xref: /openbmc/linux/fs/btrfs/ctree.c (revision 110e6f26)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include <linux/vmalloc.h>
23 #include "ctree.h"
24 #include "disk-io.h"
25 #include "transaction.h"
26 #include "print-tree.h"
27 #include "locking.h"
28 
29 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
30 		      *root, struct btrfs_path *path, int level);
31 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
32 		      *root, struct btrfs_key *ins_key,
33 		      struct btrfs_path *path, int data_size, int extend);
34 static int push_node_left(struct btrfs_trans_handle *trans,
35 			  struct btrfs_root *root, struct extent_buffer *dst,
36 			  struct extent_buffer *src, int empty);
37 static int balance_node_right(struct btrfs_trans_handle *trans,
38 			      struct btrfs_root *root,
39 			      struct extent_buffer *dst_buf,
40 			      struct extent_buffer *src_buf);
41 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
42 		    int level, int slot);
43 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48 	struct btrfs_path *path;
49 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
50 	return path;
51 }
52 
53 /*
54  * set all locked nodes in the path to blocking locks.  This should
55  * be done before scheduling
56  */
57 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 {
59 	int i;
60 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
61 		if (!p->nodes[i] || !p->locks[i])
62 			continue;
63 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
64 		if (p->locks[i] == BTRFS_READ_LOCK)
65 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
66 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
67 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
68 	}
69 }
70 
71 /*
72  * reset all the locked nodes in the patch to spinning locks.
73  *
74  * held is used to keep lockdep happy, when lockdep is enabled
75  * we set held to a blocking lock before we go around and
76  * retake all the spinlocks in the path.  You can safely use NULL
77  * for held
78  */
79 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
80 					struct extent_buffer *held, int held_rw)
81 {
82 	int i;
83 
84 	if (held) {
85 		btrfs_set_lock_blocking_rw(held, held_rw);
86 		if (held_rw == BTRFS_WRITE_LOCK)
87 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
88 		else if (held_rw == BTRFS_READ_LOCK)
89 			held_rw = BTRFS_READ_LOCK_BLOCKING;
90 	}
91 	btrfs_set_path_blocking(p);
92 
93 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
94 		if (p->nodes[i] && p->locks[i]) {
95 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
96 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
97 				p->locks[i] = BTRFS_WRITE_LOCK;
98 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
99 				p->locks[i] = BTRFS_READ_LOCK;
100 		}
101 	}
102 
103 	if (held)
104 		btrfs_clear_lock_blocking_rw(held, held_rw);
105 }
106 
107 /* this also releases the path */
108 void btrfs_free_path(struct btrfs_path *p)
109 {
110 	if (!p)
111 		return;
112 	btrfs_release_path(p);
113 	kmem_cache_free(btrfs_path_cachep, p);
114 }
115 
116 /*
117  * path release drops references on the extent buffers in the path
118  * and it drops any locks held by this path
119  *
120  * It is safe to call this on paths that no locks or extent buffers held.
121  */
122 noinline void btrfs_release_path(struct btrfs_path *p)
123 {
124 	int i;
125 
126 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
127 		p->slots[i] = 0;
128 		if (!p->nodes[i])
129 			continue;
130 		if (p->locks[i]) {
131 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
132 			p->locks[i] = 0;
133 		}
134 		free_extent_buffer(p->nodes[i]);
135 		p->nodes[i] = NULL;
136 	}
137 }
138 
139 /*
140  * safely gets a reference on the root node of a tree.  A lock
141  * is not taken, so a concurrent writer may put a different node
142  * at the root of the tree.  See btrfs_lock_root_node for the
143  * looping required.
144  *
145  * The extent buffer returned by this has a reference taken, so
146  * it won't disappear.  It may stop being the root of the tree
147  * at any time because there are no locks held.
148  */
149 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 {
151 	struct extent_buffer *eb;
152 
153 	while (1) {
154 		rcu_read_lock();
155 		eb = rcu_dereference(root->node);
156 
157 		/*
158 		 * RCU really hurts here, we could free up the root node because
159 		 * it was cow'ed but we may not get the new root node yet so do
160 		 * the inc_not_zero dance and if it doesn't work then
161 		 * synchronize_rcu and try again.
162 		 */
163 		if (atomic_inc_not_zero(&eb->refs)) {
164 			rcu_read_unlock();
165 			break;
166 		}
167 		rcu_read_unlock();
168 		synchronize_rcu();
169 	}
170 	return eb;
171 }
172 
173 /* loop around taking references on and locking the root node of the
174  * tree until you end up with a lock on the root.  A locked buffer
175  * is returned, with a reference held.
176  */
177 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 {
179 	struct extent_buffer *eb;
180 
181 	while (1) {
182 		eb = btrfs_root_node(root);
183 		btrfs_tree_lock(eb);
184 		if (eb == root->node)
185 			break;
186 		btrfs_tree_unlock(eb);
187 		free_extent_buffer(eb);
188 	}
189 	return eb;
190 }
191 
192 /* loop around taking references on and locking the root node of the
193  * tree until you end up with a lock on the root.  A locked buffer
194  * is returned, with a reference held.
195  */
196 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 {
198 	struct extent_buffer *eb;
199 
200 	while (1) {
201 		eb = btrfs_root_node(root);
202 		btrfs_tree_read_lock(eb);
203 		if (eb == root->node)
204 			break;
205 		btrfs_tree_read_unlock(eb);
206 		free_extent_buffer(eb);
207 	}
208 	return eb;
209 }
210 
211 /* cowonly root (everything not a reference counted cow subvolume), just get
212  * put onto a simple dirty list.  transaction.c walks this to make sure they
213  * get properly updated on disk.
214  */
215 static void add_root_to_dirty_list(struct btrfs_root *root)
216 {
217 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
218 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
219 		return;
220 
221 	spin_lock(&root->fs_info->trans_lock);
222 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
223 		/* Want the extent tree to be the last on the list */
224 		if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
225 			list_move_tail(&root->dirty_list,
226 				       &root->fs_info->dirty_cowonly_roots);
227 		else
228 			list_move(&root->dirty_list,
229 				  &root->fs_info->dirty_cowonly_roots);
230 	}
231 	spin_unlock(&root->fs_info->trans_lock);
232 }
233 
234 /*
235  * used by snapshot creation to make a copy of a root for a tree with
236  * a given objectid.  The buffer with the new root node is returned in
237  * cow_ret, and this func returns zero on success or a negative error code.
238  */
239 int btrfs_copy_root(struct btrfs_trans_handle *trans,
240 		      struct btrfs_root *root,
241 		      struct extent_buffer *buf,
242 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
243 {
244 	struct extent_buffer *cow;
245 	int ret = 0;
246 	int level;
247 	struct btrfs_disk_key disk_key;
248 
249 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
250 		trans->transid != root->fs_info->running_transaction->transid);
251 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
252 		trans->transid != root->last_trans);
253 
254 	level = btrfs_header_level(buf);
255 	if (level == 0)
256 		btrfs_item_key(buf, &disk_key, 0);
257 	else
258 		btrfs_node_key(buf, &disk_key, 0);
259 
260 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
261 			&disk_key, level, buf->start, 0);
262 	if (IS_ERR(cow))
263 		return PTR_ERR(cow);
264 
265 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
266 	btrfs_set_header_bytenr(cow, cow->start);
267 	btrfs_set_header_generation(cow, trans->transid);
268 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
269 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
270 				     BTRFS_HEADER_FLAG_RELOC);
271 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
272 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
273 	else
274 		btrfs_set_header_owner(cow, new_root_objectid);
275 
276 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
277 			    BTRFS_FSID_SIZE);
278 
279 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
280 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
281 		ret = btrfs_inc_ref(trans, root, cow, 1);
282 	else
283 		ret = btrfs_inc_ref(trans, root, cow, 0);
284 
285 	if (ret)
286 		return ret;
287 
288 	btrfs_mark_buffer_dirty(cow);
289 	*cow_ret = cow;
290 	return 0;
291 }
292 
293 enum mod_log_op {
294 	MOD_LOG_KEY_REPLACE,
295 	MOD_LOG_KEY_ADD,
296 	MOD_LOG_KEY_REMOVE,
297 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
298 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
299 	MOD_LOG_MOVE_KEYS,
300 	MOD_LOG_ROOT_REPLACE,
301 };
302 
303 struct tree_mod_move {
304 	int dst_slot;
305 	int nr_items;
306 };
307 
308 struct tree_mod_root {
309 	u64 logical;
310 	u8 level;
311 };
312 
313 struct tree_mod_elem {
314 	struct rb_node node;
315 	u64 logical;
316 	u64 seq;
317 	enum mod_log_op op;
318 
319 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
320 	int slot;
321 
322 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
323 	u64 generation;
324 
325 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
326 	struct btrfs_disk_key key;
327 	u64 blockptr;
328 
329 	/* this is used for op == MOD_LOG_MOVE_KEYS */
330 	struct tree_mod_move move;
331 
332 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
333 	struct tree_mod_root old_root;
334 };
335 
336 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 {
338 	read_lock(&fs_info->tree_mod_log_lock);
339 }
340 
341 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 {
343 	read_unlock(&fs_info->tree_mod_log_lock);
344 }
345 
346 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 {
348 	write_lock(&fs_info->tree_mod_log_lock);
349 }
350 
351 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 {
353 	write_unlock(&fs_info->tree_mod_log_lock);
354 }
355 
356 /*
357  * Pull a new tree mod seq number for our operation.
358  */
359 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 {
361 	return atomic64_inc_return(&fs_info->tree_mod_seq);
362 }
363 
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 			   struct seq_list *elem)
374 {
375 	tree_mod_log_write_lock(fs_info);
376 	spin_lock(&fs_info->tree_mod_seq_lock);
377 	if (!elem->seq) {
378 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
379 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 	}
381 	spin_unlock(&fs_info->tree_mod_seq_lock);
382 	tree_mod_log_write_unlock(fs_info);
383 
384 	return elem->seq;
385 }
386 
387 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
388 			    struct seq_list *elem)
389 {
390 	struct rb_root *tm_root;
391 	struct rb_node *node;
392 	struct rb_node *next;
393 	struct seq_list *cur_elem;
394 	struct tree_mod_elem *tm;
395 	u64 min_seq = (u64)-1;
396 	u64 seq_putting = elem->seq;
397 
398 	if (!seq_putting)
399 		return;
400 
401 	spin_lock(&fs_info->tree_mod_seq_lock);
402 	list_del(&elem->list);
403 	elem->seq = 0;
404 
405 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
406 		if (cur_elem->seq < min_seq) {
407 			if (seq_putting > cur_elem->seq) {
408 				/*
409 				 * blocker with lower sequence number exists, we
410 				 * cannot remove anything from the log
411 				 */
412 				spin_unlock(&fs_info->tree_mod_seq_lock);
413 				return;
414 			}
415 			min_seq = cur_elem->seq;
416 		}
417 	}
418 	spin_unlock(&fs_info->tree_mod_seq_lock);
419 
420 	/*
421 	 * anything that's lower than the lowest existing (read: blocked)
422 	 * sequence number can be removed from the tree.
423 	 */
424 	tree_mod_log_write_lock(fs_info);
425 	tm_root = &fs_info->tree_mod_log;
426 	for (node = rb_first(tm_root); node; node = next) {
427 		next = rb_next(node);
428 		tm = container_of(node, struct tree_mod_elem, node);
429 		if (tm->seq > min_seq)
430 			continue;
431 		rb_erase(node, tm_root);
432 		kfree(tm);
433 	}
434 	tree_mod_log_write_unlock(fs_info);
435 }
436 
437 /*
438  * key order of the log:
439  *       node/leaf start address -> sequence
440  *
441  * The 'start address' is the logical address of the *new* root node
442  * for root replace operations, or the logical address of the affected
443  * block for all other operations.
444  *
445  * Note: must be called with write lock (tree_mod_log_write_lock).
446  */
447 static noinline int
448 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 {
450 	struct rb_root *tm_root;
451 	struct rb_node **new;
452 	struct rb_node *parent = NULL;
453 	struct tree_mod_elem *cur;
454 
455 	BUG_ON(!tm);
456 
457 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458 
459 	tm_root = &fs_info->tree_mod_log;
460 	new = &tm_root->rb_node;
461 	while (*new) {
462 		cur = container_of(*new, struct tree_mod_elem, node);
463 		parent = *new;
464 		if (cur->logical < tm->logical)
465 			new = &((*new)->rb_left);
466 		else if (cur->logical > tm->logical)
467 			new = &((*new)->rb_right);
468 		else if (cur->seq < tm->seq)
469 			new = &((*new)->rb_left);
470 		else if (cur->seq > tm->seq)
471 			new = &((*new)->rb_right);
472 		else
473 			return -EEXIST;
474 	}
475 
476 	rb_link_node(&tm->node, parent, new);
477 	rb_insert_color(&tm->node, tm_root);
478 	return 0;
479 }
480 
481 /*
482  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
483  * returns zero with the tree_mod_log_lock acquired. The caller must hold
484  * this until all tree mod log insertions are recorded in the rb tree and then
485  * call tree_mod_log_write_unlock() to release.
486  */
487 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
488 				    struct extent_buffer *eb) {
489 	smp_mb();
490 	if (list_empty(&(fs_info)->tree_mod_seq_list))
491 		return 1;
492 	if (eb && btrfs_header_level(eb) == 0)
493 		return 1;
494 
495 	tree_mod_log_write_lock(fs_info);
496 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
497 		tree_mod_log_write_unlock(fs_info);
498 		return 1;
499 	}
500 
501 	return 0;
502 }
503 
504 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
505 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
506 				    struct extent_buffer *eb)
507 {
508 	smp_mb();
509 	if (list_empty(&(fs_info)->tree_mod_seq_list))
510 		return 0;
511 	if (eb && btrfs_header_level(eb) == 0)
512 		return 0;
513 
514 	return 1;
515 }
516 
517 static struct tree_mod_elem *
518 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
519 		    enum mod_log_op op, gfp_t flags)
520 {
521 	struct tree_mod_elem *tm;
522 
523 	tm = kzalloc(sizeof(*tm), flags);
524 	if (!tm)
525 		return NULL;
526 
527 	tm->logical = eb->start;
528 	if (op != MOD_LOG_KEY_ADD) {
529 		btrfs_node_key(eb, &tm->key, slot);
530 		tm->blockptr = btrfs_node_blockptr(eb, slot);
531 	}
532 	tm->op = op;
533 	tm->slot = slot;
534 	tm->generation = btrfs_node_ptr_generation(eb, slot);
535 	RB_CLEAR_NODE(&tm->node);
536 
537 	return tm;
538 }
539 
540 static noinline int
541 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
542 			struct extent_buffer *eb, int slot,
543 			enum mod_log_op op, gfp_t flags)
544 {
545 	struct tree_mod_elem *tm;
546 	int ret;
547 
548 	if (!tree_mod_need_log(fs_info, eb))
549 		return 0;
550 
551 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
552 	if (!tm)
553 		return -ENOMEM;
554 
555 	if (tree_mod_dont_log(fs_info, eb)) {
556 		kfree(tm);
557 		return 0;
558 	}
559 
560 	ret = __tree_mod_log_insert(fs_info, tm);
561 	tree_mod_log_write_unlock(fs_info);
562 	if (ret)
563 		kfree(tm);
564 
565 	return ret;
566 }
567 
568 static noinline int
569 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
570 			 struct extent_buffer *eb, int dst_slot, int src_slot,
571 			 int nr_items, gfp_t flags)
572 {
573 	struct tree_mod_elem *tm = NULL;
574 	struct tree_mod_elem **tm_list = NULL;
575 	int ret = 0;
576 	int i;
577 	int locked = 0;
578 
579 	if (!tree_mod_need_log(fs_info, eb))
580 		return 0;
581 
582 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
583 	if (!tm_list)
584 		return -ENOMEM;
585 
586 	tm = kzalloc(sizeof(*tm), flags);
587 	if (!tm) {
588 		ret = -ENOMEM;
589 		goto free_tms;
590 	}
591 
592 	tm->logical = eb->start;
593 	tm->slot = src_slot;
594 	tm->move.dst_slot = dst_slot;
595 	tm->move.nr_items = nr_items;
596 	tm->op = MOD_LOG_MOVE_KEYS;
597 
598 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
599 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
600 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
601 		if (!tm_list[i]) {
602 			ret = -ENOMEM;
603 			goto free_tms;
604 		}
605 	}
606 
607 	if (tree_mod_dont_log(fs_info, eb))
608 		goto free_tms;
609 	locked = 1;
610 
611 	/*
612 	 * When we override something during the move, we log these removals.
613 	 * This can only happen when we move towards the beginning of the
614 	 * buffer, i.e. dst_slot < src_slot.
615 	 */
616 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
617 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
618 		if (ret)
619 			goto free_tms;
620 	}
621 
622 	ret = __tree_mod_log_insert(fs_info, tm);
623 	if (ret)
624 		goto free_tms;
625 	tree_mod_log_write_unlock(fs_info);
626 	kfree(tm_list);
627 
628 	return 0;
629 free_tms:
630 	for (i = 0; i < nr_items; i++) {
631 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
632 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
633 		kfree(tm_list[i]);
634 	}
635 	if (locked)
636 		tree_mod_log_write_unlock(fs_info);
637 	kfree(tm_list);
638 	kfree(tm);
639 
640 	return ret;
641 }
642 
643 static inline int
644 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
645 		       struct tree_mod_elem **tm_list,
646 		       int nritems)
647 {
648 	int i, j;
649 	int ret;
650 
651 	for (i = nritems - 1; i >= 0; i--) {
652 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
653 		if (ret) {
654 			for (j = nritems - 1; j > i; j--)
655 				rb_erase(&tm_list[j]->node,
656 					 &fs_info->tree_mod_log);
657 			return ret;
658 		}
659 	}
660 
661 	return 0;
662 }
663 
664 static noinline int
665 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
666 			 struct extent_buffer *old_root,
667 			 struct extent_buffer *new_root, gfp_t flags,
668 			 int log_removal)
669 {
670 	struct tree_mod_elem *tm = NULL;
671 	struct tree_mod_elem **tm_list = NULL;
672 	int nritems = 0;
673 	int ret = 0;
674 	int i;
675 
676 	if (!tree_mod_need_log(fs_info, NULL))
677 		return 0;
678 
679 	if (log_removal && btrfs_header_level(old_root) > 0) {
680 		nritems = btrfs_header_nritems(old_root);
681 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
682 				  flags);
683 		if (!tm_list) {
684 			ret = -ENOMEM;
685 			goto free_tms;
686 		}
687 		for (i = 0; i < nritems; i++) {
688 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
689 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
690 			if (!tm_list[i]) {
691 				ret = -ENOMEM;
692 				goto free_tms;
693 			}
694 		}
695 	}
696 
697 	tm = kzalloc(sizeof(*tm), flags);
698 	if (!tm) {
699 		ret = -ENOMEM;
700 		goto free_tms;
701 	}
702 
703 	tm->logical = new_root->start;
704 	tm->old_root.logical = old_root->start;
705 	tm->old_root.level = btrfs_header_level(old_root);
706 	tm->generation = btrfs_header_generation(old_root);
707 	tm->op = MOD_LOG_ROOT_REPLACE;
708 
709 	if (tree_mod_dont_log(fs_info, NULL))
710 		goto free_tms;
711 
712 	if (tm_list)
713 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
714 	if (!ret)
715 		ret = __tree_mod_log_insert(fs_info, tm);
716 
717 	tree_mod_log_write_unlock(fs_info);
718 	if (ret)
719 		goto free_tms;
720 	kfree(tm_list);
721 
722 	return ret;
723 
724 free_tms:
725 	if (tm_list) {
726 		for (i = 0; i < nritems; i++)
727 			kfree(tm_list[i]);
728 		kfree(tm_list);
729 	}
730 	kfree(tm);
731 
732 	return ret;
733 }
734 
735 static struct tree_mod_elem *
736 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
737 		      int smallest)
738 {
739 	struct rb_root *tm_root;
740 	struct rb_node *node;
741 	struct tree_mod_elem *cur = NULL;
742 	struct tree_mod_elem *found = NULL;
743 
744 	tree_mod_log_read_lock(fs_info);
745 	tm_root = &fs_info->tree_mod_log;
746 	node = tm_root->rb_node;
747 	while (node) {
748 		cur = container_of(node, struct tree_mod_elem, node);
749 		if (cur->logical < start) {
750 			node = node->rb_left;
751 		} else if (cur->logical > start) {
752 			node = node->rb_right;
753 		} else if (cur->seq < min_seq) {
754 			node = node->rb_left;
755 		} else if (!smallest) {
756 			/* we want the node with the highest seq */
757 			if (found)
758 				BUG_ON(found->seq > cur->seq);
759 			found = cur;
760 			node = node->rb_left;
761 		} else if (cur->seq > min_seq) {
762 			/* we want the node with the smallest seq */
763 			if (found)
764 				BUG_ON(found->seq < cur->seq);
765 			found = cur;
766 			node = node->rb_right;
767 		} else {
768 			found = cur;
769 			break;
770 		}
771 	}
772 	tree_mod_log_read_unlock(fs_info);
773 
774 	return found;
775 }
776 
777 /*
778  * this returns the element from the log with the smallest time sequence
779  * value that's in the log (the oldest log item). any element with a time
780  * sequence lower than min_seq will be ignored.
781  */
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 			   u64 min_seq)
785 {
786 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
787 }
788 
789 /*
790  * this returns the element from the log with the largest time sequence
791  * value that's in the log (the most recent log item). any element with
792  * a time sequence lower than min_seq will be ignored.
