xref: /openbmc/linux/fs/btrfs/ctree.c (revision 0cabf991)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include "ctree.h"
11 #include "disk-io.h"
12 #include "transaction.h"
13 #include "print-tree.h"
14 #include "locking.h"
15 #include "volumes.h"
16 #include "qgroup.h"
17 
18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
19 		      *root, struct btrfs_path *path, int level);
20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
21 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
22 		      int data_size, int extend);
23 static int push_node_left(struct btrfs_trans_handle *trans,
24 			  struct extent_buffer *dst,
25 			  struct extent_buffer *src, int empty);
26 static int balance_node_right(struct btrfs_trans_handle *trans,
27 			      struct extent_buffer *dst_buf,
28 			      struct extent_buffer *src_buf);
29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
30 		    int level, int slot);
31 
32 static const struct btrfs_csums {
33 	u16		size;
34 	const char	name[10];
35 	const char	driver[12];
36 } btrfs_csums[] = {
37 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
38 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
39 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
40 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
41 				     .driver = "blake2b-256" },
42 };
43 
44 int btrfs_super_csum_size(const struct btrfs_super_block *s)
45 {
46 	u16 t = btrfs_super_csum_type(s);
47 	/*
48 	 * csum type is validated at mount time
49 	 */
50 	return btrfs_csums[t].size;
51 }
52 
53 const char *btrfs_super_csum_name(u16 csum_type)
54 {
55 	/* csum type is validated at mount time */
56 	return btrfs_csums[csum_type].name;
57 }
58 
59 /*
60  * Return driver name if defined, otherwise the name that's also a valid driver
61  * name
62  */
63 const char *btrfs_super_csum_driver(u16 csum_type)
64 {
65 	/* csum type is validated at mount time */
66 	return btrfs_csums[csum_type].driver[0] ?
67 		btrfs_csums[csum_type].driver :
68 		btrfs_csums[csum_type].name;
69 }
70 
71 size_t __const btrfs_get_num_csums(void)
72 {
73 	return ARRAY_SIZE(btrfs_csums);
74 }
75 
76 struct btrfs_path *btrfs_alloc_path(void)
77 {
78 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
79 }
80 
81 /* this also releases the path */
82 void btrfs_free_path(struct btrfs_path *p)
83 {
84 	if (!p)
85 		return;
86 	btrfs_release_path(p);
87 	kmem_cache_free(btrfs_path_cachep, p);
88 }
89 
90 /*
91  * path release drops references on the extent buffers in the path
92  * and it drops any locks held by this path
93  *
94  * It is safe to call this on paths that no locks or extent buffers held.
95  */
96 noinline void btrfs_release_path(struct btrfs_path *p)
97 {
98 	int i;
99 
100 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
101 		p->slots[i] = 0;
102 		if (!p->nodes[i])
103 			continue;
104 		if (p->locks[i]) {
105 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
106 			p->locks[i] = 0;
107 		}
108 		free_extent_buffer(p->nodes[i]);
109 		p->nodes[i] = NULL;
110 	}
111 }
112 
113 /*
114  * safely gets a reference on the root node of a tree.  A lock
115  * is not taken, so a concurrent writer may put a different node
116  * at the root of the tree.  See btrfs_lock_root_node for the
117  * looping required.
118  *
119  * The extent buffer returned by this has a reference taken, so
120  * it won't disappear.  It may stop being the root of the tree
121  * at any time because there are no locks held.
122  */
123 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
124 {
125 	struct extent_buffer *eb;
126 
127 	while (1) {
128 		rcu_read_lock();
129 		eb = rcu_dereference(root->node);
130 
131 		/*
132 		 * RCU really hurts here, we could free up the root node because
133 		 * it was COWed but we may not get the new root node yet so do
134 		 * the inc_not_zero dance and if it doesn't work then
135 		 * synchronize_rcu and try again.
136 		 */
137 		if (atomic_inc_not_zero(&eb->refs)) {
138 			rcu_read_unlock();
139 			break;
140 		}
141 		rcu_read_unlock();
142 		synchronize_rcu();
143 	}
144 	return eb;
145 }
146 
147 /*
148  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
149  * just get put onto a simple dirty list.  Transaction walks this list to make
150  * sure they get properly updated on disk.
151  */
152 static void add_root_to_dirty_list(struct btrfs_root *root)
153 {
154 	struct btrfs_fs_info *fs_info = root->fs_info;
155 
156 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
157 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
158 		return;
159 
160 	spin_lock(&fs_info->trans_lock);
161 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
162 		/* Want the extent tree to be the last on the list */
163 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
164 			list_move_tail(&root->dirty_list,
165 				       &fs_info->dirty_cowonly_roots);
166 		else
167 			list_move(&root->dirty_list,
168 				  &fs_info->dirty_cowonly_roots);
169 	}
170 	spin_unlock(&fs_info->trans_lock);
171 }
172 
173 /*
174  * used by snapshot creation to make a copy of a root for a tree with
175  * a given objectid.  The buffer with the new root node is returned in
176  * cow_ret, and this func returns zero on success or a negative error code.
177  */
178 int btrfs_copy_root(struct btrfs_trans_handle *trans,
179 		      struct btrfs_root *root,
180 		      struct extent_buffer *buf,
181 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
182 {
183 	struct btrfs_fs_info *fs_info = root->fs_info;
184 	struct extent_buffer *cow;
185 	int ret = 0;
186 	int level;
187 	struct btrfs_disk_key disk_key;
188 
189 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
190 		trans->transid != fs_info->running_transaction->transid);
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != root->last_trans);
193 
194 	level = btrfs_header_level(buf);
195 	if (level == 0)
196 		btrfs_item_key(buf, &disk_key, 0);
197 	else
198 		btrfs_node_key(buf, &disk_key, 0);
199 
200 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
201 			&disk_key, level, buf->start, 0);
202 	if (IS_ERR(cow))
203 		return PTR_ERR(cow);
204 
205 	copy_extent_buffer_full(cow, buf);
206 	btrfs_set_header_bytenr(cow, cow->start);
207 	btrfs_set_header_generation(cow, trans->transid);
208 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
209 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
210 				     BTRFS_HEADER_FLAG_RELOC);
211 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
212 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
213 	else
214 		btrfs_set_header_owner(cow, new_root_objectid);
215 
216 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
217 
218 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
219 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
220 		ret = btrfs_inc_ref(trans, root, cow, 1);
221 	else
222 		ret = btrfs_inc_ref(trans, root, cow, 0);
223 
224 	if (ret)
225 		return ret;
226 
227 	btrfs_mark_buffer_dirty(cow);
228 	*cow_ret = cow;
229 	return 0;
230 }
231 
232 enum mod_log_op {
233 	MOD_LOG_KEY_REPLACE,
234 	MOD_LOG_KEY_ADD,
235 	MOD_LOG_KEY_REMOVE,
236 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
237 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
238 	MOD_LOG_MOVE_KEYS,
239 	MOD_LOG_ROOT_REPLACE,
240 };
241 
242 struct tree_mod_root {
243 	u64 logical;
244 	u8 level;
245 };
246 
247 struct tree_mod_elem {
248 	struct rb_node node;
249 	u64 logical;
250 	u64 seq;
251 	enum mod_log_op op;
252 
253 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
254 	int slot;
255 
256 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
257 	u64 generation;
258 
259 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
260 	struct btrfs_disk_key key;
261 	u64 blockptr;
262 
263 	/* this is used for op == MOD_LOG_MOVE_KEYS */
264 	struct {
265 		int dst_slot;
266 		int nr_items;
267 	} move;
268 
269 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
270 	struct tree_mod_root old_root;
271 };
272 
273 /*
274  * Pull a new tree mod seq number for our operation.
275  */
276 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
277 {
278 	return atomic64_inc_return(&fs_info->tree_mod_seq);
279 }
280 
281 /*
282  * This adds a new blocker to the tree mod log's blocker list if the @elem
283  * passed does not already have a sequence number set. So when a caller expects
284  * to record tree modifications, it should ensure to set elem->seq to zero
285  * before calling btrfs_get_tree_mod_seq.
286  * Returns a fresh, unused tree log modification sequence number, even if no new
287  * blocker was added.
288  */
289 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
290 			   struct seq_list *elem)
291 {
292 	write_lock(&fs_info->tree_mod_log_lock);
293 	if (!elem->seq) {
294 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
295 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
296 	}
297 	write_unlock(&fs_info->tree_mod_log_lock);
298 
299 	return elem->seq;
300 }
301 
302 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
303 			    struct seq_list *elem)
304 {
305 	struct rb_root *tm_root;
306 	struct rb_node *node;
307 	struct rb_node *next;
308 	struct tree_mod_elem *tm;
309 	u64 min_seq = (u64)-1;
310 	u64 seq_putting = elem->seq;
311 
312 	if (!seq_putting)
313 		return;
314 
315 	write_lock(&fs_info->tree_mod_log_lock);
316 	list_del(&elem->list);
317 	elem->seq = 0;
318 
319 	if (!list_empty(&fs_info->tree_mod_seq_list)) {
320 		struct seq_list *first;
321 
322 		first = list_first_entry(&fs_info->tree_mod_seq_list,
323 					 struct seq_list, list);
324 		if (seq_putting > first->seq) {
325 			/*
326 			 * Blocker with lower sequence number exists, we
327 			 * cannot remove anything from the log.
328 			 */
329 			write_unlock(&fs_info->tree_mod_log_lock);
330 			return;
331 		}
332 		min_seq = first->seq;
333 	}
334 
335 	/*
336 	 * anything that's lower than the lowest existing (read: blocked)
337 	 * sequence number can be removed from the tree.
338 	 */
339 	tm_root = &fs_info->tree_mod_log;
340 	for (node = rb_first(tm_root); node; node = next) {
341 		next = rb_next(node);
342 		tm = rb_entry(node, struct tree_mod_elem, node);
343 		if (tm->seq >= min_seq)
344 			continue;
345 		rb_erase(node, tm_root);
346 		kfree(tm);
347 	}
348 	write_unlock(&fs_info->tree_mod_log_lock);
349 }
350 
351 /*
352  * key order of the log:
353  *       node/leaf start address -> sequence
354  *
355  * The 'start address' is the logical address of the *new* root node
356  * for root replace operations, or the logical address of the affected
357  * block for all other operations.
358  */
359 static noinline int
360 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
361 {
362 	struct rb_root *tm_root;
363 	struct rb_node **new;
364 	struct rb_node *parent = NULL;
365 	struct tree_mod_elem *cur;
366 
367 	lockdep_assert_held_write(&fs_info->tree_mod_log_lock);
368 
369 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
370 
371 	tm_root = &fs_info->tree_mod_log;
372 	new = &tm_root->rb_node;
373 	while (*new) {
374 		cur = rb_entry(*new, struct tree_mod_elem, node);
375 		parent = *new;
376 		if (cur->logical < tm->logical)
377 			new = &((*new)->rb_left);
378 		else if (cur->logical > tm->logical)
379 			new = &((*new)->rb_right);
380 		else if (cur->seq < tm->seq)
381 			new = &((*new)->rb_left);
382 		else if (cur->seq > tm->seq)
383 			new = &((*new)->rb_right);
384 		else
385 			return -EEXIST;
386 	}
387 
388 	rb_link_node(&tm->node, parent, new);
389 	rb_insert_color(&tm->node, tm_root);
390 	return 0;
391 }
392 
393 /*
394  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
395  * returns zero with the tree_mod_log_lock acquired. The caller must hold
396  * this until all tree mod log insertions are recorded in the rb tree and then
397  * write unlock fs_info::tree_mod_log_lock.
398  */
399 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
400 				    struct extent_buffer *eb) {
401 	smp_mb();
402 	if (list_empty(&(fs_info)->tree_mod_seq_list))
403 		return 1;
404 	if (eb && btrfs_header_level(eb) == 0)
405 		return 1;
406 
407 	write_lock(&fs_info->tree_mod_log_lock);
408 	if (list_empty(&(fs_info)->tree_mod_seq_list)) {
409 		write_unlock(&fs_info->tree_mod_log_lock);
410 		return 1;
411 	}
412 
413 	return 0;
414 }
415 
416 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
417 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
418 				    struct extent_buffer *eb)
419 {
420 	smp_mb();
421 	if (list_empty(&(fs_info)->tree_mod_seq_list))
422 		return 0;
423 	if (eb && btrfs_header_level(eb) == 0)
424 		return 0;
425 
426 	return 1;
427 }
428 
429 static struct tree_mod_elem *
430 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
431 		    enum mod_log_op op, gfp_t flags)
432 {
433 	struct tree_mod_elem *tm;
434 
435 	tm = kzalloc(sizeof(*tm), flags);
436 	if (!tm)
437 		return NULL;
438 
439 	tm->logical = eb->start;
440 	if (op != MOD_LOG_KEY_ADD) {
441 		btrfs_node_key(eb, &tm->key, slot);
442 		tm->blockptr = btrfs_node_blockptr(eb, slot);
443 	}
444 	tm->op = op;
445 	tm->slot = slot;
446 	tm->generation = btrfs_node_ptr_generation(eb, slot);
447 	RB_CLEAR_NODE(&tm->node);
448 
449 	return tm;
450 }
451 
452 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot,
453 		enum mod_log_op op, gfp_t flags)
454 {
455 	struct tree_mod_elem *tm;
456 	int ret;
457 
458 	if (!tree_mod_need_log(eb->fs_info, eb))
459 		return 0;
460 
461 	tm = alloc_tree_mod_elem(eb, slot, op, flags);
462 	if (!tm)
463 		return -ENOMEM;
464 
465 	if (tree_mod_dont_log(eb->fs_info, eb)) {
466 		kfree(tm);
467 		return 0;
468 	}
469 
470 	ret = __tree_mod_log_insert(eb->fs_info, tm);
471 	write_unlock(&eb->fs_info->tree_mod_log_lock);
472 	if (ret)
473 		kfree(tm);
474 
475 	return ret;
476 }
477 
478 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb,
479 		int dst_slot, int src_slot, int nr_items)
480 {
481 	struct tree_mod_elem *tm = NULL;
482 	struct tree_mod_elem **tm_list = NULL;
483 	int ret = 0;
484 	int i;
485 	int locked = 0;
486 
487 	if (!tree_mod_need_log(eb->fs_info, eb))
488 		return 0;
489 
490 	tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS);
491 	if (!tm_list)
492 		return -ENOMEM;
493 
494 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
495 	if (!tm) {
496 		ret = -ENOMEM;
497 		goto free_tms;
498 	}
499 
500 	tm->logical = eb->start;
501 	tm->slot = src_slot;
502 	tm->move.dst_slot = dst_slot;
503 	tm->move.nr_items = nr_items;
504 	tm->op = MOD_LOG_MOVE_KEYS;
505 
506 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
507 		tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
508 		    MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS);
509 		if (!tm_list[i]) {
510 			ret = -ENOMEM;
511 			goto free_tms;
512 		}
513 	}
514 
515 	if (tree_mod_dont_log(eb->fs_info, eb))
516 		goto free_tms;
517 	locked = 1;
518 
519 	/*
520 	 * When we override something during the move, we log these removals.
521 	 * This can only happen when we move towards the beginning of the
522 	 * buffer, i.e. dst_slot < src_slot.
523 	 */
524 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
525 		ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]);
526 		if (ret)
527 			goto free_tms;
528 	}
529 
530 	ret = __tree_mod_log_insert(eb->fs_info, tm);
531 	if (ret)
532 		goto free_tms;
533 	write_unlock(&eb->fs_info->tree_mod_log_lock);
534 	kfree(tm_list);
535 
536 	return 0;
537 free_tms:
538 	for (i = 0; i < nr_items; i++) {
539 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
540 			rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log);
541 		kfree(tm_list[i]);
542 	}
543 	if (locked)
544 		write_unlock(&eb->fs_info->tree_mod_log_lock);
545 	kfree(tm_list);
546 	kfree(tm);
547 
548 	return ret;
549 }
550 
551 static inline int
552 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
553 		       struct tree_mod_elem **tm_list,
554 		       int nritems)
555 {
556 	int i, j;
557 	int ret;
558 
559 	for (i = nritems - 1; i >= 0; i--) {
560 		ret = __tree_mod_log_insert(fs_info, tm_list[i]);
561 		if (ret) {
562 			for (j = nritems - 1; j > i; j--)
563 				rb_erase(&tm_list[j]->node,
564 					 &fs_info->tree_mod_log);
565 			return ret;
566 		}
567 	}
568 
569 	return 0;
570 }
571 
572 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root,
573 			 struct extent_buffer *new_root, int log_removal)
574 {
575 	struct btrfs_fs_info *fs_info = old_root->fs_info;
576 	struct tree_mod_elem *tm = NULL;
577 	struct tree_mod_elem **tm_list = NULL;
578 	int nritems = 0;
579 	int ret = 0;
580 	int i;
581 
582 	if (!tree_mod_need_log(fs_info, NULL))
583 		return 0;
584 
585 	if (log_removal && btrfs_header_level(old_root) > 0) {
586 		nritems = btrfs_header_nritems(old_root);
587 		tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
588 				  GFP_NOFS);
589 		if (!tm_list) {
590 			ret = -ENOMEM;
591 			goto free_tms;
592 		}
593 		for (i = 0; i < nritems; i++) {
594 			tm_list[i] = alloc_tree_mod_elem(old_root, i,
595 			    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
596 			if (!tm_list[i]) {
597 				ret = -ENOMEM;
598 				goto free_tms;
599 			}
600 		}
601 	}
602 
603 	tm = kzalloc(sizeof(*tm), GFP_NOFS);
604 	if (!tm) {
605 		ret = -ENOMEM;
606 		goto free_tms;
607 	}
608 
609 	tm->logical = new_root->start;
610 	tm->old_root.logical = old_root->start;
611 	tm->old_root.level = btrfs_header_level(old_root);
612 	tm->generation = btrfs_header_generation(old_root);
613 	tm->op = MOD_LOG_ROOT_REPLACE;
614 
615 	if (tree_mod_dont_log(fs_info, NULL))
616 		goto free_tms;
617 
618 	if (tm_list)
619 		ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
620 	if (!ret)
621 		ret = __tree_mod_log_insert(fs_info, tm);
622 
623 	write_unlock(&fs_info->tree_mod_log_lock);
624 	if (ret)
625 		goto free_tms;
626 	kfree(tm_list);
627 
628 	return ret;
629 
630 free_tms:
631 	if (tm_list) {
632 		for (i = 0; i < nritems; i++)
633 			kfree(tm_list[i]);
634 		kfree(tm_list);
635 	}
636 	kfree(tm);
637 
638 	return ret;
639 }
640 
641 static struct tree_mod_elem *
642 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
643 		      int smallest)
644 {
645 	struct rb_root *tm_root;
646 	struct rb_node *node;
647 	struct tree_mod_elem *cur = NULL;
648 	struct tree_mod_elem *found = NULL;
649 
650 	read_lock(&fs_info->tree_mod_log_lock);
651 	tm_root = &fs_info->tree_mod_log;
652 	node = tm_root->rb_node;
653 	while (node) {
654 		cur = rb_entry(node, struct tree_mod_elem, node);
655 		if (cur->logical < start) {
656 			node = node->rb_left;
657 		} else if (cur->logical > start) {
658 			node = node->rb_right;
659 		} else if (cur->seq < min_seq) {
660 			node = node->rb_left;
661 		} else if (!smallest) {
662 			/* we want the node with the highest seq */
663 			if (found)
664 				BUG_ON(found->seq > cur->seq);
665 			found = cur;
666 			node = node->rb_left;
667 		} else if (cur->seq > min_seq) {
668 			/* we want the node with the smallest seq */
669 			if (found)
670 				BUG_ON(found->seq < cur->seq);
671 			found = cur;
672 			node = node->rb_right;
673 		} else {
674 			found = cur;
675 			break;
676 		}
677 	}
678 	read_unlock(&fs_info->tree_mod_log_lock);
679 
680 	return found;
681 }
682 
683 /*
684  * this returns the element from the log with the smallest time sequence
685  * value that's in the log (the oldest log item). any element with a time
686  * sequence lower than min_seq will be ignored.
687  */
688 static struct tree_mod_elem *
689 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
690 			   u64 min_seq)
691 {
692 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
693 }
694 
695 /*
696  * this returns the element from the log with the largest time sequence
697  * value that's in the log (the most recent log item). any element with
698  * a time sequence lower than min_seq will be ignored.
699  */
700 static struct tree_mod_elem *
701 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
702 {
703 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
704 }
705 
706 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst,
707 		     struct extent_buffer *src, unsigned long dst_offset,
708 		     unsigned long src_offset, int nr_items)
709 {
710 	struct btrfs_fs_info *fs_info = dst->fs_info;
711 	int ret = 0;
712 	struct tree_mod_elem **tm_list = NULL;
713 	struct tree_mod_elem **tm_list_add, **tm_list_rem;
714 	int i;
715 	int locked = 0;
716 
717 	if (!tree_mod_need_log(fs_info, NULL))
718 		return 0;
719 
720 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
721 		return 0;
722 
723 	tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
724 			  GFP_NOFS);
725 	if (!tm_list)
726 		return -ENOMEM;
727 
728 	tm_list_add = tm_list;
729 	tm_list_rem = tm_list + nr_items;
730 	for (i = 0; i < nr_items; i++) {
731 		tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
732 		    MOD_LOG_KEY_REMOVE, GFP_NOFS);
733 		if (!tm_list_rem[i]) {
734 			ret = -ENOMEM;
735 			goto free_tms;
736 		}
737 
738 		tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
739 		    MOD_LOG_KEY_ADD, GFP_NOFS);
740 		if (!tm_list_add[i]) {
741 			ret = -ENOMEM;
742 			goto free_tms;
743 		}
744 	}
745 
746 	if (tree_mod_dont_log(fs_info, NULL))
747 		goto free_tms;
748 	locked = 1;
749 
750 	for (i = 0; i < nr_items; i++) {
751 		ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
752 		if (ret)
753 			goto free_tms;
754 		ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
755 		if (ret)
756 			goto free_tms;
757 	}
758 
759 	write_unlock(&fs_info->tree_mod_log_lock);
760 	kfree(tm_list);
761 
762 	return 0;
763 
764 free_tms:
765 	for (i = 0; i < nr_items * 2; i++) {
766 		if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
767 			rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
768 		kfree(tm_list[i]);
769 	}
770 	if (locked)
771 		write_unlock(&fs_info->tree_mod_log_lock);
772 	kfree(tm_list);
773 
774 	return ret;
775 }
776 
777 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb)
778 {
779 	struct tree_mod_elem **tm_list = NULL;
780 	int nritems = 0;
781 	int i;
782 	int ret = 0;
783 
784 	if (btrfs_header_level(eb) == 0)
785 		return 0;
786 
787 	if (!tree_mod_need_log(eb->fs_info, NULL))
788 		return 0;
789 
790 	nritems = btrfs_header_nritems(eb);
791 	tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
792 	if (!tm_list)
793 		return -ENOMEM;
794 
795 	for (i = 0; i < nritems; i++) {
796 		tm_list[i] = alloc_tree_mod_elem(eb, i,
797 		    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
798 		if (!tm_list[i]) {
799 			ret = -ENOMEM;
800 			goto free_tms;
801 		}
802 	}
803 
804 	if (tree_mod_dont_log(eb->fs_info, eb))
805 		goto free_tms;
806 
807 	ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems);
808 	write_unlock(&eb->fs_info->tree_mod_log_lock);
809 	if (ret)
810 		goto free_tms;
811 	kfree(tm_list);
812 
813 	return 0;
814 
815 free_tms:
816 	for (i = 0; i < nritems; i++)
817 		kfree(tm_list[i]);
818 	kfree(tm_list);
819 
820 	return ret;
821 }
822 
823 /*
824  * check if the tree block can be shared by multiple trees
825  */
826 int btrfs_block_can_be_shared(struct btrfs_root *root,
827 			      struct extent_buffer *buf)
828 {
829 	/*
830 	 * Tree blocks not in shareable trees and tree roots are never shared.
