xref: /openbmc/linux/fs/btrfs/ctree.c (revision 12fbfc4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 		      *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
22 		      int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 			  struct extent_buffer *dst,
25 			  struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 static const struct btrfs_csums {
33 	u16		size;
34 	const char	name[10];
35 	const char	driver[12];
36 } btrfs_csums[] = {
37 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 				     .driver = "blake2b-256" },
42 };
43 
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46 	u16 t = btrfs_super_csum_type(s);
47 	/*
48 	 * csum type is validated at mount time
49 	 */
50 	return btrfs_csums[t].size;
51 }
52 
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55 	/* csum type is validated at mount time */
56 	return btrfs_csums[csum_type].name;
57 }
58 
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65 	/* csum type is validated at mount time */
66 	return btrfs_csums[csum_type].driver[0] ?
67 		btrfs_csums[csum_type].driver :
68 		btrfs_csums[csum_type].name;
69 }
70 
71 size_t __attribute_const__ btrfs_get_num_csums(void)
72 {
73 	return ARRAY_SIZE(btrfs_csums);
74 }
75 
76 struct btrfs_path *btrfs_alloc_path(void)
77 {
78 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
79 }
80 
81 /* this also releases the path */
82 void btrfs_free_path(struct btrfs_path *p)
83 {
84 	if (!p)
85 		return;
86 	btrfs_release_path(p);
87 	kmem_cache_free(btrfs_path_cachep, p);
88 }
89 
90 /*
91  * path release drops references on the extent buffers in the path
92  * and it drops any locks held by this path
93  *
94  * It is safe to call this on paths that no locks or extent buffers held.
95  */
96 noinline void btrfs_release_path(struct btrfs_path *p)
97 {
98 	int i;
99 
100 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101 		p->slots[i] = 0;
102 		if (!p->nodes[i])
103 			continue;
104 		if (p->locks[i]) {
105 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 			p->locks[i] = 0;
107 		}
108 		free_extent_buffer(p->nodes[i]);
109 		p->nodes[i] = NULL;
110 	}
111 }
112 
113 /*
114  * safely gets a reference on the root node of a tree.  A lock
115  * is not taken, so a concurrent writer may put a different node
116  * at the root of the tree.  See btrfs_lock_root_node for the
117  * looping required.
118  *
119  * The extent buffer returned by this has a reference taken, so
120  * it won't disappear.  It may stop being the root of the tree
121  * at any time because there are no locks held.
122  */
123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
124 {
125 	struct extent_buffer *eb;
126 
127 	while (1) {
128 		rcu_read_lock();
129 		eb = rcu_dereference(root->node);
130 
131 		/*
132 		 * RCU really hurts here, we could free up the root node because
133 		 * it was COWed but we may not get the new root node yet so do
134 		 * the inc_not_zero dance and if it doesn't work then
135 		 * synchronize_rcu and try again.
136 		 */
137 		if (atomic_inc_not_zero(&eb->refs)) {
138 			rcu_read_unlock();
139 			break;
140 		}
141 		rcu_read_unlock();
142 		synchronize_rcu();
143 	}
144 	return eb;
145 }
146 
147 /*
148  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149  * just get put onto a simple dirty list.  Transaction walks this list to make
150  * sure they get properly updated on disk.
151  */
152 static void add_root_to_dirty_list(struct btrfs_root *root)
153 {
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
157 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158 		return;
159 
160 	spin_lock(&fs_info->trans_lock);
161 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
162 		/* Want the extent tree to be the last on the list */
163 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164 			list_move_tail(&root->dirty_list,
165 				       &fs_info->dirty_cowonly_roots);
166 		else
167 			list_move(&root->dirty_list,
168 				  &fs_info->dirty_cowonly_roots);
169 	}
170 	spin_unlock(&fs_info->trans_lock);
171 }
172 
173 /*
174  * used by snapshot creation to make a copy of a root for a tree with
175  * a given objectid.  The buffer with the new root node is returned in
176  * cow_ret, and this func returns zero on success or a negative error code.
177  */
178 int btrfs_copy_root(struct btrfs_trans_handle *trans,
179 		      struct btrfs_root *root,
180 		      struct extent_buffer *buf,
181 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	struct extent_buffer *cow;
185 	int ret = 0;
186 	int level;
187 	struct btrfs_disk_key disk_key;
188 
189 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190 		trans->transid != fs_info->running_transaction->transid);
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != root->last_trans);
193 
194 	level = btrfs_header_level(buf);
195 	if (level == 0)
196 		btrfs_item_key(buf, &disk_key, 0);
197 	else
198 		btrfs_node_key(buf, &disk_key, 0);
199 
200 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 			&disk_key, level, buf->start, 0);
202 	if (IS_ERR(cow))
203 		return PTR_ERR(cow);
204 
205 	copy_extent_buffer_full(cow, buf);
206 	btrfs_set_header_bytenr(cow, cow->start);
207 	btrfs_set_header_generation(cow, trans->transid);
208 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
209 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
210 				     BTRFS_HEADER_FLAG_RELOC);
211 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
212 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
213 	else
214 		btrfs_set_header_owner(cow, new_root_objectid);
215 
216 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
217 
218 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
219 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
220 		ret = btrfs_inc_ref(trans, root, cow, 1);
221 	else
222 		ret = btrfs_inc_ref(trans, root, cow, 0);
223 
224 	if (ret)
225 		return ret;
226 
227 	btrfs_mark_buffer_dirty(cow);
228 	*cow_ret = cow;
229 	return 0;
230 }
231 
232 enum mod_log_op {
233 	MOD_LOG_KEY_REPLACE,
234 	MOD_LOG_KEY_ADD,
235 	MOD_LOG_KEY_REMOVE,
236 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
237 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
238 	MOD_LOG_MOVE_KEYS,
239 	MOD_LOG_ROOT_REPLACE,
240 };
241 
242 struct tree_mod_root {
243 	u64 logical;
244 	u8 level;
245 };
246 
247 struct tree_mod_elem {
248 	struct rb_node node;
249 	u64 logical;
250 	u64 seq;
251 	enum mod_log_op op;
252 
253 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
254 	int slot;
255 
256 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
257 	u64 generation;
258 
259 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
260 	struct btrfs_disk_key key;
261 	u64 blockptr;
262 
263 	/* this is used for op == MOD_LOG_MOVE_KEYS */
264 	struct {
265 		int dst_slot;
266 		int nr_items;
267 	} move;
268 
269 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
270 	struct tree_mod_root old_root;
271 };
272 
273 /*
274  * Pull a new tree mod seq number for our operation.
275  */
276 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
277 {
278 	return atomic64_inc_return(&fs_info->tree_mod_seq);
279 }
280 
281 /*
282  * This adds a new blocker to the tree mod log's blocker list if the @elem
283  * passed does not already have a sequence number set. So when a caller expects
284  * to record tree modifications, it should ensure to set elem->seq to zero
285  * before calling btrfs_get_tree_mod_seq.
286  * Returns a fresh, unused tree log modification sequence number, even if no new
287  * blocker was added.
288  */
289 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
290 			   struct seq_list *elem)
291 {
292 	write_lock(&fs_info->tree_mod_log_lock);
293 	if (!elem->seq) {
294 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
295 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
296 	}
297 	write_unlock(&fs_info->tree_mod_log_lock);
298 
299 	return elem->seq;
300 }
301 
302 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
303 			    struct seq_list *elem)
304 {
305 	struct rb_root *tm_root;
306 	struct rb_node *node;
307 	struct rb_node *next;
308 	struct tree_mod_elem *tm;
309 	u64 min_seq = (u64)-1;
310 	u64 seq_putting = elem->seq;
311 
312 	if (!seq_putting)
313 		return;
314 
315 	write_lock(&fs_info->tree_mod_log_lock);
316 	list_del(&elem->list);
317 	elem->seq = 0;
318 
319 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
320 		struct seq_list *first;
321 
322 		first = list_first_entry(&fs_info->tree_mod_seq_list,
323 					 struct seq_list, list);
324 		if (seq_putting > first->seq) {
325 			/*
326 			 * Blocker with lower sequence number exists, we
327 			 * cannot remove anything from the log.
328 			 */
329 			write_unlock(&fs_info->tree_mod_log_lock);
330 			return;
331 		}
332 		min_seq = first->seq;
333 	}
334 
335 	/*
336 	 * anything that's lower than the lowest existing (read: blocked)
337 	 * sequence number can be removed from the tree.
338 	 */
339 	tm_root = &fs_info->tree_mod_log;
340 	for (node = rb_first(tm_root); node; node = next) {
341 		next = rb_next(node);
342 		tm = rb_entry(node, struct tree_mod_elem, node);
343 		if (tm->seq >= min_seq)
344 			continue;
345 		rb_erase(node, tm_root);
346 		kfree(tm);
347 	}
348 	write_unlock(&fs_info->tree_mod_log_lock);
349 }
350 
351 /*
352  * key order of the log:
353  *       node/leaf start address -> sequence
354  *
355  * The 'start address' is the logical address of the *new* root node
356  * for root replace operations, or the logical address of the affected
357  * block for all other operations.
358  */
359 static noinline int
360 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
361 {
362 	struct rb_root *tm_root;
363 	struct rb_node **new;
364 	struct rb_node *parent = NULL;
365 	struct tree_mod_elem *cur;
366 
367 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
368 
369 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
370 
371 	tm_root = &fs_info->tree_mod_log;
372 	new = &tm_root->rb_node;
373 	while (*new) {
374 		cur = rb_entry(*new, struct tree_mod_elem, node);
375 		parent = *new;
376 		if (cur->logical < tm->logical)
377 			new = &((*new)->rb_left);
378 		else if (cur->logical > tm->logical)
379 			new = &((*new)->rb_right);
380 		else if (cur->seq < tm->seq)
381 			new = &((*new)->rb_left);
382 		else if (cur->seq > tm->seq)
383 			new = &((*new)->rb_right);
384 		else
385 			return -EEXIST;
386 	}
387 
388 	rb_link_node(&tm->node, parent, new);
389 	rb_insert_color(&tm->node, tm_root);
390 	return 0;
391 }
392 
393 /*
394  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
395  * returns zero with the tree_mod_log_lock acquired. The caller must hold
396  * this until all tree mod log insertions are recorded in the rb tree and then
397  * write unlock fs_info::tree_mod_log_lock.
398  */
399 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
400 				    struct extent_buffer *eb) {
401 	smp_mb();
402 	if (list_empty(&(fs_info)->tree_mod_seq_list))
403 		return 1;
404 	if (eb && btrfs_header_level(eb) == 0)
405 		return 1;
406 
407 	write_lock(&fs_info->tree_mod_log_lock);
408 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
409 		write_unlock(&fs_info->tree_mod_log_lock);
410 		return 1;
411 	}
412 
413 	return 0;
414 }
415 
416 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
417 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
418 				    struct extent_buffer *eb)
419 {
420 	smp_mb();
421 	if (list_empty(&(fs_info)->tree_mod_seq_list))
422 		return 0;
423 	if (eb && btrfs_header_level(eb) == 0)
424 		return 0;
425 
426 	return 1;
427 }
428 
429 static struct tree_mod_elem *
430 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
431 		    enum mod_log_op op, gfp_t flags)
432 {
433 	struct tree_mod_elem *tm;
434 
435 	tm = kzalloc(sizeof(*tm), flags);
436 	if (!tm)
437 		return NULL;
438 
439 	tm->logical = eb->start;
440 	if (op != MOD_LOG_KEY_ADD) {
441 		btrfs_node_key(eb, &tm->key, slot);
442 		tm->blockptr = btrfs_node_blockptr(eb, slot);
443 	}
444 	tm->op = op;
445 	tm->slot = slot;
446 	tm->generation = btrfs_node_ptr_generation(eb, slot);
447 	RB_CLEAR_NODE(&tm->node);
448 
449 	return tm;
450 }
451 
452 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
453 		enum mod_log_op op, gfp_t flags)
454 {
455 	struct tree_mod_elem *tm;
456 	int ret;
457 
458 	if (!tree_mod_need_log(eb->fs_info, eb))
459 		return 0;
460 
461 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
462 	if (!tm)
463 		return -ENOMEM;
464 
465 	if (tree_mod_dont_log(eb->fs_info, eb)) {
466 		kfree(tm);
467 		return 0;
468 	}
469 
470 	ret = __tree_mod_log_insert(eb->fs_info, tm);
471 	write_unlock(&eb->fs_info->tree_mod_log_lock);
472 	if (ret)
473 		kfree(tm);
474 
475 	return ret;
476 }
477 
478 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
479 		int dst_slot, int src_slot, int nr_items)
480 {
481 	struct tree_mod_elem *tm = NULL;
482 	struct tree_mod_elem **tm_list = NULL;
483 	int ret = 0;
484 	int i;
485 	int locked = 0;
486 
487 	if (!tree_mod_need_log(eb->fs_info, eb))
488 		return 0;
489 
490 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
491 	if (!tm_list)
492 		return -ENOMEM;
493 
494 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
495 	if (!tm) {
496 		ret = -ENOMEM;
497 		goto free_tms;
498 	}
499 
500 	tm->logical = eb->start;
501 	tm->slot = src_slot;
502 	tm->move.dst_slot = dst_slot;
503 	tm->move.nr_items = nr_items;
504 	tm->op = MOD_LOG_MOVE_KEYS;
505 
506 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
507 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
508 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
509 		if (!tm_list[i]) {
510 			ret = -ENOMEM;
511 			goto free_tms;
512 		}
513 	}
514 
515 	if (tree_mod_dont_log(eb->fs_info, eb))
516 		goto free_tms;
517 	locked = 1;
518 
519 	/*
520 	 * When we override something during the move, we log these removals.
521 	 * This can only happen when we move towards the beginning of the
522 	 * buffer, i.e. dst_slot < src_slot.
523 	 */
524 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
525 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
526 		if (ret)
527 			goto free_tms;
528 	}
529 
530 	ret = __tree_mod_log_insert(eb->fs_info, tm);
531 	if (ret)
532 		goto free_tms;
533 	write_unlock(&eb->fs_info->tree_mod_log_lock);
534 	kfree(tm_list);
535 
536 	return 0;
537 free_tms:
538 	for (i = 0; i < nr_items; i++) {
539 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
540 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
541 		kfree(tm_list[i]);
542 	}
543 	if (locked)
544 		write_unlock(&eb->fs_info->tree_mod_log_lock);
545 	kfree(tm_list);
546 	kfree(tm);
547 
548 	return ret;
549 }
550 
551 static inline int
552 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
553 		       struct tree_mod_elem **tm_list,
554 		       int nritems)
555 {
556 	int i, j;
557 	int ret;
558 
559 	for (i = nritems - 1; i >= 0; i--) {
560 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
561 		if (ret) {
562 			for (j = nritems - 1; j > i; j--)
563 				rb_erase(&tm_list[j]->node,
564 					 &fs_info->tree_mod_log);
565 			return ret;
566 		}
567 	}
568 
569 	return 0;
570 }
571 
572 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
573 			 struct extent_buffer *new_root, int log_removal)
574 {
575 	struct btrfs_fs_info *fs_info = old_root->fs_info;
576 	struct tree_mod_elem *tm = NULL;
577 	struct tree_mod_elem **tm_list = NULL;
578 	int nritems = 0;
579 	int ret = 0;
580 	int i;
581 
582 	if (!tree_mod_need_log(fs_info, NULL))
583 		return 0;
584 
585 	if (log_removal && btrfs_header_level(old_root) > 0) {
586 		nritems = btrfs_header_nritems(old_root);
587 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
588 				  GFP_NOFS);
589 		if (!tm_list) {
590 			ret = -ENOMEM;
591 			goto free_tms;
592 		}
593 		for (i = 0; i < nritems; i++) {
594 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
595 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
596 			if (!tm_list[i]) {
597 				ret = -ENOMEM;
598 				goto free_tms;
599 			}
600 		}
601 	}
602 
603 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
604 	if (!tm) {
605 		ret = -ENOMEM;
606 		goto free_tms;
607 	}
608 
609 	tm->logical = new_root->start;
610 	tm->old_root.logical = old_root->start;
611 	tm->old_root.level = btrfs_header_level(old_root);
612 	tm->generation = btrfs_header_generation(old_root);
613 	tm->op = MOD_LOG_ROOT_REPLACE;
614 
615 	if (tree_mod_dont_log(fs_info, NULL))
616 		goto free_tms;
617 
618 	if (tm_list)
619 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
620 	if (!ret)
621 		ret = __tree_mod_log_insert(fs_info, tm);
622 
623 	write_unlock(&fs_info->tree_mod_log_lock);
624 	if (ret)
625 		goto free_tms;
626 	kfree(tm_list);
627 
628 	return ret;
629 
630 free_tms:
631 	if (tm_list) {
632 		for (i = 0; i < nritems; i++)
633 			kfree(tm_list[i]);
634 		kfree(tm_list);
635 	}
636 	kfree(tm);
637 
638 	return ret;
639 }
640 
641 static struct tree_mod_elem *
642 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
643 		      int smallest)
644 {
645 	struct rb_root *tm_root;
646 	struct rb_node *node;
647 	struct tree_mod_elem *cur = NULL;
648 	struct tree_mod_elem *found = NULL;
649 
650 	read_lock(&fs_info->tree_mod_log_lock);
651 	tm_root = &fs_info->tree_mod_log;
652 	node = tm_root->rb_node;
653 	while (node) {
654 		cur = rb_entry(node, struct tree_mod_elem, node);
655 		if (cur->logical < start) {
656 			node = node->rb_left;
657 		} else if (cur->logical > start) {
658 			node = node->rb_right;
659 		} else if (cur->seq < min_seq) {
660 			node = node->rb_left;
661 		} else if (!smallest) {
662 			/* we want the node with the highest seq */
663 			if (found)
664 				BUG_ON(found->seq > cur->seq);
665 			found = cur;
666 			node = node->rb_left;
667 		} else if (cur->seq > min_seq) {
668 			/* we want the node with the smallest seq */
669 			if (found)
670 				BUG_ON(found->seq < cur->seq);
671 			found = cur;
672 			node = node->rb_right;
673 		} else {
674 			found = cur;
675 			break;
676 		}
677 	}
678 	read_unlock(&fs_info->tree_mod_log_lock);
679 
680 	return found;
681 }
682 
683 /*
684  * this returns the element from the log with the smallest time sequence
685  * value that's in the log (the oldest log item). any element with a time
686  * sequence lower than min_seq will be ignored.
687  */
688 static struct tree_mod_elem *
689 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
690 			   u64 min_seq)
691 {
692 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
693 }
694 
695 /*
696  * this returns the element from the log with the largest time sequence
697  * value that's in the log (the most recent log item). any element with
698  * a time sequence lower than min_seq will be ignored.
699  */
700 static struct tree_mod_elem *
701 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
702 {
703 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
704 }
705 
706 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
707 		     struct extent_buffer *src, unsigned long dst_offset,
708 		     unsigned long src_offset, int nr_items)
709 {
710 	struct btrfs_fs_info *fs_info = dst->fs_info;
711 	int ret = 0;
712 	struct tree_mod_elem **tm_list = NULL;
713 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
714 	int i;
715 	int locked = 0;
716 
717 	if (!tree_mod_need_log(fs_info, NULL))
718 		return 0;
719 
720 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
721 		return 0;
722 
723 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
724 			  GFP_NOFS);
725 	if (!tm_list)
726 		return -ENOMEM;
727 
728 	tm_list_add = tm_list;
729 	tm_list_rem = tm_list + nr_items;
730 	for (i = 0; i < nr_items; i++) {
731 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
732 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
733 		if (!tm_list_rem[i]) {
734 			ret = -ENOMEM;
735 			goto free_tms;
736 		}
737 
738 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
739 		    MOD_LOG_KEY_ADD, GFP_NOFS);
740 		if (!tm_list_add[i]) {
741 			ret = -ENOMEM;
742 			goto free_tms;
743 		}
744 	}
745 
746 	if (tree_mod_dont_log(fs_info, NULL))
747 		goto free_tms;
748 	locked = 1;
749 
750 	for (i = 0; i < nr_items; i++) {
751 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
752 		if (ret)
753 			goto free_tms;
754 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
755 		if (ret)
756 			goto free_tms;
757 	}
758 
759 	write_unlock(&fs_info->tree_mod_log_lock);
760 	kfree(tm_list);
761 
762 	return 0;
763 
764 free_tms:
765 	for (i = 0; i < nr_items * 2; i++) {
766 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
767 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
768 		kfree(tm_list[i]);
769 	}
770 	if (locked)
771 		write_unlock(&fs_info->tree_mod_log_lock);
772 	kfree(tm_list);
773 
774 	return ret;
775 }
776 
777 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
778 {
779 	struct tree_mod_elem **tm_list = NULL;
780 	int nritems = 0;
781 	int i;
782 	int ret = 0;
783 
784 	if (btrfs_header_level(eb) == 0)
785 		return 0;
786 
787 	if (!tree_mod_need_log(eb->fs_info, NULL))
788 		return 0;
789 
790 	nritems = btrfs_header_nritems(eb);
791 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
792 	if (!tm_list)
793 		return -ENOMEM;
794 
795 	for (i = 0; i < nritems; i++) {
796 		tm_list[i] = alloc_tree_mod_elem(eb, i,
797 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
798 		if (!tm_list[i]) {
799 			ret = -ENOMEM;
800 			goto free_tms;
801 		}
802 	}
803 
804 	if (tree_mod_dont_log(eb->fs_info, eb))
805 		goto free_tms;
806 
807 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
808 	write_unlock(&eb->fs_info->tree_mod_log_lock);
809 	if (ret)
810 		goto free_tms;
811 	kfree(tm_list);
812 
813 	return 0;
814 
815 free_tms:
816 	for (i = 0; i < nritems; i++)
817 		kfree(tm_list[i]);
818 	kfree(tm_list);
819 
820 	return ret;
821 }
822 
823 /*
824  * check if the tree block can be shared by multiple trees
825  */
826 int btrfs_block_can_be_shared(struct btrfs_root *root,
827 			      struct extent_buffer *buf)
828 {
829 	/*
830 	 * Tree blocks not in shareable trees and tree roots are never shared.
