145 return 0; 2146 } 2147 btrfs_tree_unlock(left); 2148 free_extent_buffer(left); 2149 } 2150 right = btrfs_read_node_slot(parent, pslot + 1); 2151 if (IS_ERR(right)) 2152 right = NULL; 2153 2154 /* 2155 * then try to empty the right most buffer into the middle 2156 */ 2157 if (right) { 2158 u32 right_nr; 2159 2160 btrfs_tree_lock(right); 2161 btrfs_set_lock_blocking_write(right); 2162 2163 right_nr = btrfs_header_nritems(right); 2164 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2165 wret = 1; 2166 } else { 2167 ret = btrfs_cow_block(trans, root, right, 2168 parent, pslot + 1, 2169 &right); 2170 if (ret) 2171 wret = 1; 2172 else { 2173 wret = balance_node_right(trans, right, mid); 2174 } 2175 } 2176 if (wret < 0) 2177 ret = wret; 2178 if (wret == 0) { 2179 struct btrfs_disk_key disk_key; 2180 2181 btrfs_node_key(right, &disk_key, 0); 2182 ret = tree_mod_log_insert_key(parent, pslot + 1, 2183 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2184 BUG_ON(ret < 0); 2185 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2186 btrfs_mark_buffer_dirty(parent); 2187 2188 if (btrfs_header_nritems(mid) <= orig_slot) { 2189 path->nodes[level] = right; 2190 path->slots[level + 1] += 1; 2191 path->slots[level] = orig_slot - 2192 btrfs_header_nritems(mid); 2193 btrfs_tree_unlock(mid); 2194 free_extent_buffer(mid); 2195 } else { 2196 btrfs_tree_unlock(right); 2197 free_extent_buffer(right); 2198 } 2199 return 0; 2200 } 2201 btrfs_tree_unlock(right); 2202 free_extent_buffer(right); 2203 } 2204 return 1; 2205 } 2206 2207 /* 2208 * readahead one full node of leaves, finding things that are close 2209 * to the block in 'slot', and triggering ra on them. 2210 */ 2211 static void reada_for_search(struct btrfs_fs_info *fs_info, 2212 struct btrfs_path *path, 2213 int level, int slot, u64 objectid) 2214 { 2215 struct extent_buffer *node; 2216 struct btrfs_disk_key disk_key; 2217 u32 nritems; 2218 u64 search; 2219 u64 target; 2220 u64 nread = 0; 2221 struct extent_buffer *eb; 2222 u32 nr; 2223 u32 blocksize; 2224 u32 nscan = 0; 2225 2226 if (level != 1) 2227 return; 2228 2229 if (!path->nodes[level]) 2230 return; 2231 2232 node = path->nodes[level]; 2233 2234 search = btrfs_node_blockptr(node, slot); 2235 blocksize = fs_info->nodesize; 2236 eb = find_extent_buffer(fs_info, search); 2237 if (eb) { 2238 free_extent_buffer(eb); 2239 return; 2240 } 2241 2242 target = search; 2243 2244 nritems = btrfs_header_nritems(node); 2245 nr = slot; 2246 2247 while (1) { 2248 if (path->reada == READA_BACK) { 2249 if (nr == 0) 2250 break; 2251 nr--; 2252 } else if (path->reada == READA_FORWARD) { 2253 nr++; 2254 if (nr >= nritems) 2255 break; 2256 } 2257 if (path->reada == READA_BACK && objectid) { 2258 btrfs_node_key(node, &disk_key, nr); 2259 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2260 break; 2261 } 2262 search = btrfs_node_blockptr(node, nr); 2263 if ((search <= target && target - search <= 65536) || 2264 (search > target && search - target <= 65536)) { 2265 readahead_tree_block(fs_info, search); 2266 nread += blocksize; 2267 } 2268 nscan++; 2269 if ((nread > 65536 || nscan > 32)) 2270 break; 2271 } 2272 } 2273 2274 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2275 struct btrfs_path *path, int level) 2276 { 2277 int slot; 2278 int nritems; 2279 struct extent_buffer *parent; 2280 struct extent_buffer *eb; 2281 u64 gen; 2282 u64 block1 = 0; 2283 u64 block2 = 0; 2284 2285 parent = path->nodes[level + 1]; 2286 if (!parent) 2287 return; 2288 2289 nritems = btrfs_header_nritems(parent); 2290 slot = path->slots[level + 1]; 2291 2292 if (slot > 0) { 2293 block1 = btrfs_node_blockptr(parent, slot - 1); 2294 gen = btrfs_node_ptr_generation(parent, slot - 1); 2295 eb = find_extent_buffer(fs_info, block1); 2296 /* 2297 * if we get -eagain from btrfs_buffer_uptodate, we 2298 * don't want to return eagain here. That will loop 2299 * forever 2300 */ 2301 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2302 block1 = 0; 2303 free_extent_buffer(eb); 2304 } 2305 if (slot + 1 < nritems) { 2306 block2 = btrfs_node_blockptr(parent, slot + 1); 2307 gen = btrfs_node_ptr_generation(parent, slot + 1); 2308 eb = find_extent_buffer(fs_info, block2); 2309 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2310 block2 = 0; 2311 free_extent_buffer(eb); 2312 } 2313 2314 if (block1) 2315 readahead_tree_block(fs_info, block1); 2316 if (block2) 2317 readahead_tree_block(fs_info, block2); 2318 } 2319 2320 2321 /* 2322 * when we walk down the tree, it is usually safe to unlock the higher layers 2323 * in the tree. The exceptions are when our path goes through slot 0, because 2324 * operations on the tree might require changing key pointers higher up in the 2325 * tree. 2326 * 2327 * callers might also have set path->keep_locks, which tells this code to keep 2328 * the lock if the path points to the last slot in the block. This is part of 2329 * walking through the tree, and selecting the next slot in the higher block. 2330 * 2331 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2332 * if lowest_unlock is 1, level 0 won't be unlocked 2333 */ 2334 static noinline void unlock_up(struct btrfs_path *path, int level, 2335 int lowest_unlock, int min_write_lock_level, 2336 int *write_lock_level) 2337 { 2338 int i; 2339 int skip_level = level; 2340 int no_skips = 0; 2341 struct extent_buffer *t; 2342 2343 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2344 if (!path->nodes[i]) 2345 break; 2346 if (!path->locks[i]) 2347 break; 2348 if (!no_skips && path->slots[i] == 0) { 2349 skip_level = i + 1; 2350 continue; 2351 } 2352 if (!no_skips && path->keep_locks) { 2353 u32 nritems; 2354 t = path->nodes[i]; 2355 nritems = btrfs_header_nritems(t); 2356 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2357 skip_level = i + 1; 2358 continue; 2359 } 2360 } 2361 if (skip_level < i && i >= lowest_unlock) 2362 no_skips = 1; 2363 2364 t = path->nodes[i]; 2365 if (i >= lowest_unlock && i > skip_level) { 2366 btrfs_tree_unlock_rw(t, path->locks[i]); 2367 path->locks[i] = 0; 2368 if (write_lock_level && 2369 i > min_write_lock_level && 2370 i <= *write_lock_level) { 2371 *write_lock_level = i - 1; 2372 } 2373 } 2374 } 2375 } 2376 2377 /* 2378 * helper function for btrfs_search_slot. The goal is to find a block 2379 * in cache without setting the path to blocking. If we find the block 2380 * we return zero and the path is unchanged. 2381 * 2382 * If we can't find the block, we set the path blocking and do some 2383 * reada. -EAGAIN is returned and the search must be repeated. 2384 */ 2385 static int 2386 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2387 struct extent_buffer **eb_ret, int level, int slot, 2388 const struct btrfs_key *key) 2389 { 2390 struct btrfs_fs_info *fs_info = root->fs_info; 2391 u64 blocknr; 2392 u64 gen; 2393 struct extent_buffer *b = *eb_ret; 2394 struct extent_buffer *tmp; 2395 struct btrfs_key first_key; 2396 int ret; 2397 int parent_level; 2398 2399 blocknr = btrfs_node_blockptr(b, slot); 2400 gen = btrfs_node_ptr_generation(b, slot); 2401 parent_level = btrfs_header_level(b); 2402 btrfs_node_key_to_cpu(b, &first_key, slot); 2403 2404 tmp = find_extent_buffer(fs_info, blocknr); 2405 if (tmp) { 2406 /* first we do an atomic uptodate check */ 2407 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2408 /* 2409 * Do extra check for first_key, eb can be stale due to 2410 * being cached, read from scrub, or have multiple 2411 * parents (shared tree blocks). 2412 */ 2413 if (btrfs_verify_level_key(tmp, 2414 parent_level - 1, &first_key, gen)) { 2415 free_extent_buffer(tmp); 2416 return -EUCLEAN; 2417 } 2418 *eb_ret = tmp; 2419 return 0; 2420 } 2421 2422 /* the pages were up to date, but we failed 2423 * the generation number check. Do a full 2424 * read for the generation number that is correct. 2425 * We must do this without dropping locks so 2426 * we can trust our generation number 2427 */ 2428 btrfs_set_path_blocking(p); 2429 2430 /* now we're allowed to do a blocking uptodate check */ 2431 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2432 if (!ret) { 2433 *eb_ret = tmp; 2434 return 0; 2435 } 2436 free_extent_buffer(tmp); 2437 btrfs_release_path(p); 2438 return -EIO; 2439 } 2440 2441 /* 2442 * reduce lock contention at high levels 2443 * of the btree by dropping locks before 2444 * we read. Don't release the lock on the current 2445 * level because we need to walk this node to figure 2446 * out which blocks to read. 2447 */ 2448 btrfs_unlock_up_safe(p, level + 1); 2449 btrfs_set_path_blocking(p); 2450 2451 if (p->reada != READA_NONE) 2452 reada_for_search(fs_info, p, level, slot, key->objectid); 2453 2454 ret = -EAGAIN; 2455 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2456 &first_key); 2457 if (!IS_ERR(tmp)) { 2458 /* 2459 * If the read above didn't mark this buffer up to date, 2460 * it will never end up being up to date. Set ret to EIO now 2461 * and give up so that our caller doesn't loop forever 2462 * on our EAGAINs. 2463 */ 2464 if (!extent_buffer_uptodate(tmp)) 2465 ret = -EIO; 2466 free_extent_buffer(tmp); 2467 } else { 2468 ret = PTR_ERR(tmp); 2469 } 2470 2471 btrfs_release_path(p); 2472 return ret; 2473 } 2474 2475 /* 2476 * helper function for btrfs_search_slot. This does all of the checks 2477 * for node-level blocks and does any balancing required based on 2478 * the ins_len. 2479 * 2480 * If no extra work was required, zero is returned. If we had to 2481 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2482 * start over 2483 */ 2484 static int 2485 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2486 struct btrfs_root *root, struct btrfs_path *p, 2487 struct extent_buffer *b, int level, int ins_len, 2488 int *write_lock_level) 2489 { 2490 struct btrfs_fs_info *fs_info = root->fs_info; 2491 int ret; 2492 2493 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2494 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2495 int sret; 2496 2497 if (*write_lock_level < level + 1) { 2498 *write_lock_level = level + 1; 2499 btrfs_release_path(p); 2500 goto again; 2501 } 2502 2503 btrfs_set_path_blocking(p); 2504 reada_for_balance(fs_info, p, level); 2505 sret = split_node(trans, root, p, level); 2506 2507 BUG_ON(sret > 0); 2508 if (sret) { 2509 ret = sret; 2510 goto done; 2511 } 2512 b = p->nodes[level]; 2513 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2514 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2515 int sret; 2516 2517 if (*write_lock_level < level + 1) { 2518 *write_lock_level = level + 1; 2519 btrfs_release_path(p); 2520 goto again; 2521 } 2522 2523 btrfs_set_path_blocking(p); 2524 reada_for_balance(fs_info, p, level); 2525 sret = balance_level(trans, root, p, level); 2526 2527 if (sret) { 2528 ret = sret; 2529 goto done; 2530 } 2531 b = p->nodes[level]; 2532 if (!b) { 2533 btrfs_release_path(p); 2534 goto again; 2535 } 2536 BUG_ON(btrfs_header_nritems(b) == 1); 2537 } 2538 return 0; 2539 2540 again: 2541 ret = -EAGAIN; 2542 done: 2543 return ret; 2544 } 2545 2546 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2547 int level, int *prev_cmp, int *slot) 2548 { 2549 if (*prev_cmp != 0) { 2550 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2551 return *prev_cmp; 2552 } 2553 2554 *slot = 0; 2555 2556 return 0; 2557 } 2558 2559 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2560 u64 iobjectid, u64 ioff, u8 key_type, 2561 struct btrfs_key *found_key) 2562 { 2563 int ret; 2564 struct btrfs_key key; 2565 struct extent_buffer *eb; 2566 2567 ASSERT(path); 2568 ASSERT(found_key); 2569 2570 key.type = key_type; 2571 key.objectid = iobjectid; 2572 key.offset = ioff; 2573 2574 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2575 if (ret < 0) 2576 return ret; 2577 2578 eb = path->nodes[0]; 2579 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2580 ret = btrfs_next_leaf(fs_root, path); 2581 if (ret) 2582 return ret; 2583 eb = path->nodes[0]; 2584 } 2585 2586 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2587 if (found_key->type != key.type || 2588 found_key->objectid != key.objectid) 2589 return 1; 2590 2591 return 0; 2592 } 2593 2594 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2595 struct btrfs_path *p, 2596 int write_lock_level) 2597 { 2598 struct btrfs_fs_info *fs_info = root->fs_info; 2599 struct extent_buffer *b; 2600 int root_lock; 2601 int level = 0; 2602 2603 /* We try very hard to do read locks on the root */ 2604 root_lock = BTRFS_READ_LOCK; 2605 2606 if (p->search_commit_root) { 2607 /* 2608 * The commit roots are read only so we always do read locks, 2609 * and we always must hold the commit_root_sem when doing 2610 * searches on them, the only exception is send where we don't 2611 * want to block transaction commits for a long time, so 2612 * we need to clone the commit root in order to avoid races 2613 * with transaction commits that create a snapshot of one of 2614 * the roots used by a send operation. 