xref: /openbmc/linux/fs/btrfs/ctree.c (revision 08b7cf13)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/rbtree.h>
9 #include <linux/mm.h>
10 #include <linux/error-injection.h>
11 #include "ctree.h"
12 #include "disk-io.h"
13 #include "transaction.h"
14 #include "print-tree.h"
15 #include "locking.h"
16 #include "volumes.h"
17 #include "qgroup.h"
18 #include "tree-mod-log.h"
19 
20 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
21 		      *root, struct btrfs_path *path, int level);
22 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root,
23 		      const struct btrfs_key *ins_key, struct btrfs_path *path,
24 		      int data_size, int extend);
25 static int push_node_left(struct btrfs_trans_handle *trans,
26 			  struct extent_buffer *dst,
27 			  struct extent_buffer *src, int empty);
28 static int balance_node_right(struct btrfs_trans_handle *trans,
29 			      struct extent_buffer *dst_buf,
30 			      struct extent_buffer *src_buf);
31 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
32 		    int level, int slot);
33 
34 static const struct btrfs_csums {
35 	u16		size;
36 	const char	name[10];
37 	const char	driver[12];
38 } btrfs_csums[] = {
39 	[BTRFS_CSUM_TYPE_CRC32] = { .size = 4, .name = "crc32c" },
40 	[BTRFS_CSUM_TYPE_XXHASH] = { .size = 8, .name = "xxhash64" },
41 	[BTRFS_CSUM_TYPE_SHA256] = { .size = 32, .name = "sha256" },
42 	[BTRFS_CSUM_TYPE_BLAKE2] = { .size = 32, .name = "blake2b",
43 				     .driver = "blake2b-256" },
44 };
45 
46 int btrfs_super_csum_size(const struct btrfs_super_block *s)
47 {
48 	u16 t = btrfs_super_csum_type(s);
49 	/*
50 	 * csum type is validated at mount time
51 	 */
52 	return btrfs_csums[t].size;
53 }
54 
55 const char *btrfs_super_csum_name(u16 csum_type)
56 {
57 	/* csum type is validated at mount time */
58 	return btrfs_csums[csum_type].name;
59 }
60 
61 /*
62  * Return driver name if defined, otherwise the name that's also a valid driver
63  * name
64  */
65 const char *btrfs_super_csum_driver(u16 csum_type)
66 {
67 	/* csum type is validated at mount time */
68 	return btrfs_csums[csum_type].driver[0] ?
69 		btrfs_csums[csum_type].driver :
70 		btrfs_csums[csum_type].name;
71 }
72 
73 size_t __attribute_const__ btrfs_get_num_csums(void)
74 {
75 	return ARRAY_SIZE(btrfs_csums);
76 }
77 
78 struct btrfs_path *btrfs_alloc_path(void)
79 {
80 	return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
81 }
82 
83 /* this also releases the path */
84 void btrfs_free_path(struct btrfs_path *p)
85 {
86 	if (!p)
87 		return;
88 	btrfs_release_path(p);
89 	kmem_cache_free(btrfs_path_cachep, p);
90 }
91 
92 /*
93  * path release drops references on the extent buffers in the path
94  * and it drops any locks held by this path
95  *
96  * It is safe to call this on paths that no locks or extent buffers held.
97  */
98 noinline void btrfs_release_path(struct btrfs_path *p)
99 {
100 	int i;
101 
102 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
103 		p->slots[i] = 0;
104 		if (!p->nodes[i])
105 			continue;
106 		if (p->locks[i]) {
107 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
108 			p->locks[i] = 0;
109 		}
110 		free_extent_buffer(p->nodes[i]);
111 		p->nodes[i] = NULL;
112 	}
113 }
114 
115 /*
116  * safely gets a reference on the root node of a tree.  A lock
117  * is not taken, so a concurrent writer may put a different node
118  * at the root of the tree.  See btrfs_lock_root_node for the
119  * looping required.
120  *
121  * The extent buffer returned by this has a reference taken, so
122  * it won't disappear.  It may stop being the root of the tree
123  * at any time because there are no locks held.
124  */
125 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
126 {
127 	struct extent_buffer *eb;
128 
129 	while (1) {
130 		rcu_read_lock();
131 		eb = rcu_dereference(root->node);
132 
133 		/*
134 		 * RCU really hurts here, we could free up the root node because
135 		 * it was COWed but we may not get the new root node yet so do
136 		 * the inc_not_zero dance and if it doesn't work then
137 		 * synchronize_rcu and try again.
138 		 */
139 		if (atomic_inc_not_zero(&eb->refs)) {
140 			rcu_read_unlock();
141 			break;
142 		}
143 		rcu_read_unlock();
144 		synchronize_rcu();
145 	}
146 	return eb;
147 }
148 
149 /*
150  * Cowonly root (not-shareable trees, everything not subvolume or reloc roots),
151  * just get put onto a simple dirty list.  Transaction walks this list to make
152  * sure they get properly updated on disk.
153  */
154 static void add_root_to_dirty_list(struct btrfs_root *root)
155 {
156 	struct btrfs_fs_info *fs_info = root->fs_info;
157 
158 	if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
159 	    !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
160 		return;
161 
162 	spin_lock(&fs_info->trans_lock);
163 	if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
164 		/* Want the extent tree to be the last on the list */
165 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID)
166 			list_move_tail(&root->dirty_list,
167 				       &fs_info->dirty_cowonly_roots);
168 		else
169 			list_move(&root->dirty_list,
170 				  &fs_info->dirty_cowonly_roots);
171 	}
172 	spin_unlock(&fs_info->trans_lock);
173 }
174 
175 /*
176  * used by snapshot creation to make a copy of a root for a tree with
177  * a given objectid.  The buffer with the new root node is returned in
178  * cow_ret, and this func returns zero on success or a negative error code.
179  */
180 int btrfs_copy_root(struct btrfs_trans_handle *trans,
181 		      struct btrfs_root *root,
182 		      struct extent_buffer *buf,
183 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
184 {
185 	struct btrfs_fs_info *fs_info = root->fs_info;
186 	struct extent_buffer *cow;
187 	int ret = 0;
188 	int level;
189 	struct btrfs_disk_key disk_key;
190 
191 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
192 		trans->transid != fs_info->running_transaction->transid);
193 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
194 		trans->transid != root->last_trans);
195 
196 	level = btrfs_header_level(buf);
197 	if (level == 0)
198 		btrfs_item_key(buf, &disk_key, 0);
199 	else
200 		btrfs_node_key(buf, &disk_key, 0);
201 
202 	cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
203 				     &disk_key, level, buf->start, 0,
204 				     BTRFS_NESTING_NEW_ROOT);
205 	if (IS_ERR(cow))
206 		return PTR_ERR(cow);
207 
208 	copy_extent_buffer_full(cow, buf);
209 	btrfs_set_header_bytenr(cow, cow->start);
210 	btrfs_set_header_generation(cow, trans->transid);
211 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
212 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
213 				     BTRFS_HEADER_FLAG_RELOC);
214 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
215 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
216 	else
217 		btrfs_set_header_owner(cow, new_root_objectid);
218 
219 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
220 
221 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
222 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
223 		ret = btrfs_inc_ref(trans, root, cow, 1);
224 	else
225 		ret = btrfs_inc_ref(trans, root, cow, 0);
226 	if (ret) {
227 		btrfs_tree_unlock(cow);
228 		free_extent_buffer(cow);
229 		btrfs_abort_transaction(trans, ret);
230 		return ret;
231 	}
232 
233 	btrfs_mark_buffer_dirty(cow);
234 	*cow_ret = cow;
235 	return 0;
236 }
237 
238 /*
239  * check if the tree block can be shared by multiple trees
240  */
241 int btrfs_block_can_be_shared(struct btrfs_root *root,
242 			      struct extent_buffer *buf)
243 {
244 	/*
245 	 * Tree blocks not in shareable trees and tree roots are never shared.
246 	 * If a block was allocated after the last snapshot and the block was
247 	 * not allocated by tree relocation, we know the block is not shared.
248 	 */
249 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
250 	    buf != root->node && buf != root->commit_root &&
251 	    (btrfs_header_generation(buf) <=
252 	     btrfs_root_last_snapshot(&root->root_item) ||
253 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
254 		return 1;
255 
256 	return 0;
257 }
258 
259 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
260 				       struct btrfs_root *root,
261 				       struct extent_buffer *buf,
262 				       struct extent_buffer *cow,
263 				       int *last_ref)
264 {
265 	struct btrfs_fs_info *fs_info = root->fs_info;
266 	u64 refs;
267 	u64 owner;
268 	u64 flags;
269 	u64 new_flags = 0;
270 	int ret;
271 
272 	/*
273 	 * Backrefs update rules:
274 	 *
275 	 * Always use full backrefs for extent pointers in tree block
276 	 * allocated by tree relocation.
277 	 *
278 	 * If a shared tree block is no longer referenced by its owner
279 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
280 	 * use full backrefs for extent pointers in tree block.
281 	 *
282 	 * If a tree block is been relocating
283 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
284 	 * use full backrefs for extent pointers in tree block.
285 	 * The reason for this is some operations (such as drop tree)
286 	 * are only allowed for blocks use full backrefs.
287 	 */
288 
289 	if (btrfs_block_can_be_shared(root, buf)) {
290 		ret = btrfs_lookup_extent_info(trans, fs_info, buf->start,
291 					       btrfs_header_level(buf), 1,
292 					       &refs, &flags);
293 		if (ret)
294 			return ret;
295 		if (refs == 0) {
296 			ret = -EROFS;
297 			btrfs_handle_fs_error(fs_info, ret, NULL);
298 			return ret;
299 		}
300 	} else {
301 		refs = 1;
302 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
303 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
304 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
305 		else
306 			flags = 0;
307 	}
308 
309 	owner = btrfs_header_owner(buf);
310 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
311 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
312 
313 	if (refs > 1) {
314 		if ((owner == root->root_key.objectid ||
315 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
316 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
317 			ret = btrfs_inc_ref(trans, root, buf, 1);
318 			if (ret)
319 				return ret;
320 
321 			if (root->root_key.objectid ==
322 			    BTRFS_TREE_RELOC_OBJECTID) {
323 				ret = btrfs_dec_ref(trans, root, buf, 0);
324 				if (ret)
325 					return ret;
326 				ret = btrfs_inc_ref(trans, root, cow, 1);
327 				if (ret)
328 					return ret;
329 			}
330 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
331 		} else {
332 
333 			if (root->root_key.objectid ==
334 			    BTRFS_TREE_RELOC_OBJECTID)
335 				ret = btrfs_inc_ref(trans, root, cow, 1);
336 			else
337 				ret = btrfs_inc_ref(trans, root, cow, 0);
338 			if (ret)
339 				return ret;
340 		}
341 		if (new_flags != 0) {
342 			int level = btrfs_header_level(buf);
343 
344 			ret = btrfs_set_disk_extent_flags(trans, buf,
345 							  new_flags, level, 0);
346 			if (ret)
347 				return ret;
348 		}
349 	} else {
350 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
351 			if (root->root_key.objectid ==
352 			    BTRFS_TREE_RELOC_OBJECTID)
353 				ret = btrfs_inc_ref(trans, root, cow, 1);
354 			else
355 				ret = btrfs_inc_ref(trans, root, cow, 0);
356 			if (ret)
357 				return ret;
358 			ret = btrfs_dec_ref(trans, root, buf, 1);
359 			if (ret)
360 				return ret;
361 		}
362 		btrfs_clean_tree_block(buf);
363 		*last_ref = 1;
364 	}
365 	return 0;
366 }
367 
368 /*
369  * does the dirty work in cow of a single block.  The parent block (if
370  * supplied) is updated to point to the new cow copy.  The new buffer is marked
371  * dirty and returned locked.  If you modify the block it needs to be marked
372  * dirty again.
373  *
374  * search_start -- an allocation hint for the new block
375  *
376  * empty_size -- a hint that you plan on doing more cow.  This is the size in
377  * bytes the allocator should try to find free next to the block it returns.
378  * This is just a hint and may be ignored by the allocator.
379  */
380 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
381 			     struct btrfs_root *root,
382 			     struct extent_buffer *buf,
383 			     struct extent_buffer *parent, int parent_slot,
384 			     struct extent_buffer **cow_ret,
385 			     u64 search_start, u64 empty_size,
386 			     enum btrfs_lock_nesting nest)
387 {
388 	struct btrfs_fs_info *fs_info = root->fs_info;
389 	struct btrfs_disk_key disk_key;
390 	struct extent_buffer *cow;
391 	int level, ret;
392 	int last_ref = 0;
393 	int unlock_orig = 0;
394 	u64 parent_start = 0;
395 
396 	if (*cow_ret == buf)
397 		unlock_orig = 1;
398 
399 	btrfs_assert_tree_write_locked(buf);
400 
401 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
402 		trans->transid != fs_info->running_transaction->transid);
403 	WARN_ON(test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
404 		trans->transid != root->last_trans);
405 
406 	level = btrfs_header_level(buf);
407 
408 	if (level == 0)
409 		btrfs_item_key(buf, &disk_key, 0);
410 	else
411 		btrfs_node_key(buf, &disk_key, 0);
412 
413 	if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent)
414 		parent_start = parent->start;
415 
416 	cow = btrfs_alloc_tree_block(trans, root, parent_start,
417 				     root->root_key.objectid, &disk_key, level,
418 				     search_start, empty_size, nest);
419 	if (IS_ERR(cow))
420 		return PTR_ERR(cow);
421 
422 	/* cow is set to blocking by btrfs_init_new_buffer */
423 
424 	copy_extent_buffer_full(cow, buf);
425 	btrfs_set_header_bytenr(cow, cow->start);
426 	btrfs_set_header_generation(cow, trans->transid);
427 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
428 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
429 				     BTRFS_HEADER_FLAG_RELOC);
430 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
431 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
432 	else
433 		btrfs_set_header_owner(cow, root->root_key.objectid);
434 
435 	write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid);
436 
437 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
438 	if (ret) {
439 		btrfs_tree_unlock(cow);
440 		free_extent_buffer(cow);
441 		btrfs_abort_transaction(trans, ret);
442 		return ret;
443 	}
444 
445 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
446 		ret = btrfs_reloc_cow_block(trans, root, buf, cow);
447 		if (ret) {
448 			btrfs_tree_unlock(cow);
449 			free_extent_buffer(cow);
450 			btrfs_abort_transaction(trans, ret);
451 			return ret;
452 		}
453 	}
454 
455 	if (buf == root->node) {
456 		WARN_ON(parent && parent != buf);
457 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
458 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
459 			parent_start = buf->start;
460 
461 		atomic_inc(&cow->refs);
462 		ret = btrfs_tree_mod_log_insert_root(root->node, cow, true);
463 		BUG_ON(ret < 0);
464 		rcu_assign_pointer(root->node, cow);
465 
466 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
467 				      parent_start, last_ref);
468 		free_extent_buffer(buf);
469 		add_root_to_dirty_list(root);
470 	} else {
471 		WARN_ON(trans->transid != btrfs_header_generation(parent));
472 		btrfs_tree_mod_log_insert_key(parent, parent_slot,
473 					      BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
474 		btrfs_set_node_blockptr(parent, parent_slot,
475 					cow->start);
476 		btrfs_set_node_ptr_generation(parent, parent_slot,
477 					      trans->transid);
478 		btrfs_mark_buffer_dirty(parent);
479 		if (last_ref) {
480 			ret = btrfs_tree_mod_log_free_eb(buf);
481 			if (ret) {
482 				btrfs_tree_unlock(cow);
483 				free_extent_buffer(cow);
484 				btrfs_abort_transaction(trans, ret);
485 				return ret;
486 			}
487 		}
488 		btrfs_free_tree_block(trans, btrfs_root_id(root), buf,
489 				      parent_start, last_ref);
490 	}
491 	if (unlock_orig)
492 		btrfs_tree_unlock(buf);
493 	free_extent_buffer_stale(buf);
494 	btrfs_mark_buffer_dirty(cow);
495 	*cow_ret = cow;
496 	return 0;
497 }
498 
499 static inline int should_cow_block(struct btrfs_trans_handle *trans,
500 				   struct btrfs_root *root,
501 				   struct extent_buffer *buf)
502 {
503 	if (btrfs_is_testing(root->fs_info))
504 		return 0;
505 
506 	/* Ensure we can see the FORCE_COW bit */
507 	smp_mb__before_atomic();
508 
509 	/*
510 	 * We do not need to cow a block if
511 	 * 1) this block is not created or changed in this transaction;
512 	 * 2) this block does not belong to TREE_RELOC tree;
513 	 * 3) the root is not forced COW.