831 	 * If a block was allocated after the last snapshot and the block was
832 	 * not allocated by tree relocation, we know the block is not shared.
833 	 */
834 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
835 	    buf != root->node && buf != root->commit_root &&
836 	    (btrfs_header_generation(buf) <=
837 	     btrfs_root_last_snapshot(&root->root_item) ||
838 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
839 		return 1;
840 
841 	return 0;
842 }
843 
844 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
845 				       struct btrfs_root *root,
846 				       struct extent_buffer *buf,
847 				       struct extent_buffer *cow,
848 				       int *last_ref)
849 {
850 	struct btrfs_fs_info *fs_info = root->fs_info;
851 	u64 refs;
852 	u64 owner;
853 	u64 flags;
854 	u64 new_flags = 0;
855 	int ret;
856 
857 	/*
858 	 * Backrefs update rules:
859 	 *
860 	 * Always use full backrefs for extent pointers in tree block
861 	 * allocated by tree relocation.
862 	 *
863 	 * If a shared tree block is no longer referenced by its owner
864 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
865 	 * use full backrefs for extent pointers in tree block.
866 	 *
867 	 * If a tree block is been relocating
868 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
869 	 * use full backrefs for extent pointers in tree block.
870 	 * The reason for this is some operations (such as drop tree)
871 	 * are only allowed for blocks use full backrefs.
872 	 */
873 
874 	if (btrfs_block_can_be_shared(root, buf)) {
875 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
876 					       btrfs_header_level(buf), 1,
877 					       &refs, &flags);
878 		if (ret)
879 			return ret;
880 		if (refs == 0) {
881 			ret = -EROFS;
882 			btrfs_handle_fs_error(fs_info, ret, NULL);
883 			return ret;
884 		}
885 	} else {
886 		refs = 1;
887 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
888 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
889 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
890 		else
891 			flags = 0;
892 	}
893 
894 	owner = btrfs_header_owner(buf);
895 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
896 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
897 
898 	if (refs > 1) {
899 		if ((owner == root->root_key.objectid ||
900 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
901 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
902 			ret = btrfs_inc_ref(trans, root, buf, 1);
903 			if (ret)
904 				return ret;
905 
906 			if (root->root_key.objectid ==
907 			    BTRFS_TREE_RELOC_OBJECTID) {
908 				ret = btrfs_dec_ref(trans, root, buf, 0);
909 				if (ret)
910 					return ret;
911 				ret = btrfs_inc_ref(trans, root, cow, 1);
912 				if (ret)
913 					return ret;
914 			}
915 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
916 		} else {
917 
918 			if (root->root_key.objectid ==
919 			    BTRFS_TREE_RELOC_OBJECTID)
920 				ret = btrfs_inc_ref(trans, root, cow, 1);
921 			else
922 				ret = btrfs_inc_ref(trans, root, cow, 0);
923 			if (ret)
924 				return ret;
925 		}
926 		if (new_flags != 0) {
927 			int level = btrfs_header_level(buf);
928 
929 			ret = btrfs_set_disk_extent_flags(trans, buf,
930 							  new_flags, level, 0);
931 			if (ret)
932 				return ret;
933 		}
934 	} else {
935 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
936 			if (root->root_key.objectid ==
937 			    BTRFS_TREE_RELOC_OBJECTID)
938 				ret = btrfs_inc_ref(trans, root, cow, 1);
939 			else
940 				ret = btrfs_inc_ref(trans, root, cow, 0);
941 			if (ret)
942 				return ret;
943 			ret = btrfs_dec_ref(trans, root, buf, 1);
944 			if (ret)
945 				return ret;
946 		}
947 		btrfs_clean_tree_block(buf);
948 		*last_ref = 1;
949 	}
950 	return 0;
951 }
952 
953 static struct extent_buffer *alloc_tree_block_no_bg_flush(
954 					  struct btrfs_trans_handle *trans,
955 					  struct btrfs_root *root,
956 					  u64 parent_start,
957 					  const struct btrfs_disk_key *disk_key,
958 					  int level,
959 					  u64 hint,
960 					  u64 empty_size)
961 {
962 	struct btrfs_fs_info *fs_info = root->fs_info;
963 	struct extent_buffer *ret;
964 
965 	/*
966 	 * If we are COWing a node/leaf from the extent, chunk, device or free
967 	 * space trees, make sure that we do not finish block group creation of
968 	 * pending block groups. We do this to avoid a deadlock.
969 	 * COWing can result in allocation of a new chunk, and flushing pending
970 	 * block groups (btrfs_create_pending_block_groups()) can be triggered
971 	 * when finishing allocation of a new chunk. Creation of a pending block
972 	 * group modifies the extent, chunk, device and free space trees,
973 	 * therefore we could deadlock with ourselves since we are holding a
974 	 * lock on an extent buffer that btrfs_create_pending_block_groups() may
975 	 * try to COW later.
976 	 * For similar reasons, we also need to delay flushing pending block
977 	 * groups when splitting a leaf or node, from one of those trees, since
978 	 * we are holding a write lock on it and its parent or when inserting a
979 	 * new root node for one of those trees.
980 	 */
981 	if (root == fs_info->extent_root ||
982 	    root == fs_info->chunk_root ||
983 	    root == fs_info->dev_root ||
984 	    root == fs_info->free_space_root)
985 		trans->can_flush_pending_bgs = false;
986 
987 	ret = btrfs_alloc_tree_block(trans, root, parent_start,
988 				     root->root_key.objectid, disk_key, level,
989 				     hint, empty_size);
990 	trans->can_flush_pending_bgs = true;
991 
992 	return ret;
993 }
994 
995 /*
996  * does the dirty work in cow of a single block.  The parent block (if
997  * supplied) is updated to point to the new cow copy.  The new buffer is marked
998  * dirty and returned locked.  If you modify the block it needs to be marked
999  * dirty again.
1000  *
1001  * search_start -- an allocation hint for the new block
1002  *
1003  * empty_size -- a hint that you plan on doing more cow.  This is the size in
1004  * bytes the allocator should try to find free next to the block it returns.
1005  * This is just a hint and may be ignored by the allocator.
1006  */
1007 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1008 			     struct btrfs_root *root,
1009 			     struct extent_buffer *buf,
1010 			     struct extent_buffer *parent, int parent_slot,
1011 			     struct extent_buffer **cow_ret,
1012 			     u64 search_start, u64 empty_size)
1013 {
1014 	struct btrfs_fs_info *fs_info = root->fs_info;
1015 	struct btrfs_disk_key disk_key;
1016 	struct extent_buffer *cow;
1017 	int level, ret;
1018 	int last_ref = 0;
1019 	int unlock_orig = 0;
1020 	u64 parent_start = 0;
1021 
1022 	if (*cow_ret == buf)
1023 		unlock_orig = 1;
1024 
1025 	btrfs_assert_tree_locked(buf);
1026 
1027 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1028 		trans->transid != fs_info->running_transaction->transid);
1029 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
1030 		trans->transid != root->last_trans);
1031 
1032 	level = btrfs_header_level(buf);
1033 
1034 	if (level == 0)
1035 		btrfs_item_key(buf, &disk_key, 0);
1036 	else
1037 		btrfs_node_key(buf, &disk_key, 0);
1038 
1039 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
1040 		parent_start = parent->start;
1041 
1042 	cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key,
1043 					   level, search_start, empty_size);
1044 	if (IS_ERR(cow))
1045 		return PTR_ERR(cow);
1046 
1047 	/* cow is set to blocking by btrfs_init_new_buffer */
1048 
1049 	copy_extent_buffer_full(cow, buf);
1050 	btrfs_set_header_bytenr(cow, cow->start);
1051 	btrfs_set_header_generation(cow, trans->transid);
1052 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1053 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1054 				     BTRFS_HEADER_FLAG_RELOC);
1055 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1056 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1057 	else
1058 		btrfs_set_header_owner(cow, root->root_key.objectid);
1059 
1060 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
1061 
1062 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1063 	if (ret) {
1064 		btrfs_abort_transaction(trans, ret);
1065 		return ret;
1066 	}
1067 
1068 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
1069 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1070 		if (ret) {
1071 			btrfs_abort_transaction(trans, ret);
1072 			return ret;
1073 		}
1074 	}
1075 
1076 	if (buf == root->node) {
1077 		WARN_ON(parent && parent != buf);
1078 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1079 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1080 			parent_start = buf->start;
1081 
1082 		atomic_inc(&cow->refs);
1083 		ret = tree_mod_log_insert_root(root->node, cow, 1);
1084 		BUG_ON(ret < 0);
1085 		rcu_assign_pointer(root->node, cow);
1086 
1087 		btrfs_free_tree_block(trans, root, buf, parent_start,
1088 				      last_ref);
1089 		free_extent_buffer(buf);
1090 		add_root_to_dirty_list(root);
1091 	} else {
1092 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1093 		tree_mod_log_insert_key(parent, parent_slot,
1094 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1095 		btrfs_set_node_blockptr(parent, parent_slot,
1096 					cow->start);
1097 		btrfs_set_node_ptr_generation(parent, parent_slot,
1098 					      trans->transid);
1099 		btrfs_mark_buffer_dirty(parent);
1100 		if (last_ref) {
1101 			ret = tree_mod_log_free_eb(buf);
1102 			if (ret) {
1103 				btrfs_abort_transaction(trans, ret);
1104 				return ret;
1105 			}
1106 		}
1107 		btrfs_free_tree_block(trans, root, buf, parent_start,
1108 				      last_ref);
1109 	}
1110 	if (unlock_orig)
1111 		btrfs_tree_unlock(buf);
1112 	free_extent_buffer_stale(buf);
1113 	btrfs_mark_buffer_dirty(cow);
1114 	*cow_ret = cow;
1115 	return 0;
1116 }
1117 
1118 /*
1119  * returns the logical address of the oldest predecessor of the given root.
1120  * entries older than time_seq are ignored.
1121  */
1122 static struct tree_mod_elem *__tree_mod_log_oldest_root(
1123 		struct extent_buffer *eb_root, u64 time_seq)
1124 {
1125 	struct tree_mod_elem *tm;
1126 	struct tree_mod_elem *found = NULL;
1127 	u64 root_logical = eb_root->start;
1128 	int looped = 0;
1129 
1130 	if (!time_seq)
1131 		return NULL;
1132 
1133 	/*
1134 	 * the very last operation that's logged for a root is the
1135 	 * replacement operation (if it is replaced at all). this has
1136 	 * the logical address of the *new* root, making it the very
1137 	 * first operation that's logged for this root.
1138 	 */
1139 	while (1) {
1140 		tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical,
1141 						time_seq);
1142 		if (!looped && !tm)
1143 			return NULL;
1144 		/*
1145 		 * if there are no tree operation for the oldest root, we simply
1146 		 * return it. this should only happen if that (old) root is at
1147 		 * level 0.
1148 		 */
1149 		if (!tm)
1150 			break;
1151 
1152 		/*
1153 		 * if there's an operation that's not a root replacement, we
1154 		 * found the oldest version of our root. normally, we'll find a
1155 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1156 		 */
1157 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1158 			break;
1159 
1160 		found = tm;
1161 		root_logical = tm->old_root.logical;
1162 		looped = 1;
1163 	}
1164 
1165 	/* if there's no old root to return, return what we found instead */
1166 	if (!found)
1167 		found = tm;
1168 
1169 	return found;
1170 }
1171 
1172 /*
1173  * tm is a pointer to the first operation to rewind within eb. then, all
1174  * previous operations will be rewound (until we reach something older than
1175  * time_seq).
1176  */
1177 static void
1178 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1179 		      u64 time_seq, struct tree_mod_elem *first_tm)
1180 {
1181 	u32 n;
1182 	struct rb_node *next;
1183 	struct tree_mod_elem *tm = first_tm;
1184 	unsigned long o_dst;
1185 	unsigned long o_src;
1186 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1187 
1188 	n = btrfs_header_nritems(eb);
1189 	read_lock(&fs_info->tree_mod_log_lock);
1190 	while (tm && tm->seq >= time_seq) {
1191 		/*
1192 		 * all the operations are recorded with the operator used for
1193 		 * the modification. as we're going backwards, we do the
1194 		 * opposite of each operation here.
1195 		 */
1196 		switch (tm->op) {
1197 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1198 			BUG_ON(tm->slot < n);
1199 			fallthrough;
1200 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1201 		case MOD_LOG_KEY_REMOVE:
1202 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1203 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1204 			btrfs_set_node_ptr_generation(eb, tm->slot,
1205 						      tm->generation);
1206 			n++;
1207 			break;
1208 		case MOD_LOG_KEY_REPLACE:
1209 			BUG_ON(tm->slot >= n);
1210 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1211 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1212 			btrfs_set_node_ptr_generation(eb, tm->slot,
1213 						      tm->generation);
1214 			break;
1215 		case MOD_LOG_KEY_ADD:
1216 			/* if a move operation is needed it's in the log */
1217 			n--;
1218 			break;
1219 		case MOD_LOG_MOVE_KEYS:
1220 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1221 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1222 			memmove_extent_buffer(eb, o_dst, o_src,
1223 					      tm->move.nr_items * p_size);
1224 			break;
1225 		case MOD_LOG_ROOT_REPLACE:
1226 			/*
1227 			 * this operation is special. for roots, this must be
1228 			 * handled explicitly before rewinding.
1229 			 * for non-roots, this operation may exist if the node
1230 			 * was a root: root A -> child B; then A gets empty and
1231 			 * B is promoted to the new root. in the mod log, we'll
1232 			 * have a root-replace operation for B, a tree block
1233 			 * that is no root. we simply ignore that operation.
1234 			 */
1235 			break;
1236 		}
1237 		next = rb_next(&tm->node);
1238 		if (!next)
1239 			break;
1240 		tm = rb_entry(next, struct tree_mod_elem, node);
1241 		if (tm->logical != first_tm->logical)
1242 			break;
1243 	}
1244 	read_unlock(&fs_info->tree_mod_log_lock);
1245 	btrfs_set_header_nritems(eb, n);
1246 }
1247 
1248 /*
1249  * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1250  * is returned. If rewind operations happen, a fresh buffer is returned. The
1251  * returned buffer is always read-locked. If the returned buffer is not the
1252  * input buffer, the lock on the input buffer is released and the input buffer
1253  * is freed (its refcount is decremented).
1254  */
1255 static struct extent_buffer *
1256 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1257 		    struct extent_buffer *eb, u64 time_seq)
1258 {
1259 	struct extent_buffer *eb_rewin;
1260 	struct tree_mod_elem *tm;
1261 
1262 	if (!time_seq)
1263 		return eb;
1264 
1265 	if (btrfs_header_level(eb) == 0)
1266 		return eb;
1267 
1268 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1269 	if (!tm)
1270 		return eb;
1271 
1272 	btrfs_set_path_blocking(path);
1273 	btrfs_set_lock_blocking_read(eb);
1274 
1275 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1276 		BUG_ON(tm->slot != 0);
1277 		eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1278 		if (!eb_rewin) {
1279 			btrfs_tree_read_unlock_blocking(eb);
1280 			free_extent_buffer(eb);
1281 			return NULL;
1282 		}
1283 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1284 		btrfs_set_header_backref_rev(eb_rewin,
1285 					     btrfs_header_backref_rev(eb));
1286 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1287 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1288 	} else {
1289 		eb_rewin = btrfs_clone_extent_buffer(eb);
1290 		if (!eb_rewin) {
1291 			btrfs_tree_read_unlock_blocking(eb);
1292 			free_extent_buffer(eb);
1293 			return NULL;
1294 		}
1295 	}
1296 
1297 	btrfs_tree_read_unlock_blocking(eb);
1298 	free_extent_buffer(eb);
1299 
1300 	btrfs_tree_read_lock(eb_rewin);
1301 	__tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1302 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1303 		BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1304 
1305 	return eb_rewin;
1306 }
1307 
1308 /*
1309  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1310  * value. If there are no changes, the current root->root_node is returned. If
1311  * anything changed in between, there's a fresh buffer allocated on which the
1312  * rewind operations are done. In any case, the returned buffer is read locked.
1313  * Returns NULL on error (with no locks held).
1314  */
1315 static inline struct extent_buffer *
1316 get_old_root(struct btrfs_root *root, u64 time_seq)
1317 {
1318 	struct btrfs_fs_info *fs_info = root->fs_info;
1319 	struct tree_mod_elem *tm;
1320 	struct extent_buffer *eb = NULL;
1321 	struct extent_buffer *eb_root;
1322 	u64 eb_root_owner = 0;
1323 	struct extent_buffer *old;
1324 	struct tree_mod_root *old_root = NULL;
1325 	u64 old_generation = 0;
1326 	u64 logical;
1327 	int level;
1328 
1329 	eb_root = btrfs_read_lock_root_node(root);
1330 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1331 	if (!tm)
1332 		return eb_root;
1333 
1334 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1335 		old_root = &tm->old_root;
1336 		old_generation = tm->generation;
1337 		logical = old_root->logical;
1338 		level = old_root->level;
1339 	} else {
1340 		logical = eb_root->start;
1341 		level = btrfs_header_level(eb_root);
1342 	}
1343 
1344 	tm = tree_mod_log_search(fs_info, logical, time_seq);
1345 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1346 		btrfs_tree_read_unlock(eb_root);
1347 		free_extent_buffer(eb_root);
1348 		old = read_tree_block(fs_info, logical, 0, level, NULL);
1349 		if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1350 			if (!IS_ERR(old))
1351 				free_extent_buffer(old);
1352 			btrfs_warn(fs_info,
1353 				   "failed to read tree block %llu from get_old_root",
1354 				   logical);
1355 		} else {
1356 			eb = btrfs_clone_extent_buffer(old);
1357 			free_extent_buffer(old);
1358 		}
1359 	} else if (old_root) {
1360 		eb_root_owner = btrfs_header_owner(eb_root);
1361 		btrfs_tree_read_unlock(eb_root);
1362 		free_extent_buffer(eb_root);
1363 		eb = alloc_dummy_extent_buffer(fs_info, logical);
1364 	} else {
1365 		btrfs_set_lock_blocking_read(eb_root);
1366 		eb = btrfs_clone_extent_buffer(eb_root);
1367 		btrfs_tree_read_unlock_blocking(eb_root);
1368 		free_extent_buffer(eb_root);
1369 	}
1370 
1371 	if (!eb)
1372 		return NULL;
1373 	btrfs_tree_read_lock(eb);
1374 	if (old_root) {
1375 		btrfs_set_header_bytenr(eb, eb->start);
1376 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1377 		btrfs_set_header_owner(eb, eb_root_owner);
1378 		btrfs_set_header_level(eb, old_root->level);
1379 		btrfs_set_header_generation(eb, old_generation);
1380 	}
1381 	if (tm)
1382 		__tree_mod_log_rewind(fs_info, eb, time_seq, tm);
1383 	else
1384 		WARN_ON(btrfs_header_level(eb) != 0);
1385 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1386 
1387 	return eb;
1388 }
1389 
1390 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1391 {
1392 	struct tree_mod_elem *tm;
1393 	int level;
1394 	struct extent_buffer *eb_root = btrfs_root_node(root);
1395 
1396 	tm = __tree_mod_log_oldest_root(eb_root, time_seq);
1397 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1398 		level = tm->old_root.level;
1399 	} else {
1400 		level = btrfs_header_level(eb_root);
1401 	}
1402 	free_extent_buffer(eb_root);
1403 
1404 	return level;
1405 }
1406 
1407 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1408 				   struct btrfs_root *root,
1409 				   struct extent_buffer *buf)
1410 {
1411 	if (btrfs_is_testing(root->fs_info))
1412 		return 0;
1413 
1414 	/* Ensure we can see the FORCE_COW bit */
1415 	smp_mb__before_atomic();
1416 
1417 	/*
1418 	 * We do not need to cow a block if
1419 	 * 1) this block is not created or changed in this transaction;
1420 	 * 2) this block does not belong to TREE_RELOC tree;
1421 	 * 3) the root is not forced COW.
1422 	 *
1423 	 * What is forced COW:
1424 	 *    when we create snapshot during committing the transaction,
1425 	 *    after we've finished copying src root, we must COW the shared
1426 	 *    block to ensure the metadata consistency.
1427 	 */
1428 	if (btrfs_header_generation(buf) == trans->transid &&
1429 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1430 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1431 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1432 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1433 		return 0;
1434 	return 1;
1435 }
1436 
1437 /*
1438  * cows a single block, see __btrfs_cow_block for the real work.