831 	 * If a block was allocated after the last snapshot and the block was
832 	 * not allocated by tree relocation, we know the block is not shared.
833 	 */
834 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
835 	    buf != root->node && buf != root->commit_root &&
836 	    (btrfs_header_generation(buf) <=
837 	     btrfs_root_last_snapshot(&root->root_item) ||
838 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
839 		return 1;
840 
841 	return 0;
842 }
843 
844 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
845 				       struct btrfs_root *root,
846 				       struct extent_buffer *buf,
847 				       struct extent_buffer *cow,
848 				       int *last_ref)
849 {
850 	struct btrfs_fs_info *fs_info = root->fs_info;
851 	u64 refs;
852 	u64 owner;
853 	u64 flags;
854 	u64 new_flags = 0;
855 	int ret;
856 
857 	/*
858 	 * Backrefs update rules:
859 	 *
860 	 * Always use full backrefs for extent pointers in tree block
861 	 * allocated by tree relocation.
862 	 *
863 	 * If a shared tree block is no longer referenced by its owner
864 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
865 	 * use full backrefs for extent pointers in tree block.
866 	 *
867 	 * If a tree block is been relocating
868 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
869 	 * use full backrefs for extent pointers in tree block.
870 	 * The reason for this is some operations (such as drop tree)
871 	 * are only allowed for blocks use full backrefs.
872 	 */
873 
874 	if (btrfs_block_can_be_shared(root, buf)) {
875 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
876 					       btrfs_header_level(buf), 1,
877 					       &refs, &flags);
878 		if (ret)
879 			return ret;
880 		if (refs == 0) {
881 			ret = -EROFS;
882 			btrfs_handle_fs_error(fs_info, ret, NULL);
883 			return ret;
884 		}
885 	} else {
886 		refs = 1;
887 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
888 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
889 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
890 		else
891 			flags = 0;
892 	}
893 
894 	owner = btrfs_header_owner(buf);
895 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
896 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
897 
898 	if (refs > 1) {
899 		if ((owner == root->root_key.objectid ||
900 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
901 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
902 			ret = btrfs_inc_ref(trans, root, buf, 1);
903 			if (ret)
904 				return ret;
905 
906 			if (root->root_key.objectid ==
907 			    BTRFS_TREE_RELOC_OBJECTID) {
908 				ret = btrfs_dec_ref(trans, root, buf, 0);
909 				if (ret)
910 					return ret;
911 				ret = btrfs_inc_ref(trans, root, cow, 1);
912 				if (ret)
913 					return ret;
914 			}
915 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
916 		} else {
917 
918 			if (root->root_key.objectid ==
919 			    BTRFS_TREE_RELOC_OBJECTID)
920 				ret = btrfs_inc_ref(trans, root, cow, 1);
921 			else
922 				ret = btrfs_inc_ref(trans, root, cow, 0);
923 			if (ret)
924 				return ret;
925 		}
926 		if (new_flags != 0) {
927 			int level = btrfs_header_level(buf);
928 
929 			ret = btrfs_set_disk_extent_flags(trans, buf,
930 							  new_flags, level, 0);
931 			if (ret)
932 				return ret;
933 		}
934 	} else {
935 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
936 			if (root->root_key.objectid ==
937 			    BTRFS_TREE_RELOC_OBJECTID)
938 				ret = btrfs_inc_ref(trans, root, cow, 1);
939 			else
940 				ret = btrfs_inc_ref(trans, root, cow, 0);
941 			if (ret)
942 				return ret;
943 			ret = btrfs_dec_ref(trans, root, buf, 1);
944 			if (ret)
945 				return ret;
946 		}
947 		btrfs_clean_tree_block(buf);
948 		*last_ref = 1;
949 	}
950 	return 0;
951 }
952 
953 static struct extent_buffer *alloc_tree_block_no_bg_flush(
954 					  struct btrfs_trans_handle *trans,
955 					  struct btrfs_root *root,
956 					  u64 parent_start,
957 					  const struct btrfs_disk_key *disk_key,
958 					  int level,
959 					  u64 hint,
960 					  u64 empty_size)
961 {
962 	struct btrfs_fs_info *fs_info = root->fs_info;
963 	struct extent_buffer *ret;
964 
965 	/*
966 	 * If we are COWing a node/leaf from the extent, chunk, device or free
967 	 * space trees, make sure that we do not finish block group creation of
968 	 * pending block groups. We do this to avoid a deadlock.
969 	 * COWing can result in allocation of a new chunk, and flushing pending
970 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
971 	 * when finishing allocation of a new chunk. Creation of a pending block
972 	 * group modifies the extent, chunk, device and free space trees,
973 	 * therefore we could deadlock with ourselves since we are holding a
974 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
975 	 * try to COW later.
976 	 * For similar reasons, we also need to delay flushing pending block
977 	 * groups when splitting a leaf or node, from one of those trees, since
978 	 * we are holding a write lock on it and its parent or when inserting a
979 	 * new root node for one of those trees.
980 	 */
981 	if (root == fs_info->extent_root ||
982 	    root == fs_info->chunk_root ||
983 	    root == fs_info->dev_root ||
984 	    root == fs_info->free_space_root)
985 		trans->can_flush_pending_bgs = false;
986 
987 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
988 				     root->root_key.objectid, disk_key, level,
989 				     hint, empty_size);
990 	trans->can_flush_pending_bgs = true;
991 
992 	return ret;
993 }
994 
995 /*
996  * does the dirty work in cow of a single block.  The parent block (if
997  * supplied) is updated to point to the new cow copy.  The new buffer is marked
998  * dirty and returned locked.  If you modify the block it needs to be marked
999  * dirty again.
1000  *
1001  * search_start -- an allocation hint for the new block
1002  *
1003  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1004  * bytes the allocator should try to find free next to the block it returns.
1005  * This is just a hint and may be ignored by the allocator.
1006  */
1007 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1008 			     struct btrfs_root *root,
1009 			     struct extent_buffer *buf,
1010 			     struct extent_buffer *parent, int parent_slot,
1011 			     struct extent_buffer **cow_ret,
1012 			     u64 search_start, u64 empty_size)
1013 {
1014 	struct btrfs_fs_info *fs_info = root->fs_info;
1015 	struct btrfs_disk_key disk_key;
1016 	struct extent_buffer *cow;
1017 	int level, ret;
1018 	int last_ref = 0;
1019 	int unlock_orig = 0;
1020 	u64 parent_start = 0;
1021 
1022 	if (*cow_ret == buf)
1023 		unlock_orig = 1;
1024 
1025 	btrfs_assert_tree_locked(buf);
1026 
1027 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1028 		trans->transid != fs_info->running_transaction->transid);
1029 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1030 		trans->transid != root->last_trans);
1031 
1032 	level = btrfs_header_level(buf);
1033 
1034 	if (level == 0)
1035 		btrfs_item_key(buf, &disk_key, 0);
1036 	else
1037 		btrfs_node_key(buf, &disk_key, 0);
1038 
1039 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1040 		parent_start = parent->start;
1041 
1042 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1043 					   level, search_start, empty_size);
1044 	if (IS_ERR(cow))
1045 		return PTR_ERR(cow);
1046 
1047 	/* cow is set to blocking by btrfs_init_new_buffer */
1048 
1049 	copy_extent_buffer_full(cow, buf);
1050 	btrfs_set_header_bytenr(cow, cow->start);
1051 	btrfs_set_header_generation(cow, trans->transid);
1052 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1053 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1054 				     BTRFS_HEADER_FLAG_RELOC);
1055 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1056 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1057 	else
1058 		btrfs_set_header_owner(cow, root->root_key.objectid);
1059 
1060 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1061 
1062 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1063 	if (ret) {
1064 		btrfs_abort_transaction(trans, ret);
1065 		return ret;
1066 	}
1067 
1068 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1069 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1070 		if (ret) {
1071 			btrfs_abort_transaction(trans, ret);
1072 			return ret;
1073 		}
1074 	}
1075 
1076 	if (buf == root->node) {
1077 		WARN_ON(parent && parent != buf);
1078 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1079 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1080 			parent_start = buf->start;
1081 
1082 		atomic_inc(&cow->refs);
1083 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1084 		BUG_ON(ret < 0);
1085 		rcu_assign_pointer(root->node, cow);
1086 
1087 		btrfs_free_tree_block(trans, root, buf, parent_start,
1088 				      last_ref);
1089 		free_extent_buffer(buf);
1090 		add_root_to_dirty_list(root);
1091 	} else {
1092 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1093 		tree_mod_log_insert_key(parent, parent_slot,
1094 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1095 		btrfs_set_node_blockptr(parent, parent_slot,
1096 					cow->start);
1097 		btrfs_set_node_ptr_generation(parent, parent_slot,
1098 					      trans->transid);
1099 		btrfs_mark_buffer_dirty(parent);
1100 		if (last_ref) {
1101 			ret = tree_mod_log_free_eb(buf);
1102 			if (ret) {
1103 				btrfs_abort_transaction(trans, ret);
1104 				return ret;
1105 			}
1106 		}
1107 		btrfs_free_tree_block(trans, root, buf, parent_start,
1108 				      last_ref);
1109 	}
1110 	if (unlock_orig)
1111 		btrfs_tree_unlock(buf);
1112 	free_extent_buffer_stale(buf);
1113 	btrfs_mark_buffer_dirty(cow);
1114 	*cow_ret = cow;
1115 	return 0;
1116 }
1117 
1118 /*
1119  * returns the logical address of the oldest predecessor of the given root.
1120  * entries older than time_seq are ignored.
1121  */
1122 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1123 		struct extent_buffer *eb_root, u64 time_seq)
1124 {
1125 	struct tree_mod_elem *tm;
1126 	struct tree_mod_elem *found = NULL;
1127 	u64 root_logical = eb_root->start;
1128 	int looped = 0;
1129 
1130 	if (!time_seq)
1131 		return NULL;
1132 
1133 	/*
1134 	 * the very last operation that's logged for a root is the
1135 	 * replacement operation (if it is replaced at all). this has
1136 	 * the logical address of the *new* root, making it the very
1137 	 * first operation that's logged for this root.
1138 	 */
1139 	while (1) {
1140 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1141 						time_seq);
1142 		if (!looped && !tm)
1143 			return NULL;
1144 		/*
1145 		 * if there are no tree operation for the oldest root, we simply
1146 		 * return it. this should only happen if that (old) root is at
1147 		 * level 0.
1148 		 */
1149 		if (!tm)
1150 			break;
1151 
1152 		/*
1153 		 * if there's an operation that's not a root replacement, we
1154 		 * found the oldest version of our root. normally, we'll find a
1155 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1156 		 */
1157 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1158 			break;
1159 
1160 		found = tm;
1161 		root_logical = tm->old_root.logical;
1162 		looped = 1;
1163 	}
1164 
1165 	/* if there's no old root to return, return what we found instead */
1166 	if (!found)
1167 		found = tm;
1168 
1169 	return found;
1170 }
1171 
1172 /*
1173  * tm is a pointer to the first operation to rewind within eb. then, all
1174  * previous operations will be rewound (until we reach something older than
1175  * time_seq).
1176  */
1177 static void
1178 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1179 		      u64 time_seq, struct tree_mod_elem *first_tm)
1180 {
1181 	u32 n;
1182 	struct rb_node *next;
1183 	struct tree_mod_elem *tm = first_tm;
1184 	unsigned long o_dst;
1185 	unsigned long o_src;
1186 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1187 
1188 	n = btrfs_header_nritems(eb);
1189 	read_lock(&fs_info->tree_mod_log_lock);
1190 	while (tm && tm->seq >= time_seq) {
1191 		/*
1192 		 * all the operations are recorded with the operator used for
1193 		 * the modification. as we're going backwards, we do the
1194 		 * opposite of each operation here.
1195 		 */
1196 		switch (tm->op) {
1197 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1198 			BUG_ON(tm->slot < n);
1199 			fallthrough;
1200 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1201 		case MOD_LOG_KEY_REMOVE:
1202 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1203 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1204 			btrfs_set_node_ptr_generation(eb, tm->slot,
1205 						      tm->generation);
1206 			n++;
1207 			break;
1208 		case MOD_LOG_KEY_REPLACE:
1209 			BUG_ON(tm->slot >= n);
1210 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1211 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1212 			btrfs_set_node_ptr_generation(eb, tm->slot,
1213 						      tm->generation);
1214 			break;
1215 		case MOD_LOG_KEY_ADD:
1216 			/* if a move operation is needed it's in the log */
1217 			n--;
1218 			break;
1219 		case MOD_LOG_MOVE_KEYS:
1220 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1221 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1222 			memmove_extent_buffer(eb, o_dst, o_src,
1223 					      tm->move.nr_items * p_size);
1224 			break;
1225 		case MOD_LOG_ROOT_REPLACE:
1226 			/*
1227 			 * this operation is special. for roots, this must be
1228 			 * handled explicitly before rewinding.
1229 			 * for non-roots, this operation may exist if the node
1230 			 * was a root: root A -> child B; then A gets empty and
1231 			 * B is promoted to the new root. in the mod log, we'll
1232 			 * have a root-replace operation for B, a tree block
1233 			 * that is no root. we simply ignore that operation.
1234 			 */
1235 			break;
1236 		}
1237 		next = rb_next(&tm->node);
1238 		if (!next)
1239 			break;
1240 		tm = rb_entry(next, struct tree_mod_elem, node);
1241 		if (tm->logical != first_tm->logical)
1242 			break;
1243 	}
1244 	read_unlock(&fs_info->tree_mod_log_lock);
1245 	btrfs_set_header_nritems(eb, n);
1246 }
1247 
1248 /*
1249  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1250  * is returned. If rewind operations happen, a fresh buffer is returned. The
1251  * returned buffer is always read-locked. If the returned buffer is not the
1252  * input buffer, the lock on the input buffer is released and the input buffer
1253  * is freed (its refcount is decremented).
1254  */
1255 static struct extent_buffer *
1256 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1257 		    struct extent_buffer *eb, u64 time_seq)
1258 {
1259 	struct extent_buffer *eb_rewin;
1260 	struct tree_mod_elem *tm;
1261 
1262 	if (!time_seq)
1263 		return eb;
1264 
1265 	if (btrfs_header_level(eb) == 0)
1266 		return eb;
1267 
1268 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1269 	if (!tm)
1270 		return eb;
1271 
1272 	btrfs_set_path_blocking(path);
1273 	btrfs_set_lock_blocking_read(eb);
1274 
1275 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1276 		BUG_ON(tm->slot != 0);
1277 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1278 		if (!eb_rewin) {
1279 			btrfs_tree_read_unlock_blocking(eb);
1280 			free_extent_buffer(eb);
1281 			return NULL;
1282 		}
1283 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1284 		btrfs_set_header_backref_rev(eb_rewin,
1285 					     btrfs_header_backref_rev(eb));
1286 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1287 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1288 	} else {
1289 		eb_rewin = btrfs_clone_extent_buffer(eb);
1290 		if (!eb_rewin) {
1291 			btrfs_tree_read_unlock_blocking(eb);
1292 			free_extent_buffer(eb);
1293 			return NULL;
1294 		}
1295 	}
1296 
1297 	btrfs_tree_read_unlock_blocking(eb);
1298 	free_extent_buffer(eb);
1299 
1300 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb_rewin),
1301 				       eb_rewin, btrfs_header_level(eb_rewin));
1302 	btrfs_tree_read_lock(eb_rewin);
1303 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1304 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1305 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1306 
1307 	return eb_rewin;
1308 }
1309 
1310 /*
1311  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1312  * value. If there are no changes, the current root->root_node is returned. If
1313  * anything changed in between, there's a fresh buffer allocated on which the
1314  * rewind operations are done. In any case, the returned buffer is read locked.
1315  * Returns NULL on error (with no locks held).
1316  */
1317 static inline struct extent_buffer *
1318 get_old_root(struct btrfs_root *root, u64 time_seq)
1319 {
1320 	struct btrfs_fs_info *fs_info = root->fs_info;
1321 	struct tree_mod_elem *tm;
1322 	struct extent_buffer *eb = NULL;
1323 	struct extent_buffer *eb_root;
1324 	u64 eb_root_owner = 0;
1325 	struct extent_buffer *old;
1326 	struct tree_mod_root *old_root = NULL;
1327 	u64 old_generation = 0;
1328 	u64 logical;
1329 	int level;
1330 
1331 	eb_root = btrfs_read_lock_root_node(root);
1332 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1333 	if (!tm)
1334 		return eb_root;
1335 
1336 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1337 		old_root = &tm->old_root;
1338 		old_generation = tm->generation;
1339 		logical = old_root->logical;
1340 		level = old_root->level;
1341 	} else {
1342 		logical = eb_root->start;
1343 		level = btrfs_header_level(eb_root);
1344 	}
1345 
1346 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1347 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1348 		btrfs_tree_read_unlock(eb_root);
1349 		free_extent_buffer(eb_root);
1350 		old = read_tree_block(fs_info, logical, 0, level, NULL);
1351 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1352 			if (!IS_ERR(old))
1353 				free_extent_buffer(old);
1354 			btrfs_warn(fs_info,
1355 				   "failed to read tree block %llu from get_old_root",
1356 				   logical);
1357 		} else {
1358 			eb = btrfs_clone_extent_buffer(old);
1359 			free_extent_buffer(old);
1360 		}
1361 	} else if (old_root) {
1362 		eb_root_owner = btrfs_header_owner(eb_root);
1363 		btrfs_tree_read_unlock(eb_root);
1364 		free_extent_buffer(eb_root);
1365 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1366 	} else {
1367 		btrfs_set_lock_blocking_read(eb_root);
1368 		eb = btrfs_clone_extent_buffer(eb_root);
1369 		btrfs_tree_read_unlock_blocking(eb_root);
1370 		free_extent_buffer(eb_root);
1371 	}
1372 
1373 	if (!eb)
1374 		return NULL;
1375 	if (old_root) {
1376 		btrfs_set_header_bytenr(eb, eb->start);
1377 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1378 		btrfs_set_header_owner(eb, eb_root_owner);
1379 		btrfs_set_header_level(eb, old_root->level);
1380 		btrfs_set_header_generation(eb, old_generation);
1381 	}
1382 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb), eb,
1383 				       btrfs_header_level(eb));
1384 	btrfs_tree_read_lock(eb);
1385 	if (tm)
1386 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1387 	else
1388 		WARN_ON(btrfs_header_level(eb) != 0);
1389 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1390 
1391 	return eb;
1392 }
1393 
1394 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1395 {
1396 	struct tree_mod_elem *tm;
1397 	int level;
1398 	struct extent_buffer *eb_root = btrfs_root_node(root);
1399 
1400 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1401 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1402 		level = tm->old_root.level;
1403 	} else {
1404 		level = btrfs_header_level(eb_root);
1405 	}
1406 	free_extent_buffer(eb_root);
1407 
1408 	return level;
1409 }
1410 
1411 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1412 				   struct btrfs_root *root,
1413 				   struct extent_buffer *buf)
1414 {
1415 	if (btrfs_is_testing(root->fs_info))
1416 		return 0;
1417 
1418 	/* Ensure we can see the FORCE_COW bit */
1419 	smp_mb__before_atomic();
1420 
1421 	/*
1422 	 * We do not need to cow a block if
1423 	 * 1) this block is not created or changed in this transaction;
1424 	 * 2) this block does not belong to TREE_RELOC tree;
1425 	 * 3) the root is not forced COW.
1426 	 *
1427 	 * What is forced COW:
1428 	 *    when we create snapshot during committing the transaction,
1429 	 *    after we've finished copying src root, we must COW the shared
1430 	 *    block to ensure the metadata consistency.
1431 	 */
1432 	if (btrfs_header_generation(buf) == trans->transid &&
1433 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1434 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1435 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1436 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1437 		return 0;
1438 	return 1;
1439 }
1440 
1441 /*
1442  * cows a single block, see __btrfs_cow_block for the real work.
1443  * This version of it has extra checks so that a block isn't COWed more than
1444  * once per transaction, as long as it hasn't been written yet
1445  */
1446 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1447 		    struct btrfs_root *root, struct extent_buffer *buf,
1448 		    struct extent_buffer *parent, int parent_slot,
1449 		    struct extent_buffer **cow_ret)
1450 {
1451 	struct btrfs_fs_info *fs_info = root->fs_info;
1452 	u64 search_start;
1453 	int ret;
1454 
1455 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1456 		btrfs_err(fs_info,
1457 			"COW'ing blocks on a fs root that's being dropped");
1458 
1459 	if (trans->transaction != fs_info->running_transaction)
1460 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1461 		       trans->transid,
1462 		       fs_info->running_transaction->transid);
1463 
1464 	if (trans->transid != fs_info->generation)
1465 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1466 		       trans->transid, fs_info->generation);
1467 
1468 	if (!should_cow_block(trans, root, buf)) {
1469 		trans->dirty = true;
1470 		*cow_ret = buf;
1471 		return 0;
1472 	}
1473 
1474 	search_start = buf->start & ~((u64)SZ_1G - 1);
1475 
1476 	if (parent)
1477 		btrfs_set_lock_blocking_write(parent);
1478 	btrfs_set_lock_blocking_write(buf);
1479 
1480 	/*
1481 	 * Before CoWing this block for later modification, check if it's
1482 	 * the subtree root and do the delayed subtree trace if needed.
1483 	 *
1484 	 * Also We don't care about the error, as it's handled internally.