2615 */ 2616 if (p->need_commit_sem) { 2617 down_read(&fs_info->commit_root_sem); 2618 b = btrfs_clone_extent_buffer(root->commit_root); 2619 up_read(&fs_info->commit_root_sem); 2620 if (!b) 2621 return ERR_PTR(-ENOMEM); 2622 2623 } else { 2624 b = root->commit_root; 2625 atomic_inc(&b->refs); 2626 } 2627 level = btrfs_header_level(b); 2628 /* 2629 * Ensure that all callers have set skip_locking when 2630 * p->search_commit_root = 1. 2631 */ 2632 ASSERT(p->skip_locking == 1); 2633 2634 goto out; 2635 } 2636 2637 if (p->skip_locking) { 2638 b = btrfs_root_node(root); 2639 level = btrfs_header_level(b); 2640 goto out; 2641 } 2642 2643 /* 2644 * If the level is set to maximum, we can skip trying to get the read 2645 * lock. 2646 */ 2647 if (write_lock_level < BTRFS_MAX_LEVEL) { 2648 /* 2649 * We don't know the level of the root node until we actually 2650 * have it read locked 2651 */ 2652 b = btrfs_read_lock_root_node(root); 2653 level = btrfs_header_level(b); 2654 if (level > write_lock_level) 2655 goto out; 2656 2657 /* Whoops, must trade for write lock */ 2658 btrfs_tree_read_unlock(b); 2659 free_extent_buffer(b); 2660 } 2661 2662 b = btrfs_lock_root_node(root); 2663 root_lock = BTRFS_WRITE_LOCK; 2664 2665 /* The level might have changed, check again */ 2666 level = btrfs_header_level(b); 2667 2668 out: 2669 p->nodes[level] = b; 2670 if (!p->skip_locking) 2671 p->locks[level] = root_lock; 2672 /* 2673 * Callers are responsible for dropping b's references. 2674 */ 2675 return b; 2676 } 2677 2678 2679 /* 2680 * btrfs_search_slot - look for a key in a tree and perform necessary 2681 * modifications to preserve tree invariants. 2682 * 2683 * @trans: Handle of transaction, used when modifying the tree 2684 * @p: Holds all btree nodes along the search path 2685 * @root: The root node of the tree 2686 * @key: The key we are looking for 2687 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2688 * deletions it's -1. 0 for plain searches 2689 * @cow: boolean should CoW operations be performed. Must always be 1 2690 * when modifying the tree. 2691 * 2692 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2693 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2694 * 2695 * If @key is found, 0 is returned and you can find the item in the leaf level 2696 * of the path (level 0) 2697 * 2698 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2699 * points to the slot where it should be inserted 2700 * 2701 * If an error is encountered while searching the tree a negative error number 2702 * is returned 2703 */ 2704 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2705 const struct btrfs_key *key, struct btrfs_path *p, 2706 int ins_len, int cow) 2707 { 2708 struct extent_buffer *b; 2709 int slot; 2710 int ret; 2711 int err; 2712 int level; 2713 int lowest_unlock = 1; 2714 /* everything at write_lock_level or lower must be write locked */ 2715 int write_lock_level = 0; 2716 u8 lowest_level = 0; 2717 int min_write_lock_level; 2718 int prev_cmp; 2719 2720 lowest_level = p->lowest_level; 2721 WARN_ON(lowest_level && ins_len > 0); 2722 WARN_ON(p->nodes[0] != NULL); 2723 BUG_ON(!cow && ins_len); 2724 2725 if (ins_len < 0) { 2726 lowest_unlock = 2; 2727 2728 /* when we are removing items, we might have to go up to level 2729 * two as we update tree pointers Make sure we keep write 2730 * for those levels as well 2731 */ 2732 write_lock_level = 2; 2733 } else if (ins_len > 0) { 2734 /* 2735 * for inserting items, make sure we have a write lock on 2736 * level 1 so we can update keys 2737 */ 2738 write_lock_level = 1; 2739 } 2740 2741 if (!cow) 2742 write_lock_level = -1; 2743 2744 if (cow && (p->keep_locks || p->lowest_level)) 2745 write_lock_level = BTRFS_MAX_LEVEL; 2746 2747 min_write_lock_level = write_lock_level; 2748 2749 again: 2750 prev_cmp = -1; 2751 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2752 if (IS_ERR(b)) { 2753 ret = PTR_ERR(b); 2754 goto done; 2755 } 2756 2757 while (b) { 2758 int dec = 0; 2759 2760 level = btrfs_header_level(b); 2761 2762 if (cow) { 2763 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2764 2765 /* 2766 * if we don't really need to cow this block 2767 * then we don't want to set the path blocking, 2768 * so we test it here 2769 */ 2770 if (!should_cow_block(trans, root, b)) { 2771 trans->dirty = true; 2772 goto cow_done; 2773 } 2774 2775 /* 2776 * must have write locks on this node and the 2777 * parent 2778 */ 2779 if (level > write_lock_level || 2780 (level + 1 > write_lock_level && 2781 level + 1 < BTRFS_MAX_LEVEL && 2782 p->nodes[level + 1])) { 2783 write_lock_level = level + 1; 2784 btrfs_release_path(p); 2785 goto again; 2786 } 2787 2788 btrfs_set_path_blocking(p); 2789 if (last_level) 2790 err = btrfs_cow_block(trans, root, b, NULL, 0, 2791 &b); 2792 else 2793 err = btrfs_cow_block(trans, root, b, 2794 p->nodes[level + 1], 2795 p->slots[level + 1], &b); 2796 if (err) { 2797 ret = err; 2798 goto done; 2799 } 2800 } 2801 cow_done: 2802 p->nodes[level] = b; 2803 /* 2804 * Leave path with blocking locks to avoid massive 2805 * lock context switch, this is made on purpose. 2806 */ 2807 2808 /* 2809 * we have a lock on b and as long as we aren't changing 2810 * the tree, there is no way to for the items in b to change. 2811 * It is safe to drop the lock on our parent before we 2812 * go through the expensive btree search on b. 2813 * 2814 * If we're inserting or deleting (ins_len != 0), then we might 2815 * be changing slot zero, which may require changing the parent. 2816 * So, we can't drop the lock until after we know which slot 2817 * we're operating on. 2818 */ 2819 if (!ins_len && !p->keep_locks) { 2820 int u = level + 1; 2821 2822 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2823 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2824 p->locks[u] = 0; 2825 } 2826 } 2827 2828 ret = key_search(b, key, level, &prev_cmp, &slot); 2829 if (ret < 0) 2830 goto done; 2831 2832 if (level == 0) { 2833 p->slots[level] = slot; 2834 if (ins_len > 0 && 2835 btrfs_leaf_free_space(b) < ins_len) { 2836 if (write_lock_level < 1) { 2837 write_lock_level = 1; 2838 btrfs_release_path(p); 2839 goto again; 2840 } 2841 2842 btrfs_set_path_blocking(p); 2843 err = split_leaf(trans, root, key, 2844 p, ins_len, ret == 0); 2845 2846 BUG_ON(err > 0); 2847 if (err) { 2848 ret = err; 2849 goto done; 2850 } 2851 } 2852 if (!p->search_for_split) 2853 unlock_up(p, level, lowest_unlock, 2854 min_write_lock_level, NULL); 2855 goto done; 2856 } 2857 if (ret && slot > 0) { 2858 dec = 1; 2859 slot--; 2860 } 2861 p->slots[level] = slot; 2862 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2863 &write_lock_level); 2864 if (err == -EAGAIN) 2865 goto again; 2866 if (err) { 2867 ret = err; 2868 goto done; 2869 } 2870 b = p->nodes[level]; 2871 slot = p->slots[level]; 2872 2873 /* 2874 * Slot 0 is special, if we change the key we have to update 2875 * the parent pointer which means we must have a write lock on 2876 * the parent 2877 */ 2878 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2879 write_lock_level = level + 1; 2880 btrfs_release_path(p); 2881 goto again; 2882 } 2883 2884 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2885 &write_lock_level); 2886 2887 if (level == lowest_level) { 2888 if (dec) 2889 p->slots[level]++; 2890 goto done; 2891 } 2892 2893 err = read_block_for_search(root, p, &b, level, slot, key); 2894 if (err == -EAGAIN) 2895 goto again; 2896 if (err) { 2897 ret = err; 2898 goto done; 2899 } 2900 2901 if (!p->skip_locking) { 2902 level = btrfs_header_level(b); 2903 if (level <= write_lock_level) { 2904 if (!btrfs_try_tree_write_lock(b)) { 2905 btrfs_set_path_blocking(p); 2906 btrfs_tree_lock(b); 2907 } 2908 p->locks[level] = BTRFS_WRITE_LOCK; 2909 } else { 2910 if (!btrfs_tree_read_lock_atomic(b)) { 2911 btrfs_set_path_blocking(p); 2912 btrfs_tree_read_lock(b); 2913 } 2914 p->locks[level] = BTRFS_READ_LOCK; 2915 } 2916 p->nodes[level] = b; 2917 } 2918 } 2919 ret = 1; 2920 done: 2921 /* 2922 * we don't really know what they plan on doing with the path 2923 * from here on, so for now just mark it as blocking 2924 */ 2925 if (!p->leave_spinning) 2926 btrfs_set_path_blocking(p); 2927 if (ret < 0 && !p->skip_release_on_error) 2928 btrfs_release_path(p); 2929 return ret; 2930 } 2931 2932 /* 2933 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2934 * current state of the tree together with the operations recorded in the tree 2935 * modification log to search for the key in a previous version of this tree, as 2936 * denoted by the time_seq parameter. 2937 * 2938 * Naturally, there is no support for insert, delete or cow operations. 2939 * 2940 * The resulting path and return value will be set up as if we called 2941 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2942 */ 2943 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2944 struct btrfs_path *p, u64 time_seq) 2945 { 2946 struct btrfs_fs_info *fs_info = root->fs_info; 2947 struct extent_buffer *b; 2948 int slot; 2949 int ret; 2950 int err; 2951 int level; 2952 int lowest_unlock = 1; 2953 u8 lowest_level = 0; 2954 int prev_cmp = -1; 2955 2956 lowest_level = p->lowest_level; 2957 WARN_ON(p->nodes[0] != NULL); 2958 2959 if (p->search_commit_root) { 2960 BUG_ON(time_seq); 2961 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2962 } 2963 2964 again: 2965 b = get_old_root(root, time_seq); 2966 if (!b) { 2967 ret = -EIO; 2968 goto done; 2969 } 2970 level = btrfs_header_level(b); 2971 p->locks[level] = BTRFS_READ_LOCK; 2972 2973 while (b) { 2974 int dec = 0; 2975 2976 level = btrfs_header_level(b); 2977 p->nodes[level] = b; 2978 2979 /* 2980 * we have a lock on b and as long as we aren't changing 2981 * the tree, there is no way to for the items in b to change. 2982 * It is safe to drop the lock on our parent before we 2983 * go through the expensive btree search on b. 2984 */ 2985 btrfs_unlock_up_safe(p, level + 1); 2986 2987 /* 2988 * Since we can unwind ebs we want to do a real search every 2989 * time. 2990 */ 2991 prev_cmp = -1; 2992 ret = key_search(b, key, level, &prev_cmp, &slot); 2993 if (ret < 0) 2994 goto done; 2995 2996 if (level == 0) { 2997 p->slots[level] = slot; 2998 unlock_up(p, level, lowest_unlock, 0, NULL); 2999 goto done; 3000 } 3001 3002 if (ret && slot > 0) { 3003 dec = 1; 3004 slot--; 3005 } 3006 p->slots[level] = slot; 3007 unlock_up(p, level, lowest_unlock, 0, NULL); 3008 3009 if (level == lowest_level) { 3010 if (dec) 3011 p->slots[level]++; 3012 goto done; 3013 } 3014 3015 err = read_block_for_search(root, p, &b, level, slot, key); 3016 if (err == -EAGAIN) 3017 goto again; 3018 if (err) { 3019 ret = err; 3020 goto done; 3021 } 3022 3023 level = btrfs_header_level(b); 3024 if (!btrfs_tree_read_lock_atomic(b)) { 3025 btrfs_set_path_blocking(p); 3026 btrfs_tree_read_lock(b); 3027 } 3028 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3029 if (!b) { 3030 ret = -ENOMEM; 3031 goto done; 3032 } 3033 p->locks[level] = BTRFS_READ_LOCK; 3034 p->nodes[level] = b; 3035 } 3036 ret = 1; 3037 done: 3038 if (!p->leave_spinning) 3039 btrfs_set_path_blocking(p); 3040 if (ret < 0) 3041 btrfs_release_path(p); 3042 3043 return ret; 3044 } 3045 3046 /* 3047 * helper to use instead of search slot if no exact match is needed but 3048 * instead the next or previous item should be returned. 