1439  * This version of it has extra checks so that a block isn't COWed more than
1440  * once per transaction, as long as it hasn't been written yet
1441  */
1442 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1443 		    struct btrfs_root *root, struct extent_buffer *buf,
1444 		    struct extent_buffer *parent, int parent_slot,
1445 		    struct extent_buffer **cow_ret)
1446 {
1447 	struct btrfs_fs_info *fs_info = root->fs_info;
1448 	u64 search_start;
1449 	int ret;
1450 
1451 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
1452 		btrfs_err(fs_info,
1453 			"COW'ing blocks on a fs root that's being dropped");
1454 
1455 	if (trans->transaction != fs_info->running_transaction)
1456 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1457 		       trans->transid,
1458 		       fs_info->running_transaction->transid);
1459 
1460 	if (trans->transid != fs_info->generation)
1461 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
1462 		       trans->transid, fs_info->generation);
1463 
1464 	if (!should_cow_block(trans, root, buf)) {
1465 		trans->dirty = true;
1466 		*cow_ret = buf;
1467 		return 0;
1468 	}
1469 
1470 	search_start = buf->start & ~((u64)SZ_1G - 1);
1471 
1472 	if (parent)
1473 		btrfs_set_lock_blocking_write(parent);
1474 	btrfs_set_lock_blocking_write(buf);
1475 
1476 	/*
1477 	 * Before CoWing this block for later modification, check if it's
1478 	 * the subtree root and do the delayed subtree trace if needed.
1479 	 *
1480 	 * Also We don't care about the error, as it's handled internally.
1481 	 */
1482 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
1483 	ret = __btrfs_cow_block(trans, root, buf, parent,
1484 				 parent_slot, cow_ret, search_start, 0);
1485 
1486 	trace_btrfs_cow_block(root, buf, *cow_ret);
1487 
1488 	return ret;
1489 }
1490 
1491 /*
1492  * helper function for defrag to decide if two blocks pointed to by a
1493  * node are actually close by
1494  */
1495 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1496 {
1497 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1498 		return 1;
1499 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1500 		return 1;
1501 	return 0;
1502 }
1503 
1504 #ifdef __LITTLE_ENDIAN
1505 
1506 /*
1507  * Compare two keys, on little-endian the disk order is same as CPU order and
1508  * we can avoid the conversion.
1509  */
1510 static int comp_keys(const struct btrfs_disk_key *disk_key,
1511 		     const struct btrfs_key *k2)
1512 {
1513 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
1514 
1515 	return btrfs_comp_cpu_keys(k1, k2);
1516 }
1517 
1518 #else
1519 
1520 /*
1521  * compare two keys in a memcmp fashion
1522  */
1523 static int comp_keys(const struct btrfs_disk_key *disk,
1524 		     const struct btrfs_key *k2)
1525 {
1526 	struct btrfs_key k1;
1527 
1528 	btrfs_disk_key_to_cpu(&k1, disk);
1529 
1530 	return btrfs_comp_cpu_keys(&k1, k2);
1531 }
1532 #endif
1533 
1534 /*
1535  * same as comp_keys only with two btrfs_key's
1536  */
1537 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
1538 {
1539 	if (k1->objectid > k2->objectid)
1540 		return 1;
1541 	if (k1->objectid < k2->objectid)
1542 		return -1;
1543 	if (k1->type > k2->type)
1544 		return 1;
1545 	if (k1->type < k2->type)
1546 		return -1;
1547 	if (k1->offset > k2->offset)
1548 		return 1;
1549 	if (k1->offset < k2->offset)
1550 		return -1;
1551 	return 0;
1552 }
1553 
1554 /*
1555  * this is used by the defrag code to go through all the
1556  * leaves pointed to by a node and reallocate them so that
1557  * disk order is close to key order
1558  */
1559 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1560 		       struct btrfs_root *root, struct extent_buffer *parent,
1561 		       int start_slot, u64 *last_ret,
1562 		       struct btrfs_key *progress)
1563 {
1564 	struct btrfs_fs_info *fs_info = root->fs_info;
1565 	struct extent_buffer *cur;
1566 	u64 blocknr;
1567 	u64 gen;
1568 	u64 search_start = *last_ret;
1569 	u64 last_block = 0;
1570 	u64 other;
1571 	u32 parent_nritems;
1572 	int end_slot;
1573 	int i;
1574 	int err = 0;
1575 	int parent_level;
1576 	int uptodate;
1577 	u32 blocksize;
1578 	int progress_passed = 0;
1579 	struct btrfs_disk_key disk_key;
1580 
1581 	parent_level = btrfs_header_level(parent);
1582 
1583 	WARN_ON(trans->transaction != fs_info->running_transaction);
1584 	WARN_ON(trans->transid != fs_info->generation);
1585 
1586 	parent_nritems = btrfs_header_nritems(parent);
1587 	blocksize = fs_info->nodesize;
1588 	end_slot = parent_nritems - 1;
1589 
1590 	if (parent_nritems <= 1)
1591 		return 0;
1592 
1593 	btrfs_set_lock_blocking_write(parent);
1594 
1595 	for (i = start_slot; i <= end_slot; i++) {
1596 		struct btrfs_key first_key;
1597 		int close = 1;
1598 
1599 		btrfs_node_key(parent, &disk_key, i);
1600 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1601 			continue;
1602 
1603 		progress_passed = 1;
1604 		blocknr = btrfs_node_blockptr(parent, i);
1605 		gen = btrfs_node_ptr_generation(parent, i);
1606 		btrfs_node_key_to_cpu(parent, &first_key, i);
1607 		if (last_block == 0)
1608 			last_block = blocknr;
1609 
1610 		if (i > 0) {
1611 			other = btrfs_node_blockptr(parent, i - 1);
1612 			close = close_blocks(blocknr, other, blocksize);
1613 		}
1614 		if (!close && i < end_slot) {
1615 			other = btrfs_node_blockptr(parent, i + 1);
1616 			close = close_blocks(blocknr, other, blocksize);
1617 		}
1618 		if (close) {
1619 			last_block = blocknr;
1620 			continue;
1621 		}
1622 
1623 		cur = find_extent_buffer(fs_info, blocknr);
1624 		if (cur)
1625 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1626 		else
1627 			uptodate = 0;
1628 		if (!cur || !uptodate) {
1629 			if (!cur) {
1630 				cur = read_tree_block(fs_info, blocknr, gen,
1631 						      parent_level - 1,
1632 						      &first_key);
1633 				if (IS_ERR(cur)) {
1634 					return PTR_ERR(cur);
1635 				} else if (!extent_buffer_uptodate(cur)) {
1636 					free_extent_buffer(cur);
1637 					return -EIO;
1638 				}
1639 			} else if (!uptodate) {
1640 				err = btrfs_read_buffer(cur, gen,
1641 						parent_level - 1,&first_key);
1642 				if (err) {
1643 					free_extent_buffer(cur);
1644 					return err;
1645 				}
1646 			}
1647 		}
1648 		if (search_start == 0)
1649 			search_start = last_block;
1650 
1651 		btrfs_tree_lock(cur);
1652 		btrfs_set_lock_blocking_write(cur);
1653 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1654 					&cur, search_start,
1655 					min(16 * blocksize,
1656 					    (end_slot - i) * blocksize));
1657 		if (err) {
1658 			btrfs_tree_unlock(cur);
1659 			free_extent_buffer(cur);
1660 			break;
1661 		}
1662 		search_start = cur->start;
1663 		last_block = cur->start;
1664 		*last_ret = search_start;
1665 		btrfs_tree_unlock(cur);
1666 		free_extent_buffer(cur);
1667 	}
1668 	return err;
1669 }
1670 
1671 /*
1672  * search for key in the extent_buffer.  The items start at offset p,
1673  * and they are item_size apart.  There are 'max' items in p.
1674  *
1675  * the slot in the array is returned via slot, and it points to
1676  * the place where you would insert key if it is not found in
1677  * the array.
1678  *
1679  * slot may point to max if the key is bigger than all of the keys
1680  */
1681 static noinline int generic_bin_search(struct extent_buffer *eb,
1682 				       unsigned long p, int item_size,
1683 				       const struct btrfs_key *key,
1684 				       int max, int *slot)
1685 {
1686 	int low = 0;
1687 	int high = max;
1688 	int ret;
1689 	const int key_size = sizeof(struct btrfs_disk_key);
1690 
1691 	if (low > high) {
1692 		btrfs_err(eb->fs_info,
1693 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1694 			  __func__, low, high, eb->start,
1695 			  btrfs_header_owner(eb), btrfs_header_level(eb));
1696 		return -EINVAL;
1697 	}
1698 
1699 	while (low < high) {
1700 		unsigned long oip;
1701 		unsigned long offset;
1702 		struct btrfs_disk_key *tmp;
1703 		struct btrfs_disk_key unaligned;
1704 		int mid;
1705 
1706 		mid = (low + high) / 2;
1707 		offset = p + mid * item_size;
1708 		oip = offset_in_page(offset);
1709 
1710 		if (oip + key_size <= PAGE_SIZE) {
1711 			const unsigned long idx = offset >> PAGE_SHIFT;
1712 			char *kaddr = page_address(eb->pages[idx]);
1713 
1714 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
1715 		} else {
1716 			read_extent_buffer(eb, &unaligned, offset, key_size);
1717 			tmp = &unaligned;
1718 		}
1719 
1720 		ret = comp_keys(tmp, key);
1721 
1722 		if (ret < 0)
1723 			low = mid + 1;
1724 		else if (ret > 0)
1725 			high = mid;
1726 		else {
1727 			*slot = mid;
1728 			return 0;
1729 		}
1730 	}
1731 	*slot = low;
1732 	return 1;
1733 }
1734 
1735 /*
1736  * simple bin_search frontend that does the right thing for
1737  * leaves vs nodes
1738  */
1739 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
1740 		     int *slot)
1741 {
1742 	if (btrfs_header_level(eb) == 0)
1743 		return generic_bin_search(eb,
1744 					  offsetof(struct btrfs_leaf, items),
1745 					  sizeof(struct btrfs_item),
1746 					  key, btrfs_header_nritems(eb),
1747 					  slot);
1748 	else
1749 		return generic_bin_search(eb,
1750 					  offsetof(struct btrfs_node, ptrs),
1751 					  sizeof(struct btrfs_key_ptr),
1752 					  key, btrfs_header_nritems(eb),
1753 					  slot);
1754 }
1755 
1756 static void root_add_used(struct btrfs_root *root, u32 size)
1757 {
1758 	spin_lock(&root->accounting_lock);
1759 	btrfs_set_root_used(&root->root_item,
1760 			    btrfs_root_used(&root->root_item) + size);
1761 	spin_unlock(&root->accounting_lock);
1762 }
1763 
1764 static void root_sub_used(struct btrfs_root *root, u32 size)
1765 {
1766 	spin_lock(&root->accounting_lock);
1767 	btrfs_set_root_used(&root->root_item,
1768 			    btrfs_root_used(&root->root_item) - size);
1769 	spin_unlock(&root->accounting_lock);
1770 }
1771 
1772 /* given a node and slot number, this reads the blocks it points to.  The
1773  * extent buffer is returned with a reference taken (but unlocked).
1774  */
1775 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
1776 					   int slot)
1777 {
1778 	int level = btrfs_header_level(parent);
1779 	struct extent_buffer *eb;
1780 	struct btrfs_key first_key;
1781 
1782 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
1783 		return ERR_PTR(-ENOENT);
1784 
1785 	BUG_ON(level == 0);
1786 
1787 	btrfs_node_key_to_cpu(parent, &first_key, slot);
1788 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
1789 			     btrfs_node_ptr_generation(parent, slot),
1790 			     level - 1, &first_key);
1791 	if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1792 		free_extent_buffer(eb);
1793 		eb = ERR_PTR(-EIO);
1794 	}
1795 
1796 	return eb;
1797 }
1798 
1799 /*
1800  * node level balancing, used to make sure nodes are in proper order for
1801  * item deletion.  We balance from the top down, so we have to make sure
1802  * that a deletion won't leave an node completely empty later on.
1803  */
1804 static noinline int balance_level(struct btrfs_trans_handle *trans,
1805 			 struct btrfs_root *root,
1806 			 struct btrfs_path *path, int level)
1807 {
1808 	struct btrfs_fs_info *fs_info = root->fs_info;
1809 	struct extent_buffer *right = NULL;
1810 	struct extent_buffer *mid;
1811 	struct extent_buffer *left = NULL;
1812 	struct extent_buffer *parent = NULL;
1813 	int ret = 0;
1814 	int wret;
1815 	int pslot;
1816 	int orig_slot = path->slots[level];
1817 	u64 orig_ptr;
1818 
1819 	ASSERT(level > 0);
1820 
1821 	mid = path->nodes[level];
1822 
1823 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1824 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1825 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1826 
1827 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1828 
1829 	if (level < BTRFS_MAX_LEVEL - 1) {
1830 		parent = path->nodes[level + 1];
1831 		pslot = path->slots[level + 1];
1832 	}
1833 
1834 	/*
1835 	 * deal with the case where there is only one pointer in the root
1836 	 * by promoting the node below to a root
1837 	 */
1838 	if (!parent) {
1839 		struct extent_buffer *child;
1840 
1841 		if (btrfs_header_nritems(mid) != 1)
1842 			return 0;
1843 
1844 		/* promote the child to a root */
1845 		child = btrfs_read_node_slot(mid, 0);
1846 		if (IS_ERR(child)) {
1847 			ret = PTR_ERR(child);
1848 			btrfs_handle_fs_error(fs_info, ret, NULL);
1849 			goto enospc;
1850 		}
1851 
1852 		btrfs_tree_lock(child);
1853 		btrfs_set_lock_blocking_write(child);
1854 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1855 		if (ret) {
1856 			btrfs_tree_unlock(child);
1857 			free_extent_buffer(child);
1858 			goto enospc;
1859 		}
1860 
1861 		ret = tree_mod_log_insert_root(root->node, child, 1);
1862 		BUG_ON(ret < 0);
1863 		rcu_assign_pointer(root->node, child);
1864 
1865 		add_root_to_dirty_list(root);
1866 		btrfs_tree_unlock(child);
1867 
1868 		path->locks[level] = 0;
1869 		path->nodes[level] = NULL;
1870 		btrfs_clean_tree_block(mid);
1871 		btrfs_tree_unlock(mid);
1872 		/* once for the path */
1873 		free_extent_buffer(mid);
1874 
1875 		root_sub_used(root, mid->len);
1876 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1877 		/* once for the root ptr */
1878 		free_extent_buffer_stale(mid);
1879 		return 0;
1880 	}
1881 	if (btrfs_header_nritems(mid) >
1882 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
1883 		return 0;
1884 
1885 	left = btrfs_read_node_slot(parent, pslot - 1);
1886 	if (IS_ERR(left))
1887 		left = NULL;
1888 
1889 	if (left) {
1890 		btrfs_tree_lock(left);
1891 		btrfs_set_lock_blocking_write(left);
1892 		wret = btrfs_cow_block(trans, root, left,
1893 				       parent, pslot - 1, &left);
1894 		if (wret) {
1895 			ret = wret;
1896 			goto enospc;
1897 		}
1898 	}
1899 
1900 	right = btrfs_read_node_slot(parent, pslot + 1);
1901 	if (IS_ERR(right))
1902 		right = NULL;
1903 
1904 	if (right) {
1905 		btrfs_tree_lock(right);
1906 		btrfs_set_lock_blocking_write(right);
1907 		wret = btrfs_cow_block(trans, root, right,
1908 				       parent, pslot + 1, &right);
1909 		if (wret) {
1910 			ret = wret;
1911 			goto enospc;
1912 		}
1913 	}
1914 
1915 	/* first, try to make some room in the middle buffer */
1916 	if (left) {
1917 		orig_slot += btrfs_header_nritems(left);
1918 		wret = push_node_left(trans, left, mid, 1);
1919 		if (wret < 0)
1920 			ret = wret;
1921 	}
1922 
1923 	/*
1924 	 * then try to empty the right most buffer into the middle
1925 	 */
1926 	if (right) {
1927 		wret = push_node_left(trans, mid, right, 1);
1928 		if (wret < 0 && wret != -ENOSPC)
1929 			ret = wret;
1930 		if (btrfs_header_nritems(right) == 0) {
1931 			btrfs_clean_tree_block(right);
1932 			btrfs_tree_unlock(right);
1933 			del_ptr(root, path, level + 1, pslot + 1);
1934 			root_sub_used(root, right->len);
1935 			btrfs_free_tree_block(trans, root, right, 0, 1);
1936 			free_extent_buffer_stale(right);
1937 			right = NULL;
1938 		} else {
1939 			struct btrfs_disk_key right_key;
1940 			btrfs_node_key(right, &right_key, 0);
1941 			ret = tree_mod_log_insert_key(parent, pslot + 1,
1942 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
1943 			BUG_ON(ret < 0);
1944 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1945 			btrfs_mark_buffer_dirty(parent);
1946 		}
1947 	}
1948 	if (btrfs_header_nritems(mid) == 1) {
1949 		/*
1950 		 * we're not allowed to leave a node with one item in the
1951 		 * tree during a delete.  A deletion from lower in the tree
1952 		 * could try to delete the only pointer in this node.
1953 		 * So, pull some keys from the left.
1954 		 * There has to be a left pointer at this point because
1955 		 * otherwise we would have pulled some pointers from the
1956 		 * right
1957 		 */
1958 		if (!left) {
1959 			ret = -EROFS;
1960 			btrfs_handle_fs_error(fs_info, ret, NULL);
1961 			goto enospc;
1962 		}
1963 		wret = balance_node_right(trans, mid, left);
1964 		if (wret < 0) {
1965 			ret = wret;
1966 			goto enospc;
1967 		}
1968 		if (wret == 1) {
1969 			wret = push_node_left(trans, left, mid, 1);
1970 			if (wret < 0)
1971 				ret = wret;
1972 		}
1973 		BUG_ON(wret == 1);
1974 	}
1975 	if (btrfs_header_nritems(mid) == 0) {
1976 		btrfs_clean_tree_block(mid);
1977 		btrfs_tree_unlock(mid);
1978 		del_ptr(root, path, level + 1, pslot);
1979 		root_sub_used(root, mid->len);
1980 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1981 		free_extent_buffer_stale(mid);
1982 		mid = NULL;
1983 	} else {
1984 		/* update the parent key to reflect our changes */
1985 		struct btrfs_disk_key mid_key;
1986 		btrfs_node_key(mid, &mid_key, 0);
1987 		ret = tree_mod_log_insert_key(parent, pslot,
1988 				MOD_LOG_KEY_REPLACE, GFP_NOFS);
1989 		BUG_ON(ret < 0);
1990 		btrfs_set_node_key(parent, &mid_key, pslot);
1991 		btrfs_mark_buffer_dirty(parent);
1992 	}
1993 
1994 	/* update the path */
1995 	if (left) {
1996 		if (btrfs_header_nritems(left) > orig_slot) {
1997 			atomic_inc(&left->refs);
1998 			/* left was locked after cow */
1999 			path->nodes[level] = left;
2000 			path->slots[level + 1] -= 1;
2001 			path->slots[level] = orig_slot;
2002 			if (mid) {
2003 				btrfs_tree_unlock(mid);
2004 				free_extent_buffer(mid);
2005 			}
2006 		} else {
2007 			orig_slot -= btrfs_header_nritems(left);
2008 			path->slots[level] = orig_slot;
2009 		}
2010 	}
2011 	/* double check we haven't messed things up */
2012 	if (orig_ptr !=
2013 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2014 		BUG();
2015 enospc:
2016 	if (right) {
2017 		btrfs_tree_unlock(right);
2018 		free_extent_buffer(right);
2019 	}
2020 	if (left) {
2021 		if (path->nodes[level] != left)
2022 			btrfs_tree_unlock(left);
2023 		free_extent_buffer(left);
2024 	}
2025 	return ret;
2026 }
2027 
2028 /* Node balancing for insertion.  Here we only split or push nodes around
2029  * when they are completely full.  This is also done top down, so we
2030  * have to be pessimistic.
2031  */
2032 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2033 					  struct btrfs_root *root,
2034 					  struct btrfs_path *path, int level)
2035 {
2036 	struct btrfs_fs_info *fs_info = root->fs_info;
2037 	struct extent_buffer *right = NULL;
2038 	struct extent_buffer *mid;
2039 	struct extent_buffer *left = NULL;
2040 	struct extent_buffer *parent = NULL;
2041 	int ret = 0;
2042 	int wret;
2043 	int pslot;
2044 	int orig_slot = path->slots[level];
2045 
2046 	if (level == 0)
2047 		return 1;
2048 
2049 	mid = path->nodes[level];
2050 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
2051 
2052 	if (level < BTRFS_MAX_LEVEL - 1) {
2053 		parent = path->nodes[level + 1];
2054 		pslot = path->slots[level + 1];
2055 	}
2056 
2057 	if (!parent)
2058 		return 1;
2059 
2060 	left = btrfs_read_node_slot(parent, pslot - 1);
2061 	if (IS_ERR(left))
2062 		left = NULL;
2063 
2064 	/* first, try to make some room in the middle buffer */
2065 	if (left) {
2066 		u32 left_nr;
2067 
2068 		btrfs_tree_lock(left);
2069 		btrfs_set_lock_blocking_write(left);
2070 
2071 		left_nr = btrfs_header_nritems(left);
2072 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2073 			wret = 1;
2074 		} else {
2075 			ret = btrfs_cow_block(trans, root, left, parent,
2076 					      pslot - 1, &left);
2077 			if (ret)
2078 				wret = 1;
2079 			else {
2080 				wret = push_node_left(trans, left, mid, 0);
2081 			}
2082 		}
2083 		if (wret < 0)
2084 			ret = wret;
2085 		if (wret == 0) {
2086 			struct btrfs_disk_key disk_key;
2087 			orig_slot += left_nr;
2088 			btrfs_node_key(mid, &disk_key, 0);
2089 			ret = tree_mod_log_insert_key(parent, pslot,
2090 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2091 			BUG_ON(ret < 0);
2092 			btrfs_set_node_key(parent, &disk_key, pslot);
2093 			btrfs_mark_buffer_dirty(parent);
2094 			if (btrfs_header_nritems(left) > orig_slot) {
2095 				path->nodes[level] = left;
2096 				path->slots[level + 1] -= 1;
2097 				path->slots[level] = orig_slot;
2098 				btrfs_tree_unlock(mid);
2099 				free_extent_buffer(mid);
2100 			} else {
2101 				orig_slot -=
2102 					btrfs_header_nritems(left);
2103 				path->slots[level] = orig_slot;
2104 				btrfs_tree_unlock(left);
2105 				free_extent_buffer(left);
2106 			}
2107 			return 0;
2108 		}
2109 		btrfs_tree_unlock(left);
2110 		free_extent_buffer(left);
2111 	}
2112 	right = btrfs_read_node_slot(parent, pslot + 1);
2113 	if (IS_ERR(right))
2114 		right = NULL;
2115 
2116 	/*
2117 	 * then try to empty the right most buffer into the middle
2118 	 */
2119 	if (right) {
2120 		u32 right_nr;
2121 
2122 		btrfs_tree_lock(right);
2123 		btrfs_set_lock_blocking_write(right);
2124 
2125 		right_nr = btrfs_header_nritems(right);
2126 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
2127 			wret = 1;
2128 		} else {
2129 			ret = btrfs_cow_block(trans, root, right,
2130 					      parent, pslot + 1,
2131 					      &right);
2132 			if (ret)
2133 				wret = 1;
2134 			else {
2135 				wret = balance_node_right(trans, right, mid);
2136 			}
2137 		}
2138 		if (wret < 0)
2139 			ret = wret;
2140 		if (wret == 0) {
2141 			struct btrfs_disk_key disk_key;
2142 
2143 			btrfs_node_key(right, &disk_key, 0);
2144 			ret = tree_mod_log_insert_key(parent, pslot + 1,
2145 					MOD_LOG_KEY_REPLACE, GFP_NOFS);
2146 			BUG_ON(ret < 0);
2147 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2148 			btrfs_mark_buffer_dirty(parent);
2149 
2150 			if (btrfs_header_nritems(mid) <= orig_slot) {
2151 				path->nodes[level] = right;
2152 				path->slots[level + 1] += 1;
2153 				path->slots[level] = orig_slot -
2154 					btrfs_header_nritems(mid);
2155 				btrfs_tree_unlock(mid);
2156 				free_extent_buffer(mid);
2157 			} else {
2158 				btrfs_tree_unlock(right);
2159 				free_extent_buffer(right);
2160 			}
2161 			return 0;
2162 		}
2163 		btrfs_tree_unlock(right);
2164 		free_extent_buffer(right);
2165 	}
2166 	return 1;
2167 }
2168 
2169 /*
2170  * readahead one full node of leaves, finding things that are close
2171  * to the block in 'slot', and triggering ra on them.
