1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 static const struct btrfs_csums { 33 u16 size; 34 const char name[10]; 35 const char driver[12]; 36 } btrfs_csums[] = { 37 [BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" }, 38 [BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" }, 39 [BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" }, 40 [BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b", 41 .driver = "blake2b-256" }, 42 }; 43 44 int btrfs_super_csum_size(const struct btrfs_super_block *s) 45 { 46 u16 t = btrfs_super_csum_type(s); 47 /* 48 * csum type is validated at mount time 49 */ 50 return btrfs_csums[t].size; 51 } 52 53 const char *btrfs_super_csum_name(u16 csum_type) 54 { 55 /* csum type is validated at mount time */ 56 return btrfs_csums[csum_type].name; 57 } 58 59 /* 60 * Return driver name if defined, otherwise the name that's also a valid driver 61 * name 62 */ 63 const char *btrfs_super_csum_driver(u16 csum_type) 64 { 65 /* csum type is validated at mount time */ 66 return btrfs_csums[csum_type].driver[0] ? 67 btrfs_csums[csum_type].driver : 68 btrfs_csums[csum_type].name; 69 } 70 71 size_t __attribute_const__ btrfs_get_num_csums(void) 72 { 73 return ARRAY_SIZE(btrfs_csums); 74 } 75 76 struct btrfs_path *btrfs_alloc_path(void) 77 { 78 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 79 } 80 81 /* this also releases the path */ 82 void btrfs_free_path(struct btrfs_path *p) 83 { 84 if (!p) 85 return; 86 btrfs_release_path(p); 87 kmem_cache_free(btrfs_path_cachep, p); 88 } 89 90 /* 91 * path release drops references on the extent buffers in the path 92 * and it drops any locks held by this path 93 * 94 * It is safe to call this on paths that no locks or extent buffers held. 95 */ 96 noinline void btrfs_release_path(struct btrfs_path *p) 97 { 98 int i; 99 100 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 101 p->slots[i] = 0; 102 if (!p->nodes[i]) 103 continue; 104 if (p->locks[i]) { 105 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 106 p->locks[i] = 0; 107 } 108 free_extent_buffer(p->nodes[i]); 109 p->nodes[i] = NULL; 110 } 111 } 112 113 /* 114 * safely gets a reference on the root node of a tree. A lock 115 * is not taken, so a concurrent writer may put a different node 116 * at the root of the tree. See btrfs_lock_root_node for the 117 * looping required. 118 * 119 * The extent buffer returned by this has a reference taken, so 120 * it won't disappear. It may stop being the root of the tree 121 * at any time because there are no locks held. 122 */ 123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 124 { 125 struct extent_buffer *eb; 126 127 while (1) { 128 rcu_read_lock(); 129 eb = rcu_dereference(root->node); 130 131 /* 132 * RCU really hurts here, we could free up the root node because 133 * it was COWed but we may not get the new root node yet so do 134 * the inc_not_zero dance and if it doesn't work then 135 * synchronize_rcu and try again. 136 */ 137 if (atomic_inc_not_zero(&eb->refs)) { 138 rcu_read_unlock(); 139 break; 140 } 141 rcu_read_unlock(); 142 synchronize_rcu(); 143 } 144 return eb; 145 } 146 147 /* 148 * Cowonly root (not-shareable trees, everything not subvolume or reloc roots), 149 * just get put onto a simple dirty list. Transaction walks this list to make 150 * sure they get properly updated on disk. 151 */ 152 static void add_root_to_dirty_list(struct btrfs_root *root) 153 { 154 struct btrfs_fs_info *fs_info = root->fs_info; 155 156 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 157 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 158 return; 159 160 spin_lock(&fs_info->trans_lock); 161 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 162 /* Want the extent tree to be the last on the list */ 163 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 164 list_move_tail(&root->dirty_list, 165 &fs_info->dirty_cowonly_roots); 166 else 167 list_move(&root->dirty_list, 168 &fs_info->dirty_cowonly_roots); 169 } 170 spin_unlock(&fs_info->trans_lock); 171 } 172 173 /* 174 * used by snapshot creation to make a copy of a root for a tree with 175 * a given objectid. The buffer with the new root node is returned in 176 * cow_ret, and this func returns zero on success or a negative error code. 177 */ 178 int btrfs_copy_root(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root, 180 struct extent_buffer *buf, 181 struct extent_buffer **cow_ret, u64 new_root_objectid) 182 { 183 struct btrfs_fs_info *fs_info = root->fs_info; 184 struct extent_buffer *cow; 185 int ret = 0; 186 int level; 187 struct btrfs_disk_key disk_key; 188 189 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 190 trans->transid != fs_info->running_transaction->transid); 191 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 192 trans->transid != root->last_trans); 193 194 level = btrfs_header_level(buf); 195 if (level == 0) 196 btrfs_item_key(buf, &disk_key, 0); 197 else 198 btrfs_node_key(buf, &disk_key, 0); 199 200 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 201 &disk_key, level, buf->start, 0, 202 BTRFS_NESTING_NEW_ROOT); 203 if (IS_ERR(cow)) 204 return PTR_ERR(cow); 205 206 copy_extent_buffer_full(cow, buf); 207 btrfs_set_header_bytenr(cow, cow->start); 208 btrfs_set_header_generation(cow, trans->transid); 209 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 210 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 211 BTRFS_HEADER_FLAG_RELOC); 212 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 213 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 214 else 215 btrfs_set_header_owner(cow, new_root_objectid); 216 217 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 218 219 WARN_ON(btrfs_header_generation(buf) > trans->transid); 220 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 221 ret = btrfs_inc_ref(trans, root, cow, 1); 222 else 223 ret = btrfs_inc_ref(trans, root, cow, 0); 224 if (ret) { 225 btrfs_tree_unlock(cow); 226 free_extent_buffer(cow); 227 btrfs_abort_transaction(trans, ret); 228 return ret; 229 } 230 231 btrfs_mark_buffer_dirty(cow); 232 *cow_ret = cow; 233 return 0; 234 } 235 236 enum mod_log_op { 237 MOD_LOG_KEY_REPLACE, 238 MOD_LOG_KEY_ADD, 239 MOD_LOG_KEY_REMOVE, 240 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 241 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 242 MOD_LOG_MOVE_KEYS, 243 MOD_LOG_ROOT_REPLACE, 244 }; 245 246 struct tree_mod_root { 247 u64 logical; 248 u8 level; 249 }; 250 251 struct tree_mod_elem { 252 struct rb_node node; 253 u64 logical; 254 u64 seq; 255 enum mod_log_op op; 256 257 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 258 int slot; 259 260 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 261 u64 generation; 262 263 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 264 struct btrfs_disk_key key; 265 u64 blockptr; 266 267 /* this is used for op == MOD_LOG_MOVE_KEYS */ 268 struct { 269 int dst_slot; 270 int nr_items; 271 } move; 272 273 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 274 struct tree_mod_root old_root; 275 }; 276 277 /* 278 * Pull a new tree mod seq number for our operation. 279 */ 280 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 281 { 282 return atomic64_inc_return(&fs_info->tree_mod_seq); 283 } 284 285 /* 286 * This adds a new blocker to the tree mod log's blocker list if the @elem 287 * passed does not already have a sequence number set. So when a caller expects 288 * to record tree modifications, it should ensure to set elem->seq to zero 289 * before calling btrfs_get_tree_mod_seq. 290 * Returns a fresh, unused tree log modification sequence number, even if no new 291 * blocker was added. 292 */ 293 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 294 struct seq_list *elem) 295 { 296 write_lock(&fs_info->tree_mod_log_lock); 297 if (!elem->seq) { 298 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 299 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 300 } 301 write_unlock(&fs_info->tree_mod_log_lock); 302 303 return elem->seq; 304 } 305 306 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 307 struct seq_list *elem) 308 { 309 struct rb_root *tm_root; 310 struct rb_node *node; 311 struct rb_node *next; 312 struct tree_mod_elem *tm; 313 u64 min_seq = (u64)-1; 314 u64 seq_putting = elem->seq; 315 316 if (!seq_putting) 317 return; 318 319 write_lock(&fs_info->tree_mod_log_lock); 320 list_del(&elem->list); 321 elem->seq = 0; 322 323 if (!list_empty(&fs_info->tree_mod_seq_list)) { 324 struct seq_list *first; 325 326 first = list_first_entry(&fs_info->tree_mod_seq_list, 327 struct seq_list, list); 328 if (seq_putting > first->seq) { 329 /* 330 * Blocker with lower sequence number exists, we 331 * cannot remove anything from the log. 332 */ 333 write_unlock(&fs_info->tree_mod_log_lock); 334 return; 335 } 336 min_seq = first->seq; 337 } 338 339 /* 340 * anything that's lower than the lowest existing (read: blocked) 341 * sequence number can be removed from the tree. 342 */ 343 tm_root = &fs_info->tree_mod_log; 344 for (node = rb_first(tm_root); node; node = next) { 345 next = rb_next(node); 346 tm = rb_entry(node, struct tree_mod_elem, node); 347 if (tm->seq >= min_seq) 348 continue; 349 rb_erase(node, tm_root); 350 kfree(tm); 351 } 352 write_unlock(&fs_info->tree_mod_log_lock); 353 } 354 355 /* 356 * key order of the log: 357 * node/leaf start address -> sequence 358 * 359 * The 'start address' is the logical address of the *new* root node 360 * for root replace operations, or the logical address of the affected 361 * block for all other operations. 362 */ 363 static noinline int 364 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 365 { 366 struct rb_root *tm_root; 367 struct rb_node **new; 368 struct rb_node *parent = NULL; 369 struct tree_mod_elem *cur; 370 371 lockdep_assert_held_write(&fs_info->tree_mod_log_lock); 372 373 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 374 375 tm_root = &fs_info->tree_mod_log; 376 new = &tm_root->rb_node; 377 while (*new) { 378 cur = rb_entry(*new, struct tree_mod_elem, node); 379 parent = *new; 380 if (cur->logical < tm->logical) 381 new = &((*new)->rb_left); 382 else if (cur->logical > tm->logical) 383 new = &((*new)->rb_right); 384 else if (cur->seq < tm->seq) 385 new = &((*new)->rb_left); 386 else if (cur->seq > tm->seq) 387 new = &((*new)->rb_right); 388 else 389 return -EEXIST; 390 } 391 392 rb_link_node(&tm->node, parent, new); 393 rb_insert_color(&tm->node, tm_root); 394 return 0; 395 } 396 397 /* 398 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 399 * returns zero with the tree_mod_log_lock acquired. The caller must hold 400 * this until all tree mod log insertions are recorded in the rb tree and then 401 * write unlock fs_info::tree_mod_log_lock. 402 */ 403 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 404 struct extent_buffer *eb) { 405 smp_mb(); 406 if (list_empty(&(fs_info)->tree_mod_seq_list)) 407 return 1; 408 if (eb && btrfs_header_level(eb) == 0) 409 return 1; 410 411 write_lock(&fs_info->tree_mod_log_lock); 412 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 413 write_unlock(&fs_info->tree_mod_log_lock); 414 return 1; 415 } 416 417 return 0; 418 } 419 420 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 421 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 422 struct extent_buffer *eb) 423 { 424 smp_mb(); 425 if (list_empty(&(fs_info)->tree_mod_seq_list)) 426 return 0; 427 if (eb && btrfs_header_level(eb) == 0) 428 return 0; 429 430 return 1; 431 } 432 433 static struct tree_mod_elem * 434 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 435 enum mod_log_op op, gfp_t flags) 436 { 437 struct tree_mod_elem *tm; 438 439 tm = kzalloc(sizeof(*tm), flags); 440 if (!tm) 441 return NULL; 442 443 tm->logical = eb->start; 444 if (op != MOD_LOG_KEY_ADD) { 445 btrfs_node_key(eb, &tm->key, slot); 446 tm->blockptr = btrfs_node_blockptr(eb, slot); 447 } 448 tm->op = op; 449 tm->slot = slot; 450 tm->generation = btrfs_node_ptr_generation(eb, slot); 451 RB_CLEAR_NODE(&tm->node); 452 453 return tm; 454 } 455 456 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 457 enum mod_log_op op, gfp_t flags) 458 { 459 struct tree_mod_elem *tm; 460 int ret; 461 462 if (!tree_mod_need_log(eb->fs_info, eb)) 463 return 0; 464 465 tm = alloc_tree_mod_elem(eb, slot, op, flags); 466 if (!tm) 467 return -ENOMEM; 468 469 if (tree_mod_dont_log(eb->fs_info, eb)) { 470 kfree(tm); 471 return 0; 472 } 473 474 ret = __tree_mod_log_insert(eb->fs_info, tm); 475 write_unlock(&eb->fs_info->tree_mod_log_lock); 476 if (ret) 477 kfree(tm); 478 479 return ret; 480 } 481 482 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 483 int dst_slot, int src_slot, int nr_items) 484 { 485 struct tree_mod_elem *tm = NULL; 486 struct tree_mod_elem **tm_list = NULL; 487 int ret = 0; 488 int i; 489 int locked = 0; 490 491 if (!tree_mod_need_log(eb->fs_info, eb)) 492 return 0; 493 494 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 495 if (!tm_list) 496 return -ENOMEM; 497 498 tm = kzalloc(sizeof(*tm), GFP_NOFS); 499 if (!tm) { 500 ret = -ENOMEM; 501 goto free_tms; 502 } 503 504 tm->logical = eb->start; 505 tm->slot = src_slot; 506 tm->move.dst_slot = dst_slot; 507 tm->move.nr_items = nr_items; 508 tm->op = MOD_LOG_MOVE_KEYS; 509 510 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 511 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 512 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 513 if (!tm_list[i]) { 514 ret = -ENOMEM; 515 goto free_tms; 516 } 517 } 518 519 if (tree_mod_dont_log(eb->fs_info, eb)) 520 goto free_tms; 521 locked = 1; 522 523 /* 524 * When we override something during the move, we log these removals. 525 * This can only happen when we move towards the beginning of the 526 * buffer, i.e. dst_slot < src_slot. 527 */ 528 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 529 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 530 if (ret) 531 goto free_tms; 532 } 533 534 ret = __tree_mod_log_insert(eb->fs_info, tm); 535 if (ret) 536 goto free_tms; 537 write_unlock(&eb->fs_info->tree_mod_log_lock); 538 kfree(tm_list); 539 540 return 0; 541 free_tms: 542 for (i = 0; i < nr_items; i++) { 543 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 544 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 545 kfree(tm_list[i]); 546 } 547 if (locked) 548 write_unlock(&eb->fs_info->tree_mod_log_lock); 549 kfree(tm_list); 550 kfree(tm); 551 552 return ret; 553 } 554 555 static inline int 556 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 557 struct tree_mod_elem **tm_list, 558 int nritems) 559 { 560 int i, j; 561 int ret; 562 563 for (i = nritems - 1; i >= 0; i--) { 564 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 565 if (ret) { 566 for (j = nritems - 1; j > i; j--) 567 rb_erase(&tm_list[j]->node, 568 &fs_info->tree_mod_log); 569 return ret; 570 } 571 } 572 573 return 0; 574 } 575 576 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 577 struct extent_buffer *new_root, int log_removal) 578 { 579 struct btrfs_fs_info *fs_info = old_root->fs_info; 580 struct tree_mod_elem *tm = NULL; 581 struct tree_mod_elem **tm_list = NULL; 582 int nritems = 0; 583 int ret = 0; 584 int i; 585 586 if (!tree_mod_need_log(fs_info, NULL)) 587 return 0; 588 589 if (log_removal && btrfs_header_level(old_root) > 0) { 590 nritems = btrfs_header_nritems(old_root); 591 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 592 GFP_NOFS); 593 if (!tm_list) { 594 ret = -ENOMEM; 595 goto free_tms; 596 } 597 for (i = 0; i < nritems; i++) { 598 tm_list[i] = alloc_tree_mod_elem(old_root, i, 599 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 600 if (!tm_list[i]) { 601 ret = -ENOMEM; 602 goto free_tms; 603 } 604 } 605 } 606 607 tm = kzalloc(sizeof(*tm), GFP_NOFS); 608 if (!tm) { 609 ret = -ENOMEM; 610 goto free_tms; 611 } 612 613 tm->logical = new_root->start; 614 tm->old_root.logical = old_root->start; 615 tm->old_root.level = btrfs_header_level(old_root); 616 tm->generation = btrfs_header_generation(old_root); 617 tm->op = MOD_LOG_ROOT_REPLACE; 618 619 if (tree_mod_dont_log(fs_info, NULL)) 620 goto free_tms; 621 622 if (tm_list) 623 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 624 if (!ret) 625 ret = __tree_mod_log_insert(fs_info, tm); 626 627 write_unlock(&fs_info->tree_mod_log_lock); 628 if (ret) 629 goto free_tms; 630 kfree(tm_list); 631 632 return ret; 633 634 free_tms: 635 if (tm_list) { 636 for (i = 0; i < nritems; i++) 637 kfree(tm_list[i]); 638 kfree(tm_list); 639 } 640 kfree(tm); 641 642 return ret; 643 } 644 645 static struct tree_mod_elem * 646 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 647 int smallest) 648 { 649 struct rb_root *tm_root; 650 struct rb_node *node; 651 struct tree_mod_elem *cur = NULL; 652 struct tree_mod_elem *found = NULL; 653 654 read_lock(&fs_info->tree_mod_log_lock); 655 tm_root = &fs_info->tree_mod_log; 656 node = tm_root->rb_node; 657 while (node) { 658 cur = rb_entry(node, struct tree_mod_elem, node); 659 if (cur->logical < start) { 660 node = node->rb_left; 661 } else if (cur->logical > start) { 662 node = node->rb_right; 663 } else if (cur->seq < min_seq) { 664 node = node->rb_left; 665 } else if (!smallest) { 666 /* we want the node with the highest seq */ 667 if (found) 668 BUG_ON(found->seq > cur->seq); 669 found = cur; 670 node = node->rb_left; 671 } else if (cur->seq > min_seq) { 672 /* we want the node with the smallest seq */ 673 if (found) 674 BUG_ON(found->seq < cur->seq); 675 found = cur; 676 node = node->rb_right; 677 } else { 678 found = cur; 679 break; 680 } 681 } 682 read_unlock(&fs_info->tree_mod_log_lock); 683 684 return found; 685 } 686 687 /* 688 * this returns the element from the log with the smallest time sequence 689 * value that's in the log (the oldest log item). any element with a time 690 * sequence lower than min_seq will be ignored. 691 */ 692 static struct tree_mod_elem * 693 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 694 u64 min_seq) 695 { 696 return __tree_mod_log_search(fs_info, start, min_seq, 1); 697 } 698 699 /* 700 * this returns the element from the log with the largest time sequence 701 * value that's in the log (the most recent log item). any element with 702 * a time sequence lower than min_seq will be ignored. 