514 	 *
515 	 * What is forced COW:
516 	 *    when we create snapshot during committing the transaction,
517 	 *    after we've finished copying src root, we must COW the shared
518 	 *    block to ensure the metadata consistency.
519 	 */
520 	if (btrfs_header_generation(buf) == trans->transid &&
521 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
522 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
523 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
524 	    !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
525 		return 0;
526 	return 1;
527 }
528 
529 /*
530  * cows a single block, see __btrfs_cow_block for the real work.
531  * This version of it has extra checks so that a block isn't COWed more than
532  * once per transaction, as long as it hasn't been written yet
533  */
534 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
535 		    struct btrfs_root *root, struct extent_buffer *buf,
536 		    struct extent_buffer *parent, int parent_slot,
537 		    struct extent_buffer **cow_ret,
538 		    enum btrfs_lock_nesting nest)
539 {
540 	struct btrfs_fs_info *fs_info = root->fs_info;
541 	u64 search_start;
542 	int ret;
543 
544 	if (test_bit(BTRFS_ROOT_DELETING, &root->state))
545 		btrfs_err(fs_info,
546 			"COW'ing blocks on a fs root that's being dropped");
547 
548 	if (trans->transaction != fs_info->running_transaction)
549 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
550 		       trans->transid,
551 		       fs_info->running_transaction->transid);
552 
553 	if (trans->transid != fs_info->generation)
554 		WARN(1, KERN_CRIT "trans %llu running %llu\n",
555 		       trans->transid, fs_info->generation);
556 
557 	if (!should_cow_block(trans, root, buf)) {
558 		*cow_ret = buf;
559 		return 0;
560 	}
561 
562 	search_start = buf->start & ~((u64)SZ_1G - 1);
563 
564 	/*
565 	 * Before CoWing this block for later modification, check if it's
566 	 * the subtree root and do the delayed subtree trace if needed.
567 	 *
568 	 * Also We don't care about the error, as it's handled internally.
569 	 */
570 	btrfs_qgroup_trace_subtree_after_cow(trans, root, buf);
571 	ret = __btrfs_cow_block(trans, root, buf, parent,
572 				 parent_slot, cow_ret, search_start, 0, nest);
573 
574 	trace_btrfs_cow_block(root, buf, *cow_ret);
575 
576 	return ret;
577 }
578 ALLOW_ERROR_INJECTION(btrfs_cow_block, ERRNO);
579 
580 /*
581  * helper function for defrag to decide if two blocks pointed to by a
582  * node are actually close by
583  */
584 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
585 {
586 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
587 		return 1;
588 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
589 		return 1;
590 	return 0;
591 }
592 
593 #ifdef __LITTLE_ENDIAN
594 
595 /*
596  * Compare two keys, on little-endian the disk order is same as CPU order and
597  * we can avoid the conversion.
598  */
599 static int comp_keys(const struct btrfs_disk_key *disk_key,
600 		     const struct btrfs_key *k2)
601 {
602 	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
603 
604 	return btrfs_comp_cpu_keys(k1, k2);
605 }
606 
607 #else
608 
609 /*
610  * compare two keys in a memcmp fashion
611  */
612 static int comp_keys(const struct btrfs_disk_key *disk,
613 		     const struct btrfs_key *k2)
614 {
615 	struct btrfs_key k1;
616 
617 	btrfs_disk_key_to_cpu(&k1, disk);
618 
619 	return btrfs_comp_cpu_keys(&k1, k2);
620 }
621 #endif
622 
623 /*
624  * same as comp_keys only with two btrfs_key's
625  */
626 int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2)
627 {
628 	if (k1->objectid > k2->objectid)
629 		return 1;
630 	if (k1->objectid < k2->objectid)
631 		return -1;
632 	if (k1->type > k2->type)
633 		return 1;
634 	if (k1->type < k2->type)
635 		return -1;
636 	if (k1->offset > k2->offset)
637 		return 1;
638 	if (k1->offset < k2->offset)
639 		return -1;
640 	return 0;
641 }
642 
643 /*
644  * this is used by the defrag code to go through all the
645  * leaves pointed to by a node and reallocate them so that
646  * disk order is close to key order
647  */
648 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
649 		       struct btrfs_root *root, struct extent_buffer *parent,
650 		       int start_slot, u64 *last_ret,
651 		       struct btrfs_key *progress)
652 {
653 	struct btrfs_fs_info *fs_info = root->fs_info;
654 	struct extent_buffer *cur;
655 	u64 blocknr;
656 	u64 search_start = *last_ret;
657 	u64 last_block = 0;
658 	u64 other;
659 	u32 parent_nritems;
660 	int end_slot;
661 	int i;
662 	int err = 0;
663 	u32 blocksize;
664 	int progress_passed = 0;
665 	struct btrfs_disk_key disk_key;
666 
667 	WARN_ON(trans->transaction != fs_info->running_transaction);
668 	WARN_ON(trans->transid != fs_info->generation);
669 
670 	parent_nritems = btrfs_header_nritems(parent);
671 	blocksize = fs_info->nodesize;
672 	end_slot = parent_nritems - 1;
673 
674 	if (parent_nritems <= 1)
675 		return 0;
676 
677 	for (i = start_slot; i <= end_slot; i++) {
678 		int close = 1;
679 
680 		btrfs_node_key(parent, &disk_key, i);
681 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
682 			continue;
683 
684 		progress_passed = 1;
685 		blocknr = btrfs_node_blockptr(parent, i);
686 		if (last_block == 0)
687 			last_block = blocknr;
688 
689 		if (i > 0) {
690 			other = btrfs_node_blockptr(parent, i - 1);
691 			close = close_blocks(blocknr, other, blocksize);
692 		}
693 		if (!close && i < end_slot) {
694 			other = btrfs_node_blockptr(parent, i + 1);
695 			close = close_blocks(blocknr, other, blocksize);
696 		}
697 		if (close) {
698 			last_block = blocknr;
699 			continue;
700 		}
701 
702 		cur = btrfs_read_node_slot(parent, i);
703 		if (IS_ERR(cur))
704 			return PTR_ERR(cur);
705 		if (search_start == 0)
706 			search_start = last_block;
707 
708 		btrfs_tree_lock(cur);
709 		err = __btrfs_cow_block(trans, root, cur, parent, i,
710 					&cur, search_start,
711 					min(16 * blocksize,
712 					    (end_slot - i) * blocksize),
713 					BTRFS_NESTING_COW);
714 		if (err) {
715 			btrfs_tree_unlock(cur);
716 			free_extent_buffer(cur);
717 			break;
718 		}
719 		search_start = cur->start;
720 		last_block = cur->start;
721 		*last_ret = search_start;
722 		btrfs_tree_unlock(cur);
723 		free_extent_buffer(cur);
724 	}
725 	return err;
726 }
727 
728 /*
729  * Search for a key in the given extent_buffer.
730  *
731  * The lower boundary for the search is specified by the slot number @low. Use a
732  * value of 0 to search over the whole extent buffer.
733  *
734  * The slot in the extent buffer is returned via @slot. If the key exists in the
735  * extent buffer, then @slot will point to the slot where the key is, otherwise
736  * it points to the slot where you would insert the key.
737  *
738  * Slot may point to the total number of items (i.e. one position beyond the last
739  * key) if the key is bigger than the last key in the extent buffer.
740  */
741 static noinline int generic_bin_search(struct extent_buffer *eb, int low,
742 				       const struct btrfs_key *key, int *slot)
743 {
744 	unsigned long p;
745 	int item_size;
746 	int high = btrfs_header_nritems(eb);
747 	int ret;
748 	const int key_size = sizeof(struct btrfs_disk_key);
749 
750 	if (low > high) {
751 		btrfs_err(eb->fs_info,
752 		 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
753 			  __func__, low, high, eb->start,
754 			  btrfs_header_owner(eb), btrfs_header_level(eb));
755 		return -EINVAL;
756 	}
757 
758 	if (btrfs_header_level(eb) == 0) {
759 		p = offsetof(struct btrfs_leaf, items);
760 		item_size = sizeof(struct btrfs_item);
761 	} else {
762 		p = offsetof(struct btrfs_node, ptrs);
763 		item_size = sizeof(struct btrfs_key_ptr);
764 	}
765 
766 	while (low < high) {
767 		unsigned long oip;
768 		unsigned long offset;
769 		struct btrfs_disk_key *tmp;
770 		struct btrfs_disk_key unaligned;
771 		int mid;
772 
773 		mid = (low + high) / 2;
774 		offset = p + mid * item_size;
775 		oip = offset_in_page(offset);
776 
777 		if (oip + key_size <= PAGE_SIZE) {
778 			const unsigned long idx = get_eb_page_index(offset);
779 			char *kaddr = page_address(eb->pages[idx]);
780 
781 			oip = get_eb_offset_in_page(eb, offset);
782 			tmp = (struct btrfs_disk_key *)(kaddr + oip);
783 		} else {
784 			read_extent_buffer(eb, &unaligned, offset, key_size);
785 			tmp = &unaligned;
786 		}
787 
788 		ret = comp_keys(tmp, key);
789 
790 		if (ret < 0)
791 			low = mid + 1;
792 		else if (ret > 0)
793 			high = mid;
794 		else {
795 			*slot = mid;
796 			return 0;
797 		}
798 	}
799 	*slot = low;
800 	return 1;
801 }
802 
803 /*
804  * Simple binary search on an extent buffer. Works for both leaves and nodes, and
805  * always searches over the whole range of keys (slot 0 to slot 'nritems - 1').
806  */
807 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
808 		     int *slot)
809 {
810 	return generic_bin_search(eb, 0, key, slot);
811 }
812 
813 static void root_add_used(struct btrfs_root *root, u32 size)
814 {
815 	spin_lock(&root->accounting_lock);
816 	btrfs_set_root_used(&root->root_item,
817 			    btrfs_root_used(&root->root_item) + size);
818 	spin_unlock(&root->accounting_lock);
819 }
820 
821 static void root_sub_used(struct btrfs_root *root, u32 size)
822 {
823 	spin_lock(&root->accounting_lock);
824 	btrfs_set_root_used(&root->root_item,
825 			    btrfs_root_used(&root->root_item) - size);
826 	spin_unlock(&root->accounting_lock);
827 }
828 
829 /* given a node and slot number, this reads the blocks it points to.  The
830  * extent buffer is returned with a reference taken (but unlocked).
831  */
832 struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
833 					   int slot)
834 {
835 	int level = btrfs_header_level(parent);
836 	struct extent_buffer *eb;
837 	struct btrfs_key first_key;
838 
839 	if (slot < 0 || slot >= btrfs_header_nritems(parent))
840 		return ERR_PTR(-ENOENT);
841 
842 	BUG_ON(level == 0);
843 
844 	btrfs_node_key_to_cpu(parent, &first_key, slot);
845 	eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot),
846 			     btrfs_header_owner(parent),
847 			     btrfs_node_ptr_generation(parent, slot),
848 			     level - 1, &first_key);
849 	if (IS_ERR(eb))
850 		return eb;
851 	if (!extent_buffer_uptodate(eb)) {
852 		free_extent_buffer(eb);
853 		return ERR_PTR(-EIO);
854 	}
855 
856 	return eb;
857 }
858 
859 /*
860  * node level balancing, used to make sure nodes are in proper order for
861  * item deletion.  We balance from the top down, so we have to make sure
862  * that a deletion won't leave an node completely empty later on.
863  */
864 static noinline int balance_level(struct btrfs_trans_handle *trans,
865 			 struct btrfs_root *root,
866 			 struct btrfs_path *path, int level)
867 {
868 	struct btrfs_fs_info *fs_info = root->fs_info;
869 	struct extent_buffer *right = NULL;
870 	struct extent_buffer *mid;
871 	struct extent_buffer *left = NULL;
872 	struct extent_buffer *parent = NULL;
873 	int ret = 0;
874 	int wret;
875 	int pslot;
876 	int orig_slot = path->slots[level];
877 	u64 orig_ptr;
878 
879 	ASSERT(level > 0);
880 
881 	mid = path->nodes[level];
882 
883 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK);
884 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
885 
886 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
887 
888 	if (level < BTRFS_MAX_LEVEL - 1) {
889 		parent = path->nodes[level + 1];
890 		pslot = path->slots[level + 1];
891 	}
892 
893 	/*
894 	 * deal with the case where there is only one pointer in the root
895 	 * by promoting the node below to a root
896 	 */
897 	if (!parent) {
898 		struct extent_buffer *child;
899 
900 		if (btrfs_header_nritems(mid) != 1)
901 			return 0;
902 
903 		/* promote the child to a root */
904 		child = btrfs_read_node_slot(mid, 0);
905 		if (IS_ERR(child)) {
906 			ret = PTR_ERR(child);
907 			btrfs_handle_fs_error(fs_info, ret, NULL);
908 			goto enospc;
909 		}
910 
911 		btrfs_tree_lock(child);
912 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child,
913 				      BTRFS_NESTING_COW);
914 		if (ret) {
915 			btrfs_tree_unlock(child);
916 			free_extent_buffer(child);
917 			goto enospc;
918 		}
919 
920 		ret = btrfs_tree_mod_log_insert_root(root->node, child, true);
921 		BUG_ON(ret < 0);
922 		rcu_assign_pointer(root->node, child);
923 
924 		add_root_to_dirty_list(root);
925 		btrfs_tree_unlock(child);
926 
927 		path->locks[level] = 0;
928 		path->nodes[level] = NULL;
929 		btrfs_clean_tree_block(mid);
930 		btrfs_tree_unlock(mid);
931 		/* once for the path */
932 		free_extent_buffer(mid);
933 
934 		root_sub_used(root, mid->len);
935 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
936 		/* once for the root ptr */
937 		free_extent_buffer_stale(mid);
938 		return 0;
939 	}
940 	if (btrfs_header_nritems(mid) >
941 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4)
942 		return 0;
943 
944 	left = btrfs_read_node_slot(parent, pslot - 1);
945 	if (IS_ERR(left))
946 		left = NULL;
947 
948 	if (left) {
949 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
950 		wret = btrfs_cow_block(trans, root, left,
951 				       parent, pslot - 1, &left,
952 				       BTRFS_NESTING_LEFT_COW);
953 		if (wret) {
954 			ret = wret;
955 			goto enospc;
956 		}
957 	}
958 
959 	right = btrfs_read_node_slot(parent, pslot + 1);
960 	if (IS_ERR(right))
961 		right = NULL;
962 
963 	if (right) {
964 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
965 		wret = btrfs_cow_block(trans, root, right,
966 				       parent, pslot + 1, &right,
967 				       BTRFS_NESTING_RIGHT_COW);
968 		if (wret) {
969 			ret = wret;
970 			goto enospc;
971 		}
972 	}
973 
974 	/* first, try to make some room in the middle buffer */
975 	if (left) {
976 		orig_slot += btrfs_header_nritems(left);
977 		wret = push_node_left(trans, left, mid, 1);
978 		if (wret < 0)
979 			ret = wret;
980 	}
981 
982 	/*
983 	 * then try to empty the right most buffer into the middle
984 	 */
985 	if (right) {
986 		wret = push_node_left(trans, mid, right, 1);
987 		if (wret < 0 && wret != -ENOSPC)
988 			ret = wret;
989 		if (btrfs_header_nritems(right) == 0) {
990 			btrfs_clean_tree_block(right);
991 			btrfs_tree_unlock(right);
992 			del_ptr(root, path, level + 1, pslot + 1);
993 			root_sub_used(root, right->len);
994 			btrfs_free_tree_block(trans, btrfs_root_id(root), right,
995 					      0, 1);
996 			free_extent_buffer_stale(right);
997 			right = NULL;
998 		} else {
999 			struct btrfs_disk_key right_key;
1000 			btrfs_node_key(right, &right_key, 0);
1001 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1002 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1003 			BUG_ON(ret < 0);
1004 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1005 			btrfs_mark_buffer_dirty(parent);
1006 		}
1007 	}
1008 	if (btrfs_header_nritems(mid) == 1) {
1009 		/*
1010 		 * we're not allowed to leave a node with one item in the
1011 		 * tree during a delete.  A deletion from lower in the tree
1012 		 * could try to delete the only pointer in this node.
1013 		 * So, pull some keys from the left.
