xref: /openbmc/linux/fs/btrfs/ctree.c (revision 25985edc)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include "ctree.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "print-tree.h"
25 #include "locking.h"
26 
27 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
28 		      *root, struct btrfs_path *path, int level);
29 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_key *ins_key,
31 		      struct btrfs_path *path, int data_size, int extend);
32 static int push_node_left(struct btrfs_trans_handle *trans,
33 			  struct btrfs_root *root, struct extent_buffer *dst,
34 			  struct extent_buffer *src, int empty);
35 static int balance_node_right(struct btrfs_trans_handle *trans,
36 			      struct btrfs_root *root,
37 			      struct extent_buffer *dst_buf,
38 			      struct extent_buffer *src_buf);
39 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
40 		   struct btrfs_path *path, int level, int slot);
41 static int setup_items_for_insert(struct btrfs_trans_handle *trans,
42 			struct btrfs_root *root, struct btrfs_path *path,
43 			struct btrfs_key *cpu_key, u32 *data_size,
44 			u32 total_data, u32 total_size, int nr);
45 
46 
47 struct btrfs_path *btrfs_alloc_path(void)
48 {
49 	struct btrfs_path *path;
50 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
51 	if (path)
52 		path->reada = 1;
53 	return path;
54 }
55 
56 /*
57  * set all locked nodes in the path to blocking locks.  This should
58  * be done before scheduling
59  */
60 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
61 {
62 	int i;
63 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
64 		if (p->nodes[i] && p->locks[i])
65 			btrfs_set_lock_blocking(p->nodes[i]);
66 	}
67 }
68 
69 /*
70  * reset all the locked nodes in the patch to spinning locks.
71  *
72  * held is used to keep lockdep happy, when lockdep is enabled
73  * we set held to a blocking lock before we go around and
74  * retake all the spinlocks in the path.  You can safely use NULL
75  * for held
76  */
77 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
78 					struct extent_buffer *held)
79 {
80 	int i;
81 
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83 	/* lockdep really cares that we take all of these spinlocks
84 	 * in the right order.  If any of the locks in the path are not
85 	 * currently blocking, it is going to complain.  So, make really
86 	 * really sure by forcing the path to blocking before we clear
87 	 * the path blocking.
88 	 */
89 	if (held)
90 		btrfs_set_lock_blocking(held);
91 	btrfs_set_path_blocking(p);
92 #endif
93 
94 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
95 		if (p->nodes[i] && p->locks[i])
96 			btrfs_clear_lock_blocking(p->nodes[i]);
97 	}
98 
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 	if (held)
101 		btrfs_clear_lock_blocking(held);
102 #endif
103 }
104 
105 /* this also releases the path */
106 void btrfs_free_path(struct btrfs_path *p)
107 {
108 	if (!p)
109 		return;
110 	btrfs_release_path(NULL, p);
111 	kmem_cache_free(btrfs_path_cachep, p);
112 }
113 
114 /*
115  * path release drops references on the extent buffers in the path
116  * and it drops any locks held by this path
117  *
118  * It is safe to call this on paths that no locks or extent buffers held.
119  */
120 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
121 {
122 	int i;
123 
124 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
125 		p->slots[i] = 0;
126 		if (!p->nodes[i])
127 			continue;
128 		if (p->locks[i]) {
129 			btrfs_tree_unlock(p->nodes[i]);
130 			p->locks[i] = 0;
131 		}
132 		free_extent_buffer(p->nodes[i]);
133 		p->nodes[i] = NULL;
134 	}
135 }
136 
137 /*
138  * safely gets a reference on the root node of a tree.  A lock
139  * is not taken, so a concurrent writer may put a different node
140  * at the root of the tree.  See btrfs_lock_root_node for the
141  * looping required.
142  *
143  * The extent buffer returned by this has a reference taken, so
144  * it won't disappear.  It may stop being the root of the tree
145  * at any time because there are no locks held.
146  */
147 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
148 {
149 	struct extent_buffer *eb;
150 
151 	rcu_read_lock();
152 	eb = rcu_dereference(root->node);
153 	extent_buffer_get(eb);
154 	rcu_read_unlock();
155 	return eb;
156 }
157 
158 /* loop around taking references on and locking the root node of the
159  * tree until you end up with a lock on the root.  A locked buffer
160  * is returned, with a reference held.
161  */
162 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
163 {
164 	struct extent_buffer *eb;
165 
166 	while (1) {
167 		eb = btrfs_root_node(root);
168 		btrfs_tree_lock(eb);
169 		if (eb == root->node)
170 			break;
171 		btrfs_tree_unlock(eb);
172 		free_extent_buffer(eb);
173 	}
174 	return eb;
175 }
176 
177 /* cowonly root (everything not a reference counted cow subvolume), just get
178  * put onto a simple dirty list.  transaction.c walks this to make sure they
179  * get properly updated on disk.
180  */
181 static void add_root_to_dirty_list(struct btrfs_root *root)
182 {
183 	if (root->track_dirty && list_empty(&root->dirty_list)) {
184 		list_add(&root->dirty_list,
185 			 &root->fs_info->dirty_cowonly_roots);
186 	}
187 }
188 
189 /*
190  * used by snapshot creation to make a copy of a root for a tree with
191  * a given objectid.  The buffer with the new root node is returned in
192  * cow_ret, and this func returns zero on success or a negative error code.
193  */
194 int btrfs_copy_root(struct btrfs_trans_handle *trans,
195 		      struct btrfs_root *root,
196 		      struct extent_buffer *buf,
197 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
198 {
199 	struct extent_buffer *cow;
200 	int ret = 0;
201 	int level;
202 	struct btrfs_disk_key disk_key;
203 
204 	WARN_ON(root->ref_cows && trans->transid !=
205 		root->fs_info->running_transaction->transid);
206 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
207 
208 	level = btrfs_header_level(buf);
209 	if (level == 0)
210 		btrfs_item_key(buf, &disk_key, 0);
211 	else
212 		btrfs_node_key(buf, &disk_key, 0);
213 
214 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
215 				     new_root_objectid, &disk_key, level,
216 				     buf->start, 0);
217 	if (IS_ERR(cow))
218 		return PTR_ERR(cow);
219 
220 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
221 	btrfs_set_header_bytenr(cow, cow->start);
222 	btrfs_set_header_generation(cow, trans->transid);
223 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
224 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
225 				     BTRFS_HEADER_FLAG_RELOC);
226 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
227 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
228 	else
229 		btrfs_set_header_owner(cow, new_root_objectid);
230 
231 	write_extent_buffer(cow, root->fs_info->fsid,
232 			    (unsigned long)btrfs_header_fsid(cow),
233 			    BTRFS_FSID_SIZE);
234 
235 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
236 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
237 		ret = btrfs_inc_ref(trans, root, cow, 1);
238 	else
239 		ret = btrfs_inc_ref(trans, root, cow, 0);
240 
241 	if (ret)
242 		return ret;
243 
244 	btrfs_mark_buffer_dirty(cow);
245 	*cow_ret = cow;
246 	return 0;
247 }
248 
249 /*
250  * check if the tree block can be shared by multiple trees
251  */
252 int btrfs_block_can_be_shared(struct btrfs_root *root,
253 			      struct extent_buffer *buf)
254 {
255 	/*
256 	 * Tree blocks not in refernece counted trees and tree roots
257 	 * are never shared. If a block was allocated after the last
258 	 * snapshot and the block was not allocated by tree relocation,
259 	 * we know the block is not shared.
260 	 */
261 	if (root->ref_cows &&
262 	    buf != root->node && buf != root->commit_root &&
263 	    (btrfs_header_generation(buf) <=
264 	     btrfs_root_last_snapshot(&root->root_item) ||
265 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
266 		return 1;
267 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
268 	if (root->ref_cows &&
269 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
270 		return 1;
271 #endif
272 	return 0;
273 }
274 
275 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
276 				       struct btrfs_root *root,
277 				       struct extent_buffer *buf,
278 				       struct extent_buffer *cow,
279 				       int *last_ref)
280 {
281 	u64 refs;
282 	u64 owner;
283 	u64 flags;
284 	u64 new_flags = 0;
285 	int ret;
286 
287 	/*
288 	 * Backrefs update rules:
289 	 *
290 	 * Always use full backrefs for extent pointers in tree block
291 	 * allocated by tree relocation.
292 	 *
293 	 * If a shared tree block is no longer referenced by its owner
294 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
295 	 * use full backrefs for extent pointers in tree block.
296 	 *
297 	 * If a tree block is been relocating
298 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
299 	 * use full backrefs for extent pointers in tree block.
300 	 * The reason for this is some operations (such as drop tree)
301 	 * are only allowed for blocks use full backrefs.
302 	 */
303 
304 	if (btrfs_block_can_be_shared(root, buf)) {
305 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
306 					       buf->len, &refs, &flags);
307 		BUG_ON(ret);
308 		BUG_ON(refs == 0);
309 	} else {
310 		refs = 1;
311 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
312 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
313 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
314 		else
315 			flags = 0;
316 	}
317 
318 	owner = btrfs_header_owner(buf);
319 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
320 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
321 
322 	if (refs > 1) {
323 		if ((owner == root->root_key.objectid ||
324 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
325 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
326 			ret = btrfs_inc_ref(trans, root, buf, 1);
327 			BUG_ON(ret);
328 
329 			if (root->root_key.objectid ==
330 			    BTRFS_TREE_RELOC_OBJECTID) {
331 				ret = btrfs_dec_ref(trans, root, buf, 0);
332 				BUG_ON(ret);
333 				ret = btrfs_inc_ref(trans, root, cow, 1);
334 				BUG_ON(ret);
335 			}
336 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
337 		} else {
338 
339 			if (root->root_key.objectid ==
340 			    BTRFS_TREE_RELOC_OBJECTID)
341 				ret = btrfs_inc_ref(trans, root, cow, 1);
342 			else
343 				ret = btrfs_inc_ref(trans, root, cow, 0);
344 			BUG_ON(ret);
345 		}
346 		if (new_flags != 0) {
347 			ret = btrfs_set_disk_extent_flags(trans, root,
348 							  buf->start,
349 							  buf->len,
350 							  new_flags, 0);
351 			BUG_ON(ret);
352 		}
353 	} else {
354 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
355 			if (root->root_key.objectid ==
356 			    BTRFS_TREE_RELOC_OBJECTID)
357 				ret = btrfs_inc_ref(trans, root, cow, 1);
358 			else
359 				ret = btrfs_inc_ref(trans, root, cow, 0);
360 			BUG_ON(ret);
361 			ret = btrfs_dec_ref(trans, root, buf, 1);
362 			BUG_ON(ret);
363 		}
364 		clean_tree_block(trans, root, buf);
365 		*last_ref = 1;
366 	}
367 	return 0;
368 }
369 
370 /*
371  * does the dirty work in cow of a single block.  The parent block (if
372  * supplied) is updated to point to the new cow copy.  The new buffer is marked
373  * dirty and returned locked.  If you modify the block it needs to be marked
374  * dirty again.
375  *
376  * search_start -- an allocation hint for the new block
377  *
378  * empty_size -- a hint that you plan on doing more cow.  This is the size in
379  * bytes the allocator should try to find free next to the block it returns.
380  * This is just a hint and may be ignored by the allocator.
381  */
382 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
383 			     struct btrfs_root *root,
384 			     struct extent_buffer *buf,
385 			     struct extent_buffer *parent, int parent_slot,
386 			     struct extent_buffer **cow_ret,
387 			     u64 search_start, u64 empty_size)
388 {
389 	struct btrfs_disk_key disk_key;
390 	struct extent_buffer *cow;
391 	int level;
392 	int last_ref = 0;
393 	int unlock_orig = 0;
394 	u64 parent_start;
395 
396 	if (*cow_ret == buf)
397 		unlock_orig = 1;
398 
399 	btrfs_assert_tree_locked(buf);
400 
401 	WARN_ON(root->ref_cows && trans->transid !=
402 		root->fs_info->running_transaction->transid);
403 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
404 
405 	level = btrfs_header_level(buf);
406 
407 	if (level == 0)
408 		btrfs_item_key(buf, &disk_key, 0);
409 	else
410 		btrfs_node_key(buf, &disk_key, 0);
411 
412 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
413 		if (parent)
414 			parent_start = parent->start;
415 		else
416 			parent_start = 0;
417 	} else
418 		parent_start = 0;
419 
420 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
421 				     root->root_key.objectid, &disk_key,
422 				     level, search_start, empty_size);
423 	if (IS_ERR(cow))
424 		return PTR_ERR(cow);
425 
426 	/* cow is set to blocking by btrfs_init_new_buffer */
427 
428 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
429 	btrfs_set_header_bytenr(cow, cow->start);
430 	btrfs_set_header_generation(cow, trans->transid);
431 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
432 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
433 				     BTRFS_HEADER_FLAG_RELOC);
434 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
435 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
436 	else
437 		btrfs_set_header_owner(cow, root->root_key.objectid);
438 
439 	write_extent_buffer(cow, root->fs_info->fsid,
440 			    (unsigned long)btrfs_header_fsid(cow),
441 			    BTRFS_FSID_SIZE);
442 
443 	update_ref_for_cow(trans, root, buf, cow, &last_ref);
444 
445 	if (root->ref_cows)
446 		btrfs_reloc_cow_block(trans, root, buf, cow);
447 
448 	if (buf == root->node) {
449 		WARN_ON(parent && parent != buf);
450 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
451 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
452 			parent_start = buf->start;
453 		else
454 			parent_start = 0;
455 
456 		extent_buffer_get(cow);
457 		rcu_assign_pointer(root->node, cow);
458 
459 		btrfs_free_tree_block(trans, root, buf, parent_start,
460 				      last_ref);
461 		free_extent_buffer(buf);
462 		add_root_to_dirty_list(root);
463 	} else {
464 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
465 			parent_start = parent->start;
466 		else
467 			parent_start = 0;
468 
469 		WARN_ON(trans->transid != btrfs_header_generation(parent));
470 		btrfs_set_node_blockptr(parent, parent_slot,
471 					cow->start);
472 		btrfs_set_node_ptr_generation(parent, parent_slot,
473 					      trans->transid);
474 		btrfs_mark_buffer_dirty(parent);
475 		btrfs_free_tree_block(trans, root, buf, parent_start,
476 				      last_ref);
477 	}
478 	if (unlock_orig)
479 		btrfs_tree_unlock(buf);
480 	free_extent_buffer(buf);
481 	btrfs_mark_buffer_dirty(cow);
482 	*cow_ret = cow;
483 	return 0;
484 }
485 
486 static inline int should_cow_block(struct btrfs_trans_handle *trans,
487 				   struct btrfs_root *root,
488 				   struct extent_buffer *buf)
489 {
490 	if (btrfs_header_generation(buf) == trans->transid &&
491 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
492 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
493 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
494 		return 0;
495 	return 1;
496 }
497 
498 /*
499  * cows a single block, see __btrfs_cow_block for the real work.