793  */
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
796 {
797 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
798 }
799 
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 		     struct extent_buffer *src, unsigned long dst_offset,
803 		     unsigned long src_offset, int nr_items)
804 {
805 	int ret = 0;
806 	struct tree_mod_elem **tm_list = NULL;
807 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 	int i;
809 	int locked = 0;
810 
811 	if (!tree_mod_need_log(fs_info, NULL))
812 		return 0;
813 
814 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 		return 0;
816 
817 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 			  GFP_NOFS);
819 	if (!tm_list)
820 		return -ENOMEM;
821 
822 	tm_list_add = tm_list;
823 	tm_list_rem = tm_list + nr_items;
824 	for (i = 0; i < nr_items; i++) {
825 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 		if (!tm_list_rem[i]) {
828 			ret = -ENOMEM;
829 			goto free_tms;
830 		}
831 
832 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 		    MOD_LOG_KEY_ADD, GFP_NOFS);
834 		if (!tm_list_add[i]) {
835 			ret = -ENOMEM;
836 			goto free_tms;
837 		}
838 	}
839 
840 	if (tree_mod_dont_log(fs_info, NULL))
841 		goto free_tms;
842 	locked = 1;
843 
844 	for (i = 0; i < nr_items; i++) {
845 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 		if (ret)
847 			goto free_tms;
848 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 		if (ret)
850 			goto free_tms;
851 	}
852 
853 	tree_mod_log_write_unlock(fs_info);
854 	kfree(tm_list);
855 
856 	return 0;
857 
858 free_tms:
859 	for (i = 0; i < nr_items * 2; i++) {
860 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 		kfree(tm_list[i]);
863 	}
864 	if (locked)
865 		tree_mod_log_write_unlock(fs_info);
866 	kfree(tm_list);
867 
868 	return ret;
869 }
870 
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 		     int dst_offset, int src_offset, int nr_items)
874 {
875 	int ret;
876 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 				       nr_items, GFP_NOFS);
878 	BUG_ON(ret < 0);
879 }
880 
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 			  struct extent_buffer *eb, int slot, int atomic)
884 {
885 	int ret;
886 
887 	ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 					MOD_LOG_KEY_REPLACE,
889 					atomic ? GFP_ATOMIC : GFP_NOFS);
890 	BUG_ON(ret < 0);
891 }
892 
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
895 {
896 	struct tree_mod_elem **tm_list = NULL;
897 	int nritems = 0;
898 	int i;
899 	int ret = 0;
900 
901 	if (btrfs_header_level(eb) == 0)
902 		return 0;
903 
904 	if (!tree_mod_need_log(fs_info, NULL))
905 		return 0;
906 
907 	nritems = btrfs_header_nritems(eb);
908 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 	if (!tm_list)
910 		return -ENOMEM;
911 
912 	for (i = 0; i < nritems; i++) {
913 		tm_list[i] = alloc_tree_mod_elem(eb, i,
914 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 		if (!tm_list[i]) {
916 			ret = -ENOMEM;
917 			goto free_tms;
918 		}
919 	}
920 
921 	if (tree_mod_dont_log(fs_info, eb))
922 		goto free_tms;
923 
924 	ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 	tree_mod_log_write_unlock(fs_info);
926 	if (ret)
927 		goto free_tms;
928 	kfree(tm_list);
929 
930 	return 0;
931 
932 free_tms:
933 	for (i = 0; i < nritems; i++)
934 		kfree(tm_list[i]);
935 	kfree(tm_list);
936 
937 	return ret;
938 }
939 
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 			      struct extent_buffer *new_root_node,
943 			      int log_removal)
944 {
945 	int ret;
946 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 				       new_root_node, GFP_NOFS, log_removal);
948 	BUG_ON(ret < 0);
949 }
950 
951 /*
952  * check if the tree block can be shared by multiple trees
953  */
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 			      struct extent_buffer *buf)
956 {
957 	/*
958 	 * Tree blocks not in refernece counted trees and tree roots
959 	 * are never shared. If a block was allocated after the last
960 	 * snapshot and the block was not allocated by tree relocation,
961 	 * we know the block is not shared.
962 	 */
963 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 	    buf != root->node && buf != root->commit_root &&
965 	    (btrfs_header_generation(buf) <=
966 	     btrfs_root_last_snapshot(&root->root_item) ||
967 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 		return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 		return 1;
973 #endif
974 	return 0;
975 }
976 
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 				       struct btrfs_root *root,
979 				       struct extent_buffer *buf,
980 				       struct extent_buffer *cow,
981 				       int *last_ref)
982 {
983 	u64 refs;
984 	u64 owner;
985 	u64 flags;
986 	u64 new_flags = 0;
987 	int ret;
988 
989 	/*
990 	 * Backrefs update rules:
991 	 *
992 	 * Always use full backrefs for extent pointers in tree block
993 	 * allocated by tree relocation.
994 	 *
995 	 * If a shared tree block is no longer referenced by its owner
996 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 	 * use full backrefs for extent pointers in tree block.
998 	 *
999 	 * If a tree block is been relocating
1000 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 	 * use full backrefs for extent pointers in tree block.
1002 	 * The reason for this is some operations (such as drop tree)
1003 	 * are only allowed for blocks use full backrefs.
1004 	 */
1005 
1006 	if (btrfs_block_can_be_shared(root, buf)) {
1007 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 					       btrfs_header_level(buf), 1,
1009 					       &refs, &flags);
1010 		if (ret)
1011 			return ret;
1012 		if (refs == 0) {
1013 			ret = -EROFS;
1014 			btrfs_std_error(root->fs_info, ret, NULL);
1015 			return ret;
1016 		}
1017 	} else {
1018 		refs = 1;
1019 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 		else
1023 			flags = 0;
1024 	}
1025 
1026 	owner = btrfs_header_owner(buf);
1027 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029 
1030 	if (refs > 1) {
1031 		if ((owner == root->root_key.objectid ||
1032 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 			ret = btrfs_inc_ref(trans, root, buf, 1);
1035 			BUG_ON(ret); /* -ENOMEM */
1036 
1037 			if (root->root_key.objectid ==
1038 			    BTRFS_TREE_RELOC_OBJECTID) {
1039 				ret = btrfs_dec_ref(trans, root, buf, 0);
1040 				BUG_ON(ret); /* -ENOMEM */
1041 				ret = btrfs_inc_ref(trans, root, cow, 1);
1042 				BUG_ON(ret); /* -ENOMEM */
1043 			}
1044 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 		} else {
1046 
1047 			if (root->root_key.objectid ==
1048 			    BTRFS_TREE_RELOC_OBJECTID)
1049 				ret = btrfs_inc_ref(trans, root, cow, 1);
1050 			else
1051 				ret = btrfs_inc_ref(trans, root, cow, 0);
1052 			BUG_ON(ret); /* -ENOMEM */
1053 		}
1054 		if (new_flags != 0) {
1055 			int level = btrfs_header_level(buf);
1056 
1057 			ret = btrfs_set_disk_extent_flags(trans, root,
1058 							  buf->start,
1059 							  buf->len,
1060 							  new_flags, level, 0);
1061 			if (ret)
1062 				return ret;
1063 		}
1064 	} else {
1065 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 			if (root->root_key.objectid ==
1067 			    BTRFS_TREE_RELOC_OBJECTID)
1068 				ret = btrfs_inc_ref(trans, root, cow, 1);
1069 			else
1070 				ret = btrfs_inc_ref(trans, root, cow, 0);
1071 			BUG_ON(ret); /* -ENOMEM */
1072 			ret = btrfs_dec_ref(trans, root, buf, 1);
1073 			BUG_ON(ret); /* -ENOMEM */
1074 		}
1075 		clean_tree_block(trans, root->fs_info, buf);
1076 		*last_ref = 1;
1077 	}
1078 	return 0;
1079 }
1080 
1081 /*
1082  * does the dirty work in cow of a single block.  The parent block (if
1083  * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084  * dirty and returned locked.  If you modify the block it needs to be marked
1085  * dirty again.
1086  *
1087  * search_start -- an allocation hint for the new block
1088  *
1089  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090  * bytes the allocator should try to find free next to the block it returns.
1091  * This is just a hint and may be ignored by the allocator.
1092  */
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 			     struct btrfs_root *root,
1095 			     struct extent_buffer *buf,
1096 			     struct extent_buffer *parent, int parent_slot,
1097 			     struct extent_buffer **cow_ret,
1098 			     u64 search_start, u64 empty_size)
1099 {
1100 	struct btrfs_disk_key disk_key;
1101 	struct extent_buffer *cow;
1102 	int level, ret;
1103 	int last_ref = 0;
1104 	int unlock_orig = 0;
1105 	u64 parent_start;
1106 
1107 	if (*cow_ret == buf)
1108 		unlock_orig = 1;
1109 
1110 	btrfs_assert_tree_locked(buf);
1111 
1112 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 		trans->transid != root->fs_info->running_transaction->transid);
1114 	WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 		trans->transid != root->last_trans);
1116 
1117 	level = btrfs_header_level(buf);
1118 
1119 	if (level == 0)
1120 		btrfs_item_key(buf, &disk_key, 0);
1121 	else
1122 		btrfs_node_key(buf, &disk_key, 0);
1123 
1124 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 		if (parent)
1126 			parent_start = parent->start;
1127 		else
1128 			parent_start = 0;
1129 	} else
1130 		parent_start = 0;
1131 
1132 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 			root->root_key.objectid, &disk_key, level,
1134 			search_start, empty_size);
1135 	if (IS_ERR(cow))
1136 		return PTR_ERR(cow);
1137 
1138 	/* cow is set to blocking by btrfs_init_new_buffer */
1139 
1140 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 	btrfs_set_header_bytenr(cow, cow->start);
1142 	btrfs_set_header_generation(cow, trans->transid);
1143 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 				     BTRFS_HEADER_FLAG_RELOC);
1146 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 	else
1149 		btrfs_set_header_owner(cow, root->root_key.objectid);
1150 
1151 	write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 			    BTRFS_FSID_SIZE);
1153 
1154 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 	if (ret) {
1156 		btrfs_abort_transaction(trans, root, ret);
1157 		return ret;
1158 	}
1159 
1160 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 		if (ret) {
1163 			btrfs_abort_transaction(trans, root, ret);
1164 			return ret;
1165 		}
1166 	}
1167 
1168 	if (buf == root->node) {
1169 		WARN_ON(parent && parent != buf);
1170 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172 			parent_start = buf->start;
1173 		else
1174 			parent_start = 0;
1175 
1176 		extent_buffer_get(cow);
1177 		tree_mod_log_set_root_pointer(root, cow, 1);
1178 		rcu_assign_pointer(root->node, cow);
1179 
1180 		btrfs_free_tree_block(trans, root, buf, parent_start,
1181 				      last_ref);
1182 		free_extent_buffer(buf);
1183 		add_root_to_dirty_list(root);
1184 	} else {
1185 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186 			parent_start = parent->start;
1187 		else
1188 			parent_start = 0;
1189 
1190 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1191 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193 		btrfs_set_node_blockptr(parent, parent_slot,
1194 					cow->start);
1195 		btrfs_set_node_ptr_generation(parent, parent_slot,
1196 					      trans->transid);
1197 		btrfs_mark_buffer_dirty(parent);
1198 		if (last_ref) {
1199 			ret = tree_mod_log_free_eb(root->fs_info, buf);
1200 			if (ret) {
1201 				btrfs_abort_transaction(trans, root, ret);
1202 				return ret;
1203 			}
1204 		}
1205 		btrfs_free_tree_block(trans, root, buf, parent_start,
1206 				      last_ref);
1207 	}
1208 	if (unlock_orig)
1209 		btrfs_tree_unlock(buf);
1210 	free_extent_buffer_stale(buf);
1211 	btrfs_mark_buffer_dirty(cow);
1212 	*cow_ret = cow;
1213 	return 0;
1214 }
1215 
1216 /*
1217  * returns the logical address of the oldest predecessor of the given root.
1218  * entries older than time_seq are ignored.
1219  */
1220 static struct tree_mod_elem *
1221 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222 			   struct extent_buffer *eb_root, u64 time_seq)
1223 {
1224 	struct tree_mod_elem *tm;
1225 	struct tree_mod_elem *found = NULL;
1226 	u64 root_logical = eb_root->start;
1227 	int looped = 0;
1228 
1229 	if (!time_seq)
1230 		return NULL;
1231 
1232 	/*
1233 	 * the very last operation that's logged for a root is the
1234 	 * replacement operation (if it is replaced at all). this has
1235 	 * the logical address of the *new* root, making it the very
1236 	 * first operation that's logged for this root.
1237 	 */
1238 	while (1) {
1239 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240 						time_seq);
1241 		if (!looped && !tm)
1242 			return NULL;
1243 		/*
1244 		 * if there are no tree operation for the oldest root, we simply
1245 		 * return it. this should only happen if that (old) root is at
1246 		 * level 0.
1247 		 */
1248 		if (!tm)
1249 			break;
1250 
1251 		/*
1252 		 * if there's an operation that's not a root replacement, we
1253 		 * found the oldest version of our root. normally, we'll find a
1254 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255 		 */
1256 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1257 			break;
1258 
1259 		found = tm;
1260 		root_logical = tm->old_root.logical;
1261 		looped = 1;
1262 	}
1263 
1264 	/* if there's no old root to return, return what we found instead */
1265 	if (!found)
1266 		found = tm;
1267 
1268 	return found;
1269 }
1270 
1271 /*
1272  * tm is a pointer to the first operation to rewind within eb. then, all
1273  * previous operations will be rewinded (until we reach something older than
1274  * time_seq).
1275  */
1276 static void
1277 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278 		      u64 time_seq, struct tree_mod_elem *first_tm)
1279 {
1280 	u32 n;
1281 	struct rb_node *next;
1282 	struct tree_mod_elem *tm = first_tm;
1283 	unsigned long o_dst;
1284 	unsigned long o_src;
1285 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286 
1287 	n = btrfs_header_nritems(eb);
1288 	tree_mod_log_read_lock(fs_info);
1289 	while (tm && tm->seq >= time_seq) {
1290 		/*
1291 		 * all the operations are recorded with the operator used for
1292 		 * the modification. as we're going backwards, we do the
1293 		 * opposite of each operation here.
1294 		 */
1295 		switch (tm->op) {
1296 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297 			BUG_ON(tm->slot < n);
1298 			/* Fallthrough */
1299 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300 		case MOD_LOG_KEY_REMOVE:
1301 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1302 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303 			btrfs_set_node_ptr_generation(eb, tm->slot,
1304 						      tm->generation);
1305 			n++;
1306 			break;
1307 		case MOD_LOG_KEY_REPLACE:
1308 			BUG_ON(tm->slot >= n);
1309 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1310 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311 			btrfs_set_node_ptr_generation(eb, tm->slot,
1312 						      tm->generation);
1313 			break;
1314 		case MOD_LOG_KEY_ADD:
1315 			/* if a move operation is needed it's in the log */
1316 			n--;
1317 			break;
1318 		case MOD_LOG_MOVE_KEYS:
1319 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321 			memmove_extent_buffer(eb, o_dst, o_src,
1322 					      tm->move.nr_items * p_size);
1323 			break;
1324 		case MOD_LOG_ROOT_REPLACE:
1325 			/*
1326 			 * this operation is special. for roots, this must be
1327 			 * handled explicitly before rewinding.
1328 			 * for non-roots, this operation may exist if the node
1329 			 * was a root: root A -> child B; then A gets empty and
1330 			 * B is promoted to the new root. in the mod log, we'll
1331 			 * have a root-replace operation for B, a tree block
1332 			 * that is no root. we simply ignore that operation.
1333 			 */
1334 			break;
1335 		}
1336 		next = rb_next(&tm->node);
1337 		if (!next)
1338 			break;
1339 		tm = container_of(next, struct tree_mod_elem, node);
1340 		if (tm->logical != first_tm->logical)
1341 			break;
1342 	}
1343 	tree_mod_log_read_unlock(fs_info);
1344 	btrfs_set_header_nritems(eb, n);
1345 }
1346 
1347 /*
1348  * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1349  * is returned. If rewind operations happen, a fresh buffer is returned. The
1350  * returned buffer is always read-locked. If the returned buffer is not the
1351  * input buffer, the lock on the input buffer is released and the input buffer
1352  * is freed (its refcount is decremented).
1353  */
1354 static struct extent_buffer *
1355 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356 		    struct extent_buffer *eb, u64 time_seq)
1357 {
1358 	struct extent_buffer *eb_rewin;
1359 	struct tree_mod_elem *tm;
1360 
1361 	if (!time_seq)
1362 		return eb;
1363 
1364 	if (btrfs_header_level(eb) == 0)
1365 		return eb;
1366 
1367 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368 	if (!tm)
1369 		return eb;
1370 
1371 	btrfs_set_path_blocking(path);
1372 	btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373 
1374 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375 		BUG_ON(tm->slot != 0);
1376 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1377 		if (!eb_rewin) {
1378 			btrfs_tree_read_unlock_blocking(eb);
1379 			free_extent_buffer(eb);
1380 			return NULL;
1381 		}
1382 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1383 		btrfs_set_header_backref_rev(eb_rewin,
1384 					     btrfs_header_backref_rev(eb));
1385 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1386 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1387 	} else {
1388 		eb_rewin = btrfs_clone_extent_buffer(eb);
1389 		if (!eb_rewin) {
1390 			btrfs_tree_read_unlock_blocking(eb);
1391 			free_extent_buffer(eb);
1392 			return NULL;
1393 		}
1394 	}
1395 
1396 	btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1397 	btrfs_tree_read_unlock_blocking(eb);
1398 	free_extent_buffer(eb);
1399 
1400 	extent_buffer_get(eb_rewin);
1401 	btrfs_tree_read_lock(eb_rewin);
1402 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1403 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1404 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1405 
1406 	return eb_rewin;
1407 }
1408 
1409 /*
1410  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1411  * value. If there are no changes, the current root->root_node is returned. If
1412  * anything changed in between, there's a fresh buffer allocated on which the
1413  * rewind operations are done. In any case, the returned buffer is read locked.
1414  * Returns NULL on error (with no locks held).
1415  */
1416 static inline struct extent_buffer *
1417 get_old_root(struct btrfs_root *root, u64 time_seq)
1418 {
1419 	struct tree_mod_elem *tm;
1420 	struct extent_buffer *eb = NULL;
1421 	struct extent_buffer *eb_root;
1422 	struct extent_buffer *old;
1423 	struct tree_mod_root *old_root = NULL;
1424 	u64 old_generation = 0;
1425 	u64 logical;
1426 
1427 	eb_root = btrfs_read_lock_root_node(root);
1428 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1429 	if (!tm)
1430 		return eb_root;
1431 
1432 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1433 		old_root = &tm->old_root;
1434 		old_generation = tm->generation;
1435 		logical = old_root->logical;
1436 	} else {
1437 		logical = eb_root->start;
1438 	}
1439 
1440 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1441 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1442 		btrfs_tree_read_unlock(eb_root);
1443 		free_extent_buffer(eb_root);
1444 		old = read_tree_block(root, logical, 0);
1445 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1446 			if (!IS_ERR(old))
1447 				free_extent_buffer(old);
1448 			btrfs_warn(root->fs_info,
1449 				"failed to read tree block %llu from get_old_root", logical);
1450 		} else {
1451 			eb = btrfs_clone_extent_buffer(old);
1452 			free_extent_buffer(old);
1453 		}
1454 	} else if (old_root) {
1455 		btrfs_tree_read_unlock(eb_root);
1456 		free_extent_buffer(eb_root);
1457 		eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1458 	} else {
1459 		btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1460 		eb = btrfs_clone_extent_buffer(eb_root);
1461 		btrfs_tree_read_unlock_blocking(eb_root);
1462 		free_extent_buffer(eb_root);
1463 	}
1464 
1465 	if (!eb)
1466 		return NULL;
1467 	extent_buffer_get(eb);
1468 	btrfs_tree_read_lock(eb);
1469 	if (old_root) {
1470 		btrfs_set_header_bytenr(eb, eb->start);
1471 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1472 		btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1473 		btrfs_set_header_level(eb, old_root->level);
1474 		btrfs_set_header_generation(eb, old_generation);
1475 	}
1476 	if (tm)
1477 		__tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1478 	else
1479 		WARN_ON(btrfs_header_level(eb) != 0);
1480 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1481 
1482 	return eb;
1483 }
1484 
1485 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1486 {
1487 	struct tree_mod_elem *tm;
1488 	int level;
1489 	struct extent_buffer *eb_root = btrfs_root_node(root);
1490 
1491 	tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1492 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1493 		level = tm->old_root.level;
1494 	} else {
1495 		level = btrfs_header_level(eb_root);
1496 	}
1497 	free_extent_buffer(eb_root);
1498 
1499 	return level;
1500 }
1501 
1502 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1503 				   struct btrfs_root *root,
1504 				   struct extent_buffer *buf)
1505 {
1506 	if (btrfs_test_is_dummy_root(root))
1507 		return 0;
1508 
1509 	/* ensure we can see the force_cow */
1510 	smp_rmb();
1511 
1512 	/*
1513 	 * We do not need to cow a block if
1514 	 * 1) this block is not created or changed in this transaction;
1515 	 * 2) this block does not belong to TREE_RELOC tree;
1516 	 * 3) the root is not forced COW.
1517 	 *
1518 	 * What is forced COW:
1519 	 *    when we create snapshot during commiting the transaction,
1520 	 *    after we've finished coping src root, we must COW the shared
1521 	 *    block to ensure the metadata consistency.
1522 	 */
1523 	if (btrfs_header_generation(buf) == trans->transid &&
1524 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1525 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1526 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1527 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1528 		return 0;
1529 	return 1;
1530 }
1531 
1532 /*
1533  * cows a single block, see __btrfs_cow_block for the real work.
1534  * This version of it has extra checks so that a block isn't cow'd more than
1535  * once per transaction, as long as it hasn't been written yet
1536  */
1537 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1538 		    struct btrfs_root *root, struct extent_buffer *buf,
1539 		    struct extent_buffer *parent, int parent_slot,
1540 		    struct extent_buffer **cow_ret)
1541 {
1542 	u64 search_start;
1543 	int ret;
1544 
1545 	if (trans->transaction != root->fs_info->running_transaction)
1546 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1547 		       trans->transid,
1548 		       root->fs_info->running_transaction->transid);
1549 
1550 	if (trans->transid != root->fs_info->generation)
1551 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1552 		       trans->transid, root->fs_info->generation);
1553 
1554 	if (!should_cow_block(trans, root, buf)) {
1555 		*cow_ret = buf;
1556 		return 0;
1557 	}
1558 
1559 	search_start = buf->start & ~((u64)SZ_1G - 1);
1560 
1561 	if (parent)
1562 		btrfs_set_lock_blocking(parent);
1563 	btrfs_set_lock_blocking(buf);
1564 
1565 	ret = __btrfs_cow_block(trans, root, buf, parent,
1566 				 parent_slot, cow_ret, search_start, 0);
1567 
1568 	trace_btrfs_cow_block(root, buf, *cow_ret);
1569 
1570 	return ret;
1571 }
1572 
1573 /*
1574  * helper function for defrag to decide if two blocks pointed to by a
1575  * node are actually close by
1576  */
1577 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1578 {
1579 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1580 		return 1;
1581 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1582 		return 1;
1583 	return 0;
1584 }
1585 
1586 /*
1587  * compare two keys in a memcmp fashion
1588  */
1589 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1590 {
1591 	struct btrfs_key k1;
1592 
1593 	btrfs_disk_key_to_cpu(&k1, disk);
1594 
1595 	return btrfs_comp_cpu_keys(&k1, k2);
1596 }
1597 
1598 /*
1599  * same as comp_keys only with two btrfs_key's
1600  */
1601 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1602 {
1603 	if (k1->objectid > k2->objectid)
1604 		return 1;
1605 	if (k1->objectid < k2->objectid)
1606 		return -1;
1607 	if (k1->type > k2->type)
1608 		return 1;
1609 	if (k1->type < k2->type)
1610 		return -1;
1611 	if (k1->offset > k2->offset)
1612 		return 1;
1613 	if (k1->offset < k2->offset)
1614 		return -1;
1615 	return 0;
1616 }
1617 
1618 /*
1619  * this is used by the defrag code to go through all the
1620  * leaves pointed to by a node and reallocate them so that
1621  * disk order is close to key order
1622  */
1623 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1624 		       struct btrfs_root *root, struct extent_buffer *parent,
1625 		       int start_slot, u64 *last_ret,
1626 		       struct btrfs_key *progress)
1627 {
1628 	struct extent_buffer *cur;
1629 	u64 blocknr;
1630 	u64 gen;
1631 	u64 search_start = *last_ret;
1632 	u64 last_block = 0;
1633 	u64 other;
1634 	u32 parent_nritems;
1635 	int end_slot;
1636 	int i;
1637 	int err = 0;
1638 	int parent_level;
1639 	int uptodate;
1640 	u32 blocksize;
1641 	int progress_passed = 0;
1642 	struct btrfs_disk_key disk_key;
1643 
1644 	parent_level = btrfs_header_level(parent);
1645 
1646 	WARN_ON(trans->transaction != root->fs_info->running_transaction);
1647 	WARN_ON(trans->transid != root->fs_info->generation);
1648 
1649 	parent_nritems = btrfs_header_nritems(parent);
1650 	blocksize = root->nodesize;
1651 	end_slot = parent_nritems - 1;
1652 
1653 	if (parent_nritems <= 1)
1654 		return 0;
1655 
1656 	btrfs_set_lock_blocking(parent);
1657 
1658 	for (i = start_slot; i <= end_slot; i++) {
1659 		int close = 1;
1660 
1661 		btrfs_node_key(parent, &disk_key, i);
1662 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1663 			continue;
1664 
1665 		progress_passed = 1;
1666 		blocknr = btrfs_node_blockptr(parent, i);
1667 		gen = btrfs_node_ptr_generation(parent, i);
1668 		if (last_block == 0)
1669 			last_block = blocknr;
1670 
1671 		if (i > 0) {
1672 			other = btrfs_node_blockptr(parent, i - 1);
1673 			close = close_blocks(blocknr, other, blocksize);
1674 		}
1675 		if (!close && i < end_slot) {
1676 			other = btrfs_node_blockptr(parent, i + 1);
1677 			close = close_blocks(blocknr, other, blocksize);
1678 		}
1679 		if (close) {
1680 			last_block = blocknr;
1681 			continue;
1682 		}
1683 
1684 		cur = btrfs_find_tree_block(root->fs_info, blocknr);
1685 		if (cur)
1686 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1687 		else
1688 			uptodate = 0;
1689 		if (!cur || !uptodate) {
1690 			if (!cur) {
1691 				cur = read_tree_block(root, blocknr, gen);
1692 				if (IS_ERR(cur)) {
1693 					return PTR_ERR(cur);
1694 				} else if (!extent_buffer_uptodate(cur)) {
1695 					free_extent_buffer(cur);
1696 					return -EIO;
1697 				}
1698 			} else if (!uptodate) {
1699 				err = btrfs_read_buffer(cur, gen);
1700 				if (err) {
1701 					free_extent_buffer(cur);
1702 					return err;
1703 				}
1704 			}
1705 		}
1706 		if (search_start == 0)
1707 			search_start = last_block;
1708 
1709 		btrfs_tree_lock(cur);
1710 		btrfs_set_lock_blocking(cur);
1711 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1712 					&cur, search_start,
1713 					min(16 * blocksize,
1714 					    (end_slot - i) * blocksize));
1715 		if (err) {
1716 			btrfs_tree_unlock(cur);
1717 			free_extent_buffer(cur);
1718 			break;
1719 		}
1720 		search_start = cur->start;
1721 		last_block = cur->start;
1722 		*last_ret = search_start;
1723 		btrfs_tree_unlock(cur);
1724 		free_extent_buffer(cur);
1725 	}
1726 	return err;
1727 }
1728 
1729 /*
1730  * The leaf data grows from end-to-front in the node.