703 */ 704 static struct tree_mod_elem * 705 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 706 { 707 return __tree_mod_log_search(fs_info, start, min_seq, 0); 708 } 709 710 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 711 struct extent_buffer *src, unsigned long dst_offset, 712 unsigned long src_offset, int nr_items) 713 { 714 struct btrfs_fs_info *fs_info = dst->fs_info; 715 int ret = 0; 716 struct tree_mod_elem **tm_list = NULL; 717 struct tree_mod_elem **tm_list_add, **tm_list_rem; 718 int i; 719 int locked = 0; 720 721 if (!tree_mod_need_log(fs_info, NULL)) 722 return 0; 723 724 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 725 return 0; 726 727 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 728 GFP_NOFS); 729 if (!tm_list) 730 return -ENOMEM; 731 732 tm_list_add = tm_list; 733 tm_list_rem = tm_list + nr_items; 734 for (i = 0; i < nr_items; i++) { 735 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 736 MOD_LOG_KEY_REMOVE, GFP_NOFS); 737 if (!tm_list_rem[i]) { 738 ret = -ENOMEM; 739 goto free_tms; 740 } 741 742 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 743 MOD_LOG_KEY_ADD, GFP_NOFS); 744 if (!tm_list_add[i]) { 745 ret = -ENOMEM; 746 goto free_tms; 747 } 748 } 749 750 if (tree_mod_dont_log(fs_info, NULL)) 751 goto free_tms; 752 locked = 1; 753 754 for (i = 0; i < nr_items; i++) { 755 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 756 if (ret) 757 goto free_tms; 758 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 759 if (ret) 760 goto free_tms; 761 } 762 763 write_unlock(&fs_info->tree_mod_log_lock); 764 kfree(tm_list); 765 766 return 0; 767 768 free_tms: 769 for (i = 0; i < nr_items * 2; i++) { 770 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 771 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 772 kfree(tm_list[i]); 773 } 774 if (locked) 775 write_unlock(&fs_info->tree_mod_log_lock); 776 kfree(tm_list); 777 778 return ret; 779 } 780 781 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 782 { 783 struct tree_mod_elem **tm_list = NULL; 784 int nritems = 0; 785 int i; 786 int ret = 0; 787 788 if (btrfs_header_level(eb) == 0) 789 return 0; 790 791 if (!tree_mod_need_log(eb->fs_info, NULL)) 792 return 0; 793 794 nritems = btrfs_header_nritems(eb); 795 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 796 if (!tm_list) 797 return -ENOMEM; 798 799 for (i = 0; i < nritems; i++) { 800 tm_list[i] = alloc_tree_mod_elem(eb, i, 801 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 802 if (!tm_list[i]) { 803 ret = -ENOMEM; 804 goto free_tms; 805 } 806 } 807 808 if (tree_mod_dont_log(eb->fs_info, eb)) 809 goto free_tms; 810 811 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 812 write_unlock(&eb->fs_info->tree_mod_log_lock); 813 if (ret) 814 goto free_tms; 815 kfree(tm_list); 816 817 return 0; 818 819 free_tms: 820 for (i = 0; i < nritems; i++) 821 kfree(tm_list[i]); 822 kfree(tm_list); 823 824 return ret; 825 } 826 827 /* 828 * check if the tree block can be shared by multiple trees 829 */ 830 int btrfs_block_can_be_shared(struct btrfs_root *root, 831 struct extent_buffer *buf) 832 { 833 /* 834 * Tree blocks not in shareable trees and tree roots are never shared. 835 * If a block was allocated after the last snapshot and the block was 836 * not allocated by tree relocation, we know the block is not shared. 837 */ 838 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 839 buf != root->node && buf != root->commit_root && 840 (btrfs_header_generation(buf) <= 841 btrfs_root_last_snapshot(&root->root_item) || 842 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 843 return 1; 844 845 return 0; 846 } 847 848 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 849 struct btrfs_root *root, 850 struct extent_buffer *buf, 851 struct extent_buffer *cow, 852 int *last_ref) 853 { 854 struct btrfs_fs_info *fs_info = root->fs_info; 855 u64 refs; 856 u64 owner; 857 u64 flags; 858 u64 new_flags = 0; 859 int ret; 860 861 /* 862 * Backrefs update rules: 863 * 864 * Always use full backrefs for extent pointers in tree block 865 * allocated by tree relocation. 866 * 867 * If a shared tree block is no longer referenced by its owner 868 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 869 * use full backrefs for extent pointers in tree block. 870 * 871 * If a tree block is been relocating 872 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 873 * use full backrefs for extent pointers in tree block. 874 * The reason for this is some operations (such as drop tree) 875 * are only allowed for blocks use full backrefs. 876 */ 877 878 if (btrfs_block_can_be_shared(root, buf)) { 879 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 880 btrfs_header_level(buf), 1, 881 &refs, &flags); 882 if (ret) 883 return ret; 884 if (refs == 0) { 885 ret = -EROFS; 886 btrfs_handle_fs_error(fs_info, ret, NULL); 887 return ret; 888 } 889 } else { 890 refs = 1; 891 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 892 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 893 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 894 else 895 flags = 0; 896 } 897 898 owner = btrfs_header_owner(buf); 899 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 900 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 901 902 if (refs > 1) { 903 if ((owner == root->root_key.objectid || 904 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 905 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 906 ret = btrfs_inc_ref(trans, root, buf, 1); 907 if (ret) 908 return ret; 909 910 if (root->root_key.objectid == 911 BTRFS_TREE_RELOC_OBJECTID) { 912 ret = btrfs_dec_ref(trans, root, buf, 0); 913 if (ret) 914 return ret; 915 ret = btrfs_inc_ref(trans, root, cow, 1); 916 if (ret) 917 return ret; 918 } 919 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 920 } else { 921 922 if (root->root_key.objectid == 923 BTRFS_TREE_RELOC_OBJECTID) 924 ret = btrfs_inc_ref(trans, root, cow, 1); 925 else 926 ret = btrfs_inc_ref(trans, root, cow, 0); 927 if (ret) 928 return ret; 929 } 930 if (new_flags != 0) { 931 int level = btrfs_header_level(buf); 932 933 ret = btrfs_set_disk_extent_flags(trans, buf, 934 new_flags, level, 0); 935 if (ret) 936 return ret; 937 } 938 } else { 939 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 940 if (root->root_key.objectid == 941 BTRFS_TREE_RELOC_OBJECTID) 942 ret = btrfs_inc_ref(trans, root, cow, 1); 943 else 944 ret = btrfs_inc_ref(trans, root, cow, 0); 945 if (ret) 946 return ret; 947 ret = btrfs_dec_ref(trans, root, buf, 1); 948 if (ret) 949 return ret; 950 } 951 btrfs_clean_tree_block(buf); 952 *last_ref = 1; 953 } 954 return 0; 955 } 956 957 static struct extent_buffer *alloc_tree_block_no_bg_flush( 958 struct btrfs_trans_handle *trans, 959 struct btrfs_root *root, 960 u64 parent_start, 961 const struct btrfs_disk_key *disk_key, 962 int level, 963 u64 hint, 964 u64 empty_size, 965 enum btrfs_lock_nesting nest) 966 { 967 struct btrfs_fs_info *fs_info = root->fs_info; 968 struct extent_buffer *ret; 969 970 /* 971 * If we are COWing a node/leaf from the extent, chunk, device or free 972 * space trees, make sure that we do not finish block group creation of 973 * pending block groups. We do this to avoid a deadlock. 974 * COWing can result in allocation of a new chunk, and flushing pending 975 * block groups (btrfs_create_pending_block_groups()) can be triggered 976 * when finishing allocation of a new chunk. Creation of a pending block 977 * group modifies the extent, chunk, device and free space trees, 978 * therefore we could deadlock with ourselves since we are holding a 979 * lock on an extent buffer that btrfs_create_pending_block_groups() may 980 * try to COW later. 981 * For similar reasons, we also need to delay flushing pending block 982 * groups when splitting a leaf or node, from one of those trees, since 983 * we are holding a write lock on it and its parent or when inserting a 984 * new root node for one of those trees. 985 */ 986 if (root == fs_info->extent_root || 987 root == fs_info->chunk_root || 988 root == fs_info->dev_root || 989 root == fs_info->free_space_root) 990 trans->can_flush_pending_bgs = false; 991 992 ret = btrfs_alloc_tree_block(trans, root, parent_start, 993 root->root_key.objectid, disk_key, level, 994 hint, empty_size, nest); 995 trans->can_flush_pending_bgs = true; 996 997 return ret; 998 } 999 1000 /* 1001 * does the dirty work in cow of a single block. The parent block (if 1002 * supplied) is updated to point to the new cow copy. The new buffer is marked 1003 * dirty and returned locked. If you modify the block it needs to be marked 1004 * dirty again. 1005 * 1006 * search_start -- an allocation hint for the new block 1007 * 1008 * empty_size -- a hint that you plan on doing more cow. This is the size in 1009 * bytes the allocator should try to find free next to the block it returns. 1010 * This is just a hint and may be ignored by the allocator. 1011 */ 1012 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1013 struct btrfs_root *root, 1014 struct extent_buffer *buf, 1015 struct extent_buffer *parent, int parent_slot, 1016 struct extent_buffer **cow_ret, 1017 u64 search_start, u64 empty_size, 1018 enum btrfs_lock_nesting nest) 1019 { 1020 struct btrfs_fs_info *fs_info = root->fs_info; 1021 struct btrfs_disk_key disk_key; 1022 struct extent_buffer *cow; 1023 int level, ret; 1024 int last_ref = 0; 1025 int unlock_orig = 0; 1026 u64 parent_start = 0; 1027 1028 if (*cow_ret == buf) 1029 unlock_orig = 1; 1030 1031 btrfs_assert_tree_locked(buf); 1032 1033 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1034 trans->transid != fs_info->running_transaction->transid); 1035 WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 1036 trans->transid != root->last_trans); 1037 1038 level = btrfs_header_level(buf); 1039 1040 if (level == 0) 1041 btrfs_item_key(buf, &disk_key, 0); 1042 else 1043 btrfs_node_key(buf, &disk_key, 0); 1044 1045 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1046 parent_start = parent->start; 1047 1048 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1049 level, search_start, empty_size, nest); 1050 if (IS_ERR(cow)) 1051 return PTR_ERR(cow); 1052 1053 /* cow is set to blocking by btrfs_init_new_buffer */ 1054 1055 copy_extent_buffer_full(cow, buf); 1056 btrfs_set_header_bytenr(cow, cow->start); 1057 btrfs_set_header_generation(cow, trans->transid); 1058 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1059 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1060 BTRFS_HEADER_FLAG_RELOC); 1061 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1062 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1063 else 1064 btrfs_set_header_owner(cow, root->root_key.objectid); 1065 1066 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1067 1068 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1069 if (ret) { 1070 btrfs_tree_unlock(cow); 1071 free_extent_buffer(cow); 1072 btrfs_abort_transaction(trans, ret); 1073 return ret; 1074 } 1075 1076 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) { 1077 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1078 if (ret) { 1079 btrfs_tree_unlock(cow); 1080 free_extent_buffer(cow); 1081 btrfs_abort_transaction(trans, ret); 1082 return ret; 1083 } 1084 } 1085 1086 if (buf == root->node) { 1087 WARN_ON(parent && parent != buf); 1088 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1089 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1090 parent_start = buf->start; 1091 1092 atomic_inc(&cow->refs); 1093 ret = tree_mod_log_insert_root(root->node, cow, 1); 1094 BUG_ON(ret < 0); 1095 rcu_assign_pointer(root->node, cow); 1096 1097 btrfs_free_tree_block(trans, root, buf, parent_start, 1098 last_ref); 1099 free_extent_buffer(buf); 1100 add_root_to_dirty_list(root); 1101 } else { 1102 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1103 tree_mod_log_insert_key(parent, parent_slot, 1104 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1105 btrfs_set_node_blockptr(parent, parent_slot, 1106 cow->start); 1107 btrfs_set_node_ptr_generation(parent, parent_slot, 1108 trans->transid); 1109 btrfs_mark_buffer_dirty(parent); 1110 if (last_ref) { 1111 ret = tree_mod_log_free_eb(buf); 1112 if (ret) { 1113 btrfs_tree_unlock(cow); 1114 free_extent_buffer(cow); 1115 btrfs_abort_transaction(trans, ret); 1116 return ret; 1117 } 1118 } 1119 btrfs_free_tree_block(trans, root, buf, parent_start, 1120 last_ref); 1121 } 1122 if (unlock_orig) 1123 btrfs_tree_unlock(buf); 1124 free_extent_buffer_stale(buf); 1125 btrfs_mark_buffer_dirty(cow); 1126 *cow_ret = cow; 1127 return 0; 1128 } 1129 1130 /* 1131 * returns the logical address of the oldest predecessor of the given root. 1132 * entries older than time_seq are ignored. 1133 */ 1134 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1135 struct extent_buffer *eb_root, u64 time_seq) 1136 { 1137 struct tree_mod_elem *tm; 1138 struct tree_mod_elem *found = NULL; 1139 u64 root_logical = eb_root->start; 1140 int looped = 0; 1141 1142 if (!time_seq) 1143 return NULL; 1144 1145 /* 1146 * the very last operation that's logged for a root is the 1147 * replacement operation (if it is replaced at all). this has 1148 * the logical address of the *new* root, making it the very 1149 * first operation that's logged for this root. 1150 */ 1151 while (1) { 1152 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1153 time_seq); 1154 if (!looped && !tm) 1155 return NULL; 1156 /* 1157 * if there are no tree operation for the oldest root, we simply 1158 * return it. this should only happen if that (old) root is at 1159 * level 0. 1160 */ 1161 if (!tm) 1162 break; 1163 1164 /* 1165 * if there's an operation that's not a root replacement, we 1166 * found the oldest version of our root. normally, we'll find a 1167 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1168 */ 1169 if (tm->op != MOD_LOG_ROOT_REPLACE) 1170 break; 1171 1172 found = tm; 1173 root_logical = tm->old_root.logical; 1174 looped = 1; 1175 } 1176 1177 /* if there's no old root to return, return what we found instead */ 1178 if (!found) 1179 found = tm; 1180 1181 return found; 1182 } 1183 1184 /* 1185 * tm is a pointer to the first operation to rewind within eb. then, all 1186 * previous operations will be rewound (until we reach something older than 1187 * time_seq). 1188 */ 1189 static void 1190 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1191 u64 time_seq, struct tree_mod_elem *first_tm) 1192 { 1193 u32 n; 1194 struct rb_node *next; 1195 struct tree_mod_elem *tm = first_tm; 1196 unsigned long o_dst; 1197 unsigned long o_src; 1198 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1199 1200 n = btrfs_header_nritems(eb); 1201 read_lock(&fs_info->tree_mod_log_lock); 1202 while (tm && tm->seq >= time_seq) { 1203 /* 1204 * all the operations are recorded with the operator used for 1205 * the modification. as we're going backwards, we do the 1206 * opposite of each operation here. 1207 */ 1208 switch (tm->op) { 1209 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1210 BUG_ON(tm->slot < n); 1211 fallthrough; 1212 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1213 case MOD_LOG_KEY_REMOVE: 1214 btrfs_set_node_key(eb, &tm->key, tm->slot); 1215 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1216 btrfs_set_node_ptr_generation(eb, tm->slot, 1217 tm->generation); 1218 n++; 1219 break; 1220 case MOD_LOG_KEY_REPLACE: 1221 BUG_ON(tm->slot >= n); 1222 btrfs_set_node_key(eb, &tm->key, tm->slot); 1223 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1224 btrfs_set_node_ptr_generation(eb, tm->slot, 1225 tm->generation); 1226 break; 1227 case MOD_LOG_KEY_ADD: 1228 /* if a move operation is needed it's in the log */ 1229 n--; 1230 break; 1231 case MOD_LOG_MOVE_KEYS: 1232 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1233 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1234 memmove_extent_buffer(eb, o_dst, o_src, 1235 tm->move.nr_items * p_size); 1236 break; 1237 case MOD_LOG_ROOT_REPLACE: 1238 /* 1239 * this operation is special. for roots, this must be 1240 * handled explicitly before rewinding. 1241 * for non-roots, this operation may exist if the node 1242 * was a root: root A -> child B; then A gets empty and 1243 * B is promoted to the new root. in the mod log, we'll 1244 * have a root-replace operation for B, a tree block 1245 * that is no root. we simply ignore that operation. 1246 */ 1247 break; 1248 } 1249 next = rb_next(&tm->node); 1250 if (!next) 1251 break; 1252 tm = rb_entry(next, struct tree_mod_elem, node); 1253 if (tm->logical != first_tm->logical) 1254 break; 1255 } 1256 read_unlock(&fs_info->tree_mod_log_lock); 1257 btrfs_set_header_nritems(eb, n); 1258 } 1259 1260 /* 1261 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1262 * is returned. If rewind operations happen, a fresh buffer is returned. The 1263 * returned buffer is always read-locked. If the returned buffer is not the 1264 * input buffer, the lock on the input buffer is released and the input buffer 1265 * is freed (its refcount is decremented). 1266 */ 1267 static struct extent_buffer * 1268 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1269 struct extent_buffer *eb, u64 time_seq) 1270 { 1271 struct extent_buffer *eb_rewin; 1272 struct tree_mod_elem *tm; 1273 1274 if (!time_seq) 1275 return eb; 1276 1277 if (btrfs_header_level(eb) == 0) 1278 return eb; 1279 1280 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1281 if (!tm) 1282 return eb; 1283 1284 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1285 BUG_ON(tm->slot != 0); 1286 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1287 if (!eb_rewin) { 1288 btrfs_tree_read_unlock(eb); 1289 free_extent_buffer(eb); 1290 return NULL; 1291 } 1292 btrfs_set_header_bytenr(eb_rewin, eb->start); 1293 btrfs_set_header_backref_rev(eb_rewin, 1294 btrfs_header_backref_rev(eb)); 1295 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1296 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1297 } else { 1298 eb_rewin = btrfs_clone_extent_buffer(eb); 1299 if (!eb_rewin) { 1300 btrfs_tree_read_unlock(eb); 1301 free_extent_buffer(eb); 1302 return NULL; 1303 } 1304 } 1305 1306 btrfs_tree_read_unlock(eb); 1307 free_extent_buffer(eb); 1308 1309 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin), 1310 eb_rewin, btrfs_header_level(eb_rewin)); 1311 btrfs_tree_read_lock(eb_rewin); 1312 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1313 WARN_ON(btrfs_header_nritems(eb_rewin) > 1314 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1315 1316 return eb_rewin; 1317 } 1318 1319 /* 1320 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1321 * value. If there are no changes, the current root->root_node is returned. If 1322 * anything changed in between, there's a fresh buffer allocated on which the 1323 * rewind operations are done. In any case, the returned buffer is read locked. 1324 * Returns NULL on error (with no locks held). 1325 */ 1326 static inline struct extent_buffer * 1327 get_old_root(struct btrfs_root *root, u64 time_seq) 1328 { 1329 struct btrfs_fs_info *fs_info = root->fs_info; 1330 struct tree_mod_elem *tm; 1331 struct extent_buffer *eb = NULL; 1332 struct extent_buffer *eb_root; 1333 u64 eb_root_owner = 0; 1334 struct extent_buffer *old; 1335 struct tree_mod_root *old_root = NULL; 1336 u64 old_generation = 0; 1337 u64 logical; 1338 int level; 1339 1340 eb_root = btrfs_read_lock_root_node(root); 1341 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1342 if (!tm) 1343 return eb_root; 1344 1345 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1346 old_root = &tm->old_root; 1347 old_generation = tm->generation; 1348 logical = old_root->logical; 1349 level = old_root->level; 1350 } else { 1351 logical = eb_root->start; 1352 level = btrfs_header_level(eb_root); 1353 } 1354 1355 tm = tree_mod_log_search(fs_info, logical, time_seq); 1356 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1357 btrfs_tree_read_unlock(eb_root); 1358 free_extent_buffer(eb_root); 1359 old = read_tree_block(fs_info, logical, root->root_key.objectid, 1360 0, level, NULL); 1361 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1362 if (!IS_ERR(old)) 1363 free_extent_buffer(old); 1364 btrfs_warn(fs_info, 1365 "failed to read tree block %llu from get_old_root", 1366 logical); 1367 } else { 1368 btrfs_tree_read_lock(old); 1369 eb = btrfs_clone_extent_buffer(old); 1370 btrfs_tree_read_unlock(old); 1371 free_extent_buffer(old); 1372 } 1373 } else if (old_root) { 1374 eb_root_owner = btrfs_header_owner(eb_root); 1375 btrfs_tree_read_unlock(eb_root); 1376 free_extent_buffer(eb_root); 1377 eb = alloc_dummy_extent_buffer(fs_info, logical); 1378 } else { 1379 eb = btrfs_clone_extent_buffer(eb_root); 1380 btrfs_tree_read_unlock(eb_root); 1381 free_extent_buffer(eb_root); 1382 } 1383 1384 if (!eb) 1385 return NULL; 1386 if (old_root) { 1387 btrfs_set_header_bytenr(eb, eb->start); 1388 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1389 btrfs_set_header_owner(eb, eb_root_owner); 1390 btrfs_set_header_level(eb, old_root->level); 1391 btrfs_set_header_generation(eb, old_generation); 1392 } 1393 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb, 1394 btrfs_header_level(eb)); 1395 btrfs_tree_read_lock(eb); 1396 if (tm) 1397 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1398 else 1399 WARN_ON(btrfs_header_level(eb) != 0); 1400 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1401 1402 return eb; 1403 } 1404 1405 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1406 { 1407 struct tree_mod_elem *tm; 1408 int level; 1409 struct extent_buffer *eb_root = btrfs_root_node(root); 1410 1411 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1412 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1413 level = tm->old_root.level; 1414 } else { 1415 level = btrfs_header_level(eb_root); 1416 } 1417 free_extent_buffer(eb_root); 1418 1419 return level; 1420 } 1421 1422 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1423 struct btrfs_root *root, 1424 struct extent_buffer *buf) 1425 { 1426 if (btrfs_is_testing(root->fs_info)) 1427 return 0; 1428 1429 /* Ensure we can see the FORCE_COW bit */ 1430 smp_mb__before_atomic(); 1431 1432 /* 1433 * We do not need to cow a block if 1434 * 1) this block is not created or changed in this transaction; 1435 * 2) this block does not belong to TREE_RELOC tree; 1436 * 3) the root is not forced COW. 1437 * 1438 * What is forced COW: 1439 * when we create snapshot during committing the transaction, 1440 * after we've finished copying src root, we must COW the shared 1441 * block to ensure the metadata consistency. 