2172  */
2173 static void reada_for_search(struct btrfs_fs_info *fs_info,
2174 			     struct btrfs_path *path,
2175 			     int level, int slot, u64 objectid)
2176 {
2177 	struct extent_buffer *node;
2178 	struct btrfs_disk_key disk_key;
2179 	u32 nritems;
2180 	u64 search;
2181 	u64 target;
2182 	u64 nread = 0;
2183 	struct extent_buffer *eb;
2184 	u32 nr;
2185 	u32 blocksize;
2186 	u32 nscan = 0;
2187 
2188 	if (level != 1)
2189 		return;
2190 
2191 	if (!path->nodes[level])
2192 		return;
2193 
2194 	node = path->nodes[level];
2195 
2196 	search = btrfs_node_blockptr(node, slot);
2197 	blocksize = fs_info->nodesize;
2198 	eb = find_extent_buffer(fs_info, search);
2199 	if (eb) {
2200 		free_extent_buffer(eb);
2201 		return;
2202 	}
2203 
2204 	target = search;
2205 
2206 	nritems = btrfs_header_nritems(node);
2207 	nr = slot;
2208 
2209 	while (1) {
2210 		if (path->reada == READA_BACK) {
2211 			if (nr == 0)
2212 				break;
2213 			nr--;
2214 		} else if (path->reada == READA_FORWARD) {
2215 			nr++;
2216 			if (nr >= nritems)
2217 				break;
2218 		}
2219 		if (path->reada == READA_BACK && objectid) {
2220 			btrfs_node_key(node, &disk_key, nr);
2221 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2222 				break;
2223 		}
2224 		search = btrfs_node_blockptr(node, nr);
2225 		if ((search <= target && target - search <= 65536) ||
2226 		    (search > target && search - target <= 65536)) {
2227 			readahead_tree_block(fs_info, search);
2228 			nread += blocksize;
2229 		}
2230 		nscan++;
2231 		if ((nread > 65536 || nscan > 32))
2232 			break;
2233 	}
2234 }
2235 
2236 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info,
2237 				       struct btrfs_path *path, int level)
2238 {
2239 	int slot;
2240 	int nritems;
2241 	struct extent_buffer *parent;
2242 	struct extent_buffer *eb;
2243 	u64 gen;
2244 	u64 block1 = 0;
2245 	u64 block2 = 0;
2246 
2247 	parent = path->nodes[level + 1];
2248 	if (!parent)
2249 		return;
2250 
2251 	nritems = btrfs_header_nritems(parent);
2252 	slot = path->slots[level + 1];
2253 
2254 	if (slot > 0) {
2255 		block1 = btrfs_node_blockptr(parent, slot - 1);
2256 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2257 		eb = find_extent_buffer(fs_info, block1);
2258 		/*
2259 		 * if we get -eagain from btrfs_buffer_uptodate, we
2260 		 * don't want to return eagain here.  That will loop
2261 		 * forever
2262 		 */
2263 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2264 			block1 = 0;
2265 		free_extent_buffer(eb);
2266 	}
2267 	if (slot + 1 < nritems) {
2268 		block2 = btrfs_node_blockptr(parent, slot + 1);
2269 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2270 		eb = find_extent_buffer(fs_info, block2);
2271 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2272 			block2 = 0;
2273 		free_extent_buffer(eb);
2274 	}
2275 
2276 	if (block1)
2277 		readahead_tree_block(fs_info, block1);
2278 	if (block2)
2279 		readahead_tree_block(fs_info, block2);
2280 }
2281 
2282 
2283 /*
2284  * when we walk down the tree, it is usually safe to unlock the higher layers
2285  * in the tree.  The exceptions are when our path goes through slot 0, because
2286  * operations on the tree might require changing key pointers higher up in the
2287  * tree.
2288  *
2289  * callers might also have set path->keep_locks, which tells this code to keep
2290  * the lock if the path points to the last slot in the block.  This is part of
2291  * walking through the tree, and selecting the next slot in the higher block.
2292  *
2293  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2294  * if lowest_unlock is 1, level 0 won't be unlocked
2295  */
2296 static noinline void unlock_up(struct btrfs_path *path, int level,
2297 			       int lowest_unlock, int min_write_lock_level,
2298 			       int *write_lock_level)
2299 {
2300 	int i;
2301 	int skip_level = level;
2302 	int no_skips = 0;
2303 	struct extent_buffer *t;
2304 
2305 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2306 		if (!path->nodes[i])
2307 			break;
2308 		if (!path->locks[i])
2309 			break;
2310 		if (!no_skips && path->slots[i] == 0) {
2311 			skip_level = i + 1;
2312 			continue;
2313 		}
2314 		if (!no_skips && path->keep_locks) {
2315 			u32 nritems;
2316 			t = path->nodes[i];
2317 			nritems = btrfs_header_nritems(t);
2318 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2319 				skip_level = i + 1;
2320 				continue;
2321 			}
2322 		}
2323 		if (skip_level < i && i >= lowest_unlock)
2324 			no_skips = 1;
2325 
2326 		t = path->nodes[i];
2327 		if (i >= lowest_unlock && i > skip_level) {
2328 			btrfs_tree_unlock_rw(t, path->locks[i]);
2329 			path->locks[i] = 0;
2330 			if (write_lock_level &&
2331 			    i > min_write_lock_level &&
2332 			    i <= *write_lock_level) {
2333 				*write_lock_level = i - 1;
2334 			}
2335 		}
2336 	}
2337 }
2338 
2339 /*
2340  * helper function for btrfs_search_slot.  The goal is to find a block
2341  * in cache without setting the path to blocking.  If we find the block
2342  * we return zero and the path is unchanged.
2343  *
2344  * If we can't find the block, we set the path blocking and do some
2345  * reada.  -EAGAIN is returned and the search must be repeated.
2346  */
2347 static int
2348 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
2349 		      struct extent_buffer **eb_ret, int level, int slot,
2350 		      const struct btrfs_key *key)
2351 {
2352 	struct btrfs_fs_info *fs_info = root->fs_info;
2353 	u64 blocknr;
2354 	u64 gen;
2355 	struct extent_buffer *tmp;
2356 	struct btrfs_key first_key;
2357 	int ret;
2358 	int parent_level;
2359 
2360 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
2361 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
2362 	parent_level = btrfs_header_level(*eb_ret);
2363 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
2364 
2365 	tmp = find_extent_buffer(fs_info, blocknr);
2366 	if (tmp) {
2367 		/* first we do an atomic uptodate check */
2368 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2369 			/*
2370 			 * Do extra check for first_key, eb can be stale due to
2371 			 * being cached, read from scrub, or have multiple
2372 			 * parents (shared tree blocks).
2373 			 */
2374 			if (btrfs_verify_level_key(tmp,
2375 					parent_level - 1, &first_key, gen)) {
2376 				free_extent_buffer(tmp);
2377 				return -EUCLEAN;
2378 			}
2379 			*eb_ret = tmp;
2380 			return 0;
2381 		}
2382 
2383 		/* the pages were up to date, but we failed
2384 		 * the generation number check.  Do a full
2385 		 * read for the generation number that is correct.
2386 		 * We must do this without dropping locks so
2387 		 * we can trust our generation number
2388 		 */
2389 		btrfs_set_path_blocking(p);
2390 
2391 		/* now we're allowed to do a blocking uptodate check */
2392 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
2393 		if (!ret) {
2394 			*eb_ret = tmp;
2395 			return 0;
2396 		}
2397 		free_extent_buffer(tmp);
2398 		btrfs_release_path(p);
2399 		return -EIO;
2400 	}
2401 
2402 	/*
2403 	 * reduce lock contention at high levels
2404 	 * of the btree by dropping locks before
2405 	 * we read.  Don't release the lock on the current
2406 	 * level because we need to walk this node to figure
2407 	 * out which blocks to read.
2408 	 */
2409 	btrfs_unlock_up_safe(p, level + 1);
2410 	btrfs_set_path_blocking(p);
2411 
2412 	if (p->reada != READA_NONE)
2413 		reada_for_search(fs_info, p, level, slot, key->objectid);
2414 
2415 	ret = -EAGAIN;
2416 	tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1,
2417 			      &first_key);
2418 	if (!IS_ERR(tmp)) {
2419 		/*
2420 		 * If the read above didn't mark this buffer up to date,
2421 		 * it will never end up being up to date.  Set ret to EIO now
2422 		 * and give up so that our caller doesn't loop forever
2423 		 * on our EAGAINs.
2424 		 */
2425 		if (!extent_buffer_uptodate(tmp))
2426 			ret = -EIO;
2427 		free_extent_buffer(tmp);
2428 	} else {
2429 		ret = PTR_ERR(tmp);
2430 	}
2431 
2432 	btrfs_release_path(p);
2433 	return ret;
2434 }
2435 
2436 /*
2437  * helper function for btrfs_search_slot.  This does all of the checks
2438  * for node-level blocks and does any balancing required based on
2439  * the ins_len.
2440  *
2441  * If no extra work was required, zero is returned.  If we had to
2442  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2443  * start over
2444  */
2445 static int
2446 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2447 		       struct btrfs_root *root, struct btrfs_path *p,
2448 		       struct extent_buffer *b, int level, int ins_len,
2449 		       int *write_lock_level)
2450 {
2451 	struct btrfs_fs_info *fs_info = root->fs_info;
2452 	int ret;
2453 
2454 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2455 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
2456 		int sret;
2457 
2458 		if (*write_lock_level < level + 1) {
2459 			*write_lock_level = level + 1;
2460 			btrfs_release_path(p);
2461 			goto again;
2462 		}
2463 
2464 		btrfs_set_path_blocking(p);
2465 		reada_for_balance(fs_info, p, level);
2466 		sret = split_node(trans, root, p, level);
2467 
2468 		BUG_ON(sret > 0);
2469 		if (sret) {
2470 			ret = sret;
2471 			goto done;
2472 		}
2473 		b = p->nodes[level];
2474 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2475 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
2476 		int sret;
2477 
2478 		if (*write_lock_level < level + 1) {
2479 			*write_lock_level = level + 1;
2480 			btrfs_release_path(p);
2481 			goto again;
2482 		}
2483 
2484 		btrfs_set_path_blocking(p);
2485 		reada_for_balance(fs_info, p, level);
2486 		sret = balance_level(trans, root, p, level);
2487 
2488 		if (sret) {
2489 			ret = sret;
2490 			goto done;
2491 		}
2492 		b = p->nodes[level];
2493 		if (!b) {
2494 			btrfs_release_path(p);
2495 			goto again;
2496 		}
2497 		BUG_ON(btrfs_header_nritems(b) == 1);
2498 	}
2499 	return 0;
2500 
2501 again:
2502 	ret = -EAGAIN;
2503 done:
2504 	return ret;
2505 }
2506 
2507 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2508 		u64 iobjectid, u64 ioff, u8 key_type,
2509 		struct btrfs_key *found_key)
2510 {
2511 	int ret;
2512 	struct btrfs_key key;
2513 	struct extent_buffer *eb;
2514 
2515 	ASSERT(path);
2516 	ASSERT(found_key);
2517 
2518 	key.type = key_type;
2519 	key.objectid = iobjectid;
2520 	key.offset = ioff;
2521 
2522 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2523 	if (ret < 0)
2524 		return ret;
2525 
2526 	eb = path->nodes[0];
2527 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2528 		ret = btrfs_next_leaf(fs_root, path);
2529 		if (ret)
2530 			return ret;
2531 		eb = path->nodes[0];
2532 	}
2533 
2534 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2535 	if (found_key->type != key.type ||
2536 			found_key->objectid != key.objectid)
2537 		return 1;
2538 
2539 	return 0;
2540 }
2541 
2542 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
2543 							struct btrfs_path *p,
2544 							int write_lock_level)
2545 {
2546 	struct btrfs_fs_info *fs_info = root->fs_info;
2547 	struct extent_buffer *b;
2548 	int root_lock;
2549 	int level = 0;
2550 
2551 	/* We try very hard to do read locks on the root */
2552 	root_lock = BTRFS_READ_LOCK;
2553 
2554 	if (p->search_commit_root) {
2555 		/*
2556 		 * The commit roots are read only so we always do read locks,
2557 		 * and we always must hold the commit_root_sem when doing
2558 		 * searches on them, the only exception is send where we don't
2559 		 * want to block transaction commits for a long time, so
2560 		 * we need to clone the commit root in order to avoid races
2561 		 * with transaction commits that create a snapshot of one of
2562 		 * the roots used by a send operation.
2563 		 */
2564 		if (p->need_commit_sem) {
2565 			down_read(&fs_info->commit_root_sem);
2566 			b = btrfs_clone_extent_buffer(root->commit_root);
2567 			up_read(&fs_info->commit_root_sem);
2568 			if (!b)
2569 				return ERR_PTR(-ENOMEM);
2570 
2571 		} else {
2572 			b = root->commit_root;
2573 			atomic_inc(&b->refs);
2574 		}
2575 		level = btrfs_header_level(b);
2576 		/*
2577 		 * Ensure that all callers have set skip_locking when
2578 		 * p->search_commit_root = 1.
2579 		 */
2580 		ASSERT(p->skip_locking == 1);
2581 
2582 		goto out;
2583 	}
2584 
2585 	if (p->skip_locking) {
2586 		b = btrfs_root_node(root);
2587 		level = btrfs_header_level(b);
2588 		goto out;
2589 	}
2590 
2591 	/*
2592 	 * If the level is set to maximum, we can skip trying to get the read
2593 	 * lock.
2594 	 */
2595 	if (write_lock_level < BTRFS_MAX_LEVEL) {
2596 		/*
2597 		 * We don't know the level of the root node until we actually
2598 		 * have it read locked
2599 		 */
2600 		b = btrfs_read_lock_root_node(root);
2601 		level = btrfs_header_level(b);
2602 		if (level > write_lock_level)
2603 			goto out;
2604 
2605 		/* Whoops, must trade for write lock */
2606 		btrfs_tree_read_unlock(b);
2607 		free_extent_buffer(b);
2608 	}
2609 
2610 	b = btrfs_lock_root_node(root);
2611 	root_lock = BTRFS_WRITE_LOCK;
2612 
2613 	/* The level might have changed, check again */
2614 	level = btrfs_header_level(b);
2615 
2616 out:
2617 	p->nodes[level] = b;
2618 	if (!p->skip_locking)
2619 		p->locks[level] = root_lock;
2620 	/*
2621 	 * Callers are responsible for dropping b's references.
2622 	 */
2623 	return b;
2624 }
2625 
2626 
2627 /*
2628  * btrfs_search_slot - look for a key in a tree and perform necessary
2629  * modifications to preserve tree invariants.
2630  *
2631  * @trans:	Handle of transaction, used when modifying the tree
2632  * @p:		Holds all btree nodes along the search path
2633  * @root:	The root node of the tree
2634  * @key:	The key we are looking for
2635  * @ins_len:	Indicates purpose of search, for inserts it is 1, for
2636  *		deletions it's -1. 0 for plain searches
2637  * @cow:	boolean should CoW operations be performed. Must always be 1
2638  *		when modifying the tree.
2639  *
2640  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
2641  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
2642  *
2643  * If @key is found, 0 is returned and you can find the item in the leaf level
2644  * of the path (level 0)
2645  *
2646  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
2647  * points to the slot where it should be inserted
2648  *
2649  * If an error is encountered while searching the tree a negative error number
2650  * is returned
2651  */
2652 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2653 		      const struct btrfs_key *key, struct btrfs_path *p,
2654 		      int ins_len, int cow)
2655 {
2656 	struct extent_buffer *b;
2657 	int slot;
2658 	int ret;
2659 	int err;
2660 	int level;
2661 	int lowest_unlock = 1;
2662 	/* everything at write_lock_level or lower must be write locked */
2663 	int write_lock_level = 0;
2664 	u8 lowest_level = 0;
2665 	int min_write_lock_level;
2666 	int prev_cmp;
2667 
2668 	lowest_level = p->lowest_level;
2669 	WARN_ON(lowest_level && ins_len > 0);
2670 	WARN_ON(p->nodes[0] != NULL);
2671 	BUG_ON(!cow && ins_len);
2672 
2673 	if (ins_len < 0) {
2674 		lowest_unlock = 2;
2675 
2676 		/* when we are removing items, we might have to go up to level
2677 		 * two as we update tree pointers  Make sure we keep write
2678 		 * for those levels as well
2679 		 */
2680 		write_lock_level = 2;
2681 	} else if (ins_len > 0) {
2682 		/*
2683 		 * for inserting items, make sure we have a write lock on
2684 		 * level 1 so we can update keys
2685 		 */
2686 		write_lock_level = 1;
2687 	}
2688 
2689 	if (!cow)
2690 		write_lock_level = -1;
2691 
2692 	if (cow && (p->keep_locks || p->lowest_level))
2693 		write_lock_level = BTRFS_MAX_LEVEL;
2694 
2695 	min_write_lock_level = write_lock_level;
2696 
2697 again:
2698 	prev_cmp = -1;
2699 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
2700 	if (IS_ERR(b)) {
2701 		ret = PTR_ERR(b);
2702 		goto done;
2703 	}
2704 
2705 	while (b) {
2706 		int dec = 0;
2707 
2708 		level = btrfs_header_level(b);
2709 
2710 		if (cow) {
2711 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
2712 
2713 			/*
2714 			 * if we don't really need to cow this block
2715 			 * then we don't want to set the path blocking,
2716 			 * so we test it here
2717 			 */
2718 			if (!should_cow_block(trans, root, b)) {
2719 				trans->dirty = true;
2720 				goto cow_done;
2721 			}
2722 
2723 			/*
2724 			 * must have write locks on this node and the
2725 			 * parent
2726 			 */
2727 			if (level > write_lock_level ||
2728 			    (level + 1 > write_lock_level &&
2729 			    level + 1 < BTRFS_MAX_LEVEL &&
2730 			    p->nodes[level + 1])) {
2731 				write_lock_level = level + 1;
2732 				btrfs_release_path(p);
2733 				goto again;
2734 			}
2735 
2736 			btrfs_set_path_blocking(p);
2737 			if (last_level)
2738 				err = btrfs_cow_block(trans, root, b, NULL, 0,
2739 						      &b);
2740 			else
2741 				err = btrfs_cow_block(trans, root, b,
2742 						      p->nodes[level + 1],
2743 						      p->slots[level + 1], &b);
2744 			if (err) {
2745 				ret = err;
2746 				goto done;
2747 			}
2748 		}
2749 cow_done:
2750 		p->nodes[level] = b;
2751 		/*
2752 		 * Leave path with blocking locks to avoid massive
2753 		 * lock context switch, this is made on purpose.
2754 		 */
2755 
2756 		/*
2757 		 * we have a lock on b and as long as we aren't changing
2758 		 * the tree, there is no way to for the items in b to change.
2759 		 * It is safe to drop the lock on our parent before we
2760 		 * go through the expensive btree search on b.
2761 		 *
2762 		 * If we're inserting or deleting (ins_len != 0), then we might
2763 		 * be changing slot zero, which may require changing the parent.
2764 		 * So, we can't drop the lock until after we know which slot
2765 		 * we're operating on.