1731  * this returns the address of the start of the last item,
1732  * which is the stop of the leaf data stack
1733  */
1734 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1735 					 struct extent_buffer *leaf)
1736 {
1737 	u32 nr = btrfs_header_nritems(leaf);
1738 	if (nr == 0)
1739 		return BTRFS_LEAF_DATA_SIZE(root);
1740 	return btrfs_item_offset_nr(leaf, nr - 1);
1741 }
1742 
1743 
1744 /*
1745  * search for key in the extent_buffer.  The items start at offset p,
1746  * and they are item_size apart.  There are 'max' items in p.
1747  *
1748  * the slot in the array is returned via slot, and it points to
1749  * the place where you would insert key if it is not found in
1750  * the array.
1751  *
1752  * slot may point to max if the key is bigger than all of the keys
1753  */
1754 static noinline int generic_bin_search(struct extent_buffer *eb,
1755 				       unsigned long p,
1756 				       int item_size, struct btrfs_key *key,
1757 				       int max, int *slot)
1758 {
1759 	int low = 0;
1760 	int high = max;
1761 	int mid;
1762 	int ret;
1763 	struct btrfs_disk_key *tmp = NULL;
1764 	struct btrfs_disk_key unaligned;
1765 	unsigned long offset;
1766 	char *kaddr = NULL;
1767 	unsigned long map_start = 0;
1768 	unsigned long map_len = 0;
1769 	int err;
1770 
1771 	while (low < high) {
1772 		mid = (low + high) / 2;
1773 		offset = p + mid * item_size;
1774 
1775 		if (!kaddr || offset < map_start ||
1776 		    (offset + sizeof(struct btrfs_disk_key)) >
1777 		    map_start + map_len) {
1778 
1779 			err = map_private_extent_buffer(eb, offset,
1780 						sizeof(struct btrfs_disk_key),
1781 						&kaddr, &map_start, &map_len);
1782 
1783 			if (!err) {
1784 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1785 							map_start);
1786 			} else {
1787 				read_extent_buffer(eb, &unaligned,
1788 						   offset, sizeof(unaligned));
1789 				tmp = &unaligned;
1790 			}
1791 
1792 		} else {
1793 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1794 							map_start);
1795 		}
1796 		ret = comp_keys(tmp, key);
1797 
1798 		if (ret < 0)
1799 			low = mid + 1;
1800 		else if (ret > 0)
1801 			high = mid;
1802 		else {
1803 			*slot = mid;
1804 			return 0;
1805 		}
1806 	}
1807 	*slot = low;
1808 	return 1;
1809 }
1810 
1811 /*
1812  * simple bin_search frontend that does the right thing for
1813  * leaves vs nodes
1814  */
1815 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1816 		      int level, int *slot)
1817 {
1818 	if (level == 0)
1819 		return generic_bin_search(eb,
1820 					  offsetof(struct btrfs_leaf, items),
1821 					  sizeof(struct btrfs_item),
1822 					  key, btrfs_header_nritems(eb),
1823 					  slot);
1824 	else
1825 		return generic_bin_search(eb,
1826 					  offsetof(struct btrfs_node, ptrs),
1827 					  sizeof(struct btrfs_key_ptr),
1828 					  key, btrfs_header_nritems(eb),
1829 					  slot);
1830 }
1831 
1832 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1833 		     int level, int *slot)
1834 {
1835 	return bin_search(eb, key, level, slot);
1836 }
1837 
1838 static void root_add_used(struct btrfs_root *root, u32 size)
1839 {
1840 	spin_lock(&root->accounting_lock);
1841 	btrfs_set_root_used(&root->root_item,
1842 			    btrfs_root_used(&root->root_item) + size);
1843 	spin_unlock(&root->accounting_lock);
1844 }
1845 
1846 static void root_sub_used(struct btrfs_root *root, u32 size)
1847 {
1848 	spin_lock(&root->accounting_lock);
1849 	btrfs_set_root_used(&root->root_item,
1850 			    btrfs_root_used(&root->root_item) - size);
1851 	spin_unlock(&root->accounting_lock);
1852 }
1853 
1854 /* given a node and slot number, this reads the blocks it points to.  The
1855  * extent buffer is returned with a reference taken (but unlocked).
1856  * NULL is returned on error.
1857  */
1858 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1859 				   struct extent_buffer *parent, int slot)
1860 {
1861 	int level = btrfs_header_level(parent);
1862 	struct extent_buffer *eb;
1863 
1864 	if (slot < 0)
1865 		return NULL;
1866 	if (slot >= btrfs_header_nritems(parent))
1867 		return NULL;
1868 
1869 	BUG_ON(level == 0);
1870 
1871 	eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1872 			     btrfs_node_ptr_generation(parent, slot));
1873 	if (IS_ERR(eb) || !extent_buffer_uptodate(eb)) {
1874 		if (!IS_ERR(eb))
1875 			free_extent_buffer(eb);
1876 		eb = NULL;
1877 	}
1878 
1879 	return eb;
1880 }
1881 
1882 /*
1883  * node level balancing, used to make sure nodes are in proper order for
1884  * item deletion.  We balance from the top down, so we have to make sure
1885  * that a deletion won't leave an node completely empty later on.
1886  */
1887 static noinline int balance_level(struct btrfs_trans_handle *trans,
1888 			 struct btrfs_root *root,
1889 			 struct btrfs_path *path, int level)
1890 {
1891 	struct extent_buffer *right = NULL;
1892 	struct extent_buffer *mid;
1893 	struct extent_buffer *left = NULL;
1894 	struct extent_buffer *parent = NULL;
1895 	int ret = 0;
1896 	int wret;
1897 	int pslot;
1898 	int orig_slot = path->slots[level];
1899 	u64 orig_ptr;
1900 
1901 	if (level == 0)
1902 		return 0;
1903 
1904 	mid = path->nodes[level];
1905 
1906 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1907 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1908 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1909 
1910 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1911 
1912 	if (level < BTRFS_MAX_LEVEL - 1) {
1913 		parent = path->nodes[level + 1];
1914 		pslot = path->slots[level + 1];
1915 	}
1916 
1917 	/*
1918 	 * deal with the case where there is only one pointer in the root
1919 	 * by promoting the node below to a root
1920 	 */
1921 	if (!parent) {
1922 		struct extent_buffer *child;
1923 
1924 		if (btrfs_header_nritems(mid) != 1)
1925 			return 0;
1926 
1927 		/* promote the child to a root */
1928 		child = read_node_slot(root, mid, 0);
1929 		if (!child) {
1930 			ret = -EROFS;
1931 			btrfs_std_error(root->fs_info, ret, NULL);
1932 			goto enospc;
1933 		}
1934 
1935 		btrfs_tree_lock(child);
1936 		btrfs_set_lock_blocking(child);
1937 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1938 		if (ret) {
1939 			btrfs_tree_unlock(child);
1940 			free_extent_buffer(child);
1941 			goto enospc;
1942 		}
1943 
1944 		tree_mod_log_set_root_pointer(root, child, 1);
1945 		rcu_assign_pointer(root->node, child);
1946 
1947 		add_root_to_dirty_list(root);
1948 		btrfs_tree_unlock(child);
1949 
1950 		path->locks[level] = 0;
1951 		path->nodes[level] = NULL;
1952 		clean_tree_block(trans, root->fs_info, mid);
1953 		btrfs_tree_unlock(mid);
1954 		/* once for the path */
1955 		free_extent_buffer(mid);
1956 
1957 		root_sub_used(root, mid->len);
1958 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1959 		/* once for the root ptr */
1960 		free_extent_buffer_stale(mid);
1961 		return 0;
1962 	}
1963 	if (btrfs_header_nritems(mid) >
1964 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1965 		return 0;
1966 
1967 	left = read_node_slot(root, parent, pslot - 1);
1968 	if (left) {
1969 		btrfs_tree_lock(left);
1970 		btrfs_set_lock_blocking(left);
1971 		wret = btrfs_cow_block(trans, root, left,
1972 				       parent, pslot - 1, &left);
1973 		if (wret) {
1974 			ret = wret;
1975 			goto enospc;
1976 		}
1977 	}
1978 	right = read_node_slot(root, parent, pslot + 1);
1979 	if (right) {
1980 		btrfs_tree_lock(right);
1981 		btrfs_set_lock_blocking(right);
1982 		wret = btrfs_cow_block(trans, root, right,
1983 				       parent, pslot + 1, &right);
1984 		if (wret) {
1985 			ret = wret;
1986 			goto enospc;
1987 		}
1988 	}
1989 
1990 	/* first, try to make some room in the middle buffer */
1991 	if (left) {
1992 		orig_slot += btrfs_header_nritems(left);
1993 		wret = push_node_left(trans, root, left, mid, 1);
1994 		if (wret < 0)
1995 			ret = wret;
1996 	}
1997 
1998 	/*
1999 	 * then try to empty the right most buffer into the middle
2000 	 */
2001 	if (right) {
2002 		wret = push_node_left(trans, root, mid, right, 1);
2003 		if (wret < 0 && wret != -ENOSPC)
2004 			ret = wret;
2005 		if (btrfs_header_nritems(right) == 0) {
2006 			clean_tree_block(trans, root->fs_info, right);
2007 			btrfs_tree_unlock(right);
2008 			del_ptr(root, path, level + 1, pslot + 1);
2009 			root_sub_used(root, right->len);
2010 			btrfs_free_tree_block(trans, root, right, 0, 1);
2011 			free_extent_buffer_stale(right);
2012 			right = NULL;
2013 		} else {
2014 			struct btrfs_disk_key right_key;
2015 			btrfs_node_key(right, &right_key, 0);
2016 			tree_mod_log_set_node_key(root->fs_info, parent,
2017 						  pslot + 1, 0);
2018 			btrfs_set_node_key(parent, &right_key, pslot + 1);
2019 			btrfs_mark_buffer_dirty(parent);
2020 		}
2021 	}
2022 	if (btrfs_header_nritems(mid) == 1) {
2023 		/*
2024 		 * we're not allowed to leave a node with one item in the
2025 		 * tree during a delete.  A deletion from lower in the tree
2026 		 * could try to delete the only pointer in this node.
2027 		 * So, pull some keys from the left.
2028 		 * There has to be a left pointer at this point because
2029 		 * otherwise we would have pulled some pointers from the
2030 		 * right
2031 		 */
2032 		if (!left) {
2033 			ret = -EROFS;
2034 			btrfs_std_error(root->fs_info, ret, NULL);
2035 			goto enospc;
2036 		}
2037 		wret = balance_node_right(trans, root, mid, left);
2038 		if (wret < 0) {
2039 			ret = wret;
2040 			goto enospc;
2041 		}
2042 		if (wret == 1) {
2043 			wret = push_node_left(trans, root, left, mid, 1);
2044 			if (wret < 0)
2045 				ret = wret;
2046 		}
2047 		BUG_ON(wret == 1);
2048 	}
2049 	if (btrfs_header_nritems(mid) == 0) {
2050 		clean_tree_block(trans, root->fs_info, mid);
2051 		btrfs_tree_unlock(mid);
2052 		del_ptr(root, path, level + 1, pslot);
2053 		root_sub_used(root, mid->len);
2054 		btrfs_free_tree_block(trans, root, mid, 0, 1);
2055 		free_extent_buffer_stale(mid);
2056 		mid = NULL;
2057 	} else {
2058 		/* update the parent key to reflect our changes */
2059 		struct btrfs_disk_key mid_key;
2060 		btrfs_node_key(mid, &mid_key, 0);
2061 		tree_mod_log_set_node_key(root->fs_info, parent,
2062 					  pslot, 0);
2063 		btrfs_set_node_key(parent, &mid_key, pslot);
2064 		btrfs_mark_buffer_dirty(parent);
2065 	}
2066 
2067 	/* update the path */
2068 	if (left) {
2069 		if (btrfs_header_nritems(left) > orig_slot) {
2070 			extent_buffer_get(left);
2071 			/* left was locked after cow */
2072 			path->nodes[level] = left;
2073 			path->slots[level + 1] -= 1;
2074 			path->slots[level] = orig_slot;
2075 			if (mid) {
2076 				btrfs_tree_unlock(mid);
2077 				free_extent_buffer(mid);
2078 			}
2079 		} else {
2080 			orig_slot -= btrfs_header_nritems(left);
2081 			path->slots[level] = orig_slot;
2082 		}
2083 	}
2084 	/* double check we haven't messed things up */
2085 	if (orig_ptr !=
2086 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2087 		BUG();
2088 enospc:
2089 	if (right) {
2090 		btrfs_tree_unlock(right);
2091 		free_extent_buffer(right);
2092 	}
2093 	if (left) {
2094 		if (path->nodes[level] != left)
2095 			btrfs_tree_unlock(left);
2096 		free_extent_buffer(left);
2097 	}
2098 	return ret;
2099 }
2100 
2101 /* Node balancing for insertion.  Here we only split or push nodes around
2102  * when they are completely full.  This is also done top down, so we
2103  * have to be pessimistic.
2104  */
2105 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2106 					  struct btrfs_root *root,
2107 					  struct btrfs_path *path, int level)
2108 {
2109 	struct extent_buffer *right = NULL;
2110 	struct extent_buffer *mid;
2111 	struct extent_buffer *left = NULL;
2112 	struct extent_buffer *parent = NULL;
2113 	int ret = 0;
2114 	int wret;
2115 	int pslot;
2116 	int orig_slot = path->slots[level];
2117 
2118 	if (level == 0)
2119 		return 1;
2120 
2121 	mid = path->nodes[level];
2122 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2123 
2124 	if (level < BTRFS_MAX_LEVEL - 1) {
2125 		parent = path->nodes[level + 1];
2126 		pslot = path->slots[level + 1];
2127 	}
2128 
2129 	if (!parent)
2130 		return 1;
2131 
2132 	left = read_node_slot(root, parent, pslot - 1);
2133 
2134 	/* first, try to make some room in the middle buffer */
2135 	if (left) {
2136 		u32 left_nr;
2137 
2138 		btrfs_tree_lock(left);
2139 		btrfs_set_lock_blocking(left);
2140 
2141 		left_nr = btrfs_header_nritems(left);
2142 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2143 			wret = 1;
2144 		} else {
2145 			ret = btrfs_cow_block(trans, root, left, parent,
2146 					      pslot - 1, &left);
2147 			if (ret)
2148 				wret = 1;
2149 			else {
2150 				wret = push_node_left(trans, root,
2151 						      left, mid, 0);
2152 			}
2153 		}
2154 		if (wret < 0)
2155 			ret = wret;
2156 		if (wret == 0) {
2157 			struct btrfs_disk_key disk_key;
2158 			orig_slot += left_nr;
2159 			btrfs_node_key(mid, &disk_key, 0);
2160 			tree_mod_log_set_node_key(root->fs_info, parent,
2161 						  pslot, 0);
2162 			btrfs_set_node_key(parent, &disk_key, pslot);
2163 			btrfs_mark_buffer_dirty(parent);
2164 			if (btrfs_header_nritems(left) > orig_slot) {
2165 				path->nodes[level] = left;
2166 				path->slots[level + 1] -= 1;
2167 				path->slots[level] = orig_slot;
2168 				btrfs_tree_unlock(mid);
2169 				free_extent_buffer(mid);
2170 			} else {
2171 				orig_slot -=
2172 					btrfs_header_nritems(left);
2173 				path->slots[level] = orig_slot;
2174 				btrfs_tree_unlock(left);
2175 				free_extent_buffer(left);
2176 			}
2177 			return 0;
2178 		}
2179 		btrfs_tree_unlock(left);
2180 		free_extent_buffer(left);
2181 	}
2182 	right = read_node_slot(root, parent, pslot + 1);
2183 
2184 	/*
2185 	 * then try to empty the right most buffer into the middle
2186 	 */
2187 	if (right) {
2188 		u32 right_nr;
2189 
2190 		btrfs_tree_lock(right);
2191 		btrfs_set_lock_blocking(right);
2192 
2193 		right_nr = btrfs_header_nritems(right);
2194 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2195 			wret = 1;
2196 		} else {
2197 			ret = btrfs_cow_block(trans, root, right,
2198 					      parent, pslot + 1,
2199 					      &right);
2200 			if (ret)
2201 				wret = 1;
2202 			else {
2203 				wret = balance_node_right(trans, root,
2204 							  right, mid);
2205 			}
2206 		}
2207 		if (wret < 0)
2208 			ret = wret;
2209 		if (wret == 0) {
2210 			struct btrfs_disk_key disk_key;
2211 
2212 			btrfs_node_key(right, &disk_key, 0);
2213 			tree_mod_log_set_node_key(root->fs_info, parent,
2214 						  pslot + 1, 0);
2215 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2216 			btrfs_mark_buffer_dirty(parent);
2217 
2218 			if (btrfs_header_nritems(mid) <= orig_slot) {
2219 				path->nodes[level] = right;
2220 				path->slots[level + 1] += 1;
2221 				path->slots[level] = orig_slot -
2222 					btrfs_header_nritems(mid);
2223 				btrfs_tree_unlock(mid);
2224 				free_extent_buffer(mid);
2225 			} else {
2226 				btrfs_tree_unlock(right);
2227 				free_extent_buffer(right);
2228 			}
2229 			return 0;
2230 		}
2231 		btrfs_tree_unlock(right);
2232 		free_extent_buffer(right);
2233 	}
2234 	return 1;
2235 }
2236 
2237 /*
2238  * readahead one full node of leaves, finding things that are close
2239  * to the block in 'slot', and triggering ra on them.
2240  */
2241 static void reada_for_search(struct btrfs_root *root,
2242 			     struct btrfs_path *path,
2243 			     int level, int slot, u64 objectid)
2244 {
2245 	struct extent_buffer *node;
2246 	struct btrfs_disk_key disk_key;
2247 	u32 nritems;
2248 	u64 search;
2249 	u64 target;
2250 	u64 nread = 0;
2251 	u64 gen;
2252 	struct extent_buffer *eb;
2253 	u32 nr;
2254 	u32 blocksize;
2255 	u32 nscan = 0;
2256 
2257 	if (level != 1)
2258 		return;
2259 
2260 	if (!path->nodes[level])
2261 		return;
2262 
2263 	node = path->nodes[level];
2264 
2265 	search = btrfs_node_blockptr(node, slot);
2266 	blocksize = root->nodesize;
2267 	eb = btrfs_find_tree_block(root->fs_info, search);
2268 	if (eb) {
2269 		free_extent_buffer(eb);
2270 		return;
2271 	}
2272 
2273 	target = search;
2274 
2275 	nritems = btrfs_header_nritems(node);
2276 	nr = slot;
2277 
2278 	while (1) {
2279 		if (path->reada == READA_BACK) {
2280 			if (nr == 0)
2281 				break;
2282 			nr--;
2283 		} else if (path->reada == READA_FORWARD) {
2284 			nr++;
2285 			if (nr >= nritems)
2286 				break;
2287 		}
2288 		if (path->reada == READA_BACK && objectid) {
2289 			btrfs_node_key(node, &disk_key, nr);
2290 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2291 				break;
2292 		}
2293 		search = btrfs_node_blockptr(node, nr);
2294 		if ((search <= target && target - search <= 65536) ||
2295 		    (search > target && search - target <= 65536)) {
2296 			gen = btrfs_node_ptr_generation(node, nr);
2297 			readahead_tree_block(root, search);
2298 			nread += blocksize;
2299 		}
2300 		nscan++;
2301 		if ((nread > 65536 || nscan > 32))
2302 			break;
2303 	}
2304 }
2305 
2306 static noinline void reada_for_balance(struct btrfs_root *root,
2307 				       struct btrfs_path *path, int level)
2308 {
2309 	int slot;
2310 	int nritems;
2311 	struct extent_buffer *parent;
2312 	struct extent_buffer *eb;
2313 	u64 gen;
2314 	u64 block1 = 0;
2315 	u64 block2 = 0;
2316 
2317 	parent = path->nodes[level + 1];
2318 	if (!parent)
2319 		return;
2320 
2321 	nritems = btrfs_header_nritems(parent);
2322 	slot = path->slots[level + 1];
2323 
2324 	if (slot > 0) {
2325 		block1 = btrfs_node_blockptr(parent, slot - 1);
2326 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2327 		eb = btrfs_find_tree_block(root->fs_info, block1);
2328 		/*
2329 		 * if we get -eagain from btrfs_buffer_uptodate, we
2330 		 * don't want to return eagain here.  That will loop
2331 		 * forever
2332 		 */
2333 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2334 			block1 = 0;
2335 		free_extent_buffer(eb);
2336 	}
2337 	if (slot + 1 < nritems) {
2338 		block2 = btrfs_node_blockptr(parent, slot + 1);
2339 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2340 		eb = btrfs_find_tree_block(root->fs_info, block2);
2341 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2342 			block2 = 0;
2343 		free_extent_buffer(eb);
2344 	}
2345 
2346 	if (block1)
2347 		readahead_tree_block(root, block1);
2348 	if (block2)
2349 		readahead_tree_block(root, block2);
2350 }
2351 
2352 
2353 /*
2354  * when we walk down the tree, it is usually safe to unlock the higher layers
2355  * in the tree.  The exceptions are when our path goes through slot 0, because
2356  * operations on the tree might require changing key pointers higher up in the
2357  * tree.