500  * This version of it has extra checks so that a block isn't cow'd more than
501  * once per transaction, as long as it hasn't been written yet
502  */
503 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
504 		    struct btrfs_root *root, struct extent_buffer *buf,
505 		    struct extent_buffer *parent, int parent_slot,
506 		    struct extent_buffer **cow_ret)
507 {
508 	u64 search_start;
509 	int ret;
510 
511 	if (trans->transaction != root->fs_info->running_transaction) {
512 		printk(KERN_CRIT "trans %llu running %llu\n",
513 		       (unsigned long long)trans->transid,
514 		       (unsigned long long)
515 		       root->fs_info->running_transaction->transid);
516 		WARN_ON(1);
517 	}
518 	if (trans->transid != root->fs_info->generation) {
519 		printk(KERN_CRIT "trans %llu running %llu\n",
520 		       (unsigned long long)trans->transid,
521 		       (unsigned long long)root->fs_info->generation);
522 		WARN_ON(1);
523 	}
524 
525 	if (!should_cow_block(trans, root, buf)) {
526 		*cow_ret = buf;
527 		return 0;
528 	}
529 
530 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
531 
532 	if (parent)
533 		btrfs_set_lock_blocking(parent);
534 	btrfs_set_lock_blocking(buf);
535 
536 	ret = __btrfs_cow_block(trans, root, buf, parent,
537 				 parent_slot, cow_ret, search_start, 0);
538 
539 	trace_btrfs_cow_block(root, buf, *cow_ret);
540 
541 	return ret;
542 }
543 
544 /*
545  * helper function for defrag to decide if two blocks pointed to by a
546  * node are actually close by
547  */
548 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
549 {
550 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
551 		return 1;
552 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
553 		return 1;
554 	return 0;
555 }
556 
557 /*
558  * compare two keys in a memcmp fashion
559  */
560 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
561 {
562 	struct btrfs_key k1;
563 
564 	btrfs_disk_key_to_cpu(&k1, disk);
565 
566 	return btrfs_comp_cpu_keys(&k1, k2);
567 }
568 
569 /*
570  * same as comp_keys only with two btrfs_key's
571  */
572 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
573 {
574 	if (k1->objectid > k2->objectid)
575 		return 1;
576 	if (k1->objectid < k2->objectid)
577 		return -1;
578 	if (k1->type > k2->type)
579 		return 1;
580 	if (k1->type < k2->type)
581 		return -1;
582 	if (k1->offset > k2->offset)
583 		return 1;
584 	if (k1->offset < k2->offset)
585 		return -1;
586 	return 0;
587 }
588 
589 /*
590  * this is used by the defrag code to go through all the
591  * leaves pointed to by a node and reallocate them so that
592  * disk order is close to key order
593  */
594 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
595 		       struct btrfs_root *root, struct extent_buffer *parent,
596 		       int start_slot, int cache_only, u64 *last_ret,
597 		       struct btrfs_key *progress)
598 {
599 	struct extent_buffer *cur;
600 	u64 blocknr;
601 	u64 gen;
602 	u64 search_start = *last_ret;
603 	u64 last_block = 0;
604 	u64 other;
605 	u32 parent_nritems;
606 	int end_slot;
607 	int i;
608 	int err = 0;
609 	int parent_level;
610 	int uptodate;
611 	u32 blocksize;
612 	int progress_passed = 0;
613 	struct btrfs_disk_key disk_key;
614 
615 	parent_level = btrfs_header_level(parent);
616 	if (cache_only && parent_level != 1)
617 		return 0;
618 
619 	if (trans->transaction != root->fs_info->running_transaction)
620 		WARN_ON(1);
621 	if (trans->transid != root->fs_info->generation)
622 		WARN_ON(1);
623 
624 	parent_nritems = btrfs_header_nritems(parent);
625 	blocksize = btrfs_level_size(root, parent_level - 1);
626 	end_slot = parent_nritems;
627 
628 	if (parent_nritems == 1)
629 		return 0;
630 
631 	btrfs_set_lock_blocking(parent);
632 
633 	for (i = start_slot; i < end_slot; i++) {
634 		int close = 1;
635 
636 		if (!parent->map_token) {
637 			map_extent_buffer(parent,
638 					btrfs_node_key_ptr_offset(i),
639 					sizeof(struct btrfs_key_ptr),
640 					&parent->map_token, &parent->kaddr,
641 					&parent->map_start, &parent->map_len,
642 					KM_USER1);
643 		}
644 		btrfs_node_key(parent, &disk_key, i);
645 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
646 			continue;
647 
648 		progress_passed = 1;
649 		blocknr = btrfs_node_blockptr(parent, i);
650 		gen = btrfs_node_ptr_generation(parent, i);
651 		if (last_block == 0)
652 			last_block = blocknr;
653 
654 		if (i > 0) {
655 			other = btrfs_node_blockptr(parent, i - 1);
656 			close = close_blocks(blocknr, other, blocksize);
657 		}
658 		if (!close && i < end_slot - 2) {
659 			other = btrfs_node_blockptr(parent, i + 1);
660 			close = close_blocks(blocknr, other, blocksize);
661 		}
662 		if (close) {
663 			last_block = blocknr;
664 			continue;
665 		}
666 		if (parent->map_token) {
667 			unmap_extent_buffer(parent, parent->map_token,
668 					    KM_USER1);
669 			parent->map_token = NULL;
670 		}
671 
672 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
673 		if (cur)
674 			uptodate = btrfs_buffer_uptodate(cur, gen);
675 		else
676 			uptodate = 0;
677 		if (!cur || !uptodate) {
678 			if (cache_only) {
679 				free_extent_buffer(cur);
680 				continue;
681 			}
682 			if (!cur) {
683 				cur = read_tree_block(root, blocknr,
684 							 blocksize, gen);
685 				if (!cur)
686 					return -EIO;
687 			} else if (!uptodate) {
688 				btrfs_read_buffer(cur, gen);
689 			}
690 		}
691 		if (search_start == 0)
692 			search_start = last_block;
693 
694 		btrfs_tree_lock(cur);
695 		btrfs_set_lock_blocking(cur);
696 		err = __btrfs_cow_block(trans, root, cur, parent, i,
697 					&cur, search_start,
698 					min(16 * blocksize,
699 					    (end_slot - i) * blocksize));
700 		if (err) {
701 			btrfs_tree_unlock(cur);
702 			free_extent_buffer(cur);
703 			break;
704 		}
705 		search_start = cur->start;
706 		last_block = cur->start;
707 		*last_ret = search_start;
708 		btrfs_tree_unlock(cur);
709 		free_extent_buffer(cur);
710 	}
711 	if (parent->map_token) {
712 		unmap_extent_buffer(parent, parent->map_token,
713 				    KM_USER1);
714 		parent->map_token = NULL;
715 	}
716 	return err;
717 }
718 
719 /*
720  * The leaf data grows from end-to-front in the node.
721  * this returns the address of the start of the last item,
722  * which is the stop of the leaf data stack
723  */
724 static inline unsigned int leaf_data_end(struct btrfs_root *root,
725 					 struct extent_buffer *leaf)
726 {
727 	u32 nr = btrfs_header_nritems(leaf);
728 	if (nr == 0)
729 		return BTRFS_LEAF_DATA_SIZE(root);
730 	return btrfs_item_offset_nr(leaf, nr - 1);
731 }
732 
733 
734 /*
735  * search for key in the extent_buffer.  The items start at offset p,
736  * and they are item_size apart.  There are 'max' items in p.
737  *
738  * the slot in the array is returned via slot, and it points to
739  * the place where you would insert key if it is not found in
740  * the array.
741  *
742  * slot may point to max if the key is bigger than all of the keys
743  */
744 static noinline int generic_bin_search(struct extent_buffer *eb,
745 				       unsigned long p,
746 				       int item_size, struct btrfs_key *key,
747 				       int max, int *slot)
748 {
749 	int low = 0;
750 	int high = max;
751 	int mid;
752 	int ret;
753 	struct btrfs_disk_key *tmp = NULL;
754 	struct btrfs_disk_key unaligned;
755 	unsigned long offset;
756 	char *map_token = NULL;
757 	char *kaddr = NULL;
758 	unsigned long map_start = 0;
759 	unsigned long map_len = 0;
760 	int err;
761 
762 	while (low < high) {
763 		mid = (low + high) / 2;
764 		offset = p + mid * item_size;
765 
766 		if (!map_token || offset < map_start ||
767 		    (offset + sizeof(struct btrfs_disk_key)) >
768 		    map_start + map_len) {
769 			if (map_token) {
770 				unmap_extent_buffer(eb, map_token, KM_USER0);
771 				map_token = NULL;
772 			}
773 
774 			err = map_private_extent_buffer(eb, offset,
775 						sizeof(struct btrfs_disk_key),
776 						&map_token, &kaddr,
777 						&map_start, &map_len, KM_USER0);
778 
779 			if (!err) {
780 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
781 							map_start);
782 			} else {
783 				read_extent_buffer(eb, &unaligned,
784 						   offset, sizeof(unaligned));
785 				tmp = &unaligned;
786 			}
787 
788 		} else {
789 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
790 							map_start);
791 		}
792 		ret = comp_keys(tmp, key);
793 
794 		if (ret < 0)
795 			low = mid + 1;
796 		else if (ret > 0)
797 			high = mid;
798 		else {
799 			*slot = mid;
800 			if (map_token)
801 				unmap_extent_buffer(eb, map_token, KM_USER0);
802 			return 0;
803 		}
804 	}
805 	*slot = low;
806 	if (map_token)
807 		unmap_extent_buffer(eb, map_token, KM_USER0);
808 	return 1;
809 }
810 
811 /*
812  * simple bin_search frontend that does the right thing for
813  * leaves vs nodes
814  */
815 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
816 		      int level, int *slot)
817 {
818 	if (level == 0) {
819 		return generic_bin_search(eb,
820 					  offsetof(struct btrfs_leaf, items),
821 					  sizeof(struct btrfs_item),
822 					  key, btrfs_header_nritems(eb),
823 					  slot);
824 	} else {
825 		return generic_bin_search(eb,
826 					  offsetof(struct btrfs_node, ptrs),
827 					  sizeof(struct btrfs_key_ptr),
828 					  key, btrfs_header_nritems(eb),
829 					  slot);
830 	}
831 	return -1;
832 }
833 
834 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
835 		     int level, int *slot)
836 {
837 	return bin_search(eb, key, level, slot);
838 }
839 
840 static void root_add_used(struct btrfs_root *root, u32 size)
841 {
842 	spin_lock(&root->accounting_lock);
843 	btrfs_set_root_used(&root->root_item,
844 			    btrfs_root_used(&root->root_item) + size);
845 	spin_unlock(&root->accounting_lock);
846 }
847 
848 static void root_sub_used(struct btrfs_root *root, u32 size)
849 {
850 	spin_lock(&root->accounting_lock);
851 	btrfs_set_root_used(&root->root_item,
852 			    btrfs_root_used(&root->root_item) - size);
853 	spin_unlock(&root->accounting_lock);
854 }
855 
856 /* given a node and slot number, this reads the blocks it points to.  The
857  * extent buffer is returned with a reference taken (but unlocked).
858  * NULL is returned on error.
859  */
860 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
861 				   struct extent_buffer *parent, int slot)
862 {
863 	int level = btrfs_header_level(parent);
864 	if (slot < 0)
865 		return NULL;
866 	if (slot >= btrfs_header_nritems(parent))
867 		return NULL;
868 
869 	BUG_ON(level == 0);
870 
871 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
872 		       btrfs_level_size(root, level - 1),
873 		       btrfs_node_ptr_generation(parent, slot));
874 }
875 
876 /*
877  * node level balancing, used to make sure nodes are in proper order for
878  * item deletion.  We balance from the top down, so we have to make sure
879  * that a deletion won't leave an node completely empty later on.
880  */
881 static noinline int balance_level(struct btrfs_trans_handle *trans,
882 			 struct btrfs_root *root,
883 			 struct btrfs_path *path, int level)
884 {
885 	struct extent_buffer *right = NULL;
886 	struct extent_buffer *mid;
887 	struct extent_buffer *left = NULL;
888 	struct extent_buffer *parent = NULL;
889 	int ret = 0;
890 	int wret;
891 	int pslot;
892 	int orig_slot = path->slots[level];
893 	u64 orig_ptr;
894 
895 	if (level == 0)
896 		return 0;
897 
898 	mid = path->nodes[level];
899 
900 	WARN_ON(!path->locks[level]);
901 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
902 
903 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
904 
905 	if (level < BTRFS_MAX_LEVEL - 1)
906 		parent = path->nodes[level + 1];
907 	pslot = path->slots[level + 1];
908 
909 	/*
910 	 * deal with the case where there is only one pointer in the root
911 	 * by promoting the node below to a root
912 	 */
913 	if (!parent) {
914 		struct extent_buffer *child;
915 
916 		if (btrfs_header_nritems(mid) != 1)
917 			return 0;
918 
919 		/* promote the child to a root */
920 		child = read_node_slot(root, mid, 0);
921 		BUG_ON(!child);
922 		btrfs_tree_lock(child);
923 		btrfs_set_lock_blocking(child);
924 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
925 		if (ret) {
926 			btrfs_tree_unlock(child);
927 			free_extent_buffer(child);
928 			goto enospc;
929 		}
930 
931 		rcu_assign_pointer(root->node, child);
932 
933 		add_root_to_dirty_list(root);
934 		btrfs_tree_unlock(child);
935 
936 		path->locks[level] = 0;
937 		path->nodes[level] = NULL;
938 		clean_tree_block(trans, root, mid);
939 		btrfs_tree_unlock(mid);
940 		/* once for the path */
941 		free_extent_buffer(mid);
942 
943 		root_sub_used(root, mid->len);
944 		btrfs_free_tree_block(trans, root, mid, 0, 1);
945 		/* once for the root ptr */
946 		free_extent_buffer(mid);
947 		return 0;
948 	}
949 	if (btrfs_header_nritems(mid) >
950 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
951 		return 0;
952 
953 	btrfs_header_nritems(mid);
954 
955 	left = read_node_slot(root, parent, pslot - 1);
956 	if (left) {
957 		btrfs_tree_lock(left);
958 		btrfs_set_lock_blocking(left);
959 		wret = btrfs_cow_block(trans, root, left,
960 				       parent, pslot - 1, &left);
961 		if (wret) {
962 			ret = wret;
963 			goto enospc;
964 		}
965 	}
966 	right = read_node_slot(root, parent, pslot + 1);
967 	if (right) {
968 		btrfs_tree_lock(right);
969 		btrfs_set_lock_blocking(right);
970 		wret = btrfs_cow_block(trans, root, right,
971 				       parent, pslot + 1, &right);
972 		if (wret) {
973 			ret = wret;
974 			goto enospc;
975 		}
976 	}
977 
978 	/* first, try to make some room in the middle buffer */
979 	if (left) {
980 		orig_slot += btrfs_header_nritems(left);
981 		wret = push_node_left(trans, root, left, mid, 1);
982 		if (wret < 0)
983 			ret = wret;
984 		btrfs_header_nritems(mid);
985 	}
986 
987 	/*
988 	 * then try to empty the right most buffer into the middle
989 	 */
990 	if (right) {
991 		wret = push_node_left(trans, root, mid, right, 1);
992 		if (wret < 0 && wret != -ENOSPC)
993 			ret = wret;
994 		if (btrfs_header_nritems(right) == 0) {
995 			clean_tree_block(trans, root, right);
996 			btrfs_tree_unlock(right);
997 			wret = del_ptr(trans, root, path, level + 1, pslot +
998 				       1);
999 			if (wret)
1000 				ret = wret;
1001 			root_sub_used(root, right->len);
1002 			btrfs_free_tree_block(trans, root, right, 0, 1);
1003 			free_extent_buffer(right);
1004 			right = NULL;
1005 		} else {
1006 			struct btrfs_disk_key right_key;
1007 			btrfs_node_key(right, &right_key, 0);
1008 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1009 			btrfs_mark_buffer_dirty(parent);
1010 		}
1011 	}
1012 	if (btrfs_header_nritems(mid) == 1) {
1013 		/*
1014 		 * we're not allowed to leave a node with one item in the
1015 		 * tree during a delete.  A deletion from lower in the tree
1016 		 * could try to delete the only pointer in this node.
1017 		 * So, pull some keys from the left.
1018 		 * There has to be a left pointer at this point because
1019 		 * otherwise we would have pulled some pointers from the
1020 		 * right
1021 		 */
1022 		BUG_ON(!left);
1023 		wret = balance_node_right(trans, root, mid, left);
1024 		if (wret < 0) {
1025 			ret = wret;
1026 			goto enospc;
1027 		}
1028 		if (wret == 1) {
1029 			wret = push_node_left(trans, root, left, mid, 1);
1030 			if (wret < 0)
1031 				ret = wret;
1032 		}
1033 		BUG_ON(wret == 1);
1034 	}
1035 	if (btrfs_header_nritems(mid) == 0) {
1036 		clean_tree_block(trans, root, mid);
1037 		btrfs_tree_unlock(mid);
1038 		wret = del_ptr(trans, root, path, level + 1, pslot);
1039 		if (wret)
1040 			ret = wret;
1041 		root_sub_used(root, mid->len);
1042 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1043 		free_extent_buffer(mid);
1044 		mid = NULL;
1045 	} else {
1046 		/* update the parent key to reflect our changes */
1047 		struct btrfs_disk_key mid_key;
1048 		btrfs_node_key(mid, &mid_key, 0);
1049 		btrfs_set_node_key(parent, &mid_key, pslot);
1050 		btrfs_mark_buffer_dirty(parent);
1051 	}
1052 
1053 	/* update the path */
1054 	if (left) {
1055 		if (btrfs_header_nritems(left) > orig_slot) {
1056 			extent_buffer_get(left);
1057 			/* left was locked after cow */
1058 			path->nodes[level] = left;
1059 			path->slots[level + 1] -= 1;
1060 			path->slots[level] = orig_slot;
1061 			if (mid) {
1062 				btrfs_tree_unlock(mid);
1063 				free_extent_buffer(mid);
1064 			}
1065 		} else {
1066 			orig_slot -= btrfs_header_nritems(left);
1067 			path->slots[level] = orig_slot;
1068 		}
1069 	}
1070 	/* double check we haven't messed things up */
1071 	if (orig_ptr !=
1072 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1073 		BUG();
1074 enospc:
1075 	if (right) {
1076 		btrfs_tree_unlock(right);
1077 		free_extent_buffer(right);
1078 	}
1079 	if (left) {
1080 		if (path->nodes[level] != left)
1081 			btrfs_tree_unlock(left);
1082 		free_extent_buffer(left);
1083 	}
1084 	return ret;
1085 }
1086 
1087 /* Node balancing for insertion.  Here we only split or push nodes around
1088  * when they are completely full.  This is also done top down, so we
1089  * have to be pessimistic.