1485 	 */
1486 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1487 	ret = __btrfs_cow_block(trans, root, buf, parent,
1488 				 parent_slot, cow_ret, search_start, 0);
1489 
1490 	trace_btrfs_cow_block(root, buf, *cow_ret);
1491 
1492 	return ret;
1493 }
1494 
1495 /*
1496  * helper function for defrag to decide if two blocks pointed to by a
1497  * node are actually close by
1498  */
1499 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1500 {
1501 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1502 		return 1;
1503 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1504 		return 1;
1505 	return 0;
1506 }
1507 
1508 #ifdef __LITTLE_ENDIAN
1509 
1510 /*
1511  * Compare two keys, on little-endian the disk order is same as CPU order and
1512  * we can avoid the conversion.
1513  */
1514 static int comp_keys(const struct btrfs_disk_key *disk_key,
1515 		     const struct btrfs_key *k2)
1516 {
1517 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1518 
1519 	return btrfs_comp_cpu_keys(k1, k2);
1520 }
1521 
1522 #else
1523 
1524 /*
1525  * compare two keys in a memcmp fashion
1526  */
1527 static int comp_keys(const struct btrfs_disk_key *disk,
1528 		     const struct btrfs_key *k2)
1529 {
1530 	struct btrfs_key k1;
1531 
1532 	btrfs_disk_key_to_cpu(&k1, disk);
1533 
1534 	return btrfs_comp_cpu_keys(&k1, k2);
1535 }
1536 #endif
1537 
1538 /*
1539  * same as comp_keys only with two btrfs_key's
1540  */
1541 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1542 {
1543 	if (k1->objectid > k2->objectid)
1544 		return 1;
1545 	if (k1->objectid < k2->objectid)
1546 		return -1;
1547 	if (k1->type > k2->type)
1548 		return 1;
1549 	if (k1->type < k2->type)
1550 		return -1;
1551 	if (k1->offset > k2->offset)
1552 		return 1;
1553 	if (k1->offset < k2->offset)
1554 		return -1;
1555 	return 0;
1556 }
1557 
1558 /*
1559  * this is used by the defrag code to go through all the
1560  * leaves pointed to by a node and reallocate them so that
1561  * disk order is close to key order
1562  */
1563 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1564 		       struct btrfs_root *root, struct extent_buffer *parent,
1565 		       int start_slot, u64 *last_ret,
1566 		       struct btrfs_key *progress)
1567 {
1568 	struct btrfs_fs_info *fs_info = root->fs_info;
1569 	struct extent_buffer *cur;
1570 	u64 blocknr;
1571 	u64 gen;
1572 	u64 search_start = *last_ret;
1573 	u64 last_block = 0;
1574 	u64 other;
1575 	u32 parent_nritems;
1576 	int end_slot;
1577 	int i;
1578 	int err = 0;
1579 	int parent_level;
1580 	int uptodate;
1581 	u32 blocksize;
1582 	int progress_passed = 0;
1583 	struct btrfs_disk_key disk_key;
1584 
1585 	parent_level = btrfs_header_level(parent);
1586 
1587 	WARN_ON(trans->transaction != fs_info->running_transaction);
1588 	WARN_ON(trans->transid != fs_info->generation);
1589 
1590 	parent_nritems = btrfs_header_nritems(parent);
1591 	blocksize = fs_info->nodesize;
1592 	end_slot = parent_nritems - 1;
1593 
1594 	if (parent_nritems <= 1)
1595 		return 0;
1596 
1597 	btrfs_set_lock_blocking_write(parent);
1598 
1599 	for (i = start_slot; i <= end_slot; i++) {
1600 		struct btrfs_key first_key;
1601 		int close = 1;
1602 
1603 		btrfs_node_key(parent, &disk_key, i);
1604 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1605 			continue;
1606 
1607 		progress_passed = 1;
1608 		blocknr = btrfs_node_blockptr(parent, i);
1609 		gen = btrfs_node_ptr_generation(parent, i);
1610 		btrfs_node_key_to_cpu(parent, &first_key, i);
1611 		if (last_block == 0)
1612 			last_block = blocknr;
1613 
1614 		if (i > 0) {
1615 			other = btrfs_node_blockptr(parent, i - 1);
1616 			close = close_blocks(blocknr, other, blocksize);
1617 		}
1618 		if (!close && i < end_slot) {
1619 			other = btrfs_node_blockptr(parent, i + 1);
1620 			close = close_blocks(blocknr, other, blocksize);
1621 		}
1622 		if (close) {
1623 			last_block = blocknr;
1624 			continue;
1625 		}
1626 
1627 		cur = find_extent_buffer(fs_info, blocknr);
1628 		if (cur)
1629 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1630 		else
1631 			uptodate = 0;
1632 		if (!cur || !uptodate) {
1633 			if (!cur) {
1634 				cur = read_tree_block(fs_info, blocknr, gen,
1635 						      parent_level - 1,
1636 						      &first_key);
1637 				if (IS_ERR(cur)) {
1638 					return PTR_ERR(cur);
1639 				} else if (!extent_buffer_uptodate(cur)) {
1640 					free_extent_buffer(cur);
1641 					return -EIO;
1642 				}
1643 			} else if (!uptodate) {
1644 				err = btrfs_read_buffer(cur, gen,
1645 						parent_level - 1,&first_key);
1646 				if (err) {
1647 					free_extent_buffer(cur);
1648 					return err;
1649 				}
1650 			}
1651 		}
1652 		if (search_start == 0)
1653 			search_start = last_block;
1654 
1655 		btrfs_tree_lock(cur);
1656 		btrfs_set_lock_blocking_write(cur);
1657 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1658 					&cur, search_start,
1659 					min(16 * blocksize,
1660 					    (end_slot - i) * blocksize));
1661 		if (err) {
1662 			btrfs_tree_unlock(cur);
1663 			free_extent_buffer(cur);
1664 			break;
1665 		}
1666 		search_start = cur->start;
1667 		last_block = cur->start;
1668 		*last_ret = search_start;
1669 		btrfs_tree_unlock(cur);
1670 		free_extent_buffer(cur);
1671 	}
1672 	return err;
1673 }
1674 
1675 /*
1676  * search for key in the extent_buffer.  The items start at offset p,
1677  * and they are item_size apart.  There are 'max' items in p.
1678  *
1679  * the slot in the array is returned via slot, and it points to
1680  * the place where you would insert key if it is not found in
1681  * the array.
1682  *
1683  * slot may point to max if the key is bigger than all of the keys
1684  */
1685 static noinline int generic_bin_search(struct extent_buffer *eb,
1686 				       unsigned long p, int item_size,
1687 				       const struct btrfs_key *key,
1688 				       int max, int *slot)
1689 {
1690 	int low = 0;
1691 	int high = max;
1692 	int ret;
1693 	const int key_size = sizeof(struct btrfs_disk_key);
1694 
1695 	if (low > high) {
1696 		btrfs_err(eb->fs_info,
1697 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1698 			  __func__, low, high, eb->start,
1699 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1700 		return -EINVAL;
1701 	}
1702 
1703 	while (low < high) {
1704 		unsigned long oip;
1705 		unsigned long offset;
1706 		struct btrfs_disk_key *tmp;
1707 		struct btrfs_disk_key unaligned;
1708 		int mid;
1709 
1710 		mid = (low + high) / 2;
1711 		offset = p + mid * item_size;
1712 		oip = offset_in_page(offset);
1713 
1714 		if (oip + key_size <= PAGE_SIZE) {
1715 			const unsigned long idx = offset >> PAGE_SHIFT;
1716 			char *kaddr = page_address(eb->pages[idx]);
1717 
1718 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1719 		} else {
1720 			read_extent_buffer(eb, &unaligned, offset, key_size);
1721 			tmp = &unaligned;
1722 		}
1723 
1724 		ret = comp_keys(tmp, key);
1725 
1726 		if (ret < 0)
1727 			low = mid + 1;
1728 		else if (ret > 0)
1729 			high = mid;
1730 		else {
1731 			*slot = mid;
1732 			return 0;
1733 		}
1734 	}
1735 	*slot = low;
1736 	return 1;
1737 }
1738 
1739 /*
1740  * simple bin_search frontend that does the right thing for
1741  * leaves vs nodes
1742  */
1743 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1744 		     int *slot)
1745 {
1746 	if (btrfs_header_level(eb) == 0)
1747 		return generic_bin_search(eb,
1748 					  offsetof(struct btrfs_leaf, items),
1749 					  sizeof(struct btrfs_item),
1750 					  key, btrfs_header_nritems(eb),
1751 					  slot);
1752 	else
1753 		return generic_bin_search(eb,
1754 					  offsetof(struct btrfs_node, ptrs),
1755 					  sizeof(struct btrfs_key_ptr),
1756 					  key, btrfs_header_nritems(eb),
1757 					  slot);
1758 }
1759 
1760 static void root_add_used(struct btrfs_root *root, u32 size)
1761 {
1762 	spin_lock(&root->accounting_lock);
1763 	btrfs_set_root_used(&root->root_item,
1764 			    btrfs_root_used(&root->root_item) + size);
1765 	spin_unlock(&root->accounting_lock);
1766 }
1767 
1768 static void root_sub_used(struct btrfs_root *root, u32 size)
1769 {
1770 	spin_lock(&root->accounting_lock);
1771 	btrfs_set_root_used(&root->root_item,
1772 			    btrfs_root_used(&root->root_item) - size);
1773 	spin_unlock(&root->accounting_lock);
1774 }
1775 
1776 /* given a node and slot number, this reads the blocks it points to.  The
1777  * extent buffer is returned with a reference taken (but unlocked).
1778  */
1779 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1780 					   int slot)
1781 {
1782 	int level = btrfs_header_level(parent);
1783 	struct extent_buffer *eb;
1784 	struct btrfs_key first_key;
1785 
1786 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1787 		return ERR_PTR(-ENOENT);
1788 
1789 	BUG_ON(level == 0);
1790 
1791 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1792 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1793 			     btrfs_node_ptr_generation(parent, slot),
1794 			     level - 1, &first_key);
1795 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1796 		free_extent_buffer(eb);
1797 		eb = ERR_PTR(-EIO);
1798 	}
1799 
1800 	return eb;
1801 }
1802 
1803 /*
1804  * node level balancing, used to make sure nodes are in proper order for
1805  * item deletion.  We balance from the top down, so we have to make sure
1806  * that a deletion won't leave an node completely empty later on.
1807  */
1808 static noinline int balance_level(struct btrfs_trans_handle *trans,
1809 			 struct btrfs_root *root,
1810 			 struct btrfs_path *path, int level)
1811 {
1812 	struct btrfs_fs_info *fs_info = root->fs_info;
1813 	struct extent_buffer *right = NULL;
1814 	struct extent_buffer *mid;
1815 	struct extent_buffer *left = NULL;
1816 	struct extent_buffer *parent = NULL;
1817 	int ret = 0;
1818 	int wret;
1819 	int pslot;
1820 	int orig_slot = path->slots[level];
1821 	u64 orig_ptr;
1822 
1823 	ASSERT(level > 0);
1824 
1825 	mid = path->nodes[level];
1826 
1827 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1828 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1829 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1830 
1831 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1832 
1833 	if (level < BTRFS_MAX_LEVEL - 1) {
1834 		parent = path->nodes[level + 1];
1835 		pslot = path->slots[level + 1];
1836 	}
1837 
1838 	/*
1839 	 * deal with the case where there is only one pointer in the root
1840 	 * by promoting the node below to a root
1841 	 */
1842 	if (!parent) {
1843 		struct extent_buffer *child;
1844 
1845 		if (btrfs_header_nritems(mid) != 1)
1846 			return 0;
1847 
1848 		/* promote the child to a root */
1849 		child = btrfs_read_node_slot(mid, 0);
1850 		if (IS_ERR(child)) {
1851 			ret = PTR_ERR(child);
1852 			btrfs_handle_fs_error(fs_info, ret, NULL);
1853 			goto enospc;
1854 		}
1855 
1856 		btrfs_tree_lock(child);
1857 		btrfs_set_lock_blocking_write(child);
1858 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1859 		if (ret) {
1860 			btrfs_tree_unlock(child);
1861 			free_extent_buffer(child);
1862 			goto enospc;
1863 		}
1864 
1865 		ret = tree_mod_log_insert_root(root->node, child, 1);
1866 		BUG_ON(ret < 0);
1867 		rcu_assign_pointer(root->node, child);
1868 
1869 		add_root_to_dirty_list(root);
1870 		btrfs_tree_unlock(child);
1871 
1872 		path->locks[level] = 0;
1873 		path->nodes[level] = NULL;
1874 		btrfs_clean_tree_block(mid);
1875 		btrfs_tree_unlock(mid);
1876 		/* once for the path */
1877 		free_extent_buffer(mid);
1878 
1879 		root_sub_used(root, mid->len);
1880 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1881 		/* once for the root ptr */
1882 		free_extent_buffer_stale(mid);
1883 		return 0;
1884 	}
1885 	if (btrfs_header_nritems(mid) >
1886 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1887 		return 0;
1888 
1889 	left = btrfs_read_node_slot(parent, pslot - 1);
1890 	if (IS_ERR(left))
1891 		left = NULL;
1892 
1893 	if (left) {
1894 		btrfs_tree_lock(left);
1895 		btrfs_set_lock_blocking_write(left);
1896 		wret = btrfs_cow_block(trans, root, left,
1897 				       parent, pslot - 1, &left);
1898 		if (wret) {
1899 			ret = wret;
1900 			goto enospc;
1901 		}
1902 	}
1903 
1904 	right = btrfs_read_node_slot(parent, pslot + 1);
1905 	if (IS_ERR(right))
1906 		right = NULL;
1907 
1908 	if (right) {
1909 		btrfs_tree_lock(right);
1910 		btrfs_set_lock_blocking_write(right);
1911 		wret = btrfs_cow_block(trans, root, right,
1912 				       parent, pslot + 1, &right);
1913 		if (wret) {
1914 			ret = wret;
1915 			goto enospc;
1916 		}
1917 	}
1918 
1919 	/* first, try to make some room in the middle buffer */
1920 	if (left) {
1921 		orig_slot += btrfs_header_nritems(left);
1922 		wret = push_node_left(trans, left, mid, 1);
1923 		if (wret < 0)
1924 			ret = wret;
1925 	}
1926 
1927 	/*
1928 	 * then try to empty the right most buffer into the middle
1929 	 */
1930 	if (right) {
1931 		wret = push_node_left(trans, mid, right, 1);
1932 		if (wret < 0 && wret != -ENOSPC)
1933 			ret = wret;
1934 		if (btrfs_header_nritems(right) == 0) {
1935 			btrfs_clean_tree_block(right);
1936 			btrfs_tree_unlock(right);
1937 			del_ptr(root, path, level + 1, pslot + 1);
1938 			root_sub_used(root, right->len);
1939 			btrfs_free_tree_block(trans, root, right, 0, 1);
1940 			free_extent_buffer_stale(right);
1941 			right = NULL;
1942 		} else {
1943 			struct btrfs_disk_key right_key;
1944 			btrfs_node_key(right, &right_key, 0);
1945 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1946 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1947 			BUG_ON(ret < 0);
1948 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1949 			btrfs_mark_buffer_dirty(parent);
1950 		}
1951 	}
1952 	if (btrfs_header_nritems(mid) == 1) {
1953 		/*
1954 		 * we're not allowed to leave a node with one item in the
1955 		 * tree during a delete.  A deletion from lower in the tree
1956 		 * could try to delete the only pointer in this node.
1957 		 * So, pull some keys from the left.
1958 		 * There has to be a left pointer at this point because
1959 		 * otherwise we would have pulled some pointers from the
1960 		 * right
1961 		 */
1962 		if (!left) {
1963 			ret = -EROFS;
1964 			btrfs_handle_fs_error(fs_info, ret, NULL);
1965 			goto enospc;
1966 		}
1967 		wret = balance_node_right(trans, mid, left);
1968 		if (wret < 0) {
1969 			ret = wret;
1970 			goto enospc;
1971 		}
1972 		if (wret == 1) {
1973 			wret = push_node_left(trans, left, mid, 1);
1974 			if (wret < 0)
1975 				ret = wret;
1976 		}
1977 		BUG_ON(wret == 1);
1978 	}
1979 	if (btrfs_header_nritems(mid) == 0) {
1980 		btrfs_clean_tree_block(mid);
1981 		btrfs_tree_unlock(mid);
1982 		del_ptr(root, path, level + 1, pslot);
1983 		root_sub_used(root, mid->len);
1984 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1985 		free_extent_buffer_stale(mid);
1986 		mid = NULL;
1987 	} else {
1988 		/* update the parent key to reflect our changes */
1989 		struct btrfs_disk_key mid_key;
1990 		btrfs_node_key(mid, &mid_key, 0);
1991 		ret = tree_mod_log_insert_key(parent, pslot,
1992 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1993 		BUG_ON(ret < 0);
1994 		btrfs_set_node_key(parent, &mid_key, pslot);
1995 		btrfs_mark_buffer_dirty(parent);
1996 	}
1997 
1998 	/* update the path */
1999 	if (left) {
2000 		if (btrfs_header_nritems(left) > orig_slot) {
2001 			atomic_inc(&left->refs);
2002 			/* left was locked after cow */
2003 			path->nodes[level] = left;
2004 			path->slots[level + 1] -= 1;
2005 			path->slots[level] = orig_slot;
2006 			if (mid) {
2007 				btrfs_tree_unlock(mid);
2008 				free_extent_buffer(mid);
2009 			}
2010 		} else {
2011 			orig_slot -= btrfs_header_nritems(left);
2012 			path->slots[level] = orig_slot;
2013 		}
2014 	}
2015 	/* double check we haven't messed things up */
2016 	if (orig_ptr !=
2017 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2018 		BUG();
2019 enospc:
2020 	if (right) {
2021 		btrfs_tree_unlock(right);
2022 		free_extent_buffer(right);
2023 	}
2024 	if (left) {
2025 		if (path->nodes[level] != left)
2026 			btrfs_tree_unlock(left);
2027 		free_extent_buffer(left);
2028 	}
2029 	return ret;
2030 }
2031 
2032 /* Node balancing for insertion.  Here we only split or push nodes around
2033  * when they are completely full.  This is also done top down, so we
2034  * have to be pessimistic.
2035  */
2036 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2037 					  struct btrfs_root *root,
2038 					  struct btrfs_path *path, int level)
2039 {
2040 	struct btrfs_fs_info *fs_info = root->fs_info;
2041 	struct extent_buffer *right = NULL;
2042 	struct extent_buffer *mid;
2043 	struct extent_buffer *left = NULL;
2044 	struct extent_buffer *parent = NULL;
2045 	int ret = 0;
2046 	int wret;
2047 	int pslot;
2048 	int orig_slot = path->slots[level];
2049 
2050 	if (level == 0)
2051 		return 1;
2052 
2053 	mid = path->nodes[level];
2054 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2055 
2056 	if (level < BTRFS_MAX_LEVEL - 1) {
2057 		parent = path->nodes[level + 1];
2058 		pslot = path->slots[level + 1];
2059 	}
2060 
2061 	if (!parent)
2062 		return 1;
2063 
2064 	left = btrfs_read_node_slot(parent, pslot - 1);
2065 	if (IS_ERR(left))
2066 		left = NULL;
2067 
2068 	/* first, try to make some room in the middle buffer */
2069 	if (left) {
2070 		u32 left_nr;
2071 
2072 		btrfs_tree_lock(left);
2073 		btrfs_set_lock_blocking_write(left);
2074 
2075 		left_nr = btrfs_header_nritems(left);
2076 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2077 			wret = 1;
2078 		} else {
2079 			ret = btrfs_cow_block(trans, root, left, parent,
2080 					      pslot - 1, &left);
2081 			if (ret)
2082 				wret = 1;
2083 			else {
2084 				wret = push_node_left(trans, left, mid, 0);
2085 			}
2086 		}
2087 		if (wret < 0)
2088 			ret = wret;
2089 		if (wret == 0) {
2090 			struct btrfs_disk_key disk_key;
2091 			orig_slot += left_nr;
2092 			btrfs_node_key(mid, &disk_key, 0);
2093 			ret = tree_mod_log_insert_key(parent, pslot,
2094 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2095 			BUG_ON(ret < 0);
2096 			btrfs_set_node_key(parent, &disk_key, pslot);
2097 			btrfs_mark_buffer_dirty(parent);
2098 			if (btrfs_header_nritems(left) > orig_slot) {
2099 				path->nodes[level] = left;
2100 				path->slots[level + 1] -= 1;
2101 				path->slots[level] = orig_slot;
2102 				btrfs_tree_unlock(mid);
2103 				free_extent_buffer(mid);
2104 			} else {
2105 				orig_slot -=
2106 					btrfs_header_nritems(left);
2107 				path->slots[level] = orig_slot;
2108 				btrfs_tree_unlock(left);
2109 				free_extent_buffer(left);
2110 			}
2111 			return 0;
2112 		}
2113 		btrfs_tree_unlock(left);
2114 		free_extent_buffer(left);
2115 	}
2116 	right = btrfs_read_node_slot(parent, pslot + 1);
2117 	if (IS_ERR(right))
2118 		right = NULL;
2119 
2120 	/*
2121 	 * then try to empty the right most buffer into the middle
2122 	 */
2123 	if (right) {
2124 		u32 right_nr;
2125 
2126 		btrfs_tree_lock(right);
2127 		btrfs_set_lock_blocking_write(right);
2128 
2129 		right_nr = btrfs_header_nritems(right);
2130 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2131 			wret = 1;
2132 		} else {
2133 			ret = btrfs_cow_block(trans, root, right,
2134 					      parent, pslot + 1,
2135 					      &right);
2136 			if (ret)
2137 				wret = 1;
2138 			else {
2139 				wret = balance_node_right(trans, right, mid);
2140 			}
2141 		}
2142 		if (wret < 0)
2143 			ret = wret;
2144 		if (wret == 0) {
2145 			struct btrfs_disk_key disk_key;
2146 
2147 			btrfs_node_key(right, &disk_key, 0);
2148 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2149 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2150 			BUG_ON(ret < 0);
2151 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2152 			btrfs_mark_buffer_dirty(parent);
2153 
2154 			if (btrfs_header_nritems(mid) <= orig_slot) {
2155 				path->nodes[level] = right;
2156 				path->slots[level + 1] += 1;
2157 				path->slots[level] = orig_slot -
2158 					btrfs_header_nritems(mid);
2159 				btrfs_tree_unlock(mid);
2160 				free_extent_buffer(mid);
2161 			} else {
2162 				btrfs_tree_unlock(right);
2163 				free_extent_buffer(right);
2164 			}
2165 			return 0;
2166 		}
2167 		btrfs_tree_unlock(right);
2168 		free_extent_buffer(right);
2169 	}
2170 	return 1;
2171 }
2172 
2173 /*
2174  * readahead one full node of leaves, finding things that are close
2175  * to the block in 'slot', and triggering ra on them.