1014 		 * There has to be a left pointer at this point because
1015 		 * otherwise we would have pulled some pointers from the
1016 		 * right
1017 		 */
1018 		if (!left) {
1019 			ret = -EROFS;
1020 			btrfs_handle_fs_error(fs_info, ret, NULL);
1021 			goto enospc;
1022 		}
1023 		wret = balance_node_right(trans, mid, left);
1024 		if (wret < 0) {
1025 			ret = wret;
1026 			goto enospc;
1027 		}
1028 		if (wret == 1) {
1029 			wret = push_node_left(trans, left, mid, 1);
1030 			if (wret < 0)
1031 				ret = wret;
1032 		}
1033 		BUG_ON(wret == 1);
1034 	}
1035 	if (btrfs_header_nritems(mid) == 0) {
1036 		btrfs_clean_tree_block(mid);
1037 		btrfs_tree_unlock(mid);
1038 		del_ptr(root, path, level + 1, pslot);
1039 		root_sub_used(root, mid->len);
1040 		btrfs_free_tree_block(trans, btrfs_root_id(root), mid, 0, 1);
1041 		free_extent_buffer_stale(mid);
1042 		mid = NULL;
1043 	} else {
1044 		/* update the parent key to reflect our changes */
1045 		struct btrfs_disk_key mid_key;
1046 		btrfs_node_key(mid, &mid_key, 0);
1047 		ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1048 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1049 		BUG_ON(ret < 0);
1050 		btrfs_set_node_key(parent, &mid_key, pslot);
1051 		btrfs_mark_buffer_dirty(parent);
1052 	}
1053 
1054 	/* update the path */
1055 	if (left) {
1056 		if (btrfs_header_nritems(left) > orig_slot) {
1057 			atomic_inc(&left->refs);
1058 			/* left was locked after cow */
1059 			path->nodes[level] = left;
1060 			path->slots[level + 1] -= 1;
1061 			path->slots[level] = orig_slot;
1062 			if (mid) {
1063 				btrfs_tree_unlock(mid);
1064 				free_extent_buffer(mid);
1065 			}
1066 		} else {
1067 			orig_slot -= btrfs_header_nritems(left);
1068 			path->slots[level] = orig_slot;
1069 		}
1070 	}
1071 	/* double check we haven't messed things up */
1072 	if (orig_ptr !=
1073 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1074 		BUG();
1075 enospc:
1076 	if (right) {
1077 		btrfs_tree_unlock(right);
1078 		free_extent_buffer(right);
1079 	}
1080 	if (left) {
1081 		if (path->nodes[level] != left)
1082 			btrfs_tree_unlock(left);
1083 		free_extent_buffer(left);
1084 	}
1085 	return ret;
1086 }
1087 
1088 /* Node balancing for insertion.  Here we only split or push nodes around
1089  * when they are completely full.  This is also done top down, so we
1090  * have to be pessimistic.
1091  */
1092 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1093 					  struct btrfs_root *root,
1094 					  struct btrfs_path *path, int level)
1095 {
1096 	struct btrfs_fs_info *fs_info = root->fs_info;
1097 	struct extent_buffer *right = NULL;
1098 	struct extent_buffer *mid;
1099 	struct extent_buffer *left = NULL;
1100 	struct extent_buffer *parent = NULL;
1101 	int ret = 0;
1102 	int wret;
1103 	int pslot;
1104 	int orig_slot = path->slots[level];
1105 
1106 	if (level == 0)
1107 		return 1;
1108 
1109 	mid = path->nodes[level];
1110 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1111 
1112 	if (level < BTRFS_MAX_LEVEL - 1) {
1113 		parent = path->nodes[level + 1];
1114 		pslot = path->slots[level + 1];
1115 	}
1116 
1117 	if (!parent)
1118 		return 1;
1119 
1120 	left = btrfs_read_node_slot(parent, pslot - 1);
1121 	if (IS_ERR(left))
1122 		left = NULL;
1123 
1124 	/* first, try to make some room in the middle buffer */
1125 	if (left) {
1126 		u32 left_nr;
1127 
1128 		__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
1129 
1130 		left_nr = btrfs_header_nritems(left);
1131 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1132 			wret = 1;
1133 		} else {
1134 			ret = btrfs_cow_block(trans, root, left, parent,
1135 					      pslot - 1, &left,
1136 					      BTRFS_NESTING_LEFT_COW);
1137 			if (ret)
1138 				wret = 1;
1139 			else {
1140 				wret = push_node_left(trans, left, mid, 0);
1141 			}
1142 		}
1143 		if (wret < 0)
1144 			ret = wret;
1145 		if (wret == 0) {
1146 			struct btrfs_disk_key disk_key;
1147 			orig_slot += left_nr;
1148 			btrfs_node_key(mid, &disk_key, 0);
1149 			ret = btrfs_tree_mod_log_insert_key(parent, pslot,
1150 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1151 			BUG_ON(ret < 0);
1152 			btrfs_set_node_key(parent, &disk_key, pslot);
1153 			btrfs_mark_buffer_dirty(parent);
1154 			if (btrfs_header_nritems(left) > orig_slot) {
1155 				path->nodes[level] = left;
1156 				path->slots[level + 1] -= 1;
1157 				path->slots[level] = orig_slot;
1158 				btrfs_tree_unlock(mid);
1159 				free_extent_buffer(mid);
1160 			} else {
1161 				orig_slot -=
1162 					btrfs_header_nritems(left);
1163 				path->slots[level] = orig_slot;
1164 				btrfs_tree_unlock(left);
1165 				free_extent_buffer(left);
1166 			}
1167 			return 0;
1168 		}
1169 		btrfs_tree_unlock(left);
1170 		free_extent_buffer(left);
1171 	}
1172 	right = btrfs_read_node_slot(parent, pslot + 1);
1173 	if (IS_ERR(right))
1174 		right = NULL;
1175 
1176 	/*
1177 	 * then try to empty the right most buffer into the middle
1178 	 */
1179 	if (right) {
1180 		u32 right_nr;
1181 
1182 		__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
1183 
1184 		right_nr = btrfs_header_nritems(right);
1185 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) {
1186 			wret = 1;
1187 		} else {
1188 			ret = btrfs_cow_block(trans, root, right,
1189 					      parent, pslot + 1,
1190 					      &right, BTRFS_NESTING_RIGHT_COW);
1191 			if (ret)
1192 				wret = 1;
1193 			else {
1194 				wret = balance_node_right(trans, right, mid);
1195 			}
1196 		}
1197 		if (wret < 0)
1198 			ret = wret;
1199 		if (wret == 0) {
1200 			struct btrfs_disk_key disk_key;
1201 
1202 			btrfs_node_key(right, &disk_key, 0);
1203 			ret = btrfs_tree_mod_log_insert_key(parent, pslot + 1,
1204 					BTRFS_MOD_LOG_KEY_REPLACE, GFP_NOFS);
1205 			BUG_ON(ret < 0);
1206 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
1207 			btrfs_mark_buffer_dirty(parent);
1208 
1209 			if (btrfs_header_nritems(mid) <= orig_slot) {
1210 				path->nodes[level] = right;
1211 				path->slots[level + 1] += 1;
1212 				path->slots[level] = orig_slot -
1213 					btrfs_header_nritems(mid);
1214 				btrfs_tree_unlock(mid);
1215 				free_extent_buffer(mid);
1216 			} else {
1217 				btrfs_tree_unlock(right);
1218 				free_extent_buffer(right);
1219 			}
1220 			return 0;
1221 		}
1222 		btrfs_tree_unlock(right);
1223 		free_extent_buffer(right);
1224 	}
1225 	return 1;
1226 }
1227 
1228 /*
1229  * readahead one full node of leaves, finding things that are close
1230  * to the block in 'slot', and triggering ra on them.
1231  */
1232 static void reada_for_search(struct btrfs_fs_info *fs_info,
1233 			     struct btrfs_path *path,
1234 			     int level, int slot, u64 objectid)
1235 {
1236 	struct extent_buffer *node;
1237 	struct btrfs_disk_key disk_key;
1238 	u32 nritems;
1239 	u64 search;
1240 	u64 target;
1241 	u64 nread = 0;
1242 	u64 nread_max;
1243 	u32 nr;
1244 	u32 blocksize;
1245 	u32 nscan = 0;
1246 
1247 	if (level != 1 && path->reada != READA_FORWARD_ALWAYS)
1248 		return;
1249 
1250 	if (!path->nodes[level])
1251 		return;
1252 
1253 	node = path->nodes[level];
1254 
1255 	/*
1256 	 * Since the time between visiting leaves is much shorter than the time
1257 	 * between visiting nodes, limit read ahead of nodes to 1, to avoid too
1258 	 * much IO at once (possibly random).
1259 	 */
1260 	if (path->reada == READA_FORWARD_ALWAYS) {
1261 		if (level > 1)
1262 			nread_max = node->fs_info->nodesize;
1263 		else
1264 			nread_max = SZ_128K;
1265 	} else {
1266 		nread_max = SZ_64K;
1267 	}
1268 
1269 	search = btrfs_node_blockptr(node, slot);
1270 	blocksize = fs_info->nodesize;
1271 	if (path->reada != READA_FORWARD_ALWAYS) {
1272 		struct extent_buffer *eb;
1273 
1274 		eb = find_extent_buffer(fs_info, search);
1275 		if (eb) {
1276 			free_extent_buffer(eb);
1277 			return;
1278 		}
1279 	}
1280 
1281 	target = search;
1282 
1283 	nritems = btrfs_header_nritems(node);
1284 	nr = slot;
1285 
1286 	while (1) {
1287 		if (path->reada == READA_BACK) {
1288 			if (nr == 0)
1289 				break;
1290 			nr--;
1291 		} else if (path->reada == READA_FORWARD ||
1292 			   path->reada == READA_FORWARD_ALWAYS) {
1293 			nr++;
1294 			if (nr >= nritems)
1295 				break;
1296 		}
1297 		if (path->reada == READA_BACK && objectid) {
1298 			btrfs_node_key(node, &disk_key, nr);
1299 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
1300 				break;
1301 		}
1302 		search = btrfs_node_blockptr(node, nr);
1303 		if (path->reada == READA_FORWARD_ALWAYS ||
1304 		    (search <= target && target - search <= 65536) ||
1305 		    (search > target && search - target <= 65536)) {
1306 			btrfs_readahead_node_child(node, nr);
1307 			nread += blocksize;
1308 		}
1309 		nscan++;
1310 		if (nread > nread_max || nscan > 32)
1311 			break;
1312 	}
1313 }
1314 
1315 static noinline void reada_for_balance(struct btrfs_path *path, int level)
1316 {
1317 	struct extent_buffer *parent;
1318 	int slot;
1319 	int nritems;
1320 
1321 	parent = path->nodes[level + 1];
1322 	if (!parent)
1323 		return;
1324 
1325 	nritems = btrfs_header_nritems(parent);
1326 	slot = path->slots[level + 1];
1327 
1328 	if (slot > 0)
1329 		btrfs_readahead_node_child(parent, slot - 1);
1330 	if (slot + 1 < nritems)
1331 		btrfs_readahead_node_child(parent, slot + 1);
1332 }
1333 
1334 
1335 /*
1336  * when we walk down the tree, it is usually safe to unlock the higher layers
1337  * in the tree.  The exceptions are when our path goes through slot 0, because
1338  * operations on the tree might require changing key pointers higher up in the
1339  * tree.
1340  *
1341  * callers might also have set path->keep_locks, which tells this code to keep
1342  * the lock if the path points to the last slot in the block.  This is part of
1343  * walking through the tree, and selecting the next slot in the higher block.
1344  *
1345  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1346  * if lowest_unlock is 1, level 0 won't be unlocked
1347  */
1348 static noinline void unlock_up(struct btrfs_path *path, int level,
1349 			       int lowest_unlock, int min_write_lock_level,
1350 			       int *write_lock_level)
1351 {
1352 	int i;
1353 	int skip_level = level;
1354 	bool check_skip = true;
1355 
1356 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1357 		if (!path->nodes[i])
1358 			break;
1359 		if (!path->locks[i])
1360 			break;
1361 
1362 		if (check_skip) {
1363 			if (path->slots[i] == 0) {
1364 				skip_level = i + 1;
1365 				continue;
1366 			}
1367 
1368 			if (path->keep_locks) {
1369 				u32 nritems;
1370 
1371 				nritems = btrfs_header_nritems(path->nodes[i]);
1372 				if (nritems < 1 || path->slots[i] >= nritems - 1) {
1373 					skip_level = i + 1;
1374 					continue;
1375 				}
1376 			}
1377 		}
1378 
1379 		if (i >= lowest_unlock && i > skip_level) {
1380 			check_skip = false;
1381 			btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
1382 			path->locks[i] = 0;
1383 			if (write_lock_level &&
1384 			    i > min_write_lock_level &&
1385 			    i <= *write_lock_level) {
1386 				*write_lock_level = i - 1;
1387 			}
1388 		}
1389 	}
1390 }
1391 
1392 /*
1393  * helper function for btrfs_search_slot.  The goal is to find a block
1394  * in cache without setting the path to blocking.  If we find the block
1395  * we return zero and the path is unchanged.
1396  *
1397  * If we can't find the block, we set the path blocking and do some
1398  * reada.  -EAGAIN is returned and the search must be repeated.
1399  */
1400 static int
1401 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p,
1402 		      struct extent_buffer **eb_ret, int level, int slot,
1403 		      const struct btrfs_key *key)
1404 {
1405 	struct btrfs_fs_info *fs_info = root->fs_info;
1406 	u64 blocknr;
1407 	u64 gen;
1408 	struct extent_buffer *tmp;
1409 	struct btrfs_key first_key;
1410 	int ret;
1411 	int parent_level;
1412 
1413 	blocknr = btrfs_node_blockptr(*eb_ret, slot);
1414 	gen = btrfs_node_ptr_generation(*eb_ret, slot);
1415 	parent_level = btrfs_header_level(*eb_ret);
1416 	btrfs_node_key_to_cpu(*eb_ret, &first_key, slot);
1417 
1418 	tmp = find_extent_buffer(fs_info, blocknr);
1419 	if (tmp) {
1420 		if (p->reada == READA_FORWARD_ALWAYS)
1421 			reada_for_search(fs_info, p, level, slot, key->objectid);
1422 
1423 		/* first we do an atomic uptodate check */
1424 		if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
1425 			/*
1426 			 * Do extra check for first_key, eb can be stale due to
1427 			 * being cached, read from scrub, or have multiple
1428 			 * parents (shared tree blocks).
1429 			 */
1430 			if (btrfs_verify_level_key(tmp,
1431 					parent_level - 1, &first_key, gen)) {
1432 				free_extent_buffer(tmp);
1433 				return -EUCLEAN;
1434 			}
1435 			*eb_ret = tmp;
1436 			return 0;
1437 		}
1438 
1439 		/* now we're allowed to do a blocking uptodate check */
1440 		ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
1441 		if (ret) {
1442 			free_extent_buffer(tmp);
1443 			btrfs_release_path(p);
1444 			return -EIO;
1445 		}
1446 		*eb_ret = tmp;
1447 		return 0;
1448 	}
1449 
1450 	/*
1451 	 * reduce lock contention at high levels
1452 	 * of the btree by dropping locks before
1453 	 * we read.  Don't release the lock on the current
1454 	 * level because we need to walk this node to figure
1455 	 * out which blocks to read.
1456 	 */
1457 	btrfs_unlock_up_safe(p, level + 1);
1458 
1459 	if (p->reada != READA_NONE)
1460 		reada_for_search(fs_info, p, level, slot, key->objectid);
1461 
1462 	ret = -EAGAIN;
1463 	tmp = read_tree_block(fs_info, blocknr, root->root_key.objectid,
1464 			      gen, parent_level - 1, &first_key);
1465 	if (IS_ERR(tmp)) {
1466 		btrfs_release_path(p);
1467 		return PTR_ERR(tmp);
1468 	}
1469 	/*
1470 	 * If the read above didn't mark this buffer up to date,
1471 	 * it will never end up being up to date.  Set ret to EIO now
1472 	 * and give up so that our caller doesn't loop forever
1473 	 * on our EAGAINs.
1474 	 */
1475 	if (!extent_buffer_uptodate(tmp))
1476 		ret = -EIO;
1477 	free_extent_buffer(tmp);
1478 
1479 	btrfs_release_path(p);
1480 	return ret;
1481 }
1482 
1483 /*
1484  * helper function for btrfs_search_slot.  This does all of the checks
1485  * for node-level blocks and does any balancing required based on
1486  * the ins_len.
