xref: /openbmc/linux/fs/btrfs/ctree.c (revision 1802d0be)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 		      *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
22 		      int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 			  struct extent_buffer *dst,
25 			  struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 struct btrfs_path *btrfs_alloc_path(void)
33 {
34 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
35 }
36 
37 /*
38  * set all locked nodes in the path to blocking locks.  This should
39  * be done before scheduling
40  */
41 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
42 {
43 	int i;
44 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
45 		if (!p->nodes[i] || !p->locks[i])
46 			continue;
47 		/*
48 		 * If we currently have a spinning reader or writer lock this
49 		 * will bump the count of blocking holders and drop the
50 		 * spinlock.
51 		 */
52 		if (p->locks[i] == BTRFS_READ_LOCK) {
53 			btrfs_set_lock_blocking_read(p->nodes[i]);
54 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
55 		} else if (p->locks[i] == BTRFS_WRITE_LOCK) {
56 			btrfs_set_lock_blocking_write(p->nodes[i]);
57 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
58 		}
59 	}
60 }
61 
62 /* this also releases the path */
63 void btrfs_free_path(struct btrfs_path *p)
64 {
65 	if (!p)
66 		return;
67 	btrfs_release_path(p);
68 	kmem_cache_free(btrfs_path_cachep, p);
69 }
70 
71 /*
72  * path release drops references on the extent buffers in the path
73  * and it drops any locks held by this path
74  *
75  * It is safe to call this on paths that no locks or extent buffers held.
76  */
77 noinline void btrfs_release_path(struct btrfs_path *p)
78 {
79 	int i;
80 
81 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
82 		p->slots[i] = 0;
83 		if (!p->nodes[i])
84 			continue;
85 		if (p->locks[i]) {
86 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
87 			p->locks[i] = 0;
88 		}
89 		free_extent_buffer(p->nodes[i]);
90 		p->nodes[i] = NULL;
91 	}
92 }
93 
94 /*
95  * safely gets a reference on the root node of a tree.  A lock
96  * is not taken, so a concurrent writer may put a different node
97  * at the root of the tree.  See btrfs_lock_root_node for the
98  * looping required.
99  *
100  * The extent buffer returned by this has a reference taken, so
101  * it won't disappear.  It may stop being the root of the tree
102  * at any time because there are no locks held.
103  */
104 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
105 {
106 	struct extent_buffer *eb;
107 
108 	while (1) {
109 		rcu_read_lock();
110 		eb = rcu_dereference(root->node);
111 
112 		/*
113 		 * RCU really hurts here, we could free up the root node because
114 		 * it was COWed but we may not get the new root node yet so do
115 		 * the inc_not_zero dance and if it doesn't work then
116 		 * synchronize_rcu and try again.
117 		 */
118 		if (atomic_inc_not_zero(&eb->refs)) {
119 			rcu_read_unlock();
120 			break;
121 		}
122 		rcu_read_unlock();
123 		synchronize_rcu();
124 	}
125 	return eb;
126 }
127 
128 /* loop around taking references on and locking the root node of the
129  * tree until you end up with a lock on the root.  A locked buffer
130  * is returned, with a reference held.
131  */
132 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
133 {
134 	struct extent_buffer *eb;
135 
136 	while (1) {
137 		eb = btrfs_root_node(root);
138 		btrfs_tree_lock(eb);
139 		if (eb == root->node)
140 			break;
141 		btrfs_tree_unlock(eb);
142 		free_extent_buffer(eb);
143 	}
144 	return eb;
145 }
146 
147 /* loop around taking references on and locking the root node of the
148  * tree until you end up with a lock on the root.  A locked buffer
149  * is returned, with a reference held.
150  */
151 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
152 {
153 	struct extent_buffer *eb;
154 
155 	while (1) {
156 		eb = btrfs_root_node(root);
157 		btrfs_tree_read_lock(eb);
158 		if (eb == root->node)
159 			break;
160 		btrfs_tree_read_unlock(eb);
161 		free_extent_buffer(eb);
162 	}
163 	return eb;
164 }
165 
166 /* cowonly root (everything not a reference counted cow subvolume), just get
167  * put onto a simple dirty list.  transaction.c walks this to make sure they
168  * get properly updated on disk.
169  */
170 static void add_root_to_dirty_list(struct btrfs_root *root)
171 {
172 	struct btrfs_fs_info *fs_info = root->fs_info;
173 
174 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
175 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
176 		return;
177 
178 	spin_lock(&fs_info->trans_lock);
179 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
180 		/* Want the extent tree to be the last on the list */
181 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
182 			list_move_tail(&root->dirty_list,
183 				       &fs_info->dirty_cowonly_roots);
184 		else
185 			list_move(&root->dirty_list,
186 				  &fs_info->dirty_cowonly_roots);
187 	}
188 	spin_unlock(&fs_info->trans_lock);
189 }
190 
191 /*
192  * used by snapshot creation to make a copy of a root for a tree with
193  * a given objectid.  The buffer with the new root node is returned in
194  * cow_ret, and this func returns zero on success or a negative error code.
195  */
196 int btrfs_copy_root(struct btrfs_trans_handle *trans,
197 		      struct btrfs_root *root,
198 		      struct extent_buffer *buf,
199 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
200 {
201 	struct btrfs_fs_info *fs_info = root->fs_info;
202 	struct extent_buffer *cow;
203 	int ret = 0;
204 	int level;
205 	struct btrfs_disk_key disk_key;
206 
207 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
208 		trans->transid != fs_info->running_transaction->transid);
209 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
210 		trans->transid != root->last_trans);
211 
212 	level = btrfs_header_level(buf);
213 	if (level == 0)
214 		btrfs_item_key(buf, &disk_key, 0);
215 	else
216 		btrfs_node_key(buf, &disk_key, 0);
217 
218 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
219 			&disk_key, level, buf->start, 0);
220 	if (IS_ERR(cow))
221 		return PTR_ERR(cow);
222 
223 	copy_extent_buffer_full(cow, buf);
224 	btrfs_set_header_bytenr(cow, cow->start);
225 	btrfs_set_header_generation(cow, trans->transid);
226 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
227 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
228 				     BTRFS_HEADER_FLAG_RELOC);
229 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
230 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
231 	else
232 		btrfs_set_header_owner(cow, new_root_objectid);
233 
234 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
235 
236 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
237 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
238 		ret = btrfs_inc_ref(trans, root, cow, 1);
239 	else
240 		ret = btrfs_inc_ref(trans, root, cow, 0);
241 
242 	if (ret)
243 		return ret;
244 
245 	btrfs_mark_buffer_dirty(cow);
246 	*cow_ret = cow;
247 	return 0;
248 }
249 
250 enum mod_log_op {
251 	MOD_LOG_KEY_REPLACE,
252 	MOD_LOG_KEY_ADD,
253 	MOD_LOG_KEY_REMOVE,
254 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
255 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
256 	MOD_LOG_MOVE_KEYS,
257 	MOD_LOG_ROOT_REPLACE,
258 };
259 
260 struct tree_mod_root {
261 	u64 logical;
262 	u8 level;
263 };
264 
265 struct tree_mod_elem {
266 	struct rb_node node;
267 	u64 logical;
268 	u64 seq;
269 	enum mod_log_op op;
270 
271 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
272 	int slot;
273 
274 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
275 	u64 generation;
276 
277 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
278 	struct btrfs_disk_key key;
279 	u64 blockptr;
280 
281 	/* this is used for op == MOD_LOG_MOVE_KEYS */
282 	struct {
283 		int dst_slot;
284 		int nr_items;
285 	} move;
286 
287 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
288 	struct tree_mod_root old_root;
289 };
290 
291 /*
292  * Pull a new tree mod seq number for our operation.
293  */
294 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
295 {
296 	return atomic64_inc_return(&fs_info->tree_mod_seq);
297 }
298 
299 /*
300  * This adds a new blocker to the tree mod log's blocker list if the @elem
301  * passed does not already have a sequence number set. So when a caller expects
302  * to record tree modifications, it should ensure to set elem->seq to zero
303  * before calling btrfs_get_tree_mod_seq.
304  * Returns a fresh, unused tree log modification sequence number, even if no new
305  * blocker was added.
306  */
307 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
308 			   struct seq_list *elem)
309 {
310 	write_lock(&fs_info->tree_mod_log_lock);
311 	spin_lock(&fs_info->tree_mod_seq_lock);
312 	if (!elem->seq) {
313 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
314 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
315 	}
316 	spin_unlock(&fs_info->tree_mod_seq_lock);
317 	write_unlock(&fs_info->tree_mod_log_lock);
318 
319 	return elem->seq;
320 }
321 
322 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
323 			    struct seq_list *elem)
324 {
325 	struct rb_root *tm_root;
326 	struct rb_node *node;
327 	struct rb_node *next;
328 	struct seq_list *cur_elem;
329 	struct tree_mod_elem *tm;
330 	u64 min_seq = (u64)-1;
331 	u64 seq_putting = elem->seq;
332 
333 	if (!seq_putting)
334 		return;
335 
336 	spin_lock(&fs_info->tree_mod_seq_lock);
337 	list_del(&elem->list);
338 	elem->seq = 0;
339 
340 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
341 		if (cur_elem->seq < min_seq) {
342 			if (seq_putting > cur_elem->seq) {
343 				/*
344 				 * blocker with lower sequence number exists, we
345 				 * cannot remove anything from the log
346 				 */
347 				spin_unlock(&fs_info->tree_mod_seq_lock);
348 				return;
349 			}
350 			min_seq = cur_elem->seq;
351 		}
352 	}
353 	spin_unlock(&fs_info->tree_mod_seq_lock);
354 
355 	/*
356 	 * anything that's lower than the lowest existing (read: blocked)
357 	 * sequence number can be removed from the tree.
358 	 */
359 	write_lock(&fs_info->tree_mod_log_lock);
360 	tm_root = &fs_info->tree_mod_log;
361 	for (node = rb_first(tm_root); node; node = next) {
362 		next = rb_next(node);
363 		tm = rb_entry(node, struct tree_mod_elem, node);
364 		if (tm->seq > min_seq)
365 			continue;
366 		rb_erase(node, tm_root);
367 		kfree(tm);
368 	}
369 	write_unlock(&fs_info->tree_mod_log_lock);
370 }
371 
372 /*
373  * key order of the log:
374  *       node/leaf start address -> sequence
375  *
376  * The 'start address' is the logical address of the *new* root node
377  * for root replace operations, or the logical address of the affected
378  * block for all other operations.
379  *
380  * Note: must be called with write lock for fs_info::tree_mod_log_lock.
381  */
382 static noinline int
383 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
384 {
385 	struct rb_root *tm_root;
386 	struct rb_node **new;
387 	struct rb_node *parent = NULL;
388 	struct tree_mod_elem *cur;
389 
390 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
391 
392 	tm_root = &fs_info->tree_mod_log;
393 	new = &tm_root->rb_node;
394 	while (*new) {
395 		cur = rb_entry(*new, struct tree_mod_elem, node);
396 		parent = *new;
397 		if (cur->logical < tm->logical)
398 			new = &((*new)->rb_left);
399 		else if (cur->logical > tm->logical)
400 			new = &((*new)->rb_right);
401 		else if (cur->seq < tm->seq)
402 			new = &((*new)->rb_left);
403 		else if (cur->seq > tm->seq)
404 			new = &((*new)->rb_right);
405 		else
406 			return -EEXIST;
407 	}
408 
409 	rb_link_node(&tm->node, parent, new);
410 	rb_insert_color(&tm->node, tm_root);
411 	return 0;
412 }
413 
414 /*
415  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
416  * returns zero with the tree_mod_log_lock acquired. The caller must hold
417  * this until all tree mod log insertions are recorded in the rb tree and then
418  * write unlock fs_info::tree_mod_log_lock.
419  */
420 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
421 				    struct extent_buffer *eb) {
422 	smp_mb();
423 	if (list_empty(&(fs_info)->tree_mod_seq_list))
424 		return 1;
425 	if (eb && btrfs_header_level(eb) == 0)
426 		return 1;
427 
428 	write_lock(&fs_info->tree_mod_log_lock);
429 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
430 		write_unlock(&fs_info->tree_mod_log_lock);
431 		return 1;
432 	}
433 
434 	return 0;
435 }
436 
437 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
438 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
439 				    struct extent_buffer *eb)
440 {
441 	smp_mb();
442 	if (list_empty(&(fs_info)->tree_mod_seq_list))
443 		return 0;
444 	if (eb && btrfs_header_level(eb) == 0)
445 		return 0;
446 
447 	return 1;
448 }
449 
450 static struct tree_mod_elem *
451 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
452 		    enum mod_log_op op, gfp_t flags)
453 {
454 	struct tree_mod_elem *tm;
455 
456 	tm = kzalloc(sizeof(*tm), flags);
457 	if (!tm)
458 		return NULL;
459 
460 	tm->logical = eb->start;
461 	if (op != MOD_LOG_KEY_ADD) {
462 		btrfs_node_key(eb, &tm->key, slot);
463 		tm->blockptr = btrfs_node_blockptr(eb, slot);
464 	}
465 	tm->op = op;
466 	tm->slot = slot;
467 	tm->generation = btrfs_node_ptr_generation(eb, slot);
468 	RB_CLEAR_NODE(&tm->node);
469 
470 	return tm;
471 }
472 
473 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
474 		enum mod_log_op op, gfp_t flags)
475 {
476 	struct tree_mod_elem *tm;
477 	int ret;
478 
479 	if (!tree_mod_need_log(eb->fs_info, eb))
480 		return 0;
481 
482 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
483 	if (!tm)
484 		return -ENOMEM;
485 
486 	if (tree_mod_dont_log(eb->fs_info, eb)) {
487 		kfree(tm);
488 		return 0;
489 	}
490 
491 	ret = __tree_mod_log_insert(eb->fs_info, tm);
492 	write_unlock(&eb->fs_info->tree_mod_log_lock);
493 	if (ret)
494 		kfree(tm);
495 
496 	return ret;
497 }
498 
499 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
500 		int dst_slot, int src_slot, int nr_items)
501 {
502 	struct tree_mod_elem *tm = NULL;
503 	struct tree_mod_elem **tm_list = NULL;
504 	int ret = 0;
505 	int i;
506 	int locked = 0;
507 
508 	if (!tree_mod_need_log(eb->fs_info, eb))
509 		return 0;
510 
511 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
512 	if (!tm_list)
513 		return -ENOMEM;
514 
515 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
516 	if (!tm) {
517 		ret = -ENOMEM;
518 		goto free_tms;
519 	}
520 
521 	tm->logical = eb->start;
522 	tm->slot = src_slot;
523 	tm->move.dst_slot = dst_slot;
524 	tm->move.nr_items = nr_items;
525 	tm->op = MOD_LOG_MOVE_KEYS;
526 
527 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
528 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
529 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
530 		if (!tm_list[i]) {
531 			ret = -ENOMEM;
532 			goto free_tms;
533 		}
534 	}
535 
536 	if (tree_mod_dont_log(eb->fs_info, eb))
537 		goto free_tms;
538 	locked = 1;
539 
540 	/*
541 	 * When we override something during the move, we log these removals.
542 	 * This can only happen when we move towards the beginning of the
543 	 * buffer, i.e. dst_slot < src_slot.
544 	 */
545 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
546 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
547 		if (ret)
548 			goto free_tms;
549 	}
550 
551 	ret = __tree_mod_log_insert(eb->fs_info, tm);
552 	if (ret)
553 		goto free_tms;
554 	write_unlock(&eb->fs_info->tree_mod_log_lock);
555 	kfree(tm_list);
556 
557 	return 0;
558 free_tms:
559 	for (i = 0; i < nr_items; i++) {
560 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
561 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
562 		kfree(tm_list[i]);
563 	}
564 	if (locked)
565 		write_unlock(&eb->fs_info->tree_mod_log_lock);
566 	kfree(tm_list);
567 	kfree(tm);
568 
569 	return ret;
570 }
571 
572 static inline int
573 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
574 		       struct tree_mod_elem **tm_list,
575 		       int nritems)
576 {
577 	int i, j;
578 	int ret;
579 
580 	for (i = nritems - 1; i >= 0; i--) {
581 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
582 		if (ret) {
583 			for (j = nritems - 1; j > i; j--)
584 				rb_erase(&tm_list[j]->node,
585 					 &fs_info->tree_mod_log);
586 			return ret;
587 		}
588 	}
589 
590 	return 0;
591 }
592 
593 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
594 			 struct extent_buffer *new_root, int log_removal)
595 {
596 	struct btrfs_fs_info *fs_info = old_root->fs_info;
597 	struct tree_mod_elem *tm = NULL;
598 	struct tree_mod_elem **tm_list = NULL;
599 	int nritems = 0;
600 	int ret = 0;
601 	int i;
602 
603 	if (!tree_mod_need_log(fs_info, NULL))
604 		return 0;
605 
606 	if (log_removal && btrfs_header_level(old_root) > 0) {
607 		nritems = btrfs_header_nritems(old_root);
608 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
609 				  GFP_NOFS);
610 		if (!tm_list) {
611 			ret = -ENOMEM;
612 			goto free_tms;
613 		}
614 		for (i = 0; i < nritems; i++) {
615 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
616 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
617 			if (!tm_list[i]) {
618 				ret = -ENOMEM;
619 				goto free_tms;
620 			}
621 		}
622 	}
623 
624 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
625 	if (!tm) {
626 		ret = -ENOMEM;
627 		goto free_tms;
628 	}
629 
630 	tm->logical = new_root->start;
631 	tm->old_root.logical = old_root->start;
632 	tm->old_root.level = btrfs_header_level(old_root);
633 	tm->generation = btrfs_header_generation(old_root);
634 	tm->op = MOD_LOG_ROOT_REPLACE;
635 
636 	if (tree_mod_dont_log(fs_info, NULL))
637 		goto free_tms;
638 
639 	if (tm_list)
640 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
641 	if (!ret)
642 		ret = __tree_mod_log_insert(fs_info, tm);
643 
644 	write_unlock(&fs_info->tree_mod_log_lock);
645 	if (ret)
646 		goto free_tms;
647 	kfree(tm_list);
648 
649 	return ret;
650 
651 free_tms:
652 	if (tm_list) {
653 		for (i = 0; i < nritems; i++)
654 			kfree(tm_list[i]);
655 		kfree(tm_list);
656 	}
657 	kfree(tm);
658 
659 	return ret;
660 }
661 
662 static struct tree_mod_elem *
663 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
664 		      int smallest)
665 {
666 	struct rb_root *tm_root;
667 	struct rb_node *node;
668 	struct tree_mod_elem *cur = NULL;
669 	struct tree_mod_elem *found = NULL;
670 
671 	read_lock(&fs_info->tree_mod_log_lock);
672 	tm_root = &fs_info->tree_mod_log;
673 	node = tm_root->rb_node;
674 	while (node) {
675 		cur = rb_entry(node, struct tree_mod_elem, node);
676 		if (cur->logical < start) {
677 			node = node->rb_left;
678 		} else if (cur->logical > start) {
679 			node = node->rb_right;
680 		} else if (cur->seq < min_seq) {
681 			node = node->rb_left;
682 		} else if (!smallest) {
683 			/* we want the node with the highest seq */
684 			if (found)
685 				BUG_ON(found->seq > cur->seq);
686 			found = cur;
687 			node = node->rb_left;
688 		} else if (cur->seq > min_seq) {
689 			/* we want the node with the smallest seq */
690 			if (found)
691 				BUG_ON(found->seq < cur->seq);
692 			found = cur;
693 			node = node->rb_right;
694 		} else {
695 			found = cur;
696 			break;
697 		}
698 	}
699 	read_unlock(&fs_info->tree_mod_log_lock);
700 
701 	return found;
702 }
703 
704 /*
705  * this returns the element from the log with the smallest time sequence
706  * value that's in the log (the oldest log item). any element with a time
707  * sequence lower than min_seq will be ignored.
708  */
709 static struct tree_mod_elem *
710 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
711 			   u64 min_seq)
712 {
713 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
714 }
715 
716 /*
717  * this returns the element from the log with the largest time sequence
718  * value that's in the log (the most recent log item). any element with
719  * a time sequence lower than min_seq will be ignored.
720  */
721 static struct tree_mod_elem *
722 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
723 {
724 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
725 }
726 
727 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
728 		     struct extent_buffer *src, unsigned long dst_offset,
729 		     unsigned long src_offset, int nr_items)
730 {
731 	struct btrfs_fs_info *fs_info = dst->fs_info;
732 	int ret = 0;
733 	struct tree_mod_elem **tm_list = NULL;
734 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
735 	int i;
736 	int locked = 0;
737 
738 	if (!tree_mod_need_log(fs_info, NULL))
739 		return 0;
740 
741 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
742 		return 0;
743 
744 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
745 			  GFP_NOFS);
746 	if (!tm_list)
747 		return -ENOMEM;
748 
749 	tm_list_add = tm_list;
750 	tm_list_rem = tm_list + nr_items;
751 	for (i = 0; i < nr_items; i++) {
752 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
753 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
754 		if (!tm_list_rem[i]) {
755 			ret = -ENOMEM;
756 			goto free_tms;
757 		}
758 
759 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
760 		    MOD_LOG_KEY_ADD, GFP_NOFS);
761 		if (!tm_list_add[i]) {
762 			ret = -ENOMEM;
763 			goto free_tms;
764 		}
765 	}
766 
767 	if (tree_mod_dont_log(fs_info, NULL))
768 		goto free_tms;
769 	locked = 1;
770 
771 	for (i = 0; i < nr_items; i++) {
772 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
773 		if (ret)
774 			goto free_tms;
775 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
776 		if (ret)
777 			goto free_tms;
778 	}
779 
780 	write_unlock(&fs_info->tree_mod_log_lock);
781 	kfree(tm_list);
782 
783 	return 0;
784 
785 free_tms:
786 	for (i = 0; i < nr_items * 2; i++) {
787 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
788 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
789 		kfree(tm_list[i]);
790 	}
791 	if (locked)
792 		write_unlock(&fs_info->tree_mod_log_lock);
793 	kfree(tm_list);
794 
795 	return ret;
796 }
797 
798 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
799 {
800 	struct tree_mod_elem **tm_list = NULL;
801 	int nritems = 0;
802 	int i;
803 	int ret = 0;
804 
805 	if (btrfs_header_level(eb) == 0)
806 		return 0;
807 
808 	if (!tree_mod_need_log(eb->fs_info, NULL))
809 		return 0;
810 
811 	nritems = btrfs_header_nritems(eb);
812 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
813 	if (!tm_list)
814 		return -ENOMEM;
815 
816 	for (i = 0; i < nritems; i++) {
817 		tm_list[i] = alloc_tree_mod_elem(eb, i,
818 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
819 		if (!tm_list[i]) {
820 			ret = -ENOMEM;
821 			goto free_tms;
822 		}
823 	}
824 
825 	if (tree_mod_dont_log(eb->fs_info, eb))
826 		goto free_tms;
827 
828 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
829 	write_unlock(&eb->fs_info->tree_mod_log_lock);
830 	if (ret)
831 		goto free_tms;
832 	kfree(tm_list);
833 
834 	return 0;
835 
836 free_tms:
837 	for (i = 0; i < nritems; i++)
838 		kfree(tm_list[i]);
839 	kfree(tm_list);
840 
841 	return ret;
842 }
843 
844 /*
845  * check if the tree block can be shared by multiple trees
846  */
847 int btrfs_block_can_be_shared(struct btrfs_root *root,
848 			      struct extent_buffer *buf)
849 {
850 	/*
851 	 * Tree blocks not in reference counted trees and tree roots
852 	 * are never shared. If a block was allocated after the last
853 	 * snapshot and the block was not allocated by tree relocation,
854 	 * we know the block is not shared.