1090  */
1091 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1092 					  struct btrfs_root *root,
1093 					  struct btrfs_path *path, int level)
1094 {
1095 	struct extent_buffer *right = NULL;
1096 	struct extent_buffer *mid;
1097 	struct extent_buffer *left = NULL;
1098 	struct extent_buffer *parent = NULL;
1099 	int ret = 0;
1100 	int wret;
1101 	int pslot;
1102 	int orig_slot = path->slots[level];
1103 
1104 	if (level == 0)
1105 		return 1;
1106 
1107 	mid = path->nodes[level];
1108 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1109 
1110 	if (level < BTRFS_MAX_LEVEL - 1)
1111 		parent = path->nodes[level + 1];
1112 	pslot = path->slots[level + 1];
1113 
1114 	if (!parent)
1115 		return 1;
1116 
1117 	left = read_node_slot(root, parent, pslot - 1);
1118 
1119 	/* first, try to make some room in the middle buffer */
1120 	if (left) {
1121 		u32 left_nr;
1122 
1123 		btrfs_tree_lock(left);
1124 		btrfs_set_lock_blocking(left);
1125 
1126 		left_nr = btrfs_header_nritems(left);
1127 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1128 			wret = 1;
1129 		} else {
1130 			ret = btrfs_cow_block(trans, root, left, parent,
1131 					      pslot - 1, &left);
1132 			if (ret)
1133 				wret = 1;
1134 			else {
1135 				wret = push_node_left(trans, root,
1136 						      left, mid, 0);
1137 			}
1138 		}
1139 		if (wret < 0)
1140 			ret = wret;
1141 		if (wret == 0) {
1142 			struct btrfs_disk_key disk_key;
1143 			orig_slot += left_nr;
1144 			btrfs_node_key(mid, &disk_key, 0);
1145 			btrfs_set_node_key(parent, &disk_key, pslot);
1146 			btrfs_mark_buffer_dirty(parent);
1147 			if (btrfs_header_nritems(left) > orig_slot) {
1148 				path->nodes[level] = left;
1149 				path->slots[level + 1] -= 1;
1150 				path->slots[level] = orig_slot;
1151 				btrfs_tree_unlock(mid);
1152 				free_extent_buffer(mid);
1153 			} else {
1154 				orig_slot -=
1155 					btrfs_header_nritems(left);
1156 				path->slots[level] = orig_slot;
1157 				btrfs_tree_unlock(left);
1158 				free_extent_buffer(left);
1159 			}
1160 			return 0;
1161 		}
1162 		btrfs_tree_unlock(left);
1163 		free_extent_buffer(left);
1164 	}
1165 	right = read_node_slot(root, parent, pslot + 1);
1166 
1167 	/*
1168 	 * then try to empty the right most buffer into the middle
1169 	 */
1170 	if (right) {
1171 		u32 right_nr;
1172 
1173 		btrfs_tree_lock(right);
1174 		btrfs_set_lock_blocking(right);
1175 
1176 		right_nr = btrfs_header_nritems(right);
1177 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1178 			wret = 1;
1179 		} else {
1180 			ret = btrfs_cow_block(trans, root, right,
1181 					      parent, pslot + 1,
1182 					      &right);
1183 			if (ret)
1184 				wret = 1;
1185 			else {
1186 				wret = balance_node_right(trans, root,
1187 							  right, mid);
1188 			}
1189 		}
1190 		if (wret < 0)
1191 			ret = wret;
1192 		if (wret == 0) {
1193 			struct btrfs_disk_key disk_key;
1194 
1195 			btrfs_node_key(right, &disk_key, 0);
1196 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1197 			btrfs_mark_buffer_dirty(parent);
1198 
1199 			if (btrfs_header_nritems(mid) <= orig_slot) {
1200 				path->nodes[level] = right;
1201 				path->slots[level + 1] += 1;
1202 				path->slots[level] = orig_slot -
1203 					btrfs_header_nritems(mid);
1204 				btrfs_tree_unlock(mid);
1205 				free_extent_buffer(mid);
1206 			} else {
1207 				btrfs_tree_unlock(right);
1208 				free_extent_buffer(right);
1209 			}
1210 			return 0;
1211 		}
1212 		btrfs_tree_unlock(right);
1213 		free_extent_buffer(right);
1214 	}
1215 	return 1;
1216 }
1217 
1218 /*
1219  * readahead one full node of leaves, finding things that are close
1220  * to the block in 'slot', and triggering ra on them.
1221  */
1222 static void reada_for_search(struct btrfs_root *root,
1223 			     struct btrfs_path *path,
1224 			     int level, int slot, u64 objectid)
1225 {
1226 	struct extent_buffer *node;
1227 	struct btrfs_disk_key disk_key;
1228 	u32 nritems;
1229 	u64 search;
1230 	u64 target;
1231 	u64 nread = 0;
1232 	int direction = path->reada;
1233 	struct extent_buffer *eb;
1234 	u32 nr;
1235 	u32 blocksize;
1236 	u32 nscan = 0;
1237 
1238 	if (level != 1)
1239 		return;
1240 
1241 	if (!path->nodes[level])
1242 		return;
1243 
1244 	node = path->nodes[level];
1245 
1246 	search = btrfs_node_blockptr(node, slot);
1247 	blocksize = btrfs_level_size(root, level - 1);
1248 	eb = btrfs_find_tree_block(root, search, blocksize);
1249 	if (eb) {
1250 		free_extent_buffer(eb);
1251 		return;
1252 	}
1253 
1254 	target = search;
1255 
1256 	nritems = btrfs_header_nritems(node);
1257 	nr = slot;
1258 	while (1) {
1259 		if (direction < 0) {
1260 			if (nr == 0)
1261 				break;
1262 			nr--;
1263 		} else if (direction > 0) {
1264 			nr++;
1265 			if (nr >= nritems)
1266 				break;
1267 		}
1268 		if (path->reada < 0 && objectid) {
1269 			btrfs_node_key(node, &disk_key, nr);
1270 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1271 				break;
1272 		}
1273 		search = btrfs_node_blockptr(node, nr);
1274 		if ((search <= target && target - search <= 65536) ||
1275 		    (search > target && search - target <= 65536)) {
1276 			readahead_tree_block(root, search, blocksize,
1277 				     btrfs_node_ptr_generation(node, nr));
1278 			nread += blocksize;
1279 		}
1280 		nscan++;
1281 		if ((nread > 65536 || nscan > 32))
1282 			break;
1283 	}
1284 }
1285 
1286 /*
1287  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1288  * cache
1289  */
1290 static noinline int reada_for_balance(struct btrfs_root *root,
1291 				      struct btrfs_path *path, int level)
1292 {
1293 	int slot;
1294 	int nritems;
1295 	struct extent_buffer *parent;
1296 	struct extent_buffer *eb;
1297 	u64 gen;
1298 	u64 block1 = 0;
1299 	u64 block2 = 0;
1300 	int ret = 0;
1301 	int blocksize;
1302 
1303 	parent = path->nodes[level + 1];
1304 	if (!parent)
1305 		return 0;
1306 
1307 	nritems = btrfs_header_nritems(parent);
1308 	slot = path->slots[level + 1];
1309 	blocksize = btrfs_level_size(root, level);
1310 
1311 	if (slot > 0) {
1312 		block1 = btrfs_node_blockptr(parent, slot - 1);
1313 		gen = btrfs_node_ptr_generation(parent, slot - 1);
1314 		eb = btrfs_find_tree_block(root, block1, blocksize);
1315 		if (eb && btrfs_buffer_uptodate(eb, gen))
1316 			block1 = 0;
1317 		free_extent_buffer(eb);
1318 	}
1319 	if (slot + 1 < nritems) {
1320 		block2 = btrfs_node_blockptr(parent, slot + 1);
1321 		gen = btrfs_node_ptr_generation(parent, slot + 1);
1322 		eb = btrfs_find_tree_block(root, block2, blocksize);
1323 		if (eb && btrfs_buffer_uptodate(eb, gen))
1324 			block2 = 0;
1325 		free_extent_buffer(eb);
1326 	}
1327 	if (block1 || block2) {
1328 		ret = -EAGAIN;
1329 
1330 		/* release the whole path */
1331 		btrfs_release_path(root, path);
1332 
1333 		/* read the blocks */
1334 		if (block1)
1335 			readahead_tree_block(root, block1, blocksize, 0);
1336 		if (block2)
1337 			readahead_tree_block(root, block2, blocksize, 0);
1338 
1339 		if (block1) {
1340 			eb = read_tree_block(root, block1, blocksize, 0);
1341 			free_extent_buffer(eb);
1342 		}
1343 		if (block2) {
1344 			eb = read_tree_block(root, block2, blocksize, 0);
1345 			free_extent_buffer(eb);
1346 		}
1347 	}
1348 	return ret;
1349 }
1350 
1351 
1352 /*
1353  * when we walk down the tree, it is usually safe to unlock the higher layers
1354  * in the tree.  The exceptions are when our path goes through slot 0, because
1355  * operations on the tree might require changing key pointers higher up in the
1356  * tree.
1357  *
1358  * callers might also have set path->keep_locks, which tells this code to keep
1359  * the lock if the path points to the last slot in the block.  This is part of
1360  * walking through the tree, and selecting the next slot in the higher block.
1361  *
1362  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1363  * if lowest_unlock is 1, level 0 won't be unlocked
1364  */
1365 static noinline void unlock_up(struct btrfs_path *path, int level,
1366 			       int lowest_unlock)
1367 {
1368 	int i;
1369 	int skip_level = level;
1370 	int no_skips = 0;
1371 	struct extent_buffer *t;
1372 
1373 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1374 		if (!path->nodes[i])
1375 			break;
1376 		if (!path->locks[i])
1377 			break;
1378 		if (!no_skips && path->slots[i] == 0) {
1379 			skip_level = i + 1;
1380 			continue;
1381 		}
1382 		if (!no_skips && path->keep_locks) {
1383 			u32 nritems;
1384 			t = path->nodes[i];
1385 			nritems = btrfs_header_nritems(t);
1386 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
1387 				skip_level = i + 1;
1388 				continue;
1389 			}
1390 		}
1391 		if (skip_level < i && i >= lowest_unlock)
1392 			no_skips = 1;
1393 
1394 		t = path->nodes[i];
1395 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1396 			btrfs_tree_unlock(t);
1397 			path->locks[i] = 0;
1398 		}
1399 	}
1400 }
1401 
1402 /*
1403  * This releases any locks held in the path starting at level and
1404  * going all the way up to the root.
1405  *
1406  * btrfs_search_slot will keep the lock held on higher nodes in a few
1407  * corner cases, such as COW of the block at slot zero in the node.  This
1408  * ignores those rules, and it should only be called when there are no
1409  * more updates to be done higher up in the tree.
1410  */
1411 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1412 {
1413 	int i;
1414 
1415 	if (path->keep_locks)
1416 		return;
1417 
1418 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1419 		if (!path->nodes[i])
1420 			continue;
1421 		if (!path->locks[i])
1422 			continue;
1423 		btrfs_tree_unlock(path->nodes[i]);
1424 		path->locks[i] = 0;
1425 	}
1426 }
1427 
1428 /*
1429  * helper function for btrfs_search_slot.  The goal is to find a block
1430  * in cache without setting the path to blocking.  If we find the block
1431  * we return zero and the path is unchanged.
1432  *
1433  * If we can't find the block, we set the path blocking and do some
1434  * reada.  -EAGAIN is returned and the search must be repeated.
1435  */
1436 static int
1437 read_block_for_search(struct btrfs_trans_handle *trans,
1438 		       struct btrfs_root *root, struct btrfs_path *p,
1439 		       struct extent_buffer **eb_ret, int level, int slot,
1440 		       struct btrfs_key *key)
1441 {
1442 	u64 blocknr;
1443 	u64 gen;
1444 	u32 blocksize;
1445 	struct extent_buffer *b = *eb_ret;
1446 	struct extent_buffer *tmp;
1447 	int ret;
1448 
1449 	blocknr = btrfs_node_blockptr(b, slot);
1450 	gen = btrfs_node_ptr_generation(b, slot);
1451 	blocksize = btrfs_level_size(root, level - 1);
1452 
1453 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1454 	if (tmp) {
1455 		if (btrfs_buffer_uptodate(tmp, 0)) {
1456 			if (btrfs_buffer_uptodate(tmp, gen)) {
1457 				/*
1458 				 * we found an up to date block without
1459 				 * sleeping, return
1460 				 * right away
1461 				 */
1462 				*eb_ret = tmp;
1463 				return 0;
1464 			}
1465 			/* the pages were up to date, but we failed
1466 			 * the generation number check.  Do a full
1467 			 * read for the generation number that is correct.
1468 			 * We must do this without dropping locks so
1469 			 * we can trust our generation number
1470 			 */
1471 			free_extent_buffer(tmp);
1472 			tmp = read_tree_block(root, blocknr, blocksize, gen);
1473 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1474 				*eb_ret = tmp;
1475 				return 0;
1476 			}
1477 			free_extent_buffer(tmp);
1478 			btrfs_release_path(NULL, p);
1479 			return -EIO;
1480 		}
1481 	}
1482 
1483 	/*
1484 	 * reduce lock contention at high levels
1485 	 * of the btree by dropping locks before
1486 	 * we read.  Don't release the lock on the current
1487 	 * level because we need to walk this node to figure
1488 	 * out which blocks to read.
1489 	 */
1490 	btrfs_unlock_up_safe(p, level + 1);
1491 	btrfs_set_path_blocking(p);
1492 
1493 	free_extent_buffer(tmp);
1494 	if (p->reada)
1495 		reada_for_search(root, p, level, slot, key->objectid);
1496 
1497 	btrfs_release_path(NULL, p);
1498 
1499 	ret = -EAGAIN;
1500 	tmp = read_tree_block(root, blocknr, blocksize, 0);
1501 	if (tmp) {
1502 		/*
1503 		 * If the read above didn't mark this buffer up to date,
1504 		 * it will never end up being up to date.  Set ret to EIO now
1505 		 * and give up so that our caller doesn't loop forever
1506 		 * on our EAGAINs.
1507 		 */
1508 		if (!btrfs_buffer_uptodate(tmp, 0))
1509 			ret = -EIO;
1510 		free_extent_buffer(tmp);
1511 	}
1512 	return ret;
1513 }
1514 
1515 /*
1516  * helper function for btrfs_search_slot.  This does all of the checks
1517  * for node-level blocks and does any balancing required based on
1518  * the ins_len.
1519  *
1520  * If no extra work was required, zero is returned.  If we had to
1521  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1522  * start over
1523  */
1524 static int
1525 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1526 		       struct btrfs_root *root, struct btrfs_path *p,
1527 		       struct extent_buffer *b, int level, int ins_len)
1528 {
1529 	int ret;
1530 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1531 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1532 		int sret;
1533 
1534 		sret = reada_for_balance(root, p, level);
1535 		if (sret)
1536 			goto again;
1537 
1538 		btrfs_set_path_blocking(p);
1539 		sret = split_node(trans, root, p, level);
1540 		btrfs_clear_path_blocking(p, NULL);
1541 
1542 		BUG_ON(sret > 0);
1543 		if (sret) {
1544 			ret = sret;
1545 			goto done;
1546 		}
1547 		b = p->nodes[level];
1548 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1549 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
1550 		int sret;
1551 
1552 		sret = reada_for_balance(root, p, level);
1553 		if (sret)
1554 			goto again;
1555 
1556 		btrfs_set_path_blocking(p);
1557 		sret = balance_level(trans, root, p, level);
1558 		btrfs_clear_path_blocking(p, NULL);
1559 
1560 		if (sret) {
1561 			ret = sret;
1562 			goto done;
1563 		}
1564 		b = p->nodes[level];
1565 		if (!b) {
1566 			btrfs_release_path(NULL, p);
1567 			goto again;
1568 		}
1569 		BUG_ON(btrfs_header_nritems(b) == 1);
1570 	}
1571 	return 0;
1572 
1573 again:
1574 	ret = -EAGAIN;
1575 done:
1576 	return ret;
1577 }
1578 
1579 /*
1580  * look for key in the tree.  path is filled in with nodes along the way
1581  * if key is found, we return zero and you can find the item in the leaf
1582  * level of the path (level 0)
1583  *
1584  * If the key isn't found, the path points to the slot where it should
1585  * be inserted, and 1 is returned.  If there are other errors during the
1586  * search a negative error number is returned.
1587  *
1588  * if ins_len > 0, nodes and leaves will be split as we walk down the
1589  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1590  * possible)
1591  */
1592 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1593 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
1594 		      ins_len, int cow)
1595 {
1596 	struct extent_buffer *b;
1597 	int slot;
1598 	int ret;
1599 	int err;
1600 	int level;
1601 	int lowest_unlock = 1;
1602 	u8 lowest_level = 0;
1603 
1604 	lowest_level = p->lowest_level;
1605 	WARN_ON(lowest_level && ins_len > 0);
1606 	WARN_ON(p->nodes[0] != NULL);
1607 
1608 	if (ins_len < 0)
1609 		lowest_unlock = 2;
1610 
1611 again:
1612 	if (p->search_commit_root) {
1613 		b = root->commit_root;
1614 		extent_buffer_get(b);
1615 		if (!p->skip_locking)
1616 			btrfs_tree_lock(b);
1617 	} else {
1618 		if (p->skip_locking)
1619 			b = btrfs_root_node(root);
1620 		else
1621 			b = btrfs_lock_root_node(root);
1622 	}
1623 
1624 	while (b) {
1625 		level = btrfs_header_level(b);
1626 
1627 		/*
1628 		 * setup the path here so we can release it under lock
1629 		 * contention with the cow code
1630 		 */
1631 		p->nodes[level] = b;
1632 		if (!p->skip_locking)
1633 			p->locks[level] = 1;
1634 
1635 		if (cow) {
1636 			/*
1637 			 * if we don't really need to cow this block
1638 			 * then we don't want to set the path blocking,
1639 			 * so we test it here
1640 			 */
1641 			if (!should_cow_block(trans, root, b))
1642 				goto cow_done;
1643 
1644 			btrfs_set_path_blocking(p);
1645 
1646 			err = btrfs_cow_block(trans, root, b,
1647 					      p->nodes[level + 1],
1648 					      p->slots[level + 1], &b);
1649 			if (err) {
1650 				ret = err;
1651 				goto done;
1652 			}
1653 		}
1654 cow_done:
1655 		BUG_ON(!cow && ins_len);
1656 		if (level != btrfs_header_level(b))
1657 			WARN_ON(1);
1658 		level = btrfs_header_level(b);
1659 
1660 		p->nodes[level] = b;
1661 		if (!p->skip_locking)
1662 			p->locks[level] = 1;
1663 
1664 		btrfs_clear_path_blocking(p, NULL);
1665 
1666 		/*
1667 		 * we have a lock on b and as long as we aren't changing
1668 		 * the tree, there is no way to for the items in b to change.
1669 		 * It is safe to drop the lock on our parent before we
1670 		 * go through the expensive btree search on b.
1671 		 *
1672 		 * If cow is true, then we might be changing slot zero,
1673 		 * which may require changing the parent.  So, we can't
1674 		 * drop the lock until after we know which slot we're
1675 		 * operating on.