1442 */ 1443 if (btrfs_header_generation(buf) == trans->transid && 1444 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1445 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1446 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1447 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1448 return 0; 1449 return 1; 1450 } 1451 1452 /* 1453 * cows a single block, see __btrfs_cow_block for the real work. 1454 * This version of it has extra checks so that a block isn't COWed more than 1455 * once per transaction, as long as it hasn't been written yet 1456 */ 1457 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1458 struct btrfs_root *root, struct extent_buffer *buf, 1459 struct extent_buffer *parent, int parent_slot, 1460 struct extent_buffer **cow_ret, 1461 enum btrfs_lock_nesting nest) 1462 { 1463 struct btrfs_fs_info *fs_info = root->fs_info; 1464 u64 search_start; 1465 int ret; 1466 1467 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1468 btrfs_err(fs_info, 1469 "COW'ing blocks on a fs root that's being dropped"); 1470 1471 if (trans->transaction != fs_info->running_transaction) 1472 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1473 trans->transid, 1474 fs_info->running_transaction->transid); 1475 1476 if (trans->transid != fs_info->generation) 1477 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1478 trans->transid, fs_info->generation); 1479 1480 if (!should_cow_block(trans, root, buf)) { 1481 trans->dirty = true; 1482 *cow_ret = buf; 1483 return 0; 1484 } 1485 1486 search_start = buf->start & ~((u64)SZ_1G - 1); 1487 1488 /* 1489 * Before CoWing this block for later modification, check if it's 1490 * the subtree root and do the delayed subtree trace if needed. 1491 * 1492 * Also We don't care about the error, as it's handled internally. 1493 */ 1494 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1495 ret = __btrfs_cow_block(trans, root, buf, parent, 1496 parent_slot, cow_ret, search_start, 0, nest); 1497 1498 trace_btrfs_cow_block(root, buf, *cow_ret); 1499 1500 return ret; 1501 } 1502 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO); 1503 1504 /* 1505 * helper function for defrag to decide if two blocks pointed to by a 1506 * node are actually close by 1507 */ 1508 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1509 { 1510 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1511 return 1; 1512 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1513 return 1; 1514 return 0; 1515 } 1516 1517 #ifdef __LITTLE_ENDIAN 1518 1519 /* 1520 * Compare two keys, on little-endian the disk order is same as CPU order and 1521 * we can avoid the conversion. 1522 */ 1523 static int comp_keys(const struct btrfs_disk_key *disk_key, 1524 const struct btrfs_key *k2) 1525 { 1526 const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key; 1527 1528 return btrfs_comp_cpu_keys(k1, k2); 1529 } 1530 1531 #else 1532 1533 /* 1534 * compare two keys in a memcmp fashion 1535 */ 1536 static int comp_keys(const struct btrfs_disk_key *disk, 1537 const struct btrfs_key *k2) 1538 { 1539 struct btrfs_key k1; 1540 1541 btrfs_disk_key_to_cpu(&k1, disk); 1542 1543 return btrfs_comp_cpu_keys(&k1, k2); 1544 } 1545 #endif 1546 1547 /* 1548 * same as comp_keys only with two btrfs_key's 1549 */ 1550 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1551 { 1552 if (k1->objectid > k2->objectid) 1553 return 1; 1554 if (k1->objectid < k2->objectid) 1555 return -1; 1556 if (k1->type > k2->type) 1557 return 1; 1558 if (k1->type < k2->type) 1559 return -1; 1560 if (k1->offset > k2->offset) 1561 return 1; 1562 if (k1->offset < k2->offset) 1563 return -1; 1564 return 0; 1565 } 1566 1567 /* 1568 * this is used by the defrag code to go through all the 1569 * leaves pointed to by a node and reallocate them so that 1570 * disk order is close to key order 1571 */ 1572 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1573 struct btrfs_root *root, struct extent_buffer *parent, 1574 int start_slot, u64 *last_ret, 1575 struct btrfs_key *progress) 1576 { 1577 struct btrfs_fs_info *fs_info = root->fs_info; 1578 struct extent_buffer *cur; 1579 u64 blocknr; 1580 u64 search_start = *last_ret; 1581 u64 last_block = 0; 1582 u64 other; 1583 u32 parent_nritems; 1584 int end_slot; 1585 int i; 1586 int err = 0; 1587 u32 blocksize; 1588 int progress_passed = 0; 1589 struct btrfs_disk_key disk_key; 1590 1591 WARN_ON(trans->transaction != fs_info->running_transaction); 1592 WARN_ON(trans->transid != fs_info->generation); 1593 1594 parent_nritems = btrfs_header_nritems(parent); 1595 blocksize = fs_info->nodesize; 1596 end_slot = parent_nritems - 1; 1597 1598 if (parent_nritems <= 1) 1599 return 0; 1600 1601 for (i = start_slot; i <= end_slot; i++) { 1602 int close = 1; 1603 1604 btrfs_node_key(parent, &disk_key, i); 1605 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1606 continue; 1607 1608 progress_passed = 1; 1609 blocknr = btrfs_node_blockptr(parent, i); 1610 if (last_block == 0) 1611 last_block = blocknr; 1612 1613 if (i > 0) { 1614 other = btrfs_node_blockptr(parent, i - 1); 1615 close = close_blocks(blocknr, other, blocksize); 1616 } 1617 if (!close && i < end_slot) { 1618 other = btrfs_node_blockptr(parent, i + 1); 1619 close = close_blocks(blocknr, other, blocksize); 1620 } 1621 if (close) { 1622 last_block = blocknr; 1623 continue; 1624 } 1625 1626 cur = btrfs_read_node_slot(parent, i); 1627 if (IS_ERR(cur)) 1628 return PTR_ERR(cur); 1629 if (search_start == 0) 1630 search_start = last_block; 1631 1632 btrfs_tree_lock(cur); 1633 err = __btrfs_cow_block(trans, root, cur, parent, i, 1634 &cur, search_start, 1635 min(16 * blocksize, 1636 (end_slot - i) * blocksize), 1637 BTRFS_NESTING_COW); 1638 if (err) { 1639 btrfs_tree_unlock(cur); 1640 free_extent_buffer(cur); 1641 break; 1642 } 1643 search_start = cur->start; 1644 last_block = cur->start; 1645 *last_ret = search_start; 1646 btrfs_tree_unlock(cur); 1647 free_extent_buffer(cur); 1648 } 1649 return err; 1650 } 1651 1652 /* 1653 * search for key in the extent_buffer. The items start at offset p, 1654 * and they are item_size apart. There are 'max' items in p. 1655 * 1656 * the slot in the array is returned via slot, and it points to 1657 * the place where you would insert key if it is not found in 1658 * the array. 1659 * 1660 * slot may point to max if the key is bigger than all of the keys 1661 */ 1662 static noinline int generic_bin_search(struct extent_buffer *eb, 1663 unsigned long p, int item_size, 1664 const struct btrfs_key *key, 1665 int max, int *slot) 1666 { 1667 int low = 0; 1668 int high = max; 1669 int ret; 1670 const int key_size = sizeof(struct btrfs_disk_key); 1671 1672 if (low > high) { 1673 btrfs_err(eb->fs_info, 1674 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1675 __func__, low, high, eb->start, 1676 btrfs_header_owner(eb), btrfs_header_level(eb)); 1677 return -EINVAL; 1678 } 1679 1680 while (low < high) { 1681 unsigned long oip; 1682 unsigned long offset; 1683 struct btrfs_disk_key *tmp; 1684 struct btrfs_disk_key unaligned; 1685 int mid; 1686 1687 mid = (low + high) / 2; 1688 offset = p + mid * item_size; 1689 oip = offset_in_page(offset); 1690 1691 if (oip + key_size <= PAGE_SIZE) { 1692 const unsigned long idx = get_eb_page_index(offset); 1693 char *kaddr = page_address(eb->pages[idx]); 1694 1695 oip = get_eb_offset_in_page(eb, offset); 1696 tmp = (struct btrfs_disk_key *)(kaddr + oip); 1697 } else { 1698 read_extent_buffer(eb, &unaligned, offset, key_size); 1699 tmp = &unaligned; 1700 } 1701 1702 ret = comp_keys(tmp, key); 1703 1704 if (ret < 0) 1705 low = mid + 1; 1706 else if (ret > 0) 1707 high = mid; 1708 else { 1709 *slot = mid; 1710 return 0; 1711 } 1712 } 1713 *slot = low; 1714 return 1; 1715 } 1716 1717 /* 1718 * simple bin_search frontend that does the right thing for 1719 * leaves vs nodes 1720 */ 1721 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1722 int *slot) 1723 { 1724 if (btrfs_header_level(eb) == 0) 1725 return generic_bin_search(eb, 1726 offsetof(struct btrfs_leaf, items), 1727 sizeof(struct btrfs_item), 1728 key, btrfs_header_nritems(eb), 1729 slot); 1730 else 1731 return generic_bin_search(eb, 1732 offsetof(struct btrfs_node, ptrs), 1733 sizeof(struct btrfs_key_ptr), 1734 key, btrfs_header_nritems(eb), 1735 slot); 1736 } 1737 1738 static void root_add_used(struct btrfs_root *root, u32 size) 1739 { 1740 spin_lock(&root->accounting_lock); 1741 btrfs_set_root_used(&root->root_item, 1742 btrfs_root_used(&root->root_item) + size); 1743 spin_unlock(&root->accounting_lock); 1744 } 1745 1746 static void root_sub_used(struct btrfs_root *root, u32 size) 1747 { 1748 spin_lock(&root->accounting_lock); 1749 btrfs_set_root_used(&root->root_item, 1750 btrfs_root_used(&root->root_item) - size); 1751 spin_unlock(&root->accounting_lock); 1752 } 1753 1754 /* given a node and slot number, this reads the blocks it points to. The 1755 * extent buffer is returned with a reference taken (but unlocked). 1756 */ 1757 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent, 1758 int slot) 1759 { 1760 int level = btrfs_header_level(parent); 1761 struct extent_buffer *eb; 1762 struct btrfs_key first_key; 1763 1764 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1765 return ERR_PTR(-ENOENT); 1766 1767 BUG_ON(level == 0); 1768 1769 btrfs_node_key_to_cpu(parent, &first_key, slot); 1770 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1771 btrfs_header_owner(parent), 1772 btrfs_node_ptr_generation(parent, slot), 1773 level - 1, &first_key); 1774 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1775 free_extent_buffer(eb); 1776 eb = ERR_PTR(-EIO); 1777 } 1778 1779 return eb; 1780 } 1781 1782 /* 1783 * node level balancing, used to make sure nodes are in proper order for 1784 * item deletion. We balance from the top down, so we have to make sure 1785 * that a deletion won't leave an node completely empty later on. 1786 */ 1787 static noinline int balance_level(struct btrfs_trans_handle *trans, 1788 struct btrfs_root *root, 1789 struct btrfs_path *path, int level) 1790 { 1791 struct btrfs_fs_info *fs_info = root->fs_info; 1792 struct extent_buffer *right = NULL; 1793 struct extent_buffer *mid; 1794 struct extent_buffer *left = NULL; 1795 struct extent_buffer *parent = NULL; 1796 int ret = 0; 1797 int wret; 1798 int pslot; 1799 int orig_slot = path->slots[level]; 1800 u64 orig_ptr; 1801 1802 ASSERT(level > 0); 1803 1804 mid = path->nodes[level]; 1805 1806 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK); 1807 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1808 1809 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1810 1811 if (level < BTRFS_MAX_LEVEL - 1) { 1812 parent = path->nodes[level + 1]; 1813 pslot = path->slots[level + 1]; 1814 } 1815 1816 /* 1817 * deal with the case where there is only one pointer in the root 1818 * by promoting the node below to a root 1819 */ 1820 if (!parent) { 1821 struct extent_buffer *child; 1822 1823 if (btrfs_header_nritems(mid) != 1) 1824 return 0; 1825 1826 /* promote the child to a root */ 1827 child = btrfs_read_node_slot(mid, 0); 1828 if (IS_ERR(child)) { 1829 ret = PTR_ERR(child); 1830 btrfs_handle_fs_error(fs_info, ret, NULL); 1831 goto enospc; 1832 } 1833 1834 btrfs_tree_lock(child); 1835 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 1836 BTRFS_NESTING_COW); 1837 if (ret) { 1838 btrfs_tree_unlock(child); 1839 free_extent_buffer(child); 1840 goto enospc; 1841 } 1842 1843 ret = tree_mod_log_insert_root(root->node, child, 1); 1844 BUG_ON(ret < 0); 1845 rcu_assign_pointer(root->node, child); 1846 1847 add_root_to_dirty_list(root); 1848 btrfs_tree_unlock(child); 1849 1850 path->locks[level] = 0; 1851 path->nodes[level] = NULL; 1852 btrfs_clean_tree_block(mid); 1853 btrfs_tree_unlock(mid); 1854 /* once for the path */ 1855 free_extent_buffer(mid); 1856 1857 root_sub_used(root, mid->len); 1858 btrfs_free_tree_block(trans, root, mid, 0, 1); 1859 /* once for the root ptr */ 1860 free_extent_buffer_stale(mid); 1861 return 0; 1862 } 1863 if (btrfs_header_nritems(mid) > 1864 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1865 return 0; 1866 1867 left = btrfs_read_node_slot(parent, pslot - 1); 1868 if (IS_ERR(left)) 1869 left = NULL; 1870 1871 if (left) { 1872 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 1873 wret = btrfs_cow_block(trans, root, left, 1874 parent, pslot - 1, &left, 1875 BTRFS_NESTING_LEFT_COW); 1876 if (wret) { 1877 ret = wret; 1878 goto enospc; 1879 } 1880 } 1881 1882 right = btrfs_read_node_slot(parent, pslot + 1); 1883 if (IS_ERR(right)) 1884 right = NULL; 1885 1886 if (right) { 1887 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 1888 wret = btrfs_cow_block(trans, root, right, 1889 parent, pslot + 1, &right, 1890 BTRFS_NESTING_RIGHT_COW); 1891 if (wret) { 1892 ret = wret; 1893 goto enospc; 1894 } 1895 } 1896 1897 /* first, try to make some room in the middle buffer */ 1898 if (left) { 1899 orig_slot += btrfs_header_nritems(left); 1900 wret = push_node_left(trans, left, mid, 1); 1901 if (wret < 0) 1902 ret = wret; 1903 } 1904 1905 /* 1906 * then try to empty the right most buffer into the middle 1907 */ 1908 if (right) { 1909 wret = push_node_left(trans, mid, right, 1); 1910 if (wret < 0 && wret != -ENOSPC) 1911 ret = wret; 1912 if (btrfs_header_nritems(right) == 0) { 1913 btrfs_clean_tree_block(right); 1914 btrfs_tree_unlock(right); 1915 del_ptr(root, path, level + 1, pslot + 1); 1916 root_sub_used(root, right->len); 1917 btrfs_free_tree_block(trans, root, right, 0, 1); 1918 free_extent_buffer_stale(right); 1919 right = NULL; 1920 } else { 1921 struct btrfs_disk_key right_key; 1922 btrfs_node_key(right, &right_key, 0); 1923 ret = tree_mod_log_insert_key(parent, pslot + 1, 1924 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1925 BUG_ON(ret < 0); 1926 btrfs_set_node_key(parent, &right_key, pslot + 1); 1927 btrfs_mark_buffer_dirty(parent); 1928 } 1929 } 1930 if (btrfs_header_nritems(mid) == 1) { 1931 /* 1932 * we're not allowed to leave a node with one item in the 1933 * tree during a delete. A deletion from lower in the tree 1934 * could try to delete the only pointer in this node. 1935 * So, pull some keys from the left. 1936 * There has to be a left pointer at this point because 1937 * otherwise we would have pulled some pointers from the 1938 * right 1939 */ 1940 if (!left) { 1941 ret = -EROFS; 1942 btrfs_handle_fs_error(fs_info, ret, NULL); 1943 goto enospc; 1944 } 1945 wret = balance_node_right(trans, mid, left); 1946 if (wret < 0) { 1947 ret = wret; 1948 goto enospc; 1949 } 1950 if (wret == 1) { 1951 wret = push_node_left(trans, left, mid, 1); 1952 if (wret < 0) 1953 ret = wret; 1954 } 1955 BUG_ON(wret == 1); 1956 } 1957 if (btrfs_header_nritems(mid) == 0) { 1958 btrfs_clean_tree_block(mid); 1959 btrfs_tree_unlock(mid); 1960 del_ptr(root, path, level + 1, pslot); 1961 root_sub_used(root, mid->len); 1962 btrfs_free_tree_block(trans, root, mid, 0, 1); 1963 free_extent_buffer_stale(mid); 1964 mid = NULL; 1965 } else { 1966 /* update the parent key to reflect our changes */ 1967 struct btrfs_disk_key mid_key; 1968 btrfs_node_key(mid, &mid_key, 0); 1969 ret = tree_mod_log_insert_key(parent, pslot, 1970 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1971 BUG_ON(ret < 0); 1972 btrfs_set_node_key(parent, &mid_key, pslot); 1973 btrfs_mark_buffer_dirty(parent); 1974 } 1975 1976 /* update the path */ 1977 if (left) { 1978 if (btrfs_header_nritems(left) > orig_slot) { 1979 atomic_inc(&left->refs); 1980 /* left was locked after cow */ 1981 path->nodes[level] = left; 1982 path->slots[level + 1] -= 1; 1983 path->slots[level] = orig_slot; 1984 if (mid) { 1985 btrfs_tree_unlock(mid); 1986 free_extent_buffer(mid); 1987 } 1988 } else { 1989 orig_slot -= btrfs_header_nritems(left); 1990 path->slots[level] = orig_slot; 1991 } 1992 } 1993 /* double check we haven't messed things up */ 1994 if (orig_ptr != 1995 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 1996 BUG(); 1997 enospc: 1998 if (right) { 1999 btrfs_tree_unlock(right); 2000 free_extent_buffer(right); 2001 } 2002 if (left) { 2003 if (path->nodes[level] != left) 2004 btrfs_tree_unlock(left); 2005 free_extent_buffer(left); 2006 } 2007 return ret; 2008 } 2009 2010 /* Node balancing for insertion. Here we only split or push nodes around 2011 * when they are completely full. This is also done top down, so we 2012 * have to be pessimistic. 