2766 		 */
2767 		if (!ins_len && !p->keep_locks) {
2768 			int u = level + 1;
2769 
2770 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2771 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2772 				p->locks[u] = 0;
2773 			}
2774 		}
2775 
2776 		/*
2777 		 * If btrfs_bin_search returns an exact match (prev_cmp == 0)
2778 		 * we can safely assume the target key will always be in slot 0
2779 		 * on lower levels due to the invariants BTRFS' btree provides,
2780 		 * namely that a btrfs_key_ptr entry always points to the
2781 		 * lowest key in the child node, thus we can skip searching
2782 		 * lower levels
2783 		 */
2784 		if (prev_cmp == 0) {
2785 			slot = 0;
2786 			ret = 0;
2787 		} else {
2788 			ret = btrfs_bin_search(b, key, &slot);
2789 			prev_cmp = ret;
2790 			if (ret < 0)
2791 				goto done;
2792 		}
2793 
2794 		if (level == 0) {
2795 			p->slots[level] = slot;
2796 			if (ins_len > 0 &&
2797 			    btrfs_leaf_free_space(b) < ins_len) {
2798 				if (write_lock_level < 1) {
2799 					write_lock_level = 1;
2800 					btrfs_release_path(p);
2801 					goto again;
2802 				}
2803 
2804 				btrfs_set_path_blocking(p);
2805 				err = split_leaf(trans, root, key,
2806 						 p, ins_len, ret == 0);
2807 
2808 				BUG_ON(err > 0);
2809 				if (err) {
2810 					ret = err;
2811 					goto done;
2812 				}
2813 			}
2814 			if (!p->search_for_split)
2815 				unlock_up(p, level, lowest_unlock,
2816 					  min_write_lock_level, NULL);
2817 			goto done;
2818 		}
2819 		if (ret && slot > 0) {
2820 			dec = 1;
2821 			slot--;
2822 		}
2823 		p->slots[level] = slot;
2824 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2825 					     &write_lock_level);
2826 		if (err == -EAGAIN)
2827 			goto again;
2828 		if (err) {
2829 			ret = err;
2830 			goto done;
2831 		}
2832 		b = p->nodes[level];
2833 		slot = p->slots[level];
2834 
2835 		/*
2836 		 * Slot 0 is special, if we change the key we have to update
2837 		 * the parent pointer which means we must have a write lock on
2838 		 * the parent
2839 		 */
2840 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2841 			write_lock_level = level + 1;
2842 			btrfs_release_path(p);
2843 			goto again;
2844 		}
2845 
2846 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2847 			  &write_lock_level);
2848 
2849 		if (level == lowest_level) {
2850 			if (dec)
2851 				p->slots[level]++;
2852 			goto done;
2853 		}
2854 
2855 		err = read_block_for_search(root, p, &b, level, slot, key);
2856 		if (err == -EAGAIN)
2857 			goto again;
2858 		if (err) {
2859 			ret = err;
2860 			goto done;
2861 		}
2862 
2863 		if (!p->skip_locking) {
2864 			level = btrfs_header_level(b);
2865 			if (level <= write_lock_level) {
2866 				if (!btrfs_try_tree_write_lock(b)) {
2867 					btrfs_set_path_blocking(p);
2868 					btrfs_tree_lock(b);
2869 				}
2870 				p->locks[level] = BTRFS_WRITE_LOCK;
2871 			} else {
2872 				if (!btrfs_tree_read_lock_atomic(b)) {
2873 					btrfs_set_path_blocking(p);
2874 					btrfs_tree_read_lock(b);
2875 				}
2876 				p->locks[level] = BTRFS_READ_LOCK;
2877 			}
2878 			p->nodes[level] = b;
2879 		}
2880 	}
2881 	ret = 1;
2882 done:
2883 	/*
2884 	 * we don't really know what they plan on doing with the path
2885 	 * from here on, so for now just mark it as blocking
2886 	 */
2887 	if (!p->leave_spinning)
2888 		btrfs_set_path_blocking(p);
2889 	if (ret < 0 && !p->skip_release_on_error)
2890 		btrfs_release_path(p);
2891 	return ret;
2892 }
2893 
2894 /*
2895  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2896  * current state of the tree together with the operations recorded in the tree
2897  * modification log to search for the key in a previous version of this tree, as
2898  * denoted by the time_seq parameter.
2899  *
2900  * Naturally, there is no support for insert, delete or cow operations.
2901  *
2902  * The resulting path and return value will be set up as if we called
2903  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2904  */
2905 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2906 			  struct btrfs_path *p, u64 time_seq)
2907 {
2908 	struct btrfs_fs_info *fs_info = root->fs_info;
2909 	struct extent_buffer *b;
2910 	int slot;
2911 	int ret;
2912 	int err;
2913 	int level;
2914 	int lowest_unlock = 1;
2915 	u8 lowest_level = 0;
2916 
2917 	lowest_level = p->lowest_level;
2918 	WARN_ON(p->nodes[0] != NULL);
2919 
2920 	if (p->search_commit_root) {
2921 		BUG_ON(time_seq);
2922 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2923 	}
2924 
2925 again:
2926 	b = get_old_root(root, time_seq);
2927 	if (!b) {
2928 		ret = -EIO;
2929 		goto done;
2930 	}
2931 	level = btrfs_header_level(b);
2932 	p->locks[level] = BTRFS_READ_LOCK;
2933 
2934 	while (b) {
2935 		int dec = 0;
2936 
2937 		level = btrfs_header_level(b);
2938 		p->nodes[level] = b;
2939 
2940 		/*
2941 		 * we have a lock on b and as long as we aren't changing
2942 		 * the tree, there is no way to for the items in b to change.
2943 		 * It is safe to drop the lock on our parent before we
2944 		 * go through the expensive btree search on b.
2945 		 */
2946 		btrfs_unlock_up_safe(p, level + 1);
2947 
2948 		ret = btrfs_bin_search(b, key, &slot);
2949 		if (ret < 0)
2950 			goto done;
2951 
2952 		if (level == 0) {
2953 			p->slots[level] = slot;
2954 			unlock_up(p, level, lowest_unlock, 0, NULL);
2955 			goto done;
2956 		}
2957 
2958 		if (ret && slot > 0) {
2959 			dec = 1;
2960 			slot--;
2961 		}
2962 		p->slots[level] = slot;
2963 		unlock_up(p, level, lowest_unlock, 0, NULL);
2964 
2965 		if (level == lowest_level) {
2966 			if (dec)
2967 				p->slots[level]++;
2968 			goto done;
2969 		}
2970 
2971 		err = read_block_for_search(root, p, &b, level, slot, key);
2972 		if (err == -EAGAIN)
2973 			goto again;
2974 		if (err) {
2975 			ret = err;
2976 			goto done;
2977 		}
2978 
2979 		level = btrfs_header_level(b);
2980 		if (!btrfs_tree_read_lock_atomic(b)) {
2981 			btrfs_set_path_blocking(p);
2982 			btrfs_tree_read_lock(b);
2983 		}
2984 		b = tree_mod_log_rewind(fs_info, p, b, time_seq);
2985 		if (!b) {
2986 			ret = -ENOMEM;
2987 			goto done;
2988 		}
2989 		p->locks[level] = BTRFS_READ_LOCK;
2990 		p->nodes[level] = b;
2991 	}
2992 	ret = 1;
2993 done:
2994 	if (!p->leave_spinning)
2995 		btrfs_set_path_blocking(p);
2996 	if (ret < 0)
2997 		btrfs_release_path(p);
2998 
2999 	return ret;
3000 }
3001 
3002 /*
3003  * helper to use instead of search slot if no exact match is needed but
3004  * instead the next or previous item should be returned.
3005  * When find_higher is true, the next higher item is returned, the next lower
3006  * otherwise.
3007  * When return_any and find_higher are both true, and no higher item is found,
3008  * return the next lower instead.
3009  * When return_any is true and find_higher is false, and no lower item is found,
3010  * return the next higher instead.
3011  * It returns 0 if any item is found, 1 if none is found (tree empty), and
3012  * < 0 on error
3013  */
3014 int btrfs_search_slot_for_read(struct btrfs_root *root,
3015 			       const struct btrfs_key *key,
3016 			       struct btrfs_path *p, int find_higher,
3017 			       int return_any)
3018 {
3019 	int ret;
3020 	struct extent_buffer *leaf;
3021 
3022 again:
3023 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3024 	if (ret <= 0)
3025 		return ret;
3026 	/*
3027 	 * a return value of 1 means the path is at the position where the
3028 	 * item should be inserted. Normally this is the next bigger item,
3029 	 * but in case the previous item is the last in a leaf, path points
3030 	 * to the first free slot in the previous leaf, i.e. at an invalid
3031 	 * item.
3032 	 */
3033 	leaf = p->nodes[0];
3034 
3035 	if (find_higher) {
3036 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3037 			ret = btrfs_next_leaf(root, p);
3038 			if (ret <= 0)
3039 				return ret;
3040 			if (!return_any)
3041 				return 1;
3042 			/*
3043 			 * no higher item found, return the next
3044 			 * lower instead
3045 			 */
3046 			return_any = 0;
3047 			find_higher = 0;
3048 			btrfs_release_path(p);
3049 			goto again;
3050 		}
3051 	} else {
3052 		if (p->slots[0] == 0) {
3053 			ret = btrfs_prev_leaf(root, p);
3054 			if (ret < 0)
3055 				return ret;
3056 			if (!ret) {
3057 				leaf = p->nodes[0];
3058 				if (p->slots[0] == btrfs_header_nritems(leaf))
3059 					p->slots[0]--;
3060 				return 0;
3061 			}
3062 			if (!return_any)
3063 				return 1;
3064 			/*
3065 			 * no lower item found, return the next
3066 			 * higher instead
3067 			 */
3068 			return_any = 0;
3069 			find_higher = 1;
3070 			btrfs_release_path(p);
3071 			goto again;
3072 		} else {
3073 			--p->slots[0];
3074 		}
3075 	}
3076 	return 0;
3077 }
3078 
3079 /*
3080  * adjust the pointers going up the tree, starting at level
3081  * making sure the right key of each node is points to 'key'.
3082  * This is used after shifting pointers to the left, so it stops
3083  * fixing up pointers when a given leaf/node is not in slot 0 of the
3084  * higher levels
3085  *
3086  */
3087 static void fixup_low_keys(struct btrfs_path *path,
3088 			   struct btrfs_disk_key *key, int level)
3089 {
3090 	int i;
3091 	struct extent_buffer *t;
3092 	int ret;
3093 
3094 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3095 		int tslot = path->slots[i];
3096 
3097 		if (!path->nodes[i])
3098 			break;
3099 		t = path->nodes[i];
3100 		ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE,
3101 				GFP_ATOMIC);
3102 		BUG_ON(ret < 0);
3103 		btrfs_set_node_key(t, key, tslot);
3104 		btrfs_mark_buffer_dirty(path->nodes[i]);
3105 		if (tslot != 0)
3106 			break;
3107 	}
3108 }
3109 
3110 /*
3111  * update item key.
3112  *
3113  * This function isn't completely safe. It's the caller's responsibility
3114  * that the new key won't break the order
3115  */
3116 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3117 			     struct btrfs_path *path,
3118 			     const struct btrfs_key *new_key)
3119 {
3120 	struct btrfs_disk_key disk_key;
3121 	struct extent_buffer *eb;
3122 	int slot;
3123 
3124 	eb = path->nodes[0];
3125 	slot = path->slots[0];
3126 	if (slot > 0) {
3127 		btrfs_item_key(eb, &disk_key, slot - 1);
3128 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
3129 			btrfs_crit(fs_info,
3130 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3131 				   slot, btrfs_disk_key_objectid(&disk_key),
3132 				   btrfs_disk_key_type(&disk_key),
3133 				   btrfs_disk_key_offset(&disk_key),
3134 				   new_key->objectid, new_key->type,
3135 				   new_key->offset);
3136 			btrfs_print_leaf(eb);
3137 			BUG();
3138 		}
3139 	}
3140 	if (slot < btrfs_header_nritems(eb) - 1) {
3141 		btrfs_item_key(eb, &disk_key, slot + 1);
3142 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
3143 			btrfs_crit(fs_info,
3144 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
3145 				   slot, btrfs_disk_key_objectid(&disk_key),
3146 				   btrfs_disk_key_type(&disk_key),
3147 				   btrfs_disk_key_offset(&disk_key),
3148 				   new_key->objectid, new_key->type,
3149 				   new_key->offset);
3150 			btrfs_print_leaf(eb);
3151 			BUG();
3152 		}
3153 	}
3154 
3155 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3156 	btrfs_set_item_key(eb, &disk_key, slot);
3157 	btrfs_mark_buffer_dirty(eb);
3158 	if (slot == 0)
3159 		fixup_low_keys(path, &disk_key, 1);
3160 }
3161 
3162 /*
3163  * try to push data from one node into the next node left in the
3164  * tree.
3165  *
3166  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3167  * error, and > 0 if there was no room in the left hand block.
3168  */
3169 static int push_node_left(struct btrfs_trans_handle *trans,
3170 			  struct extent_buffer *dst,
3171 			  struct extent_buffer *src, int empty)
3172 {
3173 	struct btrfs_fs_info *fs_info = trans->fs_info;
3174 	int push_items = 0;
3175 	int src_nritems;
3176 	int dst_nritems;
3177 	int ret = 0;
3178 
3179 	src_nritems = btrfs_header_nritems(src);
3180 	dst_nritems = btrfs_header_nritems(dst);
3181 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3182 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3183 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3184 
3185 	if (!empty && src_nritems <= 8)
3186 		return 1;
3187 
3188 	if (push_items <= 0)
3189 		return 1;
3190 
3191 	if (empty) {
3192 		push_items = min(src_nritems, push_items);
3193 		if (push_items < src_nritems) {
3194 			/* leave at least 8 pointers in the node if
3195 			 * we aren't going to empty it
3196 			 */
3197 			if (src_nritems - push_items < 8) {
3198 				if (push_items <= 8)
3199 					return 1;
3200 				push_items -= 8;
3201 			}
3202 		}
3203 	} else
3204 		push_items = min(src_nritems - 8, push_items);
3205 
3206 	ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
3207 	if (ret) {
3208 		btrfs_abort_transaction(trans, ret);
3209 		return ret;
3210 	}
3211 	copy_extent_buffer(dst, src,
3212 			   btrfs_node_key_ptr_offset(dst_nritems),
3213 			   btrfs_node_key_ptr_offset(0),
3214 			   push_items * sizeof(struct btrfs_key_ptr));
3215 
3216 	if (push_items < src_nritems) {
3217 		/*
3218 		 * Don't call tree_mod_log_insert_move here, key removal was
3219 		 * already fully logged by tree_mod_log_eb_copy above.
3220 		 */
3221 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3222 				      btrfs_node_key_ptr_offset(push_items),
3223 				      (src_nritems - push_items) *
3224 				      sizeof(struct btrfs_key_ptr));
3225 	}
3226 	btrfs_set_header_nritems(src, src_nritems - push_items);
3227 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3228 	btrfs_mark_buffer_dirty(src);
3229 	btrfs_mark_buffer_dirty(dst);
3230 
3231 	return ret;
3232 }
3233 
3234 /*
3235  * try to push data from one node into the next node right in the
3236  * tree.
3237  *
3238  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3239  * error, and > 0 if there was no room in the right hand block.
3240  *
3241  * this will  only push up to 1/2 the contents of the left node over
3242  */
3243 static int balance_node_right(struct btrfs_trans_handle *trans,
3244 			      struct extent_buffer *dst,
3245 			      struct extent_buffer *src)
3246 {
3247 	struct btrfs_fs_info *fs_info = trans->fs_info;
3248 	int push_items = 0;
3249 	int max_push;
3250 	int src_nritems;
3251 	int dst_nritems;
3252 	int ret = 0;
3253 
3254 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3255 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3256 
3257 	src_nritems = btrfs_header_nritems(src);
3258 	dst_nritems = btrfs_header_nritems(dst);
3259 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
3260 	if (push_items <= 0)
3261 		return 1;
3262 
3263 	if (src_nritems < 4)
3264 		return 1;
3265 
3266 	max_push = src_nritems / 2 + 1;
3267 	/* don't try to empty the node */
3268 	if (max_push >= src_nritems)
3269 		return 1;
3270 
3271 	if (max_push < push_items)
3272 		push_items = max_push;
3273 
3274 	ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
3275 	BUG_ON(ret < 0);
3276 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3277 				      btrfs_node_key_ptr_offset(0),
3278 				      (dst_nritems) *
3279 				      sizeof(struct btrfs_key_ptr));
3280 
3281 	ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
3282 				   push_items);
3283 	if (ret) {
3284 		btrfs_abort_transaction(trans, ret);
3285 		return ret;
3286 	}
3287 	copy_extent_buffer(dst, src,
3288 			   btrfs_node_key_ptr_offset(0),
3289 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3290 			   push_items * sizeof(struct btrfs_key_ptr));
3291 
3292 	btrfs_set_header_nritems(src, src_nritems - push_items);
3293 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3294 
3295 	btrfs_mark_buffer_dirty(src);
3296 	btrfs_mark_buffer_dirty(dst);
3297 
3298 	return ret;
3299 }
3300 
3301 /*
3302  * helper function to insert a new root level in the tree.
3303  * A new node is allocated, and a single item is inserted to
3304  * point to the existing root
3305  *
3306  * returns zero on success or < 0 on failure.
3307  */
3308 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3309 			   struct btrfs_root *root,
3310 			   struct btrfs_path *path, int level)
3311 {
3312 	struct btrfs_fs_info *fs_info = root->fs_info;
3313 	u64 lower_gen;
3314 	struct extent_buffer *lower;
3315 	struct extent_buffer *c;
3316 	struct extent_buffer *old;
3317 	struct btrfs_disk_key lower_key;
3318 	int ret;
3319 
3320 	BUG_ON(path->nodes[level]);
3321 	BUG_ON(path->nodes[level-1] != root->node);
3322 
3323 	lower = path->nodes[level-1];
3324 	if (level == 1)
3325 		btrfs_item_key(lower, &lower_key, 0);
3326 	else
3327 		btrfs_node_key(lower, &lower_key, 0);
3328 
3329 	c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level,
3330 					 root->node->start, 0);
3331 	if (IS_ERR(c))
3332 		return PTR_ERR(c);
3333 
3334 	root_add_used(root, fs_info->nodesize);
3335 
3336 	btrfs_set_header_nritems(c, 1);
3337 	btrfs_set_node_key(c, &lower_key, 0);
3338 	btrfs_set_node_blockptr(c, 0, lower->start);
3339 	lower_gen = btrfs_header_generation(lower);
3340 	WARN_ON(lower_gen != trans->transid);
3341 
3342 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3343 
3344 	btrfs_mark_buffer_dirty(c);
3345 
3346 	old = root->node;
3347 	ret = tree_mod_log_insert_root(root->node, c, 0);
3348 	BUG_ON(ret < 0);
3349 	rcu_assign_pointer(root->node, c);
3350 
3351 	/* the super has an extra ref to root->node */
3352 	free_extent_buffer(old);
3353 
3354 	add_root_to_dirty_list(root);
3355 	atomic_inc(&c->refs);
3356 	path->nodes[level] = c;
3357 	path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3358 	path->slots[level] = 0;
3359 	return 0;
3360 }
3361 
3362 /*
3363  * worker function to insert a single pointer in a node.
3364  * the node should have enough room for the pointer already
3365  *
3366  * slot and level indicate where you want the key to go, and
3367  * blocknr is the block the key points to.
3368  */
3369 static void insert_ptr(struct btrfs_trans_handle *trans,
3370 		       struct btrfs_path *path,
3371 		       struct btrfs_disk_key *key, u64 bytenr,
3372 		       int slot, int level)
3373 {
3374 	struct extent_buffer *lower;
3375 	int nritems;
3376 	int ret;
3377 
3378 	BUG_ON(!path->nodes[level]);
3379 	btrfs_assert_tree_locked(path->nodes[level]);
3380 	lower = path->nodes[level];
3381 	nritems = btrfs_header_nritems(lower);
3382 	BUG_ON(slot > nritems);
3383 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
3384 	if (slot != nritems) {
3385 		if (level) {
3386 			ret = tree_mod_log_insert_move(lower, slot + 1, slot,
3387 					nritems - slot);
3388 			BUG_ON(ret < 0);
3389 		}
3390 		memmove_extent_buffer(lower,
3391 			      btrfs_node_key_ptr_offset(slot + 1),
3392 			      btrfs_node_key_ptr_offset(slot),
3393 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3394 	}
3395 	if (level) {
3396 		ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD,
3397 				GFP_NOFS);
3398 		BUG_ON(ret < 0);
3399 	}
3400 	btrfs_set_node_key(lower, key, slot);
3401 	btrfs_set_node_blockptr(lower, slot, bytenr);
3402 	WARN_ON(trans->transid == 0);
3403 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3404 	btrfs_set_header_nritems(lower, nritems + 1);
3405 	btrfs_mark_buffer_dirty(lower);
3406 }
3407 
3408 /*
3409  * split the node at the specified level in path in two.
3410  * The path is corrected to point to the appropriate node after the split
3411  *
3412  * Before splitting this tries to make some room in the node by pushing
3413  * left and right, if either one works, it returns right away.
3414  *
3415  * returns 0 on success and < 0 on failure
3416  */
3417 static noinline int split_node(struct btrfs_trans_handle *trans,
3418 			       struct btrfs_root *root,
3419 			       struct btrfs_path *path, int level)
3420 {
3421 	struct btrfs_fs_info *fs_info = root->fs_info;
3422 	struct extent_buffer *c;
3423 	struct extent_buffer *split;
3424 	struct btrfs_disk_key disk_key;
3425 	int mid;
3426 	int ret;
3427 	u32 c_nritems;
3428 
3429 	c = path->nodes[level];
3430 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3431 	if (c == root->node) {
3432 		/*
3433 		 * trying to split the root, lets make a new one
3434 		 *
3435 		 * tree mod log: We don't log_removal old root in
3436 		 * insert_new_root, because that root buffer will be kept as a
3437 		 * normal node. We are going to log removal of half of the
3438 		 * elements below with tree_mod_log_eb_copy. We're holding a
3439 		 * tree lock on the buffer, which is why we cannot race with
3440 		 * other tree_mod_log users.