1676 		 */
1677 		if (!cow)
1678 			btrfs_unlock_up_safe(p, level + 1);
1679 
1680 		ret = bin_search(b, key, level, &slot);
1681 
1682 		if (level != 0) {
1683 			int dec = 0;
1684 			if (ret && slot > 0) {
1685 				dec = 1;
1686 				slot -= 1;
1687 			}
1688 			p->slots[level] = slot;
1689 			err = setup_nodes_for_search(trans, root, p, b, level,
1690 						     ins_len);
1691 			if (err == -EAGAIN)
1692 				goto again;
1693 			if (err) {
1694 				ret = err;
1695 				goto done;
1696 			}
1697 			b = p->nodes[level];
1698 			slot = p->slots[level];
1699 
1700 			unlock_up(p, level, lowest_unlock);
1701 
1702 			if (level == lowest_level) {
1703 				if (dec)
1704 					p->slots[level]++;
1705 				goto done;
1706 			}
1707 
1708 			err = read_block_for_search(trans, root, p,
1709 						    &b, level, slot, key);
1710 			if (err == -EAGAIN)
1711 				goto again;
1712 			if (err) {
1713 				ret = err;
1714 				goto done;
1715 			}
1716 
1717 			if (!p->skip_locking) {
1718 				btrfs_clear_path_blocking(p, NULL);
1719 				err = btrfs_try_spin_lock(b);
1720 
1721 				if (!err) {
1722 					btrfs_set_path_blocking(p);
1723 					btrfs_tree_lock(b);
1724 					btrfs_clear_path_blocking(p, b);
1725 				}
1726 			}
1727 		} else {
1728 			p->slots[level] = slot;
1729 			if (ins_len > 0 &&
1730 			    btrfs_leaf_free_space(root, b) < ins_len) {
1731 				btrfs_set_path_blocking(p);
1732 				err = split_leaf(trans, root, key,
1733 						 p, ins_len, ret == 0);
1734 				btrfs_clear_path_blocking(p, NULL);
1735 
1736 				BUG_ON(err > 0);
1737 				if (err) {
1738 					ret = err;
1739 					goto done;
1740 				}
1741 			}
1742 			if (!p->search_for_split)
1743 				unlock_up(p, level, lowest_unlock);
1744 			goto done;
1745 		}
1746 	}
1747 	ret = 1;
1748 done:
1749 	/*
1750 	 * we don't really know what they plan on doing with the path
1751 	 * from here on, so for now just mark it as blocking
1752 	 */
1753 	if (!p->leave_spinning)
1754 		btrfs_set_path_blocking(p);
1755 	if (ret < 0)
1756 		btrfs_release_path(root, p);
1757 	return ret;
1758 }
1759 
1760 /*
1761  * adjust the pointers going up the tree, starting at level
1762  * making sure the right key of each node is points to 'key'.
1763  * This is used after shifting pointers to the left, so it stops
1764  * fixing up pointers when a given leaf/node is not in slot 0 of the
1765  * higher levels
1766  *
1767  * If this fails to write a tree block, it returns -1, but continues
1768  * fixing up the blocks in ram so the tree is consistent.
1769  */
1770 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1771 			  struct btrfs_root *root, struct btrfs_path *path,
1772 			  struct btrfs_disk_key *key, int level)
1773 {
1774 	int i;
1775 	int ret = 0;
1776 	struct extent_buffer *t;
1777 
1778 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1779 		int tslot = path->slots[i];
1780 		if (!path->nodes[i])
1781 			break;
1782 		t = path->nodes[i];
1783 		btrfs_set_node_key(t, key, tslot);
1784 		btrfs_mark_buffer_dirty(path->nodes[i]);
1785 		if (tslot != 0)
1786 			break;
1787 	}
1788 	return ret;
1789 }
1790 
1791 /*
1792  * update item key.
1793  *
1794  * This function isn't completely safe. It's the caller's responsibility
1795  * that the new key won't break the order
1796  */
1797 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1798 			    struct btrfs_root *root, struct btrfs_path *path,
1799 			    struct btrfs_key *new_key)
1800 {
1801 	struct btrfs_disk_key disk_key;
1802 	struct extent_buffer *eb;
1803 	int slot;
1804 
1805 	eb = path->nodes[0];
1806 	slot = path->slots[0];
1807 	if (slot > 0) {
1808 		btrfs_item_key(eb, &disk_key, slot - 1);
1809 		if (comp_keys(&disk_key, new_key) >= 0)
1810 			return -1;
1811 	}
1812 	if (slot < btrfs_header_nritems(eb) - 1) {
1813 		btrfs_item_key(eb, &disk_key, slot + 1);
1814 		if (comp_keys(&disk_key, new_key) <= 0)
1815 			return -1;
1816 	}
1817 
1818 	btrfs_cpu_key_to_disk(&disk_key, new_key);
1819 	btrfs_set_item_key(eb, &disk_key, slot);
1820 	btrfs_mark_buffer_dirty(eb);
1821 	if (slot == 0)
1822 		fixup_low_keys(trans, root, path, &disk_key, 1);
1823 	return 0;
1824 }
1825 
1826 /*
1827  * try to push data from one node into the next node left in the
1828  * tree.
1829  *
1830  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1831  * error, and > 0 if there was no room in the left hand block.
1832  */
1833 static int push_node_left(struct btrfs_trans_handle *trans,
1834 			  struct btrfs_root *root, struct extent_buffer *dst,
1835 			  struct extent_buffer *src, int empty)
1836 {
1837 	int push_items = 0;
1838 	int src_nritems;
1839 	int dst_nritems;
1840 	int ret = 0;
1841 
1842 	src_nritems = btrfs_header_nritems(src);
1843 	dst_nritems = btrfs_header_nritems(dst);
1844 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1845 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1846 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1847 
1848 	if (!empty && src_nritems <= 8)
1849 		return 1;
1850 
1851 	if (push_items <= 0)
1852 		return 1;
1853 
1854 	if (empty) {
1855 		push_items = min(src_nritems, push_items);
1856 		if (push_items < src_nritems) {
1857 			/* leave at least 8 pointers in the node if
1858 			 * we aren't going to empty it
1859 			 */
1860 			if (src_nritems - push_items < 8) {
1861 				if (push_items <= 8)
1862 					return 1;
1863 				push_items -= 8;
1864 			}
1865 		}
1866 	} else
1867 		push_items = min(src_nritems - 8, push_items);
1868 
1869 	copy_extent_buffer(dst, src,
1870 			   btrfs_node_key_ptr_offset(dst_nritems),
1871 			   btrfs_node_key_ptr_offset(0),
1872 			   push_items * sizeof(struct btrfs_key_ptr));
1873 
1874 	if (push_items < src_nritems) {
1875 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1876 				      btrfs_node_key_ptr_offset(push_items),
1877 				      (src_nritems - push_items) *
1878 				      sizeof(struct btrfs_key_ptr));
1879 	}
1880 	btrfs_set_header_nritems(src, src_nritems - push_items);
1881 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1882 	btrfs_mark_buffer_dirty(src);
1883 	btrfs_mark_buffer_dirty(dst);
1884 
1885 	return ret;
1886 }
1887 
1888 /*
1889  * try to push data from one node into the next node right in the
1890  * tree.
1891  *
1892  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
1893  * error, and > 0 if there was no room in the right hand block.
1894  *
1895  * this will  only push up to 1/2 the contents of the left node over
1896  */
1897 static int balance_node_right(struct btrfs_trans_handle *trans,
1898 			      struct btrfs_root *root,
1899 			      struct extent_buffer *dst,
1900 			      struct extent_buffer *src)
1901 {
1902 	int push_items = 0;
1903 	int max_push;
1904 	int src_nritems;
1905 	int dst_nritems;
1906 	int ret = 0;
1907 
1908 	WARN_ON(btrfs_header_generation(src) != trans->transid);
1909 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
1910 
1911 	src_nritems = btrfs_header_nritems(src);
1912 	dst_nritems = btrfs_header_nritems(dst);
1913 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1914 	if (push_items <= 0)
1915 		return 1;
1916 
1917 	if (src_nritems < 4)
1918 		return 1;
1919 
1920 	max_push = src_nritems / 2 + 1;
1921 	/* don't try to empty the node */
1922 	if (max_push >= src_nritems)
1923 		return 1;
1924 
1925 	if (max_push < push_items)
1926 		push_items = max_push;
1927 
1928 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
1929 				      btrfs_node_key_ptr_offset(0),
1930 				      (dst_nritems) *
1931 				      sizeof(struct btrfs_key_ptr));
1932 
1933 	copy_extent_buffer(dst, src,
1934 			   btrfs_node_key_ptr_offset(0),
1935 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
1936 			   push_items * sizeof(struct btrfs_key_ptr));
1937 
1938 	btrfs_set_header_nritems(src, src_nritems - push_items);
1939 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
1940 
1941 	btrfs_mark_buffer_dirty(src);
1942 	btrfs_mark_buffer_dirty(dst);
1943 
1944 	return ret;
1945 }
1946 
1947 /*
1948  * helper function to insert a new root level in the tree.
1949  * A new node is allocated, and a single item is inserted to
1950  * point to the existing root
1951  *
1952  * returns zero on success or < 0 on failure.
1953  */
1954 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
1955 			   struct btrfs_root *root,
1956 			   struct btrfs_path *path, int level)
1957 {
1958 	u64 lower_gen;
1959 	struct extent_buffer *lower;
1960 	struct extent_buffer *c;
1961 	struct extent_buffer *old;
1962 	struct btrfs_disk_key lower_key;
1963 
1964 	BUG_ON(path->nodes[level]);
1965 	BUG_ON(path->nodes[level-1] != root->node);
1966 
1967 	lower = path->nodes[level-1];
1968 	if (level == 1)
1969 		btrfs_item_key(lower, &lower_key, 0);
1970 	else
1971 		btrfs_node_key(lower, &lower_key, 0);
1972 
1973 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
1974 				   root->root_key.objectid, &lower_key,
1975 				   level, root->node->start, 0);
1976 	if (IS_ERR(c))
1977 		return PTR_ERR(c);
1978 
1979 	root_add_used(root, root->nodesize);
1980 
1981 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
1982 	btrfs_set_header_nritems(c, 1);
1983 	btrfs_set_header_level(c, level);
1984 	btrfs_set_header_bytenr(c, c->start);
1985 	btrfs_set_header_generation(c, trans->transid);
1986 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
1987 	btrfs_set_header_owner(c, root->root_key.objectid);
1988 
1989 	write_extent_buffer(c, root->fs_info->fsid,
1990 			    (unsigned long)btrfs_header_fsid(c),
1991 			    BTRFS_FSID_SIZE);
1992 
1993 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
1994 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
1995 			    BTRFS_UUID_SIZE);
1996 
1997 	btrfs_set_node_key(c, &lower_key, 0);
1998 	btrfs_set_node_blockptr(c, 0, lower->start);
1999 	lower_gen = btrfs_header_generation(lower);
2000 	WARN_ON(lower_gen != trans->transid);
2001 
2002 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2003 
2004 	btrfs_mark_buffer_dirty(c);
2005 
2006 	old = root->node;
2007 	rcu_assign_pointer(root->node, c);
2008 
2009 	/* the super has an extra ref to root->node */
2010 	free_extent_buffer(old);
2011 
2012 	add_root_to_dirty_list(root);
2013 	extent_buffer_get(c);
2014 	path->nodes[level] = c;
2015 	path->locks[level] = 1;
2016 	path->slots[level] = 0;
2017 	return 0;
2018 }
2019 
2020 /*
2021  * worker function to insert a single pointer in a node.
2022  * the node should have enough room for the pointer already
2023  *
2024  * slot and level indicate where you want the key to go, and
2025  * blocknr is the block the key points to.
2026  *
2027  * returns zero on success and < 0 on any error
2028  */
2029 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2030 		      *root, struct btrfs_path *path, struct btrfs_disk_key
2031 		      *key, u64 bytenr, int slot, int level)
2032 {
2033 	struct extent_buffer *lower;
2034 	int nritems;
2035 
2036 	BUG_ON(!path->nodes[level]);
2037 	btrfs_assert_tree_locked(path->nodes[level]);
2038 	lower = path->nodes[level];
2039 	nritems = btrfs_header_nritems(lower);
2040 	BUG_ON(slot > nritems);
2041 	if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2042 		BUG();
2043 	if (slot != nritems) {
2044 		memmove_extent_buffer(lower,
2045 			      btrfs_node_key_ptr_offset(slot + 1),
2046 			      btrfs_node_key_ptr_offset(slot),
2047 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2048 	}
2049 	btrfs_set_node_key(lower, key, slot);
2050 	btrfs_set_node_blockptr(lower, slot, bytenr);
2051 	WARN_ON(trans->transid == 0);
2052 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2053 	btrfs_set_header_nritems(lower, nritems + 1);
2054 	btrfs_mark_buffer_dirty(lower);
2055 	return 0;
2056 }
2057 
2058 /*
2059  * split the node at the specified level in path in two.
2060  * The path is corrected to point to the appropriate node after the split
2061  *
2062  * Before splitting this tries to make some room in the node by pushing
2063  * left and right, if either one works, it returns right away.
2064  *
2065  * returns 0 on success and < 0 on failure
2066  */
2067 static noinline int split_node(struct btrfs_trans_handle *trans,
2068 			       struct btrfs_root *root,
2069 			       struct btrfs_path *path, int level)
2070 {
2071 	struct extent_buffer *c;
2072 	struct extent_buffer *split;
2073 	struct btrfs_disk_key disk_key;
2074 	int mid;
2075 	int ret;
2076 	int wret;
2077 	u32 c_nritems;
2078 
2079 	c = path->nodes[level];
2080 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2081 	if (c == root->node) {
2082 		/* trying to split the root, lets make a new one */
2083 		ret = insert_new_root(trans, root, path, level + 1);
2084 		if (ret)
2085 			return ret;
2086 	} else {
2087 		ret = push_nodes_for_insert(trans, root, path, level);
2088 		c = path->nodes[level];
2089 		if (!ret && btrfs_header_nritems(c) <
2090 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2091 			return 0;
2092 		if (ret < 0)
2093 			return ret;
2094 	}
2095 
2096 	c_nritems = btrfs_header_nritems(c);
2097 	mid = (c_nritems + 1) / 2;
2098 	btrfs_node_key(c, &disk_key, mid);
2099 
2100 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2101 					root->root_key.objectid,
2102 					&disk_key, level, c->start, 0);
2103 	if (IS_ERR(split))
2104 		return PTR_ERR(split);
2105 
2106 	root_add_used(root, root->nodesize);
2107 
2108 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
2109 	btrfs_set_header_level(split, btrfs_header_level(c));
2110 	btrfs_set_header_bytenr(split, split->start);
2111 	btrfs_set_header_generation(split, trans->transid);
2112 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
2113 	btrfs_set_header_owner(split, root->root_key.objectid);
2114 	write_extent_buffer(split, root->fs_info->fsid,
2115 			    (unsigned long)btrfs_header_fsid(split),
2116 			    BTRFS_FSID_SIZE);
2117 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2118 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
2119 			    BTRFS_UUID_SIZE);
2120 
2121 
2122 	copy_extent_buffer(split, c,
2123 			   btrfs_node_key_ptr_offset(0),
2124 			   btrfs_node_key_ptr_offset(mid),
2125 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2126 	btrfs_set_header_nritems(split, c_nritems - mid);
2127 	btrfs_set_header_nritems(c, mid);
2128 	ret = 0;
2129 
2130 	btrfs_mark_buffer_dirty(c);
2131 	btrfs_mark_buffer_dirty(split);
2132 
2133 	wret = insert_ptr(trans, root, path, &disk_key, split->start,
2134 			  path->slots[level + 1] + 1,
2135 			  level + 1);
2136 	if (wret)
2137 		ret = wret;
2138 
2139 	if (path->slots[level] >= mid) {
2140 		path->slots[level] -= mid;
2141 		btrfs_tree_unlock(c);
2142 		free_extent_buffer(c);
2143 		path->nodes[level] = split;
2144 		path->slots[level + 1] += 1;
2145 	} else {
2146 		btrfs_tree_unlock(split);
2147 		free_extent_buffer(split);
2148 	}
2149 	return ret;
2150 }
2151 
2152 /*
2153  * how many bytes are required to store the items in a leaf.  start
2154  * and nr indicate which items in the leaf to check.  This totals up the
2155  * space used both by the item structs and the item data
2156  */
2157 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2158 {
2159 	int data_len;
2160 	int nritems = btrfs_header_nritems(l);
2161 	int end = min(nritems, start + nr) - 1;
2162 
2163 	if (!nr)
2164 		return 0;
2165 	data_len = btrfs_item_end_nr(l, start);
2166 	data_len = data_len - btrfs_item_offset_nr(l, end);
2167 	data_len += sizeof(struct btrfs_item) * nr;
2168 	WARN_ON(data_len < 0);
2169 	return data_len;
2170 }
2171 
2172 /*
2173  * The space between the end of the leaf items and
2174  * the start of the leaf data.  IOW, how much room
2175  * the leaf has left for both items and data
2176  */
2177 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2178 				   struct extent_buffer *leaf)
2179 {
2180 	int nritems = btrfs_header_nritems(leaf);
2181 	int ret;
2182 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2183 	if (ret < 0) {
2184 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2185 		       "used %d nritems %d\n",
2186 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2187 		       leaf_space_used(leaf, 0, nritems), nritems);
2188 	}
2189 	return ret;
2190 }
2191 
2192 /*
2193  * min slot controls the lowest index we're willing to push to the
2194  * right.  We'll push up to and including min_slot, but no lower
2195  */
2196 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
2197 				      struct btrfs_root *root,
2198 				      struct btrfs_path *path,
2199 				      int data_size, int empty,
2200 				      struct extent_buffer *right,
2201 				      int free_space, u32 left_nritems,
2202 				      u32 min_slot)
2203 {
2204 	struct extent_buffer *left = path->nodes[0];
2205 	struct extent_buffer *upper = path->nodes[1];
2206 	struct btrfs_disk_key disk_key;
2207 	int slot;
2208 	u32 i;
2209 	int push_space = 0;
2210 	int push_items = 0;
2211 	struct btrfs_item *item;
2212 	u32 nr;
2213 	u32 right_nritems;
2214 	u32 data_end;
2215 	u32 this_item_size;
2216 
2217 	if (empty)
2218 		nr = 0;
2219 	else
2220 		nr = max_t(u32, 1, min_slot);
2221 
2222 	if (path->slots[0] >= left_nritems)
2223 		push_space += data_size;
2224 
2225 	slot = path->slots[1];
2226 	i = left_nritems - 1;
2227 	while (i >= nr) {
2228 		item = btrfs_item_nr(left, i);
2229 
2230 		if (!empty && push_items > 0) {
2231 			if (path->slots[0] > i)
2232 				break;
2233 			if (path->slots[0] == i) {
2234 				int space = btrfs_leaf_free_space(root, left);
2235 				if (space + push_space * 2 > free_space)
2236 					break;
2237 			}
2238 		}
2239 
2240 		if (path->slots[0] == i)
2241 			push_space += data_size;
2242 
2243 		if (!left->map_token) {
2244 			map_extent_buffer(left, (unsigned long)item,
2245 					sizeof(struct btrfs_item),
2246 					&left->map_token, &left->kaddr,
2247 					&left->map_start, &left->map_len,
2248 					KM_USER1);
2249 		}
2250 
2251 		this_item_size = btrfs_item_size(left, item);
2252 		if (this_item_size + sizeof(*item) + push_space > free_space)
2253 			break;
2254 
2255 		push_items++;
2256 		push_space += this_item_size + sizeof(*item);
2257 		if (i == 0)
2258 			break;
2259 		i--;
2260 	}
2261 	if (left->map_token) {
2262 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2263 		left->map_token = NULL;
2264 	}
2265 
2266 	if (push_items == 0)
2267 		goto out_unlock;
2268 
2269 	if (!empty && push_items == left_nritems)
2270 		WARN_ON(1);
2271 
2272 	/* push left to right */
2273 	right_nritems = btrfs_header_nritems(right);
2274 
2275 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2276 	push_space -= leaf_data_end(root, left);
2277 
2278 	/* make room in the right data area */
2279 	data_end = leaf_data_end(root, right);
2280 	memmove_extent_buffer(right,
2281 			      btrfs_leaf_data(right) + data_end - push_space,
2282 			      btrfs_leaf_data(right) + data_end,
2283 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
2284 
2285 	/* copy from the left data area */
2286 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2287 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
2288 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
2289 		     push_space);
2290 
2291 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2292 			      btrfs_item_nr_offset(0),
2293 			      right_nritems * sizeof(struct btrfs_item));
2294 
2295 	/* copy the items from left to right */
2296 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2297 		   btrfs_item_nr_offset(left_nritems - push_items),
2298 		   push_items * sizeof(struct btrfs_item));
2299 
2300 	/* update the item pointers */
2301 	right_nritems += push_items;
2302 	btrfs_set_header_nritems(right, right_nritems);
2303 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2304 	for (i = 0; i < right_nritems; i++) {
2305 		item = btrfs_item_nr(right, i);
2306 		if (!right->map_token) {
2307 			map_extent_buffer(right, (unsigned long)item,
2308 					sizeof(struct btrfs_item),
2309 					&right->map_token, &right->kaddr,
2310 					&right->map_start, &right->map_len,
2311 					KM_USER1);
2312 		}
2313 		push_space -= btrfs_item_size(right, item);
2314 		btrfs_set_item_offset(right, item, push_space);
2315 	}
2316 
2317 	if (right->map_token) {
2318 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2319 		right->map_token = NULL;
2320 	}
2321 	left_nritems -= push_items;
2322 	btrfs_set_header_nritems(left, left_nritems);
2323 
2324 	if (left_nritems)
2325 		btrfs_mark_buffer_dirty(left);
2326 	else
2327 		clean_tree_block(trans, root, left);
2328 
2329 	btrfs_mark_buffer_dirty(right);
2330 
2331 	btrfs_item_key(right, &disk_key, 0);
2332 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2333 	btrfs_mark_buffer_dirty(upper);
2334 
2335 	/* then fixup the leaf pointer in the path */
2336 	if (path->slots[0] >= left_nritems) {
2337 		path->slots[0] -= left_nritems;
2338 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2339 			clean_tree_block(trans, root, path->nodes[0]);
2340 		btrfs_tree_unlock(path->nodes[0]);
2341 		free_extent_buffer(path->nodes[0]);
2342 		path->nodes[0] = right;
2343 		path->slots[1] += 1;
2344 	} else {
2345 		btrfs_tree_unlock(right);
2346 		free_extent_buffer(right);
2347 	}
2348 	return 0;
2349 
2350 out_unlock:
2351 	btrfs_tree_unlock(right);
2352 	free_extent_buffer(right);
2353 	return 1;
2354 }
2355 
2356 /*
2357  * push some data in the path leaf to the right, trying to free up at
2358  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2359  *
2360  * returns 1 if the push failed because the other node didn't have enough
2361  * room, 0 if everything worked out and < 0 if there were major errors.