2013 */ 2014 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2015 struct btrfs_root *root, 2016 struct btrfs_path *path, int level) 2017 { 2018 struct btrfs_fs_info *fs_info = root->fs_info; 2019 struct extent_buffer *right = NULL; 2020 struct extent_buffer *mid; 2021 struct extent_buffer *left = NULL; 2022 struct extent_buffer *parent = NULL; 2023 int ret = 0; 2024 int wret; 2025 int pslot; 2026 int orig_slot = path->slots[level]; 2027 2028 if (level == 0) 2029 return 1; 2030 2031 mid = path->nodes[level]; 2032 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2033 2034 if (level < BTRFS_MAX_LEVEL - 1) { 2035 parent = path->nodes[level + 1]; 2036 pslot = path->slots[level + 1]; 2037 } 2038 2039 if (!parent) 2040 return 1; 2041 2042 left = btrfs_read_node_slot(parent, pslot - 1); 2043 if (IS_ERR(left)) 2044 left = NULL; 2045 2046 /* first, try to make some room in the middle buffer */ 2047 if (left) { 2048 u32 left_nr; 2049 2050 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 2051 2052 left_nr = btrfs_header_nritems(left); 2053 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2054 wret = 1; 2055 } else { 2056 ret = btrfs_cow_block(trans, root, left, parent, 2057 pslot - 1, &left, 2058 BTRFS_NESTING_LEFT_COW); 2059 if (ret) 2060 wret = 1; 2061 else { 2062 wret = push_node_left(trans, left, mid, 0); 2063 } 2064 } 2065 if (wret < 0) 2066 ret = wret; 2067 if (wret == 0) { 2068 struct btrfs_disk_key disk_key; 2069 orig_slot += left_nr; 2070 btrfs_node_key(mid, &disk_key, 0); 2071 ret = tree_mod_log_insert_key(parent, pslot, 2072 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2073 BUG_ON(ret < 0); 2074 btrfs_set_node_key(parent, &disk_key, pslot); 2075 btrfs_mark_buffer_dirty(parent); 2076 if (btrfs_header_nritems(left) > orig_slot) { 2077 path->nodes[level] = left; 2078 path->slots[level + 1] -= 1; 2079 path->slots[level] = orig_slot; 2080 btrfs_tree_unlock(mid); 2081 free_extent_buffer(mid); 2082 } else { 2083 orig_slot -= 2084 btrfs_header_nritems(left); 2085 path->slots[level] = orig_slot; 2086 btrfs_tree_unlock(left); 2087 free_extent_buffer(left); 2088 } 2089 return 0; 2090 } 2091 btrfs_tree_unlock(left); 2092 free_extent_buffer(left); 2093 } 2094 right = btrfs_read_node_slot(parent, pslot + 1); 2095 if (IS_ERR(right)) 2096 right = NULL; 2097 2098 /* 2099 * then try to empty the right most buffer into the middle 2100 */ 2101 if (right) { 2102 u32 right_nr; 2103 2104 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 2105 2106 right_nr = btrfs_header_nritems(right); 2107 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2108 wret = 1; 2109 } else { 2110 ret = btrfs_cow_block(trans, root, right, 2111 parent, pslot + 1, 2112 &right, BTRFS_NESTING_RIGHT_COW); 2113 if (ret) 2114 wret = 1; 2115 else { 2116 wret = balance_node_right(trans, right, mid); 2117 } 2118 } 2119 if (wret < 0) 2120 ret = wret; 2121 if (wret == 0) { 2122 struct btrfs_disk_key disk_key; 2123 2124 btrfs_node_key(right, &disk_key, 0); 2125 ret = tree_mod_log_insert_key(parent, pslot + 1, 2126 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2127 BUG_ON(ret < 0); 2128 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2129 btrfs_mark_buffer_dirty(parent); 2130 2131 if (btrfs_header_nritems(mid) <= orig_slot) { 2132 path->nodes[level] = right; 2133 path->slots[level + 1] += 1; 2134 path->slots[level] = orig_slot - 2135 btrfs_header_nritems(mid); 2136 btrfs_tree_unlock(mid); 2137 free_extent_buffer(mid); 2138 } else { 2139 btrfs_tree_unlock(right); 2140 free_extent_buffer(right); 2141 } 2142 return 0; 2143 } 2144 btrfs_tree_unlock(right); 2145 free_extent_buffer(right); 2146 } 2147 return 1; 2148 } 2149 2150 /* 2151 * readahead one full node of leaves, finding things that are close 2152 * to the block in 'slot', and triggering ra on them. 2153 */ 2154 static void reada_for_search(struct btrfs_fs_info *fs_info, 2155 struct btrfs_path *path, 2156 int level, int slot, u64 objectid) 2157 { 2158 struct extent_buffer *node; 2159 struct btrfs_disk_key disk_key; 2160 u32 nritems; 2161 u64 search; 2162 u64 target; 2163 u64 nread = 0; 2164 struct extent_buffer *eb; 2165 u32 nr; 2166 u32 blocksize; 2167 u32 nscan = 0; 2168 2169 if (level != 1) 2170 return; 2171 2172 if (!path->nodes[level]) 2173 return; 2174 2175 node = path->nodes[level]; 2176 2177 search = btrfs_node_blockptr(node, slot); 2178 blocksize = fs_info->nodesize; 2179 eb = find_extent_buffer(fs_info, search); 2180 if (eb) { 2181 free_extent_buffer(eb); 2182 return; 2183 } 2184 2185 target = search; 2186 2187 nritems = btrfs_header_nritems(node); 2188 nr = slot; 2189 2190 while (1) { 2191 if (path->reada == READA_BACK) { 2192 if (nr == 0) 2193 break; 2194 nr--; 2195 } else if (path->reada == READA_FORWARD) { 2196 nr++; 2197 if (nr >= nritems) 2198 break; 2199 } 2200 if (path->reada == READA_BACK && objectid) { 2201 btrfs_node_key(node, &disk_key, nr); 2202 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2203 break; 2204 } 2205 search = btrfs_node_blockptr(node, nr); 2206 if ((search <= target && target - search <= 65536) || 2207 (search > target && search - target <= 65536)) { 2208 btrfs_readahead_node_child(node, nr); 2209 nread += blocksize; 2210 } 2211 nscan++; 2212 if ((nread > 65536 || nscan > 32)) 2213 break; 2214 } 2215 } 2216 2217 static noinline void reada_for_balance(struct btrfs_path *path, int level) 2218 { 2219 struct extent_buffer *parent; 2220 int slot; 2221 int nritems; 2222 2223 parent = path->nodes[level + 1]; 2224 if (!parent) 2225 return; 2226 2227 nritems = btrfs_header_nritems(parent); 2228 slot = path->slots[level + 1]; 2229 2230 if (slot > 0) 2231 btrfs_readahead_node_child(parent, slot - 1); 2232 if (slot + 1 < nritems) 2233 btrfs_readahead_node_child(parent, slot + 1); 2234 } 2235 2236 2237 /* 2238 * when we walk down the tree, it is usually safe to unlock the higher layers 2239 * in the tree. The exceptions are when our path goes through slot 0, because 2240 * operations on the tree might require changing key pointers higher up in the 2241 * tree. 2242 * 2243 * callers might also have set path->keep_locks, which tells this code to keep 2244 * the lock if the path points to the last slot in the block. This is part of 2245 * walking through the tree, and selecting the next slot in the higher block. 2246 * 2247 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2248 * if lowest_unlock is 1, level 0 won't be unlocked 2249 */ 2250 static noinline void unlock_up(struct btrfs_path *path, int level, 2251 int lowest_unlock, int min_write_lock_level, 2252 int *write_lock_level) 2253 { 2254 int i; 2255 int skip_level = level; 2256 int no_skips = 0; 2257 struct extent_buffer *t; 2258 2259 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2260 if (!path->nodes[i]) 2261 break; 2262 if (!path->locks[i]) 2263 break; 2264 if (!no_skips && path->slots[i] == 0) { 2265 skip_level = i + 1; 2266 continue; 2267 } 2268 if (!no_skips && path->keep_locks) { 2269 u32 nritems; 2270 t = path->nodes[i]; 2271 nritems = btrfs_header_nritems(t); 2272 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2273 skip_level = i + 1; 2274 continue; 2275 } 2276 } 2277 if (skip_level < i && i >= lowest_unlock) 2278 no_skips = 1; 2279 2280 t = path->nodes[i]; 2281 if (i >= lowest_unlock && i > skip_level) { 2282 btrfs_tree_unlock_rw(t, path->locks[i]); 2283 path->locks[i] = 0; 2284 if (write_lock_level && 2285 i > min_write_lock_level && 2286 i <= *write_lock_level) { 2287 *write_lock_level = i - 1; 2288 } 2289 } 2290 } 2291 } 2292 2293 /* 2294 * helper function for btrfs_search_slot. The goal is to find a block 2295 * in cache without setting the path to blocking. If we find the block 2296 * we return zero and the path is unchanged. 2297 * 2298 * If we can't find the block, we set the path blocking and do some 2299 * reada. -EAGAIN is returned and the search must be repeated. 2300 */ 2301 static int 2302 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2303 struct extent_buffer **eb_ret, int level, int slot, 2304 const struct btrfs_key *key) 2305 { 2306 struct btrfs_fs_info *fs_info = root->fs_info; 2307 u64 blocknr; 2308 u64 gen; 2309 struct extent_buffer *tmp; 2310 struct btrfs_key first_key; 2311 int ret; 2312 int parent_level; 2313 2314 blocknr = btrfs_node_blockptr(*eb_ret, slot); 2315 gen = btrfs_node_ptr_generation(*eb_ret, slot); 2316 parent_level = btrfs_header_level(*eb_ret); 2317 btrfs_node_key_to_cpu(*eb_ret, &first_key, slot); 2318 2319 tmp = find_extent_buffer(fs_info, blocknr); 2320 if (tmp) { 2321 /* first we do an atomic uptodate check */ 2322 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2323 /* 2324 * Do extra check for first_key, eb can be stale due to 2325 * being cached, read from scrub, or have multiple 2326 * parents (shared tree blocks). 2327 */ 2328 if (btrfs_verify_level_key(tmp, 2329 parent_level - 1, &first_key, gen)) { 2330 free_extent_buffer(tmp); 2331 return -EUCLEAN; 2332 } 2333 *eb_ret = tmp; 2334 return 0; 2335 } 2336 2337 /* now we're allowed to do a blocking uptodate check */ 2338 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2339 if (!ret) { 2340 *eb_ret = tmp; 2341 return 0; 2342 } 2343 free_extent_buffer(tmp); 2344 btrfs_release_path(p); 2345 return -EIO; 2346 } 2347 2348 /* 2349 * reduce lock contention at high levels 2350 * of the btree by dropping locks before 2351 * we read. Don't release the lock on the current 2352 * level because we need to walk this node to figure 2353 * out which blocks to read. 2354 */ 2355 btrfs_unlock_up_safe(p, level + 1); 2356 2357 if (p->reada != READA_NONE) 2358 reada_for_search(fs_info, p, level, slot, key->objectid); 2359 2360 ret = -EAGAIN; 2361 tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid, 2362 gen, parent_level - 1, &first_key); 2363 if (!IS_ERR(tmp)) { 2364 /* 2365 * If the read above didn't mark this buffer up to date, 2366 * it will never end up being up to date. Set ret to EIO now 2367 * and give up so that our caller doesn't loop forever 2368 * on our EAGAINs. 2369 */ 2370 if (!extent_buffer_uptodate(tmp)) 2371 ret = -EIO; 2372 free_extent_buffer(tmp); 2373 } else { 2374 ret = PTR_ERR(tmp); 2375 } 2376 2377 btrfs_release_path(p); 2378 return ret; 2379 } 2380 2381 /* 2382 * helper function for btrfs_search_slot. This does all of the checks 2383 * for node-level blocks and does any balancing required based on 2384 * the ins_len. 2385 * 2386 * If no extra work was required, zero is returned. If we had to 2387 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2388 * start over 2389 */ 2390 static int 2391 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2392 struct btrfs_root *root, struct btrfs_path *p, 2393 struct extent_buffer *b, int level, int ins_len, 2394 int *write_lock_level) 2395 { 2396 struct btrfs_fs_info *fs_info = root->fs_info; 2397 int ret = 0; 2398 2399 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2400 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2401 2402 if (*write_lock_level < level + 1) { 2403 *write_lock_level = level + 1; 2404 btrfs_release_path(p); 2405 return -EAGAIN; 2406 } 2407 2408 reada_for_balance(p, level); 2409 ret = split_node(trans, root, p, level); 2410 2411 b = p->nodes[level]; 2412 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2413 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2414 2415 if (*write_lock_level < level + 1) { 2416 *write_lock_level = level + 1; 2417 btrfs_release_path(p); 2418 return -EAGAIN; 2419 } 2420 2421 reada_for_balance(p, level); 2422 ret = balance_level(trans, root, p, level); 2423 if (ret) 2424 return ret; 2425 2426 b = p->nodes[level]; 2427 if (!b) { 2428 btrfs_release_path(p); 2429 return -EAGAIN; 2430 } 2431 BUG_ON(btrfs_header_nritems(b) == 1); 2432 } 2433 return ret; 2434 } 2435 2436 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2437 u64 iobjectid, u64 ioff, u8 key_type, 2438 struct btrfs_key *found_key) 2439 { 2440 int ret; 2441 struct btrfs_key key; 2442 struct extent_buffer *eb; 2443 2444 ASSERT(path); 2445 ASSERT(found_key); 2446 2447 key.type = key_type; 2448 key.objectid = iobjectid; 2449 key.offset = ioff; 2450 2451 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2452 if (ret < 0) 2453 return ret; 2454 2455 eb = path->nodes[0]; 2456 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2457 ret = btrfs_next_leaf(fs_root, path); 2458 if (ret) 2459 return ret; 2460 eb = path->nodes[0]; 2461 } 2462 2463 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2464 if (found_key->type != key.type || 2465 found_key->objectid != key.objectid) 2466 return 1; 2467 2468 return 0; 2469 } 2470 2471 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2472 struct btrfs_path *p, 2473 int write_lock_level) 2474 { 2475 struct btrfs_fs_info *fs_info = root->fs_info; 2476 struct extent_buffer *b; 2477 int root_lock; 2478 int level = 0; 2479 2480 /* We try very hard to do read locks on the root */ 2481 root_lock = BTRFS_READ_LOCK; 2482 2483 if (p->search_commit_root) { 2484 /* 2485 * The commit roots are read only so we always do read locks, 2486 * and we always must hold the commit_root_sem when doing 2487 * searches on them, the only exception is send where we don't 2488 * want to block transaction commits for a long time, so 2489 * we need to clone the commit root in order to avoid races 2490 * with transaction commits that create a snapshot of one of 2491 * the roots used by a send operation. 2492 */ 2493 if (p->need_commit_sem) { 2494 down_read(&fs_info->commit_root_sem); 2495 b = btrfs_clone_extent_buffer(root->commit_root); 2496 up_read(&fs_info->commit_root_sem); 2497 if (!b) 2498 return ERR_PTR(-ENOMEM); 2499 2500 } else { 2501 b = root->commit_root; 2502 atomic_inc(&b->refs); 2503 } 2504 level = btrfs_header_level(b); 2505 /* 2506 * Ensure that all callers have set skip_locking when 2507 * p->search_commit_root = 1. 2508 */ 2509 ASSERT(p->skip_locking == 1); 2510 2511 goto out; 2512 } 2513 2514 if (p->skip_locking) { 2515 b = btrfs_root_node(root); 2516 level = btrfs_header_level(b); 2517 goto out; 2518 } 2519 2520 /* 2521 * If the level is set to maximum, we can skip trying to get the read 2522 * lock. 2523 */ 2524 if (write_lock_level < BTRFS_MAX_LEVEL) { 2525 /* 2526 * We don't know the level of the root node until we actually 2527 * have it read locked 2528 */ 2529 b = btrfs_read_lock_root_node(root); 2530 level = btrfs_header_level(b); 2531 if (level > write_lock_level) 2532 goto out; 2533 2534 /* Whoops, must trade for write lock */ 2535 btrfs_tree_read_unlock(b); 2536 free_extent_buffer(b); 2537 } 2538 2539 b = btrfs_lock_root_node(root); 2540 root_lock = BTRFS_WRITE_LOCK; 2541 2542 /* The level might have changed, check again */ 2543 level = btrfs_header_level(b); 2544 2545 out: 2546 p->nodes[level] = b; 2547 if (!p->skip_locking) 2548 p->locks[level] = root_lock; 2549 /* 2550 * Callers are responsible for dropping b's references. 2551 */ 2552 return b; 2553 } 2554 2555 2556 /* 2557 * btrfs_search_slot - look for a key in a tree and perform necessary 2558 * modifications to preserve tree invariants. 2559 * 2560 * @trans: Handle of transaction, used when modifying the tree 2561 * @p: Holds all btree nodes along the search path 2562 * @root: The root node of the tree 2563 * @key: The key we are looking for 2564 * @ins_len: Indicates purpose of search: 2565 * >0 for inserts it's size of item inserted (*) 2566 * <0 for deletions 2567 * 0 for plain searches, not modifying the tree 2568 * 2569 * (*) If size of item inserted doesn't include 2570 * sizeof(struct btrfs_item), then p->search_for_extension must 2571 * be set. 2572 * @cow: boolean should CoW operations be performed. Must always be 1 2573 * when modifying the tree. 2574 * 2575 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2576 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2577 * 2578 * If @key is found, 0 is returned and you can find the item in the leaf level 2579 * of the path (level 0) 2580 * 2581 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2582 * points to the slot where it should be inserted 2583 * 2584 * If an error is encountered while searching the tree a negative error number 2585 * is returned 2586 */ 2587 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2588 const struct btrfs_key *key, struct btrfs_path *p, 2589 int ins_len, int cow) 2590 { 2591 struct extent_buffer *b; 2592 int slot; 2593 int ret; 2594 int err; 2595 int level; 2596 int lowest_unlock = 1; 2597 /* everything at write_lock_level or lower must be write locked */ 2598 int write_lock_level = 0; 2599 u8 lowest_level = 0; 2600 int min_write_lock_level; 2601 int prev_cmp; 2602 2603 lowest_level = p->lowest_level; 2604 WARN_ON(lowest_level && ins_len > 0); 2605 WARN_ON(p->nodes[0] != NULL); 2606 BUG_ON(!cow && ins_len); 2607 2608 if (ins_len < 0) { 2609 lowest_unlock = 2; 2610 2611 /* when we are removing items, we might have to go up to level 2612 * two as we update tree pointers Make sure we keep write 2613 * for those levels as well 2614 */ 2615 write_lock_level = 2; 2616 } else if (ins_len > 0) { 2617 /* 2618 * for inserting items, make sure we have a write lock on 2619 * level 1 so we can update keys 2620 */ 2621 write_lock_level = 1; 2622 } 2623 2624 if (!cow) 2625 write_lock_level = -1; 2626 2627 if (cow && (p->keep_locks || p->lowest_level)) 2628 write_lock_level = BTRFS_MAX_LEVEL; 2629 2630 min_write_lock_level = write_lock_level; 2631 2632 again: 2633 prev_cmp = -1; 2634 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2635 if (IS_ERR(b)) { 2636 ret = PTR_ERR(b); 2637 goto done; 2638 } 2639 2640 while (b) { 2641 int dec = 0; 2642 2643 level = btrfs_header_level(b); 2644 2645 if (cow) { 2646 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2647 2648 /* 2649 * if we don't really need to cow this block 2650 * then we don't want to set the path blocking, 2651 * so we test it here 2652 */ 2653 if (!should_cow_block(trans, root, b)) { 2654 trans->dirty = true; 2655 goto cow_done; 2656 } 2657 2658 /* 2659 * must have write locks on this node and the 2660 * parent 2661 */ 2662 if (level > write_lock_level || 2663 (level + 1 > write_lock_level && 2664 level + 1 < BTRFS_MAX_LEVEL && 2665 p->nodes[level + 1])) { 2666 write_lock_level = level + 1; 2667 btrfs_release_path(p); 2668 goto again; 2669 } 2670 2671 if (last_level) 2672 err = btrfs_cow_block(trans, root, b, NULL, 0, 2673 &b, 2674 BTRFS_NESTING_COW); 2675 else 2676 err = btrfs_cow_block(trans, root, b, 2677 p->nodes[level + 1], 2678 p->slots[level + 1], &b, 2679 BTRFS_NESTING_COW); 2680 if (err) { 2681 ret = err; 2682 goto done; 2683 } 2684 } 2685 cow_done: 2686 p->nodes[level] = b; 2687 /* 2688 * Leave path with blocking locks to avoid massive 2689 * lock context switch, this is made on purpose. 2690 */ 2691 2692 /* 2693 * we have a lock on b and as long as we aren't changing 2694 * the tree, there is no way to for the items in b to change. 2695 * It is safe to drop the lock on our parent before we 2696 * go through the expensive btree search on b. 2697 * 2698 * If we're inserting or deleting (ins_len != 0), then we might 2699 * be changing slot zero, which may require changing the parent. 2700 * So, we can't drop the lock until after we know which slot 2701 * we're operating on. 2702 */ 2703 if (!ins_len && !p->keep_locks) { 2704 int u = level + 1; 2705 2706 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2707 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2708 p->locks[u] = 0; 2709 } 2710 } 2711 2712 /* 2713 * If btrfs_bin_search returns an exact match (prev_cmp == 0) 2714 * we can safely assume the target key will always be in slot 0 2715 * on lower levels due to the invariants BTRFS' btree provides, 2716 * namely that a btrfs_key_ptr entry always points to the 2717 * lowest key in the child node, thus we can skip searching 2718 * lower levels 2719 */ 2720 if (prev_cmp == 0) { 2721 slot = 0; 2722 ret = 0; 2723 } else { 2724 ret = btrfs_bin_search(b, key, &slot); 2725 prev_cmp = ret; 2726 if (ret < 0) 2727 goto done; 2728 } 2729 2730 if (level == 0) { 2731 p->slots[level] = slot; 2732 /* 2733 * Item key already exists. In this case, if we are 2734 * allowed to insert the item (for example, in dir_item 2735 * case, item key collision is allowed), it will be 2736 * merged with the original item. Only the item size 2737 * grows, no new btrfs item will be added. If 2738 * search_for_extension is not set, ins_len already 2739 * accounts the size btrfs_item, deduct it here so leaf 2740 * space check will be correct. 