2176  */
2177 static void reada_for_search(struct btrfs_fs_info *fs_info,
2178 			     struct btrfs_path *path,
2179 			     int level, int slot, u64 objectid)
2180 {
2181 	struct extent_buffer *node;
2182 	struct btrfs_disk_key disk_key;
2183 	u32 nritems;
2184 	u64 search;
2185 	u64 target;
2186 	u64 nread = 0;
2187 	struct extent_buffer *eb;
2188 	u32 nr;
2189 	u32 blocksize;
2190 	u32 nscan = 0;
2191 
2192 	if (level != 1)
2193 		return;
2194 
2195 	if (!path->nodes[level])
2196 		return;
2197 
2198 	node = path->nodes[level];
2199 
2200 	search = btrfs_node_blockptr(node, slot);
2201 	blocksize = fs_info->nodesize;
2202 	eb = find_extent_buffer(fs_info, search);
2203 	if (eb) {
2204 		free_extent_buffer(eb);
2205 		return;
2206 	}
2207 
2208 	target = search;
2209 
2210 	nritems = btrfs_header_nritems(node);
2211 	nr = slot;
2212 
2213 	while (1) {
2214 		if (path->reada == READA_BACK) {
2215 			if (nr == 0)
2216 				break;
2217 			nr--;
2218 		} else if (path->reada == READA_FORWARD) {
2219 			nr++;
2220 			if (nr >= nritems)
2221 				break;
2222 		}
2223 		if (path->reada == READA_BACK && objectid) {
2224 			btrfs_node_key(node, &disk_key, nr);
2225 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2226 				break;
2227 		}
2228 		search = btrfs_node_blockptr(node, nr);
2229 		if ((search <= target && target - search <= 65536) ||
2230 		    (search > target && search - target <= 65536)) {
2231 			readahead_tree_block(fs_info, search);
2232 			nread += blocksize;
2233 		}
2234 		nscan++;
2235 		if ((nread > 65536 || nscan > 32))
2236 			break;
2237 	}
2238 }
2239 
2240 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2241 				       struct btrfs_path *path, int level)
2242 {
2243 	int slot;
2244 	int nritems;
2245 	struct extent_buffer *parent;
2246 	struct extent_buffer *eb;
2247 	u64 gen;
2248 	u64 block1 = 0;
2249 	u64 block2 = 0;
2250 
2251 	parent = path->nodes[level + 1];
2252 	if (!parent)
2253 		return;
2254 
2255 	nritems = btrfs_header_nritems(parent);
2256 	slot = path->slots[level + 1];
2257 
2258 	if (slot > 0) {
2259 		block1 = btrfs_node_blockptr(parent, slot - 1);
2260 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2261 		eb = find_extent_buffer(fs_info, block1);
2262 		/*
2263 		 * if we get -eagain from btrfs_buffer_uptodate, we
2264 		 * don't want to return eagain here.  That will loop
2265 		 * forever
2266 		 */
2267 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2268 			block1 = 0;
2269 		free_extent_buffer(eb);
2270 	}
2271 	if (slot + 1 < nritems) {
2272 		block2 = btrfs_node_blockptr(parent, slot + 1);
2273 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2274 		eb = find_extent_buffer(fs_info, block2);
2275 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2276 			block2 = 0;
2277 		free_extent_buffer(eb);
2278 	}
2279 
2280 	if (block1)
2281 		readahead_tree_block(fs_info, block1);
2282 	if (block2)
2283 		readahead_tree_block(fs_info, block2);
2284 }
2285 
2286 
2287 /*
2288  * when we walk down the tree, it is usually safe to unlock the higher layers
2289  * in the tree.  The exceptions are when our path goes through slot 0, because
2290  * operations on the tree might require changing key pointers higher up in the
2291  * tree.
2292  *
2293  * callers might also have set path->keep_locks, which tells this code to keep
2294  * the lock if the path points to the last slot in the block.  This is part of
2295  * walking through the tree, and selecting the next slot in the higher block.
2296  *
2297  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2298  * if lowest_unlock is 1, level 0 won't be unlocked
2299  */
2300 static noinline void unlock_up(struct btrfs_path *path, int level,
2301 			       int lowest_unlock, int min_write_lock_level,
2302 			       int *write_lock_level)
2303 {
2304 	int i;
2305 	int skip_level = level;
2306 	int no_skips = 0;
2307 	struct extent_buffer *t;
2308 
2309 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2310 		if (!path->nodes[i])
2311 			break;
2312 		if (!path->locks[i])
2313 			break;
2314 		if (!no_skips && path->slots[i] == 0) {
2315 			skip_level = i + 1;
2316 			continue;
2317 		}
2318 		if (!no_skips && path->keep_locks) {
2319 			u32 nritems;
2320 			t = path->nodes[i];
2321 			nritems = btrfs_header_nritems(t);
2322 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2323 				skip_level = i + 1;
2324 				continue;
2325 			}
2326 		}
2327 		if (skip_level < i && i >= lowest_unlock)
2328 			no_skips = 1;
2329 
2330 		t = path->nodes[i];
2331 		if (i >= lowest_unlock && i > skip_level) {
2332 			btrfs_tree_unlock_rw(t, path->locks[i]);
2333 			path->locks[i] = 0;
2334 			if (write_lock_level &&
2335 			    i > min_write_lock_level &&
2336 			    i <= *write_lock_level) {
2337 				*write_lock_level = i - 1;
2338 			}
2339 		}
2340 	}
2341 }
2342 
2343 /*
2344  * helper function for btrfs_search_slot.  The goal is to find a block
2345  * in cache without setting the path to blocking.  If we find the block
2346  * we return zero and the path is unchanged.
2347  *
2348  * If we can't find the block, we set the path blocking and do some
2349  * reada.  -EAGAIN is returned and the search must be repeated.
2350  */
2351 static int
2352 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2353 		      struct extent_buffer **eb_ret, int level, int slot,
2354 		      const struct btrfs_key *key)
2355 {
2356 	struct btrfs_fs_info *fs_info = root->fs_info;
2357 	u64 blocknr;
2358 	u64 gen;
2359 	struct extent_buffer *tmp;
2360 	struct btrfs_key first_key;
2361 	int ret;
2362 	int parent_level;
2363 
2364 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
2365 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
2366 	parent_level = btrfs_header_level(*eb_ret);
2367 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2368 
2369 	tmp = find_extent_buffer(fs_info, blocknr);
2370 	if (tmp) {
2371 		/* first we do an atomic uptodate check */
2372 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2373 			/*
2374 			 * Do extra check for first_key, eb can be stale due to
2375 			 * being cached, read from scrub, or have multiple
2376 			 * parents (shared tree blocks).
2377 			 */
2378 			if (btrfs_verify_level_key(tmp,
2379 					parent_level - 1, &first_key, gen)) {
2380 				free_extent_buffer(tmp);
2381 				return -EUCLEAN;
2382 			}
2383 			*eb_ret = tmp;
2384 			return 0;
2385 		}
2386 
2387 		/* the pages were up to date, but we failed
2388 		 * the generation number check.  Do a full
2389 		 * read for the generation number that is correct.
2390 		 * We must do this without dropping locks so
2391 		 * we can trust our generation number
2392 		 */
2393 		btrfs_set_path_blocking(p);
2394 
2395 		/* now we're allowed to do a blocking uptodate check */
2396 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2397 		if (!ret) {
2398 			*eb_ret = tmp;
2399 			return 0;
2400 		}
2401 		free_extent_buffer(tmp);
2402 		btrfs_release_path(p);
2403 		return -EIO;
2404 	}
2405 
2406 	/*
2407 	 * reduce lock contention at high levels
2408 	 * of the btree by dropping locks before
2409 	 * we read.  Don't release the lock on the current
2410 	 * level because we need to walk this node to figure
2411 	 * out which blocks to read.
2412 	 */
2413 	btrfs_unlock_up_safe(p, level + 1);
2414 	btrfs_set_path_blocking(p);
2415 
2416 	if (p->reada != READA_NONE)
2417 		reada_for_search(fs_info, p, level, slot, key->objectid);
2418 
2419 	ret = -EAGAIN;
2420 	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2421 			      &first_key);
2422 	if (!IS_ERR(tmp)) {
2423 		/*
2424 		 * If the read above didn't mark this buffer up to date,
2425 		 * it will never end up being up to date.  Set ret to EIO now
2426 		 * and give up so that our caller doesn't loop forever
2427 		 * on our EAGAINs.
2428 		 */
2429 		if (!extent_buffer_uptodate(tmp))
2430 			ret = -EIO;
2431 		free_extent_buffer(tmp);
2432 	} else {
2433 		ret = PTR_ERR(tmp);
2434 	}
2435 
2436 	btrfs_release_path(p);
2437 	return ret;
2438 }
2439 
2440 /*
2441  * helper function for btrfs_search_slot.  This does all of the checks
2442  * for node-level blocks and does any balancing required based on
2443  * the ins_len.
2444  *
2445  * If no extra work was required, zero is returned.  If we had to
2446  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2447  * start over
2448  */
2449 static int
2450 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2451 		       struct btrfs_root *root, struct btrfs_path *p,
2452 		       struct extent_buffer *b, int level, int ins_len,
2453 		       int *write_lock_level)
2454 {
2455 	struct btrfs_fs_info *fs_info = root->fs_info;
2456 	int ret;
2457 
2458 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2459 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2460 		int sret;
2461 
2462 		if (*write_lock_level < level + 1) {
2463 			*write_lock_level = level + 1;
2464 			btrfs_release_path(p);
2465 			goto again;
2466 		}
2467 
2468 		btrfs_set_path_blocking(p);
2469 		reada_for_balance(fs_info, p, level);
2470 		sret = split_node(trans, root, p, level);
2471 
2472 		BUG_ON(sret > 0);
2473 		if (sret) {
2474 			ret = sret;
2475 			goto done;
2476 		}
2477 		b = p->nodes[level];
2478 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2479 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2480 		int sret;
2481 
2482 		if (*write_lock_level < level + 1) {
2483 			*write_lock_level = level + 1;
2484 			btrfs_release_path(p);
2485 			goto again;
2486 		}
2487 
2488 		btrfs_set_path_blocking(p);
2489 		reada_for_balance(fs_info, p, level);
2490 		sret = balance_level(trans, root, p, level);
2491 
2492 		if (sret) {
2493 			ret = sret;
2494 			goto done;
2495 		}
2496 		b = p->nodes[level];
2497 		if (!b) {
2498 			btrfs_release_path(p);
2499 			goto again;
2500 		}
2501 		BUG_ON(btrfs_header_nritems(b) == 1);
2502 	}
2503 	return 0;
2504 
2505 again:
2506 	ret = -EAGAIN;
2507 done:
2508 	return ret;
2509 }
2510 
2511 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2512 		u64 iobjectid, u64 ioff, u8 key_type,
2513 		struct btrfs_key *found_key)
2514 {
2515 	int ret;
2516 	struct btrfs_key key;
2517 	struct extent_buffer *eb;
2518 
2519 	ASSERT(path);
2520 	ASSERT(found_key);
2521 
2522 	key.type = key_type;
2523 	key.objectid = iobjectid;
2524 	key.offset = ioff;
2525 
2526 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2527 	if (ret < 0)
2528 		return ret;
2529 
2530 	eb = path->nodes[0];
2531 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2532 		ret = btrfs_next_leaf(fs_root, path);
2533 		if (ret)
2534 			return ret;
2535 		eb = path->nodes[0];
2536 	}
2537 
2538 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2539 	if (found_key->type != key.type ||
2540 			found_key->objectid != key.objectid)
2541 		return 1;
2542 
2543 	return 0;
2544 }
2545 
2546 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2547 							struct btrfs_path *p,
2548 							int write_lock_level)
2549 {
2550 	struct btrfs_fs_info *fs_info = root->fs_info;
2551 	struct extent_buffer *b;
2552 	int root_lock;
2553 	int level = 0;
2554 
2555 	/* We try very hard to do read locks on the root */
2556 	root_lock = BTRFS_READ_LOCK;
2557 
2558 	if (p->search_commit_root) {
2559 		/*
2560 		 * The commit roots are read only so we always do read locks,
2561 		 * and we always must hold the commit_root_sem when doing
2562 		 * searches on them, the only exception is send where we don't
2563 		 * want to block transaction commits for a long time, so
2564 		 * we need to clone the commit root in order to avoid races
2565 		 * with transaction commits that create a snapshot of one of
2566 		 * the roots used by a send operation.
2567 		 */
2568 		if (p->need_commit_sem) {
2569 			down_read(&fs_info->commit_root_sem);
2570 			b = btrfs_clone_extent_buffer(root->commit_root);
2571 			up_read(&fs_info->commit_root_sem);
2572 			if (!b)
2573 				return ERR_PTR(-ENOMEM);
2574 
2575 		} else {
2576 			b = root->commit_root;
2577 			atomic_inc(&b->refs);
2578 		}
2579 		level = btrfs_header_level(b);
2580 		/*
2581 		 * Ensure that all callers have set skip_locking when
2582 		 * p->search_commit_root = 1.
2583 		 */
2584 		ASSERT(p->skip_locking == 1);
2585 
2586 		goto out;
2587 	}
2588 
2589 	if (p->skip_locking) {
2590 		b = btrfs_root_node(root);
2591 		level = btrfs_header_level(b);
2592 		goto out;
2593 	}
2594 
2595 	/*
2596 	 * If the level is set to maximum, we can skip trying to get the read
2597 	 * lock.
2598 	 */
2599 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2600 		/*
2601 		 * We don't know the level of the root node until we actually
2602 		 * have it read locked
2603 		 */
2604 		b = btrfs_read_lock_root_node(root);
2605 		level = btrfs_header_level(b);
2606 		if (level > write_lock_level)
2607 			goto out;
2608 
2609 		/* Whoops, must trade for write lock */
2610 		btrfs_tree_read_unlock(b);
2611 		free_extent_buffer(b);
2612 	}
2613 
2614 	b = btrfs_lock_root_node(root);
2615 	root_lock = BTRFS_WRITE_LOCK;
2616 
2617 	/* The level might have changed, check again */
2618 	level = btrfs_header_level(b);
2619 
2620 out:
2621 	p->nodes[level] = b;
2622 	if (!p->skip_locking)
2623 		p->locks[level] = root_lock;
2624 	/*
2625 	 * Callers are responsible for dropping b's references.
2626 	 */
2627 	return b;
2628 }
2629 
2630 
2631 /*
2632  * btrfs_search_slot - look for a key in a tree and perform necessary
2633  * modifications to preserve tree invariants.
2634  *
2635  * @trans:	Handle of transaction, used when modifying the tree
2636  * @p:		Holds all btree nodes along the search path
2637  * @root:	The root node of the tree
2638  * @key:	The key we are looking for
2639  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2640  *		deletions it's -1. 0 for plain searches
2641  * @cow:	boolean should CoW operations be performed. Must always be 1
2642  *		when modifying the tree.
2643  *
2644  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2645  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2646  *
2647  * If @key is found, 0 is returned and you can find the item in the leaf level
2648  * of the path (level 0)
2649  *
2650  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2651  * points to the slot where it should be inserted
2652  *
2653  * If an error is encountered while searching the tree a negative error number
2654  * is returned
2655  */
2656 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2657 		      const struct btrfs_key *key, struct btrfs_path *p,
2658 		      int ins_len, int cow)
2659 {
2660 	struct extent_buffer *b;
2661 	int slot;
2662 	int ret;
2663 	int err;
2664 	int level;
2665 	int lowest_unlock = 1;
2666 	/* everything at write_lock_level or lower must be write locked */
2667 	int write_lock_level = 0;
2668 	u8 lowest_level = 0;
2669 	int min_write_lock_level;
2670 	int prev_cmp;
2671 
2672 	lowest_level = p->lowest_level;
2673 	WARN_ON(lowest_level && ins_len > 0);
2674 	WARN_ON(p->nodes[0] != NULL);
2675 	BUG_ON(!cow && ins_len);
2676 
2677 	if (ins_len < 0) {
2678 		lowest_unlock = 2;
2679 
2680 		/* when we are removing items, we might have to go up to level
2681 		 * two as we update tree pointers  Make sure we keep write
2682 		 * for those levels as well
2683 		 */
2684 		write_lock_level = 2;
2685 	} else if (ins_len > 0) {
2686 		/*
2687 		 * for inserting items, make sure we have a write lock on
2688 		 * level 1 so we can update keys
2689 		 */
2690 		write_lock_level = 1;
2691 	}
2692 
2693 	if (!cow)
2694 		write_lock_level = -1;
2695 
2696 	if (cow && (p->keep_locks || p->lowest_level))
2697 		write_lock_level = BTRFS_MAX_LEVEL;
2698 
2699 	min_write_lock_level = write_lock_level;
2700 
2701 again:
2702 	prev_cmp = -1;
2703 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2704 	if (IS_ERR(b)) {
2705 		ret = PTR_ERR(b);
2706 		goto done;
2707 	}
2708 
2709 	while (b) {
2710 		int dec = 0;
2711 
2712 		level = btrfs_header_level(b);
2713 
2714 		if (cow) {
2715 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2716 
2717 			/*
2718 			 * if we don't really need to cow this block
2719 			 * then we don't want to set the path blocking,
2720 			 * so we test it here
2721 			 */
2722 			if (!should_cow_block(trans, root, b)) {
2723 				trans->dirty = true;
2724 				goto cow_done;
2725 			}
2726 
2727 			/*
2728 			 * must have write locks on this node and the
2729 			 * parent
2730 			 */
2731 			if (level > write_lock_level ||
2732 			    (level + 1 > write_lock_level &&
2733 			    level + 1 < BTRFS_MAX_LEVEL &&
2734 			    p->nodes[level + 1])) {
2735 				write_lock_level = level + 1;
2736 				btrfs_release_path(p);
2737 				goto again;
2738 			}
2739 
2740 			btrfs_set_path_blocking(p);
2741 			if (last_level)
2742 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2743 						      &b);
2744 			else
2745 				err = btrfs_cow_block(trans, root, b,
2746 						      p->nodes[level + 1],
2747 						      p->slots[level + 1], &b);
2748 			if (err) {
2749 				ret = err;
2750 				goto done;
2751 			}
2752 		}
2753 cow_done:
2754 		p->nodes[level] = b;
2755 		/*
2756 		 * Leave path with blocking locks to avoid massive
2757 		 * lock context switch, this is made on purpose.
2758 		 */
2759 
2760 		/*
2761 		 * we have a lock on b and as long as we aren't changing
2762 		 * the tree, there is no way to for the items in b to change.
2763 		 * It is safe to drop the lock on our parent before we
2764 		 * go through the expensive btree search on b.
2765 		 *
2766 		 * If we're inserting or deleting (ins_len != 0), then we might
2767 		 * be changing slot zero, which may require changing the parent.
2768 		 * So, we can't drop the lock until after we know which slot
2769 		 * we're operating on.