855 	 */
856 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
857 	    buf != root->node && buf != root->commit_root &&
858 	    (btrfs_header_generation(buf) <=
859 	     btrfs_root_last_snapshot(&root->root_item) ||
860 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
861 		return 1;
862 
863 	return 0;
864 }
865 
866 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
867 				       struct btrfs_root *root,
868 				       struct extent_buffer *buf,
869 				       struct extent_buffer *cow,
870 				       int *last_ref)
871 {
872 	struct btrfs_fs_info *fs_info = root->fs_info;
873 	u64 refs;
874 	u64 owner;
875 	u64 flags;
876 	u64 new_flags = 0;
877 	int ret;
878 
879 	/*
880 	 * Backrefs update rules:
881 	 *
882 	 * Always use full backrefs for extent pointers in tree block
883 	 * allocated by tree relocation.
884 	 *
885 	 * If a shared tree block is no longer referenced by its owner
886 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
887 	 * use full backrefs for extent pointers in tree block.
888 	 *
889 	 * If a tree block is been relocating
890 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
891 	 * use full backrefs for extent pointers in tree block.
892 	 * The reason for this is some operations (such as drop tree)
893 	 * are only allowed for blocks use full backrefs.
894 	 */
895 
896 	if (btrfs_block_can_be_shared(root, buf)) {
897 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
898 					       btrfs_header_level(buf), 1,
899 					       &refs, &flags);
900 		if (ret)
901 			return ret;
902 		if (refs == 0) {
903 			ret = -EROFS;
904 			btrfs_handle_fs_error(fs_info, ret, NULL);
905 			return ret;
906 		}
907 	} else {
908 		refs = 1;
909 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
910 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
911 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
912 		else
913 			flags = 0;
914 	}
915 
916 	owner = btrfs_header_owner(buf);
917 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
918 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
919 
920 	if (refs > 1) {
921 		if ((owner == root->root_key.objectid ||
922 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
923 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
924 			ret = btrfs_inc_ref(trans, root, buf, 1);
925 			if (ret)
926 				return ret;
927 
928 			if (root->root_key.objectid ==
929 			    BTRFS_TREE_RELOC_OBJECTID) {
930 				ret = btrfs_dec_ref(trans, root, buf, 0);
931 				if (ret)
932 					return ret;
933 				ret = btrfs_inc_ref(trans, root, cow, 1);
934 				if (ret)
935 					return ret;
936 			}
937 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
938 		} else {
939 
940 			if (root->root_key.objectid ==
941 			    BTRFS_TREE_RELOC_OBJECTID)
942 				ret = btrfs_inc_ref(trans, root, cow, 1);
943 			else
944 				ret = btrfs_inc_ref(trans, root, cow, 0);
945 			if (ret)
946 				return ret;
947 		}
948 		if (new_flags != 0) {
949 			int level = btrfs_header_level(buf);
950 
951 			ret = btrfs_set_disk_extent_flags(trans,
952 							  buf->start,
953 							  buf->len,
954 							  new_flags, level, 0);
955 			if (ret)
956 				return ret;
957 		}
958 	} else {
959 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
960 			if (root->root_key.objectid ==
961 			    BTRFS_TREE_RELOC_OBJECTID)
962 				ret = btrfs_inc_ref(trans, root, cow, 1);
963 			else
964 				ret = btrfs_inc_ref(trans, root, cow, 0);
965 			if (ret)
966 				return ret;
967 			ret = btrfs_dec_ref(trans, root, buf, 1);
968 			if (ret)
969 				return ret;
970 		}
971 		btrfs_clean_tree_block(buf);
972 		*last_ref = 1;
973 	}
974 	return 0;
975 }
976 
977 static struct extent_buffer *alloc_tree_block_no_bg_flush(
978 					  struct btrfs_trans_handle *trans,
979 					  struct btrfs_root *root,
980 					  u64 parent_start,
981 					  const struct btrfs_disk_key *disk_key,
982 					  int level,
983 					  u64 hint,
984 					  u64 empty_size)
985 {
986 	struct btrfs_fs_info *fs_info = root->fs_info;
987 	struct extent_buffer *ret;
988 
989 	/*
990 	 * If we are COWing a node/leaf from the extent, chunk, device or free
991 	 * space trees, make sure that we do not finish block group creation of
992 	 * pending block groups. We do this to avoid a deadlock.
993 	 * COWing can result in allocation of a new chunk, and flushing pending
994 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
995 	 * when finishing allocation of a new chunk. Creation of a pending block
996 	 * group modifies the extent, chunk, device and free space trees,
997 	 * therefore we could deadlock with ourselves since we are holding a
998 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
999 	 * try to COW later.
1000 	 * For similar reasons, we also need to delay flushing pending block
1001 	 * groups when splitting a leaf or node, from one of those trees, since
1002 	 * we are holding a write lock on it and its parent or when inserting a
1003 	 * new root node for one of those trees.
1004 	 */
1005 	if (root == fs_info->extent_root ||
1006 	    root == fs_info->chunk_root ||
1007 	    root == fs_info->dev_root ||
1008 	    root == fs_info->free_space_root)
1009 		trans->can_flush_pending_bgs = false;
1010 
1011 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
1012 				     root->root_key.objectid, disk_key, level,
1013 				     hint, empty_size);
1014 	trans->can_flush_pending_bgs = true;
1015 
1016 	return ret;
1017 }
1018 
1019 /*
1020  * does the dirty work in cow of a single block.  The parent block (if
1021  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1022  * dirty and returned locked.  If you modify the block it needs to be marked
1023  * dirty again.
1024  *
1025  * search_start -- an allocation hint for the new block
1026  *
1027  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1028  * bytes the allocator should try to find free next to the block it returns.
1029  * This is just a hint and may be ignored by the allocator.
1030  */
1031 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1032 			     struct btrfs_root *root,
1033 			     struct extent_buffer *buf,
1034 			     struct extent_buffer *parent, int parent_slot,
1035 			     struct extent_buffer **cow_ret,
1036 			     u64 search_start, u64 empty_size)
1037 {
1038 	struct btrfs_fs_info *fs_info = root->fs_info;
1039 	struct btrfs_disk_key disk_key;
1040 	struct extent_buffer *cow;
1041 	int level, ret;
1042 	int last_ref = 0;
1043 	int unlock_orig = 0;
1044 	u64 parent_start = 0;
1045 
1046 	if (*cow_ret == buf)
1047 		unlock_orig = 1;
1048 
1049 	btrfs_assert_tree_locked(buf);
1050 
1051 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1052 		trans->transid != fs_info->running_transaction->transid);
1053 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1054 		trans->transid != root->last_trans);
1055 
1056 	level = btrfs_header_level(buf);
1057 
1058 	if (level == 0)
1059 		btrfs_item_key(buf, &disk_key, 0);
1060 	else
1061 		btrfs_node_key(buf, &disk_key, 0);
1062 
1063 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1064 		parent_start = parent->start;
1065 
1066 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1067 					   level, search_start, empty_size);
1068 	if (IS_ERR(cow))
1069 		return PTR_ERR(cow);
1070 
1071 	/* cow is set to blocking by btrfs_init_new_buffer */
1072 
1073 	copy_extent_buffer_full(cow, buf);
1074 	btrfs_set_header_bytenr(cow, cow->start);
1075 	btrfs_set_header_generation(cow, trans->transid);
1076 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1077 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1078 				     BTRFS_HEADER_FLAG_RELOC);
1079 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1080 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1081 	else
1082 		btrfs_set_header_owner(cow, root->root_key.objectid);
1083 
1084 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1085 
1086 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1087 	if (ret) {
1088 		btrfs_abort_transaction(trans, ret);
1089 		return ret;
1090 	}
1091 
1092 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1093 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1094 		if (ret) {
1095 			btrfs_abort_transaction(trans, ret);
1096 			return ret;
1097 		}
1098 	}
1099 
1100 	if (buf == root->node) {
1101 		WARN_ON(parent && parent != buf);
1102 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1103 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1104 			parent_start = buf->start;
1105 
1106 		extent_buffer_get(cow);
1107 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1108 		BUG_ON(ret < 0);
1109 		rcu_assign_pointer(root->node, cow);
1110 
1111 		btrfs_free_tree_block(trans, root, buf, parent_start,
1112 				      last_ref);
1113 		free_extent_buffer(buf);
1114 		add_root_to_dirty_list(root);
1115 	} else {
1116 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1117 		tree_mod_log_insert_key(parent, parent_slot,
1118 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1119 		btrfs_set_node_blockptr(parent, parent_slot,
1120 					cow->start);
1121 		btrfs_set_node_ptr_generation(parent, parent_slot,
1122 					      trans->transid);
1123 		btrfs_mark_buffer_dirty(parent);
1124 		if (last_ref) {
1125 			ret = tree_mod_log_free_eb(buf);
1126 			if (ret) {
1127 				btrfs_abort_transaction(trans, ret);
1128 				return ret;
1129 			}
1130 		}
1131 		btrfs_free_tree_block(trans, root, buf, parent_start,
1132 				      last_ref);
1133 	}
1134 	if (unlock_orig)
1135 		btrfs_tree_unlock(buf);
1136 	free_extent_buffer_stale(buf);
1137 	btrfs_mark_buffer_dirty(cow);
1138 	*cow_ret = cow;
1139 	return 0;
1140 }
1141 
1142 /*
1143  * returns the logical address of the oldest predecessor of the given root.
1144  * entries older than time_seq are ignored.
1145  */
1146 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1147 		struct extent_buffer *eb_root, u64 time_seq)
1148 {
1149 	struct tree_mod_elem *tm;
1150 	struct tree_mod_elem *found = NULL;
1151 	u64 root_logical = eb_root->start;
1152 	int looped = 0;
1153 
1154 	if (!time_seq)
1155 		return NULL;
1156 
1157 	/*
1158 	 * the very last operation that's logged for a root is the
1159 	 * replacement operation (if it is replaced at all). this has
1160 	 * the logical address of the *new* root, making it the very
1161 	 * first operation that's logged for this root.
1162 	 */
1163 	while (1) {
1164 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1165 						time_seq);
1166 		if (!looped && !tm)
1167 			return NULL;
1168 		/*
1169 		 * if there are no tree operation for the oldest root, we simply
1170 		 * return it. this should only happen if that (old) root is at
1171 		 * level 0.
1172 		 */
1173 		if (!tm)
1174 			break;
1175 
1176 		/*
1177 		 * if there's an operation that's not a root replacement, we
1178 		 * found the oldest version of our root. normally, we'll find a
1179 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1180 		 */
1181 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1182 			break;
1183 
1184 		found = tm;
1185 		root_logical = tm->old_root.logical;
1186 		looped = 1;
1187 	}
1188 
1189 	/* if there's no old root to return, return what we found instead */
1190 	if (!found)
1191 		found = tm;
1192 
1193 	return found;
1194 }
1195 
1196 /*
1197  * tm is a pointer to the first operation to rewind within eb. then, all
1198  * previous operations will be rewound (until we reach something older than
1199  * time_seq).
1200  */
1201 static void
1202 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1203 		      u64 time_seq, struct tree_mod_elem *first_tm)
1204 {
1205 	u32 n;
1206 	struct rb_node *next;
1207 	struct tree_mod_elem *tm = first_tm;
1208 	unsigned long o_dst;
1209 	unsigned long o_src;
1210 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1211 
1212 	n = btrfs_header_nritems(eb);
1213 	read_lock(&fs_info->tree_mod_log_lock);
1214 	while (tm && tm->seq >= time_seq) {
1215 		/*
1216 		 * all the operations are recorded with the operator used for
1217 		 * the modification. as we're going backwards, we do the
1218 		 * opposite of each operation here.
1219 		 */
1220 		switch (tm->op) {
1221 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1222 			BUG_ON(tm->slot < n);
1223 			/* Fallthrough */
1224 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1225 		case MOD_LOG_KEY_REMOVE:
1226 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1227 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1228 			btrfs_set_node_ptr_generation(eb, tm->slot,
1229 						      tm->generation);
1230 			n++;
1231 			break;
1232 		case MOD_LOG_KEY_REPLACE:
1233 			BUG_ON(tm->slot >= n);
1234 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1235 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1236 			btrfs_set_node_ptr_generation(eb, tm->slot,
1237 						      tm->generation);
1238 			break;
1239 		case MOD_LOG_KEY_ADD:
1240 			/* if a move operation is needed it's in the log */
1241 			n--;
1242 			break;
1243 		case MOD_LOG_MOVE_KEYS:
1244 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1245 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1246 			memmove_extent_buffer(eb, o_dst, o_src,
1247 					      tm->move.nr_items * p_size);
1248 			break;
1249 		case MOD_LOG_ROOT_REPLACE:
1250 			/*
1251 			 * this operation is special. for roots, this must be
1252 			 * handled explicitly before rewinding.
1253 			 * for non-roots, this operation may exist if the node
1254 			 * was a root: root A -> child B; then A gets empty and
1255 			 * B is promoted to the new root. in the mod log, we'll
1256 			 * have a root-replace operation for B, a tree block
1257 			 * that is no root. we simply ignore that operation.
1258 			 */
1259 			break;
1260 		}
1261 		next = rb_next(&tm->node);
1262 		if (!next)
1263 			break;
1264 		tm = rb_entry(next, struct tree_mod_elem, node);
1265 		if (tm->logical != first_tm->logical)
1266 			break;
1267 	}
1268 	read_unlock(&fs_info->tree_mod_log_lock);
1269 	btrfs_set_header_nritems(eb, n);
1270 }
1271 
1272 /*
1273  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1274  * is returned. If rewind operations happen, a fresh buffer is returned. The
1275  * returned buffer is always read-locked. If the returned buffer is not the
1276  * input buffer, the lock on the input buffer is released and the input buffer
1277  * is freed (its refcount is decremented).
1278  */
1279 static struct extent_buffer *
1280 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1281 		    struct extent_buffer *eb, u64 time_seq)
1282 {
1283 	struct extent_buffer *eb_rewin;
1284 	struct tree_mod_elem *tm;
1285 
1286 	if (!time_seq)
1287 		return eb;
1288 
1289 	if (btrfs_header_level(eb) == 0)
1290 		return eb;
1291 
1292 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1293 	if (!tm)
1294 		return eb;
1295 
1296 	btrfs_set_path_blocking(path);
1297 	btrfs_set_lock_blocking_read(eb);
1298 
1299 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1300 		BUG_ON(tm->slot != 0);
1301 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1302 		if (!eb_rewin) {
1303 			btrfs_tree_read_unlock_blocking(eb);
1304 			free_extent_buffer(eb);
1305 			return NULL;
1306 		}
1307 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1308 		btrfs_set_header_backref_rev(eb_rewin,
1309 					     btrfs_header_backref_rev(eb));
1310 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1311 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1312 	} else {
1313 		eb_rewin = btrfs_clone_extent_buffer(eb);
1314 		if (!eb_rewin) {
1315 			btrfs_tree_read_unlock_blocking(eb);
1316 			free_extent_buffer(eb);
1317 			return NULL;
1318 		}
1319 	}
1320 
1321 	btrfs_tree_read_unlock_blocking(eb);
1322 	free_extent_buffer(eb);
1323 
1324 	btrfs_tree_read_lock(eb_rewin);
1325 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1326 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1327 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1328 
1329 	return eb_rewin;
1330 }
1331 
1332 /*
1333  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1334  * value. If there are no changes, the current root->root_node is returned. If
1335  * anything changed in between, there's a fresh buffer allocated on which the
1336  * rewind operations are done. In any case, the returned buffer is read locked.
1337  * Returns NULL on error (with no locks held).
1338  */
1339 static inline struct extent_buffer *
1340 get_old_root(struct btrfs_root *root, u64 time_seq)
1341 {
1342 	struct btrfs_fs_info *fs_info = root->fs_info;
1343 	struct tree_mod_elem *tm;
1344 	struct extent_buffer *eb = NULL;
1345 	struct extent_buffer *eb_root;
1346 	struct extent_buffer *old;
1347 	struct tree_mod_root *old_root = NULL;
1348 	u64 old_generation = 0;
1349 	u64 logical;
1350 	int level;
1351 
1352 	eb_root = btrfs_read_lock_root_node(root);
1353 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1354 	if (!tm)
1355 		return eb_root;
1356 
1357 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1358 		old_root = &tm->old_root;
1359 		old_generation = tm->generation;
1360 		logical = old_root->logical;
1361 		level = old_root->level;
1362 	} else {
1363 		logical = eb_root->start;
1364 		level = btrfs_header_level(eb_root);
1365 	}
1366 
1367 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1368 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1369 		btrfs_tree_read_unlock(eb_root);
1370 		free_extent_buffer(eb_root);
1371 		old = read_tree_block(fs_info, logical, 0, level, NULL);
1372 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1373 			if (!IS_ERR(old))
1374 				free_extent_buffer(old);
1375 			btrfs_warn(fs_info,
1376 				   "failed to read tree block %llu from get_old_root",
1377 				   logical);
1378 		} else {
1379 			eb = btrfs_clone_extent_buffer(old);
1380 			free_extent_buffer(old);
1381 		}
1382 	} else if (old_root) {
1383 		btrfs_tree_read_unlock(eb_root);
1384 		free_extent_buffer(eb_root);
1385 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1386 	} else {
1387 		btrfs_set_lock_blocking_read(eb_root);
1388 		eb = btrfs_clone_extent_buffer(eb_root);
1389 		btrfs_tree_read_unlock_blocking(eb_root);
1390 		free_extent_buffer(eb_root);
1391 	}
1392 
1393 	if (!eb)
1394 		return NULL;
1395 	btrfs_tree_read_lock(eb);
1396 	if (old_root) {
1397 		btrfs_set_header_bytenr(eb, eb->start);
1398 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1399 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1400 		btrfs_set_header_level(eb, old_root->level);
1401 		btrfs_set_header_generation(eb, old_generation);
1402 	}
1403 	if (tm)
1404 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1405 	else
1406 		WARN_ON(btrfs_header_level(eb) != 0);
1407 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1408 
1409 	return eb;
1410 }
1411 
1412 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1413 {
1414 	struct tree_mod_elem *tm;
1415 	int level;
1416 	struct extent_buffer *eb_root = btrfs_root_node(root);
1417 
1418 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1419 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1420 		level = tm->old_root.level;
1421 	} else {
1422 		level = btrfs_header_level(eb_root);
1423 	}
1424 	free_extent_buffer(eb_root);
1425 
1426 	return level;
1427 }
1428 
1429 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1430 				   struct btrfs_root *root,
1431 				   struct extent_buffer *buf)
1432 {
1433 	if (btrfs_is_testing(root->fs_info))
1434 		return 0;
1435 
1436 	/* Ensure we can see the FORCE_COW bit */
1437 	smp_mb__before_atomic();
1438 
1439 	/*
1440 	 * We do not need to cow a block if
1441 	 * 1) this block is not created or changed in this transaction;
1442 	 * 2) this block does not belong to TREE_RELOC tree;
1443 	 * 3) the root is not forced COW.
1444 	 *
1445 	 * What is forced COW:
1446 	 *    when we create snapshot during committing the transaction,
1447 	 *    after we've finished copying src root, we must COW the shared
1448 	 *    block to ensure the metadata consistency.
1449 	 */
1450 	if (btrfs_header_generation(buf) == trans->transid &&
1451 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1452 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1453 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1454 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1455 		return 0;
1456 	return 1;
1457 }
1458 
1459 /*
1460  * cows a single block, see __btrfs_cow_block for the real work.
1461  * This version of it has extra checks so that a block isn't COWed more than
1462  * once per transaction, as long as it hasn't been written yet
1463  */
1464 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1465 		    struct btrfs_root *root, struct extent_buffer *buf,
1466 		    struct extent_buffer *parent, int parent_slot,
1467 		    struct extent_buffer **cow_ret)
1468 {
1469 	struct btrfs_fs_info *fs_info = root->fs_info;
1470 	u64 search_start;
1471 	int ret;
1472 
1473 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1474 		btrfs_err(fs_info,
1475 			"COW'ing blocks on a fs root that's being dropped");
1476 
1477 	if (trans->transaction != fs_info->running_transaction)
1478 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1479 		       trans->transid,
1480 		       fs_info->running_transaction->transid);
1481 
1482 	if (trans->transid != fs_info->generation)
1483 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1484 		       trans->transid, fs_info->generation);
1485 
1486 	if (!should_cow_block(trans, root, buf)) {
1487 		trans->dirty = true;
1488 		*cow_ret = buf;
1489 		return 0;
1490 	}
1491 
1492 	search_start = buf->start & ~((u64)SZ_1G - 1);
1493 
1494 	if (parent)
1495 		btrfs_set_lock_blocking_write(parent);
1496 	btrfs_set_lock_blocking_write(buf);
1497 
1498 	/*
1499 	 * Before CoWing this block for later modification, check if it's
1500 	 * the subtree root and do the delayed subtree trace if needed.
1501 	 *
1502 	 * Also We don't care about the error, as it's handled internally.