3049 * When find_higher is true, the next higher item is returned, the next lower 3050 * otherwise. 3051 * When return_any and find_higher are both true, and no higher item is found, 3052 * return the next lower instead. 3053 * When return_any is true and find_higher is false, and no lower item is found, 3054 * return the next higher instead. 3055 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3056 * < 0 on error 3057 */ 3058 int btrfs_search_slot_for_read(struct btrfs_root *root, 3059 const struct btrfs_key *key, 3060 struct btrfs_path *p, int find_higher, 3061 int return_any) 3062 { 3063 int ret; 3064 struct extent_buffer *leaf; 3065 3066 again: 3067 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3068 if (ret <= 0) 3069 return ret; 3070 /* 3071 * a return value of 1 means the path is at the position where the 3072 * item should be inserted. Normally this is the next bigger item, 3073 * but in case the previous item is the last in a leaf, path points 3074 * to the first free slot in the previous leaf, i.e. at an invalid 3075 * item. 3076 */ 3077 leaf = p->nodes[0]; 3078 3079 if (find_higher) { 3080 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3081 ret = btrfs_next_leaf(root, p); 3082 if (ret <= 0) 3083 return ret; 3084 if (!return_any) 3085 return 1; 3086 /* 3087 * no higher item found, return the next 3088 * lower instead 3089 */ 3090 return_any = 0; 3091 find_higher = 0; 3092 btrfs_release_path(p); 3093 goto again; 3094 } 3095 } else { 3096 if (p->slots[0] == 0) { 3097 ret = btrfs_prev_leaf(root, p); 3098 if (ret < 0) 3099 return ret; 3100 if (!ret) { 3101 leaf = p->nodes[0]; 3102 if (p->slots[0] == btrfs_header_nritems(leaf)) 3103 p->slots[0]--; 3104 return 0; 3105 } 3106 if (!return_any) 3107 return 1; 3108 /* 3109 * no lower item found, return the next 3110 * higher instead 3111 */ 3112 return_any = 0; 3113 find_higher = 1; 3114 btrfs_release_path(p); 3115 goto again; 3116 } else { 3117 --p->slots[0]; 3118 } 3119 } 3120 return 0; 3121 } 3122 3123 /* 3124 * adjust the pointers going up the tree, starting at level 3125 * making sure the right key of each node is points to 'key'. 3126 * This is used after shifting pointers to the left, so it stops 3127 * fixing up pointers when a given leaf/node is not in slot 0 of the 3128 * higher levels 3129 * 3130 */ 3131 static void fixup_low_keys(struct btrfs_path *path, 3132 struct btrfs_disk_key *key, int level) 3133 { 3134 int i; 3135 struct extent_buffer *t; 3136 int ret; 3137 3138 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3139 int tslot = path->slots[i]; 3140 3141 if (!path->nodes[i]) 3142 break; 3143 t = path->nodes[i]; 3144 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3145 GFP_ATOMIC); 3146 BUG_ON(ret < 0); 3147 btrfs_set_node_key(t, key, tslot); 3148 btrfs_mark_buffer_dirty(path->nodes[i]); 3149 if (tslot != 0) 3150 break; 3151 } 3152 } 3153 3154 /* 3155 * update item key. 3156 * 3157 * This function isn't completely safe. It's the caller's responsibility 3158 * that the new key won't break the order 3159 */ 3160 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3161 struct btrfs_path *path, 3162 const struct btrfs_key *new_key) 3163 { 3164 struct btrfs_disk_key disk_key; 3165 struct extent_buffer *eb; 3166 int slot; 3167 3168 eb = path->nodes[0]; 3169 slot = path->slots[0]; 3170 if (slot > 0) { 3171 btrfs_item_key(eb, &disk_key, slot - 1); 3172 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3173 btrfs_crit(fs_info, 3174 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3175 slot, btrfs_disk_key_objectid(&disk_key), 3176 btrfs_disk_key_type(&disk_key), 3177 btrfs_disk_key_offset(&disk_key), 3178 new_key->objectid, new_key->type, 3179 new_key->offset); 3180 btrfs_print_leaf(eb); 3181 BUG(); 3182 } 3183 } 3184 if (slot < btrfs_header_nritems(eb) - 1) { 3185 btrfs_item_key(eb, &disk_key, slot + 1); 3186 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3187 btrfs_crit(fs_info, 3188 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3189 slot, btrfs_disk_key_objectid(&disk_key), 3190 btrfs_disk_key_type(&disk_key), 3191 btrfs_disk_key_offset(&disk_key), 3192 new_key->objectid, new_key->type, 3193 new_key->offset); 3194 btrfs_print_leaf(eb); 3195 BUG(); 3196 } 3197 } 3198 3199 btrfs_cpu_key_to_disk(&disk_key, new_key); 3200 btrfs_set_item_key(eb, &disk_key, slot); 3201 btrfs_mark_buffer_dirty(eb); 3202 if (slot == 0) 3203 fixup_low_keys(path, &disk_key, 1); 3204 } 3205 3206 /* 3207 * try to push data from one node into the next node left in the 3208 * tree. 3209 * 3210 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3211 * error, and > 0 if there was no room in the left hand block. 3212 */ 3213 static int push_node_left(struct btrfs_trans_handle *trans, 3214 struct extent_buffer *dst, 3215 struct extent_buffer *src, int empty) 3216 { 3217 struct btrfs_fs_info *fs_info = trans->fs_info; 3218 int push_items = 0; 3219 int src_nritems; 3220 int dst_nritems; 3221 int ret = 0; 3222 3223 src_nritems = btrfs_header_nritems(src); 3224 dst_nritems = btrfs_header_nritems(dst); 3225 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3226 WARN_ON(btrfs_header_generation(src) != trans->transid); 3227 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3228 3229 if (!empty && src_nritems <= 8) 3230 return 1; 3231 3232 if (push_items <= 0) 3233 return 1; 3234 3235 if (empty) { 3236 push_items = min(src_nritems, push_items); 3237 if (push_items < src_nritems) { 3238 /* leave at least 8 pointers in the node if 3239 * we aren't going to empty it 3240 */ 3241 if (src_nritems - push_items < 8) { 3242 if (push_items <= 8) 3243 return 1; 3244 push_items -= 8; 3245 } 3246 } 3247 } else 3248 push_items = min(src_nritems - 8, push_items); 3249 3250 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3251 if (ret) { 3252 btrfs_abort_transaction(trans, ret); 3253 return ret; 3254 } 3255 copy_extent_buffer(dst, src, 3256 btrfs_node_key_ptr_offset(dst_nritems), 3257 btrfs_node_key_ptr_offset(0), 3258 push_items * sizeof(struct btrfs_key_ptr)); 3259 3260 if (push_items < src_nritems) { 3261 /* 3262 * Don't call tree_mod_log_insert_move here, key removal was 3263 * already fully logged by tree_mod_log_eb_copy above. 3264 */ 3265 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3266 btrfs_node_key_ptr_offset(push_items), 3267 (src_nritems - push_items) * 3268 sizeof(struct btrfs_key_ptr)); 3269 } 3270 btrfs_set_header_nritems(src, src_nritems - push_items); 3271 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3272 btrfs_mark_buffer_dirty(src); 3273 btrfs_mark_buffer_dirty(dst); 3274 3275 return ret; 3276 } 3277 3278 /* 3279 * try to push data from one node into the next node right in the 3280 * tree. 3281 * 3282 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3283 * error, and > 0 if there was no room in the right hand block. 3284 * 3285 * this will only push up to 1/2 the contents of the left node over 3286 */ 3287 static int balance_node_right(struct btrfs_trans_handle *trans, 3288 struct extent_buffer *dst, 3289 struct extent_buffer *src) 3290 { 3291 struct btrfs_fs_info *fs_info = trans->fs_info; 3292 int push_items = 0; 3293 int max_push; 3294 int src_nritems; 3295 int dst_nritems; 3296 int ret = 0; 3297 3298 WARN_ON(btrfs_header_generation(src) != trans->transid); 3299 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3300 3301 src_nritems = btrfs_header_nritems(src); 3302 dst_nritems = btrfs_header_nritems(dst); 3303 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3304 if (push_items <= 0) 3305 return 1; 3306 3307 if (src_nritems < 4) 3308 return 1; 3309 3310 max_push = src_nritems / 2 + 1; 3311 /* don't try to empty the node */ 3312 if (max_push >= src_nritems) 3313 return 1; 3314 3315 if (max_push < push_items) 3316 push_items = max_push; 3317 3318 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3319 BUG_ON(ret < 0); 3320 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3321 btrfs_node_key_ptr_offset(0), 3322 (dst_nritems) * 3323 sizeof(struct btrfs_key_ptr)); 3324 3325 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3326 push_items); 3327 if (ret) { 3328 btrfs_abort_transaction(trans, ret); 3329 return ret; 3330 } 3331 copy_extent_buffer(dst, src, 3332 btrfs_node_key_ptr_offset(0), 3333 btrfs_node_key_ptr_offset(src_nritems - push_items), 3334 push_items * sizeof(struct btrfs_key_ptr)); 3335 3336 btrfs_set_header_nritems(src, src_nritems - push_items); 3337 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3338 3339 btrfs_mark_buffer_dirty(src); 3340 btrfs_mark_buffer_dirty(dst); 3341 3342 return ret; 3343 } 3344 3345 /* 3346 * helper function to insert a new root level in the tree. 3347 * A new node is allocated, and a single item is inserted to 3348 * point to the existing root 3349 * 3350 * returns zero on success or < 0 on failure. 3351 */ 3352 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3353 struct btrfs_root *root, 3354 struct btrfs_path *path, int level) 3355 { 3356 struct btrfs_fs_info *fs_info = root->fs_info; 3357 u64 lower_gen; 3358 struct extent_buffer *lower; 3359 struct extent_buffer *c; 3360 struct extent_buffer *old; 3361 struct btrfs_disk_key lower_key; 3362 int ret; 3363 3364 BUG_ON(path->nodes[level]); 3365 BUG_ON(path->nodes[level-1] != root->node); 3366 3367 lower = path->nodes[level-1]; 3368 if (level == 1) 3369 btrfs_item_key(lower, &lower_key, 0); 3370 else 3371 btrfs_node_key(lower, &lower_key, 0); 3372 3373 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3374 root->node->start, 0); 3375 if (IS_ERR(c)) 3376 return PTR_ERR(c); 3377 3378 root_add_used(root, fs_info->nodesize); 3379 3380 btrfs_set_header_nritems(c, 1); 3381 btrfs_set_node_key(c, &lower_key, 0); 3382 btrfs_set_node_blockptr(c, 0, lower->start); 3383 lower_gen = btrfs_header_generation(lower); 3384 WARN_ON(lower_gen != trans->transid); 3385 3386 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3387 3388 btrfs_mark_buffer_dirty(c); 3389 3390 old = root->node; 3391 ret = tree_mod_log_insert_root(root->node, c, 0); 3392 BUG_ON(ret < 0); 3393 rcu_assign_pointer(root->node, c); 3394 3395 /* the super has an extra ref to root->node */ 3396 free_extent_buffer(old); 3397 3398 add_root_to_dirty_list(root); 3399 atomic_inc(&c->refs); 3400 path->nodes[level] = c; 3401 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3402 path->slots[level] = 0; 3403 return 0; 3404 } 3405 3406 /* 3407 * worker function to insert a single pointer in a node. 3408 * the node should have enough room for the pointer already 3409 * 3410 * slot and level indicate where you want the key to go, and 3411 * blocknr is the block the key points to. 3412 */ 3413 static void insert_ptr(struct btrfs_trans_handle *trans, 3414 struct btrfs_path *path, 3415 struct btrfs_disk_key *key, u64 bytenr, 3416 int slot, int level) 3417 { 3418 struct extent_buffer *lower; 3419 int nritems; 3420 int ret; 3421 3422 BUG_ON(!path->nodes[level]); 3423 btrfs_assert_tree_locked(path->nodes[level]); 3424 lower = path->nodes[level]; 3425 nritems = btrfs_header_nritems(lower); 3426 BUG_ON(slot > nritems); 3427 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3428 if (slot != nritems) { 3429 if (level) { 3430 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3431 nritems - slot); 3432 BUG_ON(ret < 0); 3433 } 3434 memmove_extent_buffer(lower, 3435 btrfs_node_key_ptr_offset(slot + 1), 3436 btrfs_node_key_ptr_offset(slot), 3437 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3438 } 3439 if (level) { 3440 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3441 GFP_NOFS); 3442 BUG_ON(ret < 0); 3443 } 3444 btrfs_set_node_key(lower, key, slot); 3445 btrfs_set_node_blockptr(lower, slot, bytenr); 3446 WARN_ON(trans->transid == 0); 3447 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3448 btrfs_set_header_nritems(lower, nritems + 1); 3449 btrfs_mark_buffer_dirty(lower); 3450 } 3451 3452 /* 3453 * split the node at the specified level in path in two. 3454 * The path is corrected to point to the appropriate node after the split 3455 * 3456 * Before splitting this tries to make some room in the node by pushing 3457 * left and right, if either one works, it returns right away. 3458 * 3459 * returns 0 on success and < 0 on failure 3460 */ 3461 static noinline int split_node(struct btrfs_trans_handle *trans, 3462 struct btrfs_root *root, 3463 struct btrfs_path *path, int level) 3464 { 3465 struct btrfs_fs_info *fs_info = root->fs_info; 3466 struct extent_buffer *c; 3467 struct extent_buffer *split; 3468 struct btrfs_disk_key disk_key; 3469 int mid; 3470 int ret; 3471 u32 c_nritems; 3472 3473 c = path->nodes[level]; 3474 WARN_ON(btrfs_header_generation(c) != trans->transid); 3475 if (c == root->node) { 3476 /* 3477 * trying to split the root, lets make a new one 3478 * 3479 * tree mod log: We don't log_removal old root in 3480 * insert_new_root, because that root buffer will be kept as a 3481 * normal node. We are going to log removal of half of the 3482 * elements below with tree_mod_log_eb_copy. We're holding a 3483 * tree lock on the buffer, which is why we cannot race with 3484 * other tree_mod_log users. 