2770 		 */
2771 		if (!ins_len && !p->keep_locks) {
2772 			int u = level + 1;
2773 
2774 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2775 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2776 				p->locks[u] = 0;
2777 			}
2778 		}
2779 
2780 		/*
2781 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2782 		 * we can safely assume the target key will always be in slot 0
2783 		 * on lower levels due to the invariants BTRFS' btree provides,
2784 		 * namely that a btrfs_key_ptr entry always points to the
2785 		 * lowest key in the child node, thus we can skip searching
2786 		 * lower levels
2787 		 */
2788 		if (prev_cmp == 0) {
2789 			slot = 0;
2790 			ret = 0;
2791 		} else {
2792 			ret = btrfs_bin_search(b, key, &slot);
2793 			prev_cmp = ret;
2794 			if (ret < 0)
2795 				goto done;
2796 		}
2797 
2798 		if (level == 0) {
2799 			p->slots[level] = slot;
2800 			if (ins_len > 0 &&
2801 			    btrfs_leaf_free_space(b) < ins_len) {
2802 				if (write_lock_level < 1) {
2803 					write_lock_level = 1;
2804 					btrfs_release_path(p);
2805 					goto again;
2806 				}
2807 
2808 				btrfs_set_path_blocking(p);
2809 				err = split_leaf(trans, root, key,
2810 						 p, ins_len, ret == 0);
2811 
2812 				BUG_ON(err > 0);
2813 				if (err) {
2814 					ret = err;
2815 					goto done;
2816 				}
2817 			}
2818 			if (!p->search_for_split)
2819 				unlock_up(p, level, lowest_unlock,
2820 					  min_write_lock_level, NULL);
2821 			goto done;
2822 		}
2823 		if (ret && slot > 0) {
2824 			dec = 1;
2825 			slot--;
2826 		}
2827 		p->slots[level] = slot;
2828 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2829 					     &write_lock_level);
2830 		if (err == -EAGAIN)
2831 			goto again;
2832 		if (err) {
2833 			ret = err;
2834 			goto done;
2835 		}
2836 		b = p->nodes[level];
2837 		slot = p->slots[level];
2838 
2839 		/*
2840 		 * Slot 0 is special, if we change the key we have to update
2841 		 * the parent pointer which means we must have a write lock on
2842 		 * the parent
2843 		 */
2844 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2845 			write_lock_level = level + 1;
2846 			btrfs_release_path(p);
2847 			goto again;
2848 		}
2849 
2850 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2851 			  &write_lock_level);
2852 
2853 		if (level == lowest_level) {
2854 			if (dec)
2855 				p->slots[level]++;
2856 			goto done;
2857 		}
2858 
2859 		err = read_block_for_search(root, p, &b, level, slot, key);
2860 		if (err == -EAGAIN)
2861 			goto again;
2862 		if (err) {
2863 			ret = err;
2864 			goto done;
2865 		}
2866 
2867 		if (!p->skip_locking) {
2868 			level = btrfs_header_level(b);
2869 			if (level <= write_lock_level) {
2870 				if (!btrfs_try_tree_write_lock(b)) {
2871 					btrfs_set_path_blocking(p);
2872 					btrfs_tree_lock(b);
2873 				}
2874 				p->locks[level] = BTRFS_WRITE_LOCK;
2875 			} else {
2876 				if (!btrfs_tree_read_lock_atomic(b)) {
2877 					btrfs_set_path_blocking(p);
2878 					btrfs_tree_read_lock(b);
2879 				}
2880 				p->locks[level] = BTRFS_READ_LOCK;
2881 			}
2882 			p->nodes[level] = b;
2883 		}
2884 	}
2885 	ret = 1;
2886 done:
2887 	/*
2888 	 * we don't really know what they plan on doing with the path
2889 	 * from here on, so for now just mark it as blocking
2890 	 */
2891 	if (!p->leave_spinning)
2892 		btrfs_set_path_blocking(p);
2893 	if (ret < 0 && !p->skip_release_on_error)
2894 		btrfs_release_path(p);
2895 	return ret;
2896 }
2897 
2898 /*
2899  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2900  * current state of the tree together with the operations recorded in the tree
2901  * modification log to search for the key in a previous version of this tree, as
2902  * denoted by the time_seq parameter.
2903  *
2904  * Naturally, there is no support for insert, delete or cow operations.
2905  *
2906  * The resulting path and return value will be set up as if we called
2907  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2908  */
2909 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2910 			  struct btrfs_path *p, u64 time_seq)
2911 {
2912 	struct btrfs_fs_info *fs_info = root->fs_info;
2913 	struct extent_buffer *b;
2914 	int slot;
2915 	int ret;
2916 	int err;
2917 	int level;
2918 	int lowest_unlock = 1;
2919 	u8 lowest_level = 0;
2920 
2921 	lowest_level = p->lowest_level;
2922 	WARN_ON(p->nodes[0] != NULL);
2923 
2924 	if (p->search_commit_root) {
2925 		BUG_ON(time_seq);
2926 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2927 	}
2928 
2929 again:
2930 	b = get_old_root(root, time_seq);
2931 	if (!b) {
2932 		ret = -EIO;
2933 		goto done;
2934 	}
2935 	level = btrfs_header_level(b);
2936 	p->locks[level] = BTRFS_READ_LOCK;
2937 
2938 	while (b) {
2939 		int dec = 0;
2940 
2941 		level = btrfs_header_level(b);
2942 		p->nodes[level] = b;
2943 
2944 		/*
2945 		 * we have a lock on b and as long as we aren't changing
2946 		 * the tree, there is no way to for the items in b to change.
2947 		 * It is safe to drop the lock on our parent before we
2948 		 * go through the expensive btree search on b.
2949 		 */
2950 		btrfs_unlock_up_safe(p, level + 1);
2951 
2952 		ret = btrfs_bin_search(b, key, &slot);
2953 		if (ret < 0)
2954 			goto done;
2955 
2956 		if (level == 0) {
2957 			p->slots[level] = slot;
2958 			unlock_up(p, level, lowest_unlock, 0, NULL);
2959 			goto done;
2960 		}
2961 
2962 		if (ret && slot > 0) {
2963 			dec = 1;
2964 			slot--;
2965 		}
2966 		p->slots[level] = slot;
2967 		unlock_up(p, level, lowest_unlock, 0, NULL);
2968 
2969 		if (level == lowest_level) {
2970 			if (dec)
2971 				p->slots[level]++;
2972 			goto done;
2973 		}
2974 
2975 		err = read_block_for_search(root, p, &b, level, slot, key);
2976 		if (err == -EAGAIN)
2977 			goto again;
2978 		if (err) {
2979 			ret = err;
2980 			goto done;
2981 		}
2982 
2983 		level = btrfs_header_level(b);
2984 		if (!btrfs_tree_read_lock_atomic(b)) {
2985 			btrfs_set_path_blocking(p);
2986 			btrfs_tree_read_lock(b);
2987 		}
2988 		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2989 		if (!b) {
2990 			ret = -ENOMEM;
2991 			goto done;
2992 		}
2993 		p->locks[level] = BTRFS_READ_LOCK;
2994 		p->nodes[level] = b;
2995 	}
2996 	ret = 1;
2997 done:
2998 	if (!p->leave_spinning)
2999 		btrfs_set_path_blocking(p);
3000 	if (ret < 0)
3001 		btrfs_release_path(p);
3002 
3003 	return ret;
3004 }
3005 
3006 /*
3007  * helper to use instead of search slot if no exact match is needed but
3008  * instead the next or previous item should be returned.
3009  * When find_higher is true, the next higher item is returned, the next lower
3010  * otherwise.
3011  * When return_any and find_higher are both true, and no higher item is found,
3012  * return the next lower instead.
3013  * When return_any is true and find_higher is false, and no lower item is found,
3014  * return the next higher instead.
3015  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3016  * < 0 on error
3017  */
3018 int btrfs_search_slot_for_read(struct btrfs_root *root,
3019 			       const struct btrfs_key *key,
3020 			       struct btrfs_path *p, int find_higher,
3021 			       int return_any)
3022 {
3023 	int ret;
3024 	struct extent_buffer *leaf;
3025 
3026 again:
3027 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3028 	if (ret <= 0)
3029 		return ret;
3030 	/*
3031 	 * a return value of 1 means the path is at the position where the
3032 	 * item should be inserted. Normally this is the next bigger item,
3033 	 * but in case the previous item is the last in a leaf, path points
3034 	 * to the first free slot in the previous leaf, i.e. at an invalid
3035 	 * item.
3036 	 */
3037 	leaf = p->nodes[0];
3038 
3039 	if (find_higher) {
3040 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3041 			ret = btrfs_next_leaf(root, p);
3042 			if (ret <= 0)
3043 				return ret;
3044 			if (!return_any)
3045 				return 1;
3046 			/*
3047 			 * no higher item found, return the next
3048 			 * lower instead
3049 			 */
3050 			return_any = 0;
3051 			find_higher = 0;
3052 			btrfs_release_path(p);
3053 			goto again;
3054 		}
3055 	} else {
3056 		if (p->slots[0] == 0) {
3057 			ret = btrfs_prev_leaf(root, p);
3058 			if (ret < 0)
3059 				return ret;
3060 			if (!ret) {
3061 				leaf = p->nodes[0];
3062 				if (p->slots[0] == btrfs_header_nritems(leaf))
3063 					p->slots[0]--;
3064 				return 0;
3065 			}
3066 			if (!return_any)
3067 				return 1;
3068 			/*
3069 			 * no lower item found, return the next
3070 			 * higher instead
3071 			 */
3072 			return_any = 0;
3073 			find_higher = 1;
3074 			btrfs_release_path(p);
3075 			goto again;
3076 		} else {
3077 			--p->slots[0];
3078 		}
3079 	}
3080 	return 0;
3081 }
3082 
3083 /*
3084  * adjust the pointers going up the tree, starting at level
3085  * making sure the right key of each node is points to 'key'.
3086  * This is used after shifting pointers to the left, so it stops
3087  * fixing up pointers when a given leaf/node is not in slot 0 of the
3088  * higher levels
3089  *
3090  */
3091 static void fixup_low_keys(struct btrfs_path *path,
3092 			   struct btrfs_disk_key *key, int level)
3093 {
3094 	int i;
3095 	struct extent_buffer *t;
3096 	int ret;
3097 
3098 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3099 		int tslot = path->slots[i];
3100 
3101 		if (!path->nodes[i])
3102 			break;
3103 		t = path->nodes[i];
3104 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3105 				GFP_ATOMIC);
3106 		BUG_ON(ret < 0);
3107 		btrfs_set_node_key(t, key, tslot);
3108 		btrfs_mark_buffer_dirty(path->nodes[i]);
3109 		if (tslot != 0)
3110 			break;
3111 	}
3112 }
3113 
3114 /*
3115  * update item key.
3116  *
3117  * This function isn't completely safe. It's the caller's responsibility
3118  * that the new key won't break the order
3119  */
3120 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3121 			     struct btrfs_path *path,
3122 			     const struct btrfs_key *new_key)
3123 {
3124 	struct btrfs_disk_key disk_key;
3125 	struct extent_buffer *eb;
3126 	int slot;
3127 
3128 	eb = path->nodes[0];
3129 	slot = path->slots[0];
3130 	if (slot > 0) {
3131 		btrfs_item_key(eb, &disk_key, slot - 1);
3132 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3133 			btrfs_crit(fs_info,
3134 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3135 				   slot, btrfs_disk_key_objectid(&disk_key),
3136 				   btrfs_disk_key_type(&disk_key),
3137 				   btrfs_disk_key_offset(&disk_key),
3138 				   new_key->objectid, new_key->type,
3139 				   new_key->offset);
3140 			btrfs_print_leaf(eb);
3141 			BUG();
3142 		}
3143 	}
3144 	if (slot < btrfs_header_nritems(eb) - 1) {
3145 		btrfs_item_key(eb, &disk_key, slot + 1);
3146 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3147 			btrfs_crit(fs_info,
3148 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3149 				   slot, btrfs_disk_key_objectid(&disk_key),
3150 				   btrfs_disk_key_type(&disk_key),
3151 				   btrfs_disk_key_offset(&disk_key),
3152 				   new_key->objectid, new_key->type,
3153 				   new_key->offset);
3154 			btrfs_print_leaf(eb);
3155 			BUG();
3156 		}
3157 	}
3158 
3159 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3160 	btrfs_set_item_key(eb, &disk_key, slot);
3161 	btrfs_mark_buffer_dirty(eb);
3162 	if (slot == 0)
3163 		fixup_low_keys(path, &disk_key, 1);
3164 }
3165 
3166 /*
3167  * try to push data from one node into the next node left in the
3168  * tree.
3169  *
3170  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3171  * error, and > 0 if there was no room in the left hand block.
3172  */
3173 static int push_node_left(struct btrfs_trans_handle *trans,
3174 			  struct extent_buffer *dst,
3175 			  struct extent_buffer *src, int empty)
3176 {
3177 	struct btrfs_fs_info *fs_info = trans->fs_info;
3178 	int push_items = 0;
3179 	int src_nritems;
3180 	int dst_nritems;
3181 	int ret = 0;
3182 
3183 	src_nritems = btrfs_header_nritems(src);
3184 	dst_nritems = btrfs_header_nritems(dst);
3185 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3186 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3187 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3188 
3189 	if (!empty && src_nritems <= 8)
3190 		return 1;
3191 
3192 	if (push_items <= 0)
3193 		return 1;
3194 
3195 	if (empty) {
3196 		push_items = min(src_nritems, push_items);
3197 		if (push_items < src_nritems) {
3198 			/* leave at least 8 pointers in the node if
3199 			 * we aren't going to empty it
3200 			 */
3201 			if (src_nritems - push_items < 8) {
3202 				if (push_items <= 8)
3203 					return 1;
3204 				push_items -= 8;
3205 			}
3206 		}
3207 	} else
3208 		push_items = min(src_nritems - 8, push_items);
3209 
3210 	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3211 	if (ret) {
3212 		btrfs_abort_transaction(trans, ret);
3213 		return ret;
3214 	}
3215 	copy_extent_buffer(dst, src,
3216 			   btrfs_node_key_ptr_offset(dst_nritems),
3217 			   btrfs_node_key_ptr_offset(0),
3218 			   push_items * sizeof(struct btrfs_key_ptr));
3219 
3220 	if (push_items < src_nritems) {
3221 		/*
3222 		 * Don't call tree_mod_log_insert_move here, key removal was
3223 		 * already fully logged by tree_mod_log_eb_copy above.
3224 		 */
3225 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3226 				      btrfs_node_key_ptr_offset(push_items),
3227 				      (src_nritems - push_items) *
3228 				      sizeof(struct btrfs_key_ptr));
3229 	}
3230 	btrfs_set_header_nritems(src, src_nritems - push_items);
3231 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3232 	btrfs_mark_buffer_dirty(src);
3233 	btrfs_mark_buffer_dirty(dst);
3234 
3235 	return ret;
3236 }
3237 
3238 /*
3239  * try to push data from one node into the next node right in the
3240  * tree.
3241  *
3242  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3243  * error, and > 0 if there was no room in the right hand block.
3244  *
3245  * this will  only push up to 1/2 the contents of the left node over
3246  */
3247 static int balance_node_right(struct btrfs_trans_handle *trans,
3248 			      struct extent_buffer *dst,
3249 			      struct extent_buffer *src)
3250 {
3251 	struct btrfs_fs_info *fs_info = trans->fs_info;
3252 	int push_items = 0;
3253 	int max_push;
3254 	int src_nritems;
3255 	int dst_nritems;
3256 	int ret = 0;
3257 
3258 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3259 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3260 
3261 	src_nritems = btrfs_header_nritems(src);
3262 	dst_nritems = btrfs_header_nritems(dst);
3263 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3264 	if (push_items <= 0)
3265 		return 1;
3266 
3267 	if (src_nritems < 4)
3268 		return 1;
3269 
3270 	max_push = src_nritems / 2 + 1;
3271 	/* don't try to empty the node */
3272 	if (max_push >= src_nritems)
3273 		return 1;
3274 
3275 	if (max_push < push_items)
3276 		push_items = max_push;
3277 
3278 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3279 	BUG_ON(ret < 0);
3280 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3281 				      btrfs_node_key_ptr_offset(0),
3282 				      (dst_nritems) *
3283 				      sizeof(struct btrfs_key_ptr));
3284 
3285 	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3286 				   push_items);
3287 	if (ret) {
3288 		btrfs_abort_transaction(trans, ret);
3289 		return ret;
3290 	}
3291 	copy_extent_buffer(dst, src,
3292 			   btrfs_node_key_ptr_offset(0),
3293 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3294 			   push_items * sizeof(struct btrfs_key_ptr));
3295 
3296 	btrfs_set_header_nritems(src, src_nritems - push_items);
3297 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3298 
3299 	btrfs_mark_buffer_dirty(src);
3300 	btrfs_mark_buffer_dirty(dst);
3301 
3302 	return ret;
3303 }
3304 
3305 /*
3306  * helper function to insert a new root level in the tree.
3307  * A new node is allocated, and a single item is inserted to
3308  * point to the existing root
3309  *
3310  * returns zero on success or < 0 on failure.
3311  */
3312 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3313 			   struct btrfs_root *root,
3314 			   struct btrfs_path *path, int level)
3315 {
3316 	struct btrfs_fs_info *fs_info = root->fs_info;
3317 	u64 lower_gen;
3318 	struct extent_buffer *lower;
3319 	struct extent_buffer *c;
3320 	struct extent_buffer *old;
3321 	struct btrfs_disk_key lower_key;
3322 	int ret;
3323 
3324 	BUG_ON(path->nodes[level]);
3325 	BUG_ON(path->nodes[level-1] != root->node);
3326 
3327 	lower = path->nodes[level-1];
3328 	if (level == 1)
3329 		btrfs_item_key(lower, &lower_key, 0);
3330 	else
3331 		btrfs_node_key(lower, &lower_key, 0);
3332 
3333 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3334 					 root->node->start, 0);
3335 	if (IS_ERR(c))
3336 		return PTR_ERR(c);
3337 
3338 	root_add_used(root, fs_info->nodesize);
3339 
3340 	btrfs_set_header_nritems(c, 1);
3341 	btrfs_set_node_key(c, &lower_key, 0);
3342 	btrfs_set_node_blockptr(c, 0, lower->start);
3343 	lower_gen = btrfs_header_generation(lower);
3344 	WARN_ON(lower_gen != trans->transid);
3345 
3346 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3347 
3348 	btrfs_mark_buffer_dirty(c);
3349 
3350 	old = root->node;
3351 	ret = tree_mod_log_insert_root(root->node, c, 0);
3352 	BUG_ON(ret < 0);
3353 	rcu_assign_pointer(root->node, c);
3354 
3355 	/* the super has an extra ref to root->node */
3356 	free_extent_buffer(old);
3357 
3358 	add_root_to_dirty_list(root);
3359 	atomic_inc(&c->refs);
3360 	path->nodes[level] = c;
3361 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3362 	path->slots[level] = 0;
3363 	return 0;
3364 }
3365 
3366 /*
3367  * worker function to insert a single pointer in a node.
3368  * the node should have enough room for the pointer already
3369  *
3370  * slot and level indicate where you want the key to go, and
3371  * blocknr is the block the key points to.
3372  */
3373 static void insert_ptr(struct btrfs_trans_handle *trans,
3374 		       struct btrfs_path *path,
3375 		       struct btrfs_disk_key *key, u64 bytenr,
3376 		       int slot, int level)
3377 {
3378 	struct extent_buffer *lower;
3379 	int nritems;
3380 	int ret;
3381 
3382 	BUG_ON(!path->nodes[level]);
3383 	btrfs_assert_tree_locked(path->nodes[level]);
3384 	lower = path->nodes[level];
3385 	nritems = btrfs_header_nritems(lower);
3386 	BUG_ON(slot > nritems);
3387 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3388 	if (slot != nritems) {
3389 		if (level) {
3390 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3391 					nritems - slot);
3392 			BUG_ON(ret < 0);
3393 		}
3394 		memmove_extent_buffer(lower,
3395 			      btrfs_node_key_ptr_offset(slot + 1),
3396 			      btrfs_node_key_ptr_offset(slot),
3397 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3398 	}
3399 	if (level) {
3400 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3401 				GFP_NOFS);
3402 		BUG_ON(ret < 0);
3403 	}
3404 	btrfs_set_node_key(lower, key, slot);
3405 	btrfs_set_node_blockptr(lower, slot, bytenr);
3406 	WARN_ON(trans->transid == 0);
3407 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3408 	btrfs_set_header_nritems(lower, nritems + 1);
3409 	btrfs_mark_buffer_dirty(lower);
3410 }
3411 
3412 /*
3413  * split the node at the specified level in path in two.
3414  * The path is corrected to point to the appropriate node after the split
3415  *
3416  * Before splitting this tries to make some room in the node by pushing
3417  * left and right, if either one works, it returns right away.
3418  *
3419  * returns 0 on success and < 0 on failure
3420  */
3421 static noinline int split_node(struct btrfs_trans_handle *trans,
3422 			       struct btrfs_root *root,
3423 			       struct btrfs_path *path, int level)
3424 {
3425 	struct btrfs_fs_info *fs_info = root->fs_info;
3426 	struct extent_buffer *c;
3427 	struct extent_buffer *split;
3428 	struct btrfs_disk_key disk_key;
3429 	int mid;
3430 	int ret;
3431 	u32 c_nritems;
3432 
3433 	c = path->nodes[level];
3434 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3435 	if (c == root->node) {
3436 		/*
3437 		 * trying to split the root, lets make a new one
3438 		 *
3439 		 * tree mod log: We don't log_removal old root in
3440 		 * insert_new_root, because that root buffer will be kept as a
3441 		 * normal node. We are going to log removal of half of the
3442 		 * elements below with tree_mod_log_eb_copy. We're holding a
3443 		 * tree lock on the buffer, which is why we cannot race with
3444 		 * other tree_mod_log users.