2741 */ 2742 if (ret == 0 && ins_len > 0 && !p->search_for_extension) { 2743 ASSERT(ins_len >= sizeof(struct btrfs_item)); 2744 ins_len -= sizeof(struct btrfs_item); 2745 } 2746 if (ins_len > 0 && 2747 btrfs_leaf_free_space(b) < ins_len) { 2748 if (write_lock_level < 1) { 2749 write_lock_level = 1; 2750 btrfs_release_path(p); 2751 goto again; 2752 } 2753 2754 err = split_leaf(trans, root, key, 2755 p, ins_len, ret == 0); 2756 2757 BUG_ON(err > 0); 2758 if (err) { 2759 ret = err; 2760 goto done; 2761 } 2762 } 2763 if (!p->search_for_split) 2764 unlock_up(p, level, lowest_unlock, 2765 min_write_lock_level, NULL); 2766 goto done; 2767 } 2768 if (ret && slot > 0) { 2769 dec = 1; 2770 slot--; 2771 } 2772 p->slots[level] = slot; 2773 err = setup_nodes_for_search(trans, root, p, b, level, ins_len, 2774 &write_lock_level); 2775 if (err == -EAGAIN) 2776 goto again; 2777 if (err) { 2778 ret = err; 2779 goto done; 2780 } 2781 b = p->nodes[level]; 2782 slot = p->slots[level]; 2783 2784 /* 2785 * Slot 0 is special, if we change the key we have to update 2786 * the parent pointer which means we must have a write lock on 2787 * the parent 2788 */ 2789 if (slot == 0 && ins_len && write_lock_level < level + 1) { 2790 write_lock_level = level + 1; 2791 btrfs_release_path(p); 2792 goto again; 2793 } 2794 2795 unlock_up(p, level, lowest_unlock, min_write_lock_level, 2796 &write_lock_level); 2797 2798 if (level == lowest_level) { 2799 if (dec) 2800 p->slots[level]++; 2801 goto done; 2802 } 2803 2804 err = read_block_for_search(root, p, &b, level, slot, key); 2805 if (err == -EAGAIN) 2806 goto again; 2807 if (err) { 2808 ret = err; 2809 goto done; 2810 } 2811 2812 if (!p->skip_locking) { 2813 level = btrfs_header_level(b); 2814 if (level <= write_lock_level) { 2815 btrfs_tree_lock(b); 2816 p->locks[level] = BTRFS_WRITE_LOCK; 2817 } else { 2818 btrfs_tree_read_lock(b); 2819 p->locks[level] = BTRFS_READ_LOCK; 2820 } 2821 p->nodes[level] = b; 2822 } 2823 } 2824 ret = 1; 2825 done: 2826 if (ret < 0 && !p->skip_release_on_error) 2827 btrfs_release_path(p); 2828 return ret; 2829 } 2830 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO); 2831 2832 /* 2833 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2834 * current state of the tree together with the operations recorded in the tree 2835 * modification log to search for the key in a previous version of this tree, as 2836 * denoted by the time_seq parameter. 2837 * 2838 * Naturally, there is no support for insert, delete or cow operations. 2839 * 2840 * The resulting path and return value will be set up as if we called 2841 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2842 */ 2843 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2844 struct btrfs_path *p, u64 time_seq) 2845 { 2846 struct btrfs_fs_info *fs_info = root->fs_info; 2847 struct extent_buffer *b; 2848 int slot; 2849 int ret; 2850 int err; 2851 int level; 2852 int lowest_unlock = 1; 2853 u8 lowest_level = 0; 2854 2855 lowest_level = p->lowest_level; 2856 WARN_ON(p->nodes[0] != NULL); 2857 2858 if (p->search_commit_root) { 2859 BUG_ON(time_seq); 2860 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2861 } 2862 2863 again: 2864 b = get_old_root(root, time_seq); 2865 if (!b) { 2866 ret = -EIO; 2867 goto done; 2868 } 2869 level = btrfs_header_level(b); 2870 p->locks[level] = BTRFS_READ_LOCK; 2871 2872 while (b) { 2873 int dec = 0; 2874 2875 level = btrfs_header_level(b); 2876 p->nodes[level] = b; 2877 2878 /* 2879 * we have a lock on b and as long as we aren't changing 2880 * the tree, there is no way to for the items in b to change. 2881 * It is safe to drop the lock on our parent before we 2882 * go through the expensive btree search on b. 2883 */ 2884 btrfs_unlock_up_safe(p, level + 1); 2885 2886 ret = btrfs_bin_search(b, key, &slot); 2887 if (ret < 0) 2888 goto done; 2889 2890 if (level == 0) { 2891 p->slots[level] = slot; 2892 unlock_up(p, level, lowest_unlock, 0, NULL); 2893 goto done; 2894 } 2895 2896 if (ret && slot > 0) { 2897 dec = 1; 2898 slot--; 2899 } 2900 p->slots[level] = slot; 2901 unlock_up(p, level, lowest_unlock, 0, NULL); 2902 2903 if (level == lowest_level) { 2904 if (dec) 2905 p->slots[level]++; 2906 goto done; 2907 } 2908 2909 err = read_block_for_search(root, p, &b, level, slot, key); 2910 if (err == -EAGAIN) 2911 goto again; 2912 if (err) { 2913 ret = err; 2914 goto done; 2915 } 2916 2917 level = btrfs_header_level(b); 2918 btrfs_tree_read_lock(b); 2919 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 2920 if (!b) { 2921 ret = -ENOMEM; 2922 goto done; 2923 } 2924 p->locks[level] = BTRFS_READ_LOCK; 2925 p->nodes[level] = b; 2926 } 2927 ret = 1; 2928 done: 2929 if (ret < 0) 2930 btrfs_release_path(p); 2931 2932 return ret; 2933 } 2934 2935 /* 2936 * helper to use instead of search slot if no exact match is needed but 2937 * instead the next or previous item should be returned. 2938 * When find_higher is true, the next higher item is returned, the next lower 2939 * otherwise. 2940 * When return_any and find_higher are both true, and no higher item is found, 2941 * return the next lower instead. 2942 * When return_any is true and find_higher is false, and no lower item is found, 2943 * return the next higher instead. 2944 * It returns 0 if any item is found, 1 if none is found (tree empty), and 2945 * < 0 on error 2946 */ 2947 int btrfs_search_slot_for_read(struct btrfs_root *root, 2948 const struct btrfs_key *key, 2949 struct btrfs_path *p, int find_higher, 2950 int return_any) 2951 { 2952 int ret; 2953 struct extent_buffer *leaf; 2954 2955 again: 2956 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 2957 if (ret <= 0) 2958 return ret; 2959 /* 2960 * a return value of 1 means the path is at the position where the 2961 * item should be inserted. Normally this is the next bigger item, 2962 * but in case the previous item is the last in a leaf, path points 2963 * to the first free slot in the previous leaf, i.e. at an invalid 2964 * item. 2965 */ 2966 leaf = p->nodes[0]; 2967 2968 if (find_higher) { 2969 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 2970 ret = btrfs_next_leaf(root, p); 2971 if (ret <= 0) 2972 return ret; 2973 if (!return_any) 2974 return 1; 2975 /* 2976 * no higher item found, return the next 2977 * lower instead 2978 */ 2979 return_any = 0; 2980 find_higher = 0; 2981 btrfs_release_path(p); 2982 goto again; 2983 } 2984 } else { 2985 if (p->slots[0] == 0) { 2986 ret = btrfs_prev_leaf(root, p); 2987 if (ret < 0) 2988 return ret; 2989 if (!ret) { 2990 leaf = p->nodes[0]; 2991 if (p->slots[0] == btrfs_header_nritems(leaf)) 2992 p->slots[0]--; 2993 return 0; 2994 } 2995 if (!return_any) 2996 return 1; 2997 /* 2998 * no lower item found, return the next 2999 * higher instead 3000 */ 3001 return_any = 0; 3002 find_higher = 1; 3003 btrfs_release_path(p); 3004 goto again; 3005 } else { 3006 --p->slots[0]; 3007 } 3008 } 3009 return 0; 3010 } 3011 3012 /* 3013 * adjust the pointers going up the tree, starting at level 3014 * making sure the right key of each node is points to 'key'. 3015 * This is used after shifting pointers to the left, so it stops 3016 * fixing up pointers when a given leaf/node is not in slot 0 of the 3017 * higher levels 3018 * 3019 */ 3020 static void fixup_low_keys(struct btrfs_path *path, 3021 struct btrfs_disk_key *key, int level) 3022 { 3023 int i; 3024 struct extent_buffer *t; 3025 int ret; 3026 3027 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3028 int tslot = path->slots[i]; 3029 3030 if (!path->nodes[i]) 3031 break; 3032 t = path->nodes[i]; 3033 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3034 GFP_ATOMIC); 3035 BUG_ON(ret < 0); 3036 btrfs_set_node_key(t, key, tslot); 3037 btrfs_mark_buffer_dirty(path->nodes[i]); 3038 if (tslot != 0) 3039 break; 3040 } 3041 } 3042 3043 /* 3044 * update item key. 3045 * 3046 * This function isn't completely safe. It's the caller's responsibility 3047 * that the new key won't break the order 3048 */ 3049 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3050 struct btrfs_path *path, 3051 const struct btrfs_key *new_key) 3052 { 3053 struct btrfs_disk_key disk_key; 3054 struct extent_buffer *eb; 3055 int slot; 3056 3057 eb = path->nodes[0]; 3058 slot = path->slots[0]; 3059 if (slot > 0) { 3060 btrfs_item_key(eb, &disk_key, slot - 1); 3061 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3062 btrfs_crit(fs_info, 3063 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3064 slot, btrfs_disk_key_objectid(&disk_key), 3065 btrfs_disk_key_type(&disk_key), 3066 btrfs_disk_key_offset(&disk_key), 3067 new_key->objectid, new_key->type, 3068 new_key->offset); 3069 btrfs_print_leaf(eb); 3070 BUG(); 3071 } 3072 } 3073 if (slot < btrfs_header_nritems(eb) - 1) { 3074 btrfs_item_key(eb, &disk_key, slot + 1); 3075 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3076 btrfs_crit(fs_info, 3077 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3078 slot, btrfs_disk_key_objectid(&disk_key), 3079 btrfs_disk_key_type(&disk_key), 3080 btrfs_disk_key_offset(&disk_key), 3081 new_key->objectid, new_key->type, 3082 new_key->offset); 3083 btrfs_print_leaf(eb); 3084 BUG(); 3085 } 3086 } 3087 3088 btrfs_cpu_key_to_disk(&disk_key, new_key); 3089 btrfs_set_item_key(eb, &disk_key, slot); 3090 btrfs_mark_buffer_dirty(eb); 3091 if (slot == 0) 3092 fixup_low_keys(path, &disk_key, 1); 3093 } 3094 3095 /* 3096 * Check key order of two sibling extent buffers. 3097 * 3098 * Return true if something is wrong. 3099 * Return false if everything is fine. 3100 * 3101 * Tree-checker only works inside one tree block, thus the following 3102 * corruption can not be detected by tree-checker: 3103 * 3104 * Leaf @left | Leaf @right 3105 * -------------------------------------------------------------- 3106 * | 1 | 2 | 3 | 4 | 5 | f6 | | 7 | 8 | 3107 * 3108 * Key f6 in leaf @left itself is valid, but not valid when the next 3109 * key in leaf @right is 7. 3110 * This can only be checked at tree block merge time. 3111 * And since tree checker has ensured all key order in each tree block 3112 * is correct, we only need to bother the last key of @left and the first 3113 * key of @right. 3114 */ 3115 static bool check_sibling_keys(struct extent_buffer *left, 3116 struct extent_buffer *right) 3117 { 3118 struct btrfs_key left_last; 3119 struct btrfs_key right_first; 3120 int level = btrfs_header_level(left); 3121 int nr_left = btrfs_header_nritems(left); 3122 int nr_right = btrfs_header_nritems(right); 3123 3124 /* No key to check in one of the tree blocks */ 3125 if (!nr_left || !nr_right) 3126 return false; 3127 3128 if (level) { 3129 btrfs_node_key_to_cpu(left, &left_last, nr_left - 1); 3130 btrfs_node_key_to_cpu(right, &right_first, 0); 3131 } else { 3132 btrfs_item_key_to_cpu(left, &left_last, nr_left - 1); 3133 btrfs_item_key_to_cpu(right, &right_first, 0); 3134 } 3135 3136 if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) { 3137 btrfs_crit(left->fs_info, 3138 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)", 3139 left_last.objectid, left_last.type, 3140 left_last.offset, right_first.objectid, 3141 right_first.type, right_first.offset); 3142 return true; 3143 } 3144 return false; 3145 } 3146 3147 /* 3148 * try to push data from one node into the next node left in the 3149 * tree. 3150 * 3151 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3152 * error, and > 0 if there was no room in the left hand block. 3153 */ 3154 static int push_node_left(struct btrfs_trans_handle *trans, 3155 struct extent_buffer *dst, 3156 struct extent_buffer *src, int empty) 3157 { 3158 struct btrfs_fs_info *fs_info = trans->fs_info; 3159 int push_items = 0; 3160 int src_nritems; 3161 int dst_nritems; 3162 int ret = 0; 3163 3164 src_nritems = btrfs_header_nritems(src); 3165 dst_nritems = btrfs_header_nritems(dst); 3166 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3167 WARN_ON(btrfs_header_generation(src) != trans->transid); 3168 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3169 3170 if (!empty && src_nritems <= 8) 3171 return 1; 3172 3173 if (push_items <= 0) 3174 return 1; 3175 3176 if (empty) { 3177 push_items = min(src_nritems, push_items); 3178 if (push_items < src_nritems) { 3179 /* leave at least 8 pointers in the node if 3180 * we aren't going to empty it 3181 */ 3182 if (src_nritems - push_items < 8) { 3183 if (push_items <= 8) 3184 return 1; 3185 push_items -= 8; 3186 } 3187 } 3188 } else 3189 push_items = min(src_nritems - 8, push_items); 3190 3191 /* dst is the left eb, src is the middle eb */ 3192 if (check_sibling_keys(dst, src)) { 3193 ret = -EUCLEAN; 3194 btrfs_abort_transaction(trans, ret); 3195 return ret; 3196 } 3197 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3198 if (ret) { 3199 btrfs_abort_transaction(trans, ret); 3200 return ret; 3201 } 3202 copy_extent_buffer(dst, src, 3203 btrfs_node_key_ptr_offset(dst_nritems), 3204 btrfs_node_key_ptr_offset(0), 3205 push_items * sizeof(struct btrfs_key_ptr)); 3206 3207 if (push_items < src_nritems) { 3208 /* 3209 * Don't call tree_mod_log_insert_move here, key removal was 3210 * already fully logged by tree_mod_log_eb_copy above. 3211 */ 3212 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3213 btrfs_node_key_ptr_offset(push_items), 3214 (src_nritems - push_items) * 3215 sizeof(struct btrfs_key_ptr)); 3216 } 3217 btrfs_set_header_nritems(src, src_nritems - push_items); 3218 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3219 btrfs_mark_buffer_dirty(src); 3220 btrfs_mark_buffer_dirty(dst); 3221 3222 return ret; 3223 } 3224 3225 /* 3226 * try to push data from one node into the next node right in the 3227 * tree. 3228 * 3229 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3230 * error, and > 0 if there was no room in the right hand block. 3231 * 3232 * this will only push up to 1/2 the contents of the left node over 3233 */ 3234 static int balance_node_right(struct btrfs_trans_handle *trans, 3235 struct extent_buffer *dst, 3236 struct extent_buffer *src) 3237 { 3238 struct btrfs_fs_info *fs_info = trans->fs_info; 3239 int push_items = 0; 3240 int max_push; 3241 int src_nritems; 3242 int dst_nritems; 3243 int ret = 0; 3244 3245 WARN_ON(btrfs_header_generation(src) != trans->transid); 3246 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3247 3248 src_nritems = btrfs_header_nritems(src); 3249 dst_nritems = btrfs_header_nritems(dst); 3250 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3251 if (push_items <= 0) 3252 return 1; 3253 3254 if (src_nritems < 4) 3255 return 1; 3256 3257 max_push = src_nritems / 2 + 1; 3258 /* don't try to empty the node */ 3259 if (max_push >= src_nritems) 3260 return 1; 3261 3262 if (max_push < push_items) 3263 push_items = max_push; 3264 3265 /* dst is the right eb, src is the middle eb */ 3266 if (check_sibling_keys(src, dst)) { 3267 ret = -EUCLEAN; 3268 btrfs_abort_transaction(trans, ret); 3269 return ret; 3270 } 3271 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3272 BUG_ON(ret < 0); 3273 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3274 btrfs_node_key_ptr_offset(0), 3275 (dst_nritems) * 3276 sizeof(struct btrfs_key_ptr)); 3277 3278 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3279 push_items); 3280 if (ret) { 3281 btrfs_abort_transaction(trans, ret); 3282 return ret; 3283 } 3284 copy_extent_buffer(dst, src, 3285 btrfs_node_key_ptr_offset(0), 3286 btrfs_node_key_ptr_offset(src_nritems - push_items), 3287 push_items * sizeof(struct btrfs_key_ptr)); 3288 3289 btrfs_set_header_nritems(src, src_nritems - push_items); 3290 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3291 3292 btrfs_mark_buffer_dirty(src); 3293 btrfs_mark_buffer_dirty(dst); 3294 3295 return ret; 3296 } 3297 3298 /* 3299 * helper function to insert a new root level in the tree. 3300 * A new node is allocated, and a single item is inserted to 3301 * point to the existing root 3302 * 3303 * returns zero on success or < 0 on failure. 3304 */ 3305 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3306 struct btrfs_root *root, 3307 struct btrfs_path *path, int level) 3308 { 3309 struct btrfs_fs_info *fs_info = root->fs_info; 3310 u64 lower_gen; 3311 struct extent_buffer *lower; 3312 struct extent_buffer *c; 3313 struct extent_buffer *old; 3314 struct btrfs_disk_key lower_key; 3315 int ret; 3316 3317 BUG_ON(path->nodes[level]); 3318 BUG_ON(path->nodes[level-1] != root->node); 3319 3320 lower = path->nodes[level-1]; 3321 if (level == 1) 3322 btrfs_item_key(lower, &lower_key, 0); 3323 else 3324 btrfs_node_key(lower, &lower_key, 0); 3325 3326 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3327 root->node->start, 0, 3328 BTRFS_NESTING_NEW_ROOT); 3329 if (IS_ERR(c)) 3330 return PTR_ERR(c); 3331 3332 root_add_used(root, fs_info->nodesize); 3333 3334 btrfs_set_header_nritems(c, 1); 3335 btrfs_set_node_key(c, &lower_key, 0); 3336 btrfs_set_node_blockptr(c, 0, lower->start); 3337 lower_gen = btrfs_header_generation(lower); 3338 WARN_ON(lower_gen != trans->transid); 3339 3340 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3341 3342 btrfs_mark_buffer_dirty(c); 3343 3344 old = root->node; 3345 ret = tree_mod_log_insert_root(root->node, c, 0); 3346 BUG_ON(ret < 0); 3347 rcu_assign_pointer(root->node, c); 3348 3349 /* the super has an extra ref to root->node */ 3350 free_extent_buffer(old); 3351 3352 add_root_to_dirty_list(root); 3353 atomic_inc(&c->refs); 3354 path->nodes[level] = c; 3355 path->locks[level] = BTRFS_WRITE_LOCK; 3356 path->slots[level] = 0; 3357 return 0; 3358 } 3359 3360 /* 3361 * worker function to insert a single pointer in a node. 3362 * the node should have enough room for the pointer already 3363 * 3364 * slot and level indicate where you want the key to go, and 3365 * blocknr is the block the key points to. 3366 */ 3367 static void insert_ptr(struct btrfs_trans_handle *trans, 3368 struct btrfs_path *path, 3369 struct btrfs_disk_key *key, u64 bytenr, 3370 int slot, int level) 3371 { 3372 struct extent_buffer *lower; 3373 int nritems; 3374 int ret; 3375 3376 BUG_ON(!path->nodes[level]); 3377 btrfs_assert_tree_locked(path->nodes[level]); 3378 lower = path->nodes[level]; 3379 nritems = btrfs_header_nritems(lower); 3380 BUG_ON(slot > nritems); 3381 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3382 if (slot != nritems) { 3383 if (level) { 3384 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3385 nritems - slot); 3386 BUG_ON(ret < 0); 3387 } 3388 memmove_extent_buffer(lower, 3389 btrfs_node_key_ptr_offset(slot + 1), 3390 btrfs_node_key_ptr_offset(slot), 3391 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3392 } 3393 if (level) { 3394 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3395 GFP_NOFS); 3396 BUG_ON(ret < 0); 3397 } 3398 btrfs_set_node_key(lower, key, slot); 3399 btrfs_set_node_blockptr(lower, slot, bytenr); 3400 WARN_ON(trans->transid == 0); 3401 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3402 btrfs_set_header_nritems(lower, nritems + 1); 3403 btrfs_mark_buffer_dirty(lower); 3404 } 3405 3406 /* 3407 * split the node at the specified level in path in two. 3408 * The path is corrected to point to the appropriate node after the split 3409 * 3410 * Before splitting this tries to make some room in the node by pushing 3411 * left and right, if either one works, it returns right away. 3412 * 3413 * returns 0 on success and < 0 on failure 3414 */ 3415 static noinline int split_node(struct btrfs_trans_handle *trans, 3416 struct btrfs_root *root, 3417 struct btrfs_path *path, int level) 3418 { 3419 struct btrfs_fs_info *fs_info = root->fs_info; 3420 struct extent_buffer *c; 3421 struct extent_buffer *split; 3422 struct btrfs_disk_key disk_key; 3423 int mid; 3424 int ret; 3425 u32 c_nritems; 3426 3427 c = path->nodes[level]; 3428 WARN_ON(btrfs_header_generation(c) != trans->transid); 3429 if (c == root->node) { 3430 /* 3431 * trying to split the root, lets make a new one 3432 * 3433 * tree mod log: We don't log_removal old root in 3434 * insert_new_root, because that root buffer will be kept as a 3435 * normal node. We are going to log removal of half of the 3436 * elements below with tree_mod_log_eb_copy. We're holding a 3437 * tree lock on the buffer, which is why we cannot race with 3438 * other tree_mod_log users. 