3485 */ 3486 ret = insert_new_root(trans, root, path, level + 1); 3487 if (ret) 3488 return ret; 3489 } else { 3490 ret = push_nodes_for_insert(trans, root, path, level); 3491 c = path->nodes[level]; 3492 if (!ret && btrfs_header_nritems(c) < 3493 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3494 return 0; 3495 if (ret < 0) 3496 return ret; 3497 } 3498 3499 c_nritems = btrfs_header_nritems(c); 3500 mid = (c_nritems + 1) / 2; 3501 btrfs_node_key(c, &disk_key, mid); 3502 3503 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3504 c->start, 0); 3505 if (IS_ERR(split)) 3506 return PTR_ERR(split); 3507 3508 root_add_used(root, fs_info->nodesize); 3509 ASSERT(btrfs_header_level(c) == level); 3510 3511 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3512 if (ret) { 3513 btrfs_abort_transaction(trans, ret); 3514 return ret; 3515 } 3516 copy_extent_buffer(split, c, 3517 btrfs_node_key_ptr_offset(0), 3518 btrfs_node_key_ptr_offset(mid), 3519 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3520 btrfs_set_header_nritems(split, c_nritems - mid); 3521 btrfs_set_header_nritems(c, mid); 3522 ret = 0; 3523 3524 btrfs_mark_buffer_dirty(c); 3525 btrfs_mark_buffer_dirty(split); 3526 3527 insert_ptr(trans, path, &disk_key, split->start, 3528 path->slots[level + 1] + 1, level + 1); 3529 3530 if (path->slots[level] >= mid) { 3531 path->slots[level] -= mid; 3532 btrfs_tree_unlock(c); 3533 free_extent_buffer(c); 3534 path->nodes[level] = split; 3535 path->slots[level + 1] += 1; 3536 } else { 3537 btrfs_tree_unlock(split); 3538 free_extent_buffer(split); 3539 } 3540 return ret; 3541 } 3542 3543 /* 3544 * how many bytes are required to store the items in a leaf. start 3545 * and nr indicate which items in the leaf to check. This totals up the 3546 * space used both by the item structs and the item data 3547 */ 3548 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3549 { 3550 struct btrfs_item *start_item; 3551 struct btrfs_item *end_item; 3552 struct btrfs_map_token token; 3553 int data_len; 3554 int nritems = btrfs_header_nritems(l); 3555 int end = min(nritems, start + nr) - 1; 3556 3557 if (!nr) 3558 return 0; 3559 btrfs_init_map_token(&token, l); 3560 start_item = btrfs_item_nr(start); 3561 end_item = btrfs_item_nr(end); 3562 data_len = btrfs_token_item_offset(l, start_item, &token) + 3563 btrfs_token_item_size(l, start_item, &token); 3564 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3565 data_len += sizeof(struct btrfs_item) * nr; 3566 WARN_ON(data_len < 0); 3567 return data_len; 3568 } 3569 3570 /* 3571 * The space between the end of the leaf items and 3572 * the start of the leaf data. IOW, how much room 3573 * the leaf has left for both items and data 3574 */ 3575 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3576 { 3577 struct btrfs_fs_info *fs_info = leaf->fs_info; 3578 int nritems = btrfs_header_nritems(leaf); 3579 int ret; 3580 3581 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3582 if (ret < 0) { 3583 btrfs_crit(fs_info, 3584 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3585 ret, 3586 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3587 leaf_space_used(leaf, 0, nritems), nritems); 3588 } 3589 return ret; 3590 } 3591 3592 /* 3593 * min slot controls the lowest index we're willing to push to the 3594 * right. We'll push up to and including min_slot, but no lower 3595 */ 3596 static noinline int __push_leaf_right(struct btrfs_path *path, 3597 int data_size, int empty, 3598 struct extent_buffer *right, 3599 int free_space, u32 left_nritems, 3600 u32 min_slot) 3601 { 3602 struct btrfs_fs_info *fs_info = right->fs_info; 3603 struct extent_buffer *left = path->nodes[0]; 3604 struct extent_buffer *upper = path->nodes[1]; 3605 struct btrfs_map_token token; 3606 struct btrfs_disk_key disk_key; 3607 int slot; 3608 u32 i; 3609 int push_space = 0; 3610 int push_items = 0; 3611 struct btrfs_item *item; 3612 u32 nr; 3613 u32 right_nritems; 3614 u32 data_end; 3615 u32 this_item_size; 3616 3617 if (empty) 3618 nr = 0; 3619 else 3620 nr = max_t(u32, 1, min_slot); 3621 3622 if (path->slots[0] >= left_nritems) 3623 push_space += data_size; 3624 3625 slot = path->slots[1]; 3626 i = left_nritems - 1; 3627 while (i >= nr) { 3628 item = btrfs_item_nr(i); 3629 3630 if (!empty && push_items > 0) { 3631 if (path->slots[0] > i) 3632 break; 3633 if (path->slots[0] == i) { 3634 int space = btrfs_leaf_free_space(left); 3635 3636 if (space + push_space * 2 > free_space) 3637 break; 3638 } 3639 } 3640 3641 if (path->slots[0] == i) 3642 push_space += data_size; 3643 3644 this_item_size = btrfs_item_size(left, item); 3645 if (this_item_size + sizeof(*item) + push_space > free_space) 3646 break; 3647 3648 push_items++; 3649 push_space += this_item_size + sizeof(*item); 3650 if (i == 0) 3651 break; 3652 i--; 3653 } 3654 3655 if (push_items == 0) 3656 goto out_unlock; 3657 3658 WARN_ON(!empty && push_items == left_nritems); 3659 3660 /* push left to right */ 3661 right_nritems = btrfs_header_nritems(right); 3662 3663 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3664 push_space -= leaf_data_end(left); 3665 3666 /* make room in the right data area */ 3667 data_end = leaf_data_end(right); 3668 memmove_extent_buffer(right, 3669 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3670 BTRFS_LEAF_DATA_OFFSET + data_end, 3671 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3672 3673 /* copy from the left data area */ 3674 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3675 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3676 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3677 push_space); 3678 3679 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3680 btrfs_item_nr_offset(0), 3681 right_nritems * sizeof(struct btrfs_item)); 3682 3683 /* copy the items from left to right */ 3684 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3685 btrfs_item_nr_offset(left_nritems - push_items), 3686 push_items * sizeof(struct btrfs_item)); 3687 3688 /* update the item pointers */ 3689 btrfs_init_map_token(&token, right); 3690 right_nritems += push_items; 3691 btrfs_set_header_nritems(right, right_nritems); 3692 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3693 for (i = 0; i < right_nritems; i++) { 3694 item = btrfs_item_nr(i); 3695 push_space -= btrfs_token_item_size(right, item, &token); 3696 btrfs_set_token_item_offset(right, item, push_space, &token); 3697 } 3698 3699 left_nritems -= push_items; 3700 btrfs_set_header_nritems(left, left_nritems); 3701 3702 if (left_nritems) 3703 btrfs_mark_buffer_dirty(left); 3704 else 3705 btrfs_clean_tree_block(left); 3706 3707 btrfs_mark_buffer_dirty(right); 3708 3709 btrfs_item_key(right, &disk_key, 0); 3710 btrfs_set_node_key(upper, &disk_key, slot + 1); 3711 btrfs_mark_buffer_dirty(upper); 3712 3713 /* then fixup the leaf pointer in the path */ 3714 if (path->slots[0] >= left_nritems) { 3715 path->slots[0] -= left_nritems; 3716 if (btrfs_header_nritems(path->nodes[0]) == 0) 3717 btrfs_clean_tree_block(path->nodes[0]); 3718 btrfs_tree_unlock(path->nodes[0]); 3719 free_extent_buffer(path->nodes[0]); 3720 path->nodes[0] = right; 3721 path->slots[1] += 1; 3722 } else { 3723 btrfs_tree_unlock(right); 3724 free_extent_buffer(right); 3725 } 3726 return 0; 3727 3728 out_unlock: 3729 btrfs_tree_unlock(right); 3730 free_extent_buffer(right); 3731 return 1; 3732 } 3733 3734 /* 3735 * push some data in the path leaf to the right, trying to free up at 3736 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3737 * 3738 * returns 1 if the push failed because the other node didn't have enough 3739 * room, 0 if everything worked out and < 0 if there were major errors. 3740 * 3741 * this will push starting from min_slot to the end of the leaf. It won't 3742 * push any slot lower than min_slot 3743 */ 3744 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3745 *root, struct btrfs_path *path, 3746 int min_data_size, int data_size, 3747 int empty, u32 min_slot) 3748 { 3749 struct extent_buffer *left = path->nodes[0]; 3750 struct extent_buffer *right; 3751 struct extent_buffer *upper; 3752 int slot; 3753 int free_space; 3754 u32 left_nritems; 3755 int ret; 3756 3757 if (!path->nodes[1]) 3758 return 1; 3759 3760 slot = path->slots[1]; 3761 upper = path->nodes[1]; 3762 if (slot >= btrfs_header_nritems(upper) - 1) 3763 return 1; 3764 3765 btrfs_assert_tree_locked(path->nodes[1]); 3766 3767 right = btrfs_read_node_slot(upper, slot + 1); 3768 /* 3769 * slot + 1 is not valid or we fail to read the right node, 3770 * no big deal, just return. 3771 */ 3772 if (IS_ERR(right)) 3773 return 1; 3774 3775 btrfs_tree_lock(right); 3776 btrfs_set_lock_blocking_write(right); 3777 3778 free_space = btrfs_leaf_free_space(right); 3779 if (free_space < data_size) 3780 goto out_unlock; 3781 3782 /* cow and double check */ 3783 ret = btrfs_cow_block(trans, root, right, upper, 3784 slot + 1, &right); 3785 if (ret) 3786 goto out_unlock; 3787 3788 free_space = btrfs_leaf_free_space(right); 3789 if (free_space < data_size) 3790 goto out_unlock; 3791 3792 left_nritems = btrfs_header_nritems(left); 3793 if (left_nritems == 0) 3794 goto out_unlock; 3795 3796 if (path->slots[0] == left_nritems && !empty) { 3797 /* Key greater than all keys in the leaf, right neighbor has 3798 * enough room for it and we're not emptying our leaf to delete 3799 * it, therefore use right neighbor to insert the new item and 3800 * no need to touch/dirty our left leaf. */ 3801 btrfs_tree_unlock(left); 3802 free_extent_buffer(left); 3803 path->nodes[0] = right; 3804 path->slots[0] = 0; 3805 path->slots[1]++; 3806 return 0; 3807 } 3808 3809 return __push_leaf_right(path, min_data_size, empty, 3810 right, free_space, left_nritems, min_slot); 3811 out_unlock: 3812 btrfs_tree_unlock(right); 3813 free_extent_buffer(right); 3814 return 1; 3815 } 3816 3817 /* 3818 * push some data in the path leaf to the left, trying to free up at 3819 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3820 * 3821 * max_slot can put a limit on how far into the leaf we'll push items. The 3822 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3823 * items 3824 */ 3825 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3826 int empty, struct extent_buffer *left, 3827 int free_space, u32 right_nritems, 3828 u32 max_slot) 3829 { 3830 struct btrfs_fs_info *fs_info = left->fs_info; 3831 struct btrfs_disk_key disk_key; 3832 struct extent_buffer *right = path->nodes[0]; 3833 int i; 3834 int push_space = 0; 3835 int push_items = 0; 3836 struct btrfs_item *item; 3837 u32 old_left_nritems; 3838 u32 nr; 3839 int ret = 0; 3840 u32 this_item_size; 3841 u32 old_left_item_size; 3842 struct btrfs_map_token token; 3843 3844 if (empty) 3845 nr = min(right_nritems, max_slot); 3846 else 3847 nr = min(right_nritems - 1, max_slot); 3848 3849 for (i = 0; i < nr; i++) { 3850 item = btrfs_item_nr(i); 3851 3852 if (!empty && push_items > 0) { 3853 if (path->slots[0] < i) 3854 break; 3855 if (path->slots[0] == i) { 3856 int space = btrfs_leaf_free_space(right); 3857 3858 if (space + push_space * 2 > free_space) 3859 