1503 	 */
1504 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1505 	ret = __btrfs_cow_block(trans, root, buf, parent,
1506 				 parent_slot, cow_ret, search_start, 0);
1507 
1508 	trace_btrfs_cow_block(root, buf, *cow_ret);
1509 
1510 	return ret;
1511 }
1512 
1513 /*
1514  * helper function for defrag to decide if two blocks pointed to by a
1515  * node are actually close by
1516  */
1517 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1518 {
1519 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1520 		return 1;
1521 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1522 		return 1;
1523 	return 0;
1524 }
1525 
1526 /*
1527  * compare two keys in a memcmp fashion
1528  */
1529 static int comp_keys(const struct btrfs_disk_key *disk,
1530 		     const struct btrfs_key *k2)
1531 {
1532 	struct btrfs_key k1;
1533 
1534 	btrfs_disk_key_to_cpu(&k1, disk);
1535 
1536 	return btrfs_comp_cpu_keys(&k1, k2);
1537 }
1538 
1539 /*
1540  * same as comp_keys only with two btrfs_key's
1541  */
1542 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1543 {
1544 	if (k1->objectid > k2->objectid)
1545 		return 1;
1546 	if (k1->objectid < k2->objectid)
1547 		return -1;
1548 	if (k1->type > k2->type)
1549 		return 1;
1550 	if (k1->type < k2->type)
1551 		return -1;
1552 	if (k1->offset > k2->offset)
1553 		return 1;
1554 	if (k1->offset < k2->offset)
1555 		return -1;
1556 	return 0;
1557 }
1558 
1559 /*
1560  * this is used by the defrag code to go through all the
1561  * leaves pointed to by a node and reallocate them so that
1562  * disk order is close to key order
1563  */
1564 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1565 		       struct btrfs_root *root, struct extent_buffer *parent,
1566 		       int start_slot, u64 *last_ret,
1567 		       struct btrfs_key *progress)
1568 {
1569 	struct btrfs_fs_info *fs_info = root->fs_info;
1570 	struct extent_buffer *cur;
1571 	u64 blocknr;
1572 	u64 gen;
1573 	u64 search_start = *last_ret;
1574 	u64 last_block = 0;
1575 	u64 other;
1576 	u32 parent_nritems;
1577 	int end_slot;
1578 	int i;
1579 	int err = 0;
1580 	int parent_level;
1581 	int uptodate;
1582 	u32 blocksize;
1583 	int progress_passed = 0;
1584 	struct btrfs_disk_key disk_key;
1585 
1586 	parent_level = btrfs_header_level(parent);
1587 
1588 	WARN_ON(trans->transaction != fs_info->running_transaction);
1589 	WARN_ON(trans->transid != fs_info->generation);
1590 
1591 	parent_nritems = btrfs_header_nritems(parent);
1592 	blocksize = fs_info->nodesize;
1593 	end_slot = parent_nritems - 1;
1594 
1595 	if (parent_nritems <= 1)
1596 		return 0;
1597 
1598 	btrfs_set_lock_blocking_write(parent);
1599 
1600 	for (i = start_slot; i <= end_slot; i++) {
1601 		struct btrfs_key first_key;
1602 		int close = 1;
1603 
1604 		btrfs_node_key(parent, &disk_key, i);
1605 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1606 			continue;
1607 
1608 		progress_passed = 1;
1609 		blocknr = btrfs_node_blockptr(parent, i);
1610 		gen = btrfs_node_ptr_generation(parent, i);
1611 		btrfs_node_key_to_cpu(parent, &first_key, i);
1612 		if (last_block == 0)
1613 			last_block = blocknr;
1614 
1615 		if (i > 0) {
1616 			other = btrfs_node_blockptr(parent, i - 1);
1617 			close = close_blocks(blocknr, other, blocksize);
1618 		}
1619 		if (!close && i < end_slot) {
1620 			other = btrfs_node_blockptr(parent, i + 1);
1621 			close = close_blocks(blocknr, other, blocksize);
1622 		}
1623 		if (close) {
1624 			last_block = blocknr;
1625 			continue;
1626 		}
1627 
1628 		cur = find_extent_buffer(fs_info, blocknr);
1629 		if (cur)
1630 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1631 		else
1632 			uptodate = 0;
1633 		if (!cur || !uptodate) {
1634 			if (!cur) {
1635 				cur = read_tree_block(fs_info, blocknr, gen,
1636 						      parent_level - 1,
1637 						      &first_key);
1638 				if (IS_ERR(cur)) {
1639 					return PTR_ERR(cur);
1640 				} else if (!extent_buffer_uptodate(cur)) {
1641 					free_extent_buffer(cur);
1642 					return -EIO;
1643 				}
1644 			} else if (!uptodate) {
1645 				err = btrfs_read_buffer(cur, gen,
1646 						parent_level - 1,&first_key);
1647 				if (err) {
1648 					free_extent_buffer(cur);
1649 					return err;
1650 				}
1651 			}
1652 		}
1653 		if (search_start == 0)
1654 			search_start = last_block;
1655 
1656 		btrfs_tree_lock(cur);
1657 		btrfs_set_lock_blocking_write(cur);
1658 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1659 					&cur, search_start,
1660 					min(16 * blocksize,
1661 					    (end_slot - i) * blocksize));
1662 		if (err) {
1663 			btrfs_tree_unlock(cur);
1664 			free_extent_buffer(cur);
1665 			break;
1666 		}
1667 		search_start = cur->start;
1668 		last_block = cur->start;
1669 		*last_ret = search_start;
1670 		btrfs_tree_unlock(cur);
1671 		free_extent_buffer(cur);
1672 	}
1673 	return err;
1674 }
1675 
1676 /*
1677  * search for key in the extent_buffer.  The items start at offset p,
1678  * and they are item_size apart.  There are 'max' items in p.
1679  *
1680  * the slot in the array is returned via slot, and it points to
1681  * the place where you would insert key if it is not found in
1682  * the array.
1683  *
1684  * slot may point to max if the key is bigger than all of the keys
1685  */
1686 static noinline int generic_bin_search(struct extent_buffer *eb,
1687 				       unsigned long p, int item_size,
1688 				       const struct btrfs_key *key,
1689 				       int max, int *slot)
1690 {
1691 	int low = 0;
1692 	int high = max;
1693 	int mid;
1694 	int ret;
1695 	struct btrfs_disk_key *tmp = NULL;
1696 	struct btrfs_disk_key unaligned;
1697 	unsigned long offset;
1698 	char *kaddr = NULL;
1699 	unsigned long map_start = 0;
1700 	unsigned long map_len = 0;
1701 	int err;
1702 
1703 	if (low > high) {
1704 		btrfs_err(eb->fs_info,
1705 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1706 			  __func__, low, high, eb->start,
1707 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1708 		return -EINVAL;
1709 	}
1710 
1711 	while (low < high) {
1712 		mid = (low + high) / 2;
1713 		offset = p + mid * item_size;
1714 
1715 		if (!kaddr || offset < map_start ||
1716 		    (offset + sizeof(struct btrfs_disk_key)) >
1717 		    map_start + map_len) {
1718 
1719 			err = map_private_extent_buffer(eb, offset,
1720 						sizeof(struct btrfs_disk_key),
1721 						&kaddr, &map_start, &map_len);
1722 
1723 			if (!err) {
1724 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1725 							map_start);
1726 			} else if (err == 1) {
1727 				read_extent_buffer(eb, &unaligned,
1728 						   offset, sizeof(unaligned));
1729 				tmp = &unaligned;
1730 			} else {
1731 				return err;
1732 			}
1733 
1734 		} else {
1735 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1736 							map_start);
1737 		}
1738 		ret = comp_keys(tmp, key);
1739 
1740 		if (ret < 0)
1741 			low = mid + 1;
1742 		else if (ret > 0)
1743 			high = mid;
1744 		else {
1745 			*slot = mid;
1746 			return 0;
1747 		}
1748 	}
1749 	*slot = low;
1750 	return 1;
1751 }
1752 
1753 /*
1754  * simple bin_search frontend that does the right thing for
1755  * leaves vs nodes
1756  */
1757 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1758 		     int level, int *slot)
1759 {
1760 	if (level == 0)
1761 		return generic_bin_search(eb,
1762 					  offsetof(struct btrfs_leaf, items),
1763 					  sizeof(struct btrfs_item),
1764 					  key, btrfs_header_nritems(eb),
1765 					  slot);
1766 	else
1767 		return generic_bin_search(eb,
1768 					  offsetof(struct btrfs_node, ptrs),
1769 					  sizeof(struct btrfs_key_ptr),
1770 					  key, btrfs_header_nritems(eb),
1771 					  slot);
1772 }
1773 
1774 static void root_add_used(struct btrfs_root *root, u32 size)
1775 {
1776 	spin_lock(&root->accounting_lock);
1777 	btrfs_set_root_used(&root->root_item,
1778 			    btrfs_root_used(&root->root_item) + size);
1779 	spin_unlock(&root->accounting_lock);
1780 }
1781 
1782 static void root_sub_used(struct btrfs_root *root, u32 size)
1783 {
1784 	spin_lock(&root->accounting_lock);
1785 	btrfs_set_root_used(&root->root_item,
1786 			    btrfs_root_used(&root->root_item) - size);
1787 	spin_unlock(&root->accounting_lock);
1788 }
1789 
1790 /* given a node and slot number, this reads the blocks it points to.  The
1791  * extent buffer is returned with a reference taken (but unlocked).
1792  */
1793 static noinline struct extent_buffer *read_node_slot(
1794 				struct extent_buffer *parent, int slot)
1795 {
1796 	int level = btrfs_header_level(parent);
1797 	struct extent_buffer *eb;
1798 	struct btrfs_key first_key;
1799 
1800 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1801 		return ERR_PTR(-ENOENT);
1802 
1803 	BUG_ON(level == 0);
1804 
1805 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1806 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1807 			     btrfs_node_ptr_generation(parent, slot),
1808 			     level - 1, &first_key);
1809 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1810 		free_extent_buffer(eb);
1811 		eb = ERR_PTR(-EIO);
1812 	}
1813 
1814 	return eb;
1815 }
1816 
1817 /*
1818  * node level balancing, used to make sure nodes are in proper order for
1819  * item deletion.  We balance from the top down, so we have to make sure
1820  * that a deletion won't leave an node completely empty later on.
1821  */
1822 static noinline int balance_level(struct btrfs_trans_handle *trans,
1823 			 struct btrfs_root *root,
1824 			 struct btrfs_path *path, int level)
1825 {
1826 	struct btrfs_fs_info *fs_info = root->fs_info;
1827 	struct extent_buffer *right = NULL;
1828 	struct extent_buffer *mid;
1829 	struct extent_buffer *left = NULL;
1830 	struct extent_buffer *parent = NULL;
1831 	int ret = 0;
1832 	int wret;
1833 	int pslot;
1834 	int orig_slot = path->slots[level];
1835 	u64 orig_ptr;
1836 
1837 	ASSERT(level > 0);
1838 
1839 	mid = path->nodes[level];
1840 
1841 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1842 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1843 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1844 
1845 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1846 
1847 	if (level < BTRFS_MAX_LEVEL - 1) {
1848 		parent = path->nodes[level + 1];
1849 		pslot = path->slots[level + 1];
1850 	}
1851 
1852 	/*
1853 	 * deal with the case where there is only one pointer in the root
1854 	 * by promoting the node below to a root
1855 	 */
1856 	if (!parent) {
1857 		struct extent_buffer *child;
1858 
1859 		if (btrfs_header_nritems(mid) != 1)
1860 			return 0;
1861 
1862 		/* promote the child to a root */
1863 		child = read_node_slot(mid, 0);
1864 		if (IS_ERR(child)) {
1865 			ret = PTR_ERR(child);
1866 			btrfs_handle_fs_error(fs_info, ret, NULL);
1867 			goto enospc;
1868 		}
1869 
1870 		btrfs_tree_lock(child);
1871 		btrfs_set_lock_blocking_write(child);
1872 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1873 		if (ret) {
1874 			btrfs_tree_unlock(child);
1875 			free_extent_buffer(child);
1876 			goto enospc;
1877 		}
1878 
1879 		ret = tree_mod_log_insert_root(root->node, child, 1);
1880 		BUG_ON(ret < 0);
1881 		rcu_assign_pointer(root->node, child);
1882 
1883 		add_root_to_dirty_list(root);
1884 		btrfs_tree_unlock(child);
1885 
1886 		path->locks[level] = 0;
1887 		path->nodes[level] = NULL;
1888 		btrfs_clean_tree_block(mid);
1889 		btrfs_tree_unlock(mid);
1890 		/* once for the path */
1891 		free_extent_buffer(mid);
1892 
1893 		root_sub_used(root, mid->len);
1894 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1895 		/* once for the root ptr */
1896 		free_extent_buffer_stale(mid);
1897 		return 0;
1898 	}
1899 	if (btrfs_header_nritems(mid) >
1900 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1901 		return 0;
1902 
1903 	left = read_node_slot(parent, pslot - 1);
1904 	if (IS_ERR(left))
1905 		left = NULL;
1906 
1907 	if (left) {
1908 		btrfs_tree_lock(left);
1909 		btrfs_set_lock_blocking_write(left);
1910 		wret = btrfs_cow_block(trans, root, left,
1911 				       parent, pslot - 1, &left);
1912 		if (wret) {
1913 			ret = wret;
1914 			goto enospc;
1915 		}
1916 	}
1917 
1918 	right = read_node_slot(parent, pslot + 1);
1919 	if (IS_ERR(right))
1920 		right = NULL;
1921 
1922 	if (right) {
1923 		btrfs_tree_lock(right);
1924 		btrfs_set_lock_blocking_write(right);
1925 		wret = btrfs_cow_block(trans, root, right,
1926 				       parent, pslot + 1, &right);
1927 		if (wret) {
1928 			ret = wret;
1929 			goto enospc;
1930 		}
1931 	}
1932 
1933 	/* first, try to make some room in the middle buffer */
1934 	if (left) {
1935 		orig_slot += btrfs_header_nritems(left);
1936 		wret = push_node_left(trans, left, mid, 1);
1937 		if (wret < 0)
1938 			ret = wret;
1939 	}
1940 
1941 	/*
1942 	 * then try to empty the right most buffer into the middle
1943 	 */
1944 	if (right) {
1945 		wret = push_node_left(trans, mid, right, 1);
1946 		if (wret < 0 && wret != -ENOSPC)
1947 			ret = wret;
1948 		if (btrfs_header_nritems(right) == 0) {
1949 			btrfs_clean_tree_block(right);
1950 			btrfs_tree_unlock(right);
1951 			del_ptr(root, path, level + 1, pslot + 1);
1952 			root_sub_used(root, right->len);
1953 			btrfs_free_tree_block(trans, root, right, 0, 1);
1954 			free_extent_buffer_stale(right);
1955 			right = NULL;
1956 		} else {
1957 			struct btrfs_disk_key right_key;
1958 			btrfs_node_key(right, &right_key, 0);
1959 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1960 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1961 			BUG_ON(ret < 0);
1962 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1963 			btrfs_mark_buffer_dirty(parent);
1964 		}
1965 	}
1966 	if (btrfs_header_nritems(mid) == 1) {
1967 		/*
1968 		 * we're not allowed to leave a node with one item in the
1969 		 * tree during a delete.  A deletion from lower in the tree
1970 		 * could try to delete the only pointer in this node.
1971 		 * So, pull some keys from the left.
1972 		 * There has to be a left pointer at this point because
1973 		 * otherwise we would have pulled some pointers from the
1974 		 * right
1975 		 */
1976 		if (!left) {
1977 			ret = -EROFS;
1978 			btrfs_handle_fs_error(fs_info, ret, NULL);
1979 			goto enospc;
1980 		}
1981 		wret = balance_node_right(trans, mid, left);
1982 		if (wret < 0) {
1983 			ret = wret;
1984 			goto enospc;
1985 		}
1986 		if (wret == 1) {
1987 			wret = push_node_left(trans, left, mid, 1);
1988 			if (wret < 0)
1989 				ret = wret;
1990 		}
1991 		BUG_ON(wret == 1);
1992 	}
1993 	if (btrfs_header_nritems(mid) == 0) {
1994 		btrfs_clean_tree_block(mid);
1995 		btrfs_tree_unlock(mid);
1996 		del_ptr(root, path, level + 1, pslot);
1997 		root_sub_used(root, mid->len);
1998 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1999 		free_extent_buffer_stale(mid);
2000 		mid = NULL;
2001 	} else {
2002 		/* update the parent key to reflect our changes */
2003 		struct btrfs_disk_key mid_key;
2004 		btrfs_node_key(mid, &mid_key, 0);
2005 		ret = tree_mod_log_insert_key(parent, pslot,
2006 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
2007 		BUG_ON(ret < 0);
2008 		btrfs_set_node_key(parent, &mid_key, pslot);
2009 		btrfs_mark_buffer_dirty(parent);
2010 	}
2011 
2012 	/* update the path */
2013 	if (left) {
2014 		if (btrfs_header_nritems(left) > orig_slot) {
2015 			extent_buffer_get(left);
2016 			/* left was locked after cow */
2017 			path->nodes[level] = left;
2018 			path->slots[level + 1] -= 1;
2019 			path->slots[level] = orig_slot;
2020 			if (mid) {
2021 				btrfs_tree_unlock(mid);
2022 				free_extent_buffer(mid);
2023 			}
2024 		} else {
2025 			orig_slot -= btrfs_header_nritems(left);
2026 			path->slots[level] = orig_slot;
2027 		}
2028 	}
2029 	/* double check we haven't messed things up */
2030 	if (orig_ptr !=
2031 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2032 		BUG();
2033 enospc:
2034 	if (right) {
2035 		btrfs_tree_unlock(right);
2036 		free_extent_buffer(right);
2037 	}
2038 	if (left) {
2039 		if (path->nodes[level] != left)
2040 			btrfs_tree_unlock(left);
2041 		free_extent_buffer(left);
2042 	}
2043 	return ret;
2044 }
2045 
2046 /* Node balancing for insertion.  Here we only split or push nodes around
2047  * when they are completely full.  This is also done top down, so we
2048  * have to be pessimistic.
2049  */
2050 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2051 					  struct btrfs_root *root,
2052 					  struct btrfs_path *path, int level)
2053 {
2054 	struct btrfs_fs_info *fs_info = root->fs_info;
2055 	struct extent_buffer *right = NULL;
2056 	struct extent_buffer *mid;
2057 	struct extent_buffer *left = NULL;
2058 	struct extent_buffer *parent = NULL;
2059 	int ret = 0;
2060 	int wret;
2061 	int pslot;
2062 	int orig_slot = path->slots[level];
2063 
2064 	if (level == 0)
2065 		return 1;
2066 
2067 	mid = path->nodes[level];
2068 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2069 
2070 	if (level < BTRFS_MAX_LEVEL - 1) {
2071 		parent = path->nodes[level + 1];
2072 		pslot = path->slots[level + 1];
2073 	}
2074 
2075 	if (!parent)
2076 		return 1;
2077 
2078 	left = read_node_slot(parent, pslot - 1);
2079 	if (IS_ERR(left))
2080 		left = NULL;
2081 
2082 	/* first, try to make some room in the middle buffer */
2083 	if (left) {
2084 		u32 left_nr;
2085 
2086 		btrfs_tree_lock(left);
2087 		btrfs_set_lock_blocking_write(left);
2088 
2089 		left_nr = btrfs_header_nritems(left);
2090 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2091 			wret = 1;
2092 		} else {
2093 			ret = btrfs_cow_block(trans, root, left, parent,
2094 					      pslot - 1, &left);
2095 			if (ret)
2096 				wret = 1;
2097 			else {
2098 				wret = push_node_left(trans, left, mid, 0);
2099 			}
2100 		}
2101 		if (wret < 0)
2102 			ret = wret;
2103 		if (wret == 0) {
2104 			struct btrfs_disk_key disk_key;
2105 			orig_slot += left_nr;
2106 			btrfs_node_key(mid, &disk_key, 0);
2107 			ret = tree_mod_log_insert_key(parent, pslot,
2108 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2109 			BUG_ON(ret < 0);
2110 			btrfs_set_node_key(parent, &disk_key, pslot);
2111 			btrfs_mark_buffer_dirty(parent);
2112 			if (btrfs_header_nritems(left) > orig_slot) {
2113 				path->nodes[level] = left;
2114 				path->slots[level + 1] -= 1;
2115 				path->slots[level] = orig_slot;
2116 				btrfs_tree_unlock(mid);
2117 				free_extent_buffer(mid);
2118 			} else {
2119 				orig_slot -=
2120 					btrfs_header_nritems(left);
2121 				path->slots[level] = orig_slot;
2122 				btrfs_tree_unlock(left);
2123 				free_extent_buffer(left);
2124 			}
2125 			return 0;
2126 		}
2127 		btrfs_tree_unlock(left);
2128 		free_extent_buffer(left);
2129 	}
2130 	right = read_node_slot(parent, pslot + 1);
2131 	if (IS_ERR(right))
2132 		right = NULL;
2133 
2134 	/*
2135 	 * then try to empty the right most buffer into the middle
2136 	 */
2137 	if (right) {
2138 		u32 right_nr;
2139 
2140 		btrfs_tree_lock(right);
2141 		btrfs_set_lock_blocking_write(right);
2142 
2143 		right_nr = btrfs_header_nritems(right);
2144 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2145 			wret = 1;
2146 		} else {
2147 			ret = btrfs_cow_block(trans, root, right,
2148 					      parent, pslot + 1,
2149 					      &right);
2150 			if (ret)
2151 				wret = 1;
2152 			else {
2153 				wret = balance_node_right(trans, right, mid);
2154 			}
2155 		}
2156 		if (wret < 0)
2157 			ret = wret;
2158 		if (wret == 0) {
2159 			struct btrfs_disk_key disk_key;
2160 
2161 			btrfs_node_key(right, &disk_key, 0);
2162 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2163 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2164 			BUG_ON(ret < 0);
2165 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2166 			btrfs_mark_buffer_dirty(parent);
2167 
2168 			if (btrfs_header_nritems(mid) <= orig_slot) {
2169 				path->nodes[level] = right;
2170 				path->slots[level + 1] += 1;
2171 				path->slots[level] = orig_slot -
2172 					btrfs_header_nritems(mid);
2173 				btrfs_tree_unlock(mid);
2174 				free_extent_buffer(mid);
2175 			} else {
2176 				btrfs_tree_unlock(right);
2177 				free_extent_buffer(right);
2178 			}
2179 			return 0;
2180 		}
2181 		btrfs_tree_unlock(right);
2182 		free_extent_buffer(right);
2183 	}
2184 	return 1;
2185 }
2186 
2187 /*
2188  * readahead one full node of leaves, finding things that are close
2189  * to the block in 'slot', and triggering ra on them.
2190  */
2191 static void reada_for_search(struct btrfs_fs_info *fs_info,
2192 			     struct btrfs_path *path,
2193 			     int level, int slot, u64 objectid)
2194 {
2195 	struct extent_buffer *node;
2196 	struct btrfs_disk_key disk_key;
2197 	u32 nritems;
2198 	u64 search;
2199 	u64 target;
2200 	u64 nread = 0;
2201 	struct extent_buffer *eb;
2202 	u32 nr;
2203 	u32 blocksize;
2204 	u32 nscan = 0;
2205 
2206 	if (level != 1)
2207 		return;
2208 
2209 	if (!path->nodes[level])
2210 		return;
2211 
2212 	node = path->nodes[level];
2213 
2214 	search = btrfs_node_blockptr(node, slot);
2215 	blocksize = fs_info->nodesize;
2216 	eb = find_extent_buffer(fs_info, search);
2217 	if (eb) {
2218 		free_extent_buffer(eb);
2219 		return;
2220 	}
2221 
2222 	target = search;
2223 
2224 	nritems = btrfs_header_nritems(node);
2225 	nr = slot;
2226 
2227 	while (1) {
2228 		if (path->reada == READA_BACK) {
2229 			if (nr == 0)
2230 				break;
2231 			nr--;
2232 		} else if (path->reada == READA_FORWARD) {
2233 			nr++;
2234 			if (nr >= nritems)
2235 				break;
2236 		}
2237 		if (path->reada == READA_BACK && objectid) {
2238 			btrfs_node_key(node, &disk_key, nr);
2239 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2240 				break;
2241 		}
2242 		search = btrfs_node_blockptr(node, nr);
2243 		if ((search <= target && target - search <= 65536) ||
2244 		    (search > target && search - target <= 65536)) {
2245 			readahead_tree_block(fs_info, search);
2246 			nread += blocksize;
2247 		}
2248 		nscan++;
2249 		if ((nread > 65536 || nscan > 32))
2250 			break;
2251 	}
2252 }
2253 
2254 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2255 				       struct btrfs_path *path, int level)
2256 {
2257 	int slot;
2258 	int nritems;
2259 	struct extent_buffer *parent;
2260 	struct extent_buffer *eb;
2261 	u64 gen;
2262 	u64 block1 = 0;
2263 	u64 block2 = 0;
2264 
2265 	parent = path->nodes[level + 1];
2266 	if (!parent)
2267 		return;
2268 
2269 	nritems = btrfs_header_nritems(parent);
2270 	slot = path->slots[level + 1];
2271 
2272 	if (slot > 0) {
2273 		block1 = btrfs_node_blockptr(parent, slot - 1);
2274 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2275 		eb = find_extent_buffer(fs_info, block1);
2276 		/*
2277 		 * if we get -eagain from btrfs_buffer_uptodate, we
2278 		 * don't want to return eagain here.  That will loop
2279 		 * forever
2280 		 */
2281 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2282 			block1 = 0;
2283 		free_extent_buffer(eb);
2284 	}
2285 	if (slot + 1 < nritems) {
2286 		block2 = btrfs_node_blockptr(parent, slot + 1);
2287 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2288 		eb = find_extent_buffer(fs_info, block2);
2289 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2290 			block2 = 0;
2291 		free_extent_buffer(eb);
2292 	}
2293 
2294 	if (block1)
2295 		readahead_tree_block(fs_info, block1);
2296 	if (block2)
2297 		readahead_tree_block(fs_info, block2);
2298 }
2299 
2300 
2301 /*
2302  * when we walk down the tree, it is usually safe to unlock the higher layers
2303  * in the tree.  The exceptions are when our path goes through slot 0, because
2304  * operations on the tree might require changing key pointers higher up in the
2305  * tree.