2362  *
2363  * this will push starting from min_slot to the end of the leaf.  It won't
2364  * push any slot lower than min_slot
2365  */
2366 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2367 			   *root, struct btrfs_path *path,
2368 			   int min_data_size, int data_size,
2369 			   int empty, u32 min_slot)
2370 {
2371 	struct extent_buffer *left = path->nodes[0];
2372 	struct extent_buffer *right;
2373 	struct extent_buffer *upper;
2374 	int slot;
2375 	int free_space;
2376 	u32 left_nritems;
2377 	int ret;
2378 
2379 	if (!path->nodes[1])
2380 		return 1;
2381 
2382 	slot = path->slots[1];
2383 	upper = path->nodes[1];
2384 	if (slot >= btrfs_header_nritems(upper) - 1)
2385 		return 1;
2386 
2387 	btrfs_assert_tree_locked(path->nodes[1]);
2388 
2389 	right = read_node_slot(root, upper, slot + 1);
2390 	if (right == NULL)
2391 		return 1;
2392 
2393 	btrfs_tree_lock(right);
2394 	btrfs_set_lock_blocking(right);
2395 
2396 	free_space = btrfs_leaf_free_space(root, right);
2397 	if (free_space < data_size)
2398 		goto out_unlock;
2399 
2400 	/* cow and double check */
2401 	ret = btrfs_cow_block(trans, root, right, upper,
2402 			      slot + 1, &right);
2403 	if (ret)
2404 		goto out_unlock;
2405 
2406 	free_space = btrfs_leaf_free_space(root, right);
2407 	if (free_space < data_size)
2408 		goto out_unlock;
2409 
2410 	left_nritems = btrfs_header_nritems(left);
2411 	if (left_nritems == 0)
2412 		goto out_unlock;
2413 
2414 	return __push_leaf_right(trans, root, path, min_data_size, empty,
2415 				right, free_space, left_nritems, min_slot);
2416 out_unlock:
2417 	btrfs_tree_unlock(right);
2418 	free_extent_buffer(right);
2419 	return 1;
2420 }
2421 
2422 /*
2423  * push some data in the path leaf to the left, trying to free up at
2424  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2425  *
2426  * max_slot can put a limit on how far into the leaf we'll push items.  The
2427  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
2428  * items
2429  */
2430 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
2431 				     struct btrfs_root *root,
2432 				     struct btrfs_path *path, int data_size,
2433 				     int empty, struct extent_buffer *left,
2434 				     int free_space, u32 right_nritems,
2435 				     u32 max_slot)
2436 {
2437 	struct btrfs_disk_key disk_key;
2438 	struct extent_buffer *right = path->nodes[0];
2439 	int i;
2440 	int push_space = 0;
2441 	int push_items = 0;
2442 	struct btrfs_item *item;
2443 	u32 old_left_nritems;
2444 	u32 nr;
2445 	int ret = 0;
2446 	int wret;
2447 	u32 this_item_size;
2448 	u32 old_left_item_size;
2449 
2450 	if (empty)
2451 		nr = min(right_nritems, max_slot);
2452 	else
2453 		nr = min(right_nritems - 1, max_slot);
2454 
2455 	for (i = 0; i < nr; i++) {
2456 		item = btrfs_item_nr(right, i);
2457 		if (!right->map_token) {
2458 			map_extent_buffer(right, (unsigned long)item,
2459 					sizeof(struct btrfs_item),
2460 					&right->map_token, &right->kaddr,
2461 					&right->map_start, &right->map_len,
2462 					KM_USER1);
2463 		}
2464 
2465 		if (!empty && push_items > 0) {
2466 			if (path->slots[0] < i)
2467 				break;
2468 			if (path->slots[0] == i) {
2469 				int space = btrfs_leaf_free_space(root, right);
2470 				if (space + push_space * 2 > free_space)
2471 					break;
2472 			}
2473 		}
2474 
2475 		if (path->slots[0] == i)
2476 			push_space += data_size;
2477 
2478 		this_item_size = btrfs_item_size(right, item);
2479 		if (this_item_size + sizeof(*item) + push_space > free_space)
2480 			break;
2481 
2482 		push_items++;
2483 		push_space += this_item_size + sizeof(*item);
2484 	}
2485 
2486 	if (right->map_token) {
2487 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2488 		right->map_token = NULL;
2489 	}
2490 
2491 	if (push_items == 0) {
2492 		ret = 1;
2493 		goto out;
2494 	}
2495 	if (!empty && push_items == btrfs_header_nritems(right))
2496 		WARN_ON(1);
2497 
2498 	/* push data from right to left */
2499 	copy_extent_buffer(left, right,
2500 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
2501 			   btrfs_item_nr_offset(0),
2502 			   push_items * sizeof(struct btrfs_item));
2503 
2504 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
2505 		     btrfs_item_offset_nr(right, push_items - 1);
2506 
2507 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2508 		     leaf_data_end(root, left) - push_space,
2509 		     btrfs_leaf_data(right) +
2510 		     btrfs_item_offset_nr(right, push_items - 1),
2511 		     push_space);
2512 	old_left_nritems = btrfs_header_nritems(left);
2513 	BUG_ON(old_left_nritems <= 0);
2514 
2515 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2516 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2517 		u32 ioff;
2518 
2519 		item = btrfs_item_nr(left, i);
2520 		if (!left->map_token) {
2521 			map_extent_buffer(left, (unsigned long)item,
2522 					sizeof(struct btrfs_item),
2523 					&left->map_token, &left->kaddr,
2524 					&left->map_start, &left->map_len,
2525 					KM_USER1);
2526 		}
2527 
2528 		ioff = btrfs_item_offset(left, item);
2529 		btrfs_set_item_offset(left, item,
2530 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2531 	}
2532 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
2533 	if (left->map_token) {
2534 		unmap_extent_buffer(left, left->map_token, KM_USER1);
2535 		left->map_token = NULL;
2536 	}
2537 
2538 	/* fixup right node */
2539 	if (push_items > right_nritems) {
2540 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
2541 		       right_nritems);
2542 		WARN_ON(1);
2543 	}
2544 
2545 	if (push_items < right_nritems) {
2546 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
2547 						  leaf_data_end(root, right);
2548 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
2549 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2550 				      btrfs_leaf_data(right) +
2551 				      leaf_data_end(root, right), push_space);
2552 
2553 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2554 			      btrfs_item_nr_offset(push_items),
2555 			     (btrfs_header_nritems(right) - push_items) *
2556 			     sizeof(struct btrfs_item));
2557 	}
2558 	right_nritems -= push_items;
2559 	btrfs_set_header_nritems(right, right_nritems);
2560 	push_space = BTRFS_LEAF_DATA_SIZE(root);
2561 	for (i = 0; i < right_nritems; i++) {
2562 		item = btrfs_item_nr(right, i);
2563 
2564 		if (!right->map_token) {
2565 			map_extent_buffer(right, (unsigned long)item,
2566 					sizeof(struct btrfs_item),
2567 					&right->map_token, &right->kaddr,
2568 					&right->map_start, &right->map_len,
2569 					KM_USER1);
2570 		}
2571 
2572 		push_space = push_space - btrfs_item_size(right, item);
2573 		btrfs_set_item_offset(right, item, push_space);
2574 	}
2575 	if (right->map_token) {
2576 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2577 		right->map_token = NULL;
2578 	}
2579 
2580 	btrfs_mark_buffer_dirty(left);
2581 	if (right_nritems)
2582 		btrfs_mark_buffer_dirty(right);
2583 	else
2584 		clean_tree_block(trans, root, right);
2585 
2586 	btrfs_item_key(right, &disk_key, 0);
2587 	wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2588 	if (wret)
2589 		ret = wret;
2590 
2591 	/* then fixup the leaf pointer in the path */
2592 	if (path->slots[0] < push_items) {
2593 		path->slots[0] += old_left_nritems;
2594 		btrfs_tree_unlock(path->nodes[0]);
2595 		free_extent_buffer(path->nodes[0]);
2596 		path->nodes[0] = left;
2597 		path->slots[1] -= 1;
2598 	} else {
2599 		btrfs_tree_unlock(left);
2600 		free_extent_buffer(left);
2601 		path->slots[0] -= push_items;
2602 	}
2603 	BUG_ON(path->slots[0] < 0);
2604 	return ret;
2605 out:
2606 	btrfs_tree_unlock(left);
2607 	free_extent_buffer(left);
2608 	return ret;
2609 }
2610 
2611 /*
2612  * push some data in the path leaf to the left, trying to free up at
2613  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2614  *
2615  * max_slot can put a limit on how far into the leaf we'll push items.  The
2616  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
2617  * items
2618  */
2619 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2620 			  *root, struct btrfs_path *path, int min_data_size,
2621 			  int data_size, int empty, u32 max_slot)
2622 {
2623 	struct extent_buffer *right = path->nodes[0];
2624 	struct extent_buffer *left;
2625 	int slot;
2626 	int free_space;
2627 	u32 right_nritems;
2628 	int ret = 0;
2629 
2630 	slot = path->slots[1];
2631 	if (slot == 0)
2632 		return 1;
2633 	if (!path->nodes[1])
2634 		return 1;
2635 
2636 	right_nritems = btrfs_header_nritems(right);
2637 	if (right_nritems == 0)
2638 		return 1;
2639 
2640 	btrfs_assert_tree_locked(path->nodes[1]);
2641 
2642 	left = read_node_slot(root, path->nodes[1], slot - 1);
2643 	if (left == NULL)
2644 		return 1;
2645 
2646 	btrfs_tree_lock(left);
2647 	btrfs_set_lock_blocking(left);
2648 
2649 	free_space = btrfs_leaf_free_space(root, left);
2650 	if (free_space < data_size) {
2651 		ret = 1;
2652 		goto out;
2653 	}
2654 
2655 	/* cow and double check */
2656 	ret = btrfs_cow_block(trans, root, left,
2657 			      path->nodes[1], slot - 1, &left);
2658 	if (ret) {
2659 		/* we hit -ENOSPC, but it isn't fatal here */
2660 		ret = 1;
2661 		goto out;
2662 	}
2663 
2664 	free_space = btrfs_leaf_free_space(root, left);
2665 	if (free_space < data_size) {
2666 		ret = 1;
2667 		goto out;
2668 	}
2669 
2670 	return __push_leaf_left(trans, root, path, min_data_size,
2671 			       empty, left, free_space, right_nritems,
2672 			       max_slot);
2673 out:
2674 	btrfs_tree_unlock(left);
2675 	free_extent_buffer(left);
2676 	return ret;
2677 }
2678 
2679 /*
2680  * split the path's leaf in two, making sure there is at least data_size
2681  * available for the resulting leaf level of the path.
2682  *
2683  * returns 0 if all went well and < 0 on failure.
2684  */
2685 static noinline int copy_for_split(struct btrfs_trans_handle *trans,
2686 			       struct btrfs_root *root,
2687 			       struct btrfs_path *path,
2688 			       struct extent_buffer *l,
2689 			       struct extent_buffer *right,
2690 			       int slot, int mid, int nritems)
2691 {
2692 	int data_copy_size;
2693 	int rt_data_off;
2694 	int i;
2695 	int ret = 0;
2696 	int wret;
2697 	struct btrfs_disk_key disk_key;
2698 
2699 	nritems = nritems - mid;
2700 	btrfs_set_header_nritems(right, nritems);
2701 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2702 
2703 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2704 			   btrfs_item_nr_offset(mid),
2705 			   nritems * sizeof(struct btrfs_item));
2706 
2707 	copy_extent_buffer(right, l,
2708 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2709 		     data_copy_size, btrfs_leaf_data(l) +
2710 		     leaf_data_end(root, l), data_copy_size);
2711 
2712 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2713 		      btrfs_item_end_nr(l, mid);
2714 
2715 	for (i = 0; i < nritems; i++) {
2716 		struct btrfs_item *item = btrfs_item_nr(right, i);
2717 		u32 ioff;
2718 
2719 		if (!right->map_token) {
2720 			map_extent_buffer(right, (unsigned long)item,
2721 					sizeof(struct btrfs_item),
2722 					&right->map_token, &right->kaddr,
2723 					&right->map_start, &right->map_len,
2724 					KM_USER1);
2725 		}
2726 
2727 		ioff = btrfs_item_offset(right, item);
2728 		btrfs_set_item_offset(right, item, ioff + rt_data_off);
2729 	}
2730 
2731 	if (right->map_token) {
2732 		unmap_extent_buffer(right, right->map_token, KM_USER1);
2733 		right->map_token = NULL;
2734 	}
2735 
2736 	btrfs_set_header_nritems(l, mid);
2737 	ret = 0;
2738 	btrfs_item_key(right, &disk_key, 0);
2739 	wret = insert_ptr(trans, root, path, &disk_key, right->start,
2740 			  path->slots[1] + 1, 1);
2741 	if (wret)
2742 		ret = wret;
2743 
2744 	btrfs_mark_buffer_dirty(right);
2745 	btrfs_mark_buffer_dirty(l);
2746 	BUG_ON(path->slots[0] != slot);
2747 
2748 	if (mid <= slot) {
2749 		btrfs_tree_unlock(path->nodes[0]);
2750 		free_extent_buffer(path->nodes[0]);
2751 		path->nodes[0] = right;
2752 		path->slots[0] -= mid;
2753 		path->slots[1] += 1;
2754 	} else {
2755 		btrfs_tree_unlock(right);
2756 		free_extent_buffer(right);
2757 	}
2758 
2759 	BUG_ON(path->slots[0] < 0);
2760 
2761 	return ret;
2762 }
2763 
2764 /*
2765  * double splits happen when we need to insert a big item in the middle
2766  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
2767  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
2768  *          A                 B                 C
2769  *
2770  * We avoid this by trying to push the items on either side of our target
2771  * into the adjacent leaves.  If all goes well we can avoid the double split
2772  * completely.