1487  *
1488  * If no extra work was required, zero is returned.  If we had to
1489  * drop the path, -EAGAIN is returned and btrfs_search_slot must
1490  * start over
1491  */
1492 static int
1493 setup_nodes_for_search(struct btrfs_trans_handle *trans,
1494 		       struct btrfs_root *root, struct btrfs_path *p,
1495 		       struct extent_buffer *b, int level, int ins_len,
1496 		       int *write_lock_level)
1497 {
1498 	struct btrfs_fs_info *fs_info = root->fs_info;
1499 	int ret = 0;
1500 
1501 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
1502 	    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) {
1503 
1504 		if (*write_lock_level < level + 1) {
1505 			*write_lock_level = level + 1;
1506 			btrfs_release_path(p);
1507 			return -EAGAIN;
1508 		}
1509 
1510 		reada_for_balance(p, level);
1511 		ret = split_node(trans, root, p, level);
1512 
1513 		b = p->nodes[level];
1514 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
1515 		   BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) {
1516 
1517 		if (*write_lock_level < level + 1) {
1518 			*write_lock_level = level + 1;
1519 			btrfs_release_path(p);
1520 			return -EAGAIN;
1521 		}
1522 
1523 		reada_for_balance(p, level);
1524 		ret = balance_level(trans, root, p, level);
1525 		if (ret)
1526 			return ret;
1527 
1528 		b = p->nodes[level];
1529 		if (!b) {
1530 			btrfs_release_path(p);
1531 			return -EAGAIN;
1532 		}
1533 		BUG_ON(btrfs_header_nritems(b) == 1);
1534 	}
1535 	return ret;
1536 }
1537 
1538 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
1539 		u64 iobjectid, u64 ioff, u8 key_type,
1540 		struct btrfs_key *found_key)
1541 {
1542 	int ret;
1543 	struct btrfs_key key;
1544 	struct extent_buffer *eb;
1545 
1546 	ASSERT(path);
1547 	ASSERT(found_key);
1548 
1549 	key.type = key_type;
1550 	key.objectid = iobjectid;
1551 	key.offset = ioff;
1552 
1553 	ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1554 	if (ret < 0)
1555 		return ret;
1556 
1557 	eb = path->nodes[0];
1558 	if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1559 		ret = btrfs_next_leaf(fs_root, path);
1560 		if (ret)
1561 			return ret;
1562 		eb = path->nodes[0];
1563 	}
1564 
1565 	btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1566 	if (found_key->type != key.type ||
1567 			found_key->objectid != key.objectid)
1568 		return 1;
1569 
1570 	return 0;
1571 }
1572 
1573 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root,
1574 							struct btrfs_path *p,
1575 							int write_lock_level)
1576 {
1577 	struct extent_buffer *b;
1578 	int root_lock = 0;
1579 	int level = 0;
1580 
1581 	if (p->search_commit_root) {
1582 		b = root->commit_root;
1583 		atomic_inc(&b->refs);
1584 		level = btrfs_header_level(b);
1585 		/*
1586 		 * Ensure that all callers have set skip_locking when
1587 		 * p->search_commit_root = 1.
1588 		 */
1589 		ASSERT(p->skip_locking == 1);
1590 
1591 		goto out;
1592 	}
1593 
1594 	if (p->skip_locking) {
1595 		b = btrfs_root_node(root);
1596 		level = btrfs_header_level(b);
1597 		goto out;
1598 	}
1599 
1600 	/* We try very hard to do read locks on the root */
1601 	root_lock = BTRFS_READ_LOCK;
1602 
1603 	/*
1604 	 * If the level is set to maximum, we can skip trying to get the read
1605 	 * lock.
1606 	 */
1607 	if (write_lock_level < BTRFS_MAX_LEVEL) {
1608 		/*
1609 		 * We don't know the level of the root node until we actually
1610 		 * have it read locked
1611 		 */
1612 		b = btrfs_read_lock_root_node(root);
1613 		level = btrfs_header_level(b);
1614 		if (level > write_lock_level)
1615 			goto out;
1616 
1617 		/* Whoops, must trade for write lock */
1618 		btrfs_tree_read_unlock(b);
1619 		free_extent_buffer(b);
1620 	}
1621 
1622 	b = btrfs_lock_root_node(root);
1623 	root_lock = BTRFS_WRITE_LOCK;
1624 
1625 	/* The level might have changed, check again */
1626 	level = btrfs_header_level(b);
1627 
1628 out:
1629 	/*
1630 	 * The root may have failed to write out at some point, and thus is no
1631 	 * longer valid, return an error in this case.
1632 	 */
1633 	if (!extent_buffer_uptodate(b)) {
1634 		if (root_lock)
1635 			btrfs_tree_unlock_rw(b, root_lock);
1636 		free_extent_buffer(b);
1637 		return ERR_PTR(-EIO);
1638 	}
1639 
1640 	p->nodes[level] = b;
1641 	if (!p->skip_locking)
1642 		p->locks[level] = root_lock;
1643 	/*
1644 	 * Callers are responsible for dropping b's references.
1645 	 */
1646 	return b;
1647 }
1648 
1649 /*
1650  * Replace the extent buffer at the lowest level of the path with a cloned
1651  * version. The purpose is to be able to use it safely, after releasing the
1652  * commit root semaphore, even if relocation is happening in parallel, the
1653  * transaction used for relocation is committed and the extent buffer is
1654  * reallocated in the next transaction.
1655  *
1656  * This is used in a context where the caller does not prevent transaction
1657  * commits from happening, either by holding a transaction handle or holding
1658  * some lock, while it's doing searches through a commit root.
1659  * At the moment it's only used for send operations.
1660  */
1661 static int finish_need_commit_sem_search(struct btrfs_path *path)
1662 {
1663 	const int i = path->lowest_level;
1664 	const int slot = path->slots[i];
1665 	struct extent_buffer *lowest = path->nodes[i];
1666 	struct extent_buffer *clone;
1667 
1668 	ASSERT(path->need_commit_sem);
1669 
1670 	if (!lowest)
1671 		return 0;
1672 
1673 	lockdep_assert_held_read(&lowest->fs_info->commit_root_sem);
1674 
1675 	clone = btrfs_clone_extent_buffer(lowest);
1676 	if (!clone)
1677 		return -ENOMEM;
1678 
1679 	btrfs_release_path(path);
1680 	path->nodes[i] = clone;
1681 	path->slots[i] = slot;
1682 
1683 	return 0;
1684 }
1685 
1686 static inline int search_for_key_slot(struct extent_buffer *eb,
1687 				      int search_low_slot,
1688 				      const struct btrfs_key *key,
1689 				      int prev_cmp,
1690 				      int *slot)
1691 {
1692 	/*
1693 	 * If a previous call to btrfs_bin_search() on a parent node returned an
1694 	 * exact match (prev_cmp == 0), we can safely assume the target key will
1695 	 * always be at slot 0 on lower levels, since each key pointer
1696 	 * (struct btrfs_key_ptr) refers to the lowest key accessible from the
1697 	 * subtree it points to. Thus we can skip searching lower levels.
1698 	 */
1699 	if (prev_cmp == 0) {
1700 		*slot = 0;
1701 		return 0;
1702 	}
1703 
1704 	return generic_bin_search(eb, search_low_slot, key, slot);
1705 }
1706 
1707 static int search_leaf(struct btrfs_trans_handle *trans,
1708 		       struct btrfs_root *root,
1709 		       const struct btrfs_key *key,
1710 		       struct btrfs_path *path,
1711 		       int ins_len,
1712 		       int prev_cmp)
1713 {
1714 	struct extent_buffer *leaf = path->nodes[0];
1715 	int leaf_free_space = -1;
1716 	int search_low_slot = 0;
1717 	int ret;
1718 	bool do_bin_search = true;
1719 
1720 	/*
1721 	 * If we are doing an insertion, the leaf has enough free space and the
1722 	 * destination slot for the key is not slot 0, then we can unlock our
1723 	 * write lock on the parent, and any other upper nodes, before doing the
1724 	 * binary search on the leaf (with search_for_key_slot()), allowing other
1725 	 * tasks to lock the parent and any other upper nodes.
1726 	 */
1727 	if (ins_len > 0) {
1728 		/*
1729 		 * Cache the leaf free space, since we will need it later and it
1730 		 * will not change until then.
1731 		 */
1732 		leaf_free_space = btrfs_leaf_free_space(leaf);
1733 
1734 		/*
1735 		 * !path->locks[1] means we have a single node tree, the leaf is
1736 		 * the root of the tree.
1737 		 */
1738 		if (path->locks[1] && leaf_free_space >= ins_len) {
1739 			struct btrfs_disk_key first_key;
1740 
1741 			ASSERT(btrfs_header_nritems(leaf) > 0);
1742 			btrfs_item_key(leaf, &first_key, 0);
1743 
1744 			/*
1745 			 * Doing the extra comparison with the first key is cheap,
1746 			 * taking into account that the first key is very likely
1747 			 * already in a cache line because it immediately follows
1748 			 * the extent buffer's header and we have recently accessed
1749 			 * the header's level field.
1750 			 */
1751 			ret = comp_keys(&first_key, key);
1752 			if (ret < 0) {
1753 				/*
1754 				 * The first key is smaller than the key we want
1755 				 * to insert, so we are safe to unlock all upper
1756 				 * nodes and we have to do the binary search.
1757 				 *
1758 				 * We do use btrfs_unlock_up_safe() and not
1759 				 * unlock_up() because the later does not unlock
1760 				 * nodes with a slot of 0 - we can safely unlock
1761 				 * any node even if its slot is 0 since in this
1762 				 * case the key does not end up at slot 0 of the
1763 				 * leaf and there's no need to split the leaf.
1764 				 */
1765 				btrfs_unlock_up_safe(path, 1);
1766 				search_low_slot = 1;
1767 			} else {
1768 				/*
1769 				 * The first key is >= then the key we want to
1770 				 * insert, so we can skip the binary search as
1771 				 * the target key will be at slot 0.
1772 				 *
1773 				 * We can not unlock upper nodes when the key is
1774 				 * less than the first key, because we will need
1775 				 * to update the key at slot 0 of the parent node
1776 				 * and possibly of other upper nodes too.
1777 				 * If the key matches the first key, then we can
1778 				 * unlock all the upper nodes, using
1779 				 * btrfs_unlock_up_safe() instead of unlock_up()
1780 				 * as stated above.
1781 				 */
1782 				if (ret == 0)
1783 					btrfs_unlock_up_safe(path, 1);
1784 				/*
1785 				 * ret is already 0 or 1, matching the result of
1786 				 * a btrfs_bin_search() call, so there is no need
1787 				 * to adjust it.
1788 				 */
1789 				do_bin_search = false;
1790 				path->slots[0] = 0;
1791 			}
1792 		}
1793 	}
1794 
1795 	if (do_bin_search) {
1796 		ret = search_for_key_slot(leaf, search_low_slot, key,
1797 					  prev_cmp, &path->slots[0]);
1798 		if (ret < 0)
1799 			return ret;
1800 	}
1801 
1802 	if (ins_len > 0) {
1803 		/*
1804 		 * Item key already exists. In this case, if we are allowed to
1805 		 * insert the item (for example, in dir_item case, item key
1806 		 * collision is allowed), it will be merged with the original
1807 		 * item. Only the item size grows, no new btrfs item will be
1808 		 * added. If search_for_extension is not set, ins_len already
1809 		 * accounts the size btrfs_item, deduct it here so leaf space
1810 		 * check will be correct.
1811 		 */
1812 		if (ret == 0 && !path->search_for_extension) {
1813 			ASSERT(ins_len >= sizeof(struct btrfs_item));
1814 			ins_len -= sizeof(struct btrfs_item);
1815 		}
1816 
1817 		ASSERT(leaf_free_space >= 0);
1818 
1819 		if (leaf_free_space < ins_len) {
1820 			int err;
1821 
1822 			err = split_leaf(trans, root, key, path, ins_len,
1823 					 (ret == 0));
1824 			ASSERT(err <= 0);
1825 			if (WARN_ON(err > 0))
1826 				err = -EUCLEAN;
1827 			if (err)
1828 				ret = err;
1829 		}
1830 	}
1831 
1832 	return ret;
1833 }
1834 
1835 /*
1836  * btrfs_search_slot - look for a key in a tree and perform necessary
1837  * modifications to preserve tree invariants.
1838  *
1839  * @trans:	Handle of transaction, used when modifying the tree
1840  * @p:		Holds all btree nodes along the search path
1841  * @root:	The root node of the tree
1842  * @key:	The key we are looking for
1843  * @ins_len:	Indicates purpose of search:
1844  *              >0  for inserts it's size of item inserted (*)
1845  *              <0  for deletions
1846  *               0  for plain searches, not modifying the tree
1847  *
1848  *              (*) If size of item inserted doesn't include
1849  *              sizeof(struct btrfs_item), then p->search_for_extension must
1850  *              be set.
1851  * @cow:	boolean should CoW operations be performed. Must always be 1
1852  *		when modifying the tree.
1853  *
1854  * If @ins_len > 0, nodes and leaves will be split as we walk down the tree.
1855  * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible)
1856  *
1857  * If @key is found, 0 is returned and you can find the item in the leaf level
1858  * of the path (level 0)
1859  *
1860  * If @key isn't found, 1 is returned and the leaf level of the path (level 0)
1861  * points to the slot where it should be inserted
1862  *
1863  * If an error is encountered while searching the tree a negative error number
1864  * is returned
1865  */
1866 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1867 		      const struct btrfs_key *key, struct btrfs_path *p,
1868 		      int ins_len, int cow)
1869 {
1870 	struct btrfs_fs_info *fs_info = root->fs_info;
1871 	struct extent_buffer *b;
1872 	int slot;
1873 	int ret;
1874 	int err;
1875 	int level;
1876 	int lowest_unlock = 1;
1877 	/* everything at write_lock_level or lower must be write locked */
1878 	int write_lock_level = 0;
1879 	u8 lowest_level = 0;
1880 	int min_write_lock_level;
1881 	int prev_cmp;
1882 
1883 	lowest_level = p->lowest_level;
1884 	WARN_ON(lowest_level && ins_len > 0);
1885 	WARN_ON(p->nodes[0] != NULL);
1886 	BUG_ON(!cow && ins_len);
1887 
1888 	if (ins_len < 0) {
1889 		lowest_unlock = 2;
1890 
1891 		/* when we are removing items, we might have to go up to level
1892 		 * two as we update tree pointers  Make sure we keep write
1893 		 * for those levels as well
1894 		 */
1895 		write_lock_level = 2;
1896 	} else if (ins_len > 0) {
1897 		/*
1898 		 * for inserting items, make sure we have a write lock on
1899 		 * level 1 so we can update keys
1900 		 */
1901 		write_lock_level = 1;
1902 	}
1903 
1904 	if (!cow)
1905 		write_lock_level = -1;
1906 
1907 	if (cow && (p->keep_locks || p->lowest_level))
1908 		write_lock_level = BTRFS_MAX_LEVEL;
1909 
1910 	min_write_lock_level = write_lock_level;
1911 
1912 	if (p->need_commit_sem) {
1913 		ASSERT(p->search_commit_root);
1914 		down_read(&fs_info->commit_root_sem);
1915 	}
1916 
1917 again:
1918 	prev_cmp = -1;
1919 	b = btrfs_search_slot_get_root(root, p, write_lock_level);
1920 	if (IS_ERR(b)) {
1921 		ret = PTR_ERR(b);
1922 		goto done;
1923 	}
1924 
1925 	while (b) {
1926 		int dec = 0;
1927 
1928 		level = btrfs_header_level(b);
1929 
1930 		if (cow) {
1931 			bool last_level = (level == (BTRFS_MAX_LEVEL - 1));
1932 
1933 			/*
1934 			 * if we don't really need to cow this block
1935 			 * then we don't want to set the path blocking,
1936 			 * so we test it here
1937 			 */
1938 			if (!should_cow_block(trans, root, b))
1939 				goto cow_done;
1940 
1941 			/*
1942 			 * must have write locks on this node and the
1943 			 * parent
1944 			 */
1945 			if (level > write_lock_level ||
1946 			    (level + 1 > write_lock_level &&
1947 			    level + 1 < BTRFS_MAX_LEVEL &&
1948 			    p->nodes[level + 1])) {
1949 				write_lock_level = level + 1;
1950 				btrfs_release_path(p);
1951 				goto again;
1952 			}
1953 
1954 			if (last_level)
1955 				err = btrfs_cow_block(trans, root, b, NULL, 0,
1956 						      &b,
1957 						      BTRFS_NESTING_COW);
1958 			else
1959 				err = btrfs_cow_block(trans, root, b,
1960 						      p->nodes[level + 1],
1961 						      p->slots[level + 1], &b,
1962 						      BTRFS_NESTING_COW);
1963 			if (err) {
1964 				ret = err;
1965 				goto done;
1966 			}
1967 		}
1968 cow_done:
1969 		p->nodes[level] = b;
1970 
1971 		/*
1972 		 * we have a lock on b and as long as we aren't changing
1973 		 * the tree, there is no way to for the items in b to change.