2306  *
2307  * callers might also have set path->keep_locks, which tells this code to keep
2308  * the lock if the path points to the last slot in the block.  This is part of
2309  * walking through the tree, and selecting the next slot in the higher block.
2310  *
2311  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2312  * if lowest_unlock is 1, level 0 won't be unlocked
2313  */
2314 static noinline void unlock_up(struct btrfs_path *path, int level,
2315 			       int lowest_unlock, int min_write_lock_level,
2316 			       int *write_lock_level)
2317 {
2318 	int i;
2319 	int skip_level = level;
2320 	int no_skips = 0;
2321 	struct extent_buffer *t;
2322 
2323 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2324 		if (!path->nodes[i])
2325 			break;
2326 		if (!path->locks[i])
2327 			break;
2328 		if (!no_skips && path->slots[i] == 0) {
2329 			skip_level = i + 1;
2330 			continue;
2331 		}
2332 		if (!no_skips && path->keep_locks) {
2333 			u32 nritems;
2334 			t = path->nodes[i];
2335 			nritems = btrfs_header_nritems(t);
2336 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2337 				skip_level = i + 1;
2338 				continue;
2339 			}
2340 		}
2341 		if (skip_level < i && i >= lowest_unlock)
2342 			no_skips = 1;
2343 
2344 		t = path->nodes[i];
2345 		if (i >= lowest_unlock && i > skip_level) {
2346 			btrfs_tree_unlock_rw(t, path->locks[i]);
2347 			path->locks[i] = 0;
2348 			if (write_lock_level &&
2349 			    i > min_write_lock_level &&
2350 			    i <= *write_lock_level) {
2351 				*write_lock_level = i - 1;
2352 			}
2353 		}
2354 	}
2355 }
2356 
2357 /*
2358  * This releases any locks held in the path starting at level and
2359  * going all the way up to the root.
2360  *
2361  * btrfs_search_slot will keep the lock held on higher nodes in a few
2362  * corner cases, such as COW of the block at slot zero in the node.  This
2363  * ignores those rules, and it should only be called when there are no
2364  * more updates to be done higher up in the tree.
2365  */
2366 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2367 {
2368 	int i;
2369 
2370 	if (path->keep_locks)
2371 		return;
2372 
2373 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2374 		if (!path->nodes[i])
2375 			continue;
2376 		if (!path->locks[i])
2377 			continue;
2378 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2379 		path->locks[i] = 0;
2380 	}
2381 }
2382 
2383 /*
2384  * helper function for btrfs_search_slot.  The goal is to find a block
2385  * in cache without setting the path to blocking.  If we find the block
2386  * we return zero and the path is unchanged.
2387  *
2388  * If we can't find the block, we set the path blocking and do some
2389  * reada.  -EAGAIN is returned and the search must be repeated.
2390  */
2391 static int
2392 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2393 		      struct extent_buffer **eb_ret, int level, int slot,
2394 		      const struct btrfs_key *key)
2395 {
2396 	struct btrfs_fs_info *fs_info = root->fs_info;
2397 	u64 blocknr;
2398 	u64 gen;
2399 	struct extent_buffer *b = *eb_ret;
2400 	struct extent_buffer *tmp;
2401 	struct btrfs_key first_key;
2402 	int ret;
2403 	int parent_level;
2404 
2405 	blocknr = btrfs_node_blockptr(b, slot);
2406 	gen = btrfs_node_ptr_generation(b, slot);
2407 	parent_level = btrfs_header_level(b);
2408 	btrfs_node_key_to_cpu(b, &first_key, slot);
2409 
2410 	tmp = find_extent_buffer(fs_info, blocknr);
2411 	if (tmp) {
2412 		/* first we do an atomic uptodate check */
2413 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2414 			/*
2415 			 * Do extra check for first_key, eb can be stale due to
2416 			 * being cached, read from scrub, or have multiple
2417 			 * parents (shared tree blocks).
2418 			 */
2419 			if (btrfs_verify_level_key(tmp,
2420 					parent_level - 1, &first_key, gen)) {
2421 				free_extent_buffer(tmp);
2422 				return -EUCLEAN;
2423 			}
2424 			*eb_ret = tmp;
2425 			return 0;
2426 		}
2427 
2428 		/* the pages were up to date, but we failed
2429 		 * the generation number check.  Do a full
2430 		 * read for the generation number that is correct.
2431 		 * We must do this without dropping locks so
2432 		 * we can trust our generation number
2433 		 */
2434 		btrfs_set_path_blocking(p);
2435 
2436 		/* now we're allowed to do a blocking uptodate check */
2437 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2438 		if (!ret) {
2439 			*eb_ret = tmp;
2440 			return 0;
2441 		}
2442 		free_extent_buffer(tmp);
2443 		btrfs_release_path(p);
2444 		return -EIO;
2445 	}
2446 
2447 	/*
2448 	 * reduce lock contention at high levels
2449 	 * of the btree by dropping locks before
2450 	 * we read.  Don't release the lock on the current
2451 	 * level because we need to walk this node to figure
2452 	 * out which blocks to read.
2453 	 */
2454 	btrfs_unlock_up_safe(p, level + 1);
2455 	btrfs_set_path_blocking(p);
2456 
2457 	if (p->reada != READA_NONE)
2458 		reada_for_search(fs_info, p, level, slot, key->objectid);
2459 
2460 	ret = -EAGAIN;
2461 	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2462 			      &first_key);
2463 	if (!IS_ERR(tmp)) {
2464 		/*
2465 		 * If the read above didn't mark this buffer up to date,
2466 		 * it will never end up being up to date.  Set ret to EIO now
2467 		 * and give up so that our caller doesn't loop forever
2468 		 * on our EAGAINs.
2469 		 */
2470 		if (!extent_buffer_uptodate(tmp))
2471 			ret = -EIO;
2472 		free_extent_buffer(tmp);
2473 	} else {
2474 		ret = PTR_ERR(tmp);
2475 	}
2476 
2477 	btrfs_release_path(p);
2478 	return ret;
2479 }
2480 
2481 /*
2482  * helper function for btrfs_search_slot.  This does all of the checks
2483  * for node-level blocks and does any balancing required based on
2484  * the ins_len.
2485  *
2486  * If no extra work was required, zero is returned.  If we had to
2487  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2488  * start over
2489  */
2490 static int
2491 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2492 		       struct btrfs_root *root, struct btrfs_path *p,
2493 		       struct extent_buffer *b, int level, int ins_len,
2494 		       int *write_lock_level)
2495 {
2496 	struct btrfs_fs_info *fs_info = root->fs_info;
2497 	int ret;
2498 
2499 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2500 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2501 		int sret;
2502 
2503 		if (*write_lock_level < level + 1) {
2504 			*write_lock_level = level + 1;
2505 			btrfs_release_path(p);
2506 			goto again;
2507 		}
2508 
2509 		btrfs_set_path_blocking(p);
2510 		reada_for_balance(fs_info, p, level);
2511 		sret = split_node(trans, root, p, level);
2512 
2513 		BUG_ON(sret > 0);
2514 		if (sret) {
2515 			ret = sret;
2516 			goto done;
2517 		}
2518 		b = p->nodes[level];
2519 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2520 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2521 		int sret;
2522 
2523 		if (*write_lock_level < level + 1) {
2524 			*write_lock_level = level + 1;
2525 			btrfs_release_path(p);
2526 			goto again;
2527 		}
2528 
2529 		btrfs_set_path_blocking(p);
2530 		reada_for_balance(fs_info, p, level);
2531 		sret = balance_level(trans, root, p, level);
2532 
2533 		if (sret) {
2534 			ret = sret;
2535 			goto done;
2536 		}
2537 		b = p->nodes[level];
2538 		if (!b) {
2539 			btrfs_release_path(p);
2540 			goto again;
2541 		}
2542 		BUG_ON(btrfs_header_nritems(b) == 1);
2543 	}
2544 	return 0;
2545 
2546 again:
2547 	ret = -EAGAIN;
2548 done:
2549 	return ret;
2550 }
2551 
2552 static int key_search(struct extent_buffer *b, const struct btrfs_key *key,
2553 		      int level, int *prev_cmp, int *slot)
2554 {
2555 	if (*prev_cmp != 0) {
2556 		*prev_cmp = btrfs_bin_search(b, key, level, slot);
2557 		return *prev_cmp;
2558 	}
2559 
2560 	*slot = 0;
2561 
2562 	return 0;
2563 }
2564 
2565 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2566 		u64 iobjectid, u64 ioff, u8 key_type,
2567 		struct btrfs_key *found_key)
2568 {
2569 	int ret;
2570 	struct btrfs_key key;
2571 	struct extent_buffer *eb;
2572 
2573 	ASSERT(path);
2574 	ASSERT(found_key);
2575 
2576 	key.type = key_type;
2577 	key.objectid = iobjectid;
2578 	key.offset = ioff;
2579 
2580 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2581 	if (ret < 0)
2582 		return ret;
2583 
2584 	eb = path->nodes[0];
2585 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2586 		ret = btrfs_next_leaf(fs_root, path);
2587 		if (ret)
2588 			return ret;
2589 		eb = path->nodes[0];
2590 	}
2591 
2592 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2593 	if (found_key->type != key.type ||
2594 			found_key->objectid != key.objectid)
2595 		return 1;
2596 
2597 	return 0;
2598 }
2599 
2600 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2601 							struct btrfs_path *p,
2602 							int write_lock_level)
2603 {
2604 	struct btrfs_fs_info *fs_info = root->fs_info;
2605 	struct extent_buffer *b;
2606 	int root_lock;
2607 	int level = 0;
2608 
2609 	/* We try very hard to do read locks on the root */
2610 	root_lock = BTRFS_READ_LOCK;
2611 
2612 	if (p->search_commit_root) {
2613 		/*
2614 		 * The commit roots are read only so we always do read locks,
2615 		 * and we always must hold the commit_root_sem when doing
2616 		 * searches on them, the only exception is send where we don't
2617 		 * want to block transaction commits for a long time, so
2618 		 * we need to clone the commit root in order to avoid races
2619 		 * with transaction commits that create a snapshot of one of
2620 		 * the roots used by a send operation.
2621 		 */
2622 		if (p->need_commit_sem) {
2623 			down_read(&fs_info->commit_root_sem);
2624 			b = btrfs_clone_extent_buffer(root->commit_root);
2625 			up_read(&fs_info->commit_root_sem);
2626 			if (!b)
2627 				return ERR_PTR(-ENOMEM);
2628 
2629 		} else {
2630 			b = root->commit_root;
2631 			extent_buffer_get(b);
2632 		}
2633 		level = btrfs_header_level(b);
2634 		/*
2635 		 * Ensure that all callers have set skip_locking when
2636 		 * p->search_commit_root = 1.
2637 		 */
2638 		ASSERT(p->skip_locking == 1);
2639 
2640 		goto out;
2641 	}
2642 
2643 	if (p->skip_locking) {
2644 		b = btrfs_root_node(root);
2645 		level = btrfs_header_level(b);
2646 		goto out;
2647 	}
2648 
2649 	/*
2650 	 * If the level is set to maximum, we can skip trying to get the read
2651 	 * lock.
2652 	 */
2653 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2654 		/*
2655 		 * We don't know the level of the root node until we actually
2656 		 * have it read locked
2657 		 */
2658 		b = btrfs_read_lock_root_node(root);
2659 		level = btrfs_header_level(b);
2660 		if (level > write_lock_level)
2661 			goto out;
2662 
2663 		/* Whoops, must trade for write lock */
2664 		btrfs_tree_read_unlock(b);
2665 		free_extent_buffer(b);
2666 	}
2667 
2668 	b = btrfs_lock_root_node(root);
2669 	root_lock = BTRFS_WRITE_LOCK;
2670 
2671 	/* The level might have changed, check again */
2672 	level = btrfs_header_level(b);
2673 
2674 out:
2675 	p->nodes[level] = b;
2676 	if (!p->skip_locking)
2677 		p->locks[level] = root_lock;
2678 	/*
2679 	 * Callers are responsible for dropping b's references.
2680 	 */
2681 	return b;
2682 }
2683 
2684 
2685 /*
2686  * btrfs_search_slot - look for a key in a tree and perform necessary
2687  * modifications to preserve tree invariants.
2688  *
2689  * @trans:	Handle of transaction, used when modifying the tree
2690  * @p:		Holds all btree nodes along the search path
2691  * @root:	The root node of the tree
2692  * @key:	The key we are looking for
2693  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2694  *		deletions it's -1. 0 for plain searches
2695  * @cow:	boolean should CoW operations be performed. Must always be 1
2696  *		when modifying the tree.
2697  *
2698  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2699  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2700  *
2701  * If @key is found, 0 is returned and you can find the item in the leaf level
2702  * of the path (level 0)
2703  *
2704  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2705  * points to the slot where it should be inserted
2706  *
2707  * If an error is encountered while searching the tree a negative error number
2708  * is returned
2709  */
2710 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2711 		      const struct btrfs_key *key, struct btrfs_path *p,
2712 		      int ins_len, int cow)
2713 {
2714 	struct extent_buffer *b;
2715 	int slot;
2716 	int ret;
2717 	int err;
2718 	int level;
2719 	int lowest_unlock = 1;
2720 	/* everything at write_lock_level or lower must be write locked */
2721 	int write_lock_level = 0;
2722 	u8 lowest_level = 0;
2723 	int min_write_lock_level;
2724 	int prev_cmp;
2725 
2726 	lowest_level = p->lowest_level;
2727 	WARN_ON(lowest_level && ins_len > 0);
2728 	WARN_ON(p->nodes[0] != NULL);
2729 	BUG_ON(!cow && ins_len);
2730 
2731 	if (ins_len < 0) {
2732 		lowest_unlock = 2;
2733 
2734 		/* when we are removing items, we might have to go up to level
2735 		 * two as we update tree pointers  Make sure we keep write
2736 		 * for those levels as well
2737 		 */
2738 		write_lock_level = 2;
2739 	} else if (ins_len > 0) {
2740 		/*
2741 		 * for inserting items, make sure we have a write lock on
2742 		 * level 1 so we can update keys
2743 		 */
2744 		write_lock_level = 1;
2745 	}
2746 
2747 	if (!cow)
2748 		write_lock_level = -1;
2749 
2750 	if (cow && (p->keep_locks || p->lowest_level))
2751 		write_lock_level = BTRFS_MAX_LEVEL;
2752 
2753 	min_write_lock_level = write_lock_level;
2754 
2755 again:
2756 	prev_cmp = -1;
2757 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2758 	if (IS_ERR(b)) {
2759 		ret = PTR_ERR(b);
2760 		goto done;
2761 	}
2762 
2763 	while (b) {
2764 		level = btrfs_header_level(b);
2765 
2766 		/*
2767 		 * setup the path here so we can release it under lock
2768 		 * contention with the cow code
2769 		 */
2770 		if (cow) {
2771 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2772 
2773 			/*
2774 			 * if we don't really need to cow this block
2775 			 * then we don't want to set the path blocking,
2776 			 * so we test it here
2777 			 */
2778 			if (!should_cow_block(trans, root, b)) {
2779 				trans->dirty = true;
2780 				goto cow_done;
2781 			}
2782 
2783 			/*
2784 			 * must have write locks on this node and the
2785 			 * parent
2786 			 */
2787 			if (level > write_lock_level ||
2788 			    (level + 1 > write_lock_level &&
2789 			    level + 1 < BTRFS_MAX_LEVEL &&
2790 			    p->nodes[level + 1])) {
2791 				write_lock_level = level + 1;
2792 				btrfs_release_path(p);
2793 				goto again;
2794 			}
2795 
2796 			btrfs_set_path_blocking(p);
2797 			if (last_level)
2798 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2799 						      &b);
2800 			else
2801 				err = btrfs_cow_block(trans, root, b,
2802 						      p->nodes[level + 1],
2803 						      p->slots[level + 1], &b);
2804 			if (err) {
2805 				ret = err;
2806 				goto done;
2807 			}
2808 		}
2809 cow_done:
2810 		p->nodes[level] = b;
2811 		/*
2812 		 * Leave path with blocking locks to avoid massive
2813 		 * lock context switch, this is made on purpose.
2814 		 */
2815 
2816 		/*
2817 		 * we have a lock on b and as long as we aren't changing
2818 		 * the tree, there is no way to for the items in b to change.
2819 		 * It is safe to drop the lock on our parent before we
2820 		 * go through the expensive btree search on b.
2821 		 *
2822 		 * If we're inserting or deleting (ins_len != 0), then we might
2823 		 * be changing slot zero, which may require changing the parent.
2824 		 * So, we can't drop the lock until after we know which slot
2825 		 * we're operating on.
2826 		 */
2827 		if (!ins_len && !p->keep_locks) {
2828 			int u = level + 1;
2829 
2830 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2831 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2832 				p->locks[u] = 0;
2833 			}
2834 		}
2835 
2836 		ret = key_search(b, key, level, &prev_cmp, &slot);
2837 		if (ret < 0)
2838 			goto done;
2839 
2840 		if (level != 0) {
2841 			int dec = 0;
2842 			if (ret && slot > 0) {
2843 				dec = 1;
2844 				slot -= 1;
2845 			}
2846 			p->slots[level] = slot;
2847 			err = setup_nodes_for_search(trans, root, p, b, level,
2848 					     ins_len, &write_lock_level);
2849 			if (err == -EAGAIN)
2850 				goto again;
2851 			if (err) {
2852 				ret = err;
2853 				goto done;
2854 			}
2855 			b = p->nodes[level];
2856 			slot = p->slots[level];
2857 
2858 			/*
2859 			 * slot 0 is special, if we change the key
2860 			 * we have to update the parent pointer
2861 			 * which means we must have a write lock
2862 			 * on the parent
2863 			 */
2864 			if (slot == 0 && ins_len &&
2865 			    write_lock_level < level + 1) {
2866 				write_lock_level = level + 1;
2867 				btrfs_release_path(p);
2868 				goto again;
2869 			}
2870 
2871 			unlock_up(p, level, lowest_unlock,
2872 				  min_write_lock_level, &write_lock_level);
2873 
2874 			if (level == lowest_level) {
2875 				if (dec)
2876 					p->slots[level]++;
2877 				goto done;
2878 			}
2879 
2880 			err = read_block_for_search(root, p, &b, level,
2881 						    slot, key);
2882 			if (err == -EAGAIN)
2883 				goto again;
2884 			if (err) {
2885 				ret = err;
2886 				goto done;
2887 			}
2888 
2889 			if (!p->skip_locking) {
2890 				level = btrfs_header_level(b);
2891 				if (level <= write_lock_level) {
2892 					err = btrfs_try_tree_write_lock(b);
2893 					if (!err) {
2894 						btrfs_set_path_blocking(p);
2895 						btrfs_tree_lock(b);
2896 					}
2897 					p->locks[level] = BTRFS_WRITE_LOCK;
2898 				} else {
2899 					err = btrfs_tree_read_lock_atomic(b);
2900 					if (!err) {
2901 						btrfs_set_path_blocking(p);
2902 						btrfs_tree_read_lock(b);
2903 					}
2904 					p->locks[level] = BTRFS_READ_LOCK;
2905 				}
2906 				p->nodes[level] = b;
2907 			}
2908 		} else {
2909 			p->slots[level] = slot;
2910 			if (ins_len > 0 &&
2911 			    btrfs_leaf_free_space(b) < ins_len) {
2912 				if (write_lock_level < 1) {
2913 					write_lock_level = 1;
2914 					btrfs_release_path(p);
2915 					goto again;
2916 				}
2917 
2918 				btrfs_set_path_blocking(p);
2919 				err = split_leaf(trans, root, key,
2920 						 p, ins_len, ret == 0);
2921 
2922 				BUG_ON(err > 0);
2923 				if (err) {
2924 					ret = err;
2925 					goto done;
2926 				}
2927 			}
2928 			if (!p->search_for_split)
2929 				unlock_up(p, level, lowest_unlock,
2930 					  min_write_lock_level, NULL);
2931 			goto done;
2932 		}
2933 	}
2934 	ret = 1;
2935 done:
2936 	/*
2937 	 * we don't really know what they plan on doing with the path
2938 	 * from here on, so for now just mark it as blocking
2939 	 */
2940 	if (!p->leave_spinning)
2941 		btrfs_set_path_blocking(p);
2942 	if (ret < 0 && !p->skip_release_on_error)
2943 		btrfs_release_path(p);
2944 	return ret;
2945 }
2946 
2947 /*
2948  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2949  * current state of the tree together with the operations recorded in the tree
2950  * modification log to search for the key in a previous version of this tree, as
2951  * denoted by the time_seq parameter.
2952  *
2953  * Naturally, there is no support for insert, delete or cow operations.
2954  *
2955  * The resulting path and return value will be set up as if we called
2956  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2957  */
2958 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2959 			  struct btrfs_path *p, u64 time_seq)
2960 {
2961 	struct btrfs_fs_info *fs_info = root->fs_info;
2962 	struct extent_buffer *b;
2963 	int slot;
2964 	int ret;
2965 	int err;
2966 	int level;
2967 	int lowest_unlock = 1;
2968 	u8 lowest_level = 0;
2969 	int prev_cmp = -1;
2970 
2971 	lowest_level = p->lowest_level;
2972 	WARN_ON(p->nodes[0] != NULL);
2973 
2974 	if (p->search_commit_root) {
2975 		BUG_ON(time_seq);
2976 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2977 	}
2978 
2979 again:
2980 	b = get_old_root(root, time_seq);
2981 	if (!b) {
2982 		ret = -EIO;
2983 		goto done;
2984 	}
2985 	level = btrfs_header_level(b);
2986 	p->locks[level] = BTRFS_READ_LOCK;
2987 
2988 	while (b) {
2989 		level = btrfs_header_level(b);
2990 		p->nodes[level] = b;
2991 
2992 		/*
2993 		 * we have a lock on b and as long as we aren't changing
2994 		 * the tree, there is no way to for the items in b to change.
2995 		 * It is safe to drop the lock on our parent before we
2996 		 * go through the expensive btree search on b.
2997 		 */
2998 		btrfs_unlock_up_safe(p, level + 1);
2999 
3000 		/*
3001 		 * Since we can unwind ebs we want to do a real search every
3002 		 * time.
3003 		 */
3004 		prev_cmp = -1;
3005 		ret = key_search(b, key, level, &prev_cmp, &slot);
3006 		if (ret < 0)
3007 			goto done;
3008 
3009 		if (level != 0) {
3010 			int dec = 0;
3011 			if (ret && slot > 0) {
3012 				dec = 1;
3013 				slot -= 1;
3014 			}
3015 			p->slots[level] = slot;
3016 			unlock_up(p, level, lowest_unlock, 0, NULL);
3017 
3018 			if (level == lowest_level) {
3019 				if (dec)
3020 					p->slots[level]++;
3021 				goto done;
3022 			}
3023 
3024 			err = read_block_for_search(root, p, &b, level,
3025 						    slot, key);
3026 			if (err == -EAGAIN)
3027 				goto again;
3028 			if (err) {
3029 				ret = err;
3030 				goto done;
3031 			}
3032 
3033 			level = btrfs_header_level(b);
3034 			err = btrfs_tree_read_lock_atomic(b);
3035 			if (!err) {
3036 				btrfs_set_path_blocking(p);
3037 				btrfs_tree_read_lock(b);
3038 			}
3039 			b = tree_mod_log_rewind(fs_info, p, b, time_seq);
3040 			if (!b) {
3041 				ret = -ENOMEM;
3042 				goto done;
3043 			}
3044 			p->locks[level] = BTRFS_READ_LOCK;
3045 			p->nodes[level] = b;
3046 		} else {
3047 			p->slots[level] = slot;
3048 			unlock_up(p, level, lowest_unlock, 0, NULL);
3049 			goto done;
3050 		}
3051 	}
3052 	ret = 1;
3053 done:
3054 	if (!p->leave_spinning)
3055 		btrfs_set_path_blocking(p);
3056 	if (ret < 0)
3057 		btrfs_release_path(p);
3058 
3059 	return ret;
3060 }
3061 
3062 /*
3063  * helper to use instead of search slot if no exact match is needed but
3064  * instead the next or previous item should be returned.