3439 */ 3440 ret = insert_new_root(trans, root, path, level + 1); 3441 if (ret) 3442 return ret; 3443 } else { 3444 ret = push_nodes_for_insert(trans, root, path, level); 3445 c = path->nodes[level]; 3446 if (!ret && btrfs_header_nritems(c) < 3447 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3448 return 0; 3449 if (ret < 0) 3450 return ret; 3451 } 3452 3453 c_nritems = btrfs_header_nritems(c); 3454 mid = (c_nritems + 1) / 2; 3455 btrfs_node_key(c, &disk_key, mid); 3456 3457 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3458 c->start, 0, BTRFS_NESTING_SPLIT); 3459 if (IS_ERR(split)) 3460 return PTR_ERR(split); 3461 3462 root_add_used(root, fs_info->nodesize); 3463 ASSERT(btrfs_header_level(c) == level); 3464 3465 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3466 if (ret) { 3467 btrfs_abort_transaction(trans, ret); 3468 return ret; 3469 } 3470 copy_extent_buffer(split, c, 3471 btrfs_node_key_ptr_offset(0), 3472 btrfs_node_key_ptr_offset(mid), 3473 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3474 btrfs_set_header_nritems(split, c_nritems - mid); 3475 btrfs_set_header_nritems(c, mid); 3476 3477 btrfs_mark_buffer_dirty(c); 3478 btrfs_mark_buffer_dirty(split); 3479 3480 insert_ptr(trans, path, &disk_key, split->start, 3481 path->slots[level + 1] + 1, level + 1); 3482 3483 if (path->slots[level] >= mid) { 3484 path->slots[level] -= mid; 3485 btrfs_tree_unlock(c); 3486 free_extent_buffer(c); 3487 path->nodes[level] = split; 3488 path->slots[level + 1] += 1; 3489 } else { 3490 btrfs_tree_unlock(split); 3491 free_extent_buffer(split); 3492 } 3493 return 0; 3494 } 3495 3496 /* 3497 * how many bytes are required to store the items in a leaf. start 3498 * and nr indicate which items in the leaf to check. This totals up the 3499 * space used both by the item structs and the item data 3500 */ 3501 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3502 { 3503 struct btrfs_item *start_item; 3504 struct btrfs_item *end_item; 3505 int data_len; 3506 int nritems = btrfs_header_nritems(l); 3507 int end = min(nritems, start + nr) - 1; 3508 3509 if (!nr) 3510 return 0; 3511 start_item = btrfs_item_nr(start); 3512 end_item = btrfs_item_nr(end); 3513 data_len = btrfs_item_offset(l, start_item) + 3514 btrfs_item_size(l, start_item); 3515 data_len = data_len - btrfs_item_offset(l, end_item); 3516 data_len += sizeof(struct btrfs_item) * nr; 3517 WARN_ON(data_len < 0); 3518 return data_len; 3519 } 3520 3521 /* 3522 * The space between the end of the leaf items and 3523 * the start of the leaf data. IOW, how much room 3524 * the leaf has left for both items and data 3525 */ 3526 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3527 { 3528 struct btrfs_fs_info *fs_info = leaf->fs_info; 3529 int nritems = btrfs_header_nritems(leaf); 3530 int ret; 3531 3532 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3533 if (ret < 0) { 3534 btrfs_crit(fs_info, 3535 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3536 ret, 3537 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3538 leaf_space_used(leaf, 0, nritems), nritems); 3539 } 3540 return ret; 3541 } 3542 3543 /* 3544 * min slot controls the lowest index we're willing to push to the 3545 * right. We'll push up to and including min_slot, but no lower 3546 */ 3547 static noinline int __push_leaf_right(struct btrfs_path *path, 3548 int data_size, int empty, 3549 struct extent_buffer *right, 3550 int free_space, u32 left_nritems, 3551 u32 min_slot) 3552 { 3553 struct btrfs_fs_info *fs_info = right->fs_info; 3554 struct extent_buffer *left = path->nodes[0]; 3555 struct extent_buffer *upper = path->nodes[1]; 3556 struct btrfs_map_token token; 3557 struct btrfs_disk_key disk_key; 3558 int slot; 3559 u32 i; 3560 int push_space = 0; 3561 int push_items = 0; 3562 struct btrfs_item *item; 3563 u32 nr; 3564 u32 right_nritems; 3565 u32 data_end; 3566 u32 this_item_size; 3567 3568 if (empty) 3569 nr = 0; 3570 else 3571 nr = max_t(u32, 1, min_slot); 3572 3573 if (path->slots[0] >= left_nritems) 3574 push_space += data_size; 3575 3576 slot = path->slots[1]; 3577 i = left_nritems - 1; 3578 while (i >= nr) { 3579 item = btrfs_item_nr(i); 3580 3581 if (!empty && push_items > 0) { 3582 if (path->slots[0] > i) 3583 break; 3584 if (path->slots[0] == i) { 3585 int space = btrfs_leaf_free_space(left); 3586 3587 if (space + push_space * 2 > free_space) 3588 break; 3589 } 3590 } 3591 3592 if (path->slots[0] == i) 3593 push_space += data_size; 3594 3595 this_item_size = btrfs_item_size(left, item); 3596 if (this_item_size + sizeof(*item) + push_space > free_space) 3597 break; 3598 3599 push_items++; 3600 push_space += this_item_size + sizeof(*item); 3601 if (i == 0) 3602 break; 3603 i--; 3604 } 3605 3606 if (push_items == 0) 3607 goto out_unlock; 3608 3609 WARN_ON(!empty && push_items == left_nritems); 3610 3611 /* push left to right */ 3612 right_nritems = btrfs_header_nritems(right); 3613 3614 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3615 push_space -= leaf_data_end(left); 3616 3617 /* make room in the right data area */ 3618 data_end = leaf_data_end(right); 3619 memmove_extent_buffer(right, 3620 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3621 BTRFS_LEAF_DATA_OFFSET + data_end, 3622 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3623 3624 /* copy from the left data area */ 3625 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3626 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3627 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3628 push_space); 3629 3630 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3631 btrfs_item_nr_offset(0), 3632 right_nritems * sizeof(struct btrfs_item)); 3633 3634 /* copy the items from left to right */ 3635 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3636 btrfs_item_nr_offset(left_nritems - push_items), 3637 push_items * sizeof(struct btrfs_item)); 3638 3639 /* update the item pointers */ 3640 btrfs_init_map_token(&token, right); 3641 right_nritems += push_items; 3642 btrfs_set_header_nritems(right, right_nritems); 3643 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3644 for (i = 0; i < right_nritems; i++) { 3645 item = btrfs_item_nr(i); 3646 push_space -= btrfs_token_item_size(&token, item); 3647 btrfs_set_token_item_offset(&token, item, push_space); 3648 } 3649 3650 left_nritems -= push_items; 3651 btrfs_set_header_nritems(left, left_nritems); 3652 3653 if (left_nritems) 3654 btrfs_mark_buffer_dirty(left); 3655 else 3656 btrfs_clean_tree_block(left); 3657 3658 btrfs_mark_buffer_dirty(right); 3659 3660 btrfs_item_key(right, &disk_key, 0); 3661 btrfs_set_node_key(upper, &disk_key, slot + 1); 3662 btrfs_mark_buffer_dirty(upper); 3663 3664 /* then fixup the leaf pointer in the path */ 3665 if (path->slots[0] >= left_nritems) { 3666 path->slots[0] -= left_nritems; 3667 if (btrfs_header_nritems(path->nodes[0]) == 0) 3668 btrfs_clean_tree_block(path->nodes[0]); 3669 btrfs_tree_unlock(path->nodes[0]); 3670 free_extent_buffer(path->nodes[0]); 3671 path->nodes[0] = right; 3672 path->slots[1] += 1; 3673 } else { 3674 btrfs_tree_unlock(right); 3675 free_extent_buffer(right); 3676 } 3677 return 0; 3678 3679 out_unlock: 3680 btrfs_tree_unlock(right); 3681 free_extent_buffer(right); 3682 return 1; 3683 } 3684 3685 /* 3686 * push some data in the path leaf to the right, trying to free up at 3687 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3688 * 3689 * returns 1 if the push failed because the other node didn't have enough 3690 * room, 0 if everything worked out and < 0 if there were major errors. 3691 * 3692 * this will push starting from min_slot to the end of the leaf. It won't 3693 * push any slot lower than min_slot 3694 */ 3695 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3696 *root, struct btrfs_path *path, 3697 int min_data_size, int data_size, 3698 int empty, u32 min_slot) 3699 { 3700 struct extent_buffer *left = path->nodes[0]; 3701 struct extent_buffer *right; 3702 struct extent_buffer *upper; 3703 int slot; 3704 int free_space; 3705 u32 left_nritems; 3706 int ret; 3707 3708 if (!path->nodes[1]) 3709 return 1; 3710 3711 slot = path->slots[1]; 3712 upper = path->nodes[1]; 3713 if (slot >= btrfs_header_nritems(upper) - 1) 3714 return 1; 3715 3716 btrfs_assert_tree_locked(path->nodes[1]); 3717 3718 right = btrfs_read_node_slot(upper, slot + 1); 3719 /* 3720 * slot + 1 is not valid or we fail to read the right node, 3721 * no big deal, just return. 3722 */ 3723 if (IS_ERR(right)) 3724 return 1; 3725 3726 __btrfs_tree_lock(right, BTRFS_NESTING_RIGHT); 3727 3728 free_space = btrfs_leaf_free_space(right); 3729 if (free_space < data_size) 3730 goto out_unlock; 3731 3732 /* cow and double check */ 3733 ret = btrfs_cow_block(trans, root, right, upper, 3734 slot + 1, &right, BTRFS_NESTING_RIGHT_COW); 3735 if (ret) 3736 goto out_unlock; 3737 3738 free_space = btrfs_leaf_free_space(right); 3739 if (free_space < data_size) 3740 goto out_unlock; 3741 3742 left_nritems = btrfs_header_nritems(left); 3743 if (left_nritems == 0) 3744 goto out_unlock; 3745 3746 if (check_sibling_keys(left, right)) { 3747 ret = -EUCLEAN; 3748 btrfs_tree_unlock(right); 3749 free_extent_buffer(right); 3750 return ret; 3751 } 3752 if (path->slots[0] == left_nritems && !empty) { 3753 /* Key greater than all keys in the leaf, right neighbor has 3754 * enough room for it and we're not emptying our leaf to delete 3755 * it, therefore use right neighbor to insert the new item and 3756 * no need to touch/dirty our left leaf. */ 3757 btrfs_tree_unlock(left); 3758 free_extent_buffer(left); 3759 path->nodes[0] = right; 3760 path->slots[0] = 0; 3761 path->slots[1]++; 3762 return 0; 3763 } 3764 3765 return __push_leaf_right(path, min_data_size, empty, 3766 right, free_space, left_nritems, min_slot); 3767 out_unlock: 3768 btrfs_tree_unlock(right); 3769 free_extent_buffer(right); 3770 return 1; 3771 } 3772 3773 /* 3774 * push some data in the path leaf to the left, trying to free up at 3775 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3776 * 3777 * max_slot can put a limit on how far into the leaf we'll push items. The 3778 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3779 * items 3780 */ 3781 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3782 int empty, struct extent_buffer *left, 3783 int free_space, u32 right_nritems, 3784 u32 max_slot) 3785 { 3786 struct btrfs_fs_info *fs_info = left->fs_info; 3787 struct btrfs_disk_key disk_key; 3788 struct extent_buffer *right = path->nodes[0]; 3789 int i; 3790 int push_space = 0; 3791 int push_items = 0; 3792 struct btrfs_item *item; 3793 u32 old_left_nritems; 3794 u32 nr; 3795 int ret = 0; 3796 u32 this_item_size; 3797 u32 old_left_item_size; 3798 struct btrfs_map_token token; 3799 3800 if (empty) 3801 nr = min(right_nritems, max_slot); 3802 else 3803 nr = min(right_nritems - 1, max_slot); 3804 3805 for (i = 0; i < nr; i++) { 3806 item = btrfs_item_nr(i); 3807 3808 if (!empty && push_items > 0) { 3809 if (path->slots[0] < i) 3810 break; 3811 if (path->slots[0] == i) { 3812 int space = btrfs_leaf_free_space(right); 3813 3814 if (space + push_space * 2 > free_space) 3815 break; 3816 } 3817 } 3818 3819 if (path->slots[0] == i) 3820 push_space += data_size; 3821 3822 this_item_size = btrfs_item_size(right, item); 3823 if (this_item_size + sizeof(*item) + push_space > free_space) 3824 break; 3825 3826 push_items++; 3827 push_space += this_item_size + sizeof(*item); 3828 } 3829 3830 if (push_items == 0) { 3831 ret = 1; 3832 goto out; 3833 } 3834 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3835 3836 /* push data from right to left */ 3837 copy_extent_buffer(left, right, 3838 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3839 btrfs_item_nr_offset(0), 3840 push_items * sizeof(struct btrfs_item)); 3841 3842 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3843 btrfs_item_offset_nr(right, push_items - 1); 3844 3845 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3846 leaf_data_end(left) - push_space, 3847 BTRFS_LEAF_DATA_OFFSET + 3848 btrfs_item_offset_nr(right, push_items - 1), 3849 push_space); 3850 old_left_nritems = btrfs_header_nritems(left); 3851 BUG_ON(old_left_nritems <= 0); 3852 3853 btrfs_init_map_token(&token, left); 3854 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3855 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3856 u32 ioff; 3857 3858 item = btrfs_item_nr(i); 3859 3860 ioff = btrfs_token_item_offset(&token, item); 3861 btrfs_set_token_item_offset(&token, item, 3862 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size)); 3863 } 3864 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3865 3866 /* fixup right node */ 3867 if (push_items > right_nritems) 3868 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3869 right_nritems); 3870 3871 if (push_items < right_nritems) { 3872 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3873 leaf_data_end(right); 3874 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3875 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3876 BTRFS_LEAF_DATA_OFFSET + 3877 leaf_data_end(right), push_space); 3878 3879 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3880 btrfs_item_nr_offset(push_items), 3881 (btrfs_header_nritems(right) - push_items) * 3882 sizeof(struct btrfs_item)); 3883 } 3884 3885 btrfs_init_map_token(&token, right); 3886 right_nritems -= push_items; 3887 btrfs_set_header_nritems(right, right_nritems); 3888 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3889 for (i = 0; i < right_nritems; i++) { 3890 item = btrfs_item_nr(i); 3891 3892 push_space = push_space - btrfs_token_item_size(&token, item); 3893 btrfs_set_token_item_offset(&token, item, push_space); 3894 } 3895 3896 btrfs_mark_buffer_dirty(left); 3897 if (right_nritems) 3898 btrfs_mark_buffer_dirty(right); 3899 else 3900 btrfs_clean_tree_block(right); 3901 3902 btrfs_item_key(right, &disk_key, 0); 3903 fixup_low_keys(path, &disk_key, 1); 3904 3905 /* then fixup the leaf pointer in the path */ 3906 if (path->slots[0] < push_items) { 3907 path->slots[0] += old_left_nritems; 3908 btrfs_tree_unlock(path->nodes[0]); 3909 free_extent_buffer(path->nodes[0]); 3910 path->nodes[0] = left; 3911 path->slots[1] -= 1; 3912 } else { 3913 btrfs_tree_unlock(left); 3914 free_extent_buffer(left); 3915 path->slots[0] -= push_items; 3916 } 3917 BUG_ON(path->slots[0] < 0); 3918 return ret; 3919 out: 3920 btrfs_tree_unlock(left); 3921 free_extent_buffer(left); 3922 return ret; 3923 } 3924 3925 /* 3926 * push some data in the path leaf to the left, trying to free up at 3927 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3928 * 3929 * max_slot can put a limit on how far into the leaf we'll push items. The 3930 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3931 * items 3932 */ 3933 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3934 *root, struct btrfs_path *path, int min_data_size, 3935 int data_size, int empty, u32 max_slot) 3936 { 3937 struct extent_buffer *right = path->nodes[0]; 3938 struct extent_buffer *left; 3939 int slot; 3940 int free_space; 3941 u32 right_nritems; 3942 int ret = 0; 3943 3944 slot = path->slots[1]; 3945 if (slot == 0) 3946 return 1; 3947 if (!path->nodes[1]) 3948 return 1; 3949 3950 right_nritems = btrfs_header_nritems(right); 3951 if (right_nritems == 0) 3952 return 1; 3953 3954 btrfs_assert_tree_locked(path->nodes[1]); 3955 3956 left = btrfs_read_node_slot(path->nodes[1], slot - 1); 3957 /* 3958 * slot - 1 is not valid or we fail to read the left node, 3959 * no big deal, just return. 3960 */ 3961 if (IS_ERR(left)) 3962 return 1; 3963 3964 __btrfs_tree_lock(left, BTRFS_NESTING_LEFT); 3965 3966 free_space = btrfs_leaf_free_space(left); 3967 if (free_space < data_size) { 3968 ret = 1; 3969 goto out; 3970 } 3971 3972 /* cow and double check */ 3973 ret = btrfs_cow_block(trans, root, left, 3974 path->nodes[1], slot - 1, &left, 3975 BTRFS_NESTING_LEFT_COW); 3976 if (ret) { 3977 /* we hit -ENOSPC, but it isn't fatal here */ 3978 if (ret == -ENOSPC) 3979 ret = 1; 3980 goto out; 3981 } 3982 3983 free_space = btrfs_leaf_free_space(left); 3984 if (free_space < data_size) { 3985 ret = 1; 3986 goto out; 3987 } 3988 3989 if (check_sibling_keys(left, right)) { 3990 ret = -EUCLEAN; 3991 goto out; 3992 } 3993 return __push_leaf_left(path, min_data_size, 3994 empty, left, free_space, right_nritems, 3995 max_slot); 3996 out: 3997 btrfs_tree_unlock(left); 3998 free_extent_buffer(left); 3999 return ret; 4000 } 4001 4002 /* 4003 * split the path's leaf in two, making sure there is at least data_size 4004 * available for the resulting leaf level of the path. 4005 */ 4006 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4007 struct btrfs_path *path, 4008 struct extent_buffer *l, 4009 struct extent_buffer *right, 4010 int slot, int mid, int nritems) 4011 { 4012 struct btrfs_fs_info *fs_info = trans->fs_info; 4013 int data_copy_size; 4014 int rt_data_off; 4015 int i; 4016 struct btrfs_disk_key disk_key; 4017 struct btrfs_map_token token; 4018 4019 nritems = nritems - mid; 4020 btrfs_set_header_nritems(right, nritems); 4021 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4022 4023 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4024 btrfs_item_nr_offset(mid), 4025 nritems * sizeof(struct btrfs_item)); 4026 4027 copy_extent_buffer(right, l, 4028 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4029 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4030 leaf_data_end(l), data_copy_size); 4031 4032 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4033 4034 btrfs_init_map_token(&token, right); 4035 for (i = 0; i < nritems; i++) { 4036 struct btrfs_item *item = btrfs_item_nr(i); 4037 u32 ioff; 4038 4039 ioff = btrfs_token_item_offset(&token, item); 4040 btrfs_set_token_item_offset(&token, item, ioff + rt_data_off); 4041 } 4042 4043 btrfs_set_header_nritems(l, mid); 4044 btrfs_item_key(right, &disk_key, 0); 4045 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4046 4047 btrfs_mark_buffer_dirty(right); 4048 btrfs_mark_buffer_dirty(l); 4049 BUG_ON(path->slots[0] != slot); 4050 4051 if (mid <= slot) { 4052 btrfs_tree_unlock(path->nodes[0]); 4053 free_extent_buffer(path->nodes[0]); 4054 path->nodes[0] = right; 4055 path->slots[0] -= mid; 4056 path->slots[1] += 1; 4057 } else { 4058 btrfs_tree_unlock(right); 4059 free_extent_buffer(right); 4060 } 4061 4062 BUG_ON(path->slots[0] < 0); 4063 } 4064 4065 /* 4066 * double splits happen when we need to insert a big item in the middle 4067 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4068 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4069 * A B C 4070 * 4071 * We avoid this by trying to push the items on either side of our target 4072 * into the adjacent leaves. If all goes well we can avoid the double split 4073 * completely. 4074 */ 4075 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4076 struct btrfs_root *root, 4077 struct btrfs_path *path, 4078 int data_size) 4079 { 4080 int ret; 4081 int progress = 0; 4082 int slot; 4083 u32 nritems; 4084 int space_needed = data_size; 4085 4086 slot = path->slots[0]; 4087 if (slot < btrfs_header_nritems(path->nodes[0])) 4088 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4089 4090 /* 4091 * try to push all the items after our slot into the 4092 * right leaf 4093 */ 4094 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4095 if (ret < 0) 4096 return ret; 4097 4098 if (ret == 0) 4099 progress++; 4100 4101 nritems = btrfs_header_nritems(path->nodes[0]); 4102 /* 4103 * our goal is to get our slot at the start or end of a leaf. If 4104 * we've done so we're done 4105 */ 4106 if (path->slots[0] == 0 || path->slots[0] == nritems) 4107 return 0; 4108 4109 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4110 return 0; 4111 4112 /* try to push all the items before our slot into the next leaf */ 4113 slot = path->slots[0]; 4114 space_needed = data_size; 4115 if (slot > 0) 4116 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4117 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4118 if (ret < 0) 4119 return ret; 4120 4121 if (ret == 0) 4122 progress++; 4123 4124 if (progress) 4125 return 0; 4126 return 1; 4127 } 4128 4129 /* 4130 * split the path's leaf in two, making sure there is at least data_size 4131 * available for the resulting leaf level of the path. 4132 * 4133 * returns 0 if all went well and < 0 on failure. 