2358  *
2359  * callers might also have set path->keep_locks, which tells this code to keep
2360  * the lock if the path points to the last slot in the block.  This is part of
2361  * walking through the tree, and selecting the next slot in the higher block.
2362  *
2363  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2364  * if lowest_unlock is 1, level 0 won't be unlocked
2365  */
2366 static noinline void unlock_up(struct btrfs_path *path, int level,
2367 			       int lowest_unlock, int min_write_lock_level,
2368 			       int *write_lock_level)
2369 {
2370 	int i;
2371 	int skip_level = level;
2372 	int no_skips = 0;
2373 	struct extent_buffer *t;
2374 
2375 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2376 		if (!path->nodes[i])
2377 			break;
2378 		if (!path->locks[i])
2379 			break;
2380 		if (!no_skips && path->slots[i] == 0) {
2381 			skip_level = i + 1;
2382 			continue;
2383 		}
2384 		if (!no_skips && path->keep_locks) {
2385 			u32 nritems;
2386 			t = path->nodes[i];
2387 			nritems = btrfs_header_nritems(t);
2388 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2389 				skip_level = i + 1;
2390 				continue;
2391 			}
2392 		}
2393 		if (skip_level < i && i >= lowest_unlock)
2394 			no_skips = 1;
2395 
2396 		t = path->nodes[i];
2397 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2398 			btrfs_tree_unlock_rw(t, path->locks[i]);
2399 			path->locks[i] = 0;
2400 			if (write_lock_level &&
2401 			    i > min_write_lock_level &&
2402 			    i <= *write_lock_level) {
2403 				*write_lock_level = i - 1;
2404 			}
2405 		}
2406 	}
2407 }
2408 
2409 /*
2410  * This releases any locks held in the path starting at level and
2411  * going all the way up to the root.
2412  *
2413  * btrfs_search_slot will keep the lock held on higher nodes in a few
2414  * corner cases, such as COW of the block at slot zero in the node.  This
2415  * ignores those rules, and it should only be called when there are no
2416  * more updates to be done higher up in the tree.
2417  */
2418 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2419 {
2420 	int i;
2421 
2422 	if (path->keep_locks)
2423 		return;
2424 
2425 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2426 		if (!path->nodes[i])
2427 			continue;
2428 		if (!path->locks[i])
2429 			continue;
2430 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2431 		path->locks[i] = 0;
2432 	}
2433 }
2434 
2435 /*
2436  * helper function for btrfs_search_slot.  The goal is to find a block
2437  * in cache without setting the path to blocking.  If we find the block
2438  * we return zero and the path is unchanged.
2439  *
2440  * If we can't find the block, we set the path blocking and do some
2441  * reada.  -EAGAIN is returned and the search must be repeated.
2442  */
2443 static int
2444 read_block_for_search(struct btrfs_trans_handle *trans,
2445 		       struct btrfs_root *root, struct btrfs_path *p,
2446 		       struct extent_buffer **eb_ret, int level, int slot,
2447 		       struct btrfs_key *key, u64 time_seq)
2448 {
2449 	u64 blocknr;
2450 	u64 gen;
2451 	struct extent_buffer *b = *eb_ret;
2452 	struct extent_buffer *tmp;
2453 	int ret;
2454 
2455 	blocknr = btrfs_node_blockptr(b, slot);
2456 	gen = btrfs_node_ptr_generation(b, slot);
2457 
2458 	tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2459 	if (tmp) {
2460 		/* first we do an atomic uptodate check */
2461 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2462 			*eb_ret = tmp;
2463 			return 0;
2464 		}
2465 
2466 		/* the pages were up to date, but we failed
2467 		 * the generation number check.  Do a full
2468 		 * read for the generation number that is correct.
2469 		 * We must do this without dropping locks so
2470 		 * we can trust our generation number
2471 		 */
2472 		btrfs_set_path_blocking(p);
2473 
2474 		/* now we're allowed to do a blocking uptodate check */
2475 		ret = btrfs_read_buffer(tmp, gen);
2476 		if (!ret) {
2477 			*eb_ret = tmp;
2478 			return 0;
2479 		}
2480 		free_extent_buffer(tmp);
2481 		btrfs_release_path(p);
2482 		return -EIO;
2483 	}
2484 
2485 	/*
2486 	 * reduce lock contention at high levels
2487 	 * of the btree by dropping locks before
2488 	 * we read.  Don't release the lock on the current
2489 	 * level because we need to walk this node to figure
2490 	 * out which blocks to read.
2491 	 */
2492 	btrfs_unlock_up_safe(p, level + 1);
2493 	btrfs_set_path_blocking(p);
2494 
2495 	free_extent_buffer(tmp);
2496 	if (p->reada != READA_NONE)
2497 		reada_for_search(root, p, level, slot, key->objectid);
2498 
2499 	btrfs_release_path(p);
2500 
2501 	ret = -EAGAIN;
2502 	tmp = read_tree_block(root, blocknr, 0);
2503 	if (!IS_ERR(tmp)) {
2504 		/*
2505 		 * If the read above didn't mark this buffer up to date,
2506 		 * it will never end up being up to date.  Set ret to EIO now
2507 		 * and give up so that our caller doesn't loop forever
2508 		 * on our EAGAINs.
2509 		 */
2510 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2511 			ret = -EIO;
2512 		free_extent_buffer(tmp);
2513 	}
2514 	return ret;
2515 }
2516 
2517 /*
2518  * helper function for btrfs_search_slot.  This does all of the checks
2519  * for node-level blocks and does any balancing required based on
2520  * the ins_len.
2521  *
2522  * If no extra work was required, zero is returned.  If we had to
2523  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2524  * start over
2525  */
2526 static int
2527 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2528 		       struct btrfs_root *root, struct btrfs_path *p,
2529 		       struct extent_buffer *b, int level, int ins_len,
2530 		       int *write_lock_level)
2531 {
2532 	int ret;
2533 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2534 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2535 		int sret;
2536 
2537 		if (*write_lock_level < level + 1) {
2538 			*write_lock_level = level + 1;
2539 			btrfs_release_path(p);
2540 			goto again;
2541 		}
2542 
2543 		btrfs_set_path_blocking(p);
2544 		reada_for_balance(root, p, level);
2545 		sret = split_node(trans, root, p, level);
2546 		btrfs_clear_path_blocking(p, NULL, 0);
2547 
2548 		BUG_ON(sret > 0);
2549 		if (sret) {
2550 			ret = sret;
2551 			goto done;
2552 		}
2553 		b = p->nodes[level];
2554 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2555 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2556 		int sret;
2557 
2558 		if (*write_lock_level < level + 1) {
2559 			*write_lock_level = level + 1;
2560 			btrfs_release_path(p);
2561 			goto again;
2562 		}
2563 
2564 		btrfs_set_path_blocking(p);
2565 		reada_for_balance(root, p, level);
2566 		sret = balance_level(trans, root, p, level);
2567 		btrfs_clear_path_blocking(p, NULL, 0);
2568 
2569 		if (sret) {
2570 			ret = sret;
2571 			goto done;
2572 		}
2573 		b = p->nodes[level];
2574 		if (!b) {
2575 			btrfs_release_path(p);
2576 			goto again;
2577 		}
2578 		BUG_ON(btrfs_header_nritems(b) == 1);
2579 	}
2580 	return 0;
2581 
2582 again:
2583 	ret = -EAGAIN;
2584 done:
2585 	return ret;
2586 }
2587 
2588 static void key_search_validate(struct extent_buffer *b,
2589 				struct btrfs_key *key,
2590 				int level)
2591 {
2592 #ifdef CONFIG_BTRFS_ASSERT
2593 	struct btrfs_disk_key disk_key;
2594 
2595 	btrfs_cpu_key_to_disk(&disk_key, key);
2596 
2597 	if (level == 0)
2598 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2599 		    offsetof(struct btrfs_leaf, items[0].key),
2600 		    sizeof(disk_key)));
2601 	else
2602 		ASSERT(!memcmp_extent_buffer(b, &disk_key,
2603 		    offsetof(struct btrfs_node, ptrs[0].key),
2604 		    sizeof(disk_key)));
2605 #endif
2606 }
2607 
2608 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2609 		      int level, int *prev_cmp, int *slot)
2610 {
2611 	if (*prev_cmp != 0) {
2612 		*prev_cmp = bin_search(b, key, level, slot);
2613 		return *prev_cmp;
2614 	}
2615 
2616 	key_search_validate(b, key, level);
2617 	*slot = 0;
2618 
2619 	return 0;
2620 }
2621 
2622 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2623 		u64 iobjectid, u64 ioff, u8 key_type,
2624 		struct btrfs_key *found_key)
2625 {
2626 	int ret;
2627 	struct btrfs_key key;
2628 	struct extent_buffer *eb;
2629 
2630 	ASSERT(path);
2631 	ASSERT(found_key);
2632 
2633 	key.type = key_type;
2634 	key.objectid = iobjectid;
2635 	key.offset = ioff;
2636 
2637 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2638 	if (ret < 0)
2639 		return ret;
2640 
2641 	eb = path->nodes[0];
2642 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2643 		ret = btrfs_next_leaf(fs_root, path);
2644 		if (ret)
2645 			return ret;
2646 		eb = path->nodes[0];
2647 	}
2648 
2649 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2650 	if (found_key->type != key.type ||
2651 			found_key->objectid != key.objectid)
2652 		return 1;
2653 
2654 	return 0;
2655 }
2656 
2657 /*
2658  * look for key in the tree.  path is filled in with nodes along the way
2659  * if key is found, we return zero and you can find the item in the leaf
2660  * level of the path (level 0)
2661  *
2662  * If the key isn't found, the path points to the slot where it should
2663  * be inserted, and 1 is returned.  If there are other errors during the
2664  * search a negative error number is returned.
2665  *
2666  * if ins_len > 0, nodes and leaves will be split as we walk down the
2667  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2668  * possible)
2669  */
2670 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2671 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2672 		      ins_len, int cow)
2673 {
2674 	struct extent_buffer *b;
2675 	int slot;
2676 	int ret;
2677 	int err;
2678 	int level;
2679 	int lowest_unlock = 1;
2680 	int root_lock;
2681 	/* everything at write_lock_level or lower must be write locked */
2682 	int write_lock_level = 0;
2683 	u8 lowest_level = 0;
2684 	int min_write_lock_level;
2685 	int prev_cmp;
2686 
2687 	lowest_level = p->lowest_level;
2688 	WARN_ON(lowest_level && ins_len > 0);
2689 	WARN_ON(p->nodes[0] != NULL);
2690 	BUG_ON(!cow && ins_len);
2691 
2692 	if (ins_len < 0) {
2693 		lowest_unlock = 2;
2694 
2695 		/* when we are removing items, we might have to go up to level
2696 		 * two as we update tree pointers  Make sure we keep write
2697 		 * for those levels as well
2698 		 */
2699 		write_lock_level = 2;
2700 	} else if (ins_len > 0) {
2701 		/*
2702 		 * for inserting items, make sure we have a write lock on
2703 		 * level 1 so we can update keys
2704 		 */
2705 		write_lock_level = 1;
2706 	}
2707 
2708 	if (!cow)
2709 		write_lock_level = -1;
2710 
2711 	if (cow && (p->keep_locks || p->lowest_level))
2712 		write_lock_level = BTRFS_MAX_LEVEL;
2713 
2714 	min_write_lock_level = write_lock_level;
2715 
2716 again:
2717 	prev_cmp = -1;
2718 	/*
2719 	 * we try very hard to do read locks on the root
2720 	 */
2721 	root_lock = BTRFS_READ_LOCK;
2722 	level = 0;
2723 	if (p->search_commit_root) {
2724 		/*
2725 		 * the commit roots are read only
2726 		 * so we always do read locks
2727 		 */
2728 		if (p->need_commit_sem)
2729 			down_read(&root->fs_info->commit_root_sem);
2730 		b = root->commit_root;
2731 		extent_buffer_get(b);
2732 		level = btrfs_header_level(b);
2733 		if (p->need_commit_sem)
2734 			up_read(&root->fs_info->commit_root_sem);
2735 		if (!p->skip_locking)
2736 			btrfs_tree_read_lock(b);
2737 	} else {
2738 		if (p->skip_locking) {
2739 			b = btrfs_root_node(root);
2740 			level = btrfs_header_level(b);
2741 		} else {
2742 			/* we don't know the level of the root node
2743 			 * until we actually have it read locked
2744 			 */
2745 			b = btrfs_read_lock_root_node(root);
2746 			level = btrfs_header_level(b);
2747 			if (level <= write_lock_level) {
2748 				/* whoops, must trade for write lock */
2749 				btrfs_tree_read_unlock(b);
2750 				free_extent_buffer(b);
2751 				b = btrfs_lock_root_node(root);
2752 				root_lock = BTRFS_WRITE_LOCK;
2753 
2754 				/* the level might have changed, check again */
2755 				level = btrfs_header_level(b);
2756 			}
2757 		}
2758 	}
2759 	p->nodes[level] = b;
2760 	if (!p->skip_locking)
2761 		p->locks[level] = root_lock;
2762 
2763 	while (b) {
2764 		level = btrfs_header_level(b);
2765 
2766 		/*
2767 		 * setup the path here so we can release it under lock
2768 		 * contention with the cow code
2769 		 */
2770 		if (cow) {
2771 			/*
2772 			 * if we don't really need to cow this block
2773 			 * then we don't want to set the path blocking,
2774 			 * so we test it here
2775 			 */
2776 			if (!should_cow_block(trans, root, b))
2777 				goto cow_done;
2778 
2779 			/*
2780 			 * must have write locks on this node and the
2781 			 * parent
2782 			 */
2783 			if (level > write_lock_level ||
2784 			    (level + 1 > write_lock_level &&
2785 			    level + 1 < BTRFS_MAX_LEVEL &&
2786 			    p->nodes[level + 1])) {
2787 				write_lock_level = level + 1;
2788 				btrfs_release_path(p);
2789 				goto again;
2790 			}
2791 
2792 			btrfs_set_path_blocking(p);
2793 			err = btrfs_cow_block(trans, root, b,
2794 					      p->nodes[level + 1],
2795 					      p->slots[level + 1], &b);
2796 			if (err) {
2797 				ret = err;
2798 				goto done;
2799 			}
2800 		}
2801 cow_done:
2802 		p->nodes[level] = b;
2803 		btrfs_clear_path_blocking(p, NULL, 0);
2804 
2805 		/*
2806 		 * we have a lock on b and as long as we aren't changing
2807 		 * the tree, there is no way to for the items in b to change.
2808 		 * It is safe to drop the lock on our parent before we
2809 		 * go through the expensive btree search on b.
2810 		 *
2811 		 * If we're inserting or deleting (ins_len != 0), then we might
2812 		 * be changing slot zero, which may require changing the parent.
2813 		 * So, we can't drop the lock until after we know which slot
2814 		 * we're operating on.
2815 		 */
2816 		if (!ins_len && !p->keep_locks) {
2817 			int u = level + 1;
2818 
2819 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2820 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2821 				p->locks[u] = 0;
2822 			}
2823 		}
2824 
2825 		ret = key_search(b, key, level, &prev_cmp, &slot);
2826 
2827 		if (level != 0) {
2828 			int dec = 0;
2829 			if (ret && slot > 0) {
2830 				dec = 1;
2831 				slot -= 1;
2832 			}
2833 			p->slots[level] = slot;
2834 			err = setup_nodes_for_search(trans, root, p, b, level,
2835 					     ins_len, &write_lock_level);
2836 			if (err == -EAGAIN)
2837 				goto again;
2838 			if (err) {
2839 				ret = err;
2840 				goto done;
2841 			}
2842 			b = p->nodes[level];
2843 			slot = p->slots[level];
2844 
2845 			/*
2846 			 * slot 0 is special, if we change the key
2847 			 * we have to update the parent pointer
2848 			 * which means we must have a write lock
2849 			 * on the parent
2850 			 */
2851 			if (slot == 0 && ins_len &&
2852 			    write_lock_level < level + 1) {
2853 				write_lock_level = level + 1;
2854 				btrfs_release_path(p);
2855 				goto again;
2856 			}
2857 
2858 			unlock_up(p, level, lowest_unlock,
2859 				  min_write_lock_level, &write_lock_level);
2860 
2861 			if (level == lowest_level) {
2862 				if (dec)
2863 					p->slots[level]++;
2864 				goto done;
2865 			}
2866 
2867 			err = read_block_for_search(trans, root, p,
2868 						    &b, level, slot, key, 0);
2869 			if (err == -EAGAIN)
2870 				goto again;
2871 			if (err) {
2872 				ret = err;
2873 				goto done;
2874 			}
2875 
2876 			if (!p->skip_locking) {
2877 				level = btrfs_header_level(b);
2878 				if (level <= write_lock_level) {
2879 					err = btrfs_try_tree_write_lock(b);
2880 					if (!err) {
2881 						btrfs_set_path_blocking(p);
2882 						btrfs_tree_lock(b);
2883 						btrfs_clear_path_blocking(p, b,
2884 								  BTRFS_WRITE_LOCK);
2885 					}
2886 					p->locks[level] = BTRFS_WRITE_LOCK;
2887 				} else {
2888 					err = btrfs_tree_read_lock_atomic(b);
2889 					if (!err) {
2890 						btrfs_set_path_blocking(p);
2891 						btrfs_tree_read_lock(b);
2892 						btrfs_clear_path_blocking(p, b,
2893 								  BTRFS_READ_LOCK);
2894 					}
2895 					p->locks[level] = BTRFS_READ_LOCK;
2896 				}
2897 				p->nodes[level] = b;
2898 			}
2899 		} else {
2900 			p->slots[level] = slot;
2901 			if (ins_len > 0 &&
2902 			    btrfs_leaf_free_space(root, b) < ins_len) {
2903 				if (write_lock_level < 1) {
2904 					write_lock_level = 1;
2905 					btrfs_release_path(p);
2906 					goto again;
2907 				}
2908 
2909 				btrfs_set_path_blocking(p);
2910 				err = split_leaf(trans, root, key,
2911 						 p, ins_len, ret == 0);
2912 				btrfs_clear_path_blocking(p, NULL, 0);
2913 
2914 				BUG_ON(err > 0);
2915 				if (err) {
2916 					ret = err;
2917 					goto done;
2918 				}
2919 			}
2920 			if (!p->search_for_split)
2921 				unlock_up(p, level, lowest_unlock,
2922 					  min_write_lock_level, &write_lock_level);
2923 			goto done;
2924 		}
2925 	}
2926 	ret = 1;
2927 done:
2928 	/*
2929 	 * we don't really know what they plan on doing with the path
2930 	 * from here on, so for now just mark it as blocking
2931 	 */
2932 	if (!p->leave_spinning)
2933 		btrfs_set_path_blocking(p);
2934 	if (ret < 0 && !p->skip_release_on_error)
2935 		btrfs_release_path(p);
2936 	return ret;
2937 }
2938 
2939 /*
2940  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2941  * current state of the tree together with the operations recorded in the tree
2942  * modification log to search for the key in a previous version of this tree, as
2943  * denoted by the time_seq parameter.
2944  *
2945  * Naturally, there is no support for insert, delete or cow operations.
2946  *
2947  * The resulting path and return value will be set up as if we called
2948  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2949  */
2950 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2951 			  struct btrfs_path *p, u64 time_seq)
2952 {
2953 	struct extent_buffer *b;
2954 	int slot;
2955 	int ret;
2956 	int err;
2957 	int level;
2958 	int lowest_unlock = 1;
2959 	u8 lowest_level = 0;
2960 	int prev_cmp = -1;
2961 
2962 	lowest_level = p->lowest_level;
2963 	WARN_ON(p->nodes[0] != NULL);
2964 
2965 	if (p->search_commit_root) {
2966 		BUG_ON(time_seq);
2967 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2968 	}
2969 
2970 again:
2971 	b = get_old_root(root, time_seq);
2972 	level = btrfs_header_level(b);
2973 	p->locks[level] = BTRFS_READ_LOCK;
2974 
2975 	while (b) {
2976 		level = btrfs_header_level(b);
2977 		p->nodes[level] = b;
2978 		btrfs_clear_path_blocking(p, NULL, 0);
2979 
2980 		/*
2981 		 * we have a lock on b and as long as we aren't changing
2982 		 * the tree, there is no way to for the items in b to change.
2983 		 * It is safe to drop the lock on our parent before we
2984 		 * go through the expensive btree search on b.
2985 		 */
2986 		btrfs_unlock_up_safe(p, level + 1);
2987 
2988 		/*
2989 		 * Since we can unwind eb's we want to do a real search every
2990 		 * time.
2991 		 */
2992 		prev_cmp = -1;
2993 		ret = key_search(b, key, level, &prev_cmp, &slot);
2994 
2995 		if (level != 0) {
2996 			int dec = 0;
2997 			if (ret && slot > 0) {
2998 				dec = 1;
2999 				slot -= 1;
3000 			}
3001 			p->slots[level] = slot;
3002 			unlock_up(p, level, lowest_unlock, 0, NULL);
3003 
3004 			if (level == lowest_level) {
3005 				if (dec)
3006 					p->slots[level]++;
3007 				goto done;
3008 			}
3009 
3010 			err = read_block_for_search(NULL, root, p, &b, level,
3011 						    slot, key, time_seq);
3012 			if (err == -EAGAIN)
3013 				goto again;
3014 			if (err) {
3015 				ret = err;
3016 				goto done;
3017 			}
3018 
3019 			level = btrfs_header_level(b);
3020 			err = btrfs_tree_read_lock_atomic(b);
3021 			if (!err) {
3022 				btrfs_set_path_blocking(p);
3023 				btrfs_tree_read_lock(b);
3024 				btrfs_clear_path_blocking(p, b,
3025 							  BTRFS_READ_LOCK);
3026 			}
3027 			b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3028 			if (!b) {
3029 				ret = -ENOMEM;
3030 				goto done;
3031 			}
3032 			p->locks[level] = BTRFS_READ_LOCK;
3033 			p->nodes[level] = b;
3034 		} else {
3035 			p->slots[level] = slot;
3036 			unlock_up(p, level, lowest_unlock, 0, NULL);
3037 			goto done;
3038 		}
3039 	}
3040 	ret = 1;
3041 done:
3042 	if (!p->leave_spinning)
3043 		btrfs_set_path_blocking(p);
3044 	if (ret < 0)
3045 		btrfs_release_path(p);
3046 
3047 	return ret;
3048 }
3049 
3050 /*
3051  * helper to use instead of search slot if no exact match is needed but
3052  * instead the next or previous item should be returned.
3053  * When find_higher is true, the next higher item is returned, the next lower
3054  * otherwise.
3055  * When return_any and find_higher are both true, and no higher item is found,
3056  * return the next lower instead.
3057  * When return_any is true and find_higher is false, and no lower item is found,
3058  * return the next higher instead.