3065  * When find_higher is true, the next higher item is returned, the next lower
3066  * otherwise.
3067  * When return_any and find_higher are both true, and no higher item is found,
3068  * return the next lower instead.
3069  * When return_any is true and find_higher is false, and no lower item is found,
3070  * return the next higher instead.
3071  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3072  * < 0 on error
3073  */
3074 int btrfs_search_slot_for_read(struct btrfs_root *root,
3075 			       const struct btrfs_key *key,
3076 			       struct btrfs_path *p, int find_higher,
3077 			       int return_any)
3078 {
3079 	int ret;
3080 	struct extent_buffer *leaf;
3081 
3082 again:
3083 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3084 	if (ret <= 0)
3085 		return ret;
3086 	/*
3087 	 * a return value of 1 means the path is at the position where the
3088 	 * item should be inserted. Normally this is the next bigger item,
3089 	 * but in case the previous item is the last in a leaf, path points
3090 	 * to the first free slot in the previous leaf, i.e. at an invalid
3091 	 * item.
3092 	 */
3093 	leaf = p->nodes[0];
3094 
3095 	if (find_higher) {
3096 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3097 			ret = btrfs_next_leaf(root, p);
3098 			if (ret <= 0)
3099 				return ret;
3100 			if (!return_any)
3101 				return 1;
3102 			/*
3103 			 * no higher item found, return the next
3104 			 * lower instead
3105 			 */
3106 			return_any = 0;
3107 			find_higher = 0;
3108 			btrfs_release_path(p);
3109 			goto again;
3110 		}
3111 	} else {
3112 		if (p->slots[0] == 0) {
3113 			ret = btrfs_prev_leaf(root, p);
3114 			if (ret < 0)
3115 				return ret;
3116 			if (!ret) {
3117 				leaf = p->nodes[0];
3118 				if (p->slots[0] == btrfs_header_nritems(leaf))
3119 					p->slots[0]--;
3120 				return 0;
3121 			}
3122 			if (!return_any)
3123 				return 1;
3124 			/*
3125 			 * no lower item found, return the next
3126 			 * higher instead
3127 			 */
3128 			return_any = 0;
3129 			find_higher = 1;
3130 			btrfs_release_path(p);
3131 			goto again;
3132 		} else {
3133 			--p->slots[0];
3134 		}
3135 	}
3136 	return 0;
3137 }
3138 
3139 /*
3140  * adjust the pointers going up the tree, starting at level
3141  * making sure the right key of each node is points to 'key'.
3142  * This is used after shifting pointers to the left, so it stops
3143  * fixing up pointers when a given leaf/node is not in slot 0 of the
3144  * higher levels
3145  *
3146  */
3147 static void fixup_low_keys(struct btrfs_path *path,
3148 			   struct btrfs_disk_key *key, int level)
3149 {
3150 	int i;
3151 	struct extent_buffer *t;
3152 	int ret;
3153 
3154 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3155 		int tslot = path->slots[i];
3156 
3157 		if (!path->nodes[i])
3158 			break;
3159 		t = path->nodes[i];
3160 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3161 				GFP_ATOMIC);
3162 		BUG_ON(ret < 0);
3163 		btrfs_set_node_key(t, key, tslot);
3164 		btrfs_mark_buffer_dirty(path->nodes[i]);
3165 		if (tslot != 0)
3166 			break;
3167 	}
3168 }
3169 
3170 /*
3171  * update item key.
3172  *
3173  * This function isn't completely safe. It's the caller's responsibility
3174  * that the new key won't break the order
3175  */
3176 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3177 			     struct btrfs_path *path,
3178 			     const struct btrfs_key *new_key)
3179 {
3180 	struct btrfs_disk_key disk_key;
3181 	struct extent_buffer *eb;
3182 	int slot;
3183 
3184 	eb = path->nodes[0];
3185 	slot = path->slots[0];
3186 	if (slot > 0) {
3187 		btrfs_item_key(eb, &disk_key, slot - 1);
3188 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3189 			btrfs_crit(fs_info,
3190 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3191 				   slot, btrfs_disk_key_objectid(&disk_key),
3192 				   btrfs_disk_key_type(&disk_key),
3193 				   btrfs_disk_key_offset(&disk_key),
3194 				   new_key->objectid, new_key->type,
3195 				   new_key->offset);
3196 			btrfs_print_leaf(eb);
3197 			BUG();
3198 		}
3199 	}
3200 	if (slot < btrfs_header_nritems(eb) - 1) {
3201 		btrfs_item_key(eb, &disk_key, slot + 1);
3202 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3203 			btrfs_crit(fs_info,
3204 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3205 				   slot, btrfs_disk_key_objectid(&disk_key),
3206 				   btrfs_disk_key_type(&disk_key),
3207 				   btrfs_disk_key_offset(&disk_key),
3208 				   new_key->objectid, new_key->type,
3209 				   new_key->offset);
3210 			btrfs_print_leaf(eb);
3211 			BUG();
3212 		}
3213 	}
3214 
3215 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3216 	btrfs_set_item_key(eb, &disk_key, slot);
3217 	btrfs_mark_buffer_dirty(eb);
3218 	if (slot == 0)
3219 		fixup_low_keys(path, &disk_key, 1);
3220 }
3221 
3222 /*
3223  * try to push data from one node into the next node left in the
3224  * tree.
3225  *
3226  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3227  * error, and > 0 if there was no room in the left hand block.
3228  */
3229 static int push_node_left(struct btrfs_trans_handle *trans,
3230 			  struct extent_buffer *dst,
3231 			  struct extent_buffer *src, int empty)
3232 {
3233 	struct btrfs_fs_info *fs_info = trans->fs_info;
3234 	int push_items = 0;
3235 	int src_nritems;
3236 	int dst_nritems;
3237 	int ret = 0;
3238 
3239 	src_nritems = btrfs_header_nritems(src);
3240 	dst_nritems = btrfs_header_nritems(dst);
3241 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3242 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3243 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3244 
3245 	if (!empty && src_nritems <= 8)
3246 		return 1;
3247 
3248 	if (push_items <= 0)
3249 		return 1;
3250 
3251 	if (empty) {
3252 		push_items = min(src_nritems, push_items);
3253 		if (push_items < src_nritems) {
3254 			/* leave at least 8 pointers in the node if
3255 			 * we aren't going to empty it
3256 			 */
3257 			if (src_nritems - push_items < 8) {
3258 				if (push_items <= 8)
3259 					return 1;
3260 				push_items -= 8;
3261 			}
3262 		}
3263 	} else
3264 		push_items = min(src_nritems - 8, push_items);
3265 
3266 	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3267 	if (ret) {
3268 		btrfs_abort_transaction(trans, ret);
3269 		return ret;
3270 	}
3271 	copy_extent_buffer(dst, src,
3272 			   btrfs_node_key_ptr_offset(dst_nritems),
3273 			   btrfs_node_key_ptr_offset(0),
3274 			   push_items * sizeof(struct btrfs_key_ptr));
3275 
3276 	if (push_items < src_nritems) {
3277 		/*
3278 		 * Don't call tree_mod_log_insert_move here, key removal was
3279 		 * already fully logged by tree_mod_log_eb_copy above.
3280 		 */
3281 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3282 				      btrfs_node_key_ptr_offset(push_items),
3283 				      (src_nritems - push_items) *
3284 				      sizeof(struct btrfs_key_ptr));
3285 	}
3286 	btrfs_set_header_nritems(src, src_nritems - push_items);
3287 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3288 	btrfs_mark_buffer_dirty(src);
3289 	btrfs_mark_buffer_dirty(dst);
3290 
3291 	return ret;
3292 }
3293 
3294 /*
3295  * try to push data from one node into the next node right in the
3296  * tree.
3297  *
3298  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3299  * error, and > 0 if there was no room in the right hand block.
3300  *
3301  * this will  only push up to 1/2 the contents of the left node over
3302  */
3303 static int balance_node_right(struct btrfs_trans_handle *trans,
3304 			      struct extent_buffer *dst,
3305 			      struct extent_buffer *src)
3306 {
3307 	struct btrfs_fs_info *fs_info = trans->fs_info;
3308 	int push_items = 0;
3309 	int max_push;
3310 	int src_nritems;
3311 	int dst_nritems;
3312 	int ret = 0;
3313 
3314 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3315 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3316 
3317 	src_nritems = btrfs_header_nritems(src);
3318 	dst_nritems = btrfs_header_nritems(dst);
3319 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3320 	if (push_items <= 0)
3321 		return 1;
3322 
3323 	if (src_nritems < 4)
3324 		return 1;
3325 
3326 	max_push = src_nritems / 2 + 1;
3327 	/* don't try to empty the node */
3328 	if (max_push >= src_nritems)
3329 		return 1;
3330 
3331 	if (max_push < push_items)
3332 		push_items = max_push;
3333 
3334 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3335 	BUG_ON(ret < 0);
3336 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3337 				      btrfs_node_key_ptr_offset(0),
3338 				      (dst_nritems) *
3339 				      sizeof(struct btrfs_key_ptr));
3340 
3341 	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3342 				   push_items);
3343 	if (ret) {
3344 		btrfs_abort_transaction(trans, ret);
3345 		return ret;
3346 	}
3347 	copy_extent_buffer(dst, src,
3348 			   btrfs_node_key_ptr_offset(0),
3349 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3350 			   push_items * sizeof(struct btrfs_key_ptr));
3351 
3352 	btrfs_set_header_nritems(src, src_nritems - push_items);
3353 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3354 
3355 	btrfs_mark_buffer_dirty(src);
3356 	btrfs_mark_buffer_dirty(dst);
3357 
3358 	return ret;
3359 }
3360 
3361 /*
3362  * helper function to insert a new root level in the tree.
3363  * A new node is allocated, and a single item is inserted to
3364  * point to the existing root
3365  *
3366  * returns zero on success or < 0 on failure.
3367  */
3368 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3369 			   struct btrfs_root *root,
3370 			   struct btrfs_path *path, int level)
3371 {
3372 	struct btrfs_fs_info *fs_info = root->fs_info;
3373 	u64 lower_gen;
3374 	struct extent_buffer *lower;
3375 	struct extent_buffer *c;
3376 	struct extent_buffer *old;
3377 	struct btrfs_disk_key lower_key;
3378 	int ret;
3379 
3380 	BUG_ON(path->nodes[level]);
3381 	BUG_ON(path->nodes[level-1] != root->node);
3382 
3383 	lower = path->nodes[level-1];
3384 	if (level == 1)
3385 		btrfs_item_key(lower, &lower_key, 0);
3386 	else
3387 		btrfs_node_key(lower, &lower_key, 0);
3388 
3389 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3390 					 root->node->start, 0);
3391 	if (IS_ERR(c))
3392 		return PTR_ERR(c);
3393 
3394 	root_add_used(root, fs_info->nodesize);
3395 
3396 	btrfs_set_header_nritems(c, 1);
3397 	btrfs_set_node_key(c, &lower_key, 0);
3398 	btrfs_set_node_blockptr(c, 0, lower->start);
3399 	lower_gen = btrfs_header_generation(lower);
3400 	WARN_ON(lower_gen != trans->transid);
3401 
3402 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3403 
3404 	btrfs_mark_buffer_dirty(c);
3405 
3406 	old = root->node;
3407 	ret = tree_mod_log_insert_root(root->node, c, 0);
3408 	BUG_ON(ret < 0);
3409 	rcu_assign_pointer(root->node, c);
3410 
3411 	/* the super has an extra ref to root->node */
3412 	free_extent_buffer(old);
3413 
3414 	add_root_to_dirty_list(root);
3415 	extent_buffer_get(c);
3416 	path->nodes[level] = c;
3417 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3418 	path->slots[level] = 0;
3419 	return 0;
3420 }
3421 
3422 /*
3423  * worker function to insert a single pointer in a node.
3424  * the node should have enough room for the pointer already
3425  *
3426  * slot and level indicate where you want the key to go, and
3427  * blocknr is the block the key points to.
3428  */
3429 static void insert_ptr(struct btrfs_trans_handle *trans,
3430 		       struct btrfs_path *path,
3431 		       struct btrfs_disk_key *key, u64 bytenr,
3432 		       int slot, int level)
3433 {
3434 	struct extent_buffer *lower;
3435 	int nritems;
3436 	int ret;
3437 
3438 	BUG_ON(!path->nodes[level]);
3439 	btrfs_assert_tree_locked(path->nodes[level]);
3440 	lower = path->nodes[level];
3441 	nritems = btrfs_header_nritems(lower);
3442 	BUG_ON(slot > nritems);
3443 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3444 	if (slot != nritems) {
3445 		if (level) {
3446 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3447 					nritems - slot);
3448 			BUG_ON(ret < 0);
3449 		}
3450 		memmove_extent_buffer(lower,
3451 			      btrfs_node_key_ptr_offset(slot + 1),
3452 			      btrfs_node_key_ptr_offset(slot),
3453 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3454 	}
3455 	if (level) {
3456 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3457 				GFP_NOFS);
3458 		BUG_ON(ret < 0);
3459 	}
3460 	btrfs_set_node_key(lower, key, slot);
3461 	btrfs_set_node_blockptr(lower, slot, bytenr);
3462 	WARN_ON(trans->transid == 0);
3463 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3464 	btrfs_set_header_nritems(lower, nritems + 1);
3465 	btrfs_mark_buffer_dirty(lower);
3466 }
3467 
3468 /*
3469  * split the node at the specified level in path in two.
3470  * The path is corrected to point to the appropriate node after the split
3471  *
3472  * Before splitting this tries to make some room in the node by pushing
3473  * left and right, if either one works, it returns right away.
3474  *
3475  * returns 0 on success and < 0 on failure
3476  */
3477 static noinline int split_node(struct btrfs_trans_handle *trans,
3478 			       struct btrfs_root *root,
3479 			       struct btrfs_path *path, int level)
3480 {
3481 	struct btrfs_fs_info *fs_info = root->fs_info;
3482 	struct extent_buffer *c;
3483 	struct extent_buffer *split;
3484 	struct btrfs_disk_key disk_key;
3485 	int mid;
3486 	int ret;
3487 	u32 c_nritems;
3488 
3489 	c = path->nodes[level];
3490 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3491 	if (c == root->node) {
3492 		/*
3493 		 * trying to split the root, lets make a new one
3494 		 *
3495 		 * tree mod log: We don't log_removal old root in
3496 		 * insert_new_root, because that root buffer will be kept as a
3497 		 * normal node. We are going to log removal of half of the
3498 		 * elements below with tree_mod_log_eb_copy. We're holding a
3499 		 * tree lock on the buffer, which is why we cannot race with
3500 		 * other tree_mod_log users.
3501 		 */
3502 		ret = insert_new_root(trans, root, path, level + 1);
3503 		if (ret)
3504 			return ret;
3505 	} else {
3506 		ret = push_nodes_for_insert(trans, root, path, level);
3507 		c = path->nodes[level];
3508 		if (!ret && btrfs_header_nritems(c) <
3509 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3510 			return 0;
3511 		if (ret < 0)
3512 			return ret;
3513 	}
3514 
3515 	c_nritems = btrfs_header_nritems(c);
3516 	mid = (c_nritems + 1) / 2;
3517 	btrfs_node_key(c, &disk_key, mid);
3518 
3519 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3520 					     c->start, 0);
3521 	if (IS_ERR(split))
3522 		return PTR_ERR(split);
3523 
3524 	root_add_used(root, fs_info->nodesize);
3525 	ASSERT(btrfs_header_level(c) == level);
3526 
3527 	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3528 	if (ret) {
3529 		btrfs_abort_transaction(trans, ret);
3530 		return ret;
3531 	}
3532 	copy_extent_buffer(split, c,
3533 			   btrfs_node_key_ptr_offset(0),
3534 			   btrfs_node_key_ptr_offset(mid),
3535 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3536 	btrfs_set_header_nritems(split, c_nritems - mid);
3537 	btrfs_set_header_nritems(c, mid);
3538 	ret = 0;
3539 
3540 	btrfs_mark_buffer_dirty(c);
3541 	btrfs_mark_buffer_dirty(split);
3542 
3543 	insert_ptr(trans, path, &disk_key, split->start,
3544 		   path->slots[level + 1] + 1, level + 1);
3545 
3546 	if (path->slots[level] >= mid) {
3547 		path->slots[level] -= mid;
3548 		btrfs_tree_unlock(c);
3549 		free_extent_buffer(c);
3550 		path->nodes[level] = split;
3551 		path->slots[level + 1] += 1;
3552 	} else {
3553 		btrfs_tree_unlock(split);
3554 		free_extent_buffer(split);
3555 	}
3556 	return ret;
3557 }
3558 
3559 /*
3560  * how many bytes are required to store the items in a leaf.  start
3561  * and nr indicate which items in the leaf to check.  This totals up the
3562  * space used both by the item structs and the item data
3563  */
3564 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3565 {
3566 	struct btrfs_item *start_item;
3567 	struct btrfs_item *end_item;
3568 	struct btrfs_map_token token;
3569 	int data_len;
3570 	int nritems = btrfs_header_nritems(l);
3571 	int end = min(nritems, start + nr) - 1;
3572 
3573 	if (!nr)
3574 		return 0;
3575 	btrfs_init_map_token(&token);
3576 	start_item = btrfs_item_nr(start);
3577 	end_item = btrfs_item_nr(end);
3578 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3579 		btrfs_token_item_size(l, start_item, &token);
3580 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3581 	data_len += sizeof(struct btrfs_item) * nr;
3582 	WARN_ON(data_len < 0);
3583 	return data_len;
3584 }
3585 
3586 /*
3587  * The space between the end of the leaf items and
3588  * the start of the leaf data.  IOW, how much room
3589  * the leaf has left for both items and data
3590  */
3591 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3592 {
3593 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3594 	int nritems = btrfs_header_nritems(leaf);
3595 	int ret;
3596 
3597 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3598 	if (ret < 0) {
3599 		btrfs_crit(fs_info,
3600 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3601 			   ret,
3602 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3603 			   leaf_space_used(leaf, 0, nritems), nritems);
3604 	}
3605 	return ret;
3606 }
3607 
3608 /*
3609  * min slot controls the lowest index we're willing to push to the
3610  * right.  We'll push up to and including min_slot, but no lower
3611  */
3612 static noinline int __push_leaf_right(struct btrfs_path *path,
3613 				      int data_size, int empty,
3614 				      struct extent_buffer *right,
3615 				      int free_space, u32 left_nritems,
3616 				      u32 min_slot)
3617 {
3618 	struct btrfs_fs_info *fs_info = right->fs_info;
3619 	struct extent_buffer *left = path->nodes[0];
3620 	struct extent_buffer *upper = path->nodes[1];
3621 	struct btrfs_map_token token;
3622 	struct btrfs_disk_key disk_key;
3623 	int slot;
3624 	u32 i;
3625 	int push_space = 0;
3626 	int push_items = 0;
3627 	struct btrfs_item *item;
3628 	u32 nr;
3629 	u32 right_nritems;
3630 	u32 data_end;
3631 	u32 this_item_size;
3632 
3633 	btrfs_init_map_token(&token);
3634 
3635 	if (empty)
3636 		nr = 0;
3637 	else
3638 		nr = max_t(u32, 1, min_slot);
3639 
3640 	if (path->slots[0] >= left_nritems)
3641 		push_space += data_size;
3642 
3643 	slot = path->slots[1];
3644 	i = left_nritems - 1;
3645 	while (i >= nr) {
3646 		item = btrfs_item_nr(i);
3647 
3648 		if (!empty && push_items > 0) {
3649 			if (path->slots[0] > i)
3650 				break;
3651 			if (path->slots[0] == i) {
3652 				int space = btrfs_leaf_free_space(left);
3653 
3654 				if (space + push_space * 2 > free_space)
3655 					break;
3656 			}
3657 		}
3658 
3659 		if (path->slots[0] == i)
3660 			push_space += data_size;
3661 
3662 		this_item_size = btrfs_item_size(left, item);
3663 		if (this_item_size + sizeof(*item) + push_space > free_space)
3664 			break;
3665 
3666 		push_items++;
3667 		push_space += this_item_size + sizeof(*item);
3668 		if (i == 0)
3669 			break;
3670 		i--;
3671 	}
3672 
3673 	if (push_items == 0)
3674 		goto out_unlock;
3675 
3676 	WARN_ON(!empty && push_items == left_nritems);
3677 
3678 	/* push left to right */
3679 	right_nritems = btrfs_header_nritems(right);
3680 
3681 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3682 	push_space -= leaf_data_end(left);
3683 
3684 	/* make room in the right data area */
3685 	data_end = leaf_data_end(right);
3686 	memmove_extent_buffer(right,
3687 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3688 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3689 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3690 
3691 	/* copy from the left data area */
3692 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3693 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3694 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3695 		     push_space);
3696 
3697 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3698 			      btrfs_item_nr_offset(0),
3699 			      right_nritems * sizeof(struct btrfs_item));
3700 
3701 	/* copy the items from left to right */
3702 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3703 		   btrfs_item_nr_offset(left_nritems - push_items),
3704 		   push_items * sizeof(struct btrfs_item));
3705 
3706 	/* update the item pointers */
3707 	right_nritems += push_items;
3708 	btrfs_set_header_nritems(right, right_nritems);
3709 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3710 	for (i = 0; i < right_nritems; i++) {
3711 		item = btrfs_item_nr(i);
3712 		push_space -= btrfs_token_item_size(right, item, &token);
3713 		btrfs_set_token_item_offset(right, item, push_space, &token);
3714 	}
3715 
3716 	left_nritems -= push_items;
3717 	btrfs_set_header_nritems(left, left_nritems);
3718 
3719 	if (left_nritems)
3720 		btrfs_mark_buffer_dirty(left);
3721 	else
3722 		btrfs_clean_tree_block(left);
3723 
3724 	btrfs_mark_buffer_dirty(right);
3725 
3726 	btrfs_item_key(right, &disk_key, 0);
3727 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3728 	btrfs_mark_buffer_dirty(upper);
3729 
3730 	/* then fixup the leaf pointer in the path */
3731 	if (path->slots[0] >= left_nritems) {
3732 		path->slots[0] -= left_nritems;
3733 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3734 			btrfs_clean_tree_block(path->nodes[0]);
3735 		btrfs_tree_unlock(path->nodes[0]);
3736 		free_extent_buffer(path->nodes[0]);
3737 		path->nodes[0] = right;
3738 		path->slots[1] += 1;
3739 	} else {
3740 		btrfs_tree_unlock(right);
3741 		free_extent_buffer(right);
3742 	}
3743 	return 0;
3744 
3745 out_unlock:
3746 	btrfs_tree_unlock(right);
3747 	free_extent_buffer(right);
3748 	return 1;
3749 }
3750 
3751 /*
3752  * push some data in the path leaf to the right, trying to free up at
3753  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3754  *
3755  * returns 1 if the push failed because the other node didn't have enough
3756  * room, 0 if everything worked out and < 0 if there were major errors.