break; 3860 } 3861 } 3862 3863 if (path->slots[0] == i) 3864 push_space += data_size; 3865 3866 this_item_size = btrfs_item_size(right, item); 3867 if (this_item_size + sizeof(*item) + push_space > free_space) 3868 break; 3869 3870 push_items++; 3871 push_space += this_item_size + sizeof(*item); 3872 } 3873 3874 if (push_items == 0) { 3875 ret = 1; 3876 goto out; 3877 } 3878 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3879 3880 /* push data from right to left */ 3881 copy_extent_buffer(left, right, 3882 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3883 btrfs_item_nr_offset(0), 3884 push_items * sizeof(struct btrfs_item)); 3885 3886 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3887 btrfs_item_offset_nr(right, push_items - 1); 3888 3889 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3890 leaf_data_end(left) - push_space, 3891 BTRFS_LEAF_DATA_OFFSET + 3892 btrfs_item_offset_nr(right, push_items - 1), 3893 push_space); 3894 old_left_nritems = btrfs_header_nritems(left); 3895 BUG_ON(old_left_nritems <= 0); 3896 3897 btrfs_init_map_token(&token, left); 3898 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3899 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3900 u32 ioff; 3901 3902 item = btrfs_item_nr(i); 3903 3904 ioff = btrfs_token_item_offset(left, item, &token); 3905 btrfs_set_token_item_offset(left, item, 3906 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3907 &token); 3908 } 3909 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3910 3911 /* fixup right node */ 3912 if (push_items > right_nritems) 3913 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3914 right_nritems); 3915 3916 if (push_items < right_nritems) { 3917 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3918 leaf_data_end(right); 3919 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3920 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3921 BTRFS_LEAF_DATA_OFFSET + 3922 leaf_data_end(right), push_space); 3923 3924 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3925 btrfs_item_nr_offset(push_items), 3926 (btrfs_header_nritems(right) - push_items) * 3927 sizeof(struct btrfs_item)); 3928 } 3929 3930 btrfs_init_map_token(&token, right); 3931 right_nritems -= push_items; 3932 btrfs_set_header_nritems(right, right_nritems); 3933 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3934 for (i = 0; i < right_nritems; i++) { 3935 item = btrfs_item_nr(i); 3936 3937 push_space = push_space - btrfs_token_item_size(right, 3938 item, &token); 3939 btrfs_set_token_item_offset(right, item, push_space, &token); 3940 } 3941 3942 btrfs_mark_buffer_dirty(left); 3943 if (right_nritems) 3944 btrfs_mark_buffer_dirty(right); 3945 else 3946 btrfs_clean_tree_block(right); 3947 3948 btrfs_item_key(right, &disk_key, 0); 3949 fixup_low_keys(path, &disk_key, 1); 3950 3951 /* then fixup the leaf pointer in the path */ 3952 if (path->slots[0] < push_items) { 3953 path->slots[0] += old_left_nritems; 3954 btrfs_tree_unlock(path->nodes[0]); 3955 free_extent_buffer(path->nodes[0]); 3956 path->nodes[0] = left; 3957 path->slots[1] -= 1; 3958 } else { 3959 btrfs_tree_unlock(left); 3960 free_extent_buffer(left); 3961 path->slots[0] -= push_items; 3962 } 3963 BUG_ON(path->slots[0] < 0); 3964 return ret; 3965 out: 3966 btrfs_tree_unlock(left); 3967 free_extent_buffer(left); 3968 return ret; 3969 } 3970 3971 /* 3972 * push some data in the path leaf to the left, trying to free up at 3973 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3974 * 3975 * max_slot can put a limit on how far into the leaf we'll push items. The 3976 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3977 * items 3978 */ 3979 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3980 *root, struct btrfs_path *path, int min_data_size, 3981 int data_size, int empty, u32 max_slot) 3982 { 3983 struct extent_buffer *right = path->nodes[0]; 3984 struct extent_buffer *left; 3985 int slot; 3986 int free_space; 3987 u32 right_nritems; 3988 int ret = 0; 3989 3990 slot = path->slots[1]; 3991 if (slot == 0) 3992 return 1; 3993 if (!path->nodes[1]) 3994 return 1; 3995 3996 right_nritems = btrfs_header_nritems(right); 3997 if (right_nritems == 0) 3998 return 1; 3999 4000 btrfs_assert_tree_locked(path->nodes[1]); 4001 4002 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 4003 /* 4004 * slot - 1 is not valid or we fail to read the left node, 4005 * no big deal, just return. 4006 */ 4007 if (IS_ERR(left)) 4008 return 1; 4009 4010 btrfs_tree_lock(left); 4011 btrfs_set_lock_blocking_write(left); 4012 4013 free_space = btrfs_leaf_free_space(left); 4014 if (free_space < data_size) { 4015 ret = 1; 4016 goto out; 4017 } 4018 4019 /* cow and double check */ 4020 ret = btrfs_cow_block(trans, root, left, 4021 path->nodes[1], slot - 1, &left); 4022 if (ret) { 4023 /* we hit -ENOSPC, but it isn't fatal here */ 4024 if (ret == -ENOSPC) 4025 ret = 1; 4026 goto out; 4027 } 4028 4029 free_space = btrfs_leaf_free_space(left); 4030 if (free_space < data_size) { 4031 ret = 1; 4032 goto out; 4033 } 4034 4035 return __push_leaf_left(path, min_data_size, 4036 empty, left, free_space, right_nritems, 4037 max_slot); 4038 out: 4039 btrfs_tree_unlock(left); 4040 free_extent_buffer(left); 4041 return ret; 4042 } 4043 4044 /* 4045 * split the path's leaf in two, making sure there is at least data_size 4046 * available for the resulting leaf level of the path. 4047 */ 4048 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4049 struct btrfs_path *path, 4050 struct extent_buffer *l, 4051 struct extent_buffer *right, 4052 int slot, int mid, int nritems) 4053 { 4054 struct btrfs_fs_info *fs_info = trans->fs_info; 4055 int data_copy_size; 4056 int rt_data_off; 4057 int i; 4058 struct btrfs_disk_key disk_key; 4059 struct btrfs_map_token token; 4060 4061 nritems = nritems - mid; 4062 btrfs_set_header_nritems(right, nritems); 4063 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4064 4065 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4066 btrfs_item_nr_offset(mid), 4067 nritems * sizeof(struct btrfs_item)); 4068 4069 copy_extent_buffer(right, l, 4070 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4071 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4072 leaf_data_end(l), data_copy_size); 4073 4074 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4075 4076 btrfs_init_map_token(&token, right); 4077 for (i = 0; i < nritems; i++) { 4078 struct btrfs_item *item = btrfs_item_nr(i); 4079 u32 ioff; 4080 4081 ioff = btrfs_token_item_offset(right, item, &token); 4082 btrfs_set_token_item_offset(right, item, 4083 ioff + rt_data_off, &token); 4084 } 4085 4086 btrfs_set_header_nritems(l, mid); 4087 btrfs_item_key(right, &disk_key, 0); 4088 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4089 4090 btrfs_mark_buffer_dirty(right); 4091 btrfs_mark_buffer_dirty(l); 4092 BUG_ON(path->slots[0] != slot); 4093 4094 if (mid <= slot) { 4095 btrfs_tree_unlock(path->nodes[0]); 4096 free_extent_buffer(path->nodes[0]); 4097 path->nodes[0] = right; 4098 path->slots[0] -= mid; 4099 path->slots[1] += 1; 4100 } else { 4101 btrfs_tree_unlock(right); 4102 free_extent_buffer(right); 4103 } 4104 4105 BUG_ON(path->slots[0] < 0); 4106 } 4107 4108 /* 4109 * double splits happen when we need to insert a big item in the middle 4110 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4111 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4112 * A B C 4113 * 4114 * We avoid this by trying to push the items on either side of our target 4115 * into the adjacent leaves. If all goes well we can avoid the double split 4116 * completely. 4117 */ 4118 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4119 struct btrfs_root *root, 4120 struct btrfs_path *path, 4121 int data_size) 4122 { 4123 int ret; 4124 int progress = 0; 4125 int slot; 4126 u32 nritems; 4127 int space_needed = data_size; 4128 4129 slot = path->slots[0]; 4130 if (slot < btrfs_header_nritems(path->nodes[0])) 4131 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4132 4133 /* 4134 * try to push all the items after our slot into the 4135 * right leaf 4136 */ 4137 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4138 if (ret < 0) 4139 return ret; 4140 4141 if (ret == 0) 4142 progress++; 4143 4144 nritems = btrfs_header_nritems(path->nodes[0]); 4145 /* 4146 * our goal is to get our slot at the start or end of a leaf. If 4147 * we've done so we're done 4148 */ 4149 if (path->slots[0] == 0 || path->slots[0] == nritems) 4150 return 0; 4151 4152 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4153 return 0; 4154 4155 /* try to push all the items before our slot into the next leaf */ 4156 slot = path->slots[0]; 4157 space_needed = data_size; 4158 if (slot > 0) 4159 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4160 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4161 if (ret < 0) 4162 return ret; 4163 4164 if (ret == 0) 4165 progress++; 4166 4167 if (progress) 4168 return 0; 4169 return 1; 4170 } 4171 4172 /* 4173 * split the path's leaf in two, making sure there is at least data_size 4174 * available for the resulting leaf level of the path. 4175 * 4176 * returns 0 if all went well and < 0 on failure. 4177 */ 4178 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4179 struct btrfs_root *root, 4180 const struct btrfs_key *ins_key, 4181 struct btrfs_path *path, int data_size, 4182 int extend) 4183 { 4184 struct btrfs_disk_key disk_key; 4185 struct extent_buffer *l; 4186 u32 nritems; 4187 int mid; 4188 int slot; 4189 struct extent_buffer *right; 4190 struct btrfs_fs_info *fs_info = root->fs_info; 4191 int ret = 0; 4192 int wret; 4193 int split; 4194 int num_doubles = 0; 4195 int tried_avoid_double = 0; 4196 4197 l = path->nodes[0]; 4198 slot = path->slots[0]; 4199 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4200 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4201 return -EOVERFLOW; 4202 4203 /* first try to make some room by pushing left and right */ 4204 if (data_size && path->nodes[1]) { 4205 int space_needed = data_size; 4206 4207 if (slot < btrfs_header_nritems(l)) 4208 space_needed -= btrfs_leaf_free_space(l); 4209 4210 wret = push_leaf_right(trans, root, path, space_needed, 4211 space_needed, 0, 0); 4212 if (wret < 0) 4213 return wret; 4214 if (wret) { 4215 space_needed = data_size; 4216 if (slot > 0) 4217 space_needed -= btrfs_leaf_free_space(l); 4218 wret = push_leaf_left(trans, root, path, space_needed, 4219 space_needed, 0, (u32)-1); 4220 if (wret < 0) 4221 return wret; 4222 } 4223 l = path->nodes[0]; 4224 4225 /* did the pushes work? */ 4226 if (btrfs_leaf_free_space(l) >= data_size) 4227 return 0; 4228 } 4229 4230 if (!path->nodes[1]) { 4231 ret = insert_new_root(trans, root, path, 1); 4232 if (ret) 4233 return ret; 4234 } 4235 again: 4236 split = 1; 4237 l = path->nodes[0]; 4238 slot = path->slots[0]; 4239 nritems = btrfs_header_nritems(l); 4240 mid = (nritems + 1) / 2; 4241 4242 if (mid <= slot) { 4243 if (nritems == 1 || 4244 leaf_space_used(l, mid, nritems - mid) + data_size > 4245 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4246 if (slot >= nritems) { 4247 split = 0; 4248 } else { 4249 mid = slot; 4250 if (mid != nritems && 4251 leaf_space_used(l, mid, nritems - mid) + 4252 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4253 if (data_size && !tried_avoid_double) 4254 goto push_for_double; 4255 split = 2; 4256 } 4257 } 4258 } 4259 } else { 4260 if (leaf_space_used(l, 0, mid) + data_size > 4261 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4262 if (!extend && data_size && slot == 0) { 4263 split = 0; 4264 } else if ((extend || !data_size) && slot == 0) { 4265 mid = 1; 4266 } else { 4267 mid = slot; 4268 if (mid != nritems && 4269 leaf_space_used(l, mid, nritems - mid) + 4270 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4271 if (data_size && !tried_avoid_double) 4272 goto push_for_double; 4273 split = 2; 4274 } 4275 } 4276 } 4277 } 4278 4279 if (split == 0) 4280 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4281 else 4282 btrfs_item_key(l, &disk_key, mid); 4283 4284 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4285 l->start, 0); 4286 if (IS_ERR(right)) 4287 return PTR_ERR(right); 4288 4289 root_add_used(root, fs_info->nodesize); 4290 4291 if (split == 0) { 4292 if (mid <= slot) { 4293 btrfs_set_header_nritems(right, 0); 4294 insert_ptr(trans, path, &disk_key, 4295 right->start, path->slots[1] + 1, 1); 4296 btrfs_tree_unlock(path->nodes[0]); 4297 free_extent_buffer(path->nodes[0]); 4298 path->nodes[0] = right; 4299 path->slots[0] = 0; 4300 path->slots[1] += 1; 4301 } else { 4302 btrfs_set_header_nritems(right, 0); 4303 insert_ptr(trans, path, &disk_key, 4304 right->start, path->slots[1], 1); 4305 btrfs_tree_unlock(path->nodes[0]); 4306 free_extent_buffer(path->nodes[0]); 4307 path->nodes[0] = right; 4308 path->slots[0] = 0; 4309 if (path->slots[1] == 0) 4310 fixup_low_keys(path, &disk_key, 1); 4311 } 4312 /* 4313 * We create a new leaf 'right' for the required ins_len and 4314 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4315 * the content of ins_len to 'right'. 