3059  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3060  * < 0 on error
3061  */
3062 int btrfs_search_slot_for_read(struct btrfs_root *root,
3063 			       struct btrfs_key *key, struct btrfs_path *p,
3064 			       int find_higher, int return_any)
3065 {
3066 	int ret;
3067 	struct extent_buffer *leaf;
3068 
3069 again:
3070 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3071 	if (ret <= 0)
3072 		return ret;
3073 	/*
3074 	 * a return value of 1 means the path is at the position where the
3075 	 * item should be inserted. Normally this is the next bigger item,
3076 	 * but in case the previous item is the last in a leaf, path points
3077 	 * to the first free slot in the previous leaf, i.e. at an invalid
3078 	 * item.
3079 	 */
3080 	leaf = p->nodes[0];
3081 
3082 	if (find_higher) {
3083 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3084 			ret = btrfs_next_leaf(root, p);
3085 			if (ret <= 0)
3086 				return ret;
3087 			if (!return_any)
3088 				return 1;
3089 			/*
3090 			 * no higher item found, return the next
3091 			 * lower instead
3092 			 */
3093 			return_any = 0;
3094 			find_higher = 0;
3095 			btrfs_release_path(p);
3096 			goto again;
3097 		}
3098 	} else {
3099 		if (p->slots[0] == 0) {
3100 			ret = btrfs_prev_leaf(root, p);
3101 			if (ret < 0)
3102 				return ret;
3103 			if (!ret) {
3104 				leaf = p->nodes[0];
3105 				if (p->slots[0] == btrfs_header_nritems(leaf))
3106 					p->slots[0]--;
3107 				return 0;
3108 			}
3109 			if (!return_any)
3110 				return 1;
3111 			/*
3112 			 * no lower item found, return the next
3113 			 * higher instead
3114 			 */
3115 			return_any = 0;
3116 			find_higher = 1;
3117 			btrfs_release_path(p);
3118 			goto again;
3119 		} else {
3120 			--p->slots[0];
3121 		}
3122 	}
3123 	return 0;
3124 }
3125 
3126 /*
3127  * adjust the pointers going up the tree, starting at level
3128  * making sure the right key of each node is points to 'key'.
3129  * This is used after shifting pointers to the left, so it stops
3130  * fixing up pointers when a given leaf/node is not in slot 0 of the
3131  * higher levels
3132  *
3133  */
3134 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3135 			   struct btrfs_path *path,
3136 			   struct btrfs_disk_key *key, int level)
3137 {
3138 	int i;
3139 	struct extent_buffer *t;
3140 
3141 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3142 		int tslot = path->slots[i];
3143 		if (!path->nodes[i])
3144 			break;
3145 		t = path->nodes[i];
3146 		tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3147 		btrfs_set_node_key(t, key, tslot);
3148 		btrfs_mark_buffer_dirty(path->nodes[i]);
3149 		if (tslot != 0)
3150 			break;
3151 	}
3152 }
3153 
3154 /*
3155  * update item key.
3156  *
3157  * This function isn't completely safe. It's the caller's responsibility
3158  * that the new key won't break the order
3159  */
3160 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3161 			     struct btrfs_path *path,
3162 			     struct btrfs_key *new_key)
3163 {
3164 	struct btrfs_disk_key disk_key;
3165 	struct extent_buffer *eb;
3166 	int slot;
3167 
3168 	eb = path->nodes[0];
3169 	slot = path->slots[0];
3170 	if (slot > 0) {
3171 		btrfs_item_key(eb, &disk_key, slot - 1);
3172 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3173 	}
3174 	if (slot < btrfs_header_nritems(eb) - 1) {
3175 		btrfs_item_key(eb, &disk_key, slot + 1);
3176 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3177 	}
3178 
3179 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3180 	btrfs_set_item_key(eb, &disk_key, slot);
3181 	btrfs_mark_buffer_dirty(eb);
3182 	if (slot == 0)
3183 		fixup_low_keys(fs_info, path, &disk_key, 1);
3184 }
3185 
3186 /*
3187  * try to push data from one node into the next node left in the
3188  * tree.
3189  *
3190  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3191  * error, and > 0 if there was no room in the left hand block.
3192  */
3193 static int push_node_left(struct btrfs_trans_handle *trans,
3194 			  struct btrfs_root *root, struct extent_buffer *dst,
3195 			  struct extent_buffer *src, int empty)
3196 {
3197 	int push_items = 0;
3198 	int src_nritems;
3199 	int dst_nritems;
3200 	int ret = 0;
3201 
3202 	src_nritems = btrfs_header_nritems(src);
3203 	dst_nritems = btrfs_header_nritems(dst);
3204 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3205 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3206 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3207 
3208 	if (!empty && src_nritems <= 8)
3209 		return 1;
3210 
3211 	if (push_items <= 0)
3212 		return 1;
3213 
3214 	if (empty) {
3215 		push_items = min(src_nritems, push_items);
3216 		if (push_items < src_nritems) {
3217 			/* leave at least 8 pointers in the node if
3218 			 * we aren't going to empty it
3219 			 */
3220 			if (src_nritems - push_items < 8) {
3221 				if (push_items <= 8)
3222 					return 1;
3223 				push_items -= 8;
3224 			}
3225 		}
3226 	} else
3227 		push_items = min(src_nritems - 8, push_items);
3228 
3229 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3230 				   push_items);
3231 	if (ret) {
3232 		btrfs_abort_transaction(trans, root, ret);
3233 		return ret;
3234 	}
3235 	copy_extent_buffer(dst, src,
3236 			   btrfs_node_key_ptr_offset(dst_nritems),
3237 			   btrfs_node_key_ptr_offset(0),
3238 			   push_items * sizeof(struct btrfs_key_ptr));
3239 
3240 	if (push_items < src_nritems) {
3241 		/*
3242 		 * don't call tree_mod_log_eb_move here, key removal was already
3243 		 * fully logged by tree_mod_log_eb_copy above.
3244 		 */
3245 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3246 				      btrfs_node_key_ptr_offset(push_items),
3247 				      (src_nritems - push_items) *
3248 				      sizeof(struct btrfs_key_ptr));
3249 	}
3250 	btrfs_set_header_nritems(src, src_nritems - push_items);
3251 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3252 	btrfs_mark_buffer_dirty(src);
3253 	btrfs_mark_buffer_dirty(dst);
3254 
3255 	return ret;
3256 }
3257 
3258 /*
3259  * try to push data from one node into the next node right in the
3260  * tree.
3261  *
3262  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3263  * error, and > 0 if there was no room in the right hand block.
3264  *
3265  * this will  only push up to 1/2 the contents of the left node over
3266  */
3267 static int balance_node_right(struct btrfs_trans_handle *trans,
3268 			      struct btrfs_root *root,
3269 			      struct extent_buffer *dst,
3270 			      struct extent_buffer *src)
3271 {
3272 	int push_items = 0;
3273 	int max_push;
3274 	int src_nritems;
3275 	int dst_nritems;
3276 	int ret = 0;
3277 
3278 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3279 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3280 
3281 	src_nritems = btrfs_header_nritems(src);
3282 	dst_nritems = btrfs_header_nritems(dst);
3283 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3284 	if (push_items <= 0)
3285 		return 1;
3286 
3287 	if (src_nritems < 4)
3288 		return 1;
3289 
3290 	max_push = src_nritems / 2 + 1;
3291 	/* don't try to empty the node */
3292 	if (max_push >= src_nritems)
3293 		return 1;
3294 
3295 	if (max_push < push_items)
3296 		push_items = max_push;
3297 
3298 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3299 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3300 				      btrfs_node_key_ptr_offset(0),
3301 				      (dst_nritems) *
3302 				      sizeof(struct btrfs_key_ptr));
3303 
3304 	ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3305 				   src_nritems - push_items, push_items);
3306 	if (ret) {
3307 		btrfs_abort_transaction(trans, root, ret);
3308 		return ret;
3309 	}
3310 	copy_extent_buffer(dst, src,
3311 			   btrfs_node_key_ptr_offset(0),
3312 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3313 			   push_items * sizeof(struct btrfs_key_ptr));
3314 
3315 	btrfs_set_header_nritems(src, src_nritems - push_items);
3316 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3317 
3318 	btrfs_mark_buffer_dirty(src);
3319 	btrfs_mark_buffer_dirty(dst);
3320 
3321 	return ret;
3322 }
3323 
3324 /*
3325  * helper function to insert a new root level in the tree.
3326  * A new node is allocated, and a single item is inserted to
3327  * point to the existing root
3328  *
3329  * returns zero on success or < 0 on failure.
3330  */
3331 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3332 			   struct btrfs_root *root,
3333 			   struct btrfs_path *path, int level)
3334 {
3335 	u64 lower_gen;
3336 	struct extent_buffer *lower;
3337 	struct extent_buffer *c;
3338 	struct extent_buffer *old;
3339 	struct btrfs_disk_key lower_key;
3340 
3341 	BUG_ON(path->nodes[level]);
3342 	BUG_ON(path->nodes[level-1] != root->node);
3343 
3344 	lower = path->nodes[level-1];
3345 	if (level == 1)
3346 		btrfs_item_key(lower, &lower_key, 0);
3347 	else
3348 		btrfs_node_key(lower, &lower_key, 0);
3349 
3350 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3351 				   &lower_key, level, root->node->start, 0);
3352 	if (IS_ERR(c))
3353 		return PTR_ERR(c);
3354 
3355 	root_add_used(root, root->nodesize);
3356 
3357 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3358 	btrfs_set_header_nritems(c, 1);
3359 	btrfs_set_header_level(c, level);
3360 	btrfs_set_header_bytenr(c, c->start);
3361 	btrfs_set_header_generation(c, trans->transid);
3362 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3363 	btrfs_set_header_owner(c, root->root_key.objectid);
3364 
3365 	write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3366 			    BTRFS_FSID_SIZE);
3367 
3368 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3369 			    btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3370 
3371 	btrfs_set_node_key(c, &lower_key, 0);
3372 	btrfs_set_node_blockptr(c, 0, lower->start);
3373 	lower_gen = btrfs_header_generation(lower);
3374 	WARN_ON(lower_gen != trans->transid);
3375 
3376 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3377 
3378 	btrfs_mark_buffer_dirty(c);
3379 
3380 	old = root->node;
3381 	tree_mod_log_set_root_pointer(root, c, 0);
3382 	rcu_assign_pointer(root->node, c);
3383 
3384 	/* the super has an extra ref to root->node */
3385 	free_extent_buffer(old);
3386 
3387 	add_root_to_dirty_list(root);
3388 	extent_buffer_get(c);
3389 	path->nodes[level] = c;
3390 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3391 	path->slots[level] = 0;
3392 	return 0;
3393 }
3394 
3395 /*
3396  * worker function to insert a single pointer in a node.
3397  * the node should have enough room for the pointer already
3398  *
3399  * slot and level indicate where you want the key to go, and
3400  * blocknr is the block the key points to.
3401  */
3402 static void insert_ptr(struct btrfs_trans_handle *trans,
3403 		       struct btrfs_root *root, struct btrfs_path *path,
3404 		       struct btrfs_disk_key *key, u64 bytenr,
3405 		       int slot, int level)
3406 {
3407 	struct extent_buffer *lower;
3408 	int nritems;
3409 	int ret;
3410 
3411 	BUG_ON(!path->nodes[level]);
3412 	btrfs_assert_tree_locked(path->nodes[level]);
3413 	lower = path->nodes[level];
3414 	nritems = btrfs_header_nritems(lower);
3415 	BUG_ON(slot > nritems);
3416 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3417 	if (slot != nritems) {
3418 		if (level)
3419 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3420 					     slot, nritems - slot);
3421 		memmove_extent_buffer(lower,
3422 			      btrfs_node_key_ptr_offset(slot + 1),
3423 			      btrfs_node_key_ptr_offset(slot),
3424 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3425 	}
3426 	if (level) {
3427 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3428 					      MOD_LOG_KEY_ADD, GFP_NOFS);
3429 		BUG_ON(ret < 0);
3430 	}
3431 	btrfs_set_node_key(lower, key, slot);
3432 	btrfs_set_node_blockptr(lower, slot, bytenr);
3433 	WARN_ON(trans->transid == 0);
3434 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3435 	btrfs_set_header_nritems(lower, nritems + 1);
3436 	btrfs_mark_buffer_dirty(lower);
3437 }
3438 
3439 /*
3440  * split the node at the specified level in path in two.
3441  * The path is corrected to point to the appropriate node after the split
3442  *
3443  * Before splitting this tries to make some room in the node by pushing
3444  * left and right, if either one works, it returns right away.
3445  *
3446  * returns 0 on success and < 0 on failure
3447  */
3448 static noinline int split_node(struct btrfs_trans_handle *trans,
3449 			       struct btrfs_root *root,
3450 			       struct btrfs_path *path, int level)
3451 {
3452 	struct extent_buffer *c;
3453 	struct extent_buffer *split;
3454 	struct btrfs_disk_key disk_key;
3455 	int mid;
3456 	int ret;
3457 	u32 c_nritems;
3458 
3459 	c = path->nodes[level];
3460 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3461 	if (c == root->node) {
3462 		/*
3463 		 * trying to split the root, lets make a new one
3464 		 *
3465 		 * tree mod log: We don't log_removal old root in
3466 		 * insert_new_root, because that root buffer will be kept as a
3467 		 * normal node. We are going to log removal of half of the
3468 		 * elements below with tree_mod_log_eb_copy. We're holding a
3469 		 * tree lock on the buffer, which is why we cannot race with
3470 		 * other tree_mod_log users.
3471 		 */
3472 		ret = insert_new_root(trans, root, path, level + 1);
3473 		if (ret)
3474 			return ret;
3475 	} else {
3476 		ret = push_nodes_for_insert(trans, root, path, level);
3477 		c = path->nodes[level];
3478 		if (!ret && btrfs_header_nritems(c) <
3479 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3480 			return 0;
3481 		if (ret < 0)
3482 			return ret;
3483 	}
3484 
3485 	c_nritems = btrfs_header_nritems(c);
3486 	mid = (c_nritems + 1) / 2;
3487 	btrfs_node_key(c, &disk_key, mid);
3488 
3489 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3490 			&disk_key, level, c->start, 0);
3491 	if (IS_ERR(split))
3492 		return PTR_ERR(split);
3493 
3494 	root_add_used(root, root->nodesize);
3495 
3496 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3497 	btrfs_set_header_level(split, btrfs_header_level(c));
3498 	btrfs_set_header_bytenr(split, split->start);
3499 	btrfs_set_header_generation(split, trans->transid);
3500 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3501 	btrfs_set_header_owner(split, root->root_key.objectid);
3502 	write_extent_buffer(split, root->fs_info->fsid,
3503 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
3504 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3505 			    btrfs_header_chunk_tree_uuid(split),
3506 			    BTRFS_UUID_SIZE);
3507 
3508 	ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3509 				   mid, c_nritems - mid);
3510 	if (ret) {
3511 		btrfs_abort_transaction(trans, root, ret);
3512 		return ret;
3513 	}
3514 	copy_extent_buffer(split, c,
3515 			   btrfs_node_key_ptr_offset(0),
3516 			   btrfs_node_key_ptr_offset(mid),
3517 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3518 	btrfs_set_header_nritems(split, c_nritems - mid);
3519 	btrfs_set_header_nritems(c, mid);
3520 	ret = 0;
3521 
3522 	btrfs_mark_buffer_dirty(c);
3523 	btrfs_mark_buffer_dirty(split);
3524 
3525 	insert_ptr(trans, root, path, &disk_key, split->start,
3526 		   path->slots[level + 1] + 1, level + 1);
3527 
3528 	if (path->slots[level] >= mid) {
3529 		path->slots[level] -= mid;
3530 		btrfs_tree_unlock(c);
3531 		free_extent_buffer(c);
3532 		path->nodes[level] = split;
3533 		path->slots[level + 1] += 1;
3534 	} else {
3535 		btrfs_tree_unlock(split);
3536 		free_extent_buffer(split);
3537 	}
3538 	return ret;
3539 }
3540 
3541 /*
3542  * how many bytes are required to store the items in a leaf.  start
3543  * and nr indicate which items in the leaf to check.  This totals up the
3544  * space used both by the item structs and the item data
3545  */
3546 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3547 {
3548 	struct btrfs_item *start_item;
3549 	struct btrfs_item *end_item;
3550 	struct btrfs_map_token token;
3551 	int data_len;
3552 	int nritems = btrfs_header_nritems(l);
3553 	int end = min(nritems, start + nr) - 1;
3554 
3555 	if (!nr)
3556 		return 0;
3557 	btrfs_init_map_token(&token);
3558 	start_item = btrfs_item_nr(start);
3559 	end_item = btrfs_item_nr(end);
3560 	data_len = btrfs_token_item_offset(l, start_item, &token) +
3561 		btrfs_token_item_size(l, start_item, &token);
3562 	data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3563 	data_len += sizeof(struct btrfs_item) * nr;
3564 	WARN_ON(data_len < 0);
3565 	return data_len;
3566 }
3567 
3568 /*
3569  * The space between the end of the leaf items and
3570  * the start of the leaf data.  IOW, how much room
3571  * the leaf has left for both items and data
3572  */
3573 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3574 				   struct extent_buffer *leaf)
3575 {
3576 	int nritems = btrfs_header_nritems(leaf);
3577 	int ret;
3578 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3579 	if (ret < 0) {
3580 		btrfs_crit(root->fs_info,
3581 			"leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3582 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3583 		       leaf_space_used(leaf, 0, nritems), nritems);
3584 	}
3585 	return ret;
3586 }
3587 
3588 /*
3589  * min slot controls the lowest index we're willing to push to the
3590  * right.  We'll push up to and including min_slot, but no lower
3591  */
3592 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3593 				      struct btrfs_root *root,
3594 				      struct btrfs_path *path,
3595 				      int data_size, int empty,
3596 				      struct extent_buffer *right,
3597 				      int free_space, u32 left_nritems,
3598 				      u32 min_slot)
3599 {
3600 	struct extent_buffer *left = path->nodes[0];
3601 	struct extent_buffer *upper = path->nodes[1];
3602 	struct btrfs_map_token token;
3603 	struct btrfs_disk_key disk_key;
3604 	int slot;
3605 	u32 i;
3606 	int push_space = 0;
3607 	int push_items = 0;
3608 	struct btrfs_item *item;
3609 	u32 nr;
3610 	u32 right_nritems;
3611 	u32 data_end;
3612 	u32 this_item_size;
3613 
3614 	btrfs_init_map_token(&token);
3615 
3616 	if (empty)
3617 		nr = 0;
3618 	else
3619 		nr = max_t(u32, 1, min_slot);
3620 
3621 	if (path->slots[0] >= left_nritems)
3622 		push_space += data_size;
3623 
3624 	slot = path->slots[1];
3625 	i = left_nritems - 1;
3626 	while (i >= nr) {
3627 		item = btrfs_item_nr(i);
3628 
3629 		if (!empty && push_items > 0) {
3630 			if (path->slots[0] > i)
3631 				break;
3632 			if (path->slots[0] == i) {
3633 				int space = btrfs_leaf_free_space(root, left);
3634 				if (space + push_space * 2 > free_space)
3635 					break;
3636 			}
3637 		}
3638 
3639 		if (path->slots[0] == i)
3640 			push_space += data_size;
3641 
3642 		this_item_size = btrfs_item_size(left, item);
3643 		if (this_item_size + sizeof(*item) + push_space > free_space)
3644 			break;
3645 
3646 		push_items++;
3647 		push_space += this_item_size + sizeof(*item);
3648 		if (i == 0)
3649 			break;
3650 		i--;
3651 	}
3652 
3653 	if (push_items == 0)
3654 		goto out_unlock;
3655 
3656 	WARN_ON(!empty && push_items == left_nritems);
3657 
3658 	/* push left to right */
3659 	right_nritems = btrfs_header_nritems(right);
3660 
3661 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3662 	push_space -= leaf_data_end(root, left);
3663 
3664 	/* make room in the right data area */
3665 	data_end = leaf_data_end(root, right);
3666 	memmove_extent_buffer(right,
3667 			      btrfs_leaf_data(right) + data_end - push_space,
3668 			      btrfs_leaf_data(right) + data_end,
3669 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3670 
3671 	/* copy from the left data area */
3672 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3673 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3674 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3675 		     push_space);
3676 
3677 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3678 			      btrfs_item_nr_offset(0),
3679 			      right_nritems * sizeof(struct btrfs_item));
3680 
3681 	/* copy the items from left to right */
3682 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3683 		   btrfs_item_nr_offset(left_nritems - push_items),
3684 		   push_items * sizeof(struct btrfs_item));
3685 
3686 	/* update the item pointers */
3687 	right_nritems += push_items;
3688 	btrfs_set_header_nritems(right, right_nritems);
3689 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3690 	for (i = 0; i < right_nritems; i++) {
3691 		item = btrfs_item_nr(i);
3692 		push_space -= btrfs_token_item_size(right, item, &token);
3693 		btrfs_set_token_item_offset(right, item, push_space, &token);
3694 	}
3695 
3696 	left_nritems -= push_items;
3697 	btrfs_set_header_nritems(left, left_nritems);
3698 
3699 	if (left_nritems)
3700 		btrfs_mark_buffer_dirty(left);
3701 	else
3702 		clean_tree_block(trans, root->fs_info, left);
3703 
3704 	btrfs_mark_buffer_dirty(right);
3705 
3706 	btrfs_item_key(right, &disk_key, 0);
3707 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3708 	btrfs_mark_buffer_dirty(upper);
3709 
3710 	/* then fixup the leaf pointer in the path */
3711 	if (path->slots[0] >= left_nritems) {
3712 		path->slots[0] -= left_nritems;
3713 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3714 			clean_tree_block(trans, root->fs_info, path->nodes[0]);
3715 		btrfs_tree_unlock(path->nodes[0]);
3716 		free_extent_buffer(path->nodes[0]);
3717 		path->nodes[0] = right;
3718 		path->slots[1] += 1;
3719 	} else {
3720 		btrfs_tree_unlock(right);
3721 		free_extent_buffer(right);
3722 	}
3723 	return 0;
3724 
3725 out_unlock:
3726 	btrfs_tree_unlock(right);
3727 	free_extent_buffer(right);
3728 	return 1;
3729 }
3730 
3731 /*
3732  * push some data in the path leaf to the right, trying to free up at
3733  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3734  *
3735  * returns 1 if the push failed because the other node didn't have enough
3736  * room, 0 if everything worked out and < 0 if there were major errors.