3757  *
3758  * this will push starting from min_slot to the end of the leaf.  It won't
3759  * push any slot lower than min_slot
3760  */
3761 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3762 			   *root, struct btrfs_path *path,
3763 			   int min_data_size, int data_size,
3764 			   int empty, u32 min_slot)
3765 {
3766 	struct extent_buffer *left = path->nodes[0];
3767 	struct extent_buffer *right;
3768 	struct extent_buffer *upper;
3769 	int slot;
3770 	int free_space;
3771 	u32 left_nritems;
3772 	int ret;
3773 
3774 	if (!path->nodes[1])
3775 		return 1;
3776 
3777 	slot = path->slots[1];
3778 	upper = path->nodes[1];
3779 	if (slot >= btrfs_header_nritems(upper) - 1)
3780 		return 1;
3781 
3782 	btrfs_assert_tree_locked(path->nodes[1]);
3783 
3784 	right = read_node_slot(upper, slot + 1);
3785 	/*
3786 	 * slot + 1 is not valid or we fail to read the right node,
3787 	 * no big deal, just return.
3788 	 */
3789 	if (IS_ERR(right))
3790 		return 1;
3791 
3792 	btrfs_tree_lock(right);
3793 	btrfs_set_lock_blocking_write(right);
3794 
3795 	free_space = btrfs_leaf_free_space(right);
3796 	if (free_space < data_size)
3797 		goto out_unlock;
3798 
3799 	/* cow and double check */
3800 	ret = btrfs_cow_block(trans, root, right, upper,
3801 			      slot + 1, &right);
3802 	if (ret)
3803 		goto out_unlock;
3804 
3805 	free_space = btrfs_leaf_free_space(right);
3806 	if (free_space < data_size)
3807 		goto out_unlock;
3808 
3809 	left_nritems = btrfs_header_nritems(left);
3810 	if (left_nritems == 0)
3811 		goto out_unlock;
3812 
3813 	if (path->slots[0] == left_nritems && !empty) {
3814 		/* Key greater than all keys in the leaf, right neighbor has
3815 		 * enough room for it and we're not emptying our leaf to delete
3816 		 * it, therefore use right neighbor to insert the new item and
3817 		 * no need to touch/dirty our left leaf. */
3818 		btrfs_tree_unlock(left);
3819 		free_extent_buffer(left);
3820 		path->nodes[0] = right;
3821 		path->slots[0] = 0;
3822 		path->slots[1]++;
3823 		return 0;
3824 	}
3825 
3826 	return __push_leaf_right(path, min_data_size, empty,
3827 				right, free_space, left_nritems, min_slot);
3828 out_unlock:
3829 	btrfs_tree_unlock(right);
3830 	free_extent_buffer(right);
3831 	return 1;
3832 }
3833 
3834 /*
3835  * push some data in the path leaf to the left, trying to free up at
3836  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3837  *
3838  * max_slot can put a limit on how far into the leaf we'll push items.  The
3839  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3840  * items
3841  */
3842 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3843 				     int empty, struct extent_buffer *left,
3844 				     int free_space, u32 right_nritems,
3845 				     u32 max_slot)
3846 {
3847 	struct btrfs_fs_info *fs_info = left->fs_info;
3848 	struct btrfs_disk_key disk_key;
3849 	struct extent_buffer *right = path->nodes[0];
3850 	int i;
3851 	int push_space = 0;
3852 	int push_items = 0;
3853 	struct btrfs_item *item;
3854 	u32 old_left_nritems;
3855 	u32 nr;
3856 	int ret = 0;
3857 	u32 this_item_size;
3858 	u32 old_left_item_size;
3859 	struct btrfs_map_token token;
3860 
3861 	btrfs_init_map_token(&token);
3862 
3863 	if (empty)
3864 		nr = min(right_nritems, max_slot);
3865 	else
3866 		nr = min(right_nritems - 1, max_slot);
3867 
3868 	for (i = 0; i < nr; i++) {
3869 		item = btrfs_item_nr(i);
3870 
3871 		if (!empty && push_items > 0) {
3872 			if (path->slots[0] < i)
3873 				break;
3874 			if (path->slots[0] == i) {
3875 				int space = btrfs_leaf_free_space(right);
3876 
3877 				if (space + push_space * 2 > free_space)
3878 					break;
3879 			}
3880 		}
3881 
3882 		if (path->slots[0] == i)
3883 			push_space += data_size;
3884 
3885 		this_item_size = btrfs_item_size(right, item);
3886 		if (this_item_size + sizeof(*item) + push_space > free_space)
3887 			break;
3888 
3889 		push_items++;
3890 		push_space += this_item_size + sizeof(*item);
3891 	}
3892 
3893 	if (push_items == 0) {
3894 		ret = 1;
3895 		goto out;
3896 	}
3897 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3898 
3899 	/* push data from right to left */
3900 	copy_extent_buffer(left, right,
3901 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3902 			   btrfs_item_nr_offset(0),
3903 			   push_items * sizeof(struct btrfs_item));
3904 
3905 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3906 		     btrfs_item_offset_nr(right, push_items - 1);
3907 
3908 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3909 		     leaf_data_end(left) - push_space,
3910 		     BTRFS_LEAF_DATA_OFFSET +
3911 		     btrfs_item_offset_nr(right, push_items - 1),
3912 		     push_space);
3913 	old_left_nritems = btrfs_header_nritems(left);
3914 	BUG_ON(old_left_nritems <= 0);
3915 
3916 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3917 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3918 		u32 ioff;
3919 
3920 		item = btrfs_item_nr(i);
3921 
3922 		ioff = btrfs_token_item_offset(left, item, &token);
3923 		btrfs_set_token_item_offset(left, item,
3924 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size),
3925 		      &token);
3926 	}
3927 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3928 
3929 	/* fixup right node */
3930 	if (push_items > right_nritems)
3931 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3932 		       right_nritems);
3933 
3934 	if (push_items < right_nritems) {
3935 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3936 						  leaf_data_end(right);
3937 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3938 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3939 				      BTRFS_LEAF_DATA_OFFSET +
3940 				      leaf_data_end(right), push_space);
3941 
3942 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3943 			      btrfs_item_nr_offset(push_items),
3944 			     (btrfs_header_nritems(right) - push_items) *
3945 			     sizeof(struct btrfs_item));
3946 	}
3947 	right_nritems -= push_items;
3948 	btrfs_set_header_nritems(right, right_nritems);
3949 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3950 	for (i = 0; i < right_nritems; i++) {
3951 		item = btrfs_item_nr(i);
3952 
3953 		push_space = push_space - btrfs_token_item_size(right,
3954 								item, &token);
3955 		btrfs_set_token_item_offset(right, item, push_space, &token);
3956 	}
3957 
3958 	btrfs_mark_buffer_dirty(left);
3959 	if (right_nritems)
3960 		btrfs_mark_buffer_dirty(right);
3961 	else
3962 		btrfs_clean_tree_block(right);
3963 
3964 	btrfs_item_key(right, &disk_key, 0);
3965 	fixup_low_keys(path, &disk_key, 1);
3966 
3967 	/* then fixup the leaf pointer in the path */
3968 	if (path->slots[0] < push_items) {
3969 		path->slots[0] += old_left_nritems;
3970 		btrfs_tree_unlock(path->nodes[0]);
3971 		free_extent_buffer(path->nodes[0]);
3972 		path->nodes[0] = left;
3973 		path->slots[1] -= 1;
3974 	} else {
3975 		btrfs_tree_unlock(left);
3976 		free_extent_buffer(left);
3977 		path->slots[0] -= push_items;
3978 	}
3979 	BUG_ON(path->slots[0] < 0);
3980 	return ret;
3981 out:
3982 	btrfs_tree_unlock(left);
3983 	free_extent_buffer(left);
3984 	return ret;
3985 }
3986 
3987 /*
3988  * push some data in the path leaf to the left, trying to free up at
3989  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3990  *
3991  * max_slot can put a limit on how far into the leaf we'll push items.  The
3992  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3993  * items
3994  */
3995 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3996 			  *root, struct btrfs_path *path, int min_data_size,
3997 			  int data_size, int empty, u32 max_slot)
3998 {
3999 	struct extent_buffer *right = path->nodes[0];
4000 	struct extent_buffer *left;
4001 	int slot;
4002 	int free_space;
4003 	u32 right_nritems;
4004 	int ret = 0;
4005 
4006 	slot = path->slots[1];
4007 	if (slot == 0)
4008 		return 1;
4009 	if (!path->nodes[1])
4010 		return 1;
4011 
4012 	right_nritems = btrfs_header_nritems(right);
4013 	if (right_nritems == 0)
4014 		return 1;
4015 
4016 	btrfs_assert_tree_locked(path->nodes[1]);
4017 
4018 	left = read_node_slot(path->nodes[1], slot - 1);
4019 	/*
4020 	 * slot - 1 is not valid or we fail to read the left node,
4021 	 * no big deal, just return.
4022 	 */
4023 	if (IS_ERR(left))
4024 		return 1;
4025 
4026 	btrfs_tree_lock(left);
4027 	btrfs_set_lock_blocking_write(left);
4028 
4029 	free_space = btrfs_leaf_free_space(left);
4030 	if (free_space < data_size) {
4031 		ret = 1;
4032 		goto out;
4033 	}
4034 
4035 	/* cow and double check */
4036 	ret = btrfs_cow_block(trans, root, left,
4037 			      path->nodes[1], slot - 1, &left);
4038 	if (ret) {
4039 		/* we hit -ENOSPC, but it isn't fatal here */
4040 		if (ret == -ENOSPC)
4041 			ret = 1;
4042 		goto out;
4043 	}
4044 
4045 	free_space = btrfs_leaf_free_space(left);
4046 	if (free_space < data_size) {
4047 		ret = 1;
4048 		goto out;
4049 	}
4050 
4051 	return __push_leaf_left(path, min_data_size,
4052 			       empty, left, free_space, right_nritems,
4053 			       max_slot);
4054 out:
4055 	btrfs_tree_unlock(left);
4056 	free_extent_buffer(left);
4057 	return ret;
4058 }
4059 
4060 /*
4061  * split the path's leaf in two, making sure there is at least data_size
4062  * available for the resulting leaf level of the path.
4063  */
4064 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4065 				    struct btrfs_path *path,
4066 				    struct extent_buffer *l,
4067 				    struct extent_buffer *right,
4068 				    int slot, int mid, int nritems)
4069 {
4070 	struct btrfs_fs_info *fs_info = trans->fs_info;
4071 	int data_copy_size;
4072 	int rt_data_off;
4073 	int i;
4074 	struct btrfs_disk_key disk_key;
4075 	struct btrfs_map_token token;
4076 
4077 	btrfs_init_map_token(&token);
4078 
4079 	nritems = nritems - mid;
4080 	btrfs_set_header_nritems(right, nritems);
4081 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4082 
4083 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4084 			   btrfs_item_nr_offset(mid),
4085 			   nritems * sizeof(struct btrfs_item));
4086 
4087 	copy_extent_buffer(right, l,
4088 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4089 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4090 		     leaf_data_end(l), data_copy_size);
4091 
4092 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4093 
4094 	for (i = 0; i < nritems; i++) {
4095 		struct btrfs_item *item = btrfs_item_nr(i);
4096 		u32 ioff;
4097 
4098 		ioff = btrfs_token_item_offset(right, item, &token);
4099 		btrfs_set_token_item_offset(right, item,
4100 					    ioff + rt_data_off, &token);
4101 	}
4102 
4103 	btrfs_set_header_nritems(l, mid);
4104 	btrfs_item_key(right, &disk_key, 0);
4105 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4106 
4107 	btrfs_mark_buffer_dirty(right);
4108 	btrfs_mark_buffer_dirty(l);
4109 	BUG_ON(path->slots[0] != slot);
4110 
4111 	if (mid <= slot) {
4112 		btrfs_tree_unlock(path->nodes[0]);
4113 		free_extent_buffer(path->nodes[0]);
4114 		path->nodes[0] = right;
4115 		path->slots[0] -= mid;
4116 		path->slots[1] += 1;
4117 	} else {
4118 		btrfs_tree_unlock(right);
4119 		free_extent_buffer(right);
4120 	}
4121 
4122 	BUG_ON(path->slots[0] < 0);
4123 }
4124 
4125 /*
4126  * double splits happen when we need to insert a big item in the middle
4127  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4128  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4129  *          A                 B                 C
4130  *
4131  * We avoid this by trying to push the items on either side of our target
4132  * into the adjacent leaves.  If all goes well we can avoid the double split
4133  * completely.
4134  */
4135 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4136 					  struct btrfs_root *root,
4137 					  struct btrfs_path *path,
4138 					  int data_size)
4139 {
4140 	int ret;
4141 	int progress = 0;
4142 	int slot;
4143 	u32 nritems;
4144 	int space_needed = data_size;
4145 
4146 	slot = path->slots[0];
4147 	if (slot < btrfs_header_nritems(path->nodes[0]))
4148 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4149 
4150 	/*
4151 	 * try to push all the items after our slot into the
4152 	 * right leaf
4153 	 */
4154 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4155 	if (ret < 0)
4156 		return ret;
4157 
4158 	if (ret == 0)
4159 		progress++;
4160 
4161 	nritems = btrfs_header_nritems(path->nodes[0]);
4162 	/*
4163 	 * our goal is to get our slot at the start or end of a leaf.  If
4164 	 * we've done so we're done
4165 	 */
4166 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4167 		return 0;
4168 
4169 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4170 		return 0;
4171 
4172 	/* try to push all the items before our slot into the next leaf */
4173 	slot = path->slots[0];
4174 	space_needed = data_size;
4175 	if (slot > 0)
4176 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4177 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4178 	if (ret < 0)
4179 		return ret;
4180 
4181 	if (ret == 0)
4182 		progress++;
4183 
4184 	if (progress)
4185 		return 0;
4186 	return 1;
4187 }
4188 
4189 /*
4190  * split the path's leaf in two, making sure there is at least data_size
4191  * available for the resulting leaf level of the path.
4192  *
4193  * returns 0 if all went well and < 0 on failure.
4194  */
4195 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4196 			       struct btrfs_root *root,
4197 			       const struct btrfs_key *ins_key,
4198 			       struct btrfs_path *path, int data_size,
4199 			       int extend)
4200 {
4201 	struct btrfs_disk_key disk_key;
4202 	struct extent_buffer *l;
4203 	u32 nritems;
4204 	int mid;
4205 	int slot;
4206 	struct extent_buffer *right;
4207 	struct btrfs_fs_info *fs_info = root->fs_info;
4208 	int ret = 0;
4209 	int wret;
4210 	int split;
4211 	int num_doubles = 0;
4212 	int tried_avoid_double = 0;
4213 
4214 	l = path->nodes[0];
4215 	slot = path->slots[0];
4216 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4217 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4218 		return -EOVERFLOW;
4219 
4220 	/* first try to make some room by pushing left and right */
4221 	if (data_size && path->nodes[1]) {
4222 		int space_needed = data_size;
4223 
4224 		if (slot < btrfs_header_nritems(l))
4225 			space_needed -= btrfs_leaf_free_space(l);
4226 
4227 		wret = push_leaf_right(trans, root, path, space_needed,
4228 				       space_needed, 0, 0);
4229 		if (wret < 0)
4230 			return wret;
4231 		if (wret) {
4232 			space_needed = data_size;
4233 			if (slot > 0)
4234 				space_needed -= btrfs_leaf_free_space(l);
4235 			wret = push_leaf_left(trans, root, path, space_needed,
4236 					      space_needed, 0, (u32)-1);
4237 			if (wret < 0)
4238 				return wret;
4239 		}
4240 		l = path->nodes[0];
4241 
4242 		/* did the pushes work? */
4243 		if (btrfs_leaf_free_space(l) >= data_size)
4244 			return 0;
4245 	}
4246 
4247 	if (!path->nodes[1]) {
4248 		ret = insert_new_root(trans, root, path, 1);
4249 		if (ret)
4250 			return ret;
4251 	}
4252 again:
4253 	split = 1;
4254 	l = path->nodes[0];
4255 	slot = path->slots[0];
4256 	nritems = btrfs_header_nritems(l);
4257 	mid = (nritems + 1) / 2;
4258 
4259 	if (mid <= slot) {
4260 		if (nritems == 1 ||
4261 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4262 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4263 			if (slot >= nritems) {
4264 				split = 0;
4265 			} else {
4266 				mid = slot;
4267 				if (mid != nritems &&
4268 				    leaf_space_used(l, mid, nritems - mid) +
4269 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4270 					if (data_size && !tried_avoid_double)
4271 						goto push_for_double;
4272 					split = 2;
4273 				}
4274 			}
4275 		}
4276 	} else {
4277 		if (leaf_space_used(l, 0, mid) + data_size >
4278 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4279 			if (!extend && data_size && slot == 0) {
4280 				split = 0;
4281 			} else if ((extend || !data_size) && slot == 0) {
4282 				mid = 1;
4283 			} else {
4284 				mid = slot;
4285 				if (mid != nritems &&
4286 				    leaf_space_used(l, mid, nritems - mid) +
4287 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4288 					if (data_size && !tried_avoid_double)
4289 						goto push_for_double;
4290 					split = 2;
4291 				}
4292 			}
4293 		}
4294 	}
4295 
4296 	if (split == 0)
4297 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4298 	else
4299 		btrfs_item_key(l, &disk_key, mid);
4300 
4301 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4302 					     l->start, 0);
4303 	if (IS_ERR(right))
4304 		return PTR_ERR(right);
4305 
4306 	root_add_used(root, fs_info->nodesize);
4307 
4308 	if (split == 0) {
4309 		if (mid <= slot) {
4310 			btrfs_set_header_nritems(right, 0);
4311 			insert_ptr(trans, path, &disk_key,
4312 				   right->start, path->slots[1] + 1, 1);
4313 			btrfs_tree_unlock(path->nodes[0]);
4314 			free_extent_buffer(path->nodes[0]);
4315 			path->nodes[0] = right;
4316 			path->slots[0] = 0;
4317 			path->slots[1] += 1;
4318 		} else {
4319 			btrfs_set_header_nritems(right, 0);
4320 			insert_ptr(trans, path, &disk_key,
4321 				   right->start, path->slots[1], 1);
4322 			btrfs_tree_unlock(path->nodes[0]);
4323 			free_extent_buffer(path->nodes[0]);
4324 			path->nodes[0] = right;
4325 			path->slots[0] = 0;
4326 			if (path->slots[1] == 0)
4327 				fixup_low_keys(path, &disk_key, 1);
4328 		}
4329 		/*
4330 		 * We create a new leaf 'right' for the required ins_len and
4331 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4332 		 * the content of ins_len to 'right'.
4333 		 */
4334 		return ret;
4335 	}
4336 
4337 	copy_for_split(trans, path, l, right, slot, mid, nritems);
4338 
4339 	if (split == 2) {
4340 		BUG_ON(num_doubles != 0);
4341 		num_doubles++;
4342 		goto again;
4343 	}
4344 
4345 	return 0;
4346 
4347 push_for_double:
4348 	push_for_double_split(trans, root, path, data_size);
4349 	tried_avoid_double = 1;
4350 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4351 		return 0;
4352 	goto again;
4353 }
4354 
4355 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4356 					 struct btrfs_root *root,
4357 					 struct btrfs_path *path, int ins_len)
4358 {
4359 	struct btrfs_key key;
4360 	struct extent_buffer *leaf;
4361 	struct btrfs_file_extent_item *fi;
4362 	u64 extent_len = 0;
4363 	u32 item_size;
4364 	int ret;
4365 
4366 	leaf = path->nodes[0];
4367 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4368 
4369 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4370 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4371 
4372 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4373 		return 0;
4374 
4375 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4376 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4377 		fi = btrfs_item_ptr(leaf, path->slots[0],
4378 				    struct btrfs_file_extent_item);
4379 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4380 	}
4381 	btrfs_release_path(path);
4382 
4383 	path->keep_locks = 1;
4384 	path->search_for_split = 1;
4385 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4386 	path->search_for_split = 0;
4387 	if (ret > 0)
4388 		ret = -EAGAIN;
4389 	if (ret < 0)
4390 		goto err;
4391 
4392 	ret = -EAGAIN;
4393 	leaf = path->nodes[0];
4394 	/* if our item isn't there, return now */
4395 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4396 		goto err;
4397 
4398 	/* the leaf has  changed, it now has room.  return now */
4399 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4400 		goto err;
4401 
4402 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4403 		fi = btrfs_item_ptr(leaf, path->slots[0],
4404 				    struct btrfs_file_extent_item);
4405 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4406 			goto err;
4407 	}
4408 
4409 	btrfs_set_path_blocking(path);
4410 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4411 	if (ret)
4412 		goto err;
4413 
4414 	path->keep_locks = 0;
4415 	btrfs_unlock_up_safe(path, 1);
4416 	return 0;
4417 err:
4418 	path->keep_locks = 0;
4419 	return ret;
4420 }
4421 
4422 static noinline int split_item(struct btrfs_path *path,
4423 			       const struct btrfs_key *new_key,
4424 			       unsigned long split_offset)
4425 {
4426 	struct extent_buffer *leaf;
4427 	struct btrfs_item *item;
4428 	struct btrfs_item *new_item;
4429 	int slot;
4430 	char *buf;
4431 	u32 nritems;
4432 	u32 item_size;
4433 	u32 orig_offset;
4434 	struct btrfs_disk_key disk_key;
4435 
4436 	leaf = path->nodes[0];
4437 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4438 
4439 	btrfs_set_path_blocking(path);
4440 
4441 	item = btrfs_item_nr(path->slots[0]);
4442 	orig_offset = btrfs_item_offset(leaf, item);
4443 	item_size = btrfs_item_size(leaf, item);
4444 
4445 	buf = kmalloc(item_size, GFP_NOFS);
4446 	if (!buf)
4447 		return -ENOMEM;
4448 
4449 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4450 			    path->slots[0]), item_size);
4451 
4452 	slot = path->slots[0] + 1;
4453 	nritems = btrfs_header_nritems(leaf);
4454 	if (slot != nritems) {
4455 		/* shift the items */
4456 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4457 				btrfs_item_nr_offset(slot),
4458 				(nritems - slot) * sizeof(struct btrfs_item));
4459 	}
4460 
4461 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4462 	btrfs_set_item_key(leaf, &disk_key, slot);
4463 
4464 	new_item = btrfs_item_nr(slot);
4465 
4466 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4467 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4468 
4469 	btrfs_set_item_offset(leaf, item,
4470 			      orig_offset + item_size - split_offset);
4471 	btrfs_set_item_size(leaf, item, split_offset);
4472 
4473 	btrfs_set_header_nritems(leaf, nritems + 1);
4474 
4475 	/* write the data for the start of the original item */
4476 	write_extent_buffer(leaf, buf,
4477 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4478 			    split_offset);
4479 
4480 	/* write the data for the new item */
4481 	write_extent_buffer(leaf, buf + split_offset,
4482 			    btrfs_item_ptr_offset(leaf, slot),
4483 			    item_size - split_offset);
4484 	btrfs_mark_buffer_dirty(leaf);
4485 
4486 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4487 	kfree(buf);
4488 	return 0;
4489 }
4490 
4491 /*
4492  * This function splits a single item into two items,
4493  * giving 'new_key' to the new item and splitting the
4494  * old one at split_offset (from the start of the item).
4495  *
4496  * The path may be released by this operation.  After
4497  * the split, the path is pointing to the old item.  The
4498  * new item is going to be in the same node as the old one.
4499  *
4500  * Note, the item being split must be smaller enough to live alone on
4501  * a tree block with room for one extra struct btrfs_item
4502  *
4503  * This allows us to split the item in place, keeping a lock on the
4504  * leaf the entire time.