2773  */
2774 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
2775 					  struct btrfs_root *root,
2776 					  struct btrfs_path *path,
2777 					  int data_size)
2778 {
2779 	int ret;
2780 	int progress = 0;
2781 	int slot;
2782 	u32 nritems;
2783 
2784 	slot = path->slots[0];
2785 
2786 	/*
2787 	 * try to push all the items after our slot into the
2788 	 * right leaf
2789 	 */
2790 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
2791 	if (ret < 0)
2792 		return ret;
2793 
2794 	if (ret == 0)
2795 		progress++;
2796 
2797 	nritems = btrfs_header_nritems(path->nodes[0]);
2798 	/*
2799 	 * our goal is to get our slot at the start or end of a leaf.  If
2800 	 * we've done so we're done
2801 	 */
2802 	if (path->slots[0] == 0 || path->slots[0] == nritems)
2803 		return 0;
2804 
2805 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2806 		return 0;
2807 
2808 	/* try to push all the items before our slot into the next leaf */
2809 	slot = path->slots[0];
2810 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
2811 	if (ret < 0)
2812 		return ret;
2813 
2814 	if (ret == 0)
2815 		progress++;
2816 
2817 	if (progress)
2818 		return 0;
2819 	return 1;
2820 }
2821 
2822 /*
2823  * split the path's leaf in two, making sure there is at least data_size
2824  * available for the resulting leaf level of the path.
2825  *
2826  * returns 0 if all went well and < 0 on failure.
2827  */
2828 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2829 			       struct btrfs_root *root,
2830 			       struct btrfs_key *ins_key,
2831 			       struct btrfs_path *path, int data_size,
2832 			       int extend)
2833 {
2834 	struct btrfs_disk_key disk_key;
2835 	struct extent_buffer *l;
2836 	u32 nritems;
2837 	int mid;
2838 	int slot;
2839 	struct extent_buffer *right;
2840 	int ret = 0;
2841 	int wret;
2842 	int split;
2843 	int num_doubles = 0;
2844 	int tried_avoid_double = 0;
2845 
2846 	l = path->nodes[0];
2847 	slot = path->slots[0];
2848 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
2849 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
2850 		return -EOVERFLOW;
2851 
2852 	/* first try to make some room by pushing left and right */
2853 	if (data_size) {
2854 		wret = push_leaf_right(trans, root, path, data_size,
2855 				       data_size, 0, 0);
2856 		if (wret < 0)
2857 			return wret;
2858 		if (wret) {
2859 			wret = push_leaf_left(trans, root, path, data_size,
2860 					      data_size, 0, (u32)-1);
2861 			if (wret < 0)
2862 				return wret;
2863 		}
2864 		l = path->nodes[0];
2865 
2866 		/* did the pushes work? */
2867 		if (btrfs_leaf_free_space(root, l) >= data_size)
2868 			return 0;
2869 	}
2870 
2871 	if (!path->nodes[1]) {
2872 		ret = insert_new_root(trans, root, path, 1);
2873 		if (ret)
2874 			return ret;
2875 	}
2876 again:
2877 	split = 1;
2878 	l = path->nodes[0];
2879 	slot = path->slots[0];
2880 	nritems = btrfs_header_nritems(l);
2881 	mid = (nritems + 1) / 2;
2882 
2883 	if (mid <= slot) {
2884 		if (nritems == 1 ||
2885 		    leaf_space_used(l, mid, nritems - mid) + data_size >
2886 			BTRFS_LEAF_DATA_SIZE(root)) {
2887 			if (slot >= nritems) {
2888 				split = 0;
2889 			} else {
2890 				mid = slot;
2891 				if (mid != nritems &&
2892 				    leaf_space_used(l, mid, nritems - mid) +
2893 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2894 					if (data_size && !tried_avoid_double)
2895 						goto push_for_double;
2896 					split = 2;
2897 				}
2898 			}
2899 		}
2900 	} else {
2901 		if (leaf_space_used(l, 0, mid) + data_size >
2902 			BTRFS_LEAF_DATA_SIZE(root)) {
2903 			if (!extend && data_size && slot == 0) {
2904 				split = 0;
2905 			} else if ((extend || !data_size) && slot == 0) {
2906 				mid = 1;
2907 			} else {
2908 				mid = slot;
2909 				if (mid != nritems &&
2910 				    leaf_space_used(l, mid, nritems - mid) +
2911 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2912 					if (data_size && !tried_avoid_double)
2913 						goto push_for_double;
2914 					split = 2 ;
2915 				}
2916 			}
2917 		}
2918 	}
2919 
2920 	if (split == 0)
2921 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
2922 	else
2923 		btrfs_item_key(l, &disk_key, mid);
2924 
2925 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
2926 					root->root_key.objectid,
2927 					&disk_key, 0, l->start, 0);
2928 	if (IS_ERR(right))
2929 		return PTR_ERR(right);
2930 
2931 	root_add_used(root, root->leafsize);
2932 
2933 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2934 	btrfs_set_header_bytenr(right, right->start);
2935 	btrfs_set_header_generation(right, trans->transid);
2936 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
2937 	btrfs_set_header_owner(right, root->root_key.objectid);
2938 	btrfs_set_header_level(right, 0);
2939 	write_extent_buffer(right, root->fs_info->fsid,
2940 			    (unsigned long)btrfs_header_fsid(right),
2941 			    BTRFS_FSID_SIZE);
2942 
2943 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2944 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
2945 			    BTRFS_UUID_SIZE);
2946 
2947 	if (split == 0) {
2948 		if (mid <= slot) {
2949 			btrfs_set_header_nritems(right, 0);
2950 			wret = insert_ptr(trans, root, path,
2951 					  &disk_key, right->start,
2952 					  path->slots[1] + 1, 1);
2953 			if (wret)
2954 				ret = wret;
2955 
2956 			btrfs_tree_unlock(path->nodes[0]);
2957 			free_extent_buffer(path->nodes[0]);
2958 			path->nodes[0] = right;
2959 			path->slots[0] = 0;
2960 			path->slots[1] += 1;
2961 		} else {
2962 			btrfs_set_header_nritems(right, 0);
2963 			wret = insert_ptr(trans, root, path,
2964 					  &disk_key,
2965 					  right->start,
2966 					  path->slots[1], 1);
2967 			if (wret)
2968 				ret = wret;
2969 			btrfs_tree_unlock(path->nodes[0]);
2970 			free_extent_buffer(path->nodes[0]);
2971 			path->nodes[0] = right;
2972 			path->slots[0] = 0;
2973 			if (path->slots[1] == 0) {
2974 				wret = fixup_low_keys(trans, root,
2975 						path, &disk_key, 1);
2976 				if (wret)
2977 					ret = wret;
2978 			}
2979 		}
2980 		btrfs_mark_buffer_dirty(right);
2981 		return ret;
2982 	}
2983 
2984 	ret = copy_for_split(trans, root, path, l, right, slot, mid, nritems);
2985 	BUG_ON(ret);
2986 
2987 	if (split == 2) {
2988 		BUG_ON(num_doubles != 0);
2989 		num_doubles++;
2990 		goto again;
2991 	}
2992 
2993 	return ret;
2994 
2995 push_for_double:
2996 	push_for_double_split(trans, root, path, data_size);
2997 	tried_avoid_double = 1;
2998 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
2999 		return 0;
3000 	goto again;
3001 }
3002 
3003 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3004 					 struct btrfs_root *root,
3005 					 struct btrfs_path *path, int ins_len)
3006 {
3007 	struct btrfs_key key;
3008 	struct extent_buffer *leaf;
3009 	struct btrfs_file_extent_item *fi;
3010 	u64 extent_len = 0;
3011 	u32 item_size;
3012 	int ret;
3013 
3014 	leaf = path->nodes[0];
3015 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3016 
3017 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3018 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3019 
3020 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
3021 		return 0;
3022 
3023 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3024 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3025 		fi = btrfs_item_ptr(leaf, path->slots[0],
3026 				    struct btrfs_file_extent_item);
3027 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3028 	}
3029 	btrfs_release_path(root, path);
3030 
3031 	path->keep_locks = 1;
3032 	path->search_for_split = 1;
3033 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3034 	path->search_for_split = 0;
3035 	if (ret < 0)
3036 		goto err;
3037 
3038 	ret = -EAGAIN;
3039 	leaf = path->nodes[0];
3040 	/* if our item isn't there or got smaller, return now */
3041 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
3042 		goto err;
3043 
3044 	/* the leaf has  changed, it now has room.  return now */
3045 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
3046 		goto err;
3047 
3048 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3049 		fi = btrfs_item_ptr(leaf, path->slots[0],
3050 				    struct btrfs_file_extent_item);
3051 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3052 			goto err;
3053 	}
3054 
3055 	btrfs_set_path_blocking(path);
3056 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3057 	if (ret)
3058 		goto err;
3059 
3060 	path->keep_locks = 0;
3061 	btrfs_unlock_up_safe(path, 1);
3062 	return 0;
3063 err:
3064 	path->keep_locks = 0;
3065 	return ret;
3066 }
3067 
3068 static noinline int split_item(struct btrfs_trans_handle *trans,
3069 			       struct btrfs_root *root,
3070 			       struct btrfs_path *path,
3071 			       struct btrfs_key *new_key,
3072 			       unsigned long split_offset)
3073 {
3074 	struct extent_buffer *leaf;
3075 	struct btrfs_item *item;
3076 	struct btrfs_item *new_item;
3077 	int slot;
3078 	char *buf;
3079 	u32 nritems;
3080 	u32 item_size;
3081 	u32 orig_offset;
3082 	struct btrfs_disk_key disk_key;
3083 
3084 	leaf = path->nodes[0];
3085 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3086 
3087 	btrfs_set_path_blocking(path);
3088 
3089 	item = btrfs_item_nr(leaf, path->slots[0]);
3090 	orig_offset = btrfs_item_offset(leaf, item);
3091 	item_size = btrfs_item_size(leaf, item);
3092 
3093 	buf = kmalloc(item_size, GFP_NOFS);
3094 	if (!buf)
3095 		return -ENOMEM;
3096 
3097 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3098 			    path->slots[0]), item_size);
3099 
3100 	slot = path->slots[0] + 1;
3101 	nritems = btrfs_header_nritems(leaf);
3102 	if (slot != nritems) {
3103 		/* shift the items */
3104 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3105 				btrfs_item_nr_offset(slot),
3106 				(nritems - slot) * sizeof(struct btrfs_item));
3107 	}
3108 
3109 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3110 	btrfs_set_item_key(leaf, &disk_key, slot);
3111 
3112 	new_item = btrfs_item_nr(leaf, slot);
3113 
3114 	btrfs_set_item_offset(leaf, new_item, orig_offset);
3115 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3116 
3117 	btrfs_set_item_offset(leaf, item,
3118 			      orig_offset + item_size - split_offset);
3119 	btrfs_set_item_size(leaf, item, split_offset);
3120 
3121 	btrfs_set_header_nritems(leaf, nritems + 1);
3122 
3123 	/* write the data for the start of the original item */
3124 	write_extent_buffer(leaf, buf,
3125 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3126 			    split_offset);
3127 
3128 	/* write the data for the new item */
3129 	write_extent_buffer(leaf, buf + split_offset,
3130 			    btrfs_item_ptr_offset(leaf, slot),
3131 			    item_size - split_offset);
3132 	btrfs_mark_buffer_dirty(leaf);
3133 
3134 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
3135 	kfree(buf);
3136 	return 0;
3137 }
3138 
3139 /*
3140  * This function splits a single item into two items,
3141  * giving 'new_key' to the new item and splitting the
3142  * old one at split_offset (from the start of the item).
3143  *
3144  * The path may be released by this operation.  After
3145  * the split, the path is pointing to the old item.  The
3146  * new item is going to be in the same node as the old one.
3147  *
3148  * Note, the item being split must be smaller enough to live alone on
3149  * a tree block with room for one extra struct btrfs_item
3150  *
3151  * This allows us to split the item in place, keeping a lock on the
3152  * leaf the entire time.
3153  */
3154 int btrfs_split_item(struct btrfs_trans_handle *trans,
3155 		     struct btrfs_root *root,
3156 		     struct btrfs_path *path,
3157 		     struct btrfs_key *new_key,
3158 		     unsigned long split_offset)
3159 {
3160 	int ret;
3161 	ret = setup_leaf_for_split(trans, root, path,
3162 				   sizeof(struct btrfs_item));
3163 	if (ret)
3164 		return ret;
3165 
3166 	ret = split_item(trans, root, path, new_key, split_offset);
3167 	return ret;
3168 }
3169 
3170 /*
3171  * This function duplicate a item, giving 'new_key' to the new item.
3172  * It guarantees both items live in the same tree leaf and the new item
3173  * is contiguous with the original item.
3174  *
3175  * This allows us to split file extent in place, keeping a lock on the
3176  * leaf the entire time.
3177  */
3178 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
3179 			 struct btrfs_root *root,
3180 			 struct btrfs_path *path,
3181 			 struct btrfs_key *new_key)
3182 {
3183 	struct extent_buffer *leaf;
3184 	int ret;
3185 	u32 item_size;
3186 
3187 	leaf = path->nodes[0];
3188 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3189 	ret = setup_leaf_for_split(trans, root, path,
3190 				   item_size + sizeof(struct btrfs_item));
3191 	if (ret)
3192 		return ret;
3193 
3194 	path->slots[0]++;
3195 	ret = setup_items_for_insert(trans, root, path, new_key, &item_size,
3196 				     item_size, item_size +
3197 				     sizeof(struct btrfs_item), 1);
3198 	BUG_ON(ret);
3199 
3200 	leaf = path->nodes[0];
3201 	memcpy_extent_buffer(leaf,
3202 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
3203 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
3204 			     item_size);
3205 	return 0;
3206 }
3207 
3208 /*
3209  * make the item pointed to by the path smaller.  new_size indicates
3210  * how small to make it, and from_end tells us if we just chop bytes
3211  * off the end of the item or if we shift the item to chop bytes off
3212  * the front.
3213  */
3214 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3215 			struct btrfs_root *root,
3216 			struct btrfs_path *path,
3217 			u32 new_size, int from_end)
3218 {
3219 	int ret = 0;
3220 	int slot;
3221 	struct extent_buffer *leaf;
3222 	struct btrfs_item *item;
3223 	u32 nritems;
3224 	unsigned int data_end;
3225 	unsigned int old_data_start;
3226 	unsigned int old_size;
3227 	unsigned int size_diff;
3228 	int i;
3229 
3230 	leaf = path->nodes[0];
3231 	slot = path->slots[0];
3232 
3233 	old_size = btrfs_item_size_nr(leaf, slot);
3234 	if (old_size == new_size)
3235 		return 0;
3236 
3237 	nritems = btrfs_header_nritems(leaf);
3238 	data_end = leaf_data_end(root, leaf);
3239 
3240 	old_data_start = btrfs_item_offset_nr(leaf, slot);
3241 
3242 	size_diff = old_size - new_size;
3243 
3244 	BUG_ON(slot < 0);
3245 	BUG_ON(slot >= nritems);
3246 
3247 	/*
3248 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3249 	 */
3250 	/* first correct the data pointers */
3251 	for (i = slot; i < nritems; i++) {
3252 		u32 ioff;
3253 		item = btrfs_item_nr(leaf, i);
3254 
3255 		if (!leaf->map_token) {
3256 			map_extent_buffer(leaf, (unsigned long)item,
3257 					sizeof(struct btrfs_item),
3258 					&leaf->map_token, &leaf->kaddr,
3259 					&leaf->map_start, &leaf->map_len,
3260 					KM_USER1);
3261 		}
3262 
3263 		ioff = btrfs_item_offset(leaf, item);
3264 		btrfs_set_item_offset(leaf, item, ioff + size_diff);
3265 	}
3266 
3267 	if (leaf->map_token) {
3268 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3269 		leaf->map_token = NULL;
3270 	}
3271 
3272 	/* shift the data */
3273 	if (from_end) {
3274 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3275 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3276 			      data_end, old_data_start + new_size - data_end);
3277 	} else {
3278 		struct btrfs_disk_key disk_key;
3279 		u64 offset;
3280 
3281 		btrfs_item_key(leaf, &disk_key, slot);
3282 
3283 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3284 			unsigned long ptr;
3285 			struct btrfs_file_extent_item *fi;
3286 
3287 			fi = btrfs_item_ptr(leaf, slot,
3288 					    struct btrfs_file_extent_item);
3289 			fi = (struct btrfs_file_extent_item *)(
3290 			     (unsigned long)fi - size_diff);
3291 
3292 			if (btrfs_file_extent_type(leaf, fi) ==
3293 			    BTRFS_FILE_EXTENT_INLINE) {
3294 				ptr = btrfs_item_ptr_offset(leaf, slot);
3295 				memmove_extent_buffer(leaf, ptr,
3296 				      (unsigned long)fi,
3297 				      offsetof(struct btrfs_file_extent_item,
3298 						 disk_bytenr));
3299 			}
3300 		}
3301 
3302 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3303 			      data_end + size_diff, btrfs_leaf_data(leaf) +
3304 			      data_end, old_data_start - data_end);
3305 
3306 		offset = btrfs_disk_key_offset(&disk_key);
3307 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3308 		btrfs_set_item_key(leaf, &disk_key, slot);
3309 		if (slot == 0)
3310 			fixup_low_keys(trans, root, path, &disk_key, 1);
3311 	}
3312 
3313 	item = btrfs_item_nr(leaf, slot);
3314 	btrfs_set_item_size(leaf, item, new_size);
3315 	btrfs_mark_buffer_dirty(leaf);
3316 
3317 	ret = 0;
3318 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3319 		btrfs_print_leaf(root, leaf);
3320 		BUG();
3321 	}
3322 	return ret;
3323 }
3324 
3325 /*
3326  * make the item pointed to by the path bigger, data_size is the new size.