1974 		 * It is safe to drop the lock on our parent before we
1975 		 * go through the expensive btree search on b.
1976 		 *
1977 		 * If we're inserting or deleting (ins_len != 0), then we might
1978 		 * be changing slot zero, which may require changing the parent.
1979 		 * So, we can't drop the lock until after we know which slot
1980 		 * we're operating on.
1981 		 */
1982 		if (!ins_len && !p->keep_locks) {
1983 			int u = level + 1;
1984 
1985 			if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
1986 				btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
1987 				p->locks[u] = 0;
1988 			}
1989 		}
1990 
1991 		if (level == 0) {
1992 			if (ins_len > 0)
1993 				ASSERT(write_lock_level >= 1);
1994 
1995 			ret = search_leaf(trans, root, key, p, ins_len, prev_cmp);
1996 			if (!p->search_for_split)
1997 				unlock_up(p, level, lowest_unlock,
1998 					  min_write_lock_level, NULL);
1999 			goto done;
2000 		}
2001 
2002 		ret = search_for_key_slot(b, 0, key, prev_cmp, &slot);
2003 		if (ret < 0)
2004 			goto done;
2005 		prev_cmp = ret;
2006 
2007 		if (ret && slot > 0) {
2008 			dec = 1;
2009 			slot--;
2010 		}
2011 		p->slots[level] = slot;
2012 		err = setup_nodes_for_search(trans, root, p, b, level, ins_len,
2013 					     &write_lock_level);
2014 		if (err == -EAGAIN)
2015 			goto again;
2016 		if (err) {
2017 			ret = err;
2018 			goto done;
2019 		}
2020 		b = p->nodes[level];
2021 		slot = p->slots[level];
2022 
2023 		/*
2024 		 * Slot 0 is special, if we change the key we have to update
2025 		 * the parent pointer which means we must have a write lock on
2026 		 * the parent
2027 		 */
2028 		if (slot == 0 && ins_len && write_lock_level < level + 1) {
2029 			write_lock_level = level + 1;
2030 			btrfs_release_path(p);
2031 			goto again;
2032 		}
2033 
2034 		unlock_up(p, level, lowest_unlock, min_write_lock_level,
2035 			  &write_lock_level);
2036 
2037 		if (level == lowest_level) {
2038 			if (dec)
2039 				p->slots[level]++;
2040 			goto done;
2041 		}
2042 
2043 		err = read_block_for_search(root, p, &b, level, slot, key);
2044 		if (err == -EAGAIN)
2045 			goto again;
2046 		if (err) {
2047 			ret = err;
2048 			goto done;
2049 		}
2050 
2051 		if (!p->skip_locking) {
2052 			level = btrfs_header_level(b);
2053 			if (level <= write_lock_level) {
2054 				btrfs_tree_lock(b);
2055 				p->locks[level] = BTRFS_WRITE_LOCK;
2056 			} else {
2057 				btrfs_tree_read_lock(b);
2058 				p->locks[level] = BTRFS_READ_LOCK;
2059 			}
2060 			p->nodes[level] = b;
2061 		}
2062 	}
2063 	ret = 1;
2064 done:
2065 	if (ret < 0 && !p->skip_release_on_error)
2066 		btrfs_release_path(p);
2067 
2068 	if (p->need_commit_sem) {
2069 		int ret2;
2070 
2071 		ret2 = finish_need_commit_sem_search(p);
2072 		up_read(&fs_info->commit_root_sem);
2073 		if (ret2)
2074 			ret = ret2;
2075 	}
2076 
2077 	return ret;
2078 }
2079 ALLOW_ERROR_INJECTION(btrfs_search_slot, ERRNO);
2080 
2081 /*
2082  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2083  * current state of the tree together with the operations recorded in the tree
2084  * modification log to search for the key in a previous version of this tree, as
2085  * denoted by the time_seq parameter.
2086  *
2087  * Naturally, there is no support for insert, delete or cow operations.
2088  *
2089  * The resulting path and return value will be set up as if we called
2090  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2091  */
2092 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2093 			  struct btrfs_path *p, u64 time_seq)
2094 {
2095 	struct btrfs_fs_info *fs_info = root->fs_info;
2096 	struct extent_buffer *b;
2097 	int slot;
2098 	int ret;
2099 	int err;
2100 	int level;
2101 	int lowest_unlock = 1;
2102 	u8 lowest_level = 0;
2103 
2104 	lowest_level = p->lowest_level;
2105 	WARN_ON(p->nodes[0] != NULL);
2106 
2107 	if (p->search_commit_root) {
2108 		BUG_ON(time_seq);
2109 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2110 	}
2111 
2112 again:
2113 	b = btrfs_get_old_root(root, time_seq);
2114 	if (!b) {
2115 		ret = -EIO;
2116 		goto done;
2117 	}
2118 	level = btrfs_header_level(b);
2119 	p->locks[level] = BTRFS_READ_LOCK;
2120 
2121 	while (b) {
2122 		int dec = 0;
2123 
2124 		level = btrfs_header_level(b);
2125 		p->nodes[level] = b;
2126 
2127 		/*
2128 		 * we have a lock on b and as long as we aren't changing
2129 		 * the tree, there is no way to for the items in b to change.
2130 		 * It is safe to drop the lock on our parent before we
2131 		 * go through the expensive btree search on b.
2132 		 */
2133 		btrfs_unlock_up_safe(p, level + 1);
2134 
2135 		ret = btrfs_bin_search(b, key, &slot);
2136 		if (ret < 0)
2137 			goto done;
2138 
2139 		if (level == 0) {
2140 			p->slots[level] = slot;
2141 			unlock_up(p, level, lowest_unlock, 0, NULL);
2142 			goto done;
2143 		}
2144 
2145 		if (ret && slot > 0) {
2146 			dec = 1;
2147 			slot--;
2148 		}
2149 		p->slots[level] = slot;
2150 		unlock_up(p, level, lowest_unlock, 0, NULL);
2151 
2152 		if (level == lowest_level) {
2153 			if (dec)
2154 				p->slots[level]++;
2155 			goto done;
2156 		}
2157 
2158 		err = read_block_for_search(root, p, &b, level, slot, key);
2159 		if (err == -EAGAIN)
2160 			goto again;
2161 		if (err) {
2162 			ret = err;
2163 			goto done;
2164 		}
2165 
2166 		level = btrfs_header_level(b);
2167 		btrfs_tree_read_lock(b);
2168 		b = btrfs_tree_mod_log_rewind(fs_info, p, b, time_seq);
2169 		if (!b) {
2170 			ret = -ENOMEM;
2171 			goto done;
2172 		}
2173 		p->locks[level] = BTRFS_READ_LOCK;
2174 		p->nodes[level] = b;
2175 	}
2176 	ret = 1;
2177 done:
2178 	if (ret < 0)
2179 		btrfs_release_path(p);
2180 
2181 	return ret;
2182 }
2183 
2184 /*
2185  * helper to use instead of search slot if no exact match is needed but
2186  * instead the next or previous item should be returned.
2187  * When find_higher is true, the next higher item is returned, the next lower
2188  * otherwise.
2189  * When return_any and find_higher are both true, and no higher item is found,
2190  * return the next lower instead.
2191  * When return_any is true and find_higher is false, and no lower item is found,
2192  * return the next higher instead.
2193  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2194  * < 0 on error
2195  */
2196 int btrfs_search_slot_for_read(struct btrfs_root *root,
2197 			       const struct btrfs_key *key,
2198 			       struct btrfs_path *p, int find_higher,
2199 			       int return_any)
2200 {
2201 	int ret;
2202 	struct extent_buffer *leaf;
2203 
2204 again:
2205 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2206 	if (ret <= 0)
2207 		return ret;
2208 	/*
2209 	 * a return value of 1 means the path is at the position where the
2210 	 * item should be inserted. Normally this is the next bigger item,
2211 	 * but in case the previous item is the last in a leaf, path points
2212 	 * to the first free slot in the previous leaf, i.e. at an invalid
2213 	 * item.
2214 	 */
2215 	leaf = p->nodes[0];
2216 
2217 	if (find_higher) {
2218 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2219 			ret = btrfs_next_leaf(root, p);
2220 			if (ret <= 0)
2221 				return ret;
2222 			if (!return_any)
2223 				return 1;
2224 			/*
2225 			 * no higher item found, return the next
2226 			 * lower instead
2227 			 */
2228 			return_any = 0;
2229 			find_higher = 0;
2230 			btrfs_release_path(p);
2231 			goto again;
2232 		}
2233 	} else {
2234 		if (p->slots[0] == 0) {
2235 			ret = btrfs_prev_leaf(root, p);
2236 			if (ret < 0)
2237 				return ret;
2238 			if (!ret) {
2239 				leaf = p->nodes[0];
2240 				if (p->slots[0] == btrfs_header_nritems(leaf))
2241 					p->slots[0]--;
2242 				return 0;
2243 			}
2244 			if (!return_any)
2245 				return 1;
2246 			/*
2247 			 * no lower item found, return the next
2248 			 * higher instead
2249 			 */
2250 			return_any = 0;
2251 			find_higher = 1;
2252 			btrfs_release_path(p);
2253 			goto again;
2254 		} else {
2255 			--p->slots[0];
2256 		}
2257 	}
2258 	return 0;
2259 }
2260 
2261 /*
2262  * Execute search and call btrfs_previous_item to traverse backwards if the item
2263  * was not found.
2264  *
2265  * Return 0 if found, 1 if not found and < 0 if error.
2266  */
2267 int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
2268 			   struct btrfs_path *path)
2269 {
2270 	int ret;
2271 
2272 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
2273 	if (ret > 0)
2274 		ret = btrfs_previous_item(root, path, key->objectid, key->type);
2275 
2276 	if (ret == 0)
2277 		btrfs_item_key_to_cpu(path->nodes[0], key, path->slots[0]);
2278 
2279 	return ret;
2280 }
2281 
2282 /*
2283  * adjust the pointers going up the tree, starting at level
2284  * making sure the right key of each node is points to 'key'.
2285  * This is used after shifting pointers to the left, so it stops
2286  * fixing up pointers when a given leaf/node is not in slot 0 of the
2287  * higher levels
2288  *
2289  */
2290 static void fixup_low_keys(struct btrfs_path *path,
2291 			   struct btrfs_disk_key *key, int level)
2292 {
2293 	int i;
2294 	struct extent_buffer *t;
2295 	int ret;
2296 
2297 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2298 		int tslot = path->slots[i];
2299 
2300 		if (!path->nodes[i])
2301 			break;
2302 		t = path->nodes[i];
2303 		ret = btrfs_tree_mod_log_insert_key(t, tslot,
2304 				BTRFS_MOD_LOG_KEY_REPLACE, GFP_ATOMIC);
2305 		BUG_ON(ret < 0);
2306 		btrfs_set_node_key(t, key, tslot);
2307 		btrfs_mark_buffer_dirty(path->nodes[i]);
2308 		if (tslot != 0)
2309 			break;
2310 	}
2311 }
2312 
2313 /*
2314  * update item key.
2315  *
2316  * This function isn't completely safe. It's the caller's responsibility
2317  * that the new key won't break the order
2318  */
2319 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2320 			     struct btrfs_path *path,
2321 			     const struct btrfs_key *new_key)
2322 {
2323 	struct btrfs_disk_key disk_key;
2324 	struct extent_buffer *eb;
2325 	int slot;
2326 
2327 	eb = path->nodes[0];
2328 	slot = path->slots[0];
2329 	if (slot > 0) {
2330 		btrfs_item_key(eb, &disk_key, slot - 1);
2331 		if (unlikely(comp_keys(&disk_key, new_key) >= 0)) {
2332 			btrfs_crit(fs_info,
2333 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2334 				   slot, btrfs_disk_key_objectid(&disk_key),
2335 				   btrfs_disk_key_type(&disk_key),
2336 				   btrfs_disk_key_offset(&disk_key),
2337 				   new_key->objectid, new_key->type,
2338 				   new_key->offset);
2339 			btrfs_print_leaf(eb);
2340 			BUG();
2341 		}
2342 	}
2343 	if (slot < btrfs_header_nritems(eb) - 1) {
2344 		btrfs_item_key(eb, &disk_key, slot + 1);
2345 		if (unlikely(comp_keys(&disk_key, new_key) <= 0)) {
2346 			btrfs_crit(fs_info,
2347 		"slot %u key (%llu %u %llu) new key (%llu %u %llu)",
2348 				   slot, btrfs_disk_key_objectid(&disk_key),
2349 				   btrfs_disk_key_type(&disk_key),
2350 				   btrfs_disk_key_offset(&disk_key),
2351 				   new_key->objectid, new_key->type,
2352 				   new_key->offset);
2353 			btrfs_print_leaf(eb);
2354 			BUG();
2355 		}
2356 	}
2357 
2358 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2359 	btrfs_set_item_key(eb, &disk_key, slot);
2360 	btrfs_mark_buffer_dirty(eb);
2361 	if (slot == 0)
2362 		fixup_low_keys(path, &disk_key, 1);
2363 }
2364 
2365 /*
2366  * Check key order of two sibling extent buffers.
2367  *
2368  * Return true if something is wrong.
2369  * Return false if everything is fine.
2370  *
2371  * Tree-checker only works inside one tree block, thus the following
2372  * corruption can not be detected by tree-checker:
2373  *
2374  * Leaf @left			| Leaf @right
2375  * --------------------------------------------------------------
2376  * | 1 | 2 | 3 | 4 | 5 | f6 |   | 7 | 8 |
2377  *
2378  * Key f6 in leaf @left itself is valid, but not valid when the next
2379  * key in leaf @right is 7.
2380  * This can only be checked at tree block merge time.
2381  * And since tree checker has ensured all key order in each tree block
2382  * is correct, we only need to bother the last key of @left and the first
2383  * key of @right.
2384  */
2385 static bool check_sibling_keys(struct extent_buffer *left,
2386 			       struct extent_buffer *right)
2387 {
2388 	struct btrfs_key left_last;
2389 	struct btrfs_key right_first;
2390 	int level = btrfs_header_level(left);
2391 	int nr_left = btrfs_header_nritems(left);
2392 	int nr_right = btrfs_header_nritems(right);
2393 
2394 	/* No key to check in one of the tree blocks */
2395 	if (!nr_left || !nr_right)
2396 		return false;
2397 
2398 	if (level) {
2399 		btrfs_node_key_to_cpu(left, &left_last, nr_left - 1);
2400 		btrfs_node_key_to_cpu(right, &right_first, 0);
2401 	} else {
2402 		btrfs_item_key_to_cpu(left, &left_last, nr_left - 1);
2403 		btrfs_item_key_to_cpu(right, &right_first, 0);
2404 	}
2405 
2406 	if (btrfs_comp_cpu_keys(&left_last, &right_first) >= 0) {
2407 		btrfs_crit(left->fs_info,
2408 "bad key order, sibling blocks, left last (%llu %u %llu) right first (%llu %u %llu)",
2409 			   left_last.objectid, left_last.type,
2410 			   left_last.offset, right_first.objectid,
2411 			   right_first.type, right_first.offset);
2412 		return true;
2413 	}
2414 	return false;
2415 }
2416 
2417 /*
2418  * try to push data from one node into the next node left in the
2419  * tree.
2420  *
2421  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2422  * error, and > 0 if there was no room in the left hand block.