4134 */ 4135 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4136 struct btrfs_root *root, 4137 const struct btrfs_key *ins_key, 4138 struct btrfs_path *path, int data_size, 4139 int extend) 4140 { 4141 struct btrfs_disk_key disk_key; 4142 struct extent_buffer *l; 4143 u32 nritems; 4144 int mid; 4145 int slot; 4146 struct extent_buffer *right; 4147 struct btrfs_fs_info *fs_info = root->fs_info; 4148 int ret = 0; 4149 int wret; 4150 int split; 4151 int num_doubles = 0; 4152 int tried_avoid_double = 0; 4153 4154 l = path->nodes[0]; 4155 slot = path->slots[0]; 4156 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4157 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4158 return -EOVERFLOW; 4159 4160 /* first try to make some room by pushing left and right */ 4161 if (data_size && path->nodes[1]) { 4162 int space_needed = data_size; 4163 4164 if (slot < btrfs_header_nritems(l)) 4165 space_needed -= btrfs_leaf_free_space(l); 4166 4167 wret = push_leaf_right(trans, root, path, space_needed, 4168 space_needed, 0, 0); 4169 if (wret < 0) 4170 return wret; 4171 if (wret) { 4172 space_needed = data_size; 4173 if (slot > 0) 4174 space_needed -= btrfs_leaf_free_space(l); 4175 wret = push_leaf_left(trans, root, path, space_needed, 4176 space_needed, 0, (u32)-1); 4177 if (wret < 0) 4178 return wret; 4179 } 4180 l = path->nodes[0]; 4181 4182 /* did the pushes work? */ 4183 if (btrfs_leaf_free_space(l) >= data_size) 4184 return 0; 4185 } 4186 4187 if (!path->nodes[1]) { 4188 ret = insert_new_root(trans, root, path, 1); 4189 if (ret) 4190 return ret; 4191 } 4192 again: 4193 split = 1; 4194 l = path->nodes[0]; 4195 slot = path->slots[0]; 4196 nritems = btrfs_header_nritems(l); 4197 mid = (nritems + 1) / 2; 4198 4199 if (mid <= slot) { 4200 if (nritems == 1 || 4201 leaf_space_used(l, mid, nritems - mid) + data_size > 4202 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4203 if (slot >= nritems) { 4204 split = 0; 4205 } else { 4206 mid = slot; 4207 if (mid != nritems && 4208 leaf_space_used(l, mid, nritems - mid) + 4209 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4210 if (data_size && !tried_avoid_double) 4211 goto push_for_double; 4212 split = 2; 4213 } 4214 } 4215 } 4216 } else { 4217 if (leaf_space_used(l, 0, mid) + data_size > 4218 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4219 if (!extend && data_size && slot == 0) { 4220 split = 0; 4221 } else if ((extend || !data_size) && slot == 0) { 4222 mid = 1; 4223 } else { 4224 mid = slot; 4225 if (mid != nritems && 4226 leaf_space_used(l, mid, nritems - mid) + 4227 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4228 if (data_size && !tried_avoid_double) 4229 goto push_for_double; 4230 split = 2; 4231 } 4232 } 4233 } 4234 } 4235 4236 if (split == 0) 4237 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4238 else 4239 btrfs_item_key(l, &disk_key, mid); 4240 4241 /* 4242 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double 4243 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES 4244 * subclasses, which is 8 at the time of this patch, and we've maxed it 4245 * out. In the future we could add a 4246 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just 4247 * use BTRFS_NESTING_NEW_ROOT. 4248 */ 4249 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4250 l->start, 0, num_doubles ? 4251 BTRFS_NESTING_NEW_ROOT : 4252 BTRFS_NESTING_SPLIT); 4253 if (IS_ERR(right)) 4254 return PTR_ERR(right); 4255 4256 root_add_used(root, fs_info->nodesize); 4257 4258 if (split == 0) { 4259 if (mid <= slot) { 4260 btrfs_set_header_nritems(right, 0); 4261 insert_ptr(trans, path, &disk_key, 4262 right->start, path->slots[1] + 1, 1); 4263 btrfs_tree_unlock(path->nodes[0]); 4264 free_extent_buffer(path->nodes[0]); 4265 path->nodes[0] = right; 4266 path->slots[0] = 0; 4267 path->slots[1] += 1; 4268 } else { 4269 btrfs_set_header_nritems(right, 0); 4270 insert_ptr(trans, path, &disk_key, 4271 right->start, path->slots[1], 1); 4272 btrfs_tree_unlock(path->nodes[0]); 4273 free_extent_buffer(path->nodes[0]); 4274 path->nodes[0] = right; 4275 path->slots[0] = 0; 4276 if (path->slots[1] == 0) 4277 fixup_low_keys(path, &disk_key, 1); 4278 } 4279 /* 4280 * We create a new leaf 'right' for the required ins_len and 4281 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4282 * the content of ins_len to 'right'. 4283 */ 4284 return ret; 4285 } 4286 4287 copy_for_split(trans, path, l, right, slot, mid, nritems); 4288 4289 if (split == 2) { 4290 BUG_ON(num_doubles != 0); 4291 num_doubles++; 4292 goto again; 4293 } 4294 4295 return 0; 4296 4297 push_for_double: 4298 push_for_double_split(trans, root, path, data_size); 4299 tried_avoid_double = 1; 4300 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4301 return 0; 4302 goto again; 4303 } 4304 4305 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4306 struct btrfs_root *root, 4307 struct btrfs_path *path, int ins_len) 4308 { 4309 struct btrfs_key key; 4310 struct extent_buffer *leaf; 4311 struct btrfs_file_extent_item *fi; 4312 u64 extent_len = 0; 4313 u32 item_size; 4314 int ret; 4315 4316 leaf = path->nodes[0]; 4317 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4318 4319 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4320 key.type != BTRFS_EXTENT_CSUM_KEY); 4321 4322 if (btrfs_leaf_free_space(leaf) >= ins_len) 4323 return 0; 4324 4325 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4326 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4327 fi = btrfs_item_ptr(leaf, path->slots[0], 4328 struct btrfs_file_extent_item); 4329 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4330 } 4331 btrfs_release_path(path); 4332 4333 path->keep_locks = 1; 4334 path->search_for_split = 1; 4335 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4336 path->search_for_split = 0; 4337 if (ret > 0) 4338 ret = -EAGAIN; 4339 if (ret < 0) 4340 goto err; 4341 4342 ret = -EAGAIN; 4343 leaf = path->nodes[0]; 4344 /* if our item isn't there, return now */ 4345 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4346 goto err; 4347 4348 /* the leaf has changed, it now has room. return now */ 4349 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4350 goto err; 4351 4352 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4353 fi = btrfs_item_ptr(leaf, path->slots[0], 4354 struct btrfs_file_extent_item); 4355 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4356 goto err; 4357 } 4358 4359 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4360 if (ret) 4361 goto err; 4362 4363 path->keep_locks = 0; 4364 btrfs_unlock_up_safe(path, 1); 4365 return 0; 4366 err: 4367 path->keep_locks = 0; 4368 return ret; 4369 } 4370 4371 static noinline int split_item(struct btrfs_path *path, 4372 const struct btrfs_key *new_key, 4373 unsigned long split_offset) 4374 { 4375 struct extent_buffer *leaf; 4376 struct btrfs_item *item; 4377 struct btrfs_item *new_item; 4378 int slot; 4379 char *buf; 4380 u32 nritems; 4381 u32 item_size; 4382 u32 orig_offset; 4383 struct btrfs_disk_key disk_key; 4384 4385 leaf = path->nodes[0]; 4386 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4387 4388 item = btrfs_item_nr(path->slots[0]); 4389 orig_offset = btrfs_item_offset(leaf, item); 4390 item_size = btrfs_item_size(leaf, item); 4391 4392 buf = kmalloc(item_size, GFP_NOFS); 4393 if (!buf) 4394 return -ENOMEM; 4395 4396 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4397 path->slots[0]), item_size); 4398 4399 slot = path->slots[0] + 1; 4400 nritems = btrfs_header_nritems(leaf); 4401 if (slot != nritems) { 4402 /* shift the items */ 4403 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4404 btrfs_item_nr_offset(slot), 4405 (nritems - slot) * sizeof(struct btrfs_item)); 4406 } 4407 4408 btrfs_cpu_key_to_disk(&disk_key, new_key); 4409 btrfs_set_item_key(leaf, &disk_key, slot); 4410 4411 new_item = btrfs_item_nr(slot); 4412 4413 btrfs_set_item_offset(leaf, new_item, orig_offset); 4414 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4415 4416 btrfs_set_item_offset(leaf, item, 4417 orig_offset + item_size - split_offset); 4418 btrfs_set_item_size(leaf, item, split_offset); 4419 4420 btrfs_set_header_nritems(leaf, nritems + 1); 4421 4422 /* write the data for the start of the original item */ 4423 write_extent_buffer(leaf, buf, 4424 btrfs_item_ptr_offset(leaf, path->slots[0]), 4425 split_offset); 4426 4427 /* write the data for the new item */ 4428 write_extent_buffer(leaf, buf + split_offset, 4429 btrfs_item_ptr_offset(leaf, slot), 4430 item_size - split_offset); 4431 btrfs_mark_buffer_dirty(leaf); 4432 4433 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4434 kfree(buf); 4435 return 0; 4436 } 4437 4438 /* 4439 * This function splits a single item into two items, 4440 * giving 'new_key' to the new item and splitting the 4441 * old one at split_offset (from the start of the item). 4442 * 4443 * The path may be released by this operation. After 4444 * the split, the path is pointing to the old item. The 4445 * new item is going to be in the same node as the old one. 4446 * 4447 * Note, the item being split must be smaller enough to live alone on 4448 * a tree block with room for one extra struct btrfs_item 4449 * 4450 * This allows us to split the item in place, keeping a lock on the 4451 * leaf the entire time. 4452 */ 4453 int btrfs_split_item(struct btrfs_trans_handle *trans, 4454 struct btrfs_root *root, 4455 struct btrfs_path *path, 4456 const struct btrfs_key *new_key, 4457 unsigned long split_offset) 4458 { 4459 int ret; 4460 ret = setup_leaf_for_split(trans, root, path, 4461 sizeof(struct btrfs_item)); 4462 if (ret) 4463 return ret; 4464 4465 ret = split_item(path, new_key, split_offset); 4466 return ret; 4467 } 4468 4469 /* 4470 * This function duplicate a item, giving 'new_key' to the new item. 4471 * It guarantees both items live in the same tree leaf and the new item 4472 * is contiguous with the original item. 4473 * 4474 * This allows us to split file extent in place, keeping a lock on the 4475 * leaf the entire time. 4476 */ 4477 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4478 struct btrfs_root *root, 4479 struct btrfs_path *path, 4480 const struct btrfs_key *new_key) 4481 { 4482 struct extent_buffer *leaf; 4483 int ret; 4484 u32 item_size; 4485 4486 leaf = path->nodes[0]; 4487 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4488 ret = setup_leaf_for_split(trans, root, path, 4489 item_size + sizeof(struct btrfs_item)); 4490 if (ret) 4491 return ret; 4492 4493 path->slots[0]++; 4494 setup_items_for_insert(root, path, new_key, &item_size, 1); 4495 leaf = path->nodes[0]; 4496 memcpy_extent_buffer(leaf, 4497 btrfs_item_ptr_offset(leaf, path->slots[0]), 4498 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4499 item_size); 4500 return 0; 4501 } 4502 4503 /* 4504 * make the item pointed to by the path smaller. new_size indicates 4505 * how small to make it, and from_end tells us if we just chop bytes 4506 * off the end of the item or if we shift the item to chop bytes off 4507 * the front. 4508 */ 4509 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4510 { 4511 int slot; 4512 struct extent_buffer *leaf; 4513 struct btrfs_item *item; 4514 u32 nritems; 4515 unsigned int data_end; 4516 unsigned int old_data_start; 4517 unsigned int old_size; 4518 unsigned int size_diff; 4519 int i; 4520 struct btrfs_map_token token; 4521 4522 leaf = path->nodes[0]; 4523 slot = path->slots[0]; 4524 4525 old_size = btrfs_item_size_nr(leaf, slot); 4526 if (old_size == new_size) 4527 return; 4528 4529 nritems = btrfs_header_nritems(leaf); 4530 data_end = leaf_data_end(leaf); 4531 4532 old_data_start = btrfs_item_offset_nr(leaf, slot); 4533 4534 size_diff = old_size - new_size; 4535 4536 BUG_ON(slot < 0); 4537 BUG_ON(slot >= nritems); 4538 4539 /* 4540 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4541 */ 4542 /* first correct the data pointers */ 4543 btrfs_init_map_token(&token, leaf); 4544 for (i = slot; i < nritems; i++) { 4545 u32 ioff; 4546 item = btrfs_item_nr(i); 4547 4548 ioff = btrfs_token_item_offset(&token, item); 4549 btrfs_set_token_item_offset(&token, item, ioff + size_diff); 4550 } 4551 4552 /* shift the data */ 4553 if (from_end) { 4554 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4555 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4556 data_end, old_data_start + new_size - data_end); 4557 } else { 4558 struct btrfs_disk_key disk_key; 4559 u64 offset; 4560 4561 btrfs_item_key(leaf, &disk_key, slot); 4562 4563 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4564 unsigned long ptr; 4565 struct btrfs_file_extent_item *fi; 4566 4567 fi = btrfs_item_ptr(leaf, slot, 4568 struct btrfs_file_extent_item); 4569 fi = (struct btrfs_file_extent_item *)( 4570 (unsigned long)fi - size_diff); 4571 4572 if (btrfs_file_extent_type(leaf, fi) == 4573 BTRFS_FILE_EXTENT_INLINE) { 4574 ptr = btrfs_item_ptr_offset(leaf, slot); 4575 memmove_extent_buffer(leaf, ptr, 4576 (unsigned long)fi, 4577 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4578 } 4579 } 4580 4581 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4582 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4583 data_end, old_data_start - data_end); 4584 4585 offset = btrfs_disk_key_offset(&disk_key); 4586 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4587 btrfs_set_item_key(leaf, &disk_key, slot); 4588 if (slot == 0) 4589 fixup_low_keys(path, &disk_key, 1); 4590 } 4591 4592 item = btrfs_item_nr(slot); 4593 btrfs_set_item_size(leaf, item, new_size); 4594 btrfs_mark_buffer_dirty(leaf); 4595 4596 if (btrfs_leaf_free_space(leaf) < 0) { 4597 btrfs_print_leaf(leaf); 4598 BUG(); 4599 } 4600 } 4601 4602 /* 4603 * make the item pointed to by the path bigger, data_size is the added size. 4604 */ 4605 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4606 { 4607 int slot; 4608 struct extent_buffer *leaf; 4609 struct btrfs_item *item; 4610 u32 nritems; 4611 unsigned int data_end; 4612 unsigned int old_data; 4613 unsigned int old_size; 4614 int i; 4615 struct btrfs_map_token token; 4616 4617 leaf = path->nodes[0]; 4618 4619 nritems = btrfs_header_nritems(leaf); 4620 data_end = leaf_data_end(leaf); 4621 4622 if (btrfs_leaf_free_space(leaf) < data_size) { 4623 btrfs_print_leaf(leaf); 4624 BUG(); 4625 } 4626 slot = path->slots[0]; 4627 old_data = btrfs_item_end_nr(leaf, slot); 4628 4629 BUG_ON(slot < 0); 4630 if (slot >= nritems) { 4631 btrfs_print_leaf(leaf); 4632 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4633 slot, nritems); 4634 BUG(); 4635 } 4636 4637 /* 4638 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4639 */ 4640 /* first correct the data pointers */ 4641 btrfs_init_map_token(&token, leaf); 4642 for (i = slot; i < nritems; i++) { 4643 u32 ioff; 4644 item = btrfs_item_nr(i); 4645 4646 ioff = btrfs_token_item_offset(&token, item); 4647 btrfs_set_token_item_offset(&token, item, ioff - data_size); 4648 } 4649 4650 /* shift the data */ 4651 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4652 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4653 data_end, old_data - data_end); 4654 4655 data_end = old_data; 4656 old_size = btrfs_item_size_nr(leaf, slot); 4657 item = btrfs_item_nr(slot); 4658 btrfs_set_item_size(leaf, item, old_size + data_size); 4659 btrfs_mark_buffer_dirty(leaf); 4660 4661 if (btrfs_leaf_free_space(leaf) < 0) { 4662 btrfs_print_leaf(leaf); 4663 BUG(); 4664 } 4665 } 4666 4667 /** 4668 * setup_items_for_insert - Helper called before inserting one or more items 4669 * to a leaf. Main purpose is to save stack depth by doing the bulk of the work 4670 * in a function that doesn't call btrfs_search_slot 4671 * 4672 * @root: root we are inserting items to 4673 * @path: points to the leaf/slot where we are going to insert new items 4674 * @cpu_key: array of keys for items to be inserted 4675 * @data_size: size of the body of each item we are going to insert 4676 * @nr: size of @cpu_key/@data_size arrays 4677 */ 4678 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4679 const struct btrfs_key *cpu_key, u32 *data_size, 4680 int nr) 4681 { 4682 struct btrfs_fs_info *fs_info = root->fs_info; 4683 struct btrfs_item *item; 4684 int i; 4685 u32 nritems; 4686 unsigned int data_end; 4687 struct btrfs_disk_key disk_key; 4688 struct extent_buffer *leaf; 4689 int slot; 4690 struct btrfs_map_token token; 4691 u32 total_size; 4692 u32 total_data = 0; 4693 4694 for (i = 0; i < nr; i++) 4695 total_data += data_size[i]; 4696 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4697 4698 if (path->slots[0] == 0) { 4699 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4700 fixup_low_keys(path, &disk_key, 1); 4701 } 4702 btrfs_unlock_up_safe(path, 1); 4703 4704 leaf = path->nodes[0]; 4705 slot = path->slots[0]; 4706 4707 nritems = btrfs_header_nritems(leaf); 4708 data_end = leaf_data_end(leaf); 4709 4710 if (btrfs_leaf_free_space(leaf) < total_size) { 4711 btrfs_print_leaf(leaf); 4712 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4713 total_size, btrfs_leaf_free_space(leaf)); 4714 BUG(); 4715 } 4716 4717 btrfs_init_map_token(&token, leaf); 4718 if (slot != nritems) { 4719 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4720 4721 if (old_data < data_end) { 4722 btrfs_print_leaf(leaf); 4723 btrfs_crit(fs_info, 4724 "item at slot %d with data offset %u beyond data end of leaf %u", 4725 slot, old_data, data_end); 4726 BUG(); 4727 } 4728 /* 4729 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4730 */ 4731 /* first correct the data pointers */ 4732 for (i = slot; i < nritems; i++) { 4733 u32 ioff; 4734 4735 item = btrfs_item_nr(i); 4736 ioff = btrfs_token_item_offset(&token, item); 4737 btrfs_set_token_item_offset(&token, item, 4738 ioff - total_data); 4739 } 4740 /* shift the items */ 4741 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4742 btrfs_item_nr_offset(slot), 4743 (nritems - slot) * sizeof(struct btrfs_item)); 4744 4745 /* shift the data */ 4746 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4747 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4748 data_end, old_data - data_end); 4749 data_end = old_data; 4750 } 4751 4752 /* setup the item for the new data */ 4753 for (i = 0; i < nr; i++) { 4754 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4755 btrfs_set_item_key(leaf, &disk_key, slot + i); 4756 item = btrfs_item_nr(slot + i); 4757 data_end -= data_size[i]; 4758 btrfs_set_token_item_offset(&token, item, data_end); 4759 btrfs_set_token_item_size(&token, item, data_size[i]); 4760 } 4761 4762 btrfs_set_header_nritems(leaf, nritems + nr); 4763 btrfs_mark_buffer_dirty(leaf); 4764 4765 if (btrfs_leaf_free_space(leaf) < 0) { 4766 btrfs_print_leaf(leaf); 4767 BUG(); 4768 } 4769 } 4770 4771 /* 4772 * Given a key and some data, insert items into the tree. 4773 * This does all the path init required, making room in the tree if needed. 4774 */ 4775 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4776 struct btrfs_root *root, 4777 struct btrfs_path *path, 4778 const struct btrfs_key *cpu_key, u32 *data_size, 4779 int nr) 4780 { 4781 int ret = 0; 4782 int slot; 4783 int i; 4784 u32 total_size = 0; 4785 u32 total_data = 0; 4786 4787 for (i = 0; i < nr; i++) 4788 total_data += data_size[i]; 4789 4790 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4791 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4792 if (ret == 0) 4793 return -EEXIST; 4794 if (ret < 0) 4795 return ret; 4796 4797 slot = path->slots[0]; 4798 BUG_ON(slot < 0); 4799 4800 setup_items_for_insert(root, path, cpu_key, data_size, nr); 4801 return 0; 4802 } 4803 4804 /* 4805 * Given a key and some data, insert an item into the tree. 4806 * This does all the path init required, making room in the tree if needed. 