4505  */
4506 int btrfs_split_item(struct btrfs_trans_handle *trans,
4507 		     struct btrfs_root *root,
4508 		     struct btrfs_path *path,
4509 		     const struct btrfs_key *new_key,
4510 		     unsigned long split_offset)
4511 {
4512 	int ret;
4513 	ret = setup_leaf_for_split(trans, root, path,
4514 				   sizeof(struct btrfs_item));
4515 	if (ret)
4516 		return ret;
4517 
4518 	ret = split_item(path, new_key, split_offset);
4519 	return ret;
4520 }
4521 
4522 /*
4523  * This function duplicate a item, giving 'new_key' to the new item.
4524  * It guarantees both items live in the same tree leaf and the new item
4525  * is contiguous with the original item.
4526  *
4527  * This allows us to split file extent in place, keeping a lock on the
4528  * leaf the entire time.
4529  */
4530 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4531 			 struct btrfs_root *root,
4532 			 struct btrfs_path *path,
4533 			 const struct btrfs_key *new_key)
4534 {
4535 	struct extent_buffer *leaf;
4536 	int ret;
4537 	u32 item_size;
4538 
4539 	leaf = path->nodes[0];
4540 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4541 	ret = setup_leaf_for_split(trans, root, path,
4542 				   item_size + sizeof(struct btrfs_item));
4543 	if (ret)
4544 		return ret;
4545 
4546 	path->slots[0]++;
4547 	setup_items_for_insert(root, path, new_key, &item_size,
4548 			       item_size, item_size +
4549 			       sizeof(struct btrfs_item), 1);
4550 	leaf = path->nodes[0];
4551 	memcpy_extent_buffer(leaf,
4552 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4553 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4554 			     item_size);
4555 	return 0;
4556 }
4557 
4558 /*
4559  * make the item pointed to by the path smaller.  new_size indicates
4560  * how small to make it, and from_end tells us if we just chop bytes
4561  * off the end of the item or if we shift the item to chop bytes off
4562  * the front.
4563  */
4564 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4565 {
4566 	int slot;
4567 	struct extent_buffer *leaf;
4568 	struct btrfs_item *item;
4569 	u32 nritems;
4570 	unsigned int data_end;
4571 	unsigned int old_data_start;
4572 	unsigned int old_size;
4573 	unsigned int size_diff;
4574 	int i;
4575 	struct btrfs_map_token token;
4576 
4577 	btrfs_init_map_token(&token);
4578 
4579 	leaf = path->nodes[0];
4580 	slot = path->slots[0];
4581 
4582 	old_size = btrfs_item_size_nr(leaf, slot);
4583 	if (old_size == new_size)
4584 		return;
4585 
4586 	nritems = btrfs_header_nritems(leaf);
4587 	data_end = leaf_data_end(leaf);
4588 
4589 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4590 
4591 	size_diff = old_size - new_size;
4592 
4593 	BUG_ON(slot < 0);
4594 	BUG_ON(slot >= nritems);
4595 
4596 	/*
4597 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4598 	 */
4599 	/* first correct the data pointers */
4600 	for (i = slot; i < nritems; i++) {
4601 		u32 ioff;
4602 		item = btrfs_item_nr(i);
4603 
4604 		ioff = btrfs_token_item_offset(leaf, item, &token);
4605 		btrfs_set_token_item_offset(leaf, item,
4606 					    ioff + size_diff, &token);
4607 	}
4608 
4609 	/* shift the data */
4610 	if (from_end) {
4611 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4612 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4613 			      data_end, old_data_start + new_size - data_end);
4614 	} else {
4615 		struct btrfs_disk_key disk_key;
4616 		u64 offset;
4617 
4618 		btrfs_item_key(leaf, &disk_key, slot);
4619 
4620 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4621 			unsigned long ptr;
4622 			struct btrfs_file_extent_item *fi;
4623 
4624 			fi = btrfs_item_ptr(leaf, slot,
4625 					    struct btrfs_file_extent_item);
4626 			fi = (struct btrfs_file_extent_item *)(
4627 			     (unsigned long)fi - size_diff);
4628 
4629 			if (btrfs_file_extent_type(leaf, fi) ==
4630 			    BTRFS_FILE_EXTENT_INLINE) {
4631 				ptr = btrfs_item_ptr_offset(leaf, slot);
4632 				memmove_extent_buffer(leaf, ptr,
4633 				      (unsigned long)fi,
4634 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4635 			}
4636 		}
4637 
4638 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4639 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4640 			      data_end, old_data_start - data_end);
4641 
4642 		offset = btrfs_disk_key_offset(&disk_key);
4643 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4644 		btrfs_set_item_key(leaf, &disk_key, slot);
4645 		if (slot == 0)
4646 			fixup_low_keys(path, &disk_key, 1);
4647 	}
4648 
4649 	item = btrfs_item_nr(slot);
4650 	btrfs_set_item_size(leaf, item, new_size);
4651 	btrfs_mark_buffer_dirty(leaf);
4652 
4653 	if (btrfs_leaf_free_space(leaf) < 0) {
4654 		btrfs_print_leaf(leaf);
4655 		BUG();
4656 	}
4657 }
4658 
4659 /*
4660  * make the item pointed to by the path bigger, data_size is the added size.
4661  */
4662 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4663 {
4664 	int slot;
4665 	struct extent_buffer *leaf;
4666 	struct btrfs_item *item;
4667 	u32 nritems;
4668 	unsigned int data_end;
4669 	unsigned int old_data;
4670 	unsigned int old_size;
4671 	int i;
4672 	struct btrfs_map_token token;
4673 
4674 	btrfs_init_map_token(&token);
4675 
4676 	leaf = path->nodes[0];
4677 
4678 	nritems = btrfs_header_nritems(leaf);
4679 	data_end = leaf_data_end(leaf);
4680 
4681 	if (btrfs_leaf_free_space(leaf) < data_size) {
4682 		btrfs_print_leaf(leaf);
4683 		BUG();
4684 	}
4685 	slot = path->slots[0];
4686 	old_data = btrfs_item_end_nr(leaf, slot);
4687 
4688 	BUG_ON(slot < 0);
4689 	if (slot >= nritems) {
4690 		btrfs_print_leaf(leaf);
4691 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4692 			   slot, nritems);
4693 		BUG();
4694 	}
4695 
4696 	/*
4697 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4698 	 */
4699 	/* first correct the data pointers */
4700 	for (i = slot; i < nritems; i++) {
4701 		u32 ioff;
4702 		item = btrfs_item_nr(i);
4703 
4704 		ioff = btrfs_token_item_offset(leaf, item, &token);
4705 		btrfs_set_token_item_offset(leaf, item,
4706 					    ioff - data_size, &token);
4707 	}
4708 
4709 	/* shift the data */
4710 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4711 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4712 		      data_end, old_data - data_end);
4713 
4714 	data_end = old_data;
4715 	old_size = btrfs_item_size_nr(leaf, slot);
4716 	item = btrfs_item_nr(slot);
4717 	btrfs_set_item_size(leaf, item, old_size + data_size);
4718 	btrfs_mark_buffer_dirty(leaf);
4719 
4720 	if (btrfs_leaf_free_space(leaf) < 0) {
4721 		btrfs_print_leaf(leaf);
4722 		BUG();
4723 	}
4724 }
4725 
4726 /*
4727  * this is a helper for btrfs_insert_empty_items, the main goal here is
4728  * to save stack depth by doing the bulk of the work in a function
4729  * that doesn't call btrfs_search_slot
4730  */
4731 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4732 			    const struct btrfs_key *cpu_key, u32 *data_size,
4733 			    u32 total_data, u32 total_size, int nr)
4734 {
4735 	struct btrfs_fs_info *fs_info = root->fs_info;
4736 	struct btrfs_item *item;
4737 	int i;
4738 	u32 nritems;
4739 	unsigned int data_end;
4740 	struct btrfs_disk_key disk_key;
4741 	struct extent_buffer *leaf;
4742 	int slot;
4743 	struct btrfs_map_token token;
4744 
4745 	if (path->slots[0] == 0) {
4746 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4747 		fixup_low_keys(path, &disk_key, 1);
4748 	}
4749 	btrfs_unlock_up_safe(path, 1);
4750 
4751 	btrfs_init_map_token(&token);
4752 
4753 	leaf = path->nodes[0];
4754 	slot = path->slots[0];
4755 
4756 	nritems = btrfs_header_nritems(leaf);
4757 	data_end = leaf_data_end(leaf);
4758 
4759 	if (btrfs_leaf_free_space(leaf) < total_size) {
4760 		btrfs_print_leaf(leaf);
4761 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4762 			   total_size, btrfs_leaf_free_space(leaf));
4763 		BUG();
4764 	}
4765 
4766 	if (slot != nritems) {
4767 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4768 
4769 		if (old_data < data_end) {
4770 			btrfs_print_leaf(leaf);
4771 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4772 				   slot, old_data, data_end);
4773 			BUG();
4774 		}
4775 		/*
4776 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4777 		 */
4778 		/* first correct the data pointers */
4779 		for (i = slot; i < nritems; i++) {
4780 			u32 ioff;
4781 
4782 			item = btrfs_item_nr(i);
4783 			ioff = btrfs_token_item_offset(leaf, item, &token);
4784 			btrfs_set_token_item_offset(leaf, item,
4785 						    ioff - total_data, &token);
4786 		}
4787 		/* shift the items */
4788 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4789 			      btrfs_item_nr_offset(slot),
4790 			      (nritems - slot) * sizeof(struct btrfs_item));
4791 
4792 		/* shift the data */
4793 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4794 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4795 			      data_end, old_data - data_end);
4796 		data_end = old_data;
4797 	}
4798 
4799 	/* setup the item for the new data */
4800 	for (i = 0; i < nr; i++) {
4801 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4802 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4803 		item = btrfs_item_nr(slot + i);
4804 		btrfs_set_token_item_offset(leaf, item,
4805 					    data_end - data_size[i], &token);
4806 		data_end -= data_size[i];
4807 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4808 	}
4809 
4810 	btrfs_set_header_nritems(leaf, nritems + nr);
4811 	btrfs_mark_buffer_dirty(leaf);
4812 
4813 	if (btrfs_leaf_free_space(leaf) < 0) {
4814 		btrfs_print_leaf(leaf);
4815 		BUG();
4816 	}
4817 }
4818 
4819 /*
4820  * Given a key and some data, insert items into the tree.
4821  * This does all the path init required, making room in the tree if needed.
4822  */
4823 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4824 			    struct btrfs_root *root,
4825 			    struct btrfs_path *path,
4826 			    const struct btrfs_key *cpu_key, u32 *data_size,
4827 			    int nr)
4828 {
4829 	int ret = 0;
4830 	int slot;
4831 	int i;
4832 	u32 total_size = 0;
4833 	u32 total_data = 0;
4834 
4835 	for (i = 0; i < nr; i++)
4836 		total_data += data_size[i];
4837 
4838 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4839 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4840 	if (ret == 0)
4841 		return -EEXIST;
4842 	if (ret < 0)
4843 		return ret;
4844 
4845 	slot = path->slots[0];
4846 	BUG_ON(slot < 0);
4847 
4848 	setup_items_for_insert(root, path, cpu_key, data_size,
4849 			       total_data, total_size, nr);
4850 	return 0;
4851 }
4852 
4853 /*
4854  * Given a key and some data, insert an item into the tree.
4855  * This does all the path init required, making room in the tree if needed.
4856  */
4857 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4858 		      const struct btrfs_key *cpu_key, void *data,
4859 		      u32 data_size)
4860 {
4861 	int ret = 0;
4862 	struct btrfs_path *path;
4863 	struct extent_buffer *leaf;
4864 	unsigned long ptr;
4865 
4866 	path = btrfs_alloc_path();
4867 	if (!path)
4868 		return -ENOMEM;
4869 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4870 	if (!ret) {
4871 		leaf = path->nodes[0];
4872 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4873 		write_extent_buffer(leaf, data, ptr, data_size);
4874 		btrfs_mark_buffer_dirty(leaf);
4875 	}
4876 	btrfs_free_path(path);
4877 	return ret;
4878 }
4879 
4880 /*
4881  * delete the pointer from a given node.
4882  *
4883  * the tree should have been previously balanced so the deletion does not
4884  * empty a node.
4885  */
4886 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4887 		    int level, int slot)
4888 {
4889 	struct extent_buffer *parent = path->nodes[level];
4890 	u32 nritems;
4891 	int ret;
4892 
4893 	nritems = btrfs_header_nritems(parent);
4894 	if (slot != nritems - 1) {
4895 		if (level) {
4896 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4897 					nritems - slot - 1);
4898 			BUG_ON(ret < 0);
4899 		}
4900 		memmove_extent_buffer(parent,
4901 			      btrfs_node_key_ptr_offset(slot),
4902 			      btrfs_node_key_ptr_offset(slot + 1),
4903 			      sizeof(struct btrfs_key_ptr) *
4904 			      (nritems - slot - 1));
4905 	} else if (level) {
4906 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4907 				GFP_NOFS);
4908 		BUG_ON(ret < 0);
4909 	}
4910 
4911 	nritems--;
4912 	btrfs_set_header_nritems(parent, nritems);
4913 	if (nritems == 0 && parent == root->node) {
4914 		BUG_ON(btrfs_header_level(root->node) != 1);
4915 		/* just turn the root into a leaf and break */
4916 		btrfs_set_header_level(root->node, 0);
4917 	} else if (slot == 0) {
4918 		struct btrfs_disk_key disk_key;
4919 
4920 		btrfs_node_key(parent, &disk_key, 0);
4921 		fixup_low_keys(path, &disk_key, level + 1);
4922 	}
4923 	btrfs_mark_buffer_dirty(parent);
4924 }
4925 
4926 /*
4927  * a helper function to delete the leaf pointed to by path->slots[1] and
4928  * path->nodes[1].
4929  *
4930  * This deletes the pointer in path->nodes[1] and frees the leaf
4931  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4932  *
4933  * The path must have already been setup for deleting the leaf, including
4934  * all the proper balancing.  path->nodes[1] must be locked.
4935  */
4936 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4937 				    struct btrfs_root *root,
4938 				    struct btrfs_path *path,
4939 				    struct extent_buffer *leaf)
4940 {
4941 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4942 	del_ptr(root, path, 1, path->slots[1]);
4943 
4944 	/*
4945 	 * btrfs_free_extent is expensive, we want to make sure we
4946 	 * aren't holding any locks when we call it
4947 	 */
4948 	btrfs_unlock_up_safe(path, 0);
4949 
4950 	root_sub_used(root, leaf->len);
4951 
4952 	extent_buffer_get(leaf);
4953 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4954 	free_extent_buffer_stale(leaf);
4955 }
4956 /*
4957  * delete the item at the leaf level in path.  If that empties
4958  * the leaf, remove it from the tree
4959  */
4960 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4961 		    struct btrfs_path *path, int slot, int nr)
4962 {
4963 	struct btrfs_fs_info *fs_info = root->fs_info;
4964 	struct extent_buffer *leaf;
4965 	struct btrfs_item *item;
4966 	u32 last_off;
4967 	u32 dsize = 0;
4968 	int ret = 0;
4969 	int wret;
4970 	int i;
4971 	u32 nritems;
4972 	struct btrfs_map_token token;
4973 
4974 	btrfs_init_map_token(&token);
4975 
4976 	leaf = path->nodes[0];
4977 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4978 
4979 	for (i = 0; i < nr; i++)
4980 		dsize += btrfs_item_size_nr(leaf, slot + i);
4981 
4982 	nritems = btrfs_header_nritems(leaf);
4983 
4984 	if (slot + nr != nritems) {
4985 		int data_end = leaf_data_end(leaf);
4986 
4987 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4988 			      data_end + dsize,
4989 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4990 			      last_off - data_end);
4991 
4992 		for (i = slot + nr; i < nritems; i++) {
4993 			u32 ioff;
4994 
4995 			item = btrfs_item_nr(i);
4996 			ioff = btrfs_token_item_offset(leaf, item, &token);
4997 			btrfs_set_token_item_offset(leaf, item,
4998 						    ioff + dsize, &token);
4999 		}
5000 
5001 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5002 			      btrfs_item_nr_offset(slot + nr),
5003 			      sizeof(struct btrfs_item) *
5004 			      (nritems - slot - nr));
5005 	}
5006 	btrfs_set_header_nritems(leaf, nritems - nr);
5007 	nritems -= nr;
5008 
5009 	/* delete the leaf if we've emptied it */
5010 	if (nritems == 0) {
5011 		if (leaf == root->node) {
5012 			btrfs_set_header_level(leaf, 0);
5013 		} else {
5014 			btrfs_set_path_blocking(path);
5015 			btrfs_clean_tree_block(leaf);
5016 			btrfs_del_leaf(trans, root, path, leaf);
5017 		}
5018 	} else {
5019 		int used = leaf_space_used(leaf, 0, nritems);
5020 		if (slot == 0) {
5021 			struct btrfs_disk_key disk_key;
5022 
5023 			btrfs_item_key(leaf, &disk_key, 0);
5024 			fixup_low_keys(path, &disk_key, 1);
5025 		}
5026 
5027 		/* delete the leaf if it is mostly empty */
5028 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
5029 			/* push_leaf_left fixes the path.
5030 			 * make sure the path still points to our leaf
5031 			 * for possible call to del_ptr below
5032 			 */
5033 			slot = path->slots[1];
5034 			extent_buffer_get(leaf);
5035 
5036 			btrfs_set_path_blocking(path);
5037 			wret = push_leaf_left(trans, root, path, 1, 1,
5038 					      1, (u32)-1);
5039 			if (wret < 0 && wret != -ENOSPC)
5040 				ret = wret;
5041 
5042 			if (path->nodes[0] == leaf &&
5043 			    btrfs_header_nritems(leaf)) {
5044 				wret = push_leaf_right(trans, root, path, 1,
5045 						       1, 1, 0);
5046 				if (wret < 0 && wret != -ENOSPC)
5047 					ret = wret;
5048 			}
5049 
5050 			if (btrfs_header_nritems(leaf) == 0) {
5051 				path->slots[1] = slot;
5052 				btrfs_del_leaf(trans, root, path, leaf);
5053 				free_extent_buffer(leaf);
5054 				ret = 0;
5055 			} else {
5056 				/* if we're still in the path, make sure
5057 				 * we're dirty.  Otherwise, one of the
5058 				 * push_leaf functions must have already
5059 				 * dirtied this buffer
5060 				 */
5061 				if (path->nodes[0] == leaf)
5062 					btrfs_mark_buffer_dirty(leaf);
5063 				free_extent_buffer(leaf);
5064 			}
5065 		} else {
5066 			btrfs_mark_buffer_dirty(leaf);
5067 		}
5068 	}
5069 	return ret;
5070 }
5071 
5072 /*
5073  * search the tree again to find a leaf with lesser keys
5074  * returns 0 if it found something or 1 if there are no lesser leaves.
5075  * returns < 0 on io errors.
5076  *
5077  * This may release the path, and so you may lose any locks held at the
5078  * time you call it.
5079  */
5080 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5081 {
5082 	struct btrfs_key key;
5083 	struct btrfs_disk_key found_key;
5084 	int ret;
5085 
5086 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5087 
5088 	if (key.offset > 0) {
5089 		key.offset--;
5090 	} else if (key.type > 0) {
5091 		key.type--;
5092 		key.offset = (u64)-1;
5093 	} else if (key.objectid > 0) {
5094 		key.objectid--;
5095 		key.type = (u8)-1;
5096 		key.offset = (u64)-1;
5097 	} else {
5098 		return 1;
5099 	}
5100 
5101 	btrfs_release_path(path);
5102 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5103 	if (ret < 0)
5104 		return ret;
5105 	btrfs_item_key(path->nodes[0], &found_key, 0);
5106 	ret = comp_keys(&found_key, &key);
5107 	/*
5108 	 * We might have had an item with the previous key in the tree right
5109 	 * before we released our path. And after we released our path, that
5110 	 * item might have been pushed to the first slot (0) of the leaf we
5111 	 * were holding due to a tree balance. Alternatively, an item with the
5112 	 * previous key can exist as the only element of a leaf (big fat item).
5113 	 * Therefore account for these 2 cases, so that our callers (like
5114 	 * btrfs_previous_item) don't miss an existing item with a key matching
5115 	 * the previous key we computed above.
5116 	 */
5117 	if (ret <= 0)
5118 		return 0;
5119 	return 1;
5120 }
5121 
5122 /*
5123  * A helper function to walk down the tree starting at min_key, and looking
5124  * for nodes or leaves that are have a minimum transaction id.
5125  * This is used by the btree defrag code, and tree logging
5126  *
5127  * This does not cow, but it does stuff the starting key it finds back
5128  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5129  * key and get a writable path.
5130  *
5131  * This honors path->lowest_level to prevent descent past a given level
5132  * of the tree.
5133  *
5134  * min_trans indicates the oldest transaction that you are interested
5135  * in walking through.  Any nodes or leaves older than min_trans are
5136  * skipped over (without reading them).
5137  *
5138  * returns zero if something useful was found, < 0 on error and 1 if there
5139  * was nothing in the tree that matched the search criteria.
5140  */
5141 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5142 			 struct btrfs_path *path,
5143 			 u64 min_trans)
5144 {
5145 	struct extent_buffer *cur;
5146 	struct btrfs_key found_key;
5147 	int slot;
5148 	int sret;
5149 	u32 nritems;
5150 	int level;
5151 	int ret = 1;
5152 	int keep_locks = path->keep_locks;
5153 
5154 	path->keep_locks = 1;
5155 again:
5156 	cur = btrfs_read_lock_root_node(root);
5157 	level = btrfs_header_level(cur);
5158 	WARN_ON(path->nodes[level]);
5159 	path->nodes[level] = cur;
5160 	path->locks[level] = BTRFS_READ_LOCK;
5161 
5162 	if (btrfs_header_generation(cur) < min_trans) {
5163 		ret = 1;
5164 		goto out;
5165 	}
5166 	while (1) {
5167 		nritems = btrfs_header_nritems(cur);
5168 		level = btrfs_header_level(cur);
5169 		sret = btrfs_bin_search(cur, min_key, level, &slot);
5170 		if (sret < 0) {
5171 			ret = sret;
5172 			goto out;
5173 		}
5174 
5175 		/* at the lowest level, we're done, setup the path and exit */
5176 		if (level == path->lowest_level) {
5177 			if (slot >= nritems)
5178 				goto find_next_key;
5179 			ret = 0;
5180 			path->slots[level] = slot;
5181 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5182 			goto out;
5183 		}
5184 		if (sret && slot > 0)
5185 			slot--;
5186 		/*
5187 		 * check this node pointer against the min_trans parameters.
5188 		 * If it is too old, old, skip to the next one.