3445 		 */
3446 		ret = insert_new_root(trans, root, path, level + 1);
3447 		if (ret)
3448 			return ret;
3449 	} else {
3450 		ret = push_nodes_for_insert(trans, root, path, level);
3451 		c = path->nodes[level];
3452 		if (!ret && btrfs_header_nritems(c) <
3453 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3454 			return 0;
3455 		if (ret < 0)
3456 			return ret;
3457 	}
3458 
3459 	c_nritems = btrfs_header_nritems(c);
3460 	mid = (c_nritems + 1) / 2;
3461 	btrfs_node_key(c, &disk_key, mid);
3462 
3463 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3464 					     c->start, 0);
3465 	if (IS_ERR(split))
3466 		return PTR_ERR(split);
3467 
3468 	root_add_used(root, fs_info->nodesize);
3469 	ASSERT(btrfs_header_level(c) == level);
3470 
3471 	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3472 	if (ret) {
3473 		btrfs_abort_transaction(trans, ret);
3474 		return ret;
3475 	}
3476 	copy_extent_buffer(split, c,
3477 			   btrfs_node_key_ptr_offset(0),
3478 			   btrfs_node_key_ptr_offset(mid),
3479 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3480 	btrfs_set_header_nritems(split, c_nritems - mid);
3481 	btrfs_set_header_nritems(c, mid);
3482 	ret = 0;
3483 
3484 	btrfs_mark_buffer_dirty(c);
3485 	btrfs_mark_buffer_dirty(split);
3486 
3487 	insert_ptr(trans, path, &disk_key, split->start,
3488 		   path->slots[level + 1] + 1, level + 1);
3489 
3490 	if (path->slots[level] >= mid) {
3491 		path->slots[level] -= mid;
3492 		btrfs_tree_unlock(c);
3493 		free_extent_buffer(c);
3494 		path->nodes[level] = split;
3495 		path->slots[level + 1] += 1;
3496 	} else {
3497 		btrfs_tree_unlock(split);
3498 		free_extent_buffer(split);
3499 	}
3500 	return ret;
3501 }
3502 
3503 /*
3504  * how many bytes are required to store the items in a leaf.  start
3505  * and nr indicate which items in the leaf to check.  This totals up the
3506  * space used both by the item structs and the item data
3507  */
3508 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3509 {
3510 	struct btrfs_item *start_item;
3511 	struct btrfs_item *end_item;
3512 	int data_len;
3513 	int nritems = btrfs_header_nritems(l);
3514 	int end = min(nritems, start + nr) - 1;
3515 
3516 	if (!nr)
3517 		return 0;
3518 	start_item = btrfs_item_nr(start);
3519 	end_item = btrfs_item_nr(end);
3520 	data_len = btrfs_item_offset(l, start_item) +
3521 		   btrfs_item_size(l, start_item);
3522 	data_len = data_len - btrfs_item_offset(l, end_item);
3523 	data_len += sizeof(struct btrfs_item) * nr;
3524 	WARN_ON(data_len < 0);
3525 	return data_len;
3526 }
3527 
3528 /*
3529  * The space between the end of the leaf items and
3530  * the start of the leaf data.  IOW, how much room
3531  * the leaf has left for both items and data
3532  */
3533 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3534 {
3535 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3536 	int nritems = btrfs_header_nritems(leaf);
3537 	int ret;
3538 
3539 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3540 	if (ret < 0) {
3541 		btrfs_crit(fs_info,
3542 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3543 			   ret,
3544 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3545 			   leaf_space_used(leaf, 0, nritems), nritems);
3546 	}
3547 	return ret;
3548 }
3549 
3550 /*
3551  * min slot controls the lowest index we're willing to push to the
3552  * right.  We'll push up to and including min_slot, but no lower
3553  */
3554 static noinline int __push_leaf_right(struct btrfs_path *path,
3555 				      int data_size, int empty,
3556 				      struct extent_buffer *right,
3557 				      int free_space, u32 left_nritems,
3558 				      u32 min_slot)
3559 {
3560 	struct btrfs_fs_info *fs_info = right->fs_info;
3561 	struct extent_buffer *left = path->nodes[0];
3562 	struct extent_buffer *upper = path->nodes[1];
3563 	struct btrfs_map_token token;
3564 	struct btrfs_disk_key disk_key;
3565 	int slot;
3566 	u32 i;
3567 	int push_space = 0;
3568 	int push_items = 0;
3569 	struct btrfs_item *item;
3570 	u32 nr;
3571 	u32 right_nritems;
3572 	u32 data_end;
3573 	u32 this_item_size;
3574 
3575 	if (empty)
3576 		nr = 0;
3577 	else
3578 		nr = max_t(u32, 1, min_slot);
3579 
3580 	if (path->slots[0] >= left_nritems)
3581 		push_space += data_size;
3582 
3583 	slot = path->slots[1];
3584 	i = left_nritems - 1;
3585 	while (i >= nr) {
3586 		item = btrfs_item_nr(i);
3587 
3588 		if (!empty && push_items > 0) {
3589 			if (path->slots[0] > i)
3590 				break;
3591 			if (path->slots[0] == i) {
3592 				int space = btrfs_leaf_free_space(left);
3593 
3594 				if (space + push_space * 2 > free_space)
3595 					break;
3596 			}
3597 		}
3598 
3599 		if (path->slots[0] == i)
3600 			push_space += data_size;
3601 
3602 		this_item_size = btrfs_item_size(left, item);
3603 		if (this_item_size + sizeof(*item) + push_space > free_space)
3604 			break;
3605 
3606 		push_items++;
3607 		push_space += this_item_size + sizeof(*item);
3608 		if (i == 0)
3609 			break;
3610 		i--;
3611 	}
3612 
3613 	if (push_items == 0)
3614 		goto out_unlock;
3615 
3616 	WARN_ON(!empty && push_items == left_nritems);
3617 
3618 	/* push left to right */
3619 	right_nritems = btrfs_header_nritems(right);
3620 
3621 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3622 	push_space -= leaf_data_end(left);
3623 
3624 	/* make room in the right data area */
3625 	data_end = leaf_data_end(right);
3626 	memmove_extent_buffer(right,
3627 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3628 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3629 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3630 
3631 	/* copy from the left data area */
3632 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3633 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3634 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3635 		     push_space);
3636 
3637 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3638 			      btrfs_item_nr_offset(0),
3639 			      right_nritems * sizeof(struct btrfs_item));
3640 
3641 	/* copy the items from left to right */
3642 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3643 		   btrfs_item_nr_offset(left_nritems - push_items),
3644 		   push_items * sizeof(struct btrfs_item));
3645 
3646 	/* update the item pointers */
3647 	btrfs_init_map_token(&token, right);
3648 	right_nritems += push_items;
3649 	btrfs_set_header_nritems(right, right_nritems);
3650 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3651 	for (i = 0; i < right_nritems; i++) {
3652 		item = btrfs_item_nr(i);
3653 		push_space -= btrfs_token_item_size(&token, item);
3654 		btrfs_set_token_item_offset(&token, item, push_space);
3655 	}
3656 
3657 	left_nritems -= push_items;
3658 	btrfs_set_header_nritems(left, left_nritems);
3659 
3660 	if (left_nritems)
3661 		btrfs_mark_buffer_dirty(left);
3662 	else
3663 		btrfs_clean_tree_block(left);
3664 
3665 	btrfs_mark_buffer_dirty(right);
3666 
3667 	btrfs_item_key(right, &disk_key, 0);
3668 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3669 	btrfs_mark_buffer_dirty(upper);
3670 
3671 	/* then fixup the leaf pointer in the path */
3672 	if (path->slots[0] >= left_nritems) {
3673 		path->slots[0] -= left_nritems;
3674 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3675 			btrfs_clean_tree_block(path->nodes[0]);
3676 		btrfs_tree_unlock(path->nodes[0]);
3677 		free_extent_buffer(path->nodes[0]);
3678 		path->nodes[0] = right;
3679 		path->slots[1] += 1;
3680 	} else {
3681 		btrfs_tree_unlock(right);
3682 		free_extent_buffer(right);
3683 	}
3684 	return 0;
3685 
3686 out_unlock:
3687 	btrfs_tree_unlock(right);
3688 	free_extent_buffer(right);
3689 	return 1;
3690 }
3691 
3692 /*
3693  * push some data in the path leaf to the right, trying to free up at
3694  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3695  *
3696  * returns 1 if the push failed because the other node didn't have enough
3697  * room, 0 if everything worked out and < 0 if there were major errors.
3698  *
3699  * this will push starting from min_slot to the end of the leaf.  It won't
3700  * push any slot lower than min_slot
3701  */
3702 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3703 			   *root, struct btrfs_path *path,
3704 			   int min_data_size, int data_size,
3705 			   int empty, u32 min_slot)
3706 {
3707 	struct extent_buffer *left = path->nodes[0];
3708 	struct extent_buffer *right;
3709 	struct extent_buffer *upper;
3710 	int slot;
3711 	int free_space;
3712 	u32 left_nritems;
3713 	int ret;
3714 
3715 	if (!path->nodes[1])
3716 		return 1;
3717 
3718 	slot = path->slots[1];
3719 	upper = path->nodes[1];
3720 	if (slot >= btrfs_header_nritems(upper) - 1)
3721 		return 1;
3722 
3723 	btrfs_assert_tree_locked(path->nodes[1]);
3724 
3725 	right = btrfs_read_node_slot(upper, slot + 1);
3726 	/*
3727 	 * slot + 1 is not valid or we fail to read the right node,
3728 	 * no big deal, just return.
3729 	 */
3730 	if (IS_ERR(right))
3731 		return 1;
3732 
3733 	btrfs_tree_lock(right);
3734 	btrfs_set_lock_blocking_write(right);
3735 
3736 	free_space = btrfs_leaf_free_space(right);
3737 	if (free_space < data_size)
3738 		goto out_unlock;
3739 
3740 	/* cow and double check */
3741 	ret = btrfs_cow_block(trans, root, right, upper,
3742 			      slot + 1, &right);
3743 	if (ret)
3744 		goto out_unlock;
3745 
3746 	free_space = btrfs_leaf_free_space(right);
3747 	if (free_space < data_size)
3748 		goto out_unlock;
3749 
3750 	left_nritems = btrfs_header_nritems(left);
3751 	if (left_nritems == 0)
3752 		goto out_unlock;
3753 
3754 	if (path->slots[0] == left_nritems && !empty) {
3755 		/* Key greater than all keys in the leaf, right neighbor has
3756 		 * enough room for it and we're not emptying our leaf to delete
3757 		 * it, therefore use right neighbor to insert the new item and
3758 		 * no need to touch/dirty our left leaf. */
3759 		btrfs_tree_unlock(left);
3760 		free_extent_buffer(left);
3761 		path->nodes[0] = right;
3762 		path->slots[0] = 0;
3763 		path->slots[1]++;
3764 		return 0;
3765 	}
3766 
3767 	return __push_leaf_right(path, min_data_size, empty,
3768 				right, free_space, left_nritems, min_slot);
3769 out_unlock:
3770 	btrfs_tree_unlock(right);
3771 	free_extent_buffer(right);
3772 	return 1;
3773 }
3774 
3775 /*
3776  * push some data in the path leaf to the left, trying to free up at
3777  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3778  *
3779  * max_slot can put a limit on how far into the leaf we'll push items.  The
3780  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3781  * items
3782  */
3783 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3784 				     int empty, struct extent_buffer *left,
3785 				     int free_space, u32 right_nritems,
3786 				     u32 max_slot)
3787 {
3788 	struct btrfs_fs_info *fs_info = left->fs_info;
3789 	struct btrfs_disk_key disk_key;
3790 	struct extent_buffer *right = path->nodes[0];
3791 	int i;
3792 	int push_space = 0;
3793 	int push_items = 0;
3794 	struct btrfs_item *item;
3795 	u32 old_left_nritems;
3796 	u32 nr;
3797 	int ret = 0;
3798 	u32 this_item_size;
3799 	u32 old_left_item_size;
3800 	struct btrfs_map_token token;
3801 
3802 	if (empty)
3803 		nr = min(right_nritems, max_slot);
3804 	else
3805 		nr = min(right_nritems - 1, max_slot);
3806 
3807 	for (i = 0; i < nr; i++) {
3808 		item = btrfs_item_nr(i);
3809 
3810 		if (!empty && push_items > 0) {
3811 			if (path->slots[0] < i)
3812 				break;
3813 			if (path->slots[0] == i) {
3814 				int space = btrfs_leaf_free_space(right);
3815 
3816 				if (space + push_space * 2 > free_space)
3817 					break;
3818 			}
3819 		}
3820 
3821 		if (path->slots[0] == i)
3822 			push_space += data_size;
3823 
3824 		this_item_size = btrfs_item_size(right, item);
3825 		if (this_item_size + sizeof(*item) + push_space > free_space)
3826 			break;
3827 
3828 		push_items++;
3829 		push_space += this_item_size + sizeof(*item);
3830 	}
3831 
3832 	if (push_items == 0) {
3833 		ret = 1;
3834 		goto out;
3835 	}
3836 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3837 
3838 	/* push data from right to left */
3839 	copy_extent_buffer(left, right,
3840 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3841 			   btrfs_item_nr_offset(0),
3842 			   push_items * sizeof(struct btrfs_item));
3843 
3844 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3845 		     btrfs_item_offset_nr(right, push_items - 1);
3846 
3847 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3848 		     leaf_data_end(left) - push_space,
3849 		     BTRFS_LEAF_DATA_OFFSET +
3850 		     btrfs_item_offset_nr(right, push_items - 1),
3851 		     push_space);
3852 	old_left_nritems = btrfs_header_nritems(left);
3853 	BUG_ON(old_left_nritems <= 0);
3854 
3855 	btrfs_init_map_token(&token, left);
3856 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3857 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3858 		u32 ioff;
3859 
3860 		item = btrfs_item_nr(i);
3861 
3862 		ioff = btrfs_token_item_offset(&token, item);
3863 		btrfs_set_token_item_offset(&token, item,
3864 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3865 	}
3866 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3867 
3868 	/* fixup right node */
3869 	if (push_items > right_nritems)
3870 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3871 		       right_nritems);
3872 
3873 	if (push_items < right_nritems) {
3874 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3875 						  leaf_data_end(right);
3876 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3877 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3878 				      BTRFS_LEAF_DATA_OFFSET +
3879 				      leaf_data_end(right), push_space);
3880 
3881 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3882 			      btrfs_item_nr_offset(push_items),
3883 			     (btrfs_header_nritems(right) - push_items) *
3884 			     sizeof(struct btrfs_item));
3885 	}
3886 
3887 	btrfs_init_map_token(&token, right);
3888 	right_nritems -= push_items;
3889 	btrfs_set_header_nritems(right, right_nritems);
3890 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3891 	for (i = 0; i < right_nritems; i++) {
3892 		item = btrfs_item_nr(i);
3893 
3894 		push_space = push_space - btrfs_token_item_size(&token, item);
3895 		btrfs_set_token_item_offset(&token, item, push_space);
3896 	}
3897 
3898 	btrfs_mark_buffer_dirty(left);
3899 	if (right_nritems)
3900 		btrfs_mark_buffer_dirty(right);
3901 	else
3902 		btrfs_clean_tree_block(right);
3903 
3904 	btrfs_item_key(right, &disk_key, 0);
3905 	fixup_low_keys(path, &disk_key, 1);
3906 
3907 	/* then fixup the leaf pointer in the path */
3908 	if (path->slots[0] < push_items) {
3909 		path->slots[0] += old_left_nritems;
3910 		btrfs_tree_unlock(path->nodes[0]);
3911 		free_extent_buffer(path->nodes[0]);
3912 		path->nodes[0] = left;
3913 		path->slots[1] -= 1;
3914 	} else {
3915 		btrfs_tree_unlock(left);
3916 		free_extent_buffer(left);
3917 		path->slots[0] -= push_items;
3918 	}
3919 	BUG_ON(path->slots[0] < 0);
3920 	return ret;
3921 out:
3922 	btrfs_tree_unlock(left);
3923 	free_extent_buffer(left);
3924 	return ret;
3925 }
3926 
3927 /*
3928  * push some data in the path leaf to the left, trying to free up at
3929  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3930  *
3931  * max_slot can put a limit on how far into the leaf we'll push items.  The
3932  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3933  * items
3934  */
3935 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3936 			  *root, struct btrfs_path *path, int min_data_size,
3937 			  int data_size, int empty, u32 max_slot)
3938 {
3939 	struct extent_buffer *right = path->nodes[0];
3940 	struct extent_buffer *left;
3941 	int slot;
3942 	int free_space;
3943 	u32 right_nritems;
3944 	int ret = 0;
3945 
3946 	slot = path->slots[1];
3947 	if (slot == 0)
3948 		return 1;
3949 	if (!path->nodes[1])
3950 		return 1;
3951 
3952 	right_nritems = btrfs_header_nritems(right);
3953 	if (right_nritems == 0)
3954 		return 1;
3955 
3956 	btrfs_assert_tree_locked(path->nodes[1]);
3957 
3958 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3959 	/*
3960 	 * slot - 1 is not valid or we fail to read the left node,
3961 	 * no big deal, just return.
3962 	 */
3963 	if (IS_ERR(left))
3964 		return 1;
3965 
3966 	btrfs_tree_lock(left);
3967 	btrfs_set_lock_blocking_write(left);
3968 
3969 	free_space = btrfs_leaf_free_space(left);
3970 	if (free_space < data_size) {
3971 		ret = 1;
3972 		goto out;
3973 	}
3974 
3975 	/* cow and double check */
3976 	ret = btrfs_cow_block(trans, root, left,
3977 			      path->nodes[1], slot - 1, &left);
3978 	if (ret) {
3979 		/* we hit -ENOSPC, but it isn't fatal here */
3980 		if (ret == -ENOSPC)
3981 			ret = 1;
3982 		goto out;
3983 	}
3984 
3985 	free_space = btrfs_leaf_free_space(left);
3986 	if (free_space < data_size) {
3987 		ret = 1;
3988 		goto out;
3989 	}
3990 
3991 	return __push_leaf_left(path, min_data_size,
3992 			       empty, left, free_space, right_nritems,
3993 			       max_slot);
3994 out:
3995 	btrfs_tree_unlock(left);
3996 	free_extent_buffer(left);
3997 	return ret;
3998 }
3999 
4000 /*
4001  * split the path's leaf in two, making sure there is at least data_size
4002  * available for the resulting leaf level of the path.
4003  */
4004 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4005 				    struct btrfs_path *path,
4006 				    struct extent_buffer *l,
4007 				    struct extent_buffer *right,
4008 				    int slot, int mid, int nritems)
4009 {
4010 	struct btrfs_fs_info *fs_info = trans->fs_info;
4011 	int data_copy_size;
4012 	int rt_data_off;
4013 	int i;
4014 	struct btrfs_disk_key disk_key;
4015 	struct btrfs_map_token token;
4016 
4017 	nritems = nritems - mid;
4018 	btrfs_set_header_nritems(right, nritems);
4019 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4020 
4021 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4022 			   btrfs_item_nr_offset(mid),
4023 			   nritems * sizeof(struct btrfs_item));
4024 
4025 	copy_extent_buffer(right, l,
4026 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4027 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4028 		     leaf_data_end(l), data_copy_size);
4029 
4030 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4031 
4032 	btrfs_init_map_token(&token, right);
4033 	for (i = 0; i < nritems; i++) {
4034 		struct btrfs_item *item = btrfs_item_nr(i);
4035 		u32 ioff;
4036 
4037 		ioff = btrfs_token_item_offset(&token, item);
4038 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4039 	}
4040 
4041 	btrfs_set_header_nritems(l, mid);
4042 	btrfs_item_key(right, &disk_key, 0);
4043 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4044 
4045 	btrfs_mark_buffer_dirty(right);
4046 	btrfs_mark_buffer_dirty(l);
4047 	BUG_ON(path->slots[0] != slot);
4048 
4049 	if (mid <= slot) {
4050 		btrfs_tree_unlock(path->nodes[0]);
4051 		free_extent_buffer(path->nodes[0]);
4052 		path->nodes[0] = right;
4053 		path->slots[0] -= mid;
4054 		path->slots[1] += 1;
4055 	} else {
4056 		btrfs_tree_unlock(right);
4057 		free_extent_buffer(right);
4058 	}
4059 
4060 	BUG_ON(path->slots[0] < 0);
4061 }
4062 
4063 /*
4064  * double splits happen when we need to insert a big item in the middle
4065  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4066  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4067  *          A                 B                 C
4068  *
4069  * We avoid this by trying to push the items on either side of our target
4070  * into the adjacent leaves.  If all goes well we can avoid the double split
4071  * completely.
4072  */
4073 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4074 					  struct btrfs_root *root,
4075 					  struct btrfs_path *path,
4076 					  int data_size)
4077 {
4078 	int ret;
4079 	int progress = 0;
4080 	int slot;
4081 	u32 nritems;
4082 	int space_needed = data_size;
4083 
4084 	slot = path->slots[0];
4085 	if (slot < btrfs_header_nritems(path->nodes[0]))
4086 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4087 
4088 	/*
4089 	 * try to push all the items after our slot into the
4090 	 * right leaf
4091 	 */
4092 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4093 	if (ret < 0)
4094 		return ret;
4095 
4096 	if (ret == 0)
4097 		progress++;
4098 
4099 	nritems = btrfs_header_nritems(path->nodes[0]);
4100 	/*
4101 	 * our goal is to get our slot at the start or end of a leaf.  If
4102 	 * we've done so we're done
4103 	 */
4104 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4105 		return 0;
4106 
4107 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4108 		return 0;
4109 
4110 	/* try to push all the items before our slot into the next leaf */
4111 	slot = path->slots[0];
4112 	space_needed = data_size;
4113 	if (slot > 0)
4114 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4115 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4116 	if (ret < 0)
4117 		return ret;
4118 
4119 	if (ret == 0)
4120 		progress++;
4121 
4122 	if (progress)
4123 		return 0;
4124 	return 1;
4125 }
4126 
4127 /*
4128  * split the path's leaf in two, making sure there is at least data_size
4129  * available for the resulting leaf level of the path.
4130  *
4131  * returns 0 if all went well and < 0 on failure.