3441 		 */
3442 		ret = insert_new_root(trans, root, path, level + 1);
3443 		if (ret)
3444 			return ret;
3445 	} else {
3446 		ret = push_nodes_for_insert(trans, root, path, level);
3447 		c = path->nodes[level];
3448 		if (!ret && btrfs_header_nritems(c) <
3449 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
3450 			return 0;
3451 		if (ret < 0)
3452 			return ret;
3453 	}
3454 
3455 	c_nritems = btrfs_header_nritems(c);
3456 	mid = (c_nritems + 1) / 2;
3457 	btrfs_node_key(c, &disk_key, mid);
3458 
3459 	split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level,
3460 					     c->start, 0);
3461 	if (IS_ERR(split))
3462 		return PTR_ERR(split);
3463 
3464 	root_add_used(root, fs_info->nodesize);
3465 	ASSERT(btrfs_header_level(c) == level);
3466 
3467 	ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
3468 	if (ret) {
3469 		btrfs_abort_transaction(trans, ret);
3470 		return ret;
3471 	}
3472 	copy_extent_buffer(split, c,
3473 			   btrfs_node_key_ptr_offset(0),
3474 			   btrfs_node_key_ptr_offset(mid),
3475 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3476 	btrfs_set_header_nritems(split, c_nritems - mid);
3477 	btrfs_set_header_nritems(c, mid);
3478 	ret = 0;
3479 
3480 	btrfs_mark_buffer_dirty(c);
3481 	btrfs_mark_buffer_dirty(split);
3482 
3483 	insert_ptr(trans, path, &disk_key, split->start,
3484 		   path->slots[level + 1] + 1, level + 1);
3485 
3486 	if (path->slots[level] >= mid) {
3487 		path->slots[level] -= mid;
3488 		btrfs_tree_unlock(c);
3489 		free_extent_buffer(c);
3490 		path->nodes[level] = split;
3491 		path->slots[level + 1] += 1;
3492 	} else {
3493 		btrfs_tree_unlock(split);
3494 		free_extent_buffer(split);
3495 	}
3496 	return ret;
3497 }
3498 
3499 /*
3500  * how many bytes are required to store the items in a leaf.  start
3501  * and nr indicate which items in the leaf to check.  This totals up the
3502  * space used both by the item structs and the item data
3503  */
3504 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3505 {
3506 	struct btrfs_item *start_item;
3507 	struct btrfs_item *end_item;
3508 	int data_len;
3509 	int nritems = btrfs_header_nritems(l);
3510 	int end = min(nritems, start + nr) - 1;
3511 
3512 	if (!nr)
3513 		return 0;
3514 	start_item = btrfs_item_nr(start);
3515 	end_item = btrfs_item_nr(end);
3516 	data_len = btrfs_item_offset(l, start_item) +
3517 		   btrfs_item_size(l, start_item);
3518 	data_len = data_len - btrfs_item_offset(l, end_item);
3519 	data_len += sizeof(struct btrfs_item) * nr;
3520 	WARN_ON(data_len < 0);
3521 	return data_len;
3522 }
3523 
3524 /*
3525  * The space between the end of the leaf items and
3526  * the start of the leaf data.  IOW, how much room
3527  * the leaf has left for both items and data
3528  */
3529 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
3530 {
3531 	struct btrfs_fs_info *fs_info = leaf->fs_info;
3532 	int nritems = btrfs_header_nritems(leaf);
3533 	int ret;
3534 
3535 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
3536 	if (ret < 0) {
3537 		btrfs_crit(fs_info,
3538 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3539 			   ret,
3540 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
3541 			   leaf_space_used(leaf, 0, nritems), nritems);
3542 	}
3543 	return ret;
3544 }
3545 
3546 /*
3547  * min slot controls the lowest index we're willing to push to the
3548  * right.  We'll push up to and including min_slot, but no lower
3549  */
3550 static noinline int __push_leaf_right(struct btrfs_path *path,
3551 				      int data_size, int empty,
3552 				      struct extent_buffer *right,
3553 				      int free_space, u32 left_nritems,
3554 				      u32 min_slot)
3555 {
3556 	struct btrfs_fs_info *fs_info = right->fs_info;
3557 	struct extent_buffer *left = path->nodes[0];
3558 	struct extent_buffer *upper = path->nodes[1];
3559 	struct btrfs_map_token token;
3560 	struct btrfs_disk_key disk_key;
3561 	int slot;
3562 	u32 i;
3563 	int push_space = 0;
3564 	int push_items = 0;
3565 	struct btrfs_item *item;
3566 	u32 nr;
3567 	u32 right_nritems;
3568 	u32 data_end;
3569 	u32 this_item_size;
3570 
3571 	if (empty)
3572 		nr = 0;
3573 	else
3574 		nr = max_t(u32, 1, min_slot);
3575 
3576 	if (path->slots[0] >= left_nritems)
3577 		push_space += data_size;
3578 
3579 	slot = path->slots[1];
3580 	i = left_nritems - 1;
3581 	while (i >= nr) {
3582 		item = btrfs_item_nr(i);
3583 
3584 		if (!empty && push_items > 0) {
3585 			if (path->slots[0] > i)
3586 				break;
3587 			if (path->slots[0] == i) {
3588 				int space = btrfs_leaf_free_space(left);
3589 
3590 				if (space + push_space * 2 > free_space)
3591 					break;
3592 			}
3593 		}
3594 
3595 		if (path->slots[0] == i)
3596 			push_space += data_size;
3597 
3598 		this_item_size = btrfs_item_size(left, item);
3599 		if (this_item_size + sizeof(*item) + push_space > free_space)
3600 			break;
3601 
3602 		push_items++;
3603 		push_space += this_item_size + sizeof(*item);
3604 		if (i == 0)
3605 			break;
3606 		i--;
3607 	}
3608 
3609 	if (push_items == 0)
3610 		goto out_unlock;
3611 
3612 	WARN_ON(!empty && push_items == left_nritems);
3613 
3614 	/* push left to right */
3615 	right_nritems = btrfs_header_nritems(right);
3616 
3617 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3618 	push_space -= leaf_data_end(left);
3619 
3620 	/* make room in the right data area */
3621 	data_end = leaf_data_end(right);
3622 	memmove_extent_buffer(right,
3623 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
3624 			      BTRFS_LEAF_DATA_OFFSET + data_end,
3625 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
3626 
3627 	/* copy from the left data area */
3628 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
3629 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3630 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
3631 		     push_space);
3632 
3633 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3634 			      btrfs_item_nr_offset(0),
3635 			      right_nritems * sizeof(struct btrfs_item));
3636 
3637 	/* copy the items from left to right */
3638 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3639 		   btrfs_item_nr_offset(left_nritems - push_items),
3640 		   push_items * sizeof(struct btrfs_item));
3641 
3642 	/* update the item pointers */
3643 	btrfs_init_map_token(&token, right);
3644 	right_nritems += push_items;
3645 	btrfs_set_header_nritems(right, right_nritems);
3646 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3647 	for (i = 0; i < right_nritems; i++) {
3648 		item = btrfs_item_nr(i);
3649 		push_space -= btrfs_token_item_size(&token, item);
3650 		btrfs_set_token_item_offset(&token, item, push_space);
3651 	}
3652 
3653 	left_nritems -= push_items;
3654 	btrfs_set_header_nritems(left, left_nritems);
3655 
3656 	if (left_nritems)
3657 		btrfs_mark_buffer_dirty(left);
3658 	else
3659 		btrfs_clean_tree_block(left);
3660 
3661 	btrfs_mark_buffer_dirty(right);
3662 
3663 	btrfs_item_key(right, &disk_key, 0);
3664 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3665 	btrfs_mark_buffer_dirty(upper);
3666 
3667 	/* then fixup the leaf pointer in the path */
3668 	if (path->slots[0] >= left_nritems) {
3669 		path->slots[0] -= left_nritems;
3670 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3671 			btrfs_clean_tree_block(path->nodes[0]);
3672 		btrfs_tree_unlock(path->nodes[0]);
3673 		free_extent_buffer(path->nodes[0]);
3674 		path->nodes[0] = right;
3675 		path->slots[1] += 1;
3676 	} else {
3677 		btrfs_tree_unlock(right);
3678 		free_extent_buffer(right);
3679 	}
3680 	return 0;
3681 
3682 out_unlock:
3683 	btrfs_tree_unlock(right);
3684 	free_extent_buffer(right);
3685 	return 1;
3686 }
3687 
3688 /*
3689  * push some data in the path leaf to the right, trying to free up at
3690  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3691  *
3692  * returns 1 if the push failed because the other node didn't have enough
3693  * room, 0 if everything worked out and < 0 if there were major errors.
3694  *
3695  * this will push starting from min_slot to the end of the leaf.  It won't
3696  * push any slot lower than min_slot
3697  */
3698 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3699 			   *root, struct btrfs_path *path,
3700 			   int min_data_size, int data_size,
3701 			   int empty, u32 min_slot)
3702 {
3703 	struct extent_buffer *left = path->nodes[0];
3704 	struct extent_buffer *right;
3705 	struct extent_buffer *upper;
3706 	int slot;
3707 	int free_space;
3708 	u32 left_nritems;
3709 	int ret;
3710 
3711 	if (!path->nodes[1])
3712 		return 1;
3713 
3714 	slot = path->slots[1];
3715 	upper = path->nodes[1];
3716 	if (slot >= btrfs_header_nritems(upper) - 1)
3717 		return 1;
3718 
3719 	btrfs_assert_tree_locked(path->nodes[1]);
3720 
3721 	right = btrfs_read_node_slot(upper, slot + 1);
3722 	/*
3723 	 * slot + 1 is not valid or we fail to read the right node,
3724 	 * no big deal, just return.
3725 	 */
3726 	if (IS_ERR(right))
3727 		return 1;
3728 
3729 	btrfs_tree_lock(right);
3730 	btrfs_set_lock_blocking_write(right);
3731 
3732 	free_space = btrfs_leaf_free_space(right);
3733 	if (free_space < data_size)
3734 		goto out_unlock;
3735 
3736 	/* cow and double check */
3737 	ret = btrfs_cow_block(trans, root, right, upper,
3738 			      slot + 1, &right);
3739 	if (ret)
3740 		goto out_unlock;
3741 
3742 	free_space = btrfs_leaf_free_space(right);
3743 	if (free_space < data_size)
3744 		goto out_unlock;
3745 
3746 	left_nritems = btrfs_header_nritems(left);
3747 	if (left_nritems == 0)
3748 		goto out_unlock;
3749 
3750 	if (path->slots[0] == left_nritems && !empty) {
3751 		/* Key greater than all keys in the leaf, right neighbor has
3752 		 * enough room for it and we're not emptying our leaf to delete
3753 		 * it, therefore use right neighbor to insert the new item and
3754 		 * no need to touch/dirty our left leaf. */
3755 		btrfs_tree_unlock(left);
3756 		free_extent_buffer(left);
3757 		path->nodes[0] = right;
3758 		path->slots[0] = 0;
3759 		path->slots[1]++;
3760 		return 0;
3761 	}
3762 
3763 	return __push_leaf_right(path, min_data_size, empty,
3764 				right, free_space, left_nritems, min_slot);
3765 out_unlock:
3766 	btrfs_tree_unlock(right);
3767 	free_extent_buffer(right);
3768 	return 1;
3769 }
3770 
3771 /*
3772  * push some data in the path leaf to the left, trying to free up at
3773  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3774  *
3775  * max_slot can put a limit on how far into the leaf we'll push items.  The
3776  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3777  * items
3778  */
3779 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3780 				     int empty, struct extent_buffer *left,
3781 				     int free_space, u32 right_nritems,
3782 				     u32 max_slot)
3783 {
3784 	struct btrfs_fs_info *fs_info = left->fs_info;
3785 	struct btrfs_disk_key disk_key;
3786 	struct extent_buffer *right = path->nodes[0];
3787 	int i;
3788 	int push_space = 0;
3789 	int push_items = 0;
3790 	struct btrfs_item *item;
3791 	u32 old_left_nritems;
3792 	u32 nr;
3793 	int ret = 0;
3794 	u32 this_item_size;
3795 	u32 old_left_item_size;
3796 	struct btrfs_map_token token;
3797 
3798 	if (empty)
3799 		nr = min(right_nritems, max_slot);
3800 	else
3801 		nr = min(right_nritems - 1, max_slot);
3802 
3803 	for (i = 0; i < nr; i++) {
3804 		item = btrfs_item_nr(i);
3805 
3806 		if (!empty && push_items > 0) {
3807 			if (path->slots[0] < i)
3808 				break;
3809 			if (path->slots[0] == i) {
3810 				int space = btrfs_leaf_free_space(right);
3811 
3812 				if (space + push_space * 2 > free_space)
3813 					break;
3814 			}
3815 		}
3816 
3817 		if (path->slots[0] == i)
3818 			push_space += data_size;
3819 
3820 		this_item_size = btrfs_item_size(right, item);
3821 		if (this_item_size + sizeof(*item) + push_space > free_space)
3822 			break;
3823 
3824 		push_items++;
3825 		push_space += this_item_size + sizeof(*item);
3826 	}
3827 
3828 	if (push_items == 0) {
3829 		ret = 1;
3830 		goto out;
3831 	}
3832 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3833 
3834 	/* push data from right to left */
3835 	copy_extent_buffer(left, right,
3836 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3837 			   btrfs_item_nr_offset(0),
3838 			   push_items * sizeof(struct btrfs_item));
3839 
3840 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3841 		     btrfs_item_offset_nr(right, push_items - 1);
3842 
3843 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3844 		     leaf_data_end(left) - push_space,
3845 		     BTRFS_LEAF_DATA_OFFSET +
3846 		     btrfs_item_offset_nr(right, push_items - 1),
3847 		     push_space);
3848 	old_left_nritems = btrfs_header_nritems(left);
3849 	BUG_ON(old_left_nritems <= 0);
3850 
3851 	btrfs_init_map_token(&token, left);
3852 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3853 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3854 		u32 ioff;
3855 
3856 		item = btrfs_item_nr(i);
3857 
3858 		ioff = btrfs_token_item_offset(&token, item);
3859 		btrfs_set_token_item_offset(&token, item,
3860 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3861 	}
3862 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3863 
3864 	/* fixup right node */
3865 	if (push_items > right_nritems)
3866 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3867 		       right_nritems);
3868 
3869 	if (push_items < right_nritems) {
3870 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3871 						  leaf_data_end(right);
3872 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3873 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3874 				      BTRFS_LEAF_DATA_OFFSET +
3875 				      leaf_data_end(right), push_space);
3876 
3877 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3878 			      btrfs_item_nr_offset(push_items),
3879 			     (btrfs_header_nritems(right) - push_items) *
3880 			     sizeof(struct btrfs_item));
3881 	}
3882 
3883 	btrfs_init_map_token(&token, right);
3884 	right_nritems -= push_items;
3885 	btrfs_set_header_nritems(right, right_nritems);
3886 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3887 	for (i = 0; i < right_nritems; i++) {
3888 		item = btrfs_item_nr(i);
3889 
3890 		push_space = push_space - btrfs_token_item_size(&token, item);
3891 		btrfs_set_token_item_offset(&token, item, push_space);
3892 	}
3893 
3894 	btrfs_mark_buffer_dirty(left);
3895 	if (right_nritems)
3896 		btrfs_mark_buffer_dirty(right);
3897 	else
3898 		btrfs_clean_tree_block(right);
3899 
3900 	btrfs_item_key(right, &disk_key, 0);
3901 	fixup_low_keys(path, &disk_key, 1);
3902 
3903 	/* then fixup the leaf pointer in the path */
3904 	if (path->slots[0] < push_items) {
3905 		path->slots[0] += old_left_nritems;
3906 		btrfs_tree_unlock(path->nodes[0]);
3907 		free_extent_buffer(path->nodes[0]);
3908 		path->nodes[0] = left;
3909 		path->slots[1] -= 1;
3910 	} else {
3911 		btrfs_tree_unlock(left);
3912 		free_extent_buffer(left);
3913 		path->slots[0] -= push_items;
3914 	}
3915 	BUG_ON(path->slots[0] < 0);
3916 	return ret;
3917 out:
3918 	btrfs_tree_unlock(left);
3919 	free_extent_buffer(left);
3920 	return ret;
3921 }
3922 
3923 /*
3924  * push some data in the path leaf to the left, trying to free up at
3925  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3926  *
3927  * max_slot can put a limit on how far into the leaf we'll push items.  The
3928  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3929  * items
3930  */
3931 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3932 			  *root, struct btrfs_path *path, int min_data_size,
3933 			  int data_size, int empty, u32 max_slot)
3934 {
3935 	struct extent_buffer *right = path->nodes[0];
3936 	struct extent_buffer *left;
3937 	int slot;
3938 	int free_space;
3939 	u32 right_nritems;
3940 	int ret = 0;
3941 
3942 	slot = path->slots[1];
3943 	if (slot == 0)
3944 		return 1;
3945 	if (!path->nodes[1])
3946 		return 1;
3947 
3948 	right_nritems = btrfs_header_nritems(right);
3949 	if (right_nritems == 0)
3950 		return 1;
3951 
3952 	btrfs_assert_tree_locked(path->nodes[1]);
3953 
3954 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3955 	/*
3956 	 * slot - 1 is not valid or we fail to read the left node,
3957 	 * no big deal, just return.
3958 	 */
3959 	if (IS_ERR(left))
3960 		return 1;
3961 
3962 	btrfs_tree_lock(left);
3963 	btrfs_set_lock_blocking_write(left);
3964 
3965 	free_space = btrfs_leaf_free_space(left);
3966 	if (free_space < data_size) {
3967 		ret = 1;
3968 		goto out;
3969 	}
3970 
3971 	/* cow and double check */
3972 	ret = btrfs_cow_block(trans, root, left,
3973 			      path->nodes[1], slot - 1, &left);
3974 	if (ret) {
3975 		/* we hit -ENOSPC, but it isn't fatal here */
3976 		if (ret == -ENOSPC)
3977 			ret = 1;
3978 		goto out;
3979 	}
3980 
3981 	free_space = btrfs_leaf_free_space(left);
3982 	if (free_space < data_size) {
3983 		ret = 1;
3984 		goto out;
3985 	}
3986 
3987 	return __push_leaf_left(path, min_data_size,
3988 			       empty, left, free_space, right_nritems,
3989 			       max_slot);
3990 out:
3991 	btrfs_tree_unlock(left);
3992 	free_extent_buffer(left);
3993 	return ret;
3994 }
3995 
3996 /*
3997  * split the path's leaf in two, making sure there is at least data_size
3998  * available for the resulting leaf level of the path.
3999  */
4000 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4001 				    struct btrfs_path *path,
4002 				    struct extent_buffer *l,
4003 				    struct extent_buffer *right,
4004 				    int slot, int mid, int nritems)
4005 {
4006 	struct btrfs_fs_info *fs_info = trans->fs_info;
4007 	int data_copy_size;
4008 	int rt_data_off;
4009 	int i;
4010 	struct btrfs_disk_key disk_key;
4011 	struct btrfs_map_token token;
4012 
4013 	nritems = nritems - mid;
4014 	btrfs_set_header_nritems(right, nritems);
4015 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l);
4016 
4017 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4018 			   btrfs_item_nr_offset(mid),
4019 			   nritems * sizeof(struct btrfs_item));
4020 
4021 	copy_extent_buffer(right, l,
4022 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
4023 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
4024 		     leaf_data_end(l), data_copy_size);
4025 
4026 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid);
4027 
4028 	btrfs_init_map_token(&token, right);
4029 	for (i = 0; i < nritems; i++) {
4030 		struct btrfs_item *item = btrfs_item_nr(i);
4031 		u32 ioff;
4032 
4033 		ioff = btrfs_token_item_offset(&token, item);
4034 		btrfs_set_token_item_offset(&token, item, ioff + rt_data_off);
4035 	}
4036 
4037 	btrfs_set_header_nritems(l, mid);
4038 	btrfs_item_key(right, &disk_key, 0);
4039 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
4040 
4041 	btrfs_mark_buffer_dirty(right);
4042 	btrfs_mark_buffer_dirty(l);
4043 	BUG_ON(path->slots[0] != slot);
4044 
4045 	if (mid <= slot) {
4046 		btrfs_tree_unlock(path->nodes[0]);
4047 		free_extent_buffer(path->nodes[0]);
4048 		path->nodes[0] = right;
4049 		path->slots[0] -= mid;
4050 		path->slots[1] += 1;
4051 	} else {
4052 		btrfs_tree_unlock(right);
4053 		free_extent_buffer(right);
4054 	}
4055 
4056 	BUG_ON(path->slots[0] < 0);
4057 }
4058 
4059 /*
4060  * double splits happen when we need to insert a big item in the middle
4061  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4062  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4063  *          A                 B                 C
4064  *
4065  * We avoid this by trying to push the items on either side of our target
4066  * into the adjacent leaves.  If all goes well we can avoid the double split
4067  * completely.
4068  */
4069 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4070 					  struct btrfs_root *root,
4071 					  struct btrfs_path *path,
4072 					  int data_size)
4073 {
4074 	int ret;
4075 	int progress = 0;
4076 	int slot;
4077 	u32 nritems;
4078 	int space_needed = data_size;
4079 
4080 	slot = path->slots[0];
4081 	if (slot < btrfs_header_nritems(path->nodes[0]))
4082 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4083 
4084 	/*
4085 	 * try to push all the items after our slot into the
4086 	 * right leaf
4087 	 */
4088 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4089 	if (ret < 0)
4090 		return ret;
4091 
4092 	if (ret == 0)
4093 		progress++;
4094 
4095 	nritems = btrfs_header_nritems(path->nodes[0]);
4096 	/*
4097 	 * our goal is to get our slot at the start or end of a leaf.  If
4098 	 * we've done so we're done
4099 	 */
4100 	if (path->slots[0] == 0 || path->slots[0] == nritems)
4101 		return 0;
4102 
4103 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4104 		return 0;
4105 
4106 	/* try to push all the items before our slot into the next leaf */
4107 	slot = path->slots[0];
4108 	space_needed = data_size;
4109 	if (slot > 0)
4110 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
4111 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4112 	if (ret < 0)
4113 		return ret;
4114 
4115 	if (ret == 0)
4116 		progress++;
4117 
4118 	if (progress)
4119 		return 0;
4120 	return 1;
4121 }
4122 
4123 /*
4124  * split the path's leaf in two, making sure there is at least data_size
4125  * available for the resulting leaf level of the path.
4126  *
4127  * returns 0 if all went well and < 0 on failure.