3327  */
3328 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3329 		      struct btrfs_root *root, struct btrfs_path *path,
3330 		      u32 data_size)
3331 {
3332 	int ret = 0;
3333 	int slot;
3334 	struct extent_buffer *leaf;
3335 	struct btrfs_item *item;
3336 	u32 nritems;
3337 	unsigned int data_end;
3338 	unsigned int old_data;
3339 	unsigned int old_size;
3340 	int i;
3341 
3342 	leaf = path->nodes[0];
3343 
3344 	nritems = btrfs_header_nritems(leaf);
3345 	data_end = leaf_data_end(root, leaf);
3346 
3347 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
3348 		btrfs_print_leaf(root, leaf);
3349 		BUG();
3350 	}
3351 	slot = path->slots[0];
3352 	old_data = btrfs_item_end_nr(leaf, slot);
3353 
3354 	BUG_ON(slot < 0);
3355 	if (slot >= nritems) {
3356 		btrfs_print_leaf(root, leaf);
3357 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
3358 		       slot, nritems);
3359 		BUG_ON(1);
3360 	}
3361 
3362 	/*
3363 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3364 	 */
3365 	/* first correct the data pointers */
3366 	for (i = slot; i < nritems; i++) {
3367 		u32 ioff;
3368 		item = btrfs_item_nr(leaf, i);
3369 
3370 		if (!leaf->map_token) {
3371 			map_extent_buffer(leaf, (unsigned long)item,
3372 					sizeof(struct btrfs_item),
3373 					&leaf->map_token, &leaf->kaddr,
3374 					&leaf->map_start, &leaf->map_len,
3375 					KM_USER1);
3376 		}
3377 		ioff = btrfs_item_offset(leaf, item);
3378 		btrfs_set_item_offset(leaf, item, ioff - data_size);
3379 	}
3380 
3381 	if (leaf->map_token) {
3382 		unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3383 		leaf->map_token = NULL;
3384 	}
3385 
3386 	/* shift the data */
3387 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3388 		      data_end - data_size, btrfs_leaf_data(leaf) +
3389 		      data_end, old_data - data_end);
3390 
3391 	data_end = old_data;
3392 	old_size = btrfs_item_size_nr(leaf, slot);
3393 	item = btrfs_item_nr(leaf, slot);
3394 	btrfs_set_item_size(leaf, item, old_size + data_size);
3395 	btrfs_mark_buffer_dirty(leaf);
3396 
3397 	ret = 0;
3398 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3399 		btrfs_print_leaf(root, leaf);
3400 		BUG();
3401 	}
3402 	return ret;
3403 }
3404 
3405 /*
3406  * Given a key and some data, insert items into the tree.
3407  * This does all the path init required, making room in the tree if needed.
3408  * Returns the number of keys that were inserted.
3409  */
3410 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3411 			    struct btrfs_root *root,
3412 			    struct btrfs_path *path,
3413 			    struct btrfs_key *cpu_key, u32 *data_size,
3414 			    int nr)
3415 {
3416 	struct extent_buffer *leaf;
3417 	struct btrfs_item *item;
3418 	int ret = 0;
3419 	int slot;
3420 	int i;
3421 	u32 nritems;
3422 	u32 total_data = 0;
3423 	u32 total_size = 0;
3424 	unsigned int data_end;
3425 	struct btrfs_disk_key disk_key;
3426 	struct btrfs_key found_key;
3427 
3428 	for (i = 0; i < nr; i++) {
3429 		if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3430 		    BTRFS_LEAF_DATA_SIZE(root)) {
3431 			break;
3432 			nr = i;
3433 		}
3434 		total_data += data_size[i];
3435 		total_size += data_size[i] + sizeof(struct btrfs_item);
3436 	}
3437 	BUG_ON(nr == 0);
3438 
3439 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3440 	if (ret == 0)
3441 		return -EEXIST;
3442 	if (ret < 0)
3443 		goto out;
3444 
3445 	leaf = path->nodes[0];
3446 
3447 	nritems = btrfs_header_nritems(leaf);
3448 	data_end = leaf_data_end(root, leaf);
3449 
3450 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3451 		for (i = nr; i >= 0; i--) {
3452 			total_data -= data_size[i];
3453 			total_size -= data_size[i] + sizeof(struct btrfs_item);
3454 			if (total_size < btrfs_leaf_free_space(root, leaf))
3455 				break;
3456 		}
3457 		nr = i;
3458 	}
3459 
3460 	slot = path->slots[0];
3461 	BUG_ON(slot < 0);
3462 
3463 	if (slot != nritems) {
3464 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3465 
3466 		item = btrfs_item_nr(leaf, slot);
3467 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3468 
3469 		/* figure out how many keys we can insert in here */
3470 		total_data = data_size[0];
3471 		for (i = 1; i < nr; i++) {
3472 			if (btrfs_comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3473 				break;
3474 			total_data += data_size[i];
3475 		}
3476 		nr = i;
3477 
3478 		if (old_data < data_end) {
3479 			btrfs_print_leaf(root, leaf);
3480 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3481 			       slot, old_data, data_end);
3482 			BUG_ON(1);
3483 		}
3484 		/*
3485 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3486 		 */
3487 		/* first correct the data pointers */
3488 		WARN_ON(leaf->map_token);
3489 		for (i = slot; i < nritems; i++) {
3490 			u32 ioff;
3491 
3492 			item = btrfs_item_nr(leaf, i);
3493 			if (!leaf->map_token) {
3494 				map_extent_buffer(leaf, (unsigned long)item,
3495 					sizeof(struct btrfs_item),
3496 					&leaf->map_token, &leaf->kaddr,
3497 					&leaf->map_start, &leaf->map_len,
3498 					KM_USER1);
3499 			}
3500 
3501 			ioff = btrfs_item_offset(leaf, item);
3502 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3503 		}
3504 		if (leaf->map_token) {
3505 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3506 			leaf->map_token = NULL;
3507 		}
3508 
3509 		/* shift the items */
3510 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3511 			      btrfs_item_nr_offset(slot),
3512 			      (nritems - slot) * sizeof(struct btrfs_item));
3513 
3514 		/* shift the data */
3515 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3516 			      data_end - total_data, btrfs_leaf_data(leaf) +
3517 			      data_end, old_data - data_end);
3518 		data_end = old_data;
3519 	} else {
3520 		/*
3521 		 * this sucks but it has to be done, if we are inserting at
3522 		 * the end of the leaf only insert 1 of the items, since we
3523 		 * have no way of knowing whats on the next leaf and we'd have
3524 		 * to drop our current locks to figure it out
3525 		 */
3526 		nr = 1;
3527 	}
3528 
3529 	/* setup the item for the new data */
3530 	for (i = 0; i < nr; i++) {
3531 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3532 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3533 		item = btrfs_item_nr(leaf, slot + i);
3534 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3535 		data_end -= data_size[i];
3536 		btrfs_set_item_size(leaf, item, data_size[i]);
3537 	}
3538 	btrfs_set_header_nritems(leaf, nritems + nr);
3539 	btrfs_mark_buffer_dirty(leaf);
3540 
3541 	ret = 0;
3542 	if (slot == 0) {
3543 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3544 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3545 	}
3546 
3547 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3548 		btrfs_print_leaf(root, leaf);
3549 		BUG();
3550 	}
3551 out:
3552 	if (!ret)
3553 		ret = nr;
3554 	return ret;
3555 }
3556 
3557 /*
3558  * this is a helper for btrfs_insert_empty_items, the main goal here is
3559  * to save stack depth by doing the bulk of the work in a function
3560  * that doesn't call btrfs_search_slot
3561  */
3562 static noinline_for_stack int
3563 setup_items_for_insert(struct btrfs_trans_handle *trans,
3564 		      struct btrfs_root *root, struct btrfs_path *path,
3565 		      struct btrfs_key *cpu_key, u32 *data_size,
3566 		      u32 total_data, u32 total_size, int nr)
3567 {
3568 	struct btrfs_item *item;
3569 	int i;
3570 	u32 nritems;
3571 	unsigned int data_end;
3572 	struct btrfs_disk_key disk_key;
3573 	int ret;
3574 	struct extent_buffer *leaf;
3575 	int slot;
3576 
3577 	leaf = path->nodes[0];
3578 	slot = path->slots[0];
3579 
3580 	nritems = btrfs_header_nritems(leaf);
3581 	data_end = leaf_data_end(root, leaf);
3582 
3583 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
3584 		btrfs_print_leaf(root, leaf);
3585 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
3586 		       total_size, btrfs_leaf_free_space(root, leaf));
3587 		BUG();
3588 	}
3589 
3590 	if (slot != nritems) {
3591 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3592 
3593 		if (old_data < data_end) {
3594 			btrfs_print_leaf(root, leaf);
3595 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3596 			       slot, old_data, data_end);
3597 			BUG_ON(1);
3598 		}
3599 		/*
3600 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3601 		 */
3602 		/* first correct the data pointers */
3603 		WARN_ON(leaf->map_token);
3604 		for (i = slot; i < nritems; i++) {
3605 			u32 ioff;
3606 
3607 			item = btrfs_item_nr(leaf, i);
3608 			if (!leaf->map_token) {
3609 				map_extent_buffer(leaf, (unsigned long)item,
3610 					sizeof(struct btrfs_item),
3611 					&leaf->map_token, &leaf->kaddr,
3612 					&leaf->map_start, &leaf->map_len,
3613 					KM_USER1);
3614 			}
3615 
3616 			ioff = btrfs_item_offset(leaf, item);
3617 			btrfs_set_item_offset(leaf, item, ioff - total_data);
3618 		}
3619 		if (leaf->map_token) {
3620 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3621 			leaf->map_token = NULL;
3622 		}
3623 
3624 		/* shift the items */
3625 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3626 			      btrfs_item_nr_offset(slot),
3627 			      (nritems - slot) * sizeof(struct btrfs_item));
3628 
3629 		/* shift the data */
3630 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3631 			      data_end - total_data, btrfs_leaf_data(leaf) +
3632 			      data_end, old_data - data_end);
3633 		data_end = old_data;
3634 	}
3635 
3636 	/* setup the item for the new data */
3637 	for (i = 0; i < nr; i++) {
3638 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3639 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3640 		item = btrfs_item_nr(leaf, slot + i);
3641 		btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3642 		data_end -= data_size[i];
3643 		btrfs_set_item_size(leaf, item, data_size[i]);
3644 	}
3645 
3646 	btrfs_set_header_nritems(leaf, nritems + nr);
3647 
3648 	ret = 0;
3649 	if (slot == 0) {
3650 		struct btrfs_disk_key disk_key;
3651 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3652 		ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3653 	}
3654 	btrfs_unlock_up_safe(path, 1);
3655 	btrfs_mark_buffer_dirty(leaf);
3656 
3657 	if (btrfs_leaf_free_space(root, leaf) < 0) {
3658 		btrfs_print_leaf(root, leaf);
3659 		BUG();
3660 	}
3661 	return ret;
3662 }
3663 
3664 /*
3665  * Given a key and some data, insert items into the tree.
3666  * This does all the path init required, making room in the tree if needed.
3667  */
3668 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3669 			    struct btrfs_root *root,
3670 			    struct btrfs_path *path,
3671 			    struct btrfs_key *cpu_key, u32 *data_size,
3672 			    int nr)
3673 {
3674 	int ret = 0;
3675 	int slot;
3676 	int i;
3677 	u32 total_size = 0;
3678 	u32 total_data = 0;
3679 
3680 	for (i = 0; i < nr; i++)
3681 		total_data += data_size[i];
3682 
3683 	total_size = total_data + (nr * sizeof(struct btrfs_item));
3684 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3685 	if (ret == 0)
3686 		return -EEXIST;
3687 	if (ret < 0)
3688 		goto out;
3689 
3690 	slot = path->slots[0];
3691 	BUG_ON(slot < 0);
3692 
3693 	ret = setup_items_for_insert(trans, root, path, cpu_key, data_size,
3694 			       total_data, total_size, nr);
3695 
3696 out:
3697 	return ret;
3698 }
3699 
3700 /*
3701  * Given a key and some data, insert an item into the tree.
3702  * This does all the path init required, making room in the tree if needed.
3703  */
3704 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3705 		      *root, struct btrfs_key *cpu_key, void *data, u32
3706 		      data_size)
3707 {
3708 	int ret = 0;
3709 	struct btrfs_path *path;
3710 	struct extent_buffer *leaf;
3711 	unsigned long ptr;
3712 
3713 	path = btrfs_alloc_path();
3714 	if (!path)
3715 		return -ENOMEM;
3716 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3717 	if (!ret) {
3718 		leaf = path->nodes[0];
3719 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3720 		write_extent_buffer(leaf, data, ptr, data_size);
3721 		btrfs_mark_buffer_dirty(leaf);
3722 	}
3723 	btrfs_free_path(path);
3724 	return ret;
3725 }
3726 
3727 /*
3728  * delete the pointer from a given node.
3729  *
3730  * the tree should have been previously balanced so the deletion does not
3731  * empty a node.
3732  */
3733 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3734 		   struct btrfs_path *path, int level, int slot)
3735 {
3736 	struct extent_buffer *parent = path->nodes[level];
3737 	u32 nritems;
3738 	int ret = 0;
3739 	int wret;
3740 
3741 	nritems = btrfs_header_nritems(parent);
3742 	if (slot != nritems - 1) {
3743 		memmove_extent_buffer(parent,
3744 			      btrfs_node_key_ptr_offset(slot),
3745 			      btrfs_node_key_ptr_offset(slot + 1),
3746 			      sizeof(struct btrfs_key_ptr) *
3747 			      (nritems - slot - 1));
3748 	}
3749 	nritems--;
3750 	btrfs_set_header_nritems(parent, nritems);
3751 	if (nritems == 0 && parent == root->node) {
3752 		BUG_ON(btrfs_header_level(root->node) != 1);
3753 		/* just turn the root into a leaf and break */
3754 		btrfs_set_header_level(root->node, 0);
3755 	} else if (slot == 0) {
3756 		struct btrfs_disk_key disk_key;
3757 
3758 		btrfs_node_key(parent, &disk_key, 0);
3759 		wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3760 		if (wret)
3761 			ret = wret;
3762 	}
3763 	btrfs_mark_buffer_dirty(parent);
3764 	return ret;
3765 }
3766 
3767 /*
3768  * a helper function to delete the leaf pointed to by path->slots[1] and
3769  * path->nodes[1].
3770  *
3771  * This deletes the pointer in path->nodes[1] and frees the leaf
3772  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3773  *
3774  * The path must have already been setup for deleting the leaf, including
3775  * all the proper balancing.  path->nodes[1] must be locked.
3776  */
3777 static noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3778 				   struct btrfs_root *root,
3779 				   struct btrfs_path *path,
3780 				   struct extent_buffer *leaf)
3781 {
3782 	int ret;
3783 
3784 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
3785 	ret = del_ptr(trans, root, path, 1, path->slots[1]);
3786 	if (ret)
3787 		return ret;
3788 
3789 	/*
3790 	 * btrfs_free_extent is expensive, we want to make sure we
3791 	 * aren't holding any locks when we call it
3792 	 */
3793 	btrfs_unlock_up_safe(path, 0);
3794 
3795 	root_sub_used(root, leaf->len);
3796 
3797 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
3798 	return 0;
3799 }
3800 /*
3801  * delete the item at the leaf level in path.  If that empties
3802  * the leaf, remove it from the tree
3803  */
3804 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3805 		    struct btrfs_path *path, int slot, int nr)
3806 {
3807 	struct extent_buffer *leaf;
3808 	struct btrfs_item *item;
3809 	int last_off;
3810 	int dsize = 0;
3811 	int ret = 0;
3812 	int wret;
3813 	int i;
3814 	u32 nritems;
3815 
3816 	leaf = path->nodes[0];
3817 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3818 
3819 	for (i = 0; i < nr; i++)
3820 		dsize += btrfs_item_size_nr(leaf, slot + i);
3821 
3822 	nritems = btrfs_header_nritems(leaf);
3823 
3824 	if (slot + nr != nritems) {
3825 		int data_end = leaf_data_end(root, leaf);
3826 
3827 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3828 			      data_end + dsize,
3829 			      btrfs_leaf_data(leaf) + data_end,
3830 			      last_off - data_end);
3831 
3832 		for (i = slot + nr; i < nritems; i++) {
3833 			u32 ioff;
3834 
3835 			item = btrfs_item_nr(leaf, i);
3836 			if (!leaf->map_token) {
3837 				map_extent_buffer(leaf, (unsigned long)item,
3838 					sizeof(struct btrfs_item),
3839 					&leaf->map_token, &leaf->kaddr,
3840 					&leaf->map_start, &leaf->map_len,
3841 					KM_USER1);
3842 			}
3843 			ioff = btrfs_item_offset(leaf, item);
3844 			btrfs_set_item_offset(leaf, item, ioff + dsize);
3845 		}
3846 
3847 		if (leaf->map_token) {
3848 			unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3849 			leaf->map_token = NULL;
3850 		}
3851 
3852 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3853 			      btrfs_item_nr_offset(slot + nr),
3854 			      sizeof(struct btrfs_item) *
3855 			      (nritems - slot - nr));
3856 	}
3857 	btrfs_set_header_nritems(leaf, nritems - nr);
3858 	nritems -= nr;
3859 
3860 	/* delete the leaf if we've emptied it */
3861 	if (nritems == 0) {
3862 		if (leaf == root->node) {
3863 			btrfs_set_header_level(leaf, 0);
3864 		} else {
3865 			btrfs_set_path_blocking(path);
3866 			clean_tree_block(trans, root, leaf);
3867 			ret = btrfs_del_leaf(trans, root, path, leaf);
3868 			BUG_ON(ret);
3869 		}
3870 	} else {
3871 		int used = leaf_space_used(leaf, 0, nritems);
3872 		if (slot == 0) {
3873 			struct btrfs_disk_key disk_key;
3874 
3875 			btrfs_item_key(leaf, &disk_key, 0);
3876 			wret = fixup_low_keys(trans, root, path,
3877 					      &disk_key, 1);
3878 			if (wret)
3879 				ret = wret;
3880 		}
3881 
3882 		/* delete the leaf if it is mostly empty */
3883 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
3884 			/* push_leaf_left fixes the path.