2423  */
2424 static int push_node_left(struct btrfs_trans_handle *trans,
2425 			  struct extent_buffer *dst,
2426 			  struct extent_buffer *src, int empty)
2427 {
2428 	struct btrfs_fs_info *fs_info = trans->fs_info;
2429 	int push_items = 0;
2430 	int src_nritems;
2431 	int dst_nritems;
2432 	int ret = 0;
2433 
2434 	src_nritems = btrfs_header_nritems(src);
2435 	dst_nritems = btrfs_header_nritems(dst);
2436 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2437 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2438 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2439 
2440 	if (!empty && src_nritems <= 8)
2441 		return 1;
2442 
2443 	if (push_items <= 0)
2444 		return 1;
2445 
2446 	if (empty) {
2447 		push_items = min(src_nritems, push_items);
2448 		if (push_items < src_nritems) {
2449 			/* leave at least 8 pointers in the node if
2450 			 * we aren't going to empty it
2451 			 */
2452 			if (src_nritems - push_items < 8) {
2453 				if (push_items <= 8)
2454 					return 1;
2455 				push_items -= 8;
2456 			}
2457 		}
2458 	} else
2459 		push_items = min(src_nritems - 8, push_items);
2460 
2461 	/* dst is the left eb, src is the middle eb */
2462 	if (check_sibling_keys(dst, src)) {
2463 		ret = -EUCLEAN;
2464 		btrfs_abort_transaction(trans, ret);
2465 		return ret;
2466 	}
2467 	ret = btrfs_tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items);
2468 	if (ret) {
2469 		btrfs_abort_transaction(trans, ret);
2470 		return ret;
2471 	}
2472 	copy_extent_buffer(dst, src,
2473 			   btrfs_node_key_ptr_offset(dst_nritems),
2474 			   btrfs_node_key_ptr_offset(0),
2475 			   push_items * sizeof(struct btrfs_key_ptr));
2476 
2477 	if (push_items < src_nritems) {
2478 		/*
2479 		 * Don't call btrfs_tree_mod_log_insert_move() here, key removal
2480 		 * was already fully logged by btrfs_tree_mod_log_eb_copy() above.
2481 		 */
2482 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
2483 				      btrfs_node_key_ptr_offset(push_items),
2484 				      (src_nritems - push_items) *
2485 				      sizeof(struct btrfs_key_ptr));
2486 	}
2487 	btrfs_set_header_nritems(src, src_nritems - push_items);
2488 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2489 	btrfs_mark_buffer_dirty(src);
2490 	btrfs_mark_buffer_dirty(dst);
2491 
2492 	return ret;
2493 }
2494 
2495 /*
2496  * try to push data from one node into the next node right in the
2497  * tree.
2498  *
2499  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2500  * error, and > 0 if there was no room in the right hand block.
2501  *
2502  * this will  only push up to 1/2 the contents of the left node over
2503  */
2504 static int balance_node_right(struct btrfs_trans_handle *trans,
2505 			      struct extent_buffer *dst,
2506 			      struct extent_buffer *src)
2507 {
2508 	struct btrfs_fs_info *fs_info = trans->fs_info;
2509 	int push_items = 0;
2510 	int max_push;
2511 	int src_nritems;
2512 	int dst_nritems;
2513 	int ret = 0;
2514 
2515 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2516 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2517 
2518 	src_nritems = btrfs_header_nritems(src);
2519 	dst_nritems = btrfs_header_nritems(dst);
2520 	push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems;
2521 	if (push_items <= 0)
2522 		return 1;
2523 
2524 	if (src_nritems < 4)
2525 		return 1;
2526 
2527 	max_push = src_nritems / 2 + 1;
2528 	/* don't try to empty the node */
2529 	if (max_push >= src_nritems)
2530 		return 1;
2531 
2532 	if (max_push < push_items)
2533 		push_items = max_push;
2534 
2535 	/* dst is the right eb, src is the middle eb */
2536 	if (check_sibling_keys(src, dst)) {
2537 		ret = -EUCLEAN;
2538 		btrfs_abort_transaction(trans, ret);
2539 		return ret;
2540 	}
2541 	ret = btrfs_tree_mod_log_insert_move(dst, push_items, 0, dst_nritems);
2542 	BUG_ON(ret < 0);
2543 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2544 				      btrfs_node_key_ptr_offset(0),
2545 				      (dst_nritems) *
2546 				      sizeof(struct btrfs_key_ptr));
2547 
2548 	ret = btrfs_tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items,
2549 					 push_items);
2550 	if (ret) {
2551 		btrfs_abort_transaction(trans, ret);
2552 		return ret;
2553 	}
2554 	copy_extent_buffer(dst, src,
2555 			   btrfs_node_key_ptr_offset(0),
2556 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
2557 			   push_items * sizeof(struct btrfs_key_ptr));
2558 
2559 	btrfs_set_header_nritems(src, src_nritems - push_items);
2560 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
2561 
2562 	btrfs_mark_buffer_dirty(src);
2563 	btrfs_mark_buffer_dirty(dst);
2564 
2565 	return ret;
2566 }
2567 
2568 /*
2569  * helper function to insert a new root level in the tree.
2570  * A new node is allocated, and a single item is inserted to
2571  * point to the existing root
2572  *
2573  * returns zero on success or < 0 on failure.
2574  */
2575 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2576 			   struct btrfs_root *root,
2577 			   struct btrfs_path *path, int level)
2578 {
2579 	struct btrfs_fs_info *fs_info = root->fs_info;
2580 	u64 lower_gen;
2581 	struct extent_buffer *lower;
2582 	struct extent_buffer *c;
2583 	struct extent_buffer *old;
2584 	struct btrfs_disk_key lower_key;
2585 	int ret;
2586 
2587 	BUG_ON(path->nodes[level]);
2588 	BUG_ON(path->nodes[level-1] != root->node);
2589 
2590 	lower = path->nodes[level-1];
2591 	if (level == 1)
2592 		btrfs_item_key(lower, &lower_key, 0);
2593 	else
2594 		btrfs_node_key(lower, &lower_key, 0);
2595 
2596 	c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2597 				   &lower_key, level, root->node->start, 0,
2598 				   BTRFS_NESTING_NEW_ROOT);
2599 	if (IS_ERR(c))
2600 		return PTR_ERR(c);
2601 
2602 	root_add_used(root, fs_info->nodesize);
2603 
2604 	btrfs_set_header_nritems(c, 1);
2605 	btrfs_set_node_key(c, &lower_key, 0);
2606 	btrfs_set_node_blockptr(c, 0, lower->start);
2607 	lower_gen = btrfs_header_generation(lower);
2608 	WARN_ON(lower_gen != trans->transid);
2609 
2610 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
2611 
2612 	btrfs_mark_buffer_dirty(c);
2613 
2614 	old = root->node;
2615 	ret = btrfs_tree_mod_log_insert_root(root->node, c, false);
2616 	BUG_ON(ret < 0);
2617 	rcu_assign_pointer(root->node, c);
2618 
2619 	/* the super has an extra ref to root->node */
2620 	free_extent_buffer(old);
2621 
2622 	add_root_to_dirty_list(root);
2623 	atomic_inc(&c->refs);
2624 	path->nodes[level] = c;
2625 	path->locks[level] = BTRFS_WRITE_LOCK;
2626 	path->slots[level] = 0;
2627 	return 0;
2628 }
2629 
2630 /*
2631  * worker function to insert a single pointer in a node.
2632  * the node should have enough room for the pointer already
2633  *
2634  * slot and level indicate where you want the key to go, and
2635  * blocknr is the block the key points to.
2636  */
2637 static void insert_ptr(struct btrfs_trans_handle *trans,
2638 		       struct btrfs_path *path,
2639 		       struct btrfs_disk_key *key, u64 bytenr,
2640 		       int slot, int level)
2641 {
2642 	struct extent_buffer *lower;
2643 	int nritems;
2644 	int ret;
2645 
2646 	BUG_ON(!path->nodes[level]);
2647 	btrfs_assert_tree_write_locked(path->nodes[level]);
2648 	lower = path->nodes[level];
2649 	nritems = btrfs_header_nritems(lower);
2650 	BUG_ON(slot > nritems);
2651 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info));
2652 	if (slot != nritems) {
2653 		if (level) {
2654 			ret = btrfs_tree_mod_log_insert_move(lower, slot + 1,
2655 					slot, nritems - slot);
2656 			BUG_ON(ret < 0);
2657 		}
2658 		memmove_extent_buffer(lower,
2659 			      btrfs_node_key_ptr_offset(slot + 1),
2660 			      btrfs_node_key_ptr_offset(slot),
2661 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
2662 	}
2663 	if (level) {
2664 		ret = btrfs_tree_mod_log_insert_key(lower, slot,
2665 					    BTRFS_MOD_LOG_KEY_ADD, GFP_NOFS);
2666 		BUG_ON(ret < 0);
2667 	}
2668 	btrfs_set_node_key(lower, key, slot);
2669 	btrfs_set_node_blockptr(lower, slot, bytenr);
2670 	WARN_ON(trans->transid == 0);
2671 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2672 	btrfs_set_header_nritems(lower, nritems + 1);
2673 	btrfs_mark_buffer_dirty(lower);
2674 }
2675 
2676 /*
2677  * split the node at the specified level in path in two.
2678  * The path is corrected to point to the appropriate node after the split
2679  *
2680  * Before splitting this tries to make some room in the node by pushing
2681  * left and right, if either one works, it returns right away.
2682  *
2683  * returns 0 on success and < 0 on failure
2684  */
2685 static noinline int split_node(struct btrfs_trans_handle *trans,
2686 			       struct btrfs_root *root,
2687 			       struct btrfs_path *path, int level)
2688 {
2689 	struct btrfs_fs_info *fs_info = root->fs_info;
2690 	struct extent_buffer *c;
2691 	struct extent_buffer *split;
2692 	struct btrfs_disk_key disk_key;
2693 	int mid;
2694 	int ret;
2695 	u32 c_nritems;
2696 
2697 	c = path->nodes[level];
2698 	WARN_ON(btrfs_header_generation(c) != trans->transid);
2699 	if (c == root->node) {
2700 		/*
2701 		 * trying to split the root, lets make a new one
2702 		 *
2703 		 * tree mod log: We don't log_removal old root in
2704 		 * insert_new_root, because that root buffer will be kept as a
2705 		 * normal node. We are going to log removal of half of the
2706 		 * elements below with btrfs_tree_mod_log_eb_copy(). We're
2707 		 * holding a tree lock on the buffer, which is why we cannot
2708 		 * race with other tree_mod_log users.
2709 		 */
2710 		ret = insert_new_root(trans, root, path, level + 1);
2711 		if (ret)
2712 			return ret;
2713 	} else {
2714 		ret = push_nodes_for_insert(trans, root, path, level);
2715 		c = path->nodes[level];
2716 		if (!ret && btrfs_header_nritems(c) <
2717 		    BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3)
2718 			return 0;
2719 		if (ret < 0)
2720 			return ret;
2721 	}
2722 
2723 	c_nritems = btrfs_header_nritems(c);
2724 	mid = (c_nritems + 1) / 2;
2725 	btrfs_node_key(c, &disk_key, mid);
2726 
2727 	split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
2728 				       &disk_key, level, c->start, 0,
2729 				       BTRFS_NESTING_SPLIT);
2730 	if (IS_ERR(split))
2731 		return PTR_ERR(split);
2732 
2733 	root_add_used(root, fs_info->nodesize);
2734 	ASSERT(btrfs_header_level(c) == level);
2735 
2736 	ret = btrfs_tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid);
2737 	if (ret) {
2738 		btrfs_abort_transaction(trans, ret);
2739 		return ret;
2740 	}
2741 	copy_extent_buffer(split, c,
2742 			   btrfs_node_key_ptr_offset(0),
2743 			   btrfs_node_key_ptr_offset(mid),
2744 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2745 	btrfs_set_header_nritems(split, c_nritems - mid);
2746 	btrfs_set_header_nritems(c, mid);
2747 
2748 	btrfs_mark_buffer_dirty(c);
2749 	btrfs_mark_buffer_dirty(split);
2750 
2751 	insert_ptr(trans, path, &disk_key, split->start,
2752 		   path->slots[level + 1] + 1, level + 1);
2753 
2754 	if (path->slots[level] >= mid) {
2755 		path->slots[level] -= mid;
2756 		btrfs_tree_unlock(c);
2757 		free_extent_buffer(c);
2758 		path->nodes[level] = split;
2759 		path->slots[level + 1] += 1;
2760 	} else {
2761 		btrfs_tree_unlock(split);
2762 		free_extent_buffer(split);
2763 	}
2764 	return 0;
2765 }
2766 
2767 /*
2768  * how many bytes are required to store the items in a leaf.  start
2769  * and nr indicate which items in the leaf to check.  This totals up the
2770  * space used both by the item structs and the item data
2771  */
2772 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2773 {
2774 	int data_len;
2775 	int nritems = btrfs_header_nritems(l);
2776 	int end = min(nritems, start + nr) - 1;
2777 
2778 	if (!nr)
2779 		return 0;
2780 	data_len = btrfs_item_offset(l, start) + btrfs_item_size(l, start);
2781 	data_len = data_len - btrfs_item_offset(l, end);
2782 	data_len += sizeof(struct btrfs_item) * nr;
2783 	WARN_ON(data_len < 0);
2784 	return data_len;
2785 }
2786 
2787 /*
2788  * The space between the end of the leaf items and
2789  * the start of the leaf data.  IOW, how much room
2790  * the leaf has left for both items and data
2791  */
2792 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf)
2793 {
2794 	struct btrfs_fs_info *fs_info = leaf->fs_info;
2795 	int nritems = btrfs_header_nritems(leaf);
2796 	int ret;
2797 
2798 	ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems);
2799 	if (ret < 0) {
2800 		btrfs_crit(fs_info,
2801 			   "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
2802 			   ret,
2803 			   (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info),
2804 			   leaf_space_used(leaf, 0, nritems), nritems);
2805 	}
2806 	return ret;
2807 }
2808 
2809 /*
2810  * min slot controls the lowest index we're willing to push to the
2811  * right.  We'll push up to and including min_slot, but no lower
2812  */
2813 static noinline int __push_leaf_right(struct btrfs_path *path,
2814 				      int data_size, int empty,
2815 				      struct extent_buffer *right,
2816 				      int free_space, u32 left_nritems,
2817 				      u32 min_slot)
2818 {
2819 	struct btrfs_fs_info *fs_info = right->fs_info;
2820 	struct extent_buffer *left = path->nodes[0];
2821 	struct extent_buffer *upper = path->nodes[1];
2822 	struct btrfs_map_token token;
2823 	struct btrfs_disk_key disk_key;
2824 	int slot;
2825 	u32 i;
2826 	int push_space = 0;
2827 	int push_items = 0;
2828 	u32 nr;
2829 	u32 right_nritems;
2830 	u32 data_end;
2831 	u32 this_item_size;
2832 
2833 	if (empty)
2834 		nr = 0;
2835 	else
2836 		nr = max_t(u32, 1, min_slot);
2837 
2838 	if (path->slots[0] >= left_nritems)
2839 		push_space += data_size;
2840 
2841 	slot = path->slots[1];
2842 	i = left_nritems - 1;
2843 	while (i >= nr) {
2844 		if (!empty && push_items > 0) {
2845 			if (path->slots[0] > i)
2846 				break;
2847 			if (path->slots[0] == i) {
2848 				int space = btrfs_leaf_free_space(left);
2849 
2850 				if (space + push_space * 2 > free_space)
2851 					break;
2852 			}
2853 		}
2854 
2855 		if (path->slots[0] == i)
2856 			push_space += data_size;
2857 
2858 		this_item_size = btrfs_item_size(left, i);
2859 		if (this_item_size + sizeof(struct btrfs_item) +
2860 		    push_space > free_space)
2861 			break;
2862 
2863 		push_items++;
2864 		push_space += this_item_size + sizeof(struct btrfs_item);
2865 		if (i == 0)
2866 			break;
2867 		i--;
2868 	}
2869 
2870 	if (push_items == 0)
2871 		goto out_unlock;
2872 
2873 	WARN_ON(!empty && push_items == left_nritems);
2874 
2875 	/* push left to right */
2876 	right_nritems = btrfs_header_nritems(right);
2877 
2878 	push_space = btrfs_item_data_end(left, left_nritems - push_items);
2879 	push_space -= leaf_data_end(left);
2880 
2881 	/* make room in the right data area */
2882 	data_end = leaf_data_end(right);
2883 	memmove_extent_buffer(right,
2884 			      BTRFS_LEAF_DATA_OFFSET + data_end - push_space,
2885 			      BTRFS_LEAF_DATA_OFFSET + data_end,
2886 			      BTRFS_LEAF_DATA_SIZE(fs_info) - data_end);
2887 
2888 	/* copy from the left data area */
2889 	copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET +
2890 		     BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
2891 		     BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left),
2892 		     push_space);
2893 
2894 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2895 			      btrfs_item_nr_offset(0),
2896 			      right_nritems * sizeof(struct btrfs_item));
2897 
2898 	/* copy the items from left to right */
2899 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2900 		   btrfs_item_nr_offset(left_nritems - push_items),
2901 		   push_items * sizeof(struct btrfs_item));
2902 
2903 	/* update the item pointers */
2904 	btrfs_init_map_token(&token, right);
2905 	right_nritems += push_items;
2906 	btrfs_set_header_nritems(right, right_nritems);
2907 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
2908 	for (i = 0; i < right_nritems; i++) {
2909 		push_space -= btrfs_token_item_size(&token, i);
2910 		btrfs_set_token_item_offset(&token, i, push_space);
2911 	}
2912 
2913 	left_nritems -= push_items;
2914 	btrfs_set_header_nritems(left, left_nritems);
2915 
2916 	if (left_nritems)
2917 		btrfs_mark_buffer_dirty(left);
2918 	else
2919 		btrfs_clean_tree_block(left);
2920 
2921 	btrfs_mark_buffer_dirty(right);
2922 
2923 	btrfs_item_key(right, &disk_key, 0);
2924 	btrfs_set_node_key(upper, &disk_key, slot + 1);
2925 	btrfs_mark_buffer_dirty(upper);
2926 
2927 	/* then fixup the leaf pointer in the path */
2928 	if (path->slots[0] >= left_nritems) {
2929 		path->slots[0] -= left_nritems;
2930 		if (btrfs_header_nritems(path->nodes[0]) == 0)
2931 			btrfs_clean_tree_block(path->nodes[0]);
2932 		btrfs_tree_unlock(path->nodes[0]);
2933 		free_extent_buffer(path->nodes[0]);
2934 		path->nodes[0] = right;
2935 		path->slots[1] += 1;
2936 	} else {
2937 		btrfs_tree_unlock(right);
2938 		free_extent_buffer(right);
2939 	}
2940 	return 0;
2941 
2942 out_unlock:
2943 	btrfs_tree_unlock(right);
2944 	free_extent_buffer(right);
2945 	return 1;
2946 }
2947 
2948 /*
2949  * push some data in the path leaf to the right, trying to free up at
2950  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2951  *
2952  * returns 1 if the push failed because the other node didn't have enough
2953  * room, 0 if everything worked out and < 0 if there were major errors.