5189 		 */
5190 		while (slot < nritems) {
5191 			u64 gen;
5192 
5193 			gen = btrfs_node_ptr_generation(cur, slot);
5194 			if (gen < min_trans) {
5195 				slot++;
5196 				continue;
5197 			}
5198 			break;
5199 		}
5200 find_next_key:
5201 		/*
5202 		 * we didn't find a candidate key in this node, walk forward
5203 		 * and find another one
5204 		 */
5205 		if (slot >= nritems) {
5206 			path->slots[level] = slot;
5207 			btrfs_set_path_blocking(path);
5208 			sret = btrfs_find_next_key(root, path, min_key, level,
5209 						  min_trans);
5210 			if (sret == 0) {
5211 				btrfs_release_path(path);
5212 				goto again;
5213 			} else {
5214 				goto out;
5215 			}
5216 		}
5217 		/* save our key for returning back */
5218 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5219 		path->slots[level] = slot;
5220 		if (level == path->lowest_level) {
5221 			ret = 0;
5222 			goto out;
5223 		}
5224 		btrfs_set_path_blocking(path);
5225 		cur = read_node_slot(cur, slot);
5226 		if (IS_ERR(cur)) {
5227 			ret = PTR_ERR(cur);
5228 			goto out;
5229 		}
5230 
5231 		btrfs_tree_read_lock(cur);
5232 
5233 		path->locks[level - 1] = BTRFS_READ_LOCK;
5234 		path->nodes[level - 1] = cur;
5235 		unlock_up(path, level, 1, 0, NULL);
5236 	}
5237 out:
5238 	path->keep_locks = keep_locks;
5239 	if (ret == 0) {
5240 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5241 		btrfs_set_path_blocking(path);
5242 		memcpy(min_key, &found_key, sizeof(found_key));
5243 	}
5244 	return ret;
5245 }
5246 
5247 static int tree_move_down(struct btrfs_path *path, int *level)
5248 {
5249 	struct extent_buffer *eb;
5250 
5251 	BUG_ON(*level == 0);
5252 	eb = read_node_slot(path->nodes[*level], path->slots[*level]);
5253 	if (IS_ERR(eb))
5254 		return PTR_ERR(eb);
5255 
5256 	path->nodes[*level - 1] = eb;
5257 	path->slots[*level - 1] = 0;
5258 	(*level)--;
5259 	return 0;
5260 }
5261 
5262 static int tree_move_next_or_upnext(struct btrfs_path *path,
5263 				    int *level, int root_level)
5264 {
5265 	int ret = 0;
5266 	int nritems;
5267 	nritems = btrfs_header_nritems(path->nodes[*level]);
5268 
5269 	path->slots[*level]++;
5270 
5271 	while (path->slots[*level] >= nritems) {
5272 		if (*level == root_level)
5273 			return -1;
5274 
5275 		/* move upnext */
5276 		path->slots[*level] = 0;
5277 		free_extent_buffer(path->nodes[*level]);
5278 		path->nodes[*level] = NULL;
5279 		(*level)++;
5280 		path->slots[*level]++;
5281 
5282 		nritems = btrfs_header_nritems(path->nodes[*level]);
5283 		ret = 1;
5284 	}
5285 	return ret;
5286 }
5287 
5288 /*
5289  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5290  * or down.
5291  */
5292 static int tree_advance(struct btrfs_path *path,
5293 			int *level, int root_level,
5294 			int allow_down,
5295 			struct btrfs_key *key)
5296 {
5297 	int ret;
5298 
5299 	if (*level == 0 || !allow_down) {
5300 		ret = tree_move_next_or_upnext(path, level, root_level);
5301 	} else {
5302 		ret = tree_move_down(path, level);
5303 	}
5304 	if (ret >= 0) {
5305 		if (*level == 0)
5306 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5307 					path->slots[*level]);
5308 		else
5309 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5310 					path->slots[*level]);
5311 	}
5312 	return ret;
5313 }
5314 
5315 static int tree_compare_item(struct btrfs_path *left_path,
5316 			     struct btrfs_path *right_path,
5317 			     char *tmp_buf)
5318 {
5319 	int cmp;
5320 	int len1, len2;
5321 	unsigned long off1, off2;
5322 
5323 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5324 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5325 	if (len1 != len2)
5326 		return 1;
5327 
5328 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5329 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5330 				right_path->slots[0]);
5331 
5332 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5333 
5334 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5335 	if (cmp)
5336 		return 1;
5337 	return 0;
5338 }
5339 
5340 #define ADVANCE 1
5341 #define ADVANCE_ONLY_NEXT -1
5342 
5343 /*
5344  * This function compares two trees and calls the provided callback for
5345  * every changed/new/deleted item it finds.
5346  * If shared tree blocks are encountered, whole subtrees are skipped, making
5347  * the compare pretty fast on snapshotted subvolumes.
5348  *
5349  * This currently works on commit roots only. As commit roots are read only,
5350  * we don't do any locking. The commit roots are protected with transactions.
5351  * Transactions are ended and rejoined when a commit is tried in between.
5352  *
5353  * This function checks for modifications done to the trees while comparing.
5354  * If it detects a change, it aborts immediately.
5355  */
5356 int btrfs_compare_trees(struct btrfs_root *left_root,
5357 			struct btrfs_root *right_root,
5358 			btrfs_changed_cb_t changed_cb, void *ctx)
5359 {
5360 	struct btrfs_fs_info *fs_info = left_root->fs_info;
5361 	int ret;
5362 	int cmp;
5363 	struct btrfs_path *left_path = NULL;
5364 	struct btrfs_path *right_path = NULL;
5365 	struct btrfs_key left_key;
5366 	struct btrfs_key right_key;
5367 	char *tmp_buf = NULL;
5368 	int left_root_level;
5369 	int right_root_level;
5370 	int left_level;
5371 	int right_level;
5372 	int left_end_reached;
5373 	int right_end_reached;
5374 	int advance_left;
5375 	int advance_right;
5376 	u64 left_blockptr;
5377 	u64 right_blockptr;
5378 	u64 left_gen;
5379 	u64 right_gen;
5380 
5381 	left_path = btrfs_alloc_path();
5382 	if (!left_path) {
5383 		ret = -ENOMEM;
5384 		goto out;
5385 	}
5386 	right_path = btrfs_alloc_path();
5387 	if (!right_path) {
5388 		ret = -ENOMEM;
5389 		goto out;
5390 	}
5391 
5392 	tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
5393 	if (!tmp_buf) {
5394 		ret = -ENOMEM;
5395 		goto out;
5396 	}
5397 
5398 	left_path->search_commit_root = 1;
5399 	left_path->skip_locking = 1;
5400 	right_path->search_commit_root = 1;
5401 	right_path->skip_locking = 1;
5402 
5403 	/*
5404 	 * Strategy: Go to the first items of both trees. Then do
5405 	 *
5406 	 * If both trees are at level 0
5407 	 *   Compare keys of current items
5408 	 *     If left < right treat left item as new, advance left tree
5409 	 *       and repeat
5410 	 *     If left > right treat right item as deleted, advance right tree
5411 	 *       and repeat
5412 	 *     If left == right do deep compare of items, treat as changed if
5413 	 *       needed, advance both trees and repeat
5414 	 * If both trees are at the same level but not at level 0
5415 	 *   Compare keys of current nodes/leafs
5416 	 *     If left < right advance left tree and repeat
5417 	 *     If left > right advance right tree and repeat
5418 	 *     If left == right compare blockptrs of the next nodes/leafs
5419 	 *       If they match advance both trees but stay at the same level
5420 	 *         and repeat
5421 	 *       If they don't match advance both trees while allowing to go
5422 	 *         deeper and repeat
5423 	 * If tree levels are different
5424 	 *   Advance the tree that needs it and repeat
5425 	 *
5426 	 * Advancing a tree means:
5427 	 *   If we are at level 0, try to go to the next slot. If that's not
5428 	 *   possible, go one level up and repeat. Stop when we found a level
5429 	 *   where we could go to the next slot. We may at this point be on a
5430 	 *   node or a leaf.
5431 	 *
5432 	 *   If we are not at level 0 and not on shared tree blocks, go one
5433 	 *   level deeper.
5434 	 *
5435 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5436 	 *   the right if possible or go up and right.
5437 	 */
5438 
5439 	down_read(&fs_info->commit_root_sem);
5440 	left_level = btrfs_header_level(left_root->commit_root);
5441 	left_root_level = left_level;
5442 	left_path->nodes[left_level] =
5443 			btrfs_clone_extent_buffer(left_root->commit_root);
5444 	if (!left_path->nodes[left_level]) {
5445 		up_read(&fs_info->commit_root_sem);
5446 		ret = -ENOMEM;
5447 		goto out;
5448 	}
5449 
5450 	right_level = btrfs_header_level(right_root->commit_root);
5451 	right_root_level = right_level;
5452 	right_path->nodes[right_level] =
5453 			btrfs_clone_extent_buffer(right_root->commit_root);
5454 	if (!right_path->nodes[right_level]) {
5455 		up_read(&fs_info->commit_root_sem);
5456 		ret = -ENOMEM;
5457 		goto out;
5458 	}
5459 	up_read(&fs_info->commit_root_sem);
5460 
5461 	if (left_level == 0)
5462 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5463 				&left_key, left_path->slots[left_level]);
5464 	else
5465 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5466 				&left_key, left_path->slots[left_level]);
5467 	if (right_level == 0)
5468 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5469 				&right_key, right_path->slots[right_level]);
5470 	else
5471 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5472 				&right_key, right_path->slots[right_level]);
5473 
5474 	left_end_reached = right_end_reached = 0;
5475 	advance_left = advance_right = 0;
5476 
5477 	while (1) {
5478 		if (advance_left && !left_end_reached) {
5479 			ret = tree_advance(left_path, &left_level,
5480 					left_root_level,
5481 					advance_left != ADVANCE_ONLY_NEXT,
5482 					&left_key);
5483 			if (ret == -1)
5484 				left_end_reached = ADVANCE;
5485 			else if (ret < 0)
5486 				goto out;
5487 			advance_left = 0;
5488 		}
5489 		if (advance_right && !right_end_reached) {
5490 			ret = tree_advance(right_path, &right_level,
5491 					right_root_level,
5492 					advance_right != ADVANCE_ONLY_NEXT,
5493 					&right_key);
5494 			if (ret == -1)
5495 				right_end_reached = ADVANCE;
5496 			else if (ret < 0)
5497 				goto out;
5498 			advance_right = 0;
5499 		}
5500 
5501 		if (left_end_reached && right_end_reached) {
5502 			ret = 0;
5503 			goto out;
5504 		} else if (left_end_reached) {
5505 			if (right_level == 0) {
5506 				ret = changed_cb(left_path, right_path,
5507 						&right_key,
5508 						BTRFS_COMPARE_TREE_DELETED,
5509 						ctx);
5510 				if (ret < 0)
5511 					goto out;
5512 			}
5513 			advance_right = ADVANCE;
5514 			continue;
5515 		} else if (right_end_reached) {
5516 			if (left_level == 0) {
5517 				ret = changed_cb(left_path, right_path,
5518 						&left_key,
5519 						BTRFS_COMPARE_TREE_NEW,
5520 						ctx);
5521 				if (ret < 0)
5522 					goto out;
5523 			}
5524 			advance_left = ADVANCE;
5525 			continue;
5526 		}
5527 
5528 		if (left_level == 0 && right_level == 0) {
5529 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5530 			if (cmp < 0) {
5531 				ret = changed_cb(left_path, right_path,
5532 						&left_key,
5533 						BTRFS_COMPARE_TREE_NEW,
5534 						ctx);
5535 				if (ret < 0)
5536 					goto out;
5537 				advance_left = ADVANCE;
5538 			} else if (cmp > 0) {
5539 				ret = changed_cb(left_path, right_path,
5540 						&right_key,
5541 						BTRFS_COMPARE_TREE_DELETED,
5542 						ctx);
5543 				if (ret < 0)
5544 					goto out;
5545 				advance_right = ADVANCE;
5546 			} else {
5547 				enum btrfs_compare_tree_result result;
5548 
5549 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5550 				ret = tree_compare_item(left_path, right_path,
5551 							tmp_buf);
5552 				if (ret)
5553 					result = BTRFS_COMPARE_TREE_CHANGED;
5554 				else
5555 					result = BTRFS_COMPARE_TREE_SAME;
5556 				ret = changed_cb(left_path, right_path,
5557 						 &left_key, result, ctx);
5558 				if (ret < 0)
5559 					goto out;
5560 				advance_left = ADVANCE;
5561 				advance_right = ADVANCE;
5562 			}
5563 		} else if (left_level == right_level) {
5564 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5565 			if (cmp < 0) {
5566 				advance_left = ADVANCE;
5567 			} else if (cmp > 0) {
5568 				advance_right = ADVANCE;
5569 			} else {
5570 				left_blockptr = btrfs_node_blockptr(
5571 						left_path->nodes[left_level],
5572 						left_path->slots[left_level]);
5573 				right_blockptr = btrfs_node_blockptr(
5574 						right_path->nodes[right_level],
5575 						right_path->slots[right_level]);
5576 				left_gen = btrfs_node_ptr_generation(
5577 						left_path->nodes[left_level],
5578 						left_path->slots[left_level]);
5579 				right_gen = btrfs_node_ptr_generation(
5580 						right_path->nodes[right_level],
5581 						right_path->slots[right_level]);
5582 				if (left_blockptr == right_blockptr &&
5583 				    left_gen == right_gen) {
5584 					/*
5585 					 * As we're on a shared block, don't
5586 					 * allow to go deeper.
5587 					 */
5588 					advance_left = ADVANCE_ONLY_NEXT;
5589 					advance_right = ADVANCE_ONLY_NEXT;
5590 				} else {
5591 					advance_left = ADVANCE;
5592 					advance_right = ADVANCE;
5593 				}
5594 			}
5595 		} else if (left_level < right_level) {
5596 			advance_right = ADVANCE;
5597 		} else {
5598 			advance_left = ADVANCE;
5599 		}
5600 	}
5601 
5602 out:
5603 	btrfs_free_path(left_path);
5604 	btrfs_free_path(right_path);
5605 	kvfree(tmp_buf);
5606 	return ret;
5607 }
5608 
5609 /*
5610  * this is similar to btrfs_next_leaf, but does not try to preserve
5611  * and fixup the path.  It looks for and returns the next key in the
5612  * tree based on the current path and the min_trans parameters.
5613  *
5614  * 0 is returned if another key is found, < 0 if there are any errors
5615  * and 1 is returned if there are no higher keys in the tree
5616  *
5617  * path->keep_locks should be set to 1 on the search made before
5618  * calling this function.
5619  */
5620 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5621 			struct btrfs_key *key, int level, u64 min_trans)
5622 {
5623 	int slot;
5624 	struct extent_buffer *c;
5625 
5626 	WARN_ON(!path->keep_locks);
5627 	while (level < BTRFS_MAX_LEVEL) {
5628 		if (!path->nodes[level])
5629 			return 1;
5630 
5631 		slot = path->slots[level] + 1;
5632 		c = path->nodes[level];
5633 next:
5634 		if (slot >= btrfs_header_nritems(c)) {
5635 			int ret;
5636 			int orig_lowest;
5637 			struct btrfs_key cur_key;
5638 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5639 			    !path->nodes[level + 1])
5640 				return 1;
5641 
5642 			if (path->locks[level + 1]) {
5643 				level++;
5644 				continue;
5645 			}
5646 
5647 			slot = btrfs_header_nritems(c) - 1;
5648 			if (level == 0)
5649 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5650 			else
5651 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5652 
5653 			orig_lowest = path->lowest_level;
5654 			btrfs_release_path(path);
5655 			path->lowest_level = level;
5656 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5657 						0, 0);
5658 			path->lowest_level = orig_lowest;
5659 			if (ret < 0)
5660 				return ret;
5661 
5662 			c = path->nodes[level];
5663 			slot = path->slots[level];
5664 			if (ret == 0)
5665 				slot++;
5666 			goto next;
5667 		}
5668 
5669 		if (level == 0)
5670 			btrfs_item_key_to_cpu(c, key, slot);
5671 		else {
5672 			u64 gen = btrfs_node_ptr_generation(c, slot);
5673 
5674 			if (gen < min_trans) {
5675 				slot++;
5676 				goto next;
5677 			}
5678 			btrfs_node_key_to_cpu(c, key, slot);
5679 		}
5680 		return 0;
5681 	}
5682 	return 1;
5683 }
5684 
5685 /*
5686  * search the tree again to find a leaf with greater keys
5687  * returns 0 if it found something or 1 if there are no greater leaves.
5688  * returns < 0 on io errors.
5689  */
5690 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5691 {
5692 	return btrfs_next_old_leaf(root, path, 0);
5693 }
5694 
5695 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5696 			u64 time_seq)
5697 {
5698 	int slot;
5699 	int level;
5700 	struct extent_buffer *c;
5701 	struct extent_buffer *next;
5702 	struct btrfs_key key;
5703 	u32 nritems;
5704 	int ret;
5705 	int old_spinning = path->leave_spinning;
5706 	int next_rw_lock = 0;
5707 
5708 	nritems = btrfs_header_nritems(path->nodes[0]);
5709 	if (nritems == 0)
5710 		return 1;
5711 
5712 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5713 again:
5714 	level = 1;
5715 	next = NULL;
5716 	next_rw_lock = 0;
5717 	btrfs_release_path(path);
5718 
5719 	path->keep_locks = 1;
5720 	path->leave_spinning = 1;
5721 
5722 	if (time_seq)
5723 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5724 	else
5725 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5726 	path->keep_locks = 0;
5727 
5728 	if (ret < 0)
5729 		return ret;
5730 
5731 	nritems = btrfs_header_nritems(path->nodes[0]);
5732 	/*
5733 	 * by releasing the path above we dropped all our locks.  A balance
5734 	 * could have added more items next to the key that used to be
5735 	 * at the very end of the block.  So, check again here and
5736 	 * advance the path if there are now more items available.
5737 	 */
5738 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5739 		if (ret == 0)
5740 			path->slots[0]++;
5741 		ret = 0;
5742 		goto done;
5743 	}
5744 	/*
5745 	 * So the above check misses one case:
5746 	 * - after releasing the path above, someone has removed the item that
5747 	 *   used to be at the very end of the block, and balance between leafs
5748 	 *   gets another one with bigger key.offset to replace it.
5749 	 *
5750 	 * This one should be returned as well, or we can get leaf corruption
5751 	 * later(esp. in __btrfs_drop_extents()).
5752 	 *
5753 	 * And a bit more explanation about this check,
5754 	 * with ret > 0, the key isn't found, the path points to the slot
5755 	 * where it should be inserted, so the path->slots[0] item must be the
5756 	 * bigger one.
5757 	 */
5758 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5759 		ret = 0;
5760 		goto done;
5761 	}
5762 
5763 	while (level < BTRFS_MAX_LEVEL) {
5764 		if (!path->nodes[level]) {
5765 			ret = 1;
5766 			goto done;
5767 		}
5768 
5769 		slot = path->slots[level] + 1;
5770 		c = path->nodes[level];
5771 		if (slot >= btrfs_header_nritems(c)) {
5772 			level++;
5773 			if (level == BTRFS_MAX_LEVEL) {
5774 				ret = 1;
5775 				goto done;
5776 			}
5777 			continue;
5778 		}
5779 
5780 		if (next) {
5781 			btrfs_tree_unlock_rw(next, next_rw_lock);
5782 			free_extent_buffer(next);
5783 		}
5784 
5785 		next = c;
5786 		next_rw_lock = path->locks[level];
5787 		ret = read_block_for_search(root, path, &next, level,
5788 					    slot, &key);
5789 		if (ret == -EAGAIN)
5790 			goto again;
5791 
5792 		if (ret < 0) {
5793 			btrfs_release_path(path);
5794 			goto done;
5795 		}
5796 
5797 		if (!path->skip_locking) {
5798 			ret = btrfs_try_tree_read_lock(next);
5799 			if (!ret && time_seq) {
5800 				/*
5801 				 * If we don't get the lock, we may be racing
5802 				 * with push_leaf_left, holding that lock while
5803 				 * itself waiting for the leaf we've currently
5804 				 * locked. To solve this situation, we give up
5805 				 * on our lock and cycle.
5806 				 */
5807 				free_extent_buffer(next);
5808 				btrfs_release_path(path);
5809 				cond_resched();
5810 				goto again;
5811 			}
5812 			if (!ret) {
5813 				btrfs_set_path_blocking(path);
5814 				btrfs_tree_read_lock(next);
5815 			}
5816 			next_rw_lock = BTRFS_READ_LOCK;
5817 		}
5818 		break;
5819 	}
5820 	path->slots[level] = slot;
5821 	while (1) {
5822 		level--;
5823 		c = path->nodes[level];
5824 		if (path->locks[level])
5825 			btrfs_tree_unlock_rw(c, path->locks[level]);
5826 
5827 		free_extent_buffer(c);
5828 		path->nodes[level] = next;
5829 		path->slots[level] = 0;
5830 		if (!path->skip_locking)
5831 			path->locks[level] = next_rw_lock;
5832 		if (!level)
5833 			break;
5834 
5835 		ret = read_block_for_search(root, path, &next, level,
5836 					    0, &key);
5837 		if (ret == -EAGAIN)
5838 			goto again;
5839 
5840 		if (ret < 0) {
5841 			btrfs_release_path(path);
5842 			goto done;
5843 		}
5844 
5845 		if (!path->skip_locking) {
5846 			ret = btrfs_try_tree_read_lock(next);
5847 			if (!ret) {
5848 				btrfs_set_path_blocking(path);
5849 				btrfs_tree_read_lock(next);
5850 			}
5851 			next_rw_lock = BTRFS_READ_LOCK;
5852 		}
5853 	}
5854 	ret = 0;
5855 done:
5856 	unlock_up(path, 0, 1, 0, NULL);
5857 	path->leave_spinning = old_spinning;
5858 	if (!old_spinning)
5859 		btrfs_set_path_blocking(path);
5860 
5861 	return ret;
5862 }
5863 
5864 /*
5865  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5866  * searching until it gets past min_objectid or finds an item of 'type'
5867  *
5868  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5869  */
5870 int btrfs_previous_item(struct btrfs_root *root,
5871 			struct btrfs_path *path, u64 min_objectid,
5872 			int type)
5873 {
5874 	struct btrfs_key found_key;
5875 	struct extent_buffer *leaf;
5876 	u32 nritems;
5877 	int ret;
5878 
5879 	while (1) {
5880 		if (path->slots[0] == 0) {
5881 			btrfs_set_path_blocking(path);
5882 			ret = btrfs_prev_leaf(root, path);
5883 			if (ret != 0)
5884 				return ret;
5885 		} else {
5886 			path->slots[0]--;
5887 		}
5888 		leaf = path->nodes[0];
5889 		nritems = btrfs_header_nritems(leaf);
5890 		if (nritems == 0)
5891 			return 1;
5892 		if (path->slots[0] == nritems)
5893 			path->slots[0]--;
5894 
5895 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5896 		if (found_key.objectid < min_objectid)
5897 			break;
5898 		if (found_key.type == type)
5899 			return 0;
5900 		if (found_key.objectid == min_objectid &&
5901 		    found_key.type < type)
5902 			break;
5903 	}
5904 	return 1;
5905 }
5906 
5907 /*
5908  * search in extent tree to find a previous Metadata/Data extent item with
5909  * min objecitd.
5910  *
5911  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5912  */
5913 int btrfs_previous_extent_item(struct btrfs_root *root,
5914 			struct btrfs_path *path, u64 min_objectid)
5915 {
5916 	struct btrfs_key found_key;
5917 	struct extent_buffer *leaf;
5918 	u32 nritems;
5919 	int ret;
5920 
5921 	while (1) {
5922 		if (path->slots[0] == 0) {
5923 			btrfs_set_path_blocking(path);
5924 			ret = btrfs_prev_leaf(root, path);
5925 			if (ret != 0)
5926 				return ret;
5927 		} else {
5928 			path->slots[0]--;
5929 		}
5930 		leaf = path->nodes[0];
5931 		nritems = btrfs_header_nritems(leaf);
5932 		if (nritems == 0)
5933 			return 1;
5934 		if (path->slots[0] == nritems)
5935 			path->slots[0]--;
5936 
5937 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5938 		if (found_key.objectid < min_objectid)
5939 			break;
5940 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5941 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5942 			return 0;
5943 		if (found_key.objectid == min_objectid &&
5944 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5945 			break;
5946 	}
5947 	return 1;
5948 }
5949