4807 */ 4808 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4809 const struct btrfs_key *cpu_key, void *data, 4810 u32 data_size) 4811 { 4812 int ret = 0; 4813 struct btrfs_path *path; 4814 struct extent_buffer *leaf; 4815 unsigned long ptr; 4816 4817 path = btrfs_alloc_path(); 4818 if (!path) 4819 return -ENOMEM; 4820 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4821 if (!ret) { 4822 leaf = path->nodes[0]; 4823 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4824 write_extent_buffer(leaf, data, ptr, data_size); 4825 btrfs_mark_buffer_dirty(leaf); 4826 } 4827 btrfs_free_path(path); 4828 return ret; 4829 } 4830 4831 /* 4832 * delete the pointer from a given node. 4833 * 4834 * the tree should have been previously balanced so the deletion does not 4835 * empty a node. 4836 */ 4837 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4838 int level, int slot) 4839 { 4840 struct extent_buffer *parent = path->nodes[level]; 4841 u32 nritems; 4842 int ret; 4843 4844 nritems = btrfs_header_nritems(parent); 4845 if (slot != nritems - 1) { 4846 if (level) { 4847 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4848 nritems - slot - 1); 4849 BUG_ON(ret < 0); 4850 } 4851 memmove_extent_buffer(parent, 4852 btrfs_node_key_ptr_offset(slot), 4853 btrfs_node_key_ptr_offset(slot + 1), 4854 sizeof(struct btrfs_key_ptr) * 4855 (nritems - slot - 1)); 4856 } else if (level) { 4857 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4858 GFP_NOFS); 4859 BUG_ON(ret < 0); 4860 } 4861 4862 nritems--; 4863 btrfs_set_header_nritems(parent, nritems); 4864 if (nritems == 0 && parent == root->node) { 4865 BUG_ON(btrfs_header_level(root->node) != 1); 4866 /* just turn the root into a leaf and break */ 4867 btrfs_set_header_level(root->node, 0); 4868 } else if (slot == 0) { 4869 struct btrfs_disk_key disk_key; 4870 4871 btrfs_node_key(parent, &disk_key, 0); 4872 fixup_low_keys(path, &disk_key, level + 1); 4873 } 4874 btrfs_mark_buffer_dirty(parent); 4875 } 4876 4877 /* 4878 * a helper function to delete the leaf pointed to by path->slots[1] and 4879 * path->nodes[1]. 4880 * 4881 * This deletes the pointer in path->nodes[1] and frees the leaf 4882 * block extent. zero is returned if it all worked out, < 0 otherwise. 4883 * 4884 * The path must have already been setup for deleting the leaf, including 4885 * all the proper balancing. path->nodes[1] must be locked. 4886 */ 4887 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4888 struct btrfs_root *root, 4889 struct btrfs_path *path, 4890 struct extent_buffer *leaf) 4891 { 4892 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4893 del_ptr(root, path, 1, path->slots[1]); 4894 4895 /* 4896 * btrfs_free_extent is expensive, we want to make sure we 4897 * aren't holding any locks when we call it 4898 */ 4899 btrfs_unlock_up_safe(path, 0); 4900 4901 root_sub_used(root, leaf->len); 4902 4903 atomic_inc(&leaf->refs); 4904 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4905 free_extent_buffer_stale(leaf); 4906 } 4907 /* 4908 * delete the item at the leaf level in path. If that empties 4909 * the leaf, remove it from the tree 4910 */ 4911 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4912 struct btrfs_path *path, int slot, int nr) 4913 { 4914 struct btrfs_fs_info *fs_info = root->fs_info; 4915 struct extent_buffer *leaf; 4916 struct btrfs_item *item; 4917 u32 last_off; 4918 u32 dsize = 0; 4919 int ret = 0; 4920 int wret; 4921 int i; 4922 u32 nritems; 4923 4924 leaf = path->nodes[0]; 4925 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4926 4927 for (i = 0; i < nr; i++) 4928 dsize += btrfs_item_size_nr(leaf, slot + i); 4929 4930 nritems = btrfs_header_nritems(leaf); 4931 4932 if (slot + nr != nritems) { 4933 int data_end = leaf_data_end(leaf); 4934 struct btrfs_map_token token; 4935 4936 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4937 data_end + dsize, 4938 BTRFS_LEAF_DATA_OFFSET + data_end, 4939 last_off - data_end); 4940 4941 btrfs_init_map_token(&token, leaf); 4942 for (i = slot + nr; i < nritems; i++) { 4943 u32 ioff; 4944 4945 item = btrfs_item_nr(i); 4946 ioff = btrfs_token_item_offset(&token, item); 4947 btrfs_set_token_item_offset(&token, item, ioff + dsize); 4948 } 4949 4950 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 4951 btrfs_item_nr_offset(slot + nr), 4952 sizeof(struct btrfs_item) * 4953 (nritems - slot - nr)); 4954 } 4955 btrfs_set_header_nritems(leaf, nritems - nr); 4956 nritems -= nr; 4957 4958 /* delete the leaf if we've emptied it */ 4959 if (nritems == 0) { 4960 if (leaf == root->node) { 4961 btrfs_set_header_level(leaf, 0); 4962 } else { 4963 btrfs_clean_tree_block(leaf); 4964 btrfs_del_leaf(trans, root, path, leaf); 4965 } 4966 } else { 4967 int used = leaf_space_used(leaf, 0, nritems); 4968 if (slot == 0) { 4969 struct btrfs_disk_key disk_key; 4970 4971 btrfs_item_key(leaf, &disk_key, 0); 4972 fixup_low_keys(path, &disk_key, 1); 4973 } 4974 4975 /* delete the leaf if it is mostly empty */ 4976 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 4977 /* push_leaf_left fixes the path. 4978 * make sure the path still points to our leaf 4979 * for possible call to del_ptr below 4980 */ 4981 slot = path->slots[1]; 4982 atomic_inc(&leaf->refs); 4983 4984 wret = push_leaf_left(trans, root, path, 1, 1, 4985 1, (u32)-1); 4986 if (wret < 0 && wret != -ENOSPC) 4987 ret = wret; 4988 4989 if (path->nodes[0] == leaf && 4990 btrfs_header_nritems(leaf)) { 4991 wret = push_leaf_right(trans, root, path, 1, 4992 1, 1, 0); 4993 if (wret < 0 && wret != -ENOSPC) 4994 ret = wret; 4995 } 4996 4997 if (btrfs_header_nritems(leaf) == 0) { 4998 path->slots[1] = slot; 4999 btrfs_del_leaf(trans, root, path, leaf); 5000 free_extent_buffer(leaf); 5001 ret = 0; 5002 } else { 5003 /* if we're still in the path, make sure 5004 * we're dirty. Otherwise, one of the 5005 * push_leaf functions must have already 5006 * dirtied this buffer 5007 */ 5008 if (path->nodes[0] == leaf) 5009 btrfs_mark_buffer_dirty(leaf); 5010 free_extent_buffer(leaf); 5011 } 5012 } else { 5013 btrfs_mark_buffer_dirty(leaf); 5014 } 5015 } 5016 return ret; 5017 } 5018 5019 /* 5020 * search the tree again to find a leaf with lesser keys 5021 * returns 0 if it found something or 1 if there are no lesser leaves. 5022 * returns < 0 on io errors. 5023 * 5024 * This may release the path, and so you may lose any locks held at the 5025 * time you call it. 5026 */ 5027 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5028 { 5029 struct btrfs_key key; 5030 struct btrfs_disk_key found_key; 5031 int ret; 5032 5033 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5034 5035 if (key.offset > 0) { 5036 key.offset--; 5037 } else if (key.type > 0) { 5038 key.type--; 5039 key.offset = (u64)-1; 5040 } else if (key.objectid > 0) { 5041 key.objectid--; 5042 key.type = (u8)-1; 5043 key.offset = (u64)-1; 5044 } else { 5045 return 1; 5046 } 5047 5048 btrfs_release_path(path); 5049 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5050 if (ret < 0) 5051 return ret; 5052 btrfs_item_key(path->nodes[0], &found_key, 0); 5053 ret = comp_keys(&found_key, &key); 5054 /* 5055 * We might have had an item with the previous key in the tree right 5056 * before we released our path. And after we released our path, that 5057 * item might have been pushed to the first slot (0) of the leaf we 5058 * were holding due to a tree balance. Alternatively, an item with the 5059 * previous key can exist as the only element of a leaf (big fat item). 5060 * Therefore account for these 2 cases, so that our callers (like 5061 * btrfs_previous_item) don't miss an existing item with a key matching 5062 * the previous key we computed above. 5063 */ 5064 if (ret <= 0) 5065 return 0; 5066 return 1; 5067 } 5068 5069 /* 5070 * A helper function to walk down the tree starting at min_key, and looking 5071 * for nodes or leaves that are have a minimum transaction id. 5072 * This is used by the btree defrag code, and tree logging 5073 * 5074 * This does not cow, but it does stuff the starting key it finds back 5075 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5076 * key and get a writable path. 5077 * 5078 * This honors path->lowest_level to prevent descent past a given level 5079 * of the tree. 5080 * 5081 * min_trans indicates the oldest transaction that you are interested 5082 * in walking through. Any nodes or leaves older than min_trans are 5083 * skipped over (without reading them). 5084 * 5085 * returns zero if something useful was found, < 0 on error and 1 if there 5086 * was nothing in the tree that matched the search criteria. 5087 */ 5088 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5089 struct btrfs_path *path, 5090 u64 min_trans) 5091 { 5092 struct extent_buffer *cur; 5093 struct btrfs_key found_key; 5094 int slot; 5095 int sret; 5096 u32 nritems; 5097 int level; 5098 int ret = 1; 5099 int keep_locks = path->keep_locks; 5100 5101 path->keep_locks = 1; 5102 again: 5103 cur = btrfs_read_lock_root_node(root); 5104 level = btrfs_header_level(cur); 5105 WARN_ON(path->nodes[level]); 5106 path->nodes[level] = cur; 5107 path->locks[level] = BTRFS_READ_LOCK; 5108 5109 if (btrfs_header_generation(cur) < min_trans) { 5110 ret = 1; 5111 goto out; 5112 } 5113 while (1) { 5114 nritems = btrfs_header_nritems(cur); 5115 level = btrfs_header_level(cur); 5116 sret = btrfs_bin_search(cur, min_key, &slot); 5117 if (sret < 0) { 5118 ret = sret; 5119 goto out; 5120 } 5121 5122 /* at the lowest level, we're done, setup the path and exit */ 5123 if (level == path->lowest_level) { 5124 if (slot >= nritems) 5125 goto find_next_key; 5126 ret = 0; 5127 path->slots[level] = slot; 5128 btrfs_item_key_to_cpu(cur, &found_key, slot); 5129 goto out; 5130 } 5131 if (sret && slot > 0) 5132 slot--; 5133 /* 5134 * check this node pointer against the min_trans parameters. 5135 * If it is too old, skip to the next one. 5136 */ 5137 while (slot < nritems) { 5138 u64 gen; 5139 5140 gen = btrfs_node_ptr_generation(cur, slot); 5141 if (gen < min_trans) { 5142 slot++; 5143 continue; 5144 } 5145 break; 5146 } 5147 find_next_key: 5148 /* 5149 * we didn't find a candidate key in this node, walk forward 5150 * and find another one 5151 */ 5152 if (slot >= nritems) { 5153 path->slots[level] = slot; 5154 sret = btrfs_find_next_key(root, path, min_key, level, 5155 min_trans); 5156 if (sret == 0) { 5157 btrfs_release_path(path); 5158 goto again; 5159 } else { 5160 goto out; 5161 } 5162 } 5163 /* save our key for returning back */ 5164 btrfs_node_key_to_cpu(cur, &found_key, slot); 5165 path->slots[level] = slot; 5166 if (level == path->lowest_level) { 5167 ret = 0; 5168 goto out; 5169 } 5170 cur = btrfs_read_node_slot(cur, slot); 5171 if (IS_ERR(cur)) { 5172 ret = PTR_ERR(cur); 5173 goto out; 5174 } 5175 5176 btrfs_tree_read_lock(cur); 5177 5178 path->locks[level - 1] = BTRFS_READ_LOCK; 5179 path->nodes[level - 1] = cur; 5180 unlock_up(path, level, 1, 0, NULL); 5181 } 5182 out: 5183 path->keep_locks = keep_locks; 5184 if (ret == 0) { 5185 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5186 memcpy(min_key, &found_key, sizeof(found_key)); 5187 } 5188 return ret; 5189 } 5190 5191 /* 5192 * this is similar to btrfs_next_leaf, but does not try to preserve 5193 * and fixup the path. It looks for and returns the next key in the 5194 * tree based on the current path and the min_trans parameters. 5195 * 5196 * 0 is returned if another key is found, < 0 if there are any errors 5197 * and 1 is returned if there are no higher keys in the tree 5198 * 5199 * path->keep_locks should be set to 1 on the search made before 5200 * calling this function. 5201 */ 5202 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5203 struct btrfs_key *key, int level, u64 min_trans) 5204 { 5205 int slot; 5206 struct extent_buffer *c; 5207 5208 WARN_ON(!path->keep_locks && !path->skip_locking); 5209 while (level < BTRFS_MAX_LEVEL) { 5210 if (!path->nodes[level]) 5211 return 1; 5212 5213 slot = path->slots[level] + 1; 5214 c = path->nodes[level]; 5215 next: 5216 if (slot >= btrfs_header_nritems(c)) { 5217 int ret; 5218 int orig_lowest; 5219 struct btrfs_key cur_key; 5220 if (level + 1 >= BTRFS_MAX_LEVEL || 5221 !path->nodes[level + 1]) 5222 return 1; 5223 5224 if (path->locks[level + 1] || path->skip_locking) { 5225 level++; 5226 continue; 5227 } 5228 5229 slot = btrfs_header_nritems(c) - 1; 5230 if (level == 0) 5231 btrfs_item_key_to_cpu(c, &cur_key, slot); 5232 else 5233 btrfs_node_key_to_cpu(c, &cur_key, slot); 5234 5235 orig_lowest = path->lowest_level; 5236 btrfs_release_path(path); 5237 path->lowest_level = level; 5238 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5239 0, 0); 5240 path->lowest_level = orig_lowest; 5241 if (ret < 0) 5242 return ret; 5243 5244 c = path->nodes[level]; 5245 slot = path->slots[level]; 5246 if (ret == 0) 5247 slot++; 5248 goto next; 5249 } 5250 5251 if (level == 0) 5252 btrfs_item_key_to_cpu(c, key, slot); 5253 else { 5254 u64 gen = btrfs_node_ptr_generation(c, slot); 5255 5256 if (gen < min_trans) { 5257 slot++; 5258 goto next; 5259 } 5260 btrfs_node_key_to_cpu(c, key, slot); 5261 } 5262 return 0; 5263 } 5264 return 1; 5265 } 5266 5267 /* 5268 * search the tree again to find a leaf with greater keys 5269 * returns 0 if it found something or 1 if there are no greater leaves. 5270 * returns < 0 on io errors. 5271 */ 5272 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5273 { 5274 return btrfs_next_old_leaf(root, path, 0); 5275 } 5276 5277 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5278 u64 time_seq) 5279 { 5280 int slot; 5281 int level; 5282 struct extent_buffer *c; 5283 struct extent_buffer *next; 5284 struct btrfs_key key; 5285 u32 nritems; 5286 int ret; 5287 int i; 5288 5289 nritems = btrfs_header_nritems(path->nodes[0]); 5290 if (nritems == 0) 5291 return 1; 5292 5293 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5294 again: 5295 level = 1; 5296 next = NULL; 5297 btrfs_release_path(path); 5298 5299 path->keep_locks = 1; 5300 5301 if (time_seq) 5302 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5303 else 5304 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5305 path->keep_locks = 0; 5306 5307 if (ret < 0) 5308 return ret; 5309 5310 nritems = btrfs_header_nritems(path->nodes[0]); 5311 /* 5312 * by releasing the path above we dropped all our locks. A balance 5313 * could have added more items next to the key that used to be 5314 * at the very end of the block. So, check again here and 5315 * advance the path if there are now more items available. 5316 */ 5317 if (nritems > 0 && path->slots[0] < nritems - 1) { 5318 if (ret == 0) 5319 path->slots[0]++; 5320 ret = 0; 5321 goto done; 5322 } 5323 /* 5324 * So the above check misses one case: 5325 * - after releasing the path above, someone has removed the item that 5326 * used to be at the very end of the block, and balance between leafs 5327 * gets another one with bigger key.offset to replace it. 5328 * 5329 * This one should be returned as well, or we can get leaf corruption 5330 * later(esp. in __btrfs_drop_extents()). 5331 * 5332 * And a bit more explanation about this check, 5333 * with ret > 0, the key isn't found, the path points to the slot 5334 * where it should be inserted, so the path->slots[0] item must be the 5335 * bigger one. 5336 */ 5337 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5338 ret = 0; 5339 goto done; 5340 } 5341 5342 while (level < BTRFS_MAX_LEVEL) { 5343 if (!path->nodes[level]) { 5344 ret = 1; 5345 goto done; 5346 } 5347 5348 slot = path->slots[level] + 1; 5349 c = path->nodes[level]; 5350 if (slot >= btrfs_header_nritems(c)) { 5351 level++; 5352 if (level == BTRFS_MAX_LEVEL) { 5353 ret = 1; 5354 goto done; 5355 } 5356 continue; 5357 } 5358 5359 5360 /* 5361 * Our current level is where we're going to start from, and to 5362 * make sure lockdep doesn't complain we need to drop our locks 5363 * and nodes from 0 to our current level. 5364 */ 5365 for (i = 0; i < level; i++) { 5366 if (path->locks[level]) { 5367 btrfs_tree_read_unlock(path->nodes[i]); 5368 path->locks[i] = 0; 5369 } 5370 free_extent_buffer(path->nodes[i]); 5371 path->nodes[i] = NULL; 5372 } 5373 5374 next = c; 5375 ret = read_block_for_search(root, path, &next, level, 5376 slot, &key); 5377 if (ret == -EAGAIN) 5378 goto again; 5379 5380 if (ret < 0) { 5381 btrfs_release_path(path); 5382 goto done; 5383 } 5384 5385 if (!path->skip_locking) { 5386 ret = btrfs_try_tree_read_lock(next); 5387 if (!ret && time_seq) { 5388 /* 5389 * If we don't get the lock, we may be racing 5390 * with push_leaf_left, holding that lock while 5391 * itself waiting for the leaf we've currently 5392 * locked. To solve this situation, we give up 5393 * on our lock and cycle. 5394 */ 5395 free_extent_buffer(next); 5396 btrfs_release_path(path); 5397 cond_resched(); 5398 goto again; 5399 } 5400 if (!ret) 5401 btrfs_tree_read_lock(next); 5402 } 5403 break; 5404 } 5405 path->slots[level] = slot; 5406 while (1) { 5407 level--; 5408 path->nodes[level] = next; 5409 path->slots[level] = 0; 5410 if (!path->skip_locking) 5411 path->locks[level] = BTRFS_READ_LOCK; 5412 if (!level) 5413 break; 5414 5415 ret = read_block_for_search(root, path, &next, level, 5416 0, &key); 5417 if (ret == -EAGAIN) 5418 goto again; 5419 5420 if (ret < 0) { 5421 btrfs_release_path(path); 5422 goto done; 5423 } 5424 5425 if (!path->skip_locking) 5426 btrfs_tree_read_lock(next); 5427 } 5428 ret = 0; 5429 done: 5430 unlock_up(path, 0, 1, 0, NULL); 5431 5432 return ret; 5433 } 5434 5435 /* 5436 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5437 * searching until it gets past min_objectid or finds an item of 'type' 5438 * 5439 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5440 */ 5441 int btrfs_previous_item(struct btrfs_root *root, 5442 struct btrfs_path *path, u64 min_objectid, 5443 int type) 5444 { 5445 struct btrfs_key found_key; 5446 struct extent_buffer *leaf; 5447 u32 nritems; 5448 int ret; 5449 5450 while (1) { 5451 if (path->slots[0] == 0) { 5452 ret = btrfs_prev_leaf(root, path); 5453 if (ret != 0) 5454 return ret; 5455 } else { 5456 path->slots[0]--; 5457 } 5458 leaf = path->nodes[0]; 5459 nritems = btrfs_header_nritems(leaf); 5460 if (nritems == 0) 5461 return 1; 5462 if (path->slots[0] == nritems) 5463 path->slots[0]--; 5464 5465 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5466 if (found_key.objectid < min_objectid) 5467 break; 5468 if (found_key.type == type) 5469 return 0; 5470 if (found_key.objectid == min_objectid && 5471 found_key.type < type) 5472 break; 5473 } 5474 return 1; 5475 } 5476 5477 /* 5478 * search in extent tree to find a previous Metadata/Data extent item with 5479 * min objecitd. 5480 * 5481 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5482 */ 5483 int btrfs_previous_extent_item(struct btrfs_root *root, 5484 struct btrfs_path *path, u64 min_objectid) 5485 { 5486 struct btrfs_key found_key; 5487 struct extent_buffer *leaf; 5488 u32 nritems; 5489 int ret; 5490 5491 while (1) { 5492 if (path->slots[0] == 0) { 5493 ret = btrfs_prev_leaf(root, path); 5494 if (ret != 0) 5495 return ret; 5496 } else { 5497 path->slots[0]--; 5498 } 5499 leaf = path->nodes[0]; 5500 nritems = btrfs_header_nritems(leaf); 5501 if (nritems == 0) 5502 return 1; 5503 if (path->slots[0] == nritems) 5504 path->slots[0]--; 5505 5506 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5507 if (found_key.objectid < min_objectid) 5508 break; 5509 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5510 found_key.type == BTRFS_METADATA_ITEM_KEY) 5511 return 0; 5512 if (found_key.objectid == min_objectid && 5513 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5514 break; 5515 } 5516 return 1; 5517 } 5518