2954  *
2955  * this will push starting from min_slot to the end of the leaf.  It won't
2956  * push any slot lower than min_slot
2957  */
2958 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2959 			   *root, struct btrfs_path *path,
2960 			   int min_data_size, int data_size,
2961 			   int empty, u32 min_slot)
2962 {
2963 	struct extent_buffer *left = path->nodes[0];
2964 	struct extent_buffer *right;
2965 	struct extent_buffer *upper;
2966 	int slot;
2967 	int free_space;
2968 	u32 left_nritems;
2969 	int ret;
2970 
2971 	if (!path->nodes[1])
2972 		return 1;
2973 
2974 	slot = path->slots[1];
2975 	upper = path->nodes[1];
2976 	if (slot >= btrfs_header_nritems(upper) - 1)
2977 		return 1;
2978 
2979 	btrfs_assert_tree_write_locked(path->nodes[1]);
2980 
2981 	right = btrfs_read_node_slot(upper, slot + 1);
2982 	/*
2983 	 * slot + 1 is not valid or we fail to read the right node,
2984 	 * no big deal, just return.
2985 	 */
2986 	if (IS_ERR(right))
2987 		return 1;
2988 
2989 	__btrfs_tree_lock(right, BTRFS_NESTING_RIGHT);
2990 
2991 	free_space = btrfs_leaf_free_space(right);
2992 	if (free_space < data_size)
2993 		goto out_unlock;
2994 
2995 	ret = btrfs_cow_block(trans, root, right, upper,
2996 			      slot + 1, &right, BTRFS_NESTING_RIGHT_COW);
2997 	if (ret)
2998 		goto out_unlock;
2999 
3000 	left_nritems = btrfs_header_nritems(left);
3001 	if (left_nritems == 0)
3002 		goto out_unlock;
3003 
3004 	if (check_sibling_keys(left, right)) {
3005 		ret = -EUCLEAN;
3006 		btrfs_tree_unlock(right);
3007 		free_extent_buffer(right);
3008 		return ret;
3009 	}
3010 	if (path->slots[0] == left_nritems && !empty) {
3011 		/* Key greater than all keys in the leaf, right neighbor has
3012 		 * enough room for it and we're not emptying our leaf to delete
3013 		 * it, therefore use right neighbor to insert the new item and
3014 		 * no need to touch/dirty our left leaf. */
3015 		btrfs_tree_unlock(left);
3016 		free_extent_buffer(left);
3017 		path->nodes[0] = right;
3018 		path->slots[0] = 0;
3019 		path->slots[1]++;
3020 		return 0;
3021 	}
3022 
3023 	return __push_leaf_right(path, min_data_size, empty,
3024 				right, free_space, left_nritems, min_slot);
3025 out_unlock:
3026 	btrfs_tree_unlock(right);
3027 	free_extent_buffer(right);
3028 	return 1;
3029 }
3030 
3031 /*
3032  * push some data in the path leaf to the left, trying to free up at
3033  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3034  *
3035  * max_slot can put a limit on how far into the leaf we'll push items.  The
3036  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3037  * items
3038  */
3039 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size,
3040 				     int empty, struct extent_buffer *left,
3041 				     int free_space, u32 right_nritems,
3042 				     u32 max_slot)
3043 {
3044 	struct btrfs_fs_info *fs_info = left->fs_info;
3045 	struct btrfs_disk_key disk_key;
3046 	struct extent_buffer *right = path->nodes[0];
3047 	int i;
3048 	int push_space = 0;
3049 	int push_items = 0;
3050 	u32 old_left_nritems;
3051 	u32 nr;
3052 	int ret = 0;
3053 	u32 this_item_size;
3054 	u32 old_left_item_size;
3055 	struct btrfs_map_token token;
3056 
3057 	if (empty)
3058 		nr = min(right_nritems, max_slot);
3059 	else
3060 		nr = min(right_nritems - 1, max_slot);
3061 
3062 	for (i = 0; i < nr; i++) {
3063 		if (!empty && push_items > 0) {
3064 			if (path->slots[0] < i)
3065 				break;
3066 			if (path->slots[0] == i) {
3067 				int space = btrfs_leaf_free_space(right);
3068 
3069 				if (space + push_space * 2 > free_space)
3070 					break;
3071 			}
3072 		}
3073 
3074 		if (path->slots[0] == i)
3075 			push_space += data_size;
3076 
3077 		this_item_size = btrfs_item_size(right, i);
3078 		if (this_item_size + sizeof(struct btrfs_item) + push_space >
3079 		    free_space)
3080 			break;
3081 
3082 		push_items++;
3083 		push_space += this_item_size + sizeof(struct btrfs_item);
3084 	}
3085 
3086 	if (push_items == 0) {
3087 		ret = 1;
3088 		goto out;
3089 	}
3090 	WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3091 
3092 	/* push data from right to left */
3093 	copy_extent_buffer(left, right,
3094 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3095 			   btrfs_item_nr_offset(0),
3096 			   push_items * sizeof(struct btrfs_item));
3097 
3098 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info) -
3099 		     btrfs_item_offset(right, push_items - 1);
3100 
3101 	copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET +
3102 		     leaf_data_end(left) - push_space,
3103 		     BTRFS_LEAF_DATA_OFFSET +
3104 		     btrfs_item_offset(right, push_items - 1),
3105 		     push_space);
3106 	old_left_nritems = btrfs_header_nritems(left);
3107 	BUG_ON(old_left_nritems <= 0);
3108 
3109 	btrfs_init_map_token(&token, left);
3110 	old_left_item_size = btrfs_item_offset(left, old_left_nritems - 1);
3111 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3112 		u32 ioff;
3113 
3114 		ioff = btrfs_token_item_offset(&token, i);
3115 		btrfs_set_token_item_offset(&token, i,
3116 		      ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size));
3117 	}
3118 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3119 
3120 	/* fixup right node */
3121 	if (push_items > right_nritems)
3122 		WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3123 		       right_nritems);
3124 
3125 	if (push_items < right_nritems) {
3126 		push_space = btrfs_item_offset(right, push_items - 1) -
3127 						  leaf_data_end(right);
3128 		memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET +
3129 				      BTRFS_LEAF_DATA_SIZE(fs_info) - push_space,
3130 				      BTRFS_LEAF_DATA_OFFSET +
3131 				      leaf_data_end(right), push_space);
3132 
3133 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3134 			      btrfs_item_nr_offset(push_items),
3135 			     (btrfs_header_nritems(right) - push_items) *
3136 			     sizeof(struct btrfs_item));
3137 	}
3138 
3139 	btrfs_init_map_token(&token, right);
3140 	right_nritems -= push_items;
3141 	btrfs_set_header_nritems(right, right_nritems);
3142 	push_space = BTRFS_LEAF_DATA_SIZE(fs_info);
3143 	for (i = 0; i < right_nritems; i++) {
3144 		push_space = push_space - btrfs_token_item_size(&token, i);
3145 		btrfs_set_token_item_offset(&token, i, push_space);
3146 	}
3147 
3148 	btrfs_mark_buffer_dirty(left);
3149 	if (right_nritems)
3150 		btrfs_mark_buffer_dirty(right);
3151 	else
3152 		btrfs_clean_tree_block(right);
3153 
3154 	btrfs_item_key(right, &disk_key, 0);
3155 	fixup_low_keys(path, &disk_key, 1);
3156 
3157 	/* then fixup the leaf pointer in the path */
3158 	if (path->slots[0] < push_items) {
3159 		path->slots[0] += old_left_nritems;
3160 		btrfs_tree_unlock(path->nodes[0]);
3161 		free_extent_buffer(path->nodes[0]);
3162 		path->nodes[0] = left;
3163 		path->slots[1] -= 1;
3164 	} else {
3165 		btrfs_tree_unlock(left);
3166 		free_extent_buffer(left);
3167 		path->slots[0] -= push_items;
3168 	}
3169 	BUG_ON(path->slots[0] < 0);
3170 	return ret;
3171 out:
3172 	btrfs_tree_unlock(left);
3173 	free_extent_buffer(left);
3174 	return ret;
3175 }
3176 
3177 /*
3178  * push some data in the path leaf to the left, trying to free up at
3179  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3180  *
3181  * max_slot can put a limit on how far into the leaf we'll push items.  The
3182  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3183  * items
3184  */
3185 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3186 			  *root, struct btrfs_path *path, int min_data_size,
3187 			  int data_size, int empty, u32 max_slot)
3188 {
3189 	struct extent_buffer *right = path->nodes[0];
3190 	struct extent_buffer *left;
3191 	int slot;
3192 	int free_space;
3193 	u32 right_nritems;
3194 	int ret = 0;
3195 
3196 	slot = path->slots[1];
3197 	if (slot == 0)
3198 		return 1;
3199 	if (!path->nodes[1])
3200 		return 1;
3201 
3202 	right_nritems = btrfs_header_nritems(right);
3203 	if (right_nritems == 0)
3204 		return 1;
3205 
3206 	btrfs_assert_tree_write_locked(path->nodes[1]);
3207 
3208 	left = btrfs_read_node_slot(path->nodes[1], slot - 1);
3209 	/*
3210 	 * slot - 1 is not valid or we fail to read the left node,
3211 	 * no big deal, just return.
3212 	 */
3213 	if (IS_ERR(left))
3214 		return 1;
3215 
3216 	__btrfs_tree_lock(left, BTRFS_NESTING_LEFT);
3217 
3218 	free_space = btrfs_leaf_free_space(left);
3219 	if (free_space < data_size) {
3220 		ret = 1;
3221 		goto out;
3222 	}
3223 
3224 	ret = btrfs_cow_block(trans, root, left,
3225 			      path->nodes[1], slot - 1, &left,
3226 			      BTRFS_NESTING_LEFT_COW);
3227 	if (ret) {
3228 		/* we hit -ENOSPC, but it isn't fatal here */
3229 		if (ret == -ENOSPC)
3230 			ret = 1;
3231 		goto out;
3232 	}
3233 
3234 	if (check_sibling_keys(left, right)) {
3235 		ret = -EUCLEAN;
3236 		goto out;
3237 	}
3238 	return __push_leaf_left(path, min_data_size,
3239 			       empty, left, free_space, right_nritems,
3240 			       max_slot);
3241 out:
3242 	btrfs_tree_unlock(left);
3243 	free_extent_buffer(left);
3244 	return ret;
3245 }
3246 
3247 /*
3248  * split the path's leaf in two, making sure there is at least data_size
3249  * available for the resulting leaf level of the path.
3250  */
3251 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3252 				    struct btrfs_path *path,
3253 				    struct extent_buffer *l,
3254 				    struct extent_buffer *right,
3255 				    int slot, int mid, int nritems)
3256 {
3257 	struct btrfs_fs_info *fs_info = trans->fs_info;
3258 	int data_copy_size;
3259 	int rt_data_off;
3260 	int i;
3261 	struct btrfs_disk_key disk_key;
3262 	struct btrfs_map_token token;
3263 
3264 	nritems = nritems - mid;
3265 	btrfs_set_header_nritems(right, nritems);
3266 	data_copy_size = btrfs_item_data_end(l, mid) - leaf_data_end(l);
3267 
3268 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3269 			   btrfs_item_nr_offset(mid),
3270 			   nritems * sizeof(struct btrfs_item));
3271 
3272 	copy_extent_buffer(right, l,
3273 		     BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) -
3274 		     data_copy_size, BTRFS_LEAF_DATA_OFFSET +
3275 		     leaf_data_end(l), data_copy_size);
3276 
3277 	rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_data_end(l, mid);
3278 
3279 	btrfs_init_map_token(&token, right);
3280 	for (i = 0; i < nritems; i++) {
3281 		u32 ioff;
3282 
3283 		ioff = btrfs_token_item_offset(&token, i);
3284 		btrfs_set_token_item_offset(&token, i, ioff + rt_data_off);
3285 	}
3286 
3287 	btrfs_set_header_nritems(l, mid);
3288 	btrfs_item_key(right, &disk_key, 0);
3289 	insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1);
3290 
3291 	btrfs_mark_buffer_dirty(right);
3292 	btrfs_mark_buffer_dirty(l);
3293 	BUG_ON(path->slots[0] != slot);
3294 
3295 	if (mid <= slot) {
3296 		btrfs_tree_unlock(path->nodes[0]);
3297 		free_extent_buffer(path->nodes[0]);
3298 		path->nodes[0] = right;
3299 		path->slots[0] -= mid;
3300 		path->slots[1] += 1;
3301 	} else {
3302 		btrfs_tree_unlock(right);
3303 		free_extent_buffer(right);
3304 	}
3305 
3306 	BUG_ON(path->slots[0] < 0);
3307 }
3308 
3309 /*
3310  * double splits happen when we need to insert a big item in the middle
3311  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3312  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3313  *          A                 B                 C
3314  *
3315  * We avoid this by trying to push the items on either side of our target
3316  * into the adjacent leaves.  If all goes well we can avoid the double split
3317  * completely.
3318  */
3319 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3320 					  struct btrfs_root *root,
3321 					  struct btrfs_path *path,
3322 					  int data_size)
3323 {
3324 	int ret;
3325 	int progress = 0;
3326 	int slot;
3327 	u32 nritems;
3328 	int space_needed = data_size;
3329 
3330 	slot = path->slots[0];
3331 	if (slot < btrfs_header_nritems(path->nodes[0]))
3332 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3333 
3334 	/*
3335 	 * try to push all the items after our slot into the
3336 	 * right leaf
3337 	 */
3338 	ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
3339 	if (ret < 0)
3340 		return ret;
3341 
3342 	if (ret == 0)
3343 		progress++;
3344 
3345 	nritems = btrfs_header_nritems(path->nodes[0]);
3346 	/*
3347 	 * our goal is to get our slot at the start or end of a leaf.  If
3348 	 * we've done so we're done
3349 	 */
3350 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3351 		return 0;
3352 
3353 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3354 		return 0;
3355 
3356 	/* try to push all the items before our slot into the next leaf */
3357 	slot = path->slots[0];
3358 	space_needed = data_size;
3359 	if (slot > 0)
3360 		space_needed -= btrfs_leaf_free_space(path->nodes[0]);
3361 	ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
3362 	if (ret < 0)
3363 		return ret;
3364 
3365 	if (ret == 0)
3366 		progress++;
3367 
3368 	if (progress)
3369 		return 0;
3370 	return 1;
3371 }
3372 
3373 /*
3374  * split the path's leaf in two, making sure there is at least data_size
3375  * available for the resulting leaf level of the path.
3376  *
3377  * returns 0 if all went well and < 0 on failure.