3737  *
3738  * this will push starting from min_slot to the end of the leaf.  It won't
3739  * push any slot lower than min_slot
3740  */
3741 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3742 			   *root, struct btrfs_path *path,
3743 			   int min_data_size, int data_size,
3744 			   int empty, u32 min_slot)
3745 {
3746 	struct extent_buffer *left = path->nodes[0];
3747 	struct extent_buffer *right;
3748 	struct extent_buffer *upper;
3749 	int slot;
3750 	int free_space;
3751 	u32 left_nritems;
3752 	int ret;
3753 
3754 	if (!path->nodes[1])
3755 		return 1;
3756 
3757 	slot = path->slots[1];
3758 	upper = path->nodes[1];
3759 	if (slot >= btrfs_header_nritems(upper) - 1)
3760 		return 1;
3761 
3762 	btrfs_assert_tree_locked(path->nodes[1]);
3763 
3764 	right = read_node_slot(root, upper, slot + 1);
3765 	if (right == NULL)
3766 		return 1;
3767 
3768 	btrfs_tree_lock(right);
3769 	btrfs_set_lock_blocking(right);
3770 
3771 	free_space = btrfs_leaf_free_space(root, right);
3772 	if (free_space < data_size)
3773 		goto out_unlock;
3774 
3775 	/* cow and double check */
3776 	ret = btrfs_cow_block(trans, root, right, upper,
3777 			      slot + 1, &right);
3778 	if (ret)
3779 		goto out_unlock;
3780 
3781 	free_space = btrfs_leaf_free_space(root, right);
3782 	if (free_space < data_size)
3783 		goto out_unlock;
3784 
3785 	left_nritems = btrfs_header_nritems(left);
3786 	if (left_nritems == 0)
3787 		goto out_unlock;
3788 
3789 	if (path->slots[0] == left_nritems && !empty) {
3790 		/* Key greater than all keys in the leaf, right neighbor has
3791 		 * enough room for it and we're not emptying our leaf to delete
3792 		 * it, therefore use right neighbor to insert the new item and
3793 		 * no need to touch/dirty our left leaft. */
3794 		btrfs_tree_unlock(left);
3795 		free_extent_buffer(left);
3796 		path->nodes[0] = right;
3797 		path->slots[0] = 0;
3798 		path->slots[1]++;
3799 		return 0;
3800 	}
3801 
3802 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3803 				right, free_space, left_nritems, min_slot);
3804 out_unlock:
3805 	btrfs_tree_unlock(right);
3806 	free_extent_buffer(right);
3807 	return 1;
3808 }
3809 
3810 /*
3811  * push some data in the path leaf to the left, trying to free up at
3812  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3813  *
3814  * max_slot can put a limit on how far into the leaf we'll push items.  The
3815  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3816  * items
3817  */
3818 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3819 				     struct btrfs_root *root,
3820 				     struct btrfs_path *path, int data_size,
3821 				     int empty, struct extent_buffer *left,
3822 				     int free_space, u32 right_nritems,
3823 				     u32 max_slot)
3824 {
3825 	struct btrfs_disk_key disk_key;
3826 	struct extent_buffer *right = path->nodes[0];
3827 	int i;
3828 	int push_space = 0;
3829 	int push_items = 0;
3830 	struct btrfs_item *item;
3831 	u32 old_left_nritems;
3832 	u32 nr;
3833 	int ret = 0;
3834 	u32 this_item_size;
3835 	u32 old_left_item_size;
3836 	struct btrfs_map_token token;
3837 
3838 	btrfs_init_map_token(&token);
3839 
3840 	if (empty)
3841 		nr = min(right_nritems, max_slot);
3842 	else
3843 		nr = min(right_nritems - 1, max_slot);
3844 
3845 	for (i = 0; i < nr; i++) {
3846 		item = btrfs_item_nr(i);
3847 
3848 		if (!empty && push_items > 0) {
3849 			if (path->slots[0] < i)
3850 				break;
3851 			if (path->slots[0] == i) {
3852 				int space = btrfs_leaf_free_space(root, right);
3853 				if (space + push_space * 2 > free_space)
3854 					break;
3855 			}
3856 		}
3857 
3858 		if (path->slots[0] == i)
3859 			push_space += data_size;
3860 
3861 		this_item_size = btrfs_item_size(right, item);
3862 		if (this_item_size + sizeof(*item) + push_space > free_space)
3863 			break;
3864 
3865 		push_items++;
3866 		push_space += this_item_size + sizeof(*item);
3867 	}
3868 
3869 	if (push_items == 0) {
3870 		ret = 1;
3871 		goto out;
3872 	}
3873 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3874 
3875 	/* push data from right to left */
3876 	copy_extent_buffer(left, right,
3877 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3878 			   btrfs_item_nr_offset(0),
3879 			   push_items * sizeof(struct btrfs_item));
3880 
3881 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3882 		     btrfs_item_offset_nr(right, push_items - 1);
3883 
3884 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3885 		     leaf_data_end(root, left) - push_space,
3886 		     btrfs_leaf_data(right) +
3887 		     btrfs_item_offset_nr(right, push_items - 1),
3888 		     push_space);
3889 	old_left_nritems = btrfs_header_nritems(left);
3890 	BUG_ON(old_left_nritems <= 0);
3891 
3892 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3893 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3894 		u32 ioff;
3895 
3896 		item = btrfs_item_nr(i);
3897 
3898 		ioff = btrfs_token_item_offset(left, item, &token);
3899 		btrfs_set_token_item_offset(left, item,
3900 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3901 		      &token);
3902 	}
3903 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3904 
3905 	/* fixup right node */
3906 	if (push_items > right_nritems)
3907 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3908 		       right_nritems);
3909 
3910 	if (push_items < right_nritems) {
3911 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3912 						  leaf_data_end(root, right);
3913 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3914 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3915 				      btrfs_leaf_data(right) +
3916 				      leaf_data_end(root, right), push_space);
3917 
3918 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3919 			      btrfs_item_nr_offset(push_items),
3920 			     (btrfs_header_nritems(right) - push_items) *
3921 			     sizeof(struct btrfs_item));
3922 	}
3923 	right_nritems -= push_items;
3924 	btrfs_set_header_nritems(right, right_nritems);
3925 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3926 	for (i = 0; i < right_nritems; i++) {
3927 		item = btrfs_item_nr(i);
3928 
3929 		push_space = push_space - btrfs_token_item_size(right,
3930 								item, &token);
3931 		btrfs_set_token_item_offset(right, item, push_space, &token);
3932 	}
3933 
3934 	btrfs_mark_buffer_dirty(left);
3935 	if (right_nritems)
3936 		btrfs_mark_buffer_dirty(right);
3937 	else
3938 		clean_tree_block(trans, root->fs_info, right);
3939 
3940 	btrfs_item_key(right, &disk_key, 0);
3941 	fixup_low_keys(root->fs_info, path, &disk_key, 1);
3942 
3943 	/* then fixup the leaf pointer in the path */
3944 	if (path->slots[0] < push_items) {
3945 		path->slots[0] += old_left_nritems;
3946 		btrfs_tree_unlock(path->nodes[0]);
3947 		free_extent_buffer(path->nodes[0]);
3948 		path->nodes[0] = left;
3949 		path->slots[1] -= 1;
3950 	} else {
3951 		btrfs_tree_unlock(left);
3952 		free_extent_buffer(left);
3953 		path->slots[0] -= push_items;
3954 	}
3955 	BUG_ON(path->slots[0] < 0);
3956 	return ret;
3957 out:
3958 	btrfs_tree_unlock(left);
3959 	free_extent_buffer(left);
3960 	return ret;
3961 }
3962 
3963 /*
3964  * push some data in the path leaf to the left, trying to free up at
3965  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3966  *
3967  * max_slot can put a limit on how far into the leaf we'll push items.  The
3968  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3969  * items
3970  */
3971 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3972 			  *root, struct btrfs_path *path, int min_data_size,
3973 			  int data_size, int empty, u32 max_slot)
3974 {
3975 	struct extent_buffer *right = path->nodes[0];
3976 	struct extent_buffer *left;
3977 	int slot;
3978 	int free_space;
3979 	u32 right_nritems;
3980 	int ret = 0;
3981 
3982 	slot = path->slots[1];
3983 	if (slot == 0)
3984 		return 1;
3985 	if (!path->nodes[1])
3986 		return 1;
3987 
3988 	right_nritems = btrfs_header_nritems(right);
3989 	if (right_nritems == 0)
3990 		return 1;
3991 
3992 	btrfs_assert_tree_locked(path->nodes[1]);
3993 
3994 	left = read_node_slot(root, path->nodes[1], slot - 1);
3995 	if (left == NULL)
3996 		return 1;
3997 
3998 	btrfs_tree_lock(left);
3999 	btrfs_set_lock_blocking(left);
4000 
4001 	free_space = btrfs_leaf_free_space(root, left);
4002 	if (free_space < data_size) {
4003 		ret = 1;
4004 		goto out;
4005 	}
4006 
4007 	/* cow and double check */
4008 	ret = btrfs_cow_block(trans, root, left,
4009 			      path->nodes[1], slot - 1, &left);
4010 	if (ret) {
4011 		/* we hit -ENOSPC, but it isn't fatal here */
4012 		if (ret == -ENOSPC)
4013 			ret = 1;
4014 		goto out;
4015 	}
4016 
4017 	free_space = btrfs_leaf_free_space(root, left);
4018 	if (free_space < data_size) {
4019 		ret = 1;
4020 		goto out;
4021 	}
4022 
4023 	return __push_leaf_left(trans, root, path, min_data_size,
4024 			       empty, left, free_space, right_nritems,
4025 			       max_slot);
4026 out:
4027 	btrfs_tree_unlock(left);
4028 	free_extent_buffer(left);
4029 	return ret;
4030 }
4031 
4032 /*
4033  * split the path's leaf in two, making sure there is at least data_size
4034  * available for the resulting leaf level of the path.
4035  */
4036 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4037 				    struct btrfs_root *root,
4038 				    struct btrfs_path *path,
4039 				    struct extent_buffer *l,
4040 				    struct extent_buffer *right,
4041 				    int slot, int mid, int nritems)
4042 {
4043 	int data_copy_size;
4044 	int rt_data_off;
4045 	int i;
4046 	struct btrfs_disk_key disk_key;
4047 	struct btrfs_map_token token;
4048 
4049 	btrfs_init_map_token(&token);
4050 
4051 	nritems = nritems - mid;
4052 	btrfs_set_header_nritems(right, nritems);
4053 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4054 
4055 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4056 			   btrfs_item_nr_offset(mid),
4057 			   nritems * sizeof(struct btrfs_item));
4058 
4059 	copy_extent_buffer(right, l,
4060 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4061 		     data_copy_size, btrfs_leaf_data(l) +
4062 		     leaf_data_end(root, l), data_copy_size);
4063 
4064 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4065 		      btrfs_item_end_nr(l, mid);
4066 
4067 	for (i = 0; i < nritems; i++) {
4068 		struct btrfs_item *item = btrfs_item_nr(i);
4069 		u32 ioff;
4070 
4071 		ioff = btrfs_token_item_offset(right, item, &token);
4072 		btrfs_set_token_item_offset(right, item,
4073 					    ioff + rt_data_off, &token);
4074 	}
4075 
4076 	btrfs_set_header_nritems(l, mid);
4077 	btrfs_item_key(right, &disk_key, 0);
4078 	insert_ptr(trans, root, path, &disk_key, right->start,
4079 		   path->slots[1] + 1, 1);
4080 
4081 	btrfs_mark_buffer_dirty(right);
4082 	btrfs_mark_buffer_dirty(l);
4083 	BUG_ON(path->slots[0] != slot);
4084 
4085 	if (mid <= slot) {
4086 		btrfs_tree_unlock(path->nodes[0]);
4087 		free_extent_buffer(path->nodes[0]);
4088 		path->nodes[0] = right;
4089 		path->slots[0] -= mid;
4090 		path->slots[1] += 1;
4091 	} else {
4092 		btrfs_tree_unlock(right);
4093 		free_extent_buffer(right);
4094 	}
4095 
4096 	BUG_ON(path->slots[0] < 0);
4097 }
4098 
4099 /*
4100  * double splits happen when we need to insert a big item in the middle
4101  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4102  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4103  *          A                 B                 C
4104  *
4105  * We avoid this by trying to push the items on either side of our target
4106  * into the adjacent leaves.  If all goes well we can avoid the double split
4107  * completely.
4108  */
4109 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4110 					  struct btrfs_root *root,
4111 					  struct btrfs_path *path,
4112 					  int data_size)
4113 {
4114 	int ret;
4115 	int progress = 0;
4116 	int slot;
4117 	u32 nritems;
4118 	int space_needed = data_size;
4119 
4120 	slot = path->slots[0];
4121 	if (slot < btrfs_header_nritems(path->nodes[0]))
4122 		space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4123 
4124 	/*
4125 	 * try to push all the items after our slot into the
4126 	 * right leaf
4127 	 */
4128 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4129 	if (ret < 0)
4130 		return ret;
4131 
4132 	if (ret == 0)
4133 		progress++;
4134 
4135 	nritems = btrfs_header_nritems(path->nodes[0]);
4136 	/*
4137 	 * our goal is to get our slot at the start or end of a leaf.  If
4138 	 * we've done so we're done
4139 	 */
4140 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4141 		return 0;
4142 
4143 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4144 		return 0;
4145 
4146 	/* try to push all the items before our slot into the next leaf */
4147 	slot = path->slots[0];
4148 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4149 	if (ret < 0)
4150 		return ret;
4151 
4152 	if (ret == 0)
4153 		progress++;
4154 
4155 	if (progress)
4156 		return 0;
4157 	return 1;
4158 }
4159 
4160 /*
4161  * split the path's leaf in two, making sure there is at least data_size
4162  * available for the resulting leaf level of the path.
4163  *
4164  * returns 0 if all went well and < 0 on failure.
4165  */
4166 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4167 			       struct btrfs_root *root,
4168 			       struct btrfs_key *ins_key,
4169 			       struct btrfs_path *path, int data_size,
4170 			       int extend)
4171 {
4172 	struct btrfs_disk_key disk_key;
4173 	struct extent_buffer *l;
4174 	u32 nritems;
4175 	int mid;
4176 	int slot;
4177 	struct extent_buffer *right;
4178 	struct btrfs_fs_info *fs_info = root->fs_info;
4179 	int ret = 0;
4180 	int wret;
4181 	int split;
4182 	int num_doubles = 0;
4183 	int tried_avoid_double = 0;
4184 
4185 	l = path->nodes[0];
4186 	slot = path->slots[0];
4187 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4188 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4189 		return -EOVERFLOW;
4190 
4191 	/* first try to make some room by pushing left and right */
4192 	if (data_size && path->nodes[1]) {
4193 		int space_needed = data_size;
4194 
4195 		if (slot < btrfs_header_nritems(l))
4196 			space_needed -= btrfs_leaf_free_space(root, l);
4197 
4198 		wret = push_leaf_right(trans, root, path, space_needed,
4199 				       space_needed, 0, 0);
4200 		if (wret < 0)
4201 			return wret;
4202 		if (wret) {
4203 			wret = push_leaf_left(trans, root, path, space_needed,
4204 					      space_needed, 0, (u32)-1);
4205 			if (wret < 0)
4206 				return wret;
4207 		}
4208 		l = path->nodes[0];
4209 
4210 		/* did the pushes work? */
4211 		if (btrfs_leaf_free_space(root, l) >= data_size)
4212 			return 0;
4213 	}
4214 
4215 	if (!path->nodes[1]) {
4216 		ret = insert_new_root(trans, root, path, 1);
4217 		if (ret)
4218 			return ret;
4219 	}
4220 again:
4221 	split = 1;
4222 	l = path->nodes[0];
4223 	slot = path->slots[0];
4224 	nritems = btrfs_header_nritems(l);
4225 	mid = (nritems + 1) / 2;
4226 
4227 	if (mid <= slot) {
4228 		if (nritems == 1 ||
4229 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4230 			BTRFS_LEAF_DATA_SIZE(root)) {
4231 			if (slot >= nritems) {
4232 				split = 0;
4233 			} else {
4234 				mid = slot;
4235 				if (mid != nritems &&
4236 				    leaf_space_used(l, mid, nritems - mid) +
4237 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4238 					if (data_size && !tried_avoid_double)
4239 						goto push_for_double;
4240 					split = 2;
4241 				}
4242 			}
4243 		}
4244 	} else {
4245 		if (leaf_space_used(l, 0, mid) + data_size >
4246 			BTRFS_LEAF_DATA_SIZE(root)) {
4247 			if (!extend && data_size && slot == 0) {
4248 				split = 0;
4249 			} else if ((extend || !data_size) && slot == 0) {
4250 				mid = 1;
4251 			} else {
4252 				mid = slot;
4253 				if (mid != nritems &&
4254 				    leaf_space_used(l, mid, nritems - mid) +
4255 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4256 					if (data_size && !tried_avoid_double)
4257 						goto push_for_double;
4258 					split = 2;
4259 				}
4260 			}
4261 		}
4262 	}
4263 
4264 	if (split == 0)
4265 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4266 	else
4267 		btrfs_item_key(l, &disk_key, mid);
4268 
4269 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4270 			&disk_key, 0, l->start, 0);
4271 	if (IS_ERR(right))
4272 		return PTR_ERR(right);
4273 
4274 	root_add_used(root, root->nodesize);
4275 
4276 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4277 	btrfs_set_header_bytenr(right, right->start);
4278 	btrfs_set_header_generation(right, trans->transid);
4279 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4280 	btrfs_set_header_owner(right, root->root_key.objectid);
4281 	btrfs_set_header_level(right, 0);
4282 	write_extent_buffer(right, fs_info->fsid,
4283 			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
4284 
4285 	write_extent_buffer(right, fs_info->chunk_tree_uuid,
4286 			    btrfs_header_chunk_tree_uuid(right),
4287 			    BTRFS_UUID_SIZE);
4288 
4289 	if (split == 0) {
4290 		if (mid <= slot) {
4291 			btrfs_set_header_nritems(right, 0);
4292 			insert_ptr(trans, root, path, &disk_key, right->start,
4293 				   path->slots[1] + 1, 1);
4294 			btrfs_tree_unlock(path->nodes[0]);
4295 			free_extent_buffer(path->nodes[0]);
4296 			path->nodes[0] = right;
4297 			path->slots[0] = 0;
4298 			path->slots[1] += 1;
4299 		} else {
4300 			btrfs_set_header_nritems(right, 0);
4301 			insert_ptr(trans, root, path, &disk_key, right->start,
4302 					  path->slots[1], 1);
4303 			btrfs_tree_unlock(path->nodes[0]);
4304 			free_extent_buffer(path->nodes[0]);
4305 			path->nodes[0] = right;
4306 			path->slots[0] = 0;
4307 			if (path->slots[1] == 0)
4308 				fixup_low_keys(fs_info, path, &disk_key, 1);
4309 		}
4310 		btrfs_mark_buffer_dirty(right);
4311 		return ret;
4312 	}
4313 
4314 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4315 
4316 	if (split == 2) {
4317 		BUG_ON(num_doubles != 0);
4318 		num_doubles++;
4319 		goto again;
4320 	}
4321 
4322 	return 0;
4323 
4324 push_for_double:
4325 	push_for_double_split(trans, root, path, data_size);
4326 	tried_avoid_double = 1;
4327 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4328 		return 0;
4329 	goto again;
4330 }
4331 
4332 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4333 					 struct btrfs_root *root,
4334 					 struct btrfs_path *path, int ins_len)
4335 {
4336 	struct btrfs_key key;
4337 	struct extent_buffer *leaf;
4338 	struct btrfs_file_extent_item *fi;
4339 	u64 extent_len = 0;
4340 	u32 item_size;
4341 	int ret;
4342 
4343 	leaf = path->nodes[0];
4344 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4345 
4346 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4347 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4348 
4349 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4350 		return 0;
4351 
4352 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4353 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4354 		fi = btrfs_item_ptr(leaf, path->slots[0],
4355 				    struct btrfs_file_extent_item);
4356 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4357 	}
4358 	btrfs_release_path(path);
4359 
4360 	path->keep_locks = 1;
4361 	path->search_for_split = 1;
4362 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4363 	path->search_for_split = 0;
4364 	if (ret > 0)
4365 		ret = -EAGAIN;
4366 	if (ret < 0)
4367 		goto err;
4368 
4369 	ret = -EAGAIN;
4370 	leaf = path->nodes[0];
4371 	/* if our item isn't there, return now */
4372 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4373 		goto err;
4374 
4375 	/* the leaf has  changed, it now has room.  return now */
4376 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4377 		goto err;
4378 
4379 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4380 		fi = btrfs_item_ptr(leaf, path->slots[0],
4381 				    struct btrfs_file_extent_item);
4382 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4383 			goto err;
4384 	}
4385 
4386 	btrfs_set_path_blocking(path);
4387 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4388 	if (ret)
4389 		goto err;
4390 
4391 	path->keep_locks = 0;
4392 	btrfs_unlock_up_safe(path, 1);
4393 	return 0;
4394 err:
4395 	path->keep_locks = 0;
4396 	return ret;
4397 }
4398 
4399 static noinline int split_item(struct btrfs_trans_handle *trans,
4400 			       struct btrfs_root *root,
4401 			       struct btrfs_path *path,
4402 			       struct btrfs_key *new_key,
4403 			       unsigned long split_offset)
4404 {
4405 	struct extent_buffer *leaf;
4406 	struct btrfs_item *item;
4407 	struct btrfs_item *new_item;
4408 	int slot;
4409 	char *buf;
4410 	u32 nritems;
4411 	u32 item_size;
4412 	u32 orig_offset;
4413 	struct btrfs_disk_key disk_key;
4414 
4415 	leaf = path->nodes[0];
4416 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4417 
4418 	btrfs_set_path_blocking(path);
4419 
4420 	item = btrfs_item_nr(path->slots[0]);
4421 	orig_offset = btrfs_item_offset(leaf, item);
4422 	item_size = btrfs_item_size(leaf, item);
4423 
4424 	buf = kmalloc(item_size, GFP_NOFS);
4425 	if (!buf)
4426 		return -ENOMEM;
4427 
4428 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4429 			    path->slots[0]), item_size);
4430 
4431 	slot = path->slots[0] + 1;
4432 	nritems = btrfs_header_nritems(leaf);
4433 	if (slot != nritems) {
4434 		/* shift the items */
4435 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4436 				btrfs_item_nr_offset(slot),
4437 				(nritems - slot) * sizeof(struct btrfs_item));
4438 	}
4439 
4440 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4441 	btrfs_set_item_key(leaf, &disk_key, slot);
4442 
4443 	new_item = btrfs_item_nr(slot);
4444 
4445 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4446 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4447 
4448 	btrfs_set_item_offset(leaf, item,
4449 			      orig_offset + item_size - split_offset);
4450 	btrfs_set_item_size(leaf, item, split_offset);
4451 
4452 	btrfs_set_header_nritems(leaf, nritems + 1);
4453 
4454 	/* write the data for the start of the original item */
4455 	write_extent_buffer(leaf, buf,
4456 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4457 			    split_offset);
4458 
4459 	/* write the data for the new item */
4460 	write_extent_buffer(leaf, buf + split_offset,
4461 			    btrfs_item_ptr_offset(leaf, slot),
4462 			    item_size - split_offset);
4463 	btrfs_mark_buffer_dirty(leaf);
4464 
4465 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4466 	kfree(buf);
4467 	return 0;
4468 }
4469 
4470 /*
4471  * This function splits a single item into two items,
4472  * giving 'new_key' to the new item and splitting the
4473  * old one at split_offset (from the start of the item).
4474  *
4475  * The path may be released by this operation.  After
4476  * the split, the path is pointing to the old item.  The
4477  * new item is going to be in the same node as the old one.
4478  *
4479  * Note, the item being split must be smaller enough to live alone on
4480  * a tree block with room for one extra struct btrfs_item
4481  *
4482  * This allows us to split the item in place, keeping a lock on the
4483  * leaf the entire time.