4316 */ 4317 return ret; 4318 } 4319 4320 copy_for_split(trans, path, l, right, slot, mid, nritems); 4321 4322 if (split == 2) { 4323 BUG_ON(num_doubles != 0); 4324 num_doubles++; 4325 goto again; 4326 } 4327 4328 return 0; 4329 4330 push_for_double: 4331 push_for_double_split(trans, root, path, data_size); 4332 tried_avoid_double = 1; 4333 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4334 return 0; 4335 goto again; 4336 } 4337 4338 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4339 struct btrfs_root *root, 4340 struct btrfs_path *path, int ins_len) 4341 { 4342 struct btrfs_key key; 4343 struct extent_buffer *leaf; 4344 struct btrfs_file_extent_item *fi; 4345 u64 extent_len = 0; 4346 u32 item_size; 4347 int ret; 4348 4349 leaf = path->nodes[0]; 4350 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4351 4352 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4353 key.type != BTRFS_EXTENT_CSUM_KEY); 4354 4355 if (btrfs_leaf_free_space(leaf) >= ins_len) 4356 return 0; 4357 4358 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4359 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4360 fi = btrfs_item_ptr(leaf, path->slots[0], 4361 struct btrfs_file_extent_item); 4362 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4363 } 4364 btrfs_release_path(path); 4365 4366 path->keep_locks = 1; 4367 path->search_for_split = 1; 4368 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4369 path->search_for_split = 0; 4370 if (ret > 0) 4371 ret = -EAGAIN; 4372 if (ret < 0) 4373 goto err; 4374 4375 ret = -EAGAIN; 4376 leaf = path->nodes[0]; 4377 /* if our item isn't there, return now */ 4378 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4379 goto err; 4380 4381 /* the leaf has changed, it now has room. return now */ 4382 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4383 goto err; 4384 4385 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4386 fi = btrfs_item_ptr(leaf, path->slots[0], 4387 struct btrfs_file_extent_item); 4388 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4389 goto err; 4390 } 4391 4392 btrfs_set_path_blocking(path); 4393 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4394 if (ret) 4395 goto err; 4396 4397 path->keep_locks = 0; 4398 btrfs_unlock_up_safe(path, 1); 4399 return 0; 4400 err: 4401 path->keep_locks = 0; 4402 return ret; 4403 } 4404 4405 static noinline int split_item(struct btrfs_path *path, 4406 const struct btrfs_key *new_key, 4407 unsigned long split_offset) 4408 { 4409 struct extent_buffer *leaf; 4410 struct btrfs_item *item; 4411 struct btrfs_item *new_item; 4412 int slot; 4413 char *buf; 4414 u32 nritems; 4415 u32 item_size; 4416 u32 orig_offset; 4417 struct btrfs_disk_key disk_key; 4418 4419 leaf = path->nodes[0]; 4420 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4421 4422 btrfs_set_path_blocking(path); 4423 4424 item = btrfs_item_nr(path->slots[0]); 4425 orig_offset = btrfs_item_offset(leaf, item); 4426 item_size = btrfs_item_size(leaf, item); 4427 4428 buf = kmalloc(item_size, GFP_NOFS); 4429 if (!buf) 4430 return -ENOMEM; 4431 4432 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4433 path->slots[0]), item_size); 4434 4435 slot = path->slots[0] + 1; 4436 nritems = btrfs_header_nritems(leaf); 4437 if (slot != nritems) { 4438 /* shift the items */ 4439 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4440 btrfs_item_nr_offset(slot), 4441 (nritems - slot) * sizeof(struct btrfs_item)); 4442 } 4443 4444 btrfs_cpu_key_to_disk(&disk_key, new_key); 4445 btrfs_set_item_key(leaf, &disk_key, slot); 4446 4447 new_item = btrfs_item_nr(slot); 4448 4449 btrfs_set_item_offset(leaf, new_item, orig_offset); 4450 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4451 4452 btrfs_set_item_offset(leaf, item, 4453 orig_offset + item_size - split_offset); 4454 btrfs_set_item_size(leaf, item, split_offset); 4455 4456 btrfs_set_header_nritems(leaf, nritems + 1); 4457 4458 /* write the data for the start of the original item */ 4459 write_extent_buffer(leaf, buf, 4460 btrfs_item_ptr_offset(leaf, path->slots[0]), 4461 split_offset); 4462 4463 /* write the data for the new item */ 4464 write_extent_buffer(leaf, buf + split_offset, 4465 btrfs_item_ptr_offset(leaf, slot), 4466 item_size - split_offset); 4467 btrfs_mark_buffer_dirty(leaf); 4468 4469 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4470 kfree(buf); 4471 return 0; 4472 } 4473 4474 /* 4475 * This function splits a single item into two items, 4476 * giving 'new_key' to the new item and splitting the 4477 * old one at split_offset (from the start of the item). 4478 * 4479 * The path may be released by this operation. After 4480 * the split, the path is pointing to the old item. The 4481 * new item is going to be in the same node as the old one. 4482 * 4483 * Note, the item being split must be smaller enough to live alone on 4484 * a tree block with room for one extra struct btrfs_item 4485 * 4486 * This allows us to split the item in place, keeping a lock on the 4487 * leaf the entire time. 4488 */ 4489 int btrfs_split_item(struct btrfs_trans_handle *trans, 4490 struct btrfs_root *root, 4491 struct btrfs_path *path, 4492 const struct btrfs_key *new_key, 4493 unsigned long split_offset) 4494 { 4495 int ret; 4496 ret = setup_leaf_for_split(trans, root, path, 4497 sizeof(struct btrfs_item)); 4498 if (ret) 4499 return ret; 4500 4501 ret = split_item(path, new_key, split_offset); 4502 return ret; 4503 } 4504 4505 /* 4506 * This function duplicate a item, giving 'new_key' to the new item. 4507 * It guarantees both items live in the same tree leaf and the new item 4508 * is contiguous with the original item. 4509 * 4510 * This allows us to split file extent in place, keeping a lock on the 4511 * leaf the entire time. 4512 */ 4513 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4514 struct btrfs_root *root, 4515 struct btrfs_path *path, 4516 const struct btrfs_key *new_key) 4517 { 4518 struct extent_buffer *leaf; 4519 int ret; 4520 u32 item_size; 4521 4522 leaf = path->nodes[0]; 4523 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4524 ret = setup_leaf_for_split(trans, root, path, 4525 item_size + sizeof(struct btrfs_item)); 4526 if (ret) 4527 return ret; 4528 4529 path->slots[0]++; 4530 setup_items_for_insert(root, path, new_key, &item_size, 4531 item_size, item_size + 4532 sizeof(struct btrfs_item), 1); 4533 leaf = path->nodes[0]; 4534 memcpy_extent_buffer(leaf, 4535 btrfs_item_ptr_offset(leaf, path->slots[0]), 4536 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4537 item_size); 4538 return 0; 4539 } 4540 4541 /* 4542 * make the item pointed to by the path smaller. new_size indicates 4543 * how small to make it, and from_end tells us if we just chop bytes 4544 * off the end of the item or if we shift the item to chop bytes off 4545 * the front. 4546 */ 4547 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4548 { 4549 int slot; 4550 struct extent_buffer *leaf; 4551 struct btrfs_item *item; 4552 u32 nritems; 4553 unsigned int data_end; 4554 unsigned int old_data_start; 4555 unsigned int old_size; 4556 unsigned int size_diff; 4557 int i; 4558 struct btrfs_map_token token; 4559 4560 leaf = path->nodes[0]; 4561 slot = path->slots[0]; 4562 4563 old_size = btrfs_item_size_nr(leaf, slot); 4564 if (old_size == new_size) 4565 return; 4566 4567 nritems = btrfs_header_nritems(leaf); 4568 data_end = leaf_data_end(leaf); 4569 4570 old_data_start = btrfs_item_offset_nr(leaf, slot); 4571 4572 size_diff = old_size - new_size; 4573 4574 BUG_ON(slot < 0); 4575 BUG_ON(slot >= nritems); 4576 4577 /* 4578 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4579 */ 4580 /* first correct the data pointers */ 4581 btrfs_init_map_token(&token, leaf); 4582 for (i = slot; i < nritems; i++) { 4583 u32 ioff; 4584 item = btrfs_item_nr(i); 4585 4586 ioff = btrfs_token_item_offset(leaf, item, &token); 4587 btrfs_set_token_item_offset(leaf, item, 4588 ioff + size_diff, &token); 4589 } 4590 4591 /* shift the data */ 4592 if (from_end) { 4593 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4594 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4595 data_end, old_data_start + new_size - data_end); 4596 } else { 4597 struct btrfs_disk_key disk_key; 4598 u64 offset; 4599 4600 btrfs_item_key(leaf, &disk_key, slot); 4601 4602 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4603 unsigned long ptr; 4604 struct btrfs_file_extent_item *fi; 4605 4606 fi = btrfs_item_ptr(leaf, slot, 4607 struct btrfs_file_extent_item); 4608 fi = (struct btrfs_file_extent_item *)( 4609 (unsigned long)fi - size_diff); 4610 4611 if (btrfs_file_extent_type(leaf, fi) == 4612 BTRFS_FILE_EXTENT_INLINE) { 4613 ptr = btrfs_item_ptr_offset(leaf, slot); 4614 memmove_extent_buffer(leaf, ptr, 4615 (unsigned long)fi, 4616 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4617 } 4618 } 4619 4620 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4621 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4622 data_end, old_data_start - data_end); 4623 4624 offset = btrfs_disk_key_offset(&disk_key); 4625 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4626 btrfs_set_item_key(leaf, &disk_key, slot); 4627 if (slot == 0) 4628 fixup_low_keys(path, &disk_key, 1); 4629 } 4630 4631 item = btrfs_item_nr(slot); 4632 btrfs_set_item_size(leaf, item, new_size); 4633 btrfs_mark_buffer_dirty(leaf); 4634 4635 if (btrfs_leaf_free_space(leaf) < 0) { 4636 btrfs_print_leaf(leaf); 4637 BUG(); 4638 } 4639 } 4640 4641 /* 4642 * make the item pointed to by the path bigger, data_size is the added size. 4643 */ 4644 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4645 { 4646 int slot; 4647 struct extent_buffer *leaf; 4648 struct btrfs_item *item; 4649 u32 nritems; 4650 unsigned int data_end; 4651 unsigned int old_data; 4652 unsigned int old_size; 4653 int i; 4654 struct btrfs_map_token token; 4655 4656 leaf = path->nodes[0]; 4657 4658 nritems = btrfs_header_nritems(leaf); 4659 data_end = leaf_data_end(leaf); 4660 4661 if (btrfs_leaf_free_space(leaf) < data_size) { 4662 btrfs_print_leaf(leaf); 4663 BUG(); 4664 } 4665 slot = path->slots[0]; 4666 old_data = btrfs_item_end_nr(leaf, slot); 4667 4668 BUG_ON(slot < 0); 4669 if (slot >= nritems) { 4670 btrfs_print_leaf(leaf); 4671 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4672 slot, nritems); 4673 BUG(); 4674 } 4675 4676 /* 4677 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4678 */ 4679 /* first correct the data pointers */ 4680 btrfs_init_map_token(&token, leaf); 4681 for (i = slot; i < nritems; i++) { 4682 u32 ioff; 4683 item = btrfs_item_nr(i); 4684 4685 ioff = btrfs_token_item_offset(leaf, item, &token); 4686 btrfs_set_token_item_offset(leaf, item, 4687 ioff - data_size, &token); 4688 } 4689 4690 /* shift the data */ 4691 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4692 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4693 data_end, old_data - data_end); 4694 4695 data_end = old_data; 4696 old_size = btrfs_item_size_nr(leaf, slot); 4697 item = btrfs_item_nr(slot); 4698 btrfs_set_item_size(leaf, item, old_size + data_size); 4699 btrfs_mark_buffer_dirty(leaf); 4700 4701 if (btrfs_leaf_free_space(leaf) < 0) { 4702 btrfs_print_leaf(leaf); 4703 BUG(); 4704 } 4705 } 4706 4707 /* 4708 * this is a helper for btrfs_insert_empty_items, the main goal here is 4709 * to save stack depth by doing the bulk of the work in a function 4710 * that doesn't call btrfs_search_slot 4711 */ 4712 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4713 const struct btrfs_key *cpu_key, u32 *data_size, 4714 u32 total_data, u32 total_size, int nr) 4715 { 4716 struct btrfs_fs_info *fs_info = root->fs_info; 4717 struct btrfs_item *item; 4718 int i; 4719 u32 nritems; 4720 unsigned int data_end; 4721 struct btrfs_disk_key disk_key; 4722 struct extent_buffer *leaf; 4723 int slot; 4724 struct btrfs_map_token token; 4725 4726 if (path->slots[0] == 0) { 4727 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4728 fixup_low_keys(path, &disk_key, 1); 4729 } 4730 btrfs_unlock_up_safe(path, 1); 4731 4732 leaf = path->nodes[0]; 4733 slot = path->slots[0]; 4734 4735 nritems = btrfs_header_nritems(leaf); 4736 data_end = leaf_data_end(leaf); 4737 4738 if (btrfs_leaf_free_space(leaf) < total_size) { 4739 btrfs_print_leaf(leaf); 4740 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4741 total_size, btrfs_leaf_free_space(leaf)); 4742 BUG(); 4743 } 4744 4745 btrfs_init_map_token(&token, leaf); 4746 if (slot != nritems) { 4747 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4748 4749 if (old_data < data_end) { 4750 btrfs_print_leaf(leaf); 4751 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4752 slot, old_data, data_end); 4753 BUG(); 4754 } 4755 /* 4756 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4757 */ 4758 /* first correct the data pointers */ 4759 for (i = slot; i < nritems; i++) { 4760 u32 ioff; 4761 4762 item = btrfs_item_nr(i); 4763 ioff = btrfs_token_item_offset(leaf, item, &token); 4764 btrfs_set_token_item_offset(leaf, item, 4765 ioff - total_data, &token); 4766 } 4767 /* shift the items */ 4768 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4769 btrfs_item_nr_offset(slot), 4770 (nritems - slot) * sizeof(struct btrfs_item)); 4771 4772 /* shift the data */ 4773 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4774 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4775 data_end, old_data - data_end); 4776 data_end = old_data; 4777 } 4778 4779 /* setup the item for the new data */ 4780 for (i = 0; i < nr; i++) { 4781 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4782 btrfs_set_item_key(leaf, &disk_key, slot + i); 4783 item = btrfs_item_nr(slot + i); 4784 btrfs_set_token_item_offset(leaf, item, 4785 data_end - data_size[i], &token); 4786 data_end -= data_size[i]; 4787 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4788 } 4789 4790 btrfs_set_header_nritems(leaf, nritems + nr); 4791 btrfs_mark_buffer_dirty(leaf); 4792 4793 if (btrfs_leaf_free_space(leaf) < 0) { 4794 btrfs_print_leaf(leaf); 4795 BUG(); 4796 } 4797 } 4798 4799 /* 4800 * Given a key and some data, insert items into the tree. 4801 * This does all the path init required, making room in the tree if needed. 4802 */ 4803 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4804 struct btrfs_root *root, 4805 struct btrfs_path *path, 4806 const struct btrfs_key *cpu_key, u32 *data_size, 4807 int nr) 4808 { 4809 int ret = 0; 4810 int slot; 4811 int i; 4812 u32 total_size = 0; 4813 u32 total_data = 0; 4814 4815 for (i = 0; i < nr; i++) 4816 total_data += data_size[i]; 4817 4818 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4819 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4820 if (ret == 0) 4821 return -EEXIST; 4822 if (ret < 0) 4823 return ret; 4824 4825 slot = path->slots[0]; 4826 BUG_ON(slot < 0); 4827 4828 setup_items_for_insert(root, path, cpu_key, data_size, 4829 total_data, total_size, nr); 4830 return 0; 4831 } 4832 4833 /* 4834 * Given a key and some data, insert an item into the tree. 4835 * This does all the path init required, making room in the tree if needed. 4836 */ 4837 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4838 const struct btrfs_key *cpu_key, void *data, 4839 u32 data_size) 4840 { 4841 int ret = 0; 4842 struct btrfs_path *path; 4843 struct extent_buffer *leaf; 4844 unsigned long ptr; 4845 4846 path = btrfs_alloc_path(); 4847 if (!path) 4848 return -ENOMEM; 4849 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4850 if (!ret) { 4851 leaf = path->nodes[0]; 4852 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4853 write_extent_buffer(leaf, data, ptr, data_size); 4854 btrfs_mark_buffer_dirty(leaf); 4855 } 4856 btrfs_free_path(path); 4857 return ret; 4858 } 4859 4860 /* 4861 * delete the pointer from a given node. 4862 * 4863 * the tree should have been previously balanced so the deletion does not 4864 * empty a node. 4865 */ 4866 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4867 int level, int slot) 4868 { 4869 struct extent_buffer *parent = path->nodes[level]; 4870 u32 nritems; 4871 int ret; 4872 4873 nritems = btrfs_header_nritems(parent); 4874 if (slot != nritems - 1) { 4875 if (level) { 4876 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4877 nritems - slot - 1); 4878 BUG_ON(ret < 0); 4879 } 4880 memmove_extent_buffer(parent, 4881 btrfs_node_key_ptr_offset(slot), 4882 btrfs_node_key_ptr_offset(slot + 1), 4883 sizeof(struct btrfs_key_ptr) * 4884 (nritems - slot - 1)); 4885 } else if (level) { 4886 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4887 GFP_NOFS); 4888 BUG_ON(ret < 0); 4889 } 4890 4891 nritems--; 4892 btrfs_set_header_nritems(parent, nritems); 4893 if (nritems == 0 && parent == root->node) { 4894 BUG_ON(btrfs_header_level(root->node) != 1); 4895 /* just turn the root into a leaf and break */ 4896 btrfs_set_header_level(root->node, 0); 4897 } else if (slot == 0) { 4898 struct btrfs_disk_key disk_key; 4899 4900 btrfs_node_key(parent, &disk_key, 0); 4901 fixup_low_keys(path, &disk_key, level + 1); 4902 } 4903 btrfs_mark_buffer_dirty(parent); 4904 } 4905 4906 /* 4907 * a helper function to delete the leaf pointed to by path->slots[1] and 4908 * path->nodes[1]. 4909 * 4910 * This deletes the pointer in path->nodes[1] and frees the leaf 4911 * block extent. zero is returned if it all worked out, < 0 otherwise. 4912 * 4913 * The path must have already been setup for deleting the leaf, including 4914 * all the proper balancing. path->nodes[1] must be locked. 4915 */ 4916 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4917 struct btrfs_root *root, 4918 struct btrfs_path *path, 4919 struct extent_buffer *leaf) 4920 { 4921 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4922 del_ptr(root, path, 1, path->slots[1]); 4923 4924 /* 4925 * btrfs_free_extent is expensive, we want to make sure we 4926 * aren't holding any locks when we call it 4927 */ 4928 btrfs_unlock_up_safe(path, 0); 4929 4930 root_sub_used(root, leaf->len); 4931 4932 atomic_inc(&leaf->refs); 4933 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4934 free_extent_buffer_stale(leaf); 4935 } 4936 /* 4937 * delete the item at the leaf level in path. If that empties 4938 * the leaf, remove it from the tree 4939 */ 4940 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4941 struct btrfs_path *path, int slot, int nr) 4942 { 4943 struct btrfs_fs_info *fs_info = root->fs_info; 4944 struct extent_buffer *leaf; 4945 struct btrfs_item *item; 4946 u32 last_off; 4947 u32 dsize = 0; 4948 int ret = 0; 4949 int wret; 4950 int i; 4951 u32 nritems; 4952 4953 leaf = path->nodes[0]; 4954 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4955 4956 for (i = 0; i < nr; i++) 4957 dsize += btrfs_item_size_nr(leaf, slot + i); 4958 4959 nritems = btrfs_header_nritems(leaf); 4960 4961 if (slot + nr != nritems) { 4962 int data_end = leaf_data_end(leaf); 4963 struct btrfs_map_token token; 4964 4965 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4966 data_end + dsize, 4967 BTRFS_LEAF_DATA_OFFSET + data_end, 4968 last_off - data_end); 4969 4970 btrfs_init_map_token(&token, leaf); 4971 for (i = slot + nr; i < nritems; i++) { 4972 u32 ioff; 4973 4974 item = btrfs_item_nr(i); 4975 ioff = btrfs_token_item_offset(leaf, item, &token); 4976 btrfs_set_token_item_offset(leaf, item, 4977 ioff + dsize, &token); 4978 } 4979 4980 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4981 btrfs_item_nr_offset(slot + nr), 4982 sizeof(struct btrfs_item) * 4983 (nritems - slot - nr)); 4984 } 4985 btrfs_set_header_nritems(leaf, nritems - nr); 4986 nritems -= nr; 4987 4988 /* delete the leaf if we've emptied it */ 4989 if (nritems == 0) { 4990 if (leaf == root->node) { 4991 btrfs_set_header_level(leaf, 0); 4992 } else { 4993 btrfs_set_path_blocking(path); 4994 btrfs_clean_tree_block(leaf); 4995 btrfs_del_leaf(trans, root, path, leaf); 4996 } 4997 } else { 4998 int used = leaf_space_used(leaf, 0, nritems); 4999 if (slot == 0) { 5000 struct btrfs_disk_key disk_key; 5001 5002 btrfs_item_key(leaf, &disk_key, 0); 5003 fixup_low_keys(path, &disk_key, 1); 5004 } 5005 5006 /* delete the leaf if it is mostly empty */ 5007 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5008 /* push_leaf_left fixes the path. 5009 * make sure the path still points to our leaf 5010 * for possible call to del_ptr below 5011 */ 5012 slot = path->slots[1]; 5013 atomic_inc(&leaf->refs); 5014 5015 btrfs_set_path_blocking(path); 5016 wret = push_leaf_left(trans, root, path, 1, 1, 5017 1, (u32)-1); 5018 if (wret < 0 && wret != -ENOSPC) 5019 ret = wret; 5020 5021 if (path->nodes[0] == leaf && 5022 btrfs_header_nritems(leaf)) { 5023 wret = push_leaf_right(trans, root, path, 1, 5024 1, 1, 0); 5025 if (wret < 0 && wret != -ENOSPC) 5026 ret = wret; 5027 } 5028 5029 if (btrfs_header_nritems(leaf) == 0) { 5030 path->slots[1] = slot; 5031 btrfs_del_leaf(trans, root, path, leaf); 5032 free_extent_buffer(leaf); 5033 ret = 0; 5034 } else { 5035 /* if we're still in the path, make sure 5036 * we're dirty. Otherwise, one of the 5037 * push_leaf functions must have already 5038 * dirtied this buffer 5039 */ 5040 if (path->nodes[0] == leaf) 5041 btrfs_mark_buffer_dirty(leaf); 5042 free_extent_buffer(leaf); 5043 } 5044 } else { 5045 btrfs_mark_buffer_dirty(leaf); 5046 } 5047 } 5048 return ret; 5049 } 5050 5051 /* 5052 * search the tree again to find a leaf with lesser keys 5053 * returns 0 if it found something or 1 if there are no lesser leaves. 5054 * returns < 0 on io errors. 5055 * 5056 * This may release the path, and so you may lose any locks held at the 5057 * time you call it. 5058 */ 5059 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5060 { 5061 struct btrfs_key key; 5062 struct btrfs_disk_key found_key; 5063 int ret; 5064 5065 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5066 5067 if (key.offset > 0) { 5068 key.offset--; 5069 } else if (key.type > 0) { 5070 key.type--; 5071 key.offset = (u64)-1; 5072 } else if (key.objectid > 0) { 5073 key.objectid--; 5074 key.type = (u8)-1; 5075 key.offset = (u64)-1; 5076 } else { 5077 return 1; 5078 } 5079 5080 btrfs_release_path(path); 5081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5082 if (ret < 0) 5083 return ret; 5084 btrfs_item_key(path->nodes[0], &found_key, 0); 5085 ret = comp_keys(&found_key, &key); 5086 /* 5087 * We might have had an item with the previous key in the tree right 5088 * before we released our path. And after we released our path, that 5089 * item might have been pushed to the first slot (0) of the leaf we 5090 * were holding due to a tree balance. Alternatively, an item with the 5091 * previous key can exist as the only element of a leaf (big fat item). 5092 * Therefore account for these 2 cases, so that our callers (like 5093 * btrfs_previous_item) don't miss an existing item with a key matching 5094 * the previous key we computed above. 5095 */ 5096 if (ret <= 0) 5097 return 0; 5098 return 1; 5099 } 5100 5101 /* 5102 * A helper function to walk down the tree starting at min_key, and looking 5103 * for nodes or leaves that are have a minimum transaction id. 5104 * This is used by the btree defrag code, and tree logging 5105 * 5106 * This does not cow, but it does stuff the starting key it finds back 5107 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5108 * key and get a writable path. 5109 * 5110 * This honors path->lowest_level to prevent descent past a given level 5111 * of the tree. 5112 * 5113 * min_trans indicates the oldest transaction that you are interested 5114 * in walking through. Any nodes or leaves older than min_trans are 5115 * skipped over (without reading them). 