4128  */
4129 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4130 			       struct btrfs_root *root,
4131 			       const struct btrfs_key *ins_key,
4132 			       struct btrfs_path *path, int data_size,
4133 			       int extend)
4134 {
4135 	struct btrfs_disk_key disk_key;
4136 	struct extent_buffer *l;
4137 	u32 nritems;
4138 	int mid;
4139 	int slot;
4140 	struct extent_buffer *right;
4141 	struct btrfs_fs_info *fs_info = root->fs_info;
4142 	int ret = 0;
4143 	int wret;
4144 	int split;
4145 	int num_doubles = 0;
4146 	int tried_avoid_double = 0;
4147 
4148 	l = path->nodes[0];
4149 	slot = path->slots[0];
4150 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
4151 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
4152 		return -EOVERFLOW;
4153 
4154 	/* first try to make some room by pushing left and right */
4155 	if (data_size && path->nodes[1]) {
4156 		int space_needed = data_size;
4157 
4158 		if (slot < btrfs_header_nritems(l))
4159 			space_needed -= btrfs_leaf_free_space(l);
4160 
4161 		wret = push_leaf_right(trans, root, path, space_needed,
4162 				       space_needed, 0, 0);
4163 		if (wret < 0)
4164 			return wret;
4165 		if (wret) {
4166 			space_needed = data_size;
4167 			if (slot > 0)
4168 				space_needed -= btrfs_leaf_free_space(l);
4169 			wret = push_leaf_left(trans, root, path, space_needed,
4170 					      space_needed, 0, (u32)-1);
4171 			if (wret < 0)
4172 				return wret;
4173 		}
4174 		l = path->nodes[0];
4175 
4176 		/* did the pushes work? */
4177 		if (btrfs_leaf_free_space(l) >= data_size)
4178 			return 0;
4179 	}
4180 
4181 	if (!path->nodes[1]) {
4182 		ret = insert_new_root(trans, root, path, 1);
4183 		if (ret)
4184 			return ret;
4185 	}
4186 again:
4187 	split = 1;
4188 	l = path->nodes[0];
4189 	slot = path->slots[0];
4190 	nritems = btrfs_header_nritems(l);
4191 	mid = (nritems + 1) / 2;
4192 
4193 	if (mid <= slot) {
4194 		if (nritems == 1 ||
4195 		    leaf_space_used(l, mid, nritems - mid) + data_size >
4196 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4197 			if (slot >= nritems) {
4198 				split = 0;
4199 			} else {
4200 				mid = slot;
4201 				if (mid != nritems &&
4202 				    leaf_space_used(l, mid, nritems - mid) +
4203 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4204 					if (data_size && !tried_avoid_double)
4205 						goto push_for_double;
4206 					split = 2;
4207 				}
4208 			}
4209 		}
4210 	} else {
4211 		if (leaf_space_used(l, 0, mid) + data_size >
4212 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
4213 			if (!extend && data_size && slot == 0) {
4214 				split = 0;
4215 			} else if ((extend || !data_size) && slot == 0) {
4216 				mid = 1;
4217 			} else {
4218 				mid = slot;
4219 				if (mid != nritems &&
4220 				    leaf_space_used(l, mid, nritems - mid) +
4221 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
4222 					if (data_size && !tried_avoid_double)
4223 						goto push_for_double;
4224 					split = 2;
4225 				}
4226 			}
4227 		}
4228 	}
4229 
4230 	if (split == 0)
4231 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
4232 	else
4233 		btrfs_item_key(l, &disk_key, mid);
4234 
4235 	right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0,
4236 					     l->start, 0);
4237 	if (IS_ERR(right))
4238 		return PTR_ERR(right);
4239 
4240 	root_add_used(root, fs_info->nodesize);
4241 
4242 	if (split == 0) {
4243 		if (mid <= slot) {
4244 			btrfs_set_header_nritems(right, 0);
4245 			insert_ptr(trans, path, &disk_key,
4246 				   right->start, path->slots[1] + 1, 1);
4247 			btrfs_tree_unlock(path->nodes[0]);
4248 			free_extent_buffer(path->nodes[0]);
4249 			path->nodes[0] = right;
4250 			path->slots[0] = 0;
4251 			path->slots[1] += 1;
4252 		} else {
4253 			btrfs_set_header_nritems(right, 0);
4254 			insert_ptr(trans, path, &disk_key,
4255 				   right->start, path->slots[1], 1);
4256 			btrfs_tree_unlock(path->nodes[0]);
4257 			free_extent_buffer(path->nodes[0]);
4258 			path->nodes[0] = right;
4259 			path->slots[0] = 0;
4260 			if (path->slots[1] == 0)
4261 				fixup_low_keys(path, &disk_key, 1);
4262 		}
4263 		/*
4264 		 * We create a new leaf 'right' for the required ins_len and
4265 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
4266 		 * the content of ins_len to 'right'.
4267 		 */
4268 		return ret;
4269 	}
4270 
4271 	copy_for_split(trans, path, l, right, slot, mid, nritems);
4272 
4273 	if (split == 2) {
4274 		BUG_ON(num_doubles != 0);
4275 		num_doubles++;
4276 		goto again;
4277 	}
4278 
4279 	return 0;
4280 
4281 push_for_double:
4282 	push_for_double_split(trans, root, path, data_size);
4283 	tried_avoid_double = 1;
4284 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
4285 		return 0;
4286 	goto again;
4287 }
4288 
4289 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4290 					 struct btrfs_root *root,
4291 					 struct btrfs_path *path, int ins_len)
4292 {
4293 	struct btrfs_key key;
4294 	struct extent_buffer *leaf;
4295 	struct btrfs_file_extent_item *fi;
4296 	u64 extent_len = 0;
4297 	u32 item_size;
4298 	int ret;
4299 
4300 	leaf = path->nodes[0];
4301 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4302 
4303 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4304 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4305 
4306 	if (btrfs_leaf_free_space(leaf) >= ins_len)
4307 		return 0;
4308 
4309 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4310 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4311 		fi = btrfs_item_ptr(leaf, path->slots[0],
4312 				    struct btrfs_file_extent_item);
4313 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4314 	}
4315 	btrfs_release_path(path);
4316 
4317 	path->keep_locks = 1;
4318 	path->search_for_split = 1;
4319 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4320 	path->search_for_split = 0;
4321 	if (ret > 0)
4322 		ret = -EAGAIN;
4323 	if (ret < 0)
4324 		goto err;
4325 
4326 	ret = -EAGAIN;
4327 	leaf = path->nodes[0];
4328 	/* if our item isn't there, return now */
4329 	if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4330 		goto err;
4331 
4332 	/* the leaf has  changed, it now has room.  return now */
4333 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
4334 		goto err;
4335 
4336 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4337 		fi = btrfs_item_ptr(leaf, path->slots[0],
4338 				    struct btrfs_file_extent_item);
4339 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4340 			goto err;
4341 	}
4342 
4343 	btrfs_set_path_blocking(path);
4344 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4345 	if (ret)
4346 		goto err;
4347 
4348 	path->keep_locks = 0;
4349 	btrfs_unlock_up_safe(path, 1);
4350 	return 0;
4351 err:
4352 	path->keep_locks = 0;
4353 	return ret;
4354 }
4355 
4356 static noinline int split_item(struct btrfs_path *path,
4357 			       const struct btrfs_key *new_key,
4358 			       unsigned long split_offset)
4359 {
4360 	struct extent_buffer *leaf;
4361 	struct btrfs_item *item;
4362 	struct btrfs_item *new_item;
4363 	int slot;
4364 	char *buf;
4365 	u32 nritems;
4366 	u32 item_size;
4367 	u32 orig_offset;
4368 	struct btrfs_disk_key disk_key;
4369 
4370 	leaf = path->nodes[0];
4371 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
4372 
4373 	btrfs_set_path_blocking(path);
4374 
4375 	item = btrfs_item_nr(path->slots[0]);
4376 	orig_offset = btrfs_item_offset(leaf, item);
4377 	item_size = btrfs_item_size(leaf, item);
4378 
4379 	buf = kmalloc(item_size, GFP_NOFS);
4380 	if (!buf)
4381 		return -ENOMEM;
4382 
4383 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4384 			    path->slots[0]), item_size);
4385 
4386 	slot = path->slots[0] + 1;
4387 	nritems = btrfs_header_nritems(leaf);
4388 	if (slot != nritems) {
4389 		/* shift the items */
4390 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4391 				btrfs_item_nr_offset(slot),
4392 				(nritems - slot) * sizeof(struct btrfs_item));
4393 	}
4394 
4395 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4396 	btrfs_set_item_key(leaf, &disk_key, slot);
4397 
4398 	new_item = btrfs_item_nr(slot);
4399 
4400 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4401 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4402 
4403 	btrfs_set_item_offset(leaf, item,
4404 			      orig_offset + item_size - split_offset);
4405 	btrfs_set_item_size(leaf, item, split_offset);
4406 
4407 	btrfs_set_header_nritems(leaf, nritems + 1);
4408 
4409 	/* write the data for the start of the original item */
4410 	write_extent_buffer(leaf, buf,
4411 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4412 			    split_offset);
4413 
4414 	/* write the data for the new item */
4415 	write_extent_buffer(leaf, buf + split_offset,
4416 			    btrfs_item_ptr_offset(leaf, slot),
4417 			    item_size - split_offset);
4418 	btrfs_mark_buffer_dirty(leaf);
4419 
4420 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
4421 	kfree(buf);
4422 	return 0;
4423 }
4424 
4425 /*
4426  * This function splits a single item into two items,
4427  * giving 'new_key' to the new item and splitting the
4428  * old one at split_offset (from the start of the item).
4429  *
4430  * The path may be released by this operation.  After
4431  * the split, the path is pointing to the old item.  The
4432  * new item is going to be in the same node as the old one.
4433  *
4434  * Note, the item being split must be smaller enough to live alone on
4435  * a tree block with room for one extra struct btrfs_item
4436  *
4437  * This allows us to split the item in place, keeping a lock on the
4438  * leaf the entire time.
4439  */
4440 int btrfs_split_item(struct btrfs_trans_handle *trans,
4441 		     struct btrfs_root *root,
4442 		     struct btrfs_path *path,
4443 		     const struct btrfs_key *new_key,
4444 		     unsigned long split_offset)
4445 {
4446 	int ret;
4447 	ret = setup_leaf_for_split(trans, root, path,
4448 				   sizeof(struct btrfs_item));
4449 	if (ret)
4450 		return ret;
4451 
4452 	ret = split_item(path, new_key, split_offset);
4453 	return ret;
4454 }
4455 
4456 /*
4457  * This function duplicate a item, giving 'new_key' to the new item.
4458  * It guarantees both items live in the same tree leaf and the new item
4459  * is contiguous with the original item.
4460  *
4461  * This allows us to split file extent in place, keeping a lock on the
4462  * leaf the entire time.
4463  */
4464 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4465 			 struct btrfs_root *root,
4466 			 struct btrfs_path *path,
4467 			 const struct btrfs_key *new_key)
4468 {
4469 	struct extent_buffer *leaf;
4470 	int ret;
4471 	u32 item_size;
4472 
4473 	leaf = path->nodes[0];
4474 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4475 	ret = setup_leaf_for_split(trans, root, path,
4476 				   item_size + sizeof(struct btrfs_item));
4477 	if (ret)
4478 		return ret;
4479 
4480 	path->slots[0]++;
4481 	setup_items_for_insert(root, path, new_key, &item_size,
4482 			       item_size, item_size +
4483 			       sizeof(struct btrfs_item), 1);
4484 	leaf = path->nodes[0];
4485 	memcpy_extent_buffer(leaf,
4486 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4487 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4488 			     item_size);
4489 	return 0;
4490 }
4491 
4492 /*
4493  * make the item pointed to by the path smaller.  new_size indicates
4494  * how small to make it, and from_end tells us if we just chop bytes
4495  * off the end of the item or if we shift the item to chop bytes off
4496  * the front.
4497  */
4498 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
4499 {
4500 	int slot;
4501 	struct extent_buffer *leaf;
4502 	struct btrfs_item *item;
4503 	u32 nritems;
4504 	unsigned int data_end;
4505 	unsigned int old_data_start;
4506 	unsigned int old_size;
4507 	unsigned int size_diff;
4508 	int i;
4509 	struct btrfs_map_token token;
4510 
4511 	leaf = path->nodes[0];
4512 	slot = path->slots[0];
4513 
4514 	old_size = btrfs_item_size_nr(leaf, slot);
4515 	if (old_size == new_size)
4516 		return;
4517 
4518 	nritems = btrfs_header_nritems(leaf);
4519 	data_end = leaf_data_end(leaf);
4520 
4521 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4522 
4523 	size_diff = old_size - new_size;
4524 
4525 	BUG_ON(slot < 0);
4526 	BUG_ON(slot >= nritems);
4527 
4528 	/*
4529 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4530 	 */
4531 	/* first correct the data pointers */
4532 	btrfs_init_map_token(&token, leaf);
4533 	for (i = slot; i < nritems; i++) {
4534 		u32 ioff;
4535 		item = btrfs_item_nr(i);
4536 
4537 		ioff = btrfs_token_item_offset(&token, item);
4538 		btrfs_set_token_item_offset(&token, item, ioff + size_diff);
4539 	}
4540 
4541 	/* shift the data */
4542 	if (from_end) {
4543 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4544 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4545 			      data_end, old_data_start + new_size - data_end);
4546 	} else {
4547 		struct btrfs_disk_key disk_key;
4548 		u64 offset;
4549 
4550 		btrfs_item_key(leaf, &disk_key, slot);
4551 
4552 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4553 			unsigned long ptr;
4554 			struct btrfs_file_extent_item *fi;
4555 
4556 			fi = btrfs_item_ptr(leaf, slot,
4557 					    struct btrfs_file_extent_item);
4558 			fi = (struct btrfs_file_extent_item *)(
4559 			     (unsigned long)fi - size_diff);
4560 
4561 			if (btrfs_file_extent_type(leaf, fi) ==
4562 			    BTRFS_FILE_EXTENT_INLINE) {
4563 				ptr = btrfs_item_ptr_offset(leaf, slot);
4564 				memmove_extent_buffer(leaf, ptr,
4565 				      (unsigned long)fi,
4566 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4567 			}
4568 		}
4569 
4570 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4571 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
4572 			      data_end, old_data_start - data_end);
4573 
4574 		offset = btrfs_disk_key_offset(&disk_key);
4575 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4576 		btrfs_set_item_key(leaf, &disk_key, slot);
4577 		if (slot == 0)
4578 			fixup_low_keys(path, &disk_key, 1);
4579 	}
4580 
4581 	item = btrfs_item_nr(slot);
4582 	btrfs_set_item_size(leaf, item, new_size);
4583 	btrfs_mark_buffer_dirty(leaf);
4584 
4585 	if (btrfs_leaf_free_space(leaf) < 0) {
4586 		btrfs_print_leaf(leaf);
4587 		BUG();
4588 	}
4589 }
4590 
4591 /*
4592  * make the item pointed to by the path bigger, data_size is the added size.
4593  */
4594 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
4595 {
4596 	int slot;
4597 	struct extent_buffer *leaf;
4598 	struct btrfs_item *item;
4599 	u32 nritems;
4600 	unsigned int data_end;
4601 	unsigned int old_data;
4602 	unsigned int old_size;
4603 	int i;
4604 	struct btrfs_map_token token;
4605 
4606 	leaf = path->nodes[0];
4607 
4608 	nritems = btrfs_header_nritems(leaf);
4609 	data_end = leaf_data_end(leaf);
4610 
4611 	if (btrfs_leaf_free_space(leaf) < data_size) {
4612 		btrfs_print_leaf(leaf);
4613 		BUG();
4614 	}
4615 	slot = path->slots[0];
4616 	old_data = btrfs_item_end_nr(leaf, slot);
4617 
4618 	BUG_ON(slot < 0);
4619 	if (slot >= nritems) {
4620 		btrfs_print_leaf(leaf);
4621 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
4622 			   slot, nritems);
4623 		BUG();
4624 	}
4625 
4626 	/*
4627 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4628 	 */
4629 	/* first correct the data pointers */
4630 	btrfs_init_map_token(&token, leaf);
4631 	for (i = slot; i < nritems; i++) {
4632 		u32 ioff;
4633 		item = btrfs_item_nr(i);
4634 
4635 		ioff = btrfs_token_item_offset(&token, item);
4636 		btrfs_set_token_item_offset(&token, item, ioff - data_size);
4637 	}
4638 
4639 	/* shift the data */
4640 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4641 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
4642 		      data_end, old_data - data_end);
4643 
4644 	data_end = old_data;
4645 	old_size = btrfs_item_size_nr(leaf, slot);
4646 	item = btrfs_item_nr(slot);
4647 	btrfs_set_item_size(leaf, item, old_size + data_size);
4648 	btrfs_mark_buffer_dirty(leaf);
4649 
4650 	if (btrfs_leaf_free_space(leaf) < 0) {
4651 		btrfs_print_leaf(leaf);
4652 		BUG();
4653 	}
4654 }
4655 
4656 /*
4657  * this is a helper for btrfs_insert_empty_items, the main goal here is
4658  * to save stack depth by doing the bulk of the work in a function
4659  * that doesn't call btrfs_search_slot
4660  */
4661 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4662 			    const struct btrfs_key *cpu_key, u32 *data_size,
4663 			    u32 total_data, u32 total_size, int nr)
4664 {
4665 	struct btrfs_fs_info *fs_info = root->fs_info;
4666 	struct btrfs_item *item;
4667 	int i;
4668 	u32 nritems;
4669 	unsigned int data_end;
4670 	struct btrfs_disk_key disk_key;
4671 	struct extent_buffer *leaf;
4672 	int slot;
4673 	struct btrfs_map_token token;
4674 
4675 	if (path->slots[0] == 0) {
4676 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4677 		fixup_low_keys(path, &disk_key, 1);
4678 	}
4679 	btrfs_unlock_up_safe(path, 1);
4680 
4681 	leaf = path->nodes[0];
4682 	slot = path->slots[0];
4683 
4684 	nritems = btrfs_header_nritems(leaf);
4685 	data_end = leaf_data_end(leaf);
4686 
4687 	if (btrfs_leaf_free_space(leaf) < total_size) {
4688 		btrfs_print_leaf(leaf);
4689 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
4690 			   total_size, btrfs_leaf_free_space(leaf));
4691 		BUG();
4692 	}
4693 
4694 	btrfs_init_map_token(&token, leaf);
4695 	if (slot != nritems) {
4696 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4697 
4698 		if (old_data < data_end) {
4699 			btrfs_print_leaf(leaf);
4700 			btrfs_crit(fs_info, "slot %d old_data %d data_end %d",
4701 				   slot, old_data, data_end);
4702 			BUG();
4703 		}
4704 		/*
4705 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4706 		 */
4707 		/* first correct the data pointers */
4708 		for (i = slot; i < nritems; i++) {
4709 			u32 ioff;
4710 
4711 			item = btrfs_item_nr(i);
4712 			ioff = btrfs_token_item_offset(&token, item);
4713 			btrfs_set_token_item_offset(&token, item,
4714 						    ioff - total_data);
4715 		}
4716 		/* shift the items */
4717 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4718 			      btrfs_item_nr_offset(slot),
4719 			      (nritems - slot) * sizeof(struct btrfs_item));
4720 
4721 		/* shift the data */
4722 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4723 			      data_end - total_data, BTRFS_LEAF_DATA_OFFSET +
4724 			      data_end, old_data - data_end);
4725 		data_end = old_data;
4726 	}
4727 
4728 	/* setup the item for the new data */
4729 	for (i = 0; i < nr; i++) {
4730 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4731 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4732 		item = btrfs_item_nr(slot + i);
4733 		btrfs_set_token_item_offset(&token, item, data_end - data_size[i]);
4734 		data_end -= data_size[i];
4735 		btrfs_set_token_item_size(&token, item, data_size[i]);
4736 	}
4737 
4738 	btrfs_set_header_nritems(leaf, nritems + nr);
4739 	btrfs_mark_buffer_dirty(leaf);
4740 
4741 	if (btrfs_leaf_free_space(leaf) < 0) {
4742 		btrfs_print_leaf(leaf);
4743 		BUG();
4744 	}
4745 }
4746 
4747 /*
4748  * Given a key and some data, insert items into the tree.
4749  * This does all the path init required, making room in the tree if needed.
4750  */
4751 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4752 			    struct btrfs_root *root,
4753 			    struct btrfs_path *path,
4754 			    const struct btrfs_key *cpu_key, u32 *data_size,
4755 			    int nr)
4756 {
4757 	int ret = 0;
4758 	int slot;
4759 	int i;
4760 	u32 total_size = 0;
4761 	u32 total_data = 0;
4762 
4763 	for (i = 0; i < nr; i++)
4764 		total_data += data_size[i];
4765 
4766 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4767 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4768 	if (ret == 0)
4769 		return -EEXIST;
4770 	if (ret < 0)
4771 		return ret;
4772 
4773 	slot = path->slots[0];
4774 	BUG_ON(slot < 0);
4775 
4776 	setup_items_for_insert(root, path, cpu_key, data_size,
4777 			       total_data, total_size, nr);
4778 	return 0;
4779 }
4780 
4781 /*
4782  * Given a key and some data, insert an item into the tree.
4783  * This does all the path init required, making room in the tree if needed.
4784  */
4785 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4786 		      const struct btrfs_key *cpu_key, void *data,
4787 		      u32 data_size)
4788 {
4789 	int ret = 0;
4790 	struct btrfs_path *path;
4791 	struct extent_buffer *leaf;
4792 	unsigned long ptr;
4793 
4794 	path = btrfs_alloc_path();
4795 	if (!path)
4796 		return -ENOMEM;
4797 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4798 	if (!ret) {
4799 		leaf = path->nodes[0];
4800 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4801 		write_extent_buffer(leaf, data, ptr, data_size);
4802 		btrfs_mark_buffer_dirty(leaf);
4803 	}
4804 	btrfs_free_path(path);
4805 	return ret;
4806 }
4807 
4808 /*
4809  * delete the pointer from a given node.
4810  *
4811  * the tree should have been previously balanced so the deletion does not
4812  * empty a node.