4484  */
4485 int btrfs_split_item(struct btrfs_trans_handle *trans,
4486 		     struct btrfs_root *root,
4487 		     struct btrfs_path *path,
4488 		     struct btrfs_key *new_key,
4489 		     unsigned long split_offset)
4490 {
4491 	int ret;
4492 	ret = setup_leaf_for_split(trans, root, path,
4493 				   sizeof(struct btrfs_item));
4494 	if (ret)
4495 		return ret;
4496 
4497 	ret = split_item(trans, root, path, new_key, split_offset);
4498 	return ret;
4499 }
4500 
4501 /*
4502  * This function duplicate a item, giving 'new_key' to the new item.
4503  * It guarantees both items live in the same tree leaf and the new item
4504  * is contiguous with the original item.
4505  *
4506  * This allows us to split file extent in place, keeping a lock on the
4507  * leaf the entire time.
4508  */
4509 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4510 			 struct btrfs_root *root,
4511 			 struct btrfs_path *path,
4512 			 struct btrfs_key *new_key)
4513 {
4514 	struct extent_buffer *leaf;
4515 	int ret;
4516 	u32 item_size;
4517 
4518 	leaf = path->nodes[0];
4519 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4520 	ret = setup_leaf_for_split(trans, root, path,
4521 				   item_size + sizeof(struct btrfs_item));
4522 	if (ret)
4523 		return ret;
4524 
4525 	path->slots[0]++;
4526 	setup_items_for_insert(root, path, new_key, &item_size,
4527 			       item_size, item_size +
4528 			       sizeof(struct btrfs_item), 1);
4529 	leaf = path->nodes[0];
4530 	memcpy_extent_buffer(leaf,
4531 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4532 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4533 			     item_size);
4534 	return 0;
4535 }
4536 
4537 /*
4538  * make the item pointed to by the path smaller.  new_size indicates
4539  * how small to make it, and from_end tells us if we just chop bytes
4540  * off the end of the item or if we shift the item to chop bytes off
4541  * the front.
4542  */
4543 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4544 			 u32 new_size, int from_end)
4545 {
4546 	int slot;
4547 	struct extent_buffer *leaf;
4548 	struct btrfs_item *item;
4549 	u32 nritems;
4550 	unsigned int data_end;
4551 	unsigned int old_data_start;
4552 	unsigned int old_size;
4553 	unsigned int size_diff;
4554 	int i;
4555 	struct btrfs_map_token token;
4556 
4557 	btrfs_init_map_token(&token);
4558 
4559 	leaf = path->nodes[0];
4560 	slot = path->slots[0];
4561 
4562 	old_size = btrfs_item_size_nr(leaf, slot);
4563 	if (old_size == new_size)
4564 		return;
4565 
4566 	nritems = btrfs_header_nritems(leaf);
4567 	data_end = leaf_data_end(root, leaf);
4568 
4569 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4570 
4571 	size_diff = old_size - new_size;
4572 
4573 	BUG_ON(slot < 0);
4574 	BUG_ON(slot >= nritems);
4575 
4576 	/*
4577 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4578 	 */
4579 	/* first correct the data pointers */
4580 	for (i = slot; i < nritems; i++) {
4581 		u32 ioff;
4582 		item = btrfs_item_nr(i);
4583 
4584 		ioff = btrfs_token_item_offset(leaf, item, &token);
4585 		btrfs_set_token_item_offset(leaf, item,
4586 					    ioff + size_diff, &token);
4587 	}
4588 
4589 	/* shift the data */
4590 	if (from_end) {
4591 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4592 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4593 			      data_end, old_data_start + new_size - data_end);
4594 	} else {
4595 		struct btrfs_disk_key disk_key;
4596 		u64 offset;
4597 
4598 		btrfs_item_key(leaf, &disk_key, slot);
4599 
4600 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4601 			unsigned long ptr;
4602 			struct btrfs_file_extent_item *fi;
4603 
4604 			fi = btrfs_item_ptr(leaf, slot,
4605 					    struct btrfs_file_extent_item);
4606 			fi = (struct btrfs_file_extent_item *)(
4607 			     (unsigned long)fi - size_diff);
4608 
4609 			if (btrfs_file_extent_type(leaf, fi) ==
4610 			    BTRFS_FILE_EXTENT_INLINE) {
4611 				ptr = btrfs_item_ptr_offset(leaf, slot);
4612 				memmove_extent_buffer(leaf, ptr,
4613 				      (unsigned long)fi,
4614 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4615 			}
4616 		}
4617 
4618 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4619 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4620 			      data_end, old_data_start - data_end);
4621 
4622 		offset = btrfs_disk_key_offset(&disk_key);
4623 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4624 		btrfs_set_item_key(leaf, &disk_key, slot);
4625 		if (slot == 0)
4626 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
4627 	}
4628 
4629 	item = btrfs_item_nr(slot);
4630 	btrfs_set_item_size(leaf, item, new_size);
4631 	btrfs_mark_buffer_dirty(leaf);
4632 
4633 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4634 		btrfs_print_leaf(root, leaf);
4635 		BUG();
4636 	}
4637 }
4638 
4639 /*
4640  * make the item pointed to by the path bigger, data_size is the added size.
4641  */
4642 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4643 		       u32 data_size)
4644 {
4645 	int slot;
4646 	struct extent_buffer *leaf;
4647 	struct btrfs_item *item;
4648 	u32 nritems;
4649 	unsigned int data_end;
4650 	unsigned int old_data;
4651 	unsigned int old_size;
4652 	int i;
4653 	struct btrfs_map_token token;
4654 
4655 	btrfs_init_map_token(&token);
4656 
4657 	leaf = path->nodes[0];
4658 
4659 	nritems = btrfs_header_nritems(leaf);
4660 	data_end = leaf_data_end(root, leaf);
4661 
4662 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4663 		btrfs_print_leaf(root, leaf);
4664 		BUG();
4665 	}
4666 	slot = path->slots[0];
4667 	old_data = btrfs_item_end_nr(leaf, slot);
4668 
4669 	BUG_ON(slot < 0);
4670 	if (slot >= nritems) {
4671 		btrfs_print_leaf(root, leaf);
4672 		btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4673 		       slot, nritems);
4674 		BUG_ON(1);
4675 	}
4676 
4677 	/*
4678 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4679 	 */
4680 	/* first correct the data pointers */
4681 	for (i = slot; i < nritems; i++) {
4682 		u32 ioff;
4683 		item = btrfs_item_nr(i);
4684 
4685 		ioff = btrfs_token_item_offset(leaf, item, &token);
4686 		btrfs_set_token_item_offset(leaf, item,
4687 					    ioff - data_size, &token);
4688 	}
4689 
4690 	/* shift the data */
4691 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4692 		      data_end - data_size, btrfs_leaf_data(leaf) +
4693 		      data_end, old_data - data_end);
4694 
4695 	data_end = old_data;
4696 	old_size = btrfs_item_size_nr(leaf, slot);
4697 	item = btrfs_item_nr(slot);
4698 	btrfs_set_item_size(leaf, item, old_size + data_size);
4699 	btrfs_mark_buffer_dirty(leaf);
4700 
4701 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4702 		btrfs_print_leaf(root, leaf);
4703 		BUG();
4704 	}
4705 }
4706 
4707 /*
4708  * this is a helper for btrfs_insert_empty_items, the main goal here is
4709  * to save stack depth by doing the bulk of the work in a function
4710  * that doesn't call btrfs_search_slot
4711  */
4712 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4713 			    struct btrfs_key *cpu_key, u32 *data_size,
4714 			    u32 total_data, u32 total_size, int nr)
4715 {
4716 	struct btrfs_item *item;
4717 	int i;
4718 	u32 nritems;
4719 	unsigned int data_end;
4720 	struct btrfs_disk_key disk_key;
4721 	struct extent_buffer *leaf;
4722 	int slot;
4723 	struct btrfs_map_token token;
4724 
4725 	if (path->slots[0] == 0) {
4726 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4727 		fixup_low_keys(root->fs_info, path, &disk_key, 1);
4728 	}
4729 	btrfs_unlock_up_safe(path, 1);
4730 
4731 	btrfs_init_map_token(&token);
4732 
4733 	leaf = path->nodes[0];
4734 	slot = path->slots[0];
4735 
4736 	nritems = btrfs_header_nritems(leaf);
4737 	data_end = leaf_data_end(root, leaf);
4738 
4739 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4740 		btrfs_print_leaf(root, leaf);
4741 		btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4742 		       total_size, btrfs_leaf_free_space(root, leaf));
4743 		BUG();
4744 	}
4745 
4746 	if (slot != nritems) {
4747 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4748 
4749 		if (old_data < data_end) {
4750 			btrfs_print_leaf(root, leaf);
4751 			btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4752 			       slot, old_data, data_end);
4753 			BUG_ON(1);
4754 		}
4755 		/*
4756 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4757 		 */
4758 		/* first correct the data pointers */
4759 		for (i = slot; i < nritems; i++) {
4760 			u32 ioff;
4761 
4762 			item = btrfs_item_nr( i);
4763 			ioff = btrfs_token_item_offset(leaf, item, &token);
4764 			btrfs_set_token_item_offset(leaf, item,
4765 						    ioff - total_data, &token);
4766 		}
4767 		/* shift the items */
4768 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4769 			      btrfs_item_nr_offset(slot),
4770 			      (nritems - slot) * sizeof(struct btrfs_item));
4771 
4772 		/* shift the data */
4773 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4774 			      data_end - total_data, btrfs_leaf_data(leaf) +
4775 			      data_end, old_data - data_end);
4776 		data_end = old_data;
4777 	}
4778 
4779 	/* setup the item for the new data */
4780 	for (i = 0; i < nr; i++) {
4781 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4782 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4783 		item = btrfs_item_nr(slot + i);
4784 		btrfs_set_token_item_offset(leaf, item,
4785 					    data_end - data_size[i], &token);
4786 		data_end -= data_size[i];
4787 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4788 	}
4789 
4790 	btrfs_set_header_nritems(leaf, nritems + nr);
4791 	btrfs_mark_buffer_dirty(leaf);
4792 
4793 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4794 		btrfs_print_leaf(root, leaf);
4795 		BUG();
4796 	}
4797 }
4798 
4799 /*
4800  * Given a key and some data, insert items into the tree.
4801  * This does all the path init required, making room in the tree if needed.
4802  */
4803 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4804 			    struct btrfs_root *root,
4805 			    struct btrfs_path *path,
4806 			    struct btrfs_key *cpu_key, u32 *data_size,
4807 			    int nr)
4808 {
4809 	int ret = 0;
4810 	int slot;
4811 	int i;
4812 	u32 total_size = 0;
4813 	u32 total_data = 0;
4814 
4815 	for (i = 0; i < nr; i++)
4816 		total_data += data_size[i];
4817 
4818 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4819 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4820 	if (ret == 0)
4821 		return -EEXIST;
4822 	if (ret < 0)
4823 		return ret;
4824 
4825 	slot = path->slots[0];
4826 	BUG_ON(slot < 0);
4827 
4828 	setup_items_for_insert(root, path, cpu_key, data_size,
4829 			       total_data, total_size, nr);
4830 	return 0;
4831 }
4832 
4833 /*
4834  * Given a key and some data, insert an item into the tree.
4835  * This does all the path init required, making room in the tree if needed.
4836  */
4837 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4838 		      *root, struct btrfs_key *cpu_key, void *data, u32
4839 		      data_size)
4840 {
4841 	int ret = 0;
4842 	struct btrfs_path *path;
4843 	struct extent_buffer *leaf;
4844 	unsigned long ptr;
4845 
4846 	path = btrfs_alloc_path();
4847 	if (!path)
4848 		return -ENOMEM;
4849 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4850 	if (!ret) {
4851 		leaf = path->nodes[0];
4852 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4853 		write_extent_buffer(leaf, data, ptr, data_size);
4854 		btrfs_mark_buffer_dirty(leaf);
4855 	}
4856 	btrfs_free_path(path);
4857 	return ret;
4858 }
4859 
4860 /*
4861  * delete the pointer from a given node.
4862  *
4863  * the tree should have been previously balanced so the deletion does not
4864  * empty a node.
4865  */
4866 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4867 		    int level, int slot)
4868 {
4869 	struct extent_buffer *parent = path->nodes[level];
4870 	u32 nritems;
4871 	int ret;
4872 
4873 	nritems = btrfs_header_nritems(parent);
4874 	if (slot != nritems - 1) {
4875 		if (level)
4876 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4877 					     slot + 1, nritems - slot - 1);
4878 		memmove_extent_buffer(parent,
4879 			      btrfs_node_key_ptr_offset(slot),
4880 			      btrfs_node_key_ptr_offset(slot + 1),
4881 			      sizeof(struct btrfs_key_ptr) *
4882 			      (nritems - slot - 1));
4883 	} else if (level) {
4884 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4885 					      MOD_LOG_KEY_REMOVE, GFP_NOFS);
4886 		BUG_ON(ret < 0);
4887 	}
4888 
4889 	nritems--;
4890 	btrfs_set_header_nritems(parent, nritems);
4891 	if (nritems == 0 && parent == root->node) {
4892 		BUG_ON(btrfs_header_level(root->node) != 1);
4893 		/* just turn the root into a leaf and break */
4894 		btrfs_set_header_level(root->node, 0);
4895 	} else if (slot == 0) {
4896 		struct btrfs_disk_key disk_key;
4897 
4898 		btrfs_node_key(parent, &disk_key, 0);
4899 		fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4900 	}
4901 	btrfs_mark_buffer_dirty(parent);
4902 }
4903 
4904 /*
4905  * a helper function to delete the leaf pointed to by path->slots[1] and
4906  * path->nodes[1].
4907  *
4908  * This deletes the pointer in path->nodes[1] and frees the leaf
4909  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4910  *
4911  * The path must have already been setup for deleting the leaf, including
4912  * all the proper balancing.  path->nodes[1] must be locked.
4913  */
4914 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4915 				    struct btrfs_root *root,
4916 				    struct btrfs_path *path,
4917 				    struct extent_buffer *leaf)
4918 {
4919 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4920 	del_ptr(root, path, 1, path->slots[1]);
4921 
4922 	/*
4923 	 * btrfs_free_extent is expensive, we want to make sure we
4924 	 * aren't holding any locks when we call it
4925 	 */
4926 	btrfs_unlock_up_safe(path, 0);
4927 
4928 	root_sub_used(root, leaf->len);
4929 
4930 	extent_buffer_get(leaf);
4931 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4932 	free_extent_buffer_stale(leaf);
4933 }
4934 /*
4935  * delete the item at the leaf level in path.  If that empties
4936  * the leaf, remove it from the tree
4937  */
4938 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4939 		    struct btrfs_path *path, int slot, int nr)
4940 {
4941 	struct extent_buffer *leaf;
4942 	struct btrfs_item *item;
4943 	u32 last_off;
4944 	u32 dsize = 0;
4945 	int ret = 0;
4946 	int wret;
4947 	int i;
4948 	u32 nritems;
4949 	struct btrfs_map_token token;
4950 
4951 	btrfs_init_map_token(&token);
4952 
4953 	leaf = path->nodes[0];
4954 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4955 
4956 	for (i = 0; i < nr; i++)
4957 		dsize += btrfs_item_size_nr(leaf, slot + i);
4958 
4959 	nritems = btrfs_header_nritems(leaf);
4960 
4961 	if (slot + nr != nritems) {
4962 		int data_end = leaf_data_end(root, leaf);
4963 
4964 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4965 			      data_end + dsize,
4966 			      btrfs_leaf_data(leaf) + data_end,
4967 			      last_off - data_end);
4968 
4969 		for (i = slot + nr; i < nritems; i++) {
4970 			u32 ioff;
4971 
4972 			item = btrfs_item_nr(i);
4973 			ioff = btrfs_token_item_offset(leaf, item, &token);
4974 			btrfs_set_token_item_offset(leaf, item,
4975 						    ioff + dsize, &token);
4976 		}
4977 
4978 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4979 			      btrfs_item_nr_offset(slot + nr),
4980 			      sizeof(struct btrfs_item) *
4981 			      (nritems - slot - nr));
4982 	}
4983 	btrfs_set_header_nritems(leaf, nritems - nr);
4984 	nritems -= nr;
4985 
4986 	/* delete the leaf if we've emptied it */
4987 	if (nritems == 0) {
4988 		if (leaf == root->node) {
4989 			btrfs_set_header_level(leaf, 0);
4990 		} else {
4991 			btrfs_set_path_blocking(path);
4992 			clean_tree_block(trans, root->fs_info, leaf);
4993 			btrfs_del_leaf(trans, root, path, leaf);
4994 		}
4995 	} else {
4996 		int used = leaf_space_used(leaf, 0, nritems);
4997 		if (slot == 0) {
4998 			struct btrfs_disk_key disk_key;
4999 
5000 			btrfs_item_key(leaf, &disk_key, 0);
5001 			fixup_low_keys(root->fs_info, path, &disk_key, 1);
5002 		}
5003 
5004 		/* delete the leaf if it is mostly empty */
5005 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5006 			/* push_leaf_left fixes the path.
5007 			 * make sure the path still points to our leaf
5008 			 * for possible call to del_ptr below
5009 			 */
5010 			slot = path->slots[1];
5011 			extent_buffer_get(leaf);
5012 
5013 			btrfs_set_path_blocking(path);
5014 			wret = push_leaf_left(trans, root, path, 1, 1,
5015 					      1, (u32)-1);
5016 			if (wret < 0 && wret != -ENOSPC)
5017 				ret = wret;
5018 
5019 			if (path->nodes[0] == leaf &&
5020 			    btrfs_header_nritems(leaf)) {
5021 				wret = push_leaf_right(trans, root, path, 1,
5022 						       1, 1, 0);
5023 				if (wret < 0 && wret != -ENOSPC)
5024 					ret = wret;
5025 			}
5026 
5027 			if (btrfs_header_nritems(leaf) == 0) {
5028 				path->slots[1] = slot;
5029 				btrfs_del_leaf(trans, root, path, leaf);
5030 				free_extent_buffer(leaf);
5031 				ret = 0;
5032 			} else {
5033 				/* if we're still in the path, make sure
5034 				 * we're dirty.  Otherwise, one of the
5035 				 * push_leaf functions must have already
5036 				 * dirtied this buffer
5037 				 */
5038 				if (path->nodes[0] == leaf)
5039 					btrfs_mark_buffer_dirty(leaf);
5040 				free_extent_buffer(leaf);
5041 			}
5042 		} else {
5043 			btrfs_mark_buffer_dirty(leaf);
5044 		}
5045 	}
5046 	return ret;
5047 }
5048 
5049 /*
5050  * search the tree again to find a leaf with lesser keys
5051  * returns 0 if it found something or 1 if there are no lesser leaves.
5052  * returns < 0 on io errors.
5053  *
5054  * This may release the path, and so you may lose any locks held at the
5055  * time you call it.
5056  */
5057 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5058 {
5059 	struct btrfs_key key;
5060 	struct btrfs_disk_key found_key;
5061 	int ret;
5062 
5063 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5064 
5065 	if (key.offset > 0) {
5066 		key.offset--;
5067 	} else if (key.type > 0) {
5068 		key.type--;
5069 		key.offset = (u64)-1;
5070 	} else if (key.objectid > 0) {
5071 		key.objectid--;
5072 		key.type = (u8)-1;
5073 		key.offset = (u64)-1;
5074 	} else {
5075 		return 1;
5076 	}
5077 
5078 	btrfs_release_path(path);
5079 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5080 	if (ret < 0)
5081 		return ret;
5082 	btrfs_item_key(path->nodes[0], &found_key, 0);
5083 	ret = comp_keys(&found_key, &key);
5084 	/*
5085 	 * We might have had an item with the previous key in the tree right
5086 	 * before we released our path. And after we released our path, that
5087 	 * item might have been pushed to the first slot (0) of the leaf we
5088 	 * were holding due to a tree balance. Alternatively, an item with the
5089 	 * previous key can exist as the only element of a leaf (big fat item).
5090 	 * Therefore account for these 2 cases, so that our callers (like
5091 	 * btrfs_previous_item) don't miss an existing item with a key matching
5092 	 * the previous key we computed above.
5093 	 */
5094 	if (ret <= 0)
5095 		return 0;
5096 	return 1;
5097 }
5098 
5099 /*
5100  * A helper function to walk down the tree starting at min_key, and looking
5101  * for nodes or leaves that are have a minimum transaction id.
5102  * This is used by the btree defrag code, and tree logging
5103  *
5104  * This does not cow, but it does stuff the starting key it finds back
5105  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5106  * key and get a writable path.
5107  *
5108  * This does lock as it descends, and path->keep_locks should be set
5109  * to 1 by the caller.
5110  *
5111  * This honors path->lowest_level to prevent descent past a given level
5112  * of the tree.
5113  *
5114  * min_trans indicates the oldest transaction that you are interested
5115  * in walking through.  Any nodes or leaves older than min_trans are
5116  * skipped over (without reading them).
5117  *
5118  * returns zero if something useful was found, < 0 on error and 1 if there
5119  * was nothing in the tree that matched the search criteria.
5120  */
5121 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5122 			 struct btrfs_path *path,
5123 			 u64 min_trans)
5124 {
5125 	struct extent_buffer *cur;
5126 	struct btrfs_key found_key;
5127 	int slot;
5128 	int sret;
5129 	u32 nritems;
5130 	int level;
5131 	int ret = 1;
5132 	int keep_locks = path->keep_locks;
5133 
5134 	path->keep_locks = 1;
5135 again:
5136 	cur = btrfs_read_lock_root_node(root);
5137 	level = btrfs_header_level(cur);
5138 	WARN_ON(path->nodes[level]);
5139 	path->nodes[level] = cur;
5140 	path->locks[level] = BTRFS_READ_LOCK;
5141 
5142 	if (btrfs_header_generation(cur) < min_trans) {
5143 		ret = 1;
5144 		goto out;
5145 	}
5146 	while (1) {
5147 		nritems = btrfs_header_nritems(cur);
5148 		level = btrfs_header_level(cur);
5149 		sret = bin_search(cur, min_key, level, &slot);
5150 
5151 		/* at the lowest level, we're done, setup the path and exit */
5152 		if (level == path->lowest_level) {
5153 			if (slot >= nritems)
5154 				goto find_next_key;
5155 			ret = 0;
5156 			path->slots[level] = slot;
5157 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5158 			goto out;
5159 		}
5160 		if (sret && slot > 0)
5161 			slot--;
5162 		/*
5163 		 * check this node pointer against the min_trans parameters.
5164 		 * If it is too old, old, skip to the next one.