4132  */
4133 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4134 			       struct btrfs_root *root,
4135 			       const struct btrfs_key *ins_key,
4136 			       struct btrfs_path *path, int data_size,
4137 			       int extend)
4138 {
4139 	struct btrfs_disk_key disk_key;
4140 	struct extent_buffer *l;
4141 	u32 nritems;
4142 	int mid;
4143 	int slot;
4144 	struct extent_buffer *right;
4145 	struct btrfs_fs_info *fs_info = root->fs_info;
4146 	int ret = 0;
4147 	int wret;
4148 	int split;
4149 	int num_doubles = 0;
4150 	int tried_avoid_double = 0;
4151 
4152 	l = path->nodes[0];
4153 	slot = path->slots[0];
4154 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4155 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4156 		return -EOVERFLOW;
4157 
4158 	/* first try to make some room by pushing left and right */
4159 	if (data_size && path->nodes[1]) {
4160 		int space_needed = data_size;
4161 
4162 		if (slot < btrfs_header_nritems(l))
4163 			space_needed -= btrfs_leaf_free_space(l);
4164 
4165 		wret = push_leaf_right(trans, root, path, space_needed,
4166 				       space_needed, 0, 0);
4167 		if (wret < 0)
4168 			return wret;
4169 		if (wret) {
4170 			space_needed = data_size;
4171 			if (slot > 0)
4172 				space_needed -= btrfs_leaf_free_space(l);
4173 			wret = push_leaf_left(trans, root, path, space_needed,
4174 					      space_needed, 0, (u32)-1);
4175 			if (wret < 0)
4176 				return wret;
4177 		}
4178 		l = path->nodes[0];
4179 
4180 		/* did the pushes work? */
4181 		if (btrfs_leaf_free_space(l) >= data_size)
4182 			return 0;
4183 	}
4184 
4185 	if (!path->nodes[1]) {
4186 		ret = insert_new_root(trans, root, path, 1);
4187 		if (ret)
4188 			return ret;
4189 	}
4190 again:
4191 	split = 1;
4192 	l = path->nodes[0];
4193 	slot = path->slots[0];
4194 	nritems = btrfs_header_nritems(l);
4195 	mid = (nritems + 1) / 2;
4196 
4197 	if (mid <= slot) {
4198 		if (nritems == 1 ||
4199 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4200 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4201 			if (slot >= nritems) {
4202 				split = 0;
4203 			} else {
4204 				mid = slot;
4205 				if (mid != nritems &&
4206 				    leaf_space_used(l, mid, nritems - mid) +
4207 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4208 					if (data_size && !tried_avoid_double)
4209 						goto push_for_double;
4210 					split = 2;
4211 				}
4212 			}
4213 		}
4214 	} else {
4215 		if (leaf_space_used(l, 0, mid) + data_size >
4216 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4217 			if (!extend && data_size && slot == 0) {
4218 				split = 0;
4219 			} else if ((extend || !data_size) && slot == 0) {
4220 				mid = 1;
4221 			} else {
4222 				mid = slot;
4223 				if (mid != nritems &&
4224 				    leaf_space_used(l, mid, nritems - mid) +
4225 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4226 					if (data_size && !tried_avoid_double)
4227 						goto push_for_double;
4228 					split = 2;
4229 				}
4230 			}
4231 		}
4232 	}
4233 
4234 	if (split == 0)
4235 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4236 	else
4237 		btrfs_item_key(l, &disk_key, mid);
4238 
4239 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4240 					     l->start, 0);
4241 	if (IS_ERR(right))
4242 		return PTR_ERR(right);
4243 
4244 	root_add_used(root, fs_info->nodesize);
4245 
4246 	if (split == 0) {
4247 		if (mid <= slot) {
4248 			btrfs_set_header_nritems(right, 0);
4249 			insert_ptr(trans, path, &disk_key,
4250 				   right->start, path->slots[1] + 1, 1);
4251 			btrfs_tree_unlock(path->nodes[0]);
4252 			free_extent_buffer(path->nodes[0]);
4253 			path->nodes[0] = right;
4254 			path->slots[0] = 0;
4255 			path->slots[1] += 1;
4256 		} else {
4257 			btrfs_set_header_nritems(right, 0);
4258 			insert_ptr(trans, path, &disk_key,
4259 				   right->start, path->slots[1], 1);
4260 			btrfs_tree_unlock(path->nodes[0]);
4261 			free_extent_buffer(path->nodes[0]);
4262 			path->nodes[0] = right;
4263 			path->slots[0] = 0;
4264 			if (path->slots[1] == 0)
4265 				fixup_low_keys(path, &disk_key, 1);
4266 		}
4267 		/*
4268 		 * We create a new leaf 'right' for the required ins_len and
4269 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4270 		 * the content of ins_len to 'right'.
4271 		 */
4272 		return ret;
4273 	}
4274 
4275 	copy_for_split(trans, path, l, right, slot, mid, nritems);
4276 
4277 	if (split == 2) {
4278 		BUG_ON(num_doubles != 0);
4279 		num_doubles++;
4280 		goto again;
4281 	}
4282 
4283 	return 0;
4284 
4285 push_for_double:
4286 	push_for_double_split(trans, root, path, data_size);
4287 	tried_avoid_double = 1;
4288 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4289 		return 0;
4290 	goto again;
4291 }
4292 
4293 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4294 					 struct btrfs_root *root,
4295 					 struct btrfs_path *path, int ins_len)
4296 {
4297 	struct btrfs_key key;
4298 	struct extent_buffer *leaf;
4299 	struct btrfs_file_extent_item *fi;
4300 	u64 extent_len = 0;
4301 	u32 item_size;
4302 	int ret;
4303 
4304 	leaf = path->nodes[0];
4305 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4306 
4307 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4308 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4309 
4310 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4311 		return 0;
4312 
4313 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4314 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4315 		fi = btrfs_item_ptr(leaf, path->slots[0],
4316 				    struct btrfs_file_extent_item);
4317 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4318 	}
4319 	btrfs_release_path(path);
4320 
4321 	path->keep_locks = 1;
4322 	path->search_for_split = 1;
4323 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4324 	path->search_for_split = 0;
4325 	if (ret > 0)
4326 		ret = -EAGAIN;
4327 	if (ret < 0)
4328 		goto err;
4329 
4330 	ret = -EAGAIN;
4331 	leaf = path->nodes[0];
4332 	/* if our item isn't there, return now */
4333 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4334 		goto err;
4335 
4336 	/* the leaf has  changed, it now has room.  return now */
4337 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4338 		goto err;
4339 
4340 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4341 		fi = btrfs_item_ptr(leaf, path->slots[0],
4342 				    struct btrfs_file_extent_item);
4343 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4344 			goto err;
4345 	}
4346 
4347 	btrfs_set_path_blocking(path);
4348 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4349 	if (ret)
4350 		goto err;
4351 
4352 	path->keep_locks = 0;
4353 	btrfs_unlock_up_safe(path, 1);
4354 	return 0;
4355 err:
4356 	path->keep_locks = 0;
4357 	return ret;
4358 }
4359 
4360 static noinline int split_item(struct btrfs_path *path,
4361 			       const struct btrfs_key *new_key,
4362 			       unsigned long split_offset)
4363 {
4364 	struct extent_buffer *leaf;
4365 	struct btrfs_item *item;
4366 	struct btrfs_item *new_item;
4367 	int slot;
4368 	char *buf;
4369 	u32 nritems;
4370 	u32 item_size;
4371 	u32 orig_offset;
4372 	struct btrfs_disk_key disk_key;
4373 
4374 	leaf = path->nodes[0];
4375 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4376 
4377 	btrfs_set_path_blocking(path);
4378 
4379 	item = btrfs_item_nr(path->slots[0]);
4380 	orig_offset = btrfs_item_offset(leaf, item);
4381 	item_size = btrfs_item_size(leaf, item);
4382 
4383 	buf = kmalloc(item_size, GFP_NOFS);
4384 	if (!buf)
4385 		return -ENOMEM;
4386 
4387 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4388 			    path->slots[0]), item_size);
4389 
4390 	slot = path->slots[0] + 1;
4391 	nritems = btrfs_header_nritems(leaf);
4392 	if (slot != nritems) {
4393 		/* shift the items */
4394 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4395 				btrfs_item_nr_offset(slot),
4396 				(nritems - slot) * sizeof(struct btrfs_item));
4397 	}
4398 
4399 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4400 	btrfs_set_item_key(leaf, &disk_key, slot);
4401 
4402 	new_item = btrfs_item_nr(slot);
4403 
4404 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4405 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4406 
4407 	btrfs_set_item_offset(leaf, item,
4408 			      orig_offset + item_size - split_offset);
4409 	btrfs_set_item_size(leaf, item, split_offset);
4410 
4411 	btrfs_set_header_nritems(leaf, nritems + 1);
4412 
4413 	/* write the data for the start of the original item */
4414 	write_extent_buffer(leaf, buf,
4415 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4416 			    split_offset);
4417 
4418 	/* write the data for the new item */
4419 	write_extent_buffer(leaf, buf + split_offset,
4420 			    btrfs_item_ptr_offset(leaf, slot),
4421 			    item_size - split_offset);
4422 	btrfs_mark_buffer_dirty(leaf);
4423 
4424 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4425 	kfree(buf);
4426 	return 0;
4427 }
4428 
4429 /*
4430  * This function splits a single item into two items,
4431  * giving 'new_key' to the new item and splitting the
4432  * old one at split_offset (from the start of the item).
4433  *
4434  * The path may be released by this operation.  After
4435  * the split, the path is pointing to the old item.  The
4436  * new item is going to be in the same node as the old one.
4437  *
4438  * Note, the item being split must be smaller enough to live alone on
4439  * a tree block with room for one extra struct btrfs_item
4440  *
4441  * This allows us to split the item in place, keeping a lock on the
4442  * leaf the entire time.
4443  */
4444 int btrfs_split_item(struct btrfs_trans_handle *trans,
4445 		     struct btrfs_root *root,
4446 		     struct btrfs_path *path,
4447 		     const struct btrfs_key *new_key,
4448 		     unsigned long split_offset)
4449 {
4450 	int ret;
4451 	ret = setup_leaf_for_split(trans, root, path,
4452 				   sizeof(struct btrfs_item));
4453 	if (ret)
4454 		return ret;
4455 
4456 	ret = split_item(path, new_key, split_offset);
4457 	return ret;
4458 }
4459 
4460 /*
4461  * This function duplicate a item, giving 'new_key' to the new item.
4462  * It guarantees both items live in the same tree leaf and the new item
4463  * is contiguous with the original item.
4464  *
4465  * This allows us to split file extent in place, keeping a lock on the
4466  * leaf the entire time.
4467  */
4468 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4469 			 struct btrfs_root *root,
4470 			 struct btrfs_path *path,
4471 			 const struct btrfs_key *new_key)
4472 {
4473 	struct extent_buffer *leaf;
4474 	int ret;
4475 	u32 item_size;
4476 
4477 	leaf = path->nodes[0];
4478 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4479 	ret = setup_leaf_for_split(trans, root, path,
4480 				   item_size + sizeof(struct btrfs_item));
4481 	if (ret)
4482 		return ret;
4483 
4484 	path->slots[0]++;
4485 	setup_items_for_insert(root, path, new_key, &item_size,
4486 			       item_size, item_size +
4487 			       sizeof(struct btrfs_item), 1);
4488 	leaf = path->nodes[0];
4489 	memcpy_extent_buffer(leaf,
4490 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4491 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4492 			     item_size);
4493 	return 0;
4494 }
4495 
4496 /*
4497  * make the item pointed to by the path smaller.  new_size indicates
4498  * how small to make it, and from_end tells us if we just chop bytes
4499  * off the end of the item or if we shift the item to chop bytes off
4500  * the front.
4501  */
4502 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4503 {
4504 	int slot;
4505 	struct extent_buffer *leaf;
4506 	struct btrfs_item *item;
4507 	u32 nritems;
4508 	unsigned int data_end;
4509 	unsigned int old_data_start;
4510 	unsigned int old_size;
4511 	unsigned int size_diff;
4512 	int i;
4513 	struct btrfs_map_token token;
4514 
4515 	leaf = path->nodes[0];
4516 	slot = path->slots[0];
4517 
4518 	old_size = btrfs_item_size_nr(leaf, slot);
4519 	if (old_size == new_size)
4520 		return;
4521 
4522 	nritems = btrfs_header_nritems(leaf);
4523 	data_end = leaf_data_end(leaf);
4524 
4525 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4526 
4527 	size_diff = old_size - new_size;
4528 
4529 	BUG_ON(slot < 0);
4530 	BUG_ON(slot >= nritems);
4531 
4532 	/*
4533 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4534 	 */
4535 	/* first correct the data pointers */
4536 	btrfs_init_map_token(&token, leaf);
4537 	for (i = slot; i < nritems; i++) {
4538 		u32 ioff;
4539 		item = btrfs_item_nr(i);
4540 
4541 		ioff = btrfs_token_item_offset(&token, item);
4542 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
4543 	}
4544 
4545 	/* shift the data */
4546 	if (from_end) {
4547 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4548 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4549 			      data_end, old_data_start + new_size - data_end);
4550 	} else {
4551 		struct btrfs_disk_key disk_key;
4552 		u64 offset;
4553 
4554 		btrfs_item_key(leaf, &disk_key, slot);
4555 
4556 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4557 			unsigned long ptr;
4558 			struct btrfs_file_extent_item *fi;
4559 
4560 			fi = btrfs_item_ptr(leaf, slot,
4561 					    struct btrfs_file_extent_item);
4562 			fi = (struct btrfs_file_extent_item *)(
4563 			     (unsigned long)fi - size_diff);
4564 
4565 			if (btrfs_file_extent_type(leaf, fi) ==
4566 			    BTRFS_FILE_EXTENT_INLINE) {
4567 				ptr = btrfs_item_ptr_offset(leaf, slot);
4568 				memmove_extent_buffer(leaf, ptr,
4569 				      (unsigned long)fi,
4570 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4571 			}
4572 		}
4573 
4574 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4575 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4576 			      data_end, old_data_start - data_end);
4577 
4578 		offset = btrfs_disk_key_offset(&disk_key);
4579 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4580 		btrfs_set_item_key(leaf, &disk_key, slot);
4581 		if (slot == 0)
4582 			fixup_low_keys(path, &disk_key, 1);
4583 	}
4584 
4585 	item = btrfs_item_nr(slot);
4586 	btrfs_set_item_size(leaf, item, new_size);
4587 	btrfs_mark_buffer_dirty(leaf);
4588 
4589 	if (btrfs_leaf_free_space(leaf) < 0) {
4590 		btrfs_print_leaf(leaf);
4591 		BUG();
4592 	}
4593 }
4594 
4595 /*
4596  * make the item pointed to by the path bigger, data_size is the added size.
4597  */
4598 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4599 {
4600 	int slot;
4601 	struct extent_buffer *leaf;
4602 	struct btrfs_item *item;
4603 	u32 nritems;
4604 	unsigned int data_end;
4605 	unsigned int old_data;
4606 	unsigned int old_size;
4607 	int i;
4608 	struct btrfs_map_token token;
4609 
4610 	leaf = path->nodes[0];
4611 
4612 	nritems = btrfs_header_nritems(leaf);
4613 	data_end = leaf_data_end(leaf);
4614 
4615 	if (btrfs_leaf_free_space(leaf) < data_size) {
4616 		btrfs_print_leaf(leaf);
4617 		BUG();
4618 	}
4619 	slot = path->slots[0];
4620 	old_data = btrfs_item_end_nr(leaf, slot);
4621 
4622 	BUG_ON(slot < 0);
4623 	if (slot >= nritems) {
4624 		btrfs_print_leaf(leaf);
4625 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4626 			   slot, nritems);
4627 		BUG();
4628 	}
4629 
4630 	/*
4631 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4632 	 */
4633 	/* first correct the data pointers */
4634 	btrfs_init_map_token(&token, leaf);
4635 	for (i = slot; i < nritems; i++) {
4636 		u32 ioff;
4637 		item = btrfs_item_nr(i);
4638 
4639 		ioff = btrfs_token_item_offset(&token, item);
4640 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4641 	}
4642 
4643 	/* shift the data */
4644 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4645 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4646 		      data_end, old_data - data_end);
4647 
4648 	data_end = old_data;
4649 	old_size = btrfs_item_size_nr(leaf, slot);
4650 	item = btrfs_item_nr(slot);
4651 	btrfs_set_item_size(leaf, item, old_size + data_size);
4652 	btrfs_mark_buffer_dirty(leaf);
4653 
4654 	if (btrfs_leaf_free_space(leaf) < 0) {
4655 		btrfs_print_leaf(leaf);
4656 		BUG();
4657 	}
4658 }
4659 
4660 /*
4661  * this is a helper for btrfs_insert_empty_items, the main goal here is
4662  * to save stack depth by doing the bulk of the work in a function
4663  * that doesn't call btrfs_search_slot
4664  */
4665 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4666 			    const struct btrfs_key *cpu_key, u32 *data_size,
4667 			    u32 total_data, u32 total_size, int nr)
4668 {
4669 	struct btrfs_fs_info *fs_info = root->fs_info;
4670 	struct btrfs_item *item;
4671 	int i;
4672 	u32 nritems;
4673 	unsigned int data_end;
4674 	struct btrfs_disk_key disk_key;
4675 	struct extent_buffer *leaf;
4676 	int slot;
4677 	struct btrfs_map_token token;
4678 
4679 	if (path->slots[0] == 0) {
4680 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4681 		fixup_low_keys(path, &disk_key, 1);
4682 	}
4683 	btrfs_unlock_up_safe(path, 1);
4684 
4685 	leaf = path->nodes[0];
4686 	slot = path->slots[0];
4687 
4688 	nritems = btrfs_header_nritems(leaf);
4689 	data_end = leaf_data_end(leaf);
4690 
4691 	if (btrfs_leaf_free_space(leaf) < total_size) {
4692 		btrfs_print_leaf(leaf);
4693 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4694 			   total_size, btrfs_leaf_free_space(leaf));
4695 		BUG();
4696 	}
4697 
4698 	btrfs_init_map_token(&token, leaf);
4699 	if (slot != nritems) {
4700 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4701 
4702 		if (old_data < data_end) {
4703 			btrfs_print_leaf(leaf);
4704 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4705 				   slot, old_data, data_end);
4706 			BUG();
4707 		}
4708 		/*
4709 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4710 		 */
4711 		/* first correct the data pointers */
4712 		for (i = slot; i < nritems; i++) {
4713 			u32 ioff;
4714 
4715 			item = btrfs_item_nr(i);
4716 			ioff = btrfs_token_item_offset(&token, item);
4717 			btrfs_set_token_item_offset(&token, item,
4718 						    ioff - total_data);
4719 		}
4720 		/* shift the items */
4721 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4722 			      btrfs_item_nr_offset(slot),
4723 			      (nritems - slot) * sizeof(struct btrfs_item));
4724 
4725 		/* shift the data */
4726 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4727 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4728 			      data_end, old_data - data_end);
4729 		data_end = old_data;
4730 	}
4731 
4732 	/* setup the item for the new data */
4733 	for (i = 0; i < nr; i++) {
4734 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4735 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4736 		item = btrfs_item_nr(slot + i);
4737 		btrfs_set_token_item_offset(&token, item, data_end - data_size[i]);
4738 		data_end -= data_size[i];
4739 		btrfs_set_token_item_size(&token, item, data_size[i]);
4740 	}
4741 
4742 	btrfs_set_header_nritems(leaf, nritems + nr);
4743 	btrfs_mark_buffer_dirty(leaf);
4744 
4745 	if (btrfs_leaf_free_space(leaf) < 0) {
4746 		btrfs_print_leaf(leaf);
4747 		BUG();
4748 	}
4749 }
4750 
4751 /*
4752  * Given a key and some data, insert items into the tree.
4753  * This does all the path init required, making room in the tree if needed.
4754  */
4755 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4756 			    struct btrfs_root *root,
4757 			    struct btrfs_path *path,
4758 			    const struct btrfs_key *cpu_key, u32 *data_size,
4759 			    int nr)
4760 {
4761 	int ret = 0;
4762 	int slot;
4763 	int i;
4764 	u32 total_size = 0;
4765 	u32 total_data = 0;
4766 
4767 	for (i = 0; i < nr; i++)
4768 		total_data += data_size[i];
4769 
4770 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4771 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4772 	if (ret == 0)
4773 		return -EEXIST;
4774 	if (ret < 0)
4775 		return ret;
4776 
4777 	slot = path->slots[0];
4778 	BUG_ON(slot < 0);
4779 
4780 	setup_items_for_insert(root, path, cpu_key, data_size,
4781 			       total_data, total_size, nr);
4782 	return 0;
4783 }
4784 
4785 /*
4786  * Given a key and some data, insert an item into the tree.
4787  * This does all the path init required, making room in the tree if needed.
4788  */
4789 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4790 		      const struct btrfs_key *cpu_key, void *data,
4791 		      u32 data_size)
4792 {
4793 	int ret = 0;
4794 	struct btrfs_path *path;
4795 	struct extent_buffer *leaf;
4796 	unsigned long ptr;
4797 
4798 	path = btrfs_alloc_path();
4799 	if (!path)
4800 		return -ENOMEM;
4801 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4802 	if (!ret) {
4803 		leaf = path->nodes[0];
4804 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4805 		write_extent_buffer(leaf, data, ptr, data_size);
4806 		btrfs_mark_buffer_dirty(leaf);
4807 	}
4808 	btrfs_free_path(path);
4809 	return ret;
4810 }
4811 
4812 /*
4813  * delete the pointer from a given node.
4814  *
4815  * the tree should have been previously balanced so the deletion does not
4816  * empty a node.
4817  */
4818 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4819 		    int level, int slot)
4820 {
4821 	struct extent_buffer *parent = path->nodes[level];
4822 	u32 nritems;
4823 	int ret;
4824 
4825 	nritems = btrfs_header_nritems(parent);
4826 	if (slot != nritems - 1) {
4827 		if (level) {
4828 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4829 					nritems - slot - 1);
4830 			BUG_ON(ret < 0);
4831 		}
4832 		memmove_extent_buffer(parent,
4833 			      btrfs_node_key_ptr_offset(slot),
4834 			      btrfs_node_key_ptr_offset(slot + 1),
4835 			      sizeof(struct btrfs_key_ptr) *
4836 			      (nritems - slot - 1));
4837 	} else if (level) {
4838 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4839 				GFP_NOFS);
4840 		BUG_ON(ret < 0);
4841 	}
4842 
4843 	nritems--;
4844 	btrfs_set_header_nritems(parent, nritems);
4845 	if (nritems == 0 && parent == root->node) {
4846 		BUG_ON(btrfs_header_level(root->node) != 1);
4847 		/* just turn the root into a leaf and break */
4848 		btrfs_set_header_level(root->node, 0);
4849 	} else if (slot == 0) {
4850 		struct btrfs_disk_key disk_key;
4851 
4852 		btrfs_node_key(parent, &disk_key, 0);
4853 		fixup_low_keys(path, &disk_key, level + 1);
4854 	}
4855 	btrfs_mark_buffer_dirty(parent);
4856 }
4857 
4858 /*
4859  * a helper function to delete the leaf pointed to by path->slots[1] and
4860  * path->nodes[1].