4813  */
4814 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4815 		    int level, int slot)
4816 {
4817 	struct extent_buffer *parent = path->nodes[level];
4818 	u32 nritems;
4819 	int ret;
4820 
4821 	nritems = btrfs_header_nritems(parent);
4822 	if (slot != nritems - 1) {
4823 		if (level) {
4824 			ret = tree_mod_log_insert_move(parent, slot, slot + 1,
4825 					nritems - slot - 1);
4826 			BUG_ON(ret < 0);
4827 		}
4828 		memmove_extent_buffer(parent,
4829 			      btrfs_node_key_ptr_offset(slot),
4830 			      btrfs_node_key_ptr_offset(slot + 1),
4831 			      sizeof(struct btrfs_key_ptr) *
4832 			      (nritems - slot - 1));
4833 	} else if (level) {
4834 		ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE,
4835 				GFP_NOFS);
4836 		BUG_ON(ret < 0);
4837 	}
4838 
4839 	nritems--;
4840 	btrfs_set_header_nritems(parent, nritems);
4841 	if (nritems == 0 && parent == root->node) {
4842 		BUG_ON(btrfs_header_level(root->node) != 1);
4843 		/* just turn the root into a leaf and break */
4844 		btrfs_set_header_level(root->node, 0);
4845 	} else if (slot == 0) {
4846 		struct btrfs_disk_key disk_key;
4847 
4848 		btrfs_node_key(parent, &disk_key, 0);
4849 		fixup_low_keys(path, &disk_key, level + 1);
4850 	}
4851 	btrfs_mark_buffer_dirty(parent);
4852 }
4853 
4854 /*
4855  * a helper function to delete the leaf pointed to by path->slots[1] and
4856  * path->nodes[1].
4857  *
4858  * This deletes the pointer in path->nodes[1] and frees the leaf
4859  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4860  *
4861  * The path must have already been setup for deleting the leaf, including
4862  * all the proper balancing.  path->nodes[1] must be locked.
4863  */
4864 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4865 				    struct btrfs_root *root,
4866 				    struct btrfs_path *path,
4867 				    struct extent_buffer *leaf)
4868 {
4869 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4870 	del_ptr(root, path, 1, path->slots[1]);
4871 
4872 	/*
4873 	 * btrfs_free_extent is expensive, we want to make sure we
4874 	 * aren't holding any locks when we call it
4875 	 */
4876 	btrfs_unlock_up_safe(path, 0);
4877 
4878 	root_sub_used(root, leaf->len);
4879 
4880 	atomic_inc(&leaf->refs);
4881 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4882 	free_extent_buffer_stale(leaf);
4883 }
4884 /*
4885  * delete the item at the leaf level in path.  If that empties
4886  * the leaf, remove it from the tree
4887  */
4888 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4889 		    struct btrfs_path *path, int slot, int nr)
4890 {
4891 	struct btrfs_fs_info *fs_info = root->fs_info;
4892 	struct extent_buffer *leaf;
4893 	struct btrfs_item *item;
4894 	u32 last_off;
4895 	u32 dsize = 0;
4896 	int ret = 0;
4897 	int wret;
4898 	int i;
4899 	u32 nritems;
4900 
4901 	leaf = path->nodes[0];
4902 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4903 
4904 	for (i = 0; i < nr; i++)
4905 		dsize += btrfs_item_size_nr(leaf, slot + i);
4906 
4907 	nritems = btrfs_header_nritems(leaf);
4908 
4909 	if (slot + nr != nritems) {
4910 		int data_end = leaf_data_end(leaf);
4911 		struct btrfs_map_token token;
4912 
4913 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4914 			      data_end + dsize,
4915 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4916 			      last_off - data_end);
4917 
4918 		btrfs_init_map_token(&token, leaf);
4919 		for (i = slot + nr; i < nritems; i++) {
4920 			u32 ioff;
4921 
4922 			item = btrfs_item_nr(i);
4923 			ioff = btrfs_token_item_offset(&token, item);
4924 			btrfs_set_token_item_offset(&token, item, ioff + dsize);
4925 		}
4926 
4927 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4928 			      btrfs_item_nr_offset(slot + nr),
4929 			      sizeof(struct btrfs_item) *
4930 			      (nritems - slot - nr));
4931 	}
4932 	btrfs_set_header_nritems(leaf, nritems - nr);
4933 	nritems -= nr;
4934 
4935 	/* delete the leaf if we've emptied it */
4936 	if (nritems == 0) {
4937 		if (leaf == root->node) {
4938 			btrfs_set_header_level(leaf, 0);
4939 		} else {
4940 			btrfs_set_path_blocking(path);
4941 			btrfs_clean_tree_block(leaf);
4942 			btrfs_del_leaf(trans, root, path, leaf);
4943 		}
4944 	} else {
4945 		int used = leaf_space_used(leaf, 0, nritems);
4946 		if (slot == 0) {
4947 			struct btrfs_disk_key disk_key;
4948 
4949 			btrfs_item_key(leaf, &disk_key, 0);
4950 			fixup_low_keys(path, &disk_key, 1);
4951 		}
4952 
4953 		/* delete the leaf if it is mostly empty */
4954 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4955 			/* push_leaf_left fixes the path.
4956 			 * make sure the path still points to our leaf
4957 			 * for possible call to del_ptr below
4958 			 */
4959 			slot = path->slots[1];
4960 			atomic_inc(&leaf->refs);
4961 
4962 			btrfs_set_path_blocking(path);
4963 			wret = push_leaf_left(trans, root, path, 1, 1,
4964 					      1, (u32)-1);
4965 			if (wret < 0 && wret != -ENOSPC)
4966 				ret = wret;
4967 
4968 			if (path->nodes[0] == leaf &&
4969 			    btrfs_header_nritems(leaf)) {
4970 				wret = push_leaf_right(trans, root, path, 1,
4971 						       1, 1, 0);
4972 				if (wret < 0 && wret != -ENOSPC)
4973 					ret = wret;
4974 			}
4975 
4976 			if (btrfs_header_nritems(leaf) == 0) {
4977 				path->slots[1] = slot;
4978 				btrfs_del_leaf(trans, root, path, leaf);
4979 				free_extent_buffer(leaf);
4980 				ret = 0;
4981 			} else {
4982 				/* if we're still in the path, make sure
4983 				 * we're dirty.  Otherwise, one of the
4984 				 * push_leaf functions must have already
4985 				 * dirtied this buffer
4986 				 */
4987 				if (path->nodes[0] == leaf)
4988 					btrfs_mark_buffer_dirty(leaf);
4989 				free_extent_buffer(leaf);
4990 			}
4991 		} else {
4992 			btrfs_mark_buffer_dirty(leaf);
4993 		}
4994 	}
4995 	return ret;
4996 }
4997 
4998 /*
4999  * search the tree again to find a leaf with lesser keys
5000  * returns 0 if it found something or 1 if there are no lesser leaves.
5001  * returns < 0 on io errors.
5002  *
5003  * This may release the path, and so you may lose any locks held at the
5004  * time you call it.
5005  */
5006 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5007 {
5008 	struct btrfs_key key;
5009 	struct btrfs_disk_key found_key;
5010 	int ret;
5011 
5012 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5013 
5014 	if (key.offset > 0) {
5015 		key.offset--;
5016 	} else if (key.type > 0) {
5017 		key.type--;
5018 		key.offset = (u64)-1;
5019 	} else if (key.objectid > 0) {
5020 		key.objectid--;
5021 		key.type = (u8)-1;
5022 		key.offset = (u64)-1;
5023 	} else {
5024 		return 1;
5025 	}
5026 
5027 	btrfs_release_path(path);
5028 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5029 	if (ret < 0)
5030 		return ret;
5031 	btrfs_item_key(path->nodes[0], &found_key, 0);
5032 	ret = comp_keys(&found_key, &key);
5033 	/*
5034 	 * We might have had an item with the previous key in the tree right
5035 	 * before we released our path. And after we released our path, that
5036 	 * item might have been pushed to the first slot (0) of the leaf we
5037 	 * were holding due to a tree balance. Alternatively, an item with the
5038 	 * previous key can exist as the only element of a leaf (big fat item).
5039 	 * Therefore account for these 2 cases, so that our callers (like
5040 	 * btrfs_previous_item) don't miss an existing item with a key matching
5041 	 * the previous key we computed above.
5042 	 */
5043 	if (ret <= 0)
5044 		return 0;
5045 	return 1;
5046 }
5047 
5048 /*
5049  * A helper function to walk down the tree starting at min_key, and looking
5050  * for nodes or leaves that are have a minimum transaction id.
5051  * This is used by the btree defrag code, and tree logging
5052  *
5053  * This does not cow, but it does stuff the starting key it finds back
5054  * into min_key, so you can call btrfs_search_slot with cow=1 on the
5055  * key and get a writable path.
5056  *
5057  * This honors path->lowest_level to prevent descent past a given level
5058  * of the tree.
5059  *
5060  * min_trans indicates the oldest transaction that you are interested
5061  * in walking through.  Any nodes or leaves older than min_trans are
5062  * skipped over (without reading them).
5063  *
5064  * returns zero if something useful was found, < 0 on error and 1 if there
5065  * was nothing in the tree that matched the search criteria.
5066  */
5067 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5068 			 struct btrfs_path *path,
5069 			 u64 min_trans)
5070 {
5071 	struct extent_buffer *cur;
5072 	struct btrfs_key found_key;
5073 	int slot;
5074 	int sret;
5075 	u32 nritems;
5076 	int level;
5077 	int ret = 1;
5078 	int keep_locks = path->keep_locks;
5079 
5080 	path->keep_locks = 1;
5081 again:
5082 	cur = btrfs_read_lock_root_node(root);
5083 	level = btrfs_header_level(cur);
5084 	WARN_ON(path->nodes[level]);
5085 	path->nodes[level] = cur;
5086 	path->locks[level] = BTRFS_READ_LOCK;
5087 
5088 	if (btrfs_header_generation(cur) < min_trans) {
5089 		ret = 1;
5090 		goto out;
5091 	}
5092 	while (1) {
5093 		nritems = btrfs_header_nritems(cur);
5094 		level = btrfs_header_level(cur);
5095 		sret = btrfs_bin_search(cur, min_key, &slot);
5096 		if (sret < 0) {
5097 			ret = sret;
5098 			goto out;
5099 		}
5100 
5101 		/* at the lowest level, we're done, setup the path and exit */
5102 		if (level == path->lowest_level) {
5103 			if (slot >= nritems)
5104 				goto find_next_key;
5105 			ret = 0;
5106 			path->slots[level] = slot;
5107 			btrfs_item_key_to_cpu(cur, &found_key, slot);
5108 			goto out;
5109 		}
5110 		if (sret && slot > 0)
5111 			slot--;
5112 		/*
5113 		 * check this node pointer against the min_trans parameters.
5114 		 * If it is too old, old, skip to the next one.
5115 		 */
5116 		while (slot < nritems) {
5117 			u64 gen;
5118 
5119 			gen = btrfs_node_ptr_generation(cur, slot);
5120 			if (gen < min_trans) {
5121 				slot++;
5122 				continue;
5123 			}
5124 			break;
5125 		}
5126 find_next_key:
5127 		/*
5128 		 * we didn't find a candidate key in this node, walk forward
5129 		 * and find another one
5130 		 */
5131 		if (slot >= nritems) {
5132 			path->slots[level] = slot;
5133 			btrfs_set_path_blocking(path);
5134 			sret = btrfs_find_next_key(root, path, min_key, level,
5135 						  min_trans);
5136 			if (sret == 0) {
5137 				btrfs_release_path(path);
5138 				goto again;
5139 			} else {
5140 				goto out;
5141 			}
5142 		}
5143 		/* save our key for returning back */
5144 		btrfs_node_key_to_cpu(cur, &found_key, slot);
5145 		path->slots[level] = slot;
5146 		if (level == path->lowest_level) {
5147 			ret = 0;
5148 			goto out;
5149 		}
5150 		btrfs_set_path_blocking(path);
5151 		cur = btrfs_read_node_slot(cur, slot);
5152 		if (IS_ERR(cur)) {
5153 			ret = PTR_ERR(cur);
5154 			goto out;
5155 		}
5156 
5157 		btrfs_tree_read_lock(cur);
5158 
5159 		path->locks[level - 1] = BTRFS_READ_LOCK;
5160 		path->nodes[level - 1] = cur;
5161 		unlock_up(path, level, 1, 0, NULL);
5162 	}
5163 out:
5164 	path->keep_locks = keep_locks;
5165 	if (ret == 0) {
5166 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
5167 		btrfs_set_path_blocking(path);
5168 		memcpy(min_key, &found_key, sizeof(found_key));
5169 	}
5170 	return ret;
5171 }
5172 
5173 /*
5174  * this is similar to btrfs_next_leaf, but does not try to preserve
5175  * and fixup the path.  It looks for and returns the next key in the
5176  * tree based on the current path and the min_trans parameters.
5177  *
5178  * 0 is returned if another key is found, < 0 if there are any errors
5179  * and 1 is returned if there are no higher keys in the tree
5180  *
5181  * path->keep_locks should be set to 1 on the search made before
5182  * calling this function.
5183  */
5184 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5185 			struct btrfs_key *key, int level, u64 min_trans)
5186 {
5187 	int slot;
5188 	struct extent_buffer *c;
5189 
5190 	WARN_ON(!path->keep_locks && !path->skip_locking);
5191 	while (level < BTRFS_MAX_LEVEL) {
5192 		if (!path->nodes[level])
5193 			return 1;
5194 
5195 		slot = path->slots[level] + 1;
5196 		c = path->nodes[level];
5197 next:
5198 		if (slot >= btrfs_header_nritems(c)) {
5199 			int ret;
5200 			int orig_lowest;
5201 			struct btrfs_key cur_key;
5202 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5203 			    !path->nodes[level + 1])
5204 				return 1;
5205 
5206 			if (path->locks[level + 1] || path->skip_locking) {
5207 				level++;
5208 				continue;
5209 			}
5210 
5211 			slot = btrfs_header_nritems(c) - 1;
5212 			if (level == 0)
5213 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5214 			else
5215 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5216 
5217 			orig_lowest = path->lowest_level;
5218 			btrfs_release_path(path);
5219 			path->lowest_level = level;
5220 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5221 						0, 0);
5222 			path->lowest_level = orig_lowest;
5223 			if (ret < 0)
5224 				return ret;
5225 
5226 			c = path->nodes[level];
5227 			slot = path->slots[level];
5228 			if (ret == 0)
5229 				slot++;
5230 			goto next;
5231 		}
5232 
5233 		if (level == 0)
5234 			btrfs_item_key_to_cpu(c, key, slot);
5235 		else {
5236 			u64 gen = btrfs_node_ptr_generation(c, slot);
5237 
5238 			if (gen < min_trans) {
5239 				slot++;
5240 				goto next;
5241 			}
5242 			btrfs_node_key_to_cpu(c, key, slot);
5243 		}
5244 		return 0;
5245 	}
5246 	return 1;
5247 }
5248 
5249 /*
5250  * search the tree again to find a leaf with greater keys
5251  * returns 0 if it found something or 1 if there are no greater leaves.
5252  * returns < 0 on io errors.
5253  */
5254 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5255 {
5256 	return btrfs_next_old_leaf(root, path, 0);
5257 }
5258 
5259 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5260 			u64 time_seq)
5261 {
5262 	int slot;
5263 	int level;
5264 	struct extent_buffer *c;
5265 	struct extent_buffer *next;
5266 	struct btrfs_key key;
5267 	u32 nritems;
5268 	int ret;
5269 	int old_spinning = path->leave_spinning;
5270 	int next_rw_lock = 0;
5271 
5272 	nritems = btrfs_header_nritems(path->nodes[0]);
5273 	if (nritems == 0)
5274 		return 1;
5275 
5276 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5277 again:
5278 	level = 1;
5279 	next = NULL;
5280 	next_rw_lock = 0;
5281 	btrfs_release_path(path);
5282 
5283 	path->keep_locks = 1;
5284 	path->leave_spinning = 1;
5285 
5286 	if (time_seq)
5287 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5288 	else
5289 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5290 	path->keep_locks = 0;
5291 
5292 	if (ret < 0)
5293 		return ret;
5294 
5295 	nritems = btrfs_header_nritems(path->nodes[0]);
5296 	/*
5297 	 * by releasing the path above we dropped all our locks.  A balance
5298 	 * could have added more items next to the key that used to be
5299 	 * at the very end of the block.  So, check again here and
5300 	 * advance the path if there are now more items available.
5301 	 */
5302 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5303 		if (ret == 0)
5304 			path->slots[0]++;
5305 		ret = 0;
5306 		goto done;
5307 	}
5308 	/*
5309 	 * So the above check misses one case:
5310 	 * - after releasing the path above, someone has removed the item that
5311 	 *   used to be at the very end of the block, and balance between leafs
5312 	 *   gets another one with bigger key.offset to replace it.
5313 	 *
5314 	 * This one should be returned as well, or we can get leaf corruption
5315 	 * later(esp. in __btrfs_drop_extents()).
5316 	 *
5317 	 * And a bit more explanation about this check,
5318 	 * with ret > 0, the key isn't found, the path points to the slot
5319 	 * where it should be inserted, so the path->slots[0] item must be the
5320 	 * bigger one.
5321 	 */
5322 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5323 		ret = 0;
5324 		goto done;
5325 	}
5326 
5327 	while (level < BTRFS_MAX_LEVEL) {
5328 		if (!path->nodes[level]) {
5329 			ret = 1;
5330 			goto done;
5331 		}
5332 
5333 		slot = path->slots[level] + 1;
5334 		c = path->nodes[level];
5335 		if (slot >= btrfs_header_nritems(c)) {
5336 			level++;
5337 			if (level == BTRFS_MAX_LEVEL) {
5338 				ret = 1;
5339 				goto done;
5340 			}
5341 			continue;
5342 		}
5343 
5344 		if (next) {
5345 			btrfs_tree_unlock_rw(next, next_rw_lock);
5346 			free_extent_buffer(next);
5347 		}
5348 
5349 		next = c;
5350 		next_rw_lock = path->locks[level];
5351 		ret = read_block_for_search(root, path, &next, level,
5352 					    slot, &key);
5353 		if (ret == -EAGAIN)
5354 			goto again;
5355 
5356 		if (ret < 0) {
5357 			btrfs_release_path(path);
5358 			goto done;
5359 		}
5360 
5361 		if (!path->skip_locking) {
5362 			ret = btrfs_try_tree_read_lock(next);
5363 			if (!ret && time_seq) {
5364 				/*
5365 				 * If we don't get the lock, we may be racing
5366 				 * with push_leaf_left, holding that lock while
5367 				 * itself waiting for the leaf we've currently
5368 				 * locked. To solve this situation, we give up
5369 				 * on our lock and cycle.
5370 				 */
5371 				free_extent_buffer(next);
5372 				btrfs_release_path(path);
5373 				cond_resched();
5374 				goto again;
5375 			}
5376 			if (!ret) {
5377 				btrfs_set_path_blocking(path);
5378 				btrfs_tree_read_lock(next);
5379 			}
5380 			next_rw_lock = BTRFS_READ_LOCK;
5381 		}
5382 		break;
5383 	}
5384 	path->slots[level] = slot;
5385 	while (1) {
5386 		level--;
5387 		c = path->nodes[level];
5388 		if (path->locks[level])
5389 			btrfs_tree_unlock_rw(c, path->locks[level]);
5390 
5391 		free_extent_buffer(c);
5392 		path->nodes[level] = next;
5393 		path->slots[level] = 0;
5394 		if (!path->skip_locking)
5395 			path->locks[level] = next_rw_lock;
5396 		if (!level)
5397 			break;
5398 
5399 		ret = read_block_for_search(root, path, &next, level,
5400 					    0, &key);
5401 		if (ret == -EAGAIN)
5402 			goto again;
5403 
5404 		if (ret < 0) {
5405 			btrfs_release_path(path);
5406 			goto done;
5407 		}
5408 
5409 		if (!path->skip_locking) {
5410 			ret = btrfs_try_tree_read_lock(next);
5411 			if (!ret) {
5412 				btrfs_set_path_blocking(path);
5413 				btrfs_tree_read_lock(next);
5414 			}
5415 			next_rw_lock = BTRFS_READ_LOCK;
5416 		}
5417 	}
5418 	ret = 0;
5419 done:
5420 	unlock_up(path, 0, 1, 0, NULL);
5421 	path->leave_spinning = old_spinning;
5422 	if (!old_spinning)
5423 		btrfs_set_path_blocking(path);
5424 
5425 	return ret;
5426 }
5427 
5428 /*
5429  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5430  * searching until it gets past min_objectid or finds an item of 'type'
5431  *
5432  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5433  */
5434 int btrfs_previous_item(struct btrfs_root *root,
5435 			struct btrfs_path *path, u64 min_objectid,
5436 			int type)
5437 {
5438 	struct btrfs_key found_key;
5439 	struct extent_buffer *leaf;
5440 	u32 nritems;
5441 	int ret;
5442 
5443 	while (1) {
5444 		if (path->slots[0] == 0) {
5445 			btrfs_set_path_blocking(path);
5446 			ret = btrfs_prev_leaf(root, path);
5447 			if (ret != 0)
5448 				return ret;
5449 		} else {
5450 			path->slots[0]--;
5451 		}
5452 		leaf = path->nodes[0];
5453 		nritems = btrfs_header_nritems(leaf);
5454 		if (nritems == 0)
5455 			return 1;
5456 		if (path->slots[0] == nritems)
5457 			path->slots[0]--;
5458 
5459 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5460 		if (found_key.objectid < min_objectid)
5461 			break;
5462 		if (found_key.type == type)
5463 			return 0;
5464 		if (found_key.objectid == min_objectid &&
5465 		    found_key.type < type)
5466 			break;
5467 	}
5468 	return 1;
5469 }
5470 
5471 /*
5472  * search in extent tree to find a previous Metadata/Data extent item with
5473  * min objecitd.
5474  *
5475  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5476  */
5477 int btrfs_previous_extent_item(struct btrfs_root *root,
5478 			struct btrfs_path *path, u64 min_objectid)
5479 {
5480 	struct btrfs_key found_key;
5481 	struct extent_buffer *leaf;
5482 	u32 nritems;
5483 	int ret;
5484 
5485 	while (1) {
5486 		if (path->slots[0] == 0) {
5487 			btrfs_set_path_blocking(path);
5488 			ret = btrfs_prev_leaf(root, path);
5489 			if (ret != 0)
5490 				return ret;
5491 		} else {
5492 			path->slots[0]--;
5493 		}
5494 		leaf = path->nodes[0];
5495 		nritems = btrfs_header_nritems(leaf);
5496 		if (nritems == 0)
5497 			return 1;
5498 		if (path->slots[0] == nritems)
5499 			path->slots[0]--;
5500 
5501 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5502 		if (found_key.objectid < min_objectid)
5503 			break;
5504 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5505 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
5506 			return 0;
5507 		if (found_key.objectid == min_objectid &&
5508 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5509 			break;
5510 	}
5511 	return 1;
5512 }
5513