5116 * 5117 * returns zero if something useful was found, < 0 on error and 1 if there 5118 * was nothing in the tree that matched the search criteria. 5119 */ 5120 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5121 struct btrfs_path *path, 5122 u64 min_trans) 5123 { 5124 struct extent_buffer *cur; 5125 struct btrfs_key found_key; 5126 int slot; 5127 int sret; 5128 u32 nritems; 5129 int level; 5130 int ret = 1; 5131 int keep_locks = path->keep_locks; 5132 5133 path->keep_locks = 1; 5134 again: 5135 cur = btrfs_read_lock_root_node(root); 5136 level = btrfs_header_level(cur); 5137 WARN_ON(path->nodes[level]); 5138 path->nodes[level] = cur; 5139 path->locks[level] = BTRFS_READ_LOCK; 5140 5141 if (btrfs_header_generation(cur) < min_trans) { 5142 ret = 1; 5143 goto out; 5144 } 5145 while (1) { 5146 nritems = btrfs_header_nritems(cur); 5147 level = btrfs_header_level(cur); 5148 sret = btrfs_bin_search(cur, min_key, level, &slot); 5149 if (sret < 0) { 5150 ret = sret; 5151 goto out; 5152 } 5153 5154 /* at the lowest level, we're done, setup the path and exit */ 5155 if (level == path->lowest_level) { 5156 if (slot >= nritems) 5157 goto find_next_key; 5158 ret = 0; 5159 path->slots[level] = slot; 5160 btrfs_item_key_to_cpu(cur, &found_key, slot); 5161 goto out; 5162 } 5163 if (sret && slot > 0) 5164 slot--; 5165 /* 5166 * check this node pointer against the min_trans parameters. 5167 * If it is too old, old, skip to the next one. 5168 */ 5169 while (slot < nritems) { 5170 u64 gen; 5171 5172 gen = btrfs_node_ptr_generation(cur, slot); 5173 if (gen < min_trans) { 5174 slot++; 5175 continue; 5176 } 5177 break; 5178 } 5179 find_next_key: 5180 /* 5181 * we didn't find a candidate key in this node, walk forward 5182 * and find another one 5183 */ 5184 if (slot >= nritems) { 5185 path->slots[level] = slot; 5186 btrfs_set_path_blocking(path); 5187 sret = btrfs_find_next_key(root, path, min_key, level, 5188 min_trans); 5189 if (sret == 0) { 5190 btrfs_release_path(path); 5191 goto again; 5192 } else { 5193 goto out; 5194 } 5195 } 5196 /* save our key for returning back */ 5197 btrfs_node_key_to_cpu(cur, &found_key, slot); 5198 path->slots[level] = slot; 5199 if (level == path->lowest_level) { 5200 ret = 0; 5201 goto out; 5202 } 5203 btrfs_set_path_blocking(path); 5204 cur = btrfs_read_node_slot(cur, slot); 5205 if (IS_ERR(cur)) { 5206 ret = PTR_ERR(cur); 5207 goto out; 5208 } 5209 5210 btrfs_tree_read_lock(cur); 5211 5212 path->locks[level - 1] = BTRFS_READ_LOCK; 5213 path->nodes[level - 1] = cur; 5214 unlock_up(path, level, 1, 0, NULL); 5215 } 5216 out: 5217 path->keep_locks = keep_locks; 5218 if (ret == 0) { 5219 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5220 btrfs_set_path_blocking(path); 5221 memcpy(min_key, &found_key, sizeof(found_key)); 5222 } 5223 return ret; 5224 } 5225 5226 /* 5227 * this is similar to btrfs_next_leaf, but does not try to preserve 5228 * and fixup the path. It looks for and returns the next key in the 5229 * tree based on the current path and the min_trans parameters. 5230 * 5231 * 0 is returned if another key is found, < 0 if there are any errors 5232 * and 1 is returned if there are no higher keys in the tree 5233 * 5234 * path->keep_locks should be set to 1 on the search made before 5235 * calling this function. 5236 */ 5237 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5238 struct btrfs_key *key, int level, u64 min_trans) 5239 { 5240 int slot; 5241 struct extent_buffer *c; 5242 5243 WARN_ON(!path->keep_locks && !path->skip_locking); 5244 while (level < BTRFS_MAX_LEVEL) { 5245 if (!path->nodes[level]) 5246 return 1; 5247 5248 slot = path->slots[level] + 1; 5249 c = path->nodes[level]; 5250 next: 5251 if (slot >= btrfs_header_nritems(c)) { 5252 int ret; 5253 int orig_lowest; 5254 struct btrfs_key cur_key; 5255 if (level + 1 >= BTRFS_MAX_LEVEL || 5256 !path->nodes[level + 1]) 5257 return 1; 5258 5259 if (path->locks[level + 1] || path->skip_locking) { 5260 level++; 5261 continue; 5262 } 5263 5264 slot = btrfs_header_nritems(c) - 1; 5265 if (level == 0) 5266 btrfs_item_key_to_cpu(c, &cur_key, slot); 5267 else 5268 btrfs_node_key_to_cpu(c, &cur_key, slot); 5269 5270 orig_lowest = path->lowest_level; 5271 btrfs_release_path(path); 5272 path->lowest_level = level; 5273 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5274 0, 0); 5275 path->lowest_level = orig_lowest; 5276 if (ret < 0) 5277 return ret; 5278 5279 c = path->nodes[level]; 5280 slot = path->slots[level]; 5281 if (ret == 0) 5282 slot++; 5283 goto next; 5284 } 5285 5286 if (level == 0) 5287 btrfs_item_key_to_cpu(c, key, slot); 5288 else { 5289 u64 gen = btrfs_node_ptr_generation(c, slot); 5290 5291 if (gen < min_trans) { 5292 slot++; 5293 goto next; 5294 } 5295 btrfs_node_key_to_cpu(c, key, slot); 5296 } 5297 return 0; 5298 } 5299 return 1; 5300 } 5301 5302 /* 5303 * search the tree again to find a leaf with greater keys 5304 * returns 0 if it found something or 1 if there are no greater leaves. 5305 * returns < 0 on io errors. 5306 */ 5307 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5308 { 5309 return btrfs_next_old_leaf(root, path, 0); 5310 } 5311 5312 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5313 u64 time_seq) 5314 { 5315 int slot; 5316 int level; 5317 struct extent_buffer *c; 5318 struct extent_buffer *next; 5319 struct btrfs_key key; 5320 u32 nritems; 5321 int ret; 5322 int old_spinning = path->leave_spinning; 5323 int next_rw_lock = 0; 5324 5325 nritems = btrfs_header_nritems(path->nodes[0]); 5326 if (nritems == 0) 5327 return 1; 5328 5329 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5330 again: 5331 level = 1; 5332 next = NULL; 5333 next_rw_lock = 0; 5334 btrfs_release_path(path); 5335 5336 path->keep_locks = 1; 5337 path->leave_spinning = 1; 5338 5339 if (time_seq) 5340 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5341 else 5342 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5343 path->keep_locks = 0; 5344 5345 if (ret < 0) 5346 return ret; 5347 5348 nritems = btrfs_header_nritems(path->nodes[0]); 5349 /* 5350 * by releasing the path above we dropped all our locks. A balance 5351 * could have added more items next to the key that used to be 5352 * at the very end of the block. So, check again here and 5353 * advance the path if there are now more items available. 5354 */ 5355 if (nritems > 0 && path->slots[0] < nritems - 1) { 5356 if (ret == 0) 5357 path->slots[0]++; 5358 ret = 0; 5359 goto done; 5360 } 5361 /* 5362 * So the above check misses one case: 5363 * - after releasing the path above, someone has removed the item that 5364 * used to be at the very end of the block, and balance between leafs 5365 * gets another one with bigger key.offset to replace it. 5366 * 5367 * This one should be returned as well, or we can get leaf corruption 5368 * later(esp. in __btrfs_drop_extents()). 5369 * 5370 * And a bit more explanation about this check, 5371 * with ret > 0, the key isn't found, the path points to the slot 5372 * where it should be inserted, so the path->slots[0] item must be the 5373 * bigger one. 5374 */ 5375 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5376 ret = 0; 5377 goto done; 5378 } 5379 5380 while (level < BTRFS_MAX_LEVEL) { 5381 if (!path->nodes[level]) { 5382 ret = 1; 5383 goto done; 5384 } 5385 5386 slot = path->slots[level] + 1; 5387 c = path->nodes[level]; 5388 if (slot >= btrfs_header_nritems(c)) { 5389 level++; 5390 if (level == BTRFS_MAX_LEVEL) { 5391 ret = 1; 5392 goto done; 5393 } 5394 continue; 5395 } 5396 5397 if (next) { 5398 btrfs_tree_unlock_rw(next, next_rw_lock); 5399 free_extent_buffer(next); 5400 } 5401 5402 next = c; 5403 next_rw_lock = path->locks[level]; 5404 ret = read_block_for_search(root, path, &next, level, 5405 slot, &key); 5406 if (ret == -EAGAIN) 5407 goto again; 5408 5409 if (ret < 0) { 5410 btrfs_release_path(path); 5411 goto done; 5412 } 5413 5414 if (!path->skip_locking) { 5415 ret = btrfs_try_tree_read_lock(next); 5416 if (!ret && time_seq) { 5417 /* 5418 * If we don't get the lock, we may be racing 5419 * with push_leaf_left, holding that lock while 5420 * itself waiting for the leaf we've currently 5421 * locked. To solve this situation, we give up 5422 * on our lock and cycle. 5423 */ 5424 free_extent_buffer(next); 5425 btrfs_release_path(path); 5426 cond_resched(); 5427 goto again; 5428 } 5429 if (!ret) { 5430 btrfs_set_path_blocking(path); 5431 btrfs_tree_read_lock(next); 5432 } 5433 next_rw_lock = BTRFS_READ_LOCK; 5434 } 5435 break; 5436 } 5437 path->slots[level] = slot; 5438 while (1) { 5439 level--; 5440 c = path->nodes[level]; 5441 if (path->locks[level]) 5442 btrfs_tree_unlock_rw(c, path->locks[level]); 5443 5444 free_extent_buffer(c); 5445 path->nodes[level] = next; 5446 path->slots[level] = 0; 5447 if (!path->skip_locking) 5448 path->locks[level] = next_rw_lock; 5449 if (!level) 5450 break; 5451 5452 ret = read_block_for_search(root, path, &next, level, 5453 0, &key); 5454 if (ret == -EAGAIN) 5455 goto again; 5456 5457 if (ret < 0) { 5458 btrfs_release_path(path); 5459 goto done; 5460 } 5461 5462 if (!path->skip_locking) { 5463 ret = btrfs_try_tree_read_lock(next); 5464 if (!ret) { 5465 btrfs_set_path_blocking(path); 5466 btrfs_tree_read_lock(next); 5467 } 5468 next_rw_lock = BTRFS_READ_LOCK; 5469 } 5470 } 5471 ret = 0; 5472 done: 5473 unlock_up(path, 0, 1, 0, NULL); 5474 path->leave_spinning = old_spinning; 5475 if (!old_spinning) 5476 btrfs_set_path_blocking(path); 5477 5478 return ret; 5479 } 5480 5481 /* 5482 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5483 * searching until it gets past min_objectid or finds an item of 'type' 5484 * 5485 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5486 */ 5487 int btrfs_previous_item(struct btrfs_root *root, 5488 struct btrfs_path *path, u64 min_objectid, 5489 int type) 5490 { 5491 struct btrfs_key found_key; 5492 struct extent_buffer *leaf; 5493 u32 nritems; 5494 int ret; 5495 5496 while (1) { 5497 if (path->slots[0] == 0) { 5498 btrfs_set_path_blocking(path); 5499 ret = btrfs_prev_leaf(root, path); 5500 if (ret != 0) 5501 return ret; 5502 } else { 5503 path->slots[0]--; 5504 } 5505 leaf = path->nodes[0]; 5506 nritems = btrfs_header_nritems(leaf); 5507 if (nritems == 0) 5508 return 1; 5509 if (path->slots[0] == nritems) 5510 path->slots[0]--; 5511 5512 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5513 if (found_key.objectid < min_objectid) 5514 break; 5515 if (found_key.type == type) 5516 return 0; 5517 if (found_key.objectid == min_objectid && 5518 found_key.type < type) 5519 break; 5520 } 5521 return 1; 5522 } 5523 5524 /* 5525 * search in extent tree to find a previous Metadata/Data extent item with 5526 * min objecitd. 5527 * 5528 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5529 */ 5530 int btrfs_previous_extent_item(struct btrfs_root *root, 5531 struct btrfs_path *path, u64 min_objectid) 5532 { 5533 struct btrfs_key found_key; 5534 struct extent_buffer *leaf; 5535 u32 nritems; 5536 int ret; 5537 5538 while (1) { 5539 if (path->slots[0] == 0) { 5540 btrfs_set_path_blocking(path); 5541 ret = btrfs_prev_leaf(root, path); 5542 if (ret != 0) 5543 return ret; 5544 } else { 5545 path->slots[0]--; 5546 } 5547 leaf = path->nodes[0]; 5548 nritems = btrfs_header_nritems(leaf); 5549 if (nritems == 0) 5550 return 1; 5551 if (path->slots[0] == nritems) 5552 path->slots[0]--; 5553 5554 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5555 if (found_key.objectid < min_objectid) 5556 break; 5557 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5558 found_key.type == BTRFS_METADATA_ITEM_KEY) 5559 return 0; 5560 if (found_key.objectid == min_objectid && 5561 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5562 break; 5563 } 5564 return 1; 5565 } 5566