3885 			 * make sure the path still points to our leaf
3886 			 * for possible call to del_ptr below
3887 			 */
3888 			slot = path->slots[1];
3889 			extent_buffer_get(leaf);
3890 
3891 			btrfs_set_path_blocking(path);
3892 			wret = push_leaf_left(trans, root, path, 1, 1,
3893 					      1, (u32)-1);
3894 			if (wret < 0 && wret != -ENOSPC)
3895 				ret = wret;
3896 
3897 			if (path->nodes[0] == leaf &&
3898 			    btrfs_header_nritems(leaf)) {
3899 				wret = push_leaf_right(trans, root, path, 1,
3900 						       1, 1, 0);
3901 				if (wret < 0 && wret != -ENOSPC)
3902 					ret = wret;
3903 			}
3904 
3905 			if (btrfs_header_nritems(leaf) == 0) {
3906 				path->slots[1] = slot;
3907 				ret = btrfs_del_leaf(trans, root, path, leaf);
3908 				BUG_ON(ret);
3909 				free_extent_buffer(leaf);
3910 			} else {
3911 				/* if we're still in the path, make sure
3912 				 * we're dirty.  Otherwise, one of the
3913 				 * push_leaf functions must have already
3914 				 * dirtied this buffer
3915 				 */
3916 				if (path->nodes[0] == leaf)
3917 					btrfs_mark_buffer_dirty(leaf);
3918 				free_extent_buffer(leaf);
3919 			}
3920 		} else {
3921 			btrfs_mark_buffer_dirty(leaf);
3922 		}
3923 	}
3924 	return ret;
3925 }
3926 
3927 /*
3928  * search the tree again to find a leaf with lesser keys
3929  * returns 0 if it found something or 1 if there are no lesser leaves.
3930  * returns < 0 on io errors.
3931  *
3932  * This may release the path, and so you may lose any locks held at the
3933  * time you call it.
3934  */
3935 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3936 {
3937 	struct btrfs_key key;
3938 	struct btrfs_disk_key found_key;
3939 	int ret;
3940 
3941 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3942 
3943 	if (key.offset > 0)
3944 		key.offset--;
3945 	else if (key.type > 0)
3946 		key.type--;
3947 	else if (key.objectid > 0)
3948 		key.objectid--;
3949 	else
3950 		return 1;
3951 
3952 	btrfs_release_path(root, path);
3953 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3954 	if (ret < 0)
3955 		return ret;
3956 	btrfs_item_key(path->nodes[0], &found_key, 0);
3957 	ret = comp_keys(&found_key, &key);
3958 	if (ret < 0)
3959 		return 0;
3960 	return 1;
3961 }
3962 
3963 /*
3964  * A helper function to walk down the tree starting at min_key, and looking
3965  * for nodes or leaves that are either in cache or have a minimum
3966  * transaction id.  This is used by the btree defrag code, and tree logging
3967  *
3968  * This does not cow, but it does stuff the starting key it finds back
3969  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3970  * key and get a writable path.
3971  *
3972  * This does lock as it descends, and path->keep_locks should be set
3973  * to 1 by the caller.
3974  *
3975  * This honors path->lowest_level to prevent descent past a given level
3976  * of the tree.
3977  *
3978  * min_trans indicates the oldest transaction that you are interested
3979  * in walking through.  Any nodes or leaves older than min_trans are
3980  * skipped over (without reading them).
3981  *
3982  * returns zero if something useful was found, < 0 on error and 1 if there
3983  * was nothing in the tree that matched the search criteria.
3984  */
3985 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3986 			 struct btrfs_key *max_key,
3987 			 struct btrfs_path *path, int cache_only,
3988 			 u64 min_trans)
3989 {
3990 	struct extent_buffer *cur;
3991 	struct btrfs_key found_key;
3992 	int slot;
3993 	int sret;
3994 	u32 nritems;
3995 	int level;
3996 	int ret = 1;
3997 
3998 	WARN_ON(!path->keep_locks);
3999 again:
4000 	cur = btrfs_lock_root_node(root);
4001 	level = btrfs_header_level(cur);
4002 	WARN_ON(path->nodes[level]);
4003 	path->nodes[level] = cur;
4004 	path->locks[level] = 1;
4005 
4006 	if (btrfs_header_generation(cur) < min_trans) {
4007 		ret = 1;
4008 		goto out;
4009 	}
4010 	while (1) {
4011 		nritems = btrfs_header_nritems(cur);
4012 		level = btrfs_header_level(cur);
4013 		sret = bin_search(cur, min_key, level, &slot);
4014 
4015 		/* at the lowest level, we're done, setup the path and exit */
4016 		if (level == path->lowest_level) {
4017 			if (slot >= nritems)
4018 				goto find_next_key;
4019 			ret = 0;
4020 			path->slots[level] = slot;
4021 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4022 			goto out;
4023 		}
4024 		if (sret && slot > 0)
4025 			slot--;
4026 		/*
4027 		 * check this node pointer against the cache_only and
4028 		 * min_trans parameters.  If it isn't in cache or is too
4029 		 * old, skip to the next one.
4030 		 */
4031 		while (slot < nritems) {
4032 			u64 blockptr;
4033 			u64 gen;
4034 			struct extent_buffer *tmp;
4035 			struct btrfs_disk_key disk_key;
4036 
4037 			blockptr = btrfs_node_blockptr(cur, slot);
4038 			gen = btrfs_node_ptr_generation(cur, slot);
4039 			if (gen < min_trans) {
4040 				slot++;
4041 				continue;
4042 			}
4043 			if (!cache_only)
4044 				break;
4045 
4046 			if (max_key) {
4047 				btrfs_node_key(cur, &disk_key, slot);
4048 				if (comp_keys(&disk_key, max_key) >= 0) {
4049 					ret = 1;
4050 					goto out;
4051 				}
4052 			}
4053 
4054 			tmp = btrfs_find_tree_block(root, blockptr,
4055 					    btrfs_level_size(root, level - 1));
4056 
4057 			if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
4058 				free_extent_buffer(tmp);
4059 				break;
4060 			}
4061 			if (tmp)
4062 				free_extent_buffer(tmp);
4063 			slot++;
4064 		}
4065 find_next_key:
4066 		/*
4067 		 * we didn't find a candidate key in this node, walk forward
4068 		 * and find another one
4069 		 */
4070 		if (slot >= nritems) {
4071 			path->slots[level] = slot;
4072 			btrfs_set_path_blocking(path);
4073 			sret = btrfs_find_next_key(root, path, min_key, level,
4074 						  cache_only, min_trans);
4075 			if (sret == 0) {
4076 				btrfs_release_path(root, path);
4077 				goto again;
4078 			} else {
4079 				goto out;
4080 			}
4081 		}
4082 		/* save our key for returning back */
4083 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4084 		path->slots[level] = slot;
4085 		if (level == path->lowest_level) {
4086 			ret = 0;
4087 			unlock_up(path, level, 1);
4088 			goto out;
4089 		}
4090 		btrfs_set_path_blocking(path);
4091 		cur = read_node_slot(root, cur, slot);
4092 		BUG_ON(!cur);
4093 
4094 		btrfs_tree_lock(cur);
4095 
4096 		path->locks[level - 1] = 1;
4097 		path->nodes[level - 1] = cur;
4098 		unlock_up(path, level, 1);
4099 		btrfs_clear_path_blocking(path, NULL);
4100 	}
4101 out:
4102 	if (ret == 0)
4103 		memcpy(min_key, &found_key, sizeof(found_key));
4104 	btrfs_set_path_blocking(path);
4105 	return ret;
4106 }
4107 
4108 /*
4109  * this is similar to btrfs_next_leaf, but does not try to preserve
4110  * and fixup the path.  It looks for and returns the next key in the
4111  * tree based on the current path and the cache_only and min_trans
4112  * parameters.
4113  *
4114  * 0 is returned if another key is found, < 0 if there are any errors
4115  * and 1 is returned if there are no higher keys in the tree
4116  *
4117  * path->keep_locks should be set to 1 on the search made before
4118  * calling this function.
4119  */
4120 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4121 			struct btrfs_key *key, int level,
4122 			int cache_only, u64 min_trans)
4123 {
4124 	int slot;
4125 	struct extent_buffer *c;
4126 
4127 	WARN_ON(!path->keep_locks);
4128 	while (level < BTRFS_MAX_LEVEL) {
4129 		if (!path->nodes[level])
4130 			return 1;
4131 
4132 		slot = path->slots[level] + 1;
4133 		c = path->nodes[level];
4134 next:
4135 		if (slot >= btrfs_header_nritems(c)) {
4136 			int ret;
4137 			int orig_lowest;
4138 			struct btrfs_key cur_key;
4139 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4140 			    !path->nodes[level + 1])
4141 				return 1;
4142 
4143 			if (path->locks[level + 1]) {
4144 				level++;
4145 				continue;
4146 			}
4147 
4148 			slot = btrfs_header_nritems(c) - 1;
4149 			if (level == 0)
4150 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4151 			else
4152 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4153 
4154 			orig_lowest = path->lowest_level;
4155 			btrfs_release_path(root, path);
4156 			path->lowest_level = level;
4157 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4158 						0, 0);
4159 			path->lowest_level = orig_lowest;
4160 			if (ret < 0)
4161 				return ret;
4162 
4163 			c = path->nodes[level];
4164 			slot = path->slots[level];
4165 			if (ret == 0)
4166 				slot++;
4167 			goto next;
4168 		}
4169 
4170 		if (level == 0)
4171 			btrfs_item_key_to_cpu(c, key, slot);
4172 		else {
4173 			u64 blockptr = btrfs_node_blockptr(c, slot);
4174 			u64 gen = btrfs_node_ptr_generation(c, slot);
4175 
4176 			if (cache_only) {
4177 				struct extent_buffer *cur;
4178 				cur = btrfs_find_tree_block(root, blockptr,
4179 					    btrfs_level_size(root, level - 1));
4180 				if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4181 					slot++;
4182 					if (cur)
4183 						free_extent_buffer(cur);
4184 					goto next;
4185 				}
4186 				free_extent_buffer(cur);
4187 			}
4188 			if (gen < min_trans) {
4189 				slot++;
4190 				goto next;
4191 			}
4192 			btrfs_node_key_to_cpu(c, key, slot);
4193 		}
4194 		return 0;
4195 	}
4196 	return 1;
4197 }
4198 
4199 /*
4200  * search the tree again to find a leaf with greater keys
4201  * returns 0 if it found something or 1 if there are no greater leaves.
4202  * returns < 0 on io errors.
4203  */
4204 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4205 {
4206 	int slot;
4207 	int level;
4208 	struct extent_buffer *c;
4209 	struct extent_buffer *next;
4210 	struct btrfs_key key;
4211 	u32 nritems;
4212 	int ret;
4213 	int old_spinning = path->leave_spinning;
4214 	int force_blocking = 0;
4215 
4216 	nritems = btrfs_header_nritems(path->nodes[0]);
4217 	if (nritems == 0)
4218 		return 1;
4219 
4220 	/*
4221 	 * we take the blocks in an order that upsets lockdep.  Using
4222 	 * blocking mode is the only way around it.
4223 	 */
4224 #ifdef CONFIG_DEBUG_LOCK_ALLOC
4225 	force_blocking = 1;
4226 #endif
4227 
4228 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4229 again:
4230 	level = 1;
4231 	next = NULL;
4232 	btrfs_release_path(root, path);
4233 
4234 	path->keep_locks = 1;
4235 
4236 	if (!force_blocking)
4237 		path->leave_spinning = 1;
4238 
4239 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4240 	path->keep_locks = 0;
4241 
4242 	if (ret < 0)
4243 		return ret;
4244 
4245 	nritems = btrfs_header_nritems(path->nodes[0]);
4246 	/*
4247 	 * by releasing the path above we dropped all our locks.  A balance
4248 	 * could have added more items next to the key that used to be
4249 	 * at the very end of the block.  So, check again here and
4250 	 * advance the path if there are now more items available.
4251 	 */
4252 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4253 		if (ret == 0)
4254 			path->slots[0]++;
4255 		ret = 0;
4256 		goto done;
4257 	}
4258 
4259 	while (level < BTRFS_MAX_LEVEL) {
4260 		if (!path->nodes[level]) {
4261 			ret = 1;
4262 			goto done;
4263 		}
4264 
4265 		slot = path->slots[level] + 1;
4266 		c = path->nodes[level];
4267 		if (slot >= btrfs_header_nritems(c)) {
4268 			level++;
4269 			if (level == BTRFS_MAX_LEVEL) {
4270 				ret = 1;
4271 				goto done;
4272 			}
4273 			continue;
4274 		}
4275 
4276 		if (next) {
4277 			btrfs_tree_unlock(next);
4278 			free_extent_buffer(next);
4279 		}
4280 
4281 		next = c;
4282 		ret = read_block_for_search(NULL, root, path, &next, level,
4283 					    slot, &key);
4284 		if (ret == -EAGAIN)
4285 			goto again;
4286 
4287 		if (ret < 0) {
4288 			btrfs_release_path(root, path);
4289 			goto done;
4290 		}
4291 
4292 		if (!path->skip_locking) {
4293 			ret = btrfs_try_spin_lock(next);
4294 			if (!ret) {
4295 				btrfs_set_path_blocking(path);
4296 				btrfs_tree_lock(next);
4297 				if (!force_blocking)
4298 					btrfs_clear_path_blocking(path, next);
4299 			}
4300 			if (force_blocking)
4301 				btrfs_set_lock_blocking(next);
4302 		}
4303 		break;
4304 	}
4305 	path->slots[level] = slot;
4306 	while (1) {
4307 		level--;
4308 		c = path->nodes[level];
4309 		if (path->locks[level])
4310 			btrfs_tree_unlock(c);
4311 
4312 		free_extent_buffer(c);
4313 		path->nodes[level] = next;
4314 		path->slots[level] = 0;
4315 		if (!path->skip_locking)
4316 			path->locks[level] = 1;
4317 
4318 		if (!level)
4319 			break;
4320 
4321 		ret = read_block_for_search(NULL, root, path, &next, level,
4322 					    0, &key);
4323 		if (ret == -EAGAIN)
4324 			goto again;
4325 
4326 		if (ret < 0) {
4327 			btrfs_release_path(root, path);
4328 			goto done;
4329 		}
4330 
4331 		if (!path->skip_locking) {
4332 			btrfs_assert_tree_locked(path->nodes[level]);
4333 			ret = btrfs_try_spin_lock(next);
4334 			if (!ret) {
4335 				btrfs_set_path_blocking(path);
4336 				btrfs_tree_lock(next);
4337 				if (!force_blocking)
4338 					btrfs_clear_path_blocking(path, next);
4339 			}
4340 			if (force_blocking)
4341 				btrfs_set_lock_blocking(next);
4342 		}
4343 	}
4344 	ret = 0;
4345 done:
4346 	unlock_up(path, 0, 1);
4347 	path->leave_spinning = old_spinning;
4348 	if (!old_spinning)
4349 		btrfs_set_path_blocking(path);
4350 
4351 	return ret;
4352 }
4353 
4354 /*
4355  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4356  * searching until it gets past min_objectid or finds an item of 'type'
4357  *
4358  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4359  */
4360 int btrfs_previous_item(struct btrfs_root *root,
4361 			struct btrfs_path *path, u64 min_objectid,
4362 			int type)
4363 {
4364 	struct btrfs_key found_key;
4365 	struct extent_buffer *leaf;
4366 	u32 nritems;
4367 	int ret;
4368 
4369 	while (1) {
4370 		if (path->slots[0] == 0) {
4371 			btrfs_set_path_blocking(path);
4372 			ret = btrfs_prev_leaf(root, path);
4373 			if (ret != 0)
4374 				return ret;
4375 		} else {
4376 			path->slots[0]--;
4377 		}
4378 		leaf = path->nodes[0];
4379 		nritems = btrfs_header_nritems(leaf);
4380 		if (nritems == 0)
4381 			return 1;
4382 		if (path->slots[0] == nritems)
4383 			path->slots[0]--;
4384 
4385 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4386 		if (found_key.objectid < min_objectid)
4387 			break;
4388 		if (found_key.type == type)
4389 			return 0;
4390 		if (found_key.objectid == min_objectid &&
4391 		    found_key.type < type)
4392 			break;
4393 	}
4394 	return 1;
4395 }
4396