5165 		 */
5166 		while (slot < nritems) {
5167 			u64 gen;
5168 
5169 			gen = btrfs_node_ptr_generation(cur, slot);
5170 			if (gen < min_trans) {
5171 				slot++;
5172 				continue;
5173 			}
5174 			break;
5175 		}
5176 find_next_key:
5177 		/*
5178 		 * we didn't find a candidate key in this node, walk forward
5179 		 * and find another one
5180 		 */
5181 		if (slot >= nritems) {
5182 			path->slots[level] = slot;
5183 			btrfs_set_path_blocking(path);
5184 			sret = btrfs_find_next_key(root, path, min_key, level,
5185 						  min_trans);
5186 			if (sret == 0) {
5187 				btrfs_release_path(path);
5188 				goto again;
5189 			} else {
5190 				goto out;
5191 			}
5192 		}
5193 		/* save our key for returning back */
5194 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5195 		path->slots[level] = slot;
5196 		if (level == path->lowest_level) {
5197 			ret = 0;
5198 			goto out;
5199 		}
5200 		btrfs_set_path_blocking(path);
5201 		cur = read_node_slot(root, cur, slot);
5202 		BUG_ON(!cur); /* -ENOMEM */
5203 
5204 		btrfs_tree_read_lock(cur);
5205 
5206 		path->locks[level - 1] = BTRFS_READ_LOCK;
5207 		path->nodes[level - 1] = cur;
5208 		unlock_up(path, level, 1, 0, NULL);
5209 		btrfs_clear_path_blocking(path, NULL, 0);
5210 	}
5211 out:
5212 	path->keep_locks = keep_locks;
5213 	if (ret == 0) {
5214 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5215 		btrfs_set_path_blocking(path);
5216 		memcpy(min_key, &found_key, sizeof(found_key));
5217 	}
5218 	return ret;
5219 }
5220 
5221 static void tree_move_down(struct btrfs_root *root,
5222 			   struct btrfs_path *path,
5223 			   int *level, int root_level)
5224 {
5225 	BUG_ON(*level == 0);
5226 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5227 					path->slots[*level]);
5228 	path->slots[*level - 1] = 0;
5229 	(*level)--;
5230 }
5231 
5232 static int tree_move_next_or_upnext(struct btrfs_root *root,
5233 				    struct btrfs_path *path,
5234 				    int *level, int root_level)
5235 {
5236 	int ret = 0;
5237 	int nritems;
5238 	nritems = btrfs_header_nritems(path->nodes[*level]);
5239 
5240 	path->slots[*level]++;
5241 
5242 	while (path->slots[*level] >= nritems) {
5243 		if (*level == root_level)
5244 			return -1;
5245 
5246 		/* move upnext */
5247 		path->slots[*level] = 0;
5248 		free_extent_buffer(path->nodes[*level]);
5249 		path->nodes[*level] = NULL;
5250 		(*level)++;
5251 		path->slots[*level]++;
5252 
5253 		nritems = btrfs_header_nritems(path->nodes[*level]);
5254 		ret = 1;
5255 	}
5256 	return ret;
5257 }
5258 
5259 /*
5260  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5261  * or down.
5262  */
5263 static int tree_advance(struct btrfs_root *root,
5264 			struct btrfs_path *path,
5265 			int *level, int root_level,
5266 			int allow_down,
5267 			struct btrfs_key *key)
5268 {
5269 	int ret;
5270 
5271 	if (*level == 0 || !allow_down) {
5272 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5273 	} else {
5274 		tree_move_down(root, path, level, root_level);
5275 		ret = 0;
5276 	}
5277 	if (ret >= 0) {
5278 		if (*level == 0)
5279 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5280 					path->slots[*level]);
5281 		else
5282 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5283 					path->slots[*level]);
5284 	}
5285 	return ret;
5286 }
5287 
5288 static int tree_compare_item(struct btrfs_root *left_root,
5289 			     struct btrfs_path *left_path,
5290 			     struct btrfs_path *right_path,
5291 			     char *tmp_buf)
5292 {
5293 	int cmp;
5294 	int len1, len2;
5295 	unsigned long off1, off2;
5296 
5297 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5298 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5299 	if (len1 != len2)
5300 		return 1;
5301 
5302 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5303 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5304 				right_path->slots[0]);
5305 
5306 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5307 
5308 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5309 	if (cmp)
5310 		return 1;
5311 	return 0;
5312 }
5313 
5314 #define ADVANCE 1
5315 #define ADVANCE_ONLY_NEXT -1
5316 
5317 /*
5318  * This function compares two trees and calls the provided callback for
5319  * every changed/new/deleted item it finds.
5320  * If shared tree blocks are encountered, whole subtrees are skipped, making
5321  * the compare pretty fast on snapshotted subvolumes.
5322  *
5323  * This currently works on commit roots only. As commit roots are read only,
5324  * we don't do any locking. The commit roots are protected with transactions.
5325  * Transactions are ended and rejoined when a commit is tried in between.
5326  *
5327  * This function checks for modifications done to the trees while comparing.
5328  * If it detects a change, it aborts immediately.
5329  */
5330 int btrfs_compare_trees(struct btrfs_root *left_root,
5331 			struct btrfs_root *right_root,
5332 			btrfs_changed_cb_t changed_cb, void *ctx)
5333 {
5334 	int ret;
5335 	int cmp;
5336 	struct btrfs_path *left_path = NULL;
5337 	struct btrfs_path *right_path = NULL;
5338 	struct btrfs_key left_key;
5339 	struct btrfs_key right_key;
5340 	char *tmp_buf = NULL;
5341 	int left_root_level;
5342 	int right_root_level;
5343 	int left_level;
5344 	int right_level;
5345 	int left_end_reached;
5346 	int right_end_reached;
5347 	int advance_left;
5348 	int advance_right;
5349 	u64 left_blockptr;
5350 	u64 right_blockptr;
5351 	u64 left_gen;
5352 	u64 right_gen;
5353 
5354 	left_path = btrfs_alloc_path();
5355 	if (!left_path) {
5356 		ret = -ENOMEM;
5357 		goto out;
5358 	}
5359 	right_path = btrfs_alloc_path();
5360 	if (!right_path) {
5361 		ret = -ENOMEM;
5362 		goto out;
5363 	}
5364 
5365 	tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5366 	if (!tmp_buf) {
5367 		tmp_buf = vmalloc(left_root->nodesize);
5368 		if (!tmp_buf) {
5369 			ret = -ENOMEM;
5370 			goto out;
5371 		}
5372 	}
5373 
5374 	left_path->search_commit_root = 1;
5375 	left_path->skip_locking = 1;
5376 	right_path->search_commit_root = 1;
5377 	right_path->skip_locking = 1;
5378 
5379 	/*
5380 	 * Strategy: Go to the first items of both trees. Then do
5381 	 *
5382 	 * If both trees are at level 0
5383 	 *   Compare keys of current items
5384 	 *     If left < right treat left item as new, advance left tree
5385 	 *       and repeat
5386 	 *     If left > right treat right item as deleted, advance right tree
5387 	 *       and repeat
5388 	 *     If left == right do deep compare of items, treat as changed if
5389 	 *       needed, advance both trees and repeat
5390 	 * If both trees are at the same level but not at level 0
5391 	 *   Compare keys of current nodes/leafs
5392 	 *     If left < right advance left tree and repeat
5393 	 *     If left > right advance right tree and repeat
5394 	 *     If left == right compare blockptrs of the next nodes/leafs
5395 	 *       If they match advance both trees but stay at the same level
5396 	 *         and repeat
5397 	 *       If they don't match advance both trees while allowing to go
5398 	 *         deeper and repeat
5399 	 * If tree levels are different
5400 	 *   Advance the tree that needs it and repeat
5401 	 *
5402 	 * Advancing a tree means:
5403 	 *   If we are at level 0, try to go to the next slot. If that's not
5404 	 *   possible, go one level up and repeat. Stop when we found a level
5405 	 *   where we could go to the next slot. We may at this point be on a
5406 	 *   node or a leaf.
5407 	 *
5408 	 *   If we are not at level 0 and not on shared tree blocks, go one
5409 	 *   level deeper.
5410 	 *
5411 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5412 	 *   the right if possible or go up and right.
5413 	 */
5414 
5415 	down_read(&left_root->fs_info->commit_root_sem);
5416 	left_level = btrfs_header_level(left_root->commit_root);
5417 	left_root_level = left_level;
5418 	left_path->nodes[left_level] = left_root->commit_root;
5419 	extent_buffer_get(left_path->nodes[left_level]);
5420 
5421 	right_level = btrfs_header_level(right_root->commit_root);
5422 	right_root_level = right_level;
5423 	right_path->nodes[right_level] = right_root->commit_root;
5424 	extent_buffer_get(right_path->nodes[right_level]);
5425 	up_read(&left_root->fs_info->commit_root_sem);
5426 
5427 	if (left_level == 0)
5428 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5429 				&left_key, left_path->slots[left_level]);
5430 	else
5431 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5432 				&left_key, left_path->slots[left_level]);
5433 	if (right_level == 0)
5434 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5435 				&right_key, right_path->slots[right_level]);
5436 	else
5437 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5438 				&right_key, right_path->slots[right_level]);
5439 
5440 	left_end_reached = right_end_reached = 0;
5441 	advance_left = advance_right = 0;
5442 
5443 	while (1) {
5444 		if (advance_left && !left_end_reached) {
5445 			ret = tree_advance(left_root, left_path, &left_level,
5446 					left_root_level,
5447 					advance_left != ADVANCE_ONLY_NEXT,
5448 					&left_key);
5449 			if (ret < 0)
5450 				left_end_reached = ADVANCE;
5451 			advance_left = 0;
5452 		}
5453 		if (advance_right && !right_end_reached) {
5454 			ret = tree_advance(right_root, right_path, &right_level,
5455 					right_root_level,
5456 					advance_right != ADVANCE_ONLY_NEXT,
5457 					&right_key);
5458 			if (ret < 0)
5459 				right_end_reached = ADVANCE;
5460 			advance_right = 0;
5461 		}
5462 
5463 		if (left_end_reached && right_end_reached) {
5464 			ret = 0;
5465 			goto out;
5466 		} else if (left_end_reached) {
5467 			if (right_level == 0) {
5468 				ret = changed_cb(left_root, right_root,
5469 						left_path, right_path,
5470 						&right_key,
5471 						BTRFS_COMPARE_TREE_DELETED,
5472 						ctx);
5473 				if (ret < 0)
5474 					goto out;
5475 			}
5476 			advance_right = ADVANCE;
5477 			continue;
5478 		} else if (right_end_reached) {
5479 			if (left_level == 0) {
5480 				ret = changed_cb(left_root, right_root,
5481 						left_path, right_path,
5482 						&left_key,
5483 						BTRFS_COMPARE_TREE_NEW,
5484 						ctx);
5485 				if (ret < 0)
5486 					goto out;
5487 			}
5488 			advance_left = ADVANCE;
5489 			continue;
5490 		}
5491 
5492 		if (left_level == 0 && right_level == 0) {
5493 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5494 			if (cmp < 0) {
5495 				ret = changed_cb(left_root, right_root,
5496 						left_path, right_path,
5497 						&left_key,
5498 						BTRFS_COMPARE_TREE_NEW,
5499 						ctx);
5500 				if (ret < 0)
5501 					goto out;
5502 				advance_left = ADVANCE;
5503 			} else if (cmp > 0) {
5504 				ret = changed_cb(left_root, right_root,
5505 						left_path, right_path,
5506 						&right_key,
5507 						BTRFS_COMPARE_TREE_DELETED,
5508 						ctx);
5509 				if (ret < 0)
5510 					goto out;
5511 				advance_right = ADVANCE;
5512 			} else {
5513 				enum btrfs_compare_tree_result result;
5514 
5515 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5516 				ret = tree_compare_item(left_root, left_path,
5517 						right_path, tmp_buf);
5518 				if (ret)
5519 					result = BTRFS_COMPARE_TREE_CHANGED;
5520 				else
5521 					result = BTRFS_COMPARE_TREE_SAME;
5522 				ret = changed_cb(left_root, right_root,
5523 						 left_path, right_path,
5524 						 &left_key, result, ctx);
5525 				if (ret < 0)
5526 					goto out;
5527 				advance_left = ADVANCE;
5528 				advance_right = ADVANCE;
5529 			}
5530 		} else if (left_level == right_level) {
5531 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5532 			if (cmp < 0) {
5533 				advance_left = ADVANCE;
5534 			} else if (cmp > 0) {
5535 				advance_right = ADVANCE;
5536 			} else {
5537 				left_blockptr = btrfs_node_blockptr(
5538 						left_path->nodes[left_level],
5539 						left_path->slots[left_level]);
5540 				right_blockptr = btrfs_node_blockptr(
5541 						right_path->nodes[right_level],
5542 						right_path->slots[right_level]);
5543 				left_gen = btrfs_node_ptr_generation(
5544 						left_path->nodes[left_level],
5545 						left_path->slots[left_level]);
5546 				right_gen = btrfs_node_ptr_generation(
5547 						right_path->nodes[right_level],
5548 						right_path->slots[right_level]);
5549 				if (left_blockptr == right_blockptr &&
5550 				    left_gen == right_gen) {
5551 					/*
5552 					 * As we're on a shared block, don't
5553 					 * allow to go deeper.
5554 					 */
5555 					advance_left = ADVANCE_ONLY_NEXT;
5556 					advance_right = ADVANCE_ONLY_NEXT;
5557 				} else {
5558 					advance_left = ADVANCE;
5559 					advance_right = ADVANCE;
5560 				}
5561 			}
5562 		} else if (left_level < right_level) {
5563 			advance_right = ADVANCE;
5564 		} else {
5565 			advance_left = ADVANCE;
5566 		}
5567 	}
5568 
5569 out:
5570 	btrfs_free_path(left_path);
5571 	btrfs_free_path(right_path);
5572 	kvfree(tmp_buf);
5573 	return ret;
5574 }
5575 
5576 /*
5577  * this is similar to btrfs_next_leaf, but does not try to preserve
5578  * and fixup the path.  It looks for and returns the next key in the
5579  * tree based on the current path and the min_trans parameters.
5580  *
5581  * 0 is returned if another key is found, < 0 if there are any errors
5582  * and 1 is returned if there are no higher keys in the tree
5583  *
5584  * path->keep_locks should be set to 1 on the search made before
5585  * calling this function.
5586  */
5587 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5588 			struct btrfs_key *key, int level, u64 min_trans)
5589 {
5590 	int slot;
5591 	struct extent_buffer *c;
5592 
5593 	WARN_ON(!path->keep_locks);
5594 	while (level < BTRFS_MAX_LEVEL) {
5595 		if (!path->nodes[level])
5596 			return 1;
5597 
5598 		slot = path->slots[level] + 1;
5599 		c = path->nodes[level];
5600 next:
5601 		if (slot >= btrfs_header_nritems(c)) {
5602 			int ret;
5603 			int orig_lowest;
5604 			struct btrfs_key cur_key;
5605 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5606 			    !path->nodes[level + 1])
5607 				return 1;
5608 
5609 			if (path->locks[level + 1]) {
5610 				level++;
5611 				continue;
5612 			}
5613 
5614 			slot = btrfs_header_nritems(c) - 1;
5615 			if (level == 0)
5616 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5617 			else
5618 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5619 
5620 			orig_lowest = path->lowest_level;
5621 			btrfs_release_path(path);
5622 			path->lowest_level = level;
5623 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5624 						0, 0);
5625 			path->lowest_level = orig_lowest;
5626 			if (ret < 0)
5627 				return ret;
5628 
5629 			c = path->nodes[level];
5630 			slot = path->slots[level];
5631 			if (ret == 0)
5632 				slot++;
5633 			goto next;
5634 		}
5635 
5636 		if (level == 0)
5637 			btrfs_item_key_to_cpu(c, key, slot);
5638 		else {
5639 			u64 gen = btrfs_node_ptr_generation(c, slot);
5640 
5641 			if (gen < min_trans) {
5642 				slot++;
5643 				goto next;
5644 			}
5645 			btrfs_node_key_to_cpu(c, key, slot);
5646 		}
5647 		return 0;
5648 	}
5649 	return 1;
5650 }
5651 
5652 /*
5653  * search the tree again to find a leaf with greater keys
5654  * returns 0 if it found something or 1 if there are no greater leaves.
5655  * returns < 0 on io errors.
5656  */
5657 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5658 {
5659 	return btrfs_next_old_leaf(root, path, 0);
5660 }
5661 
5662 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5663 			u64 time_seq)
5664 {
5665 	int slot;
5666 	int level;
5667 	struct extent_buffer *c;
5668 	struct extent_buffer *next;
5669 	struct btrfs_key key;
5670 	u32 nritems;
5671 	int ret;
5672 	int old_spinning = path->leave_spinning;
5673 	int next_rw_lock = 0;
5674 
5675 	nritems = btrfs_header_nritems(path->nodes[0]);
5676 	if (nritems == 0)
5677 		return 1;
5678 
5679 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5680 again:
5681 	level = 1;
5682 	next = NULL;
5683 	next_rw_lock = 0;
5684 	btrfs_release_path(path);
5685 
5686 	path->keep_locks = 1;
5687 	path->leave_spinning = 1;
5688 
5689 	if (time_seq)
5690 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5691 	else
5692 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5693 	path->keep_locks = 0;
5694 
5695 	if (ret < 0)
5696 		return ret;
5697 
5698 	nritems = btrfs_header_nritems(path->nodes[0]);
5699 	/*
5700 	 * by releasing the path above we dropped all our locks.  A balance
5701 	 * could have added more items next to the key that used to be
5702 	 * at the very end of the block.  So, check again here and
5703 	 * advance the path if there are now more items available.
5704 	 */
5705 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5706 		if (ret == 0)
5707 			path->slots[0]++;
5708 		ret = 0;
5709 		goto done;
5710 	}
5711 	/*
5712 	 * So the above check misses one case:
5713 	 * - after releasing the path above, someone has removed the item that
5714 	 *   used to be at the very end of the block, and balance between leafs
5715 	 *   gets another one with bigger key.offset to replace it.
5716 	 *
5717 	 * This one should be returned as well, or we can get leaf corruption
5718 	 * later(esp. in __btrfs_drop_extents()).
5719 	 *
5720 	 * And a bit more explanation about this check,
5721 	 * with ret > 0, the key isn't found, the path points to the slot
5722 	 * where it should be inserted, so the path->slots[0] item must be the
5723 	 * bigger one.
5724 	 */
5725 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5726 		ret = 0;
5727 		goto done;
5728 	}
5729 
5730 	while (level < BTRFS_MAX_LEVEL) {
5731 		if (!path->nodes[level]) {
5732 			ret = 1;
5733 			goto done;
5734 		}
5735 
5736 		slot = path->slots[level] + 1;
5737 		c = path->nodes[level];
5738 		if (slot >= btrfs_header_nritems(c)) {
5739 			level++;
5740 			if (level == BTRFS_MAX_LEVEL) {
5741 				ret = 1;
5742 				goto done;
5743 			}
5744 			continue;
5745 		}
5746 
5747 		if (next) {
5748 			btrfs_tree_unlock_rw(next, next_rw_lock);
5749 			free_extent_buffer(next);
5750 		}
5751 
5752 		next = c;
5753 		next_rw_lock = path->locks[level];
5754 		ret = read_block_for_search(NULL, root, path, &next, level,
5755 					    slot, &key, 0);
5756 		if (ret == -EAGAIN)
5757 			goto again;
5758 
5759 		if (ret < 0) {
5760 			btrfs_release_path(path);
5761 			goto done;
5762 		}
5763 
5764 		if (!path->skip_locking) {
5765 			ret = btrfs_try_tree_read_lock(next);
5766 			if (!ret && time_seq) {
5767 				/*
5768 				 * If we don't get the lock, we may be racing
5769 				 * with push_leaf_left, holding that lock while
5770 				 * itself waiting for the leaf we've currently
5771 				 * locked. To solve this situation, we give up
5772 				 * on our lock and cycle.
5773 				 */
5774 				free_extent_buffer(next);
5775 				btrfs_release_path(path);
5776 				cond_resched();
5777 				goto again;
5778 			}
5779 			if (!ret) {
5780 				btrfs_set_path_blocking(path);
5781 				btrfs_tree_read_lock(next);
5782 				btrfs_clear_path_blocking(path, next,
5783 							  BTRFS_READ_LOCK);
5784 			}
5785 			next_rw_lock = BTRFS_READ_LOCK;
5786 		}
5787 		break;
5788 	}
5789 	path->slots[level] = slot;
5790 	while (1) {
5791 		level--;
5792 		c = path->nodes[level];
5793 		if (path->locks[level])
5794 			btrfs_tree_unlock_rw(c, path->locks[level]);
5795 
5796 		free_extent_buffer(c);
5797 		path->nodes[level] = next;
5798 		path->slots[level] = 0;
5799 		if (!path->skip_locking)
5800 			path->locks[level] = next_rw_lock;
5801 		if (!level)
5802 			break;
5803 
5804 		ret = read_block_for_search(NULL, root, path, &next, level,
5805 					    0, &key, 0);
5806 		if (ret == -EAGAIN)
5807 			goto again;
5808 
5809 		if (ret < 0) {
5810 			btrfs_release_path(path);
5811 			goto done;
5812 		}
5813 
5814 		if (!path->skip_locking) {
5815 			ret = btrfs_try_tree_read_lock(next);
5816 			if (!ret) {
5817 				btrfs_set_path_blocking(path);
5818 				btrfs_tree_read_lock(next);
5819 				btrfs_clear_path_blocking(path, next,
5820 							  BTRFS_READ_LOCK);
5821 			}
5822 			next_rw_lock = BTRFS_READ_LOCK;
5823 		}
5824 	}
5825 	ret = 0;
5826 done:
5827 	unlock_up(path, 0, 1, 0, NULL);
5828 	path->leave_spinning = old_spinning;
5829 	if (!old_spinning)
5830 		btrfs_set_path_blocking(path);
5831 
5832 	return ret;
5833 }
5834 
5835 /*
5836  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5837  * searching until it gets past min_objectid or finds an item of 'type'
5838  *
5839  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5840  */
5841 int btrfs_previous_item(struct btrfs_root *root,
5842 			struct btrfs_path *path, u64 min_objectid,
5843 			int type)
5844 {
5845 	struct btrfs_key found_key;
5846 	struct extent_buffer *leaf;
5847 	u32 nritems;
5848 	int ret;
5849 
5850 	while (1) {
5851 		if (path->slots[0] == 0) {
5852 			btrfs_set_path_blocking(path);
5853 			ret = btrfs_prev_leaf(root, path);
5854 			if (ret != 0)
5855 				return ret;
5856 		} else {
5857 			path->slots[0]--;
5858 		}
5859 		leaf = path->nodes[0];
5860 		nritems = btrfs_header_nritems(leaf);
5861 		if (nritems == 0)
5862 			return 1;
5863 		if (path->slots[0] == nritems)
5864 			path->slots[0]--;
5865 
5866 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5867 		if (found_key.objectid < min_objectid)
5868 			break;
5869 		if (found_key.type == type)
5870 			return 0;
5871 		if (found_key.objectid == min_objectid &&
5872 		    found_key.type < type)
5873 			break;
5874 	}
5875 	return 1;
5876 }
5877 
5878 /*
5879  * search in extent tree to find a previous Metadata/Data extent item with
5880  * min objecitd.
5881  *
5882  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5883  */
5884 int btrfs_previous_extent_item(struct btrfs_root *root,
5885 			struct btrfs_path *path, u64 min_objectid)
5886 {
5887 	struct btrfs_key found_key;
5888 	struct extent_buffer *leaf;
5889 	u32 nritems;
5890 	int ret;
5891 
5892 	while (1) {
5893 		if (path->slots[0] == 0) {
5894 			btrfs_set_path_blocking(path);
5895 			ret = btrfs_prev_leaf(root, path);
5896 			if (ret != 0)
5897 				return ret;
5898 		} else {
5899 			path->slots[0]--;
5900 		}
5901 		leaf = path->nodes[0];
5902 		nritems = btrfs_header_nritems(leaf);
5903 		if (nritems == 0)
5904 			return 1;
5905 		if (path->slots[0] == nritems)
5906 			path->slots[0]--;
5907 
5908 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5909 		if (found_key.objectid < min_objectid)
5910 			break;
5911 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5912 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5913 			return 0;
5914 		if (found_key.objectid == min_objectid &&
5915 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5916 			break;
5917 	}
5918 	return 1;
5919 }
5920