4861  *
4862  * This deletes the pointer in path->nodes[1] and frees the leaf
4863  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4864  *
4865  * The path must have already been setup for deleting the leaf, including
4866  * all the proper balancing.  path->nodes[1] must be locked.
4867  */
4868 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4869 				    struct btrfs_root *root,
4870 				    struct btrfs_path *path,
4871 				    struct extent_buffer *leaf)
4872 {
4873 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4874 	del_ptr(root, path, 1, path->slots[1]);
4875 
4876 	/*
4877 	 * btrfs_free_extent is expensive, we want to make sure we
4878 	 * aren't holding any locks when we call it
4879 	 */
4880 	btrfs_unlock_up_safe(path, 0);
4881 
4882 	root_sub_used(root, leaf->len);
4883 
4884 	atomic_inc(&leaf->refs);
4885 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4886 	free_extent_buffer_stale(leaf);
4887 }
4888 /*
4889  * delete the item at the leaf level in path.  If that empties
4890  * the leaf, remove it from the tree
4891  */
4892 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4893 		    struct btrfs_path *path, int slot, int nr)
4894 {
4895 	struct btrfs_fs_info *fs_info = root->fs_info;
4896 	struct extent_buffer *leaf;
4897 	struct btrfs_item *item;
4898 	u32 last_off;
4899 	u32 dsize = 0;
4900 	int ret = 0;
4901 	int wret;
4902 	int i;
4903 	u32 nritems;
4904 
4905 	leaf = path->nodes[0];
4906 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4907 
4908 	for (i = 0; i < nr; i++)
4909 		dsize += btrfs_item_size_nr(leaf, slot + i);
4910 
4911 	nritems = btrfs_header_nritems(leaf);
4912 
4913 	if (slot + nr != nritems) {
4914 		int data_end = leaf_data_end(leaf);
4915 		struct btrfs_map_token token;
4916 
4917 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4918 			      data_end + dsize,
4919 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4920 			      last_off - data_end);
4921 
4922 		btrfs_init_map_token(&token, leaf);
4923 		for (i = slot + nr; i < nritems; i++) {
4924 			u32 ioff;
4925 
4926 			item = btrfs_item_nr(i);
4927 			ioff = btrfs_token_item_offset(&token, item);
4928 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4929 		}
4930 
4931 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4932 			      btrfs_item_nr_offset(slot + nr),
4933 			      sizeof(struct btrfs_item) *
4934 			      (nritems - slot - nr));
4935 	}
4936 	btrfs_set_header_nritems(leaf, nritems - nr);
4937 	nritems -= nr;
4938 
4939 	/* delete the leaf if we've emptied it */
4940 	if (nritems == 0) {
4941 		if (leaf == root->node) {
4942 			btrfs_set_header_level(leaf, 0);
4943 		} else {
4944 			btrfs_set_path_blocking(path);
4945 			btrfs_clean_tree_block(leaf);
4946 			btrfs_del_leaf(trans, root, path, leaf);
4947 		}
4948 	} else {
4949 		int used = leaf_space_used(leaf, 0, nritems);
4950 		if (slot == 0) {
4951 			struct btrfs_disk_key disk_key;
4952 
4953 			btrfs_item_key(leaf, &disk_key, 0);
4954 			fixup_low_keys(path, &disk_key, 1);
4955 		}
4956 
4957 		/* delete the leaf if it is mostly empty */
4958 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4959 			/* push_leaf_left fixes the path.
4960 			 * make sure the path still points to our leaf
4961 			 * for possible call to del_ptr below
4962 			 */
4963 			slot = path->slots[1];
4964 			atomic_inc(&leaf->refs);
4965 
4966 			btrfs_set_path_blocking(path);
4967 			wret = push_leaf_left(trans, root, path, 1, 1,
4968 					      1, (u32)-1);
4969 			if (wret < 0 && wret != -ENOSPC)
4970 				ret = wret;
4971 
4972 			if (path->nodes[0] == leaf &&
4973 			    btrfs_header_nritems(leaf)) {
4974 				wret = push_leaf_right(trans, root, path, 1,
4975 						       1, 1, 0);
4976 				if (wret < 0 && wret != -ENOSPC)
4977 					ret = wret;
4978 			}
4979 
4980 			if (btrfs_header_nritems(leaf) == 0) {
4981 				path->slots[1] = slot;
4982 				btrfs_del_leaf(trans, root, path, leaf);
4983 				free_extent_buffer(leaf);
4984 				ret = 0;
4985 			} else {
4986 				/* if we're still in the path, make sure
4987 				 * we're dirty.  Otherwise, one of the
4988 				 * push_leaf functions must have already
4989 				 * dirtied this buffer
4990 				 */
4991 				if (path->nodes[0] == leaf)
4992 					btrfs_mark_buffer_dirty(leaf);
4993 				free_extent_buffer(leaf);
4994 			}
4995 		} else {
4996 			btrfs_mark_buffer_dirty(leaf);
4997 		}
4998 	}
4999 	return ret;
5000 }
5001 
5002 /*
5003  * search the tree again to find a leaf with lesser keys
5004  * returns 0 if it found something or 1 if there are no lesser leaves.
5005  * returns < 0 on io errors.
5006  *
5007  * This may release the path, and so you may lose any locks held at the
5008  * time you call it.
5009  */
5010 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5011 {
5012 	struct btrfs_key key;
5013 	struct btrfs_disk_key found_key;
5014 	int ret;
5015 
5016 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5017 
5018 	if (key.offset > 0) {
5019 		key.offset--;
5020 	} else if (key.type > 0) {
5021 		key.type--;
5022 		key.offset = (u64)-1;
5023 	} else if (key.objectid > 0) {
5024 		key.objectid--;
5025 		key.type = (u8)-1;
5026 		key.offset = (u64)-1;
5027 	} else {
5028 		return 1;
5029 	}
5030 
5031 	btrfs_release_path(path);
5032 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5033 	if (ret < 0)
5034 		return ret;
5035 	btrfs_item_key(path->nodes[0], &found_key, 0);
5036 	ret = comp_keys(&found_key, &key);
5037 	/*
5038 	 * We might have had an item with the previous key in the tree right
5039 	 * before we released our path. And after we released our path, that
5040 	 * item might have been pushed to the first slot (0) of the leaf we
5041 	 * were holding due to a tree balance. Alternatively, an item with the
5042 	 * previous key can exist as the only element of a leaf (big fat item).
5043 	 * Therefore account for these 2 cases, so that our callers (like
5044 	 * btrfs_previous_item) don't miss an existing item with a key matching
5045 	 * the previous key we computed above.
5046 	 */
5047 	if (ret <= 0)
5048 		return 0;
5049 	return 1;
5050 }
5051 
5052 /*
5053  * A helper function to walk down the tree starting at min_key, and looking
5054  * for nodes or leaves that are have a minimum transaction id.
5055  * This is used by the btree defrag code, and tree logging
5056  *
5057  * This does not cow, but it does stuff the starting key it finds back
5058  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5059  * key and get a writable path.
5060  *
5061  * This honors path->lowest_level to prevent descent past a given level
5062  * of the tree.
5063  *
5064  * min_trans indicates the oldest transaction that you are interested
5065  * in walking through.  Any nodes or leaves older than min_trans are
5066  * skipped over (without reading them).
5067  *
5068  * returns zero if something useful was found, < 0 on error and 1 if there
5069  * was nothing in the tree that matched the search criteria.
5070  */
5071 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5072 			 struct btrfs_path *path,
5073 			 u64 min_trans)
5074 {
5075 	struct extent_buffer *cur;
5076 	struct btrfs_key found_key;
5077 	int slot;
5078 	int sret;
5079 	u32 nritems;
5080 	int level;
5081 	int ret = 1;
5082 	int keep_locks = path->keep_locks;
5083 
5084 	path->keep_locks = 1;
5085 again:
5086 	cur = btrfs_read_lock_root_node(root);
5087 	level = btrfs_header_level(cur);
5088 	WARN_ON(path->nodes[level]);
5089 	path->nodes[level] = cur;
5090 	path->locks[level] = BTRFS_READ_LOCK;
5091 
5092 	if (btrfs_header_generation(cur) < min_trans) {
5093 		ret = 1;
5094 		goto out;
5095 	}
5096 	while (1) {
5097 		nritems = btrfs_header_nritems(cur);
5098 		level = btrfs_header_level(cur);
5099 		sret = btrfs_bin_search(cur, min_key, &slot);
5100 		if (sret < 0) {
5101 			ret = sret;
5102 			goto out;
5103 		}
5104 
5105 		/* at the lowest level, we're done, setup the path and exit */
5106 		if (level == path->lowest_level) {
5107 			if (slot >= nritems)
5108 				goto find_next_key;
5109 			ret = 0;
5110 			path->slots[level] = slot;
5111 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5112 			goto out;
5113 		}
5114 		if (sret && slot > 0)
5115 			slot--;
5116 		/*
5117 		 * check this node pointer against the min_trans parameters.
5118 		 * If it is too old, old, skip to the next one.
5119 		 */
5120 		while (slot < nritems) {
5121 			u64 gen;
5122 
5123 			gen = btrfs_node_ptr_generation(cur, slot);
5124 			if (gen < min_trans) {
5125 				slot++;
5126 				continue;
5127 			}
5128 			break;
5129 		}
5130 find_next_key:
5131 		/*
5132 		 * we didn't find a candidate key in this node, walk forward
5133 		 * and find another one
5134 		 */
5135 		if (slot >= nritems) {
5136 			path->slots[level] = slot;
5137 			btrfs_set_path_blocking(path);
5138 			sret = btrfs_find_next_key(root, path, min_key, level,
5139 						  min_trans);
5140 			if (sret == 0) {
5141 				btrfs_release_path(path);
5142 				goto again;
5143 			} else {
5144 				goto out;
5145 			}
5146 		}
5147 		/* save our key for returning back */
5148 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5149 		path->slots[level] = slot;
5150 		if (level == path->lowest_level) {
5151 			ret = 0;
5152 			goto out;
5153 		}
5154 		btrfs_set_path_blocking(path);
5155 		cur = btrfs_read_node_slot(cur, slot);
5156 		if (IS_ERR(cur)) {
5157 			ret = PTR_ERR(cur);
5158 			goto out;
5159 		}
5160 
5161 		btrfs_tree_read_lock(cur);
5162 
5163 		path->locks[level - 1] = BTRFS_READ_LOCK;
5164 		path->nodes[level - 1] = cur;
5165 		unlock_up(path, level, 1, 0, NULL);
5166 	}
5167 out:
5168 	path->keep_locks = keep_locks;
5169 	if (ret == 0) {
5170 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5171 		btrfs_set_path_blocking(path);
5172 		memcpy(min_key, &found_key, sizeof(found_key));
5173 	}
5174 	return ret;
5175 }
5176 
5177 /*
5178  * this is similar to btrfs_next_leaf, but does not try to preserve
5179  * and fixup the path.  It looks for and returns the next key in the
5180  * tree based on the current path and the min_trans parameters.
5181  *
5182  * 0 is returned if another key is found, < 0 if there are any errors
5183  * and 1 is returned if there are no higher keys in the tree
5184  *
5185  * path->keep_locks should be set to 1 on the search made before
5186  * calling this function.
5187  */
5188 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5189 			struct btrfs_key *key, int level, u64 min_trans)
5190 {
5191 	int slot;
5192 	struct extent_buffer *c;
5193 
5194 	WARN_ON(!path->keep_locks && !path->skip_locking);
5195 	while (level < BTRFS_MAX_LEVEL) {
5196 		if (!path->nodes[level])
5197 			return 1;
5198 
5199 		slot = path->slots[level] + 1;
5200 		c = path->nodes[level];
5201 next:
5202 		if (slot >= btrfs_header_nritems(c)) {
5203 			int ret;
5204 			int orig_lowest;
5205 			struct btrfs_key cur_key;
5206 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5207 			    !path->nodes[level + 1])
5208 				return 1;
5209 
5210 			if (path->locks[level + 1] || path->skip_locking) {
5211 				level++;
5212 				continue;
5213 			}
5214 
5215 			slot = btrfs_header_nritems(c) - 1;
5216 			if (level == 0)
5217 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5218 			else
5219 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5220 
5221 			orig_lowest = path->lowest_level;
5222 			btrfs_release_path(path);
5223 			path->lowest_level = level;
5224 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5225 						0, 0);
5226 			path->lowest_level = orig_lowest;
5227 			if (ret < 0)
5228 				return ret;
5229 
5230 			c = path->nodes[level];
5231 			slot = path->slots[level];
5232 			if (ret == 0)
5233 				slot++;
5234 			goto next;
5235 		}
5236 
5237 		if (level == 0)
5238 			btrfs_item_key_to_cpu(c, key, slot);
5239 		else {
5240 			u64 gen = btrfs_node_ptr_generation(c, slot);
5241 
5242 			if (gen < min_trans) {
5243 				slot++;
5244 				goto next;
5245 			}
5246 			btrfs_node_key_to_cpu(c, key, slot);
5247 		}
5248 		return 0;
5249 	}
5250 	return 1;
5251 }
5252 
5253 /*
5254  * search the tree again to find a leaf with greater keys
5255  * returns 0 if it found something or 1 if there are no greater leaves.
5256  * returns < 0 on io errors.
5257  */
5258 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5259 {
5260 	return btrfs_next_old_leaf(root, path, 0);
5261 }
5262 
5263 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5264 			u64 time_seq)
5265 {
5266 	int slot;
5267 	int level;
5268 	struct extent_buffer *c;
5269 	struct extent_buffer *next;
5270 	struct btrfs_key key;
5271 	u32 nritems;
5272 	int ret;
5273 	int old_spinning = path->leave_spinning;
5274 	int next_rw_lock = 0;
5275 
5276 	nritems = btrfs_header_nritems(path->nodes[0]);
5277 	if (nritems == 0)
5278 		return 1;
5279 
5280 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5281 again:
5282 	level = 1;
5283 	next = NULL;
5284 	next_rw_lock = 0;
5285 	btrfs_release_path(path);
5286 
5287 	path->keep_locks = 1;
5288 	path->leave_spinning = 1;
5289 
5290 	if (time_seq)
5291 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5292 	else
5293 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5294 	path->keep_locks = 0;
5295 
5296 	if (ret < 0)
5297 		return ret;
5298 
5299 	nritems = btrfs_header_nritems(path->nodes[0]);
5300 	/*
5301 	 * by releasing the path above we dropped all our locks.  A balance
5302 	 * could have added more items next to the key that used to be
5303 	 * at the very end of the block.  So, check again here and
5304 	 * advance the path if there are now more items available.
5305 	 */
5306 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5307 		if (ret == 0)
5308 			path->slots[0]++;
5309 		ret = 0;
5310 		goto done;
5311 	}
5312 	/*
5313 	 * So the above check misses one case:
5314 	 * - after releasing the path above, someone has removed the item that
5315 	 *   used to be at the very end of the block, and balance between leafs
5316 	 *   gets another one with bigger key.offset to replace it.
5317 	 *
5318 	 * This one should be returned as well, or we can get leaf corruption
5319 	 * later(esp. in __btrfs_drop_extents()).
5320 	 *
5321 	 * And a bit more explanation about this check,
5322 	 * with ret > 0, the key isn't found, the path points to the slot
5323 	 * where it should be inserted, so the path->slots[0] item must be the
5324 	 * bigger one.
5325 	 */
5326 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5327 		ret = 0;
5328 		goto done;
5329 	}
5330 
5331 	while (level < BTRFS_MAX_LEVEL) {
5332 		if (!path->nodes[level]) {
5333 			ret = 1;
5334 			goto done;
5335 		}
5336 
5337 		slot = path->slots[level] + 1;
5338 		c = path->nodes[level];
5339 		if (slot >= btrfs_header_nritems(c)) {
5340 			level++;
5341 			if (level == BTRFS_MAX_LEVEL) {
5342 				ret = 1;
5343 				goto done;
5344 			}
5345 			continue;
5346 		}
5347 
5348 		if (next) {
5349 			btrfs_tree_unlock_rw(next, next_rw_lock);
5350 			free_extent_buffer(next);
5351 		}
5352 
5353 		next = c;
5354 		next_rw_lock = path->locks[level];
5355 		ret = read_block_for_search(root, path, &next, level,
5356 					    slot, &key);
5357 		if (ret == -EAGAIN)
5358 			goto again;
5359 
5360 		if (ret < 0) {
5361 			btrfs_release_path(path);
5362 			goto done;
5363 		}
5364 
5365 		if (!path->skip_locking) {
5366 			ret = btrfs_try_tree_read_lock(next);
5367 			if (!ret && time_seq) {
5368 				/*
5369 				 * If we don't get the lock, we may be racing
5370 				 * with push_leaf_left, holding that lock while
5371 				 * itself waiting for the leaf we've currently
5372 				 * locked. To solve this situation, we give up
5373 				 * on our lock and cycle.
5374 				 */
5375 				free_extent_buffer(next);
5376 				btrfs_release_path(path);
5377 				cond_resched();
5378 				goto again;
5379 			}
5380 			if (!ret) {
5381 				btrfs_set_path_blocking(path);
5382 				btrfs_tree_read_lock(next);
5383 			}
5384 			next_rw_lock = BTRFS_READ_LOCK;
5385 		}
5386 		break;
5387 	}
5388 	path->slots[level] = slot;
5389 	while (1) {
5390 		level--;
5391 		c = path->nodes[level];
5392 		if (path->locks[level])
5393 			btrfs_tree_unlock_rw(c, path->locks[level]);
5394 
5395 		free_extent_buffer(c);
5396 		path->nodes[level] = next;
5397 		path->slots[level] = 0;
5398 		if (!path->skip_locking)
5399 			path->locks[level] = next_rw_lock;
5400 		if (!level)
5401 			break;
5402 
5403 		ret = read_block_for_search(root, path, &next, level,
5404 					    0, &key);
5405 		if (ret == -EAGAIN)
5406 			goto again;
5407 
5408 		if (ret < 0) {
5409 			btrfs_release_path(path);
5410 			goto done;
5411 		}
5412 
5413 		if (!path->skip_locking) {
5414 			ret = btrfs_try_tree_read_lock(next);
5415 			if (!ret) {
5416 				btrfs_set_path_blocking(path);
5417 				btrfs_tree_read_lock(next);
5418 			}
5419 			next_rw_lock = BTRFS_READ_LOCK;
5420 		}
5421 	}
5422 	ret = 0;
5423 done:
5424 	unlock_up(path, 0, 1, 0, NULL);
5425 	path->leave_spinning = old_spinning;
5426 	if (!old_spinning)
5427 		btrfs_set_path_blocking(path);
5428 
5429 	return ret;
5430 }
5431 
5432 /*
5433  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5434  * searching until it gets past min_objectid or finds an item of 'type'
5435  *
5436  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5437  */
5438 int btrfs_previous_item(struct btrfs_root *root,
5439 			struct btrfs_path *path, u64 min_objectid,
5440 			int type)
5441 {
5442 	struct btrfs_key found_key;
5443 	struct extent_buffer *leaf;
5444 	u32 nritems;
5445 	int ret;
5446 
5447 	while (1) {
5448 		if (path->slots[0] == 0) {
5449 			btrfs_set_path_blocking(path);
5450 			ret = btrfs_prev_leaf(root, path);
5451 			if (ret != 0)
5452 				return ret;
5453 		} else {
5454 			path->slots[0]--;
5455 		}
5456 		leaf = path->nodes[0];
5457 		nritems = btrfs_header_nritems(leaf);
5458 		if (nritems == 0)
5459 			return 1;
5460 		if (path->slots[0] == nritems)
5461 			path->slots[0]--;
5462 
5463 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5464 		if (found_key.objectid < min_objectid)
5465 			break;
5466 		if (found_key.type == type)
5467 			return 0;
5468 		if (found_key.objectid == min_objectid &&
5469 		    found_key.type < type)
5470 			break;
5471 	}
5472 	return 1;
5473 }
5474 
5475 /*
5476  * search in extent tree to find a previous Metadata/Data extent item with
5477  * min objecitd.
5478  *
5479  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5480  */
5481 int btrfs_previous_extent_item(struct btrfs_root *root,
5482 			struct btrfs_path *path, u64 min_objectid)
5483 {
5484 	struct btrfs_key found_key;
5485 	struct extent_buffer *leaf;
5486 	u32 nritems;
5487 	int ret;
5488 
5489 	while (1) {
5490 		if (path->slots[0] == 0) {
5491 			btrfs_set_path_blocking(path);
5492 			ret = btrfs_prev_leaf(root, path);
5493 			if (ret != 0)
5494 				return ret;
5495 		} else {
5496 			path->slots[0]--;
5497 		}
5498 		leaf = path->nodes[0];
5499 		nritems = btrfs_header_nritems(leaf);
5500 		if (nritems == 0)
5501 			return 1;
5502 		if (path->slots[0] == nritems)
5503 			path->slots[0]--;
5504 
5505 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5506 		if (found_key.objectid < min_objectid)
5507 			break;
5508 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5509 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5510 			return 0;
5511 		if (found_key.objectid == min_objectid &&
5512 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5513 			break;
5514 	}
5515 	return 1;
5516 }
5517