3378  */
3379 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3380 			       struct btrfs_root *root,
3381 			       const struct btrfs_key *ins_key,
3382 			       struct btrfs_path *path, int data_size,
3383 			       int extend)
3384 {
3385 	struct btrfs_disk_key disk_key;
3386 	struct extent_buffer *l;
3387 	u32 nritems;
3388 	int mid;
3389 	int slot;
3390 	struct extent_buffer *right;
3391 	struct btrfs_fs_info *fs_info = root->fs_info;
3392 	int ret = 0;
3393 	int wret;
3394 	int split;
3395 	int num_doubles = 0;
3396 	int tried_avoid_double = 0;
3397 
3398 	l = path->nodes[0];
3399 	slot = path->slots[0];
3400 	if (extend && data_size + btrfs_item_size(l, slot) +
3401 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info))
3402 		return -EOVERFLOW;
3403 
3404 	/* first try to make some room by pushing left and right */
3405 	if (data_size && path->nodes[1]) {
3406 		int space_needed = data_size;
3407 
3408 		if (slot < btrfs_header_nritems(l))
3409 			space_needed -= btrfs_leaf_free_space(l);
3410 
3411 		wret = push_leaf_right(trans, root, path, space_needed,
3412 				       space_needed, 0, 0);
3413 		if (wret < 0)
3414 			return wret;
3415 		if (wret) {
3416 			space_needed = data_size;
3417 			if (slot > 0)
3418 				space_needed -= btrfs_leaf_free_space(l);
3419 			wret = push_leaf_left(trans, root, path, space_needed,
3420 					      space_needed, 0, (u32)-1);
3421 			if (wret < 0)
3422 				return wret;
3423 		}
3424 		l = path->nodes[0];
3425 
3426 		/* did the pushes work? */
3427 		if (btrfs_leaf_free_space(l) >= data_size)
3428 			return 0;
3429 	}
3430 
3431 	if (!path->nodes[1]) {
3432 		ret = insert_new_root(trans, root, path, 1);
3433 		if (ret)
3434 			return ret;
3435 	}
3436 again:
3437 	split = 1;
3438 	l = path->nodes[0];
3439 	slot = path->slots[0];
3440 	nritems = btrfs_header_nritems(l);
3441 	mid = (nritems + 1) / 2;
3442 
3443 	if (mid <= slot) {
3444 		if (nritems == 1 ||
3445 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3446 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3447 			if (slot >= nritems) {
3448 				split = 0;
3449 			} else {
3450 				mid = slot;
3451 				if (mid != nritems &&
3452 				    leaf_space_used(l, mid, nritems - mid) +
3453 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3454 					if (data_size && !tried_avoid_double)
3455 						goto push_for_double;
3456 					split = 2;
3457 				}
3458 			}
3459 		}
3460 	} else {
3461 		if (leaf_space_used(l, 0, mid) + data_size >
3462 			BTRFS_LEAF_DATA_SIZE(fs_info)) {
3463 			if (!extend && data_size && slot == 0) {
3464 				split = 0;
3465 			} else if ((extend || !data_size) && slot == 0) {
3466 				mid = 1;
3467 			} else {
3468 				mid = slot;
3469 				if (mid != nritems &&
3470 				    leaf_space_used(l, mid, nritems - mid) +
3471 				    data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) {
3472 					if (data_size && !tried_avoid_double)
3473 						goto push_for_double;
3474 					split = 2;
3475 				}
3476 			}
3477 		}
3478 	}
3479 
3480 	if (split == 0)
3481 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3482 	else
3483 		btrfs_item_key(l, &disk_key, mid);
3484 
3485 	/*
3486 	 * We have to about BTRFS_NESTING_NEW_ROOT here if we've done a double
3487 	 * split, because we're only allowed to have MAX_LOCKDEP_SUBCLASSES
3488 	 * subclasses, which is 8 at the time of this patch, and we've maxed it
3489 	 * out.  In the future we could add a
3490 	 * BTRFS_NESTING_SPLIT_THE_SPLITTENING if we need to, but for now just
3491 	 * use BTRFS_NESTING_NEW_ROOT.
3492 	 */
3493 	right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3494 				       &disk_key, 0, l->start, 0,
3495 				       num_doubles ? BTRFS_NESTING_NEW_ROOT :
3496 				       BTRFS_NESTING_SPLIT);
3497 	if (IS_ERR(right))
3498 		return PTR_ERR(right);
3499 
3500 	root_add_used(root, fs_info->nodesize);
3501 
3502 	if (split == 0) {
3503 		if (mid <= slot) {
3504 			btrfs_set_header_nritems(right, 0);
3505 			insert_ptr(trans, path, &disk_key,
3506 				   right->start, path->slots[1] + 1, 1);
3507 			btrfs_tree_unlock(path->nodes[0]);
3508 			free_extent_buffer(path->nodes[0]);
3509 			path->nodes[0] = right;
3510 			path->slots[0] = 0;
3511 			path->slots[1] += 1;
3512 		} else {
3513 			btrfs_set_header_nritems(right, 0);
3514 			insert_ptr(trans, path, &disk_key,
3515 				   right->start, path->slots[1], 1);
3516 			btrfs_tree_unlock(path->nodes[0]);
3517 			free_extent_buffer(path->nodes[0]);
3518 			path->nodes[0] = right;
3519 			path->slots[0] = 0;
3520 			if (path->slots[1] == 0)
3521 				fixup_low_keys(path, &disk_key, 1);
3522 		}
3523 		/*
3524 		 * We create a new leaf 'right' for the required ins_len and
3525 		 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying
3526 		 * the content of ins_len to 'right'.
3527 		 */
3528 		return ret;
3529 	}
3530 
3531 	copy_for_split(trans, path, l, right, slot, mid, nritems);
3532 
3533 	if (split == 2) {
3534 		BUG_ON(num_doubles != 0);
3535 		num_doubles++;
3536 		goto again;
3537 	}
3538 
3539 	return 0;
3540 
3541 push_for_double:
3542 	push_for_double_split(trans, root, path, data_size);
3543 	tried_avoid_double = 1;
3544 	if (btrfs_leaf_free_space(path->nodes[0]) >= data_size)
3545 		return 0;
3546 	goto again;
3547 }
3548 
3549 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
3550 					 struct btrfs_root *root,
3551 					 struct btrfs_path *path, int ins_len)
3552 {
3553 	struct btrfs_key key;
3554 	struct extent_buffer *leaf;
3555 	struct btrfs_file_extent_item *fi;
3556 	u64 extent_len = 0;
3557 	u32 item_size;
3558 	int ret;
3559 
3560 	leaf = path->nodes[0];
3561 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3562 
3563 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
3564 	       key.type != BTRFS_EXTENT_CSUM_KEY);
3565 
3566 	if (btrfs_leaf_free_space(leaf) >= ins_len)
3567 		return 0;
3568 
3569 	item_size = btrfs_item_size(leaf, path->slots[0]);
3570 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3571 		fi = btrfs_item_ptr(leaf, path->slots[0],
3572 				    struct btrfs_file_extent_item);
3573 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
3574 	}
3575 	btrfs_release_path(path);
3576 
3577 	path->keep_locks = 1;
3578 	path->search_for_split = 1;
3579 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
3580 	path->search_for_split = 0;
3581 	if (ret > 0)
3582 		ret = -EAGAIN;
3583 	if (ret < 0)
3584 		goto err;
3585 
3586 	ret = -EAGAIN;
3587 	leaf = path->nodes[0];
3588 	/* if our item isn't there, return now */
3589 	if (item_size != btrfs_item_size(leaf, path->slots[0]))
3590 		goto err;
3591 
3592 	/* the leaf has  changed, it now has room.  return now */
3593 	if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len)
3594 		goto err;
3595 
3596 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
3597 		fi = btrfs_item_ptr(leaf, path->slots[0],
3598 				    struct btrfs_file_extent_item);
3599 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
3600 			goto err;
3601 	}
3602 
3603 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
3604 	if (ret)
3605 		goto err;
3606 
3607 	path->keep_locks = 0;
3608 	btrfs_unlock_up_safe(path, 1);
3609 	return 0;
3610 err:
3611 	path->keep_locks = 0;
3612 	return ret;
3613 }
3614 
3615 static noinline int split_item(struct btrfs_path *path,
3616 			       const struct btrfs_key *new_key,
3617 			       unsigned long split_offset)
3618 {
3619 	struct extent_buffer *leaf;
3620 	int orig_slot, slot;
3621 	char *buf;
3622 	u32 nritems;
3623 	u32 item_size;
3624 	u32 orig_offset;
3625 	struct btrfs_disk_key disk_key;
3626 
3627 	leaf = path->nodes[0];
3628 	BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item));
3629 
3630 	orig_slot = path->slots[0];
3631 	orig_offset = btrfs_item_offset(leaf, path->slots[0]);
3632 	item_size = btrfs_item_size(leaf, path->slots[0]);
3633 
3634 	buf = kmalloc(item_size, GFP_NOFS);
3635 	if (!buf)
3636 		return -ENOMEM;
3637 
3638 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3639 			    path->slots[0]), item_size);
3640 
3641 	slot = path->slots[0] + 1;
3642 	nritems = btrfs_header_nritems(leaf);
3643 	if (slot != nritems) {
3644 		/* shift the items */
3645 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3646 				btrfs_item_nr_offset(slot),
3647 				(nritems - slot) * sizeof(struct btrfs_item));
3648 	}
3649 
3650 	btrfs_cpu_key_to_disk(&disk_key, new_key);
3651 	btrfs_set_item_key(leaf, &disk_key, slot);
3652 
3653 	btrfs_set_item_offset(leaf, slot, orig_offset);
3654 	btrfs_set_item_size(leaf, slot, item_size - split_offset);
3655 
3656 	btrfs_set_item_offset(leaf, orig_slot,
3657 				 orig_offset + item_size - split_offset);
3658 	btrfs_set_item_size(leaf, orig_slot, split_offset);
3659 
3660 	btrfs_set_header_nritems(leaf, nritems + 1);
3661 
3662 	/* write the data for the start of the original item */
3663 	write_extent_buffer(leaf, buf,
3664 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
3665 			    split_offset);
3666 
3667 	/* write the data for the new item */
3668 	write_extent_buffer(leaf, buf + split_offset,
3669 			    btrfs_item_ptr_offset(leaf, slot),
3670 			    item_size - split_offset);
3671 	btrfs_mark_buffer_dirty(leaf);
3672 
3673 	BUG_ON(btrfs_leaf_free_space(leaf) < 0);
3674 	kfree(buf);
3675 	return 0;
3676 }
3677 
3678 /*
3679  * This function splits a single item into two items,
3680  * giving 'new_key' to the new item and splitting the
3681  * old one at split_offset (from the start of the item).
3682  *
3683  * The path may be released by this operation.  After
3684  * the split, the path is pointing to the old item.  The
3685  * new item is going to be in the same node as the old one.
3686  *
3687  * Note, the item being split must be smaller enough to live alone on
3688  * a tree block with room for one extra struct btrfs_item
3689  *
3690  * This allows us to split the item in place, keeping a lock on the
3691  * leaf the entire time.
3692  */
3693 int btrfs_split_item(struct btrfs_trans_handle *trans,
3694 		     struct btrfs_root *root,
3695 		     struct btrfs_path *path,
3696 		     const struct btrfs_key *new_key,
3697 		     unsigned long split_offset)
3698 {
3699 	int ret;
3700 	ret = setup_leaf_for_split(trans, root, path,
3701 				   sizeof(struct btrfs_item));
3702 	if (ret)
3703 		return ret;
3704 
3705 	ret = split_item(path, new_key, split_offset);
3706 	return ret;
3707 }
3708 
3709 /*
3710  * make the item pointed to by the path smaller.  new_size indicates
3711  * how small to make it, and from_end tells us if we just chop bytes
3712  * off the end of the item or if we shift the item to chop bytes off
3713  * the front.
3714  */
3715 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end)
3716 {
3717 	int slot;
3718 	struct extent_buffer *leaf;
3719 	u32 nritems;
3720 	unsigned int data_end;
3721 	unsigned int old_data_start;
3722 	unsigned int old_size;
3723 	unsigned int size_diff;
3724 	int i;
3725 	struct btrfs_map_token token;
3726 
3727 	leaf = path->nodes[0];
3728 	slot = path->slots[0];
3729 
3730 	old_size = btrfs_item_size(leaf, slot);
3731 	if (old_size == new_size)
3732 		return;
3733 
3734 	nritems = btrfs_header_nritems(leaf);
3735 	data_end = leaf_data_end(leaf);
3736 
3737 	old_data_start = btrfs_item_offset(leaf, slot);
3738 
3739 	size_diff = old_size - new_size;
3740 
3741 	BUG_ON(slot < 0);
3742 	BUG_ON(slot >= nritems);
3743 
3744 	/*
3745 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3746 	 */
3747 	/* first correct the data pointers */
3748 	btrfs_init_map_token(&token, leaf);
3749 	for (i = slot; i < nritems; i++) {
3750 		u32 ioff;
3751 
3752 		ioff = btrfs_token_item_offset(&token, i);
3753 		btrfs_set_token_item_offset(&token, i, ioff + size_diff);
3754 	}
3755 
3756 	/* shift the data */
3757 	if (from_end) {
3758 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3759 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3760 			      data_end, old_data_start + new_size - data_end);
3761 	} else {
3762 		struct btrfs_disk_key disk_key;
3763 		u64 offset;
3764 
3765 		btrfs_item_key(leaf, &disk_key, slot);
3766 
3767 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3768 			unsigned long ptr;
3769 			struct btrfs_file_extent_item *fi;
3770 
3771 			fi = btrfs_item_ptr(leaf, slot,
3772 					    struct btrfs_file_extent_item);
3773 			fi = (struct btrfs_file_extent_item *)(
3774 			     (unsigned long)fi - size_diff);
3775 
3776 			if (btrfs_file_extent_type(leaf, fi) ==
3777 			    BTRFS_FILE_EXTENT_INLINE) {
3778 				ptr = btrfs_item_ptr_offset(leaf, slot);
3779 				memmove_extent_buffer(leaf, ptr,
3780 				      (unsigned long)fi,
3781 				      BTRFS_FILE_EXTENT_INLINE_DATA_START);
3782 			}
3783 		}
3784 
3785 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3786 			      data_end + size_diff, BTRFS_LEAF_DATA_OFFSET +
3787 			      data_end, old_data_start - data_end);
3788 
3789 		offset = btrfs_disk_key_offset(&disk_key);
3790 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3791 		btrfs_set_item_key(leaf, &disk_key, slot);
3792 		if (slot == 0)
3793 			fixup_low_keys(path, &disk_key, 1);
3794 	}
3795 
3796 	btrfs_set_item_size(leaf, slot, new_size);
3797 	btrfs_mark_buffer_dirty(leaf);
3798 
3799 	if (btrfs_leaf_free_space(leaf) < 0) {
3800 		btrfs_print_leaf(leaf);
3801 		BUG();
3802 	}
3803 }
3804 
3805 /*
3806  * make the item pointed to by the path bigger, data_size is the added size.
3807  */
3808 void btrfs_extend_item(struct btrfs_path *path, u32 data_size)
3809 {
3810 	int slot;
3811 	struct extent_buffer *leaf;
3812 	u32 nritems;
3813 	unsigned int data_end;
3814 	unsigned int old_data;
3815 	unsigned int old_size;
3816 	int i;
3817 	struct btrfs_map_token token;
3818 
3819 	leaf = path->nodes[0];
3820 
3821 	nritems = btrfs_header_nritems(leaf);
3822 	data_end = leaf_data_end(leaf);
3823 
3824 	if (btrfs_leaf_free_space(leaf) < data_size) {
3825 		btrfs_print_leaf(leaf);
3826 		BUG();
3827 	}
3828 	slot = path->slots[0];
3829 	old_data = btrfs_item_data_end(leaf, slot);
3830 
3831 	BUG_ON(slot < 0);
3832 	if (slot >= nritems) {
3833 		btrfs_print_leaf(leaf);
3834 		btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d",
3835 			   slot, nritems);
3836 		BUG();
3837 	}
3838 
3839 	/*
3840 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3841 	 */
3842 	/* first correct the data pointers */
3843 	btrfs_init_map_token(&token, leaf);
3844 	for (i = slot; i < nritems; i++) {
3845 		u32 ioff;
3846 
3847 		ioff = btrfs_token_item_offset(&token, i);
3848 		btrfs_set_token_item_offset(&token, i, ioff - data_size);
3849 	}
3850 
3851 	/* shift the data */
3852 	memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3853 		      data_end - data_size, BTRFS_LEAF_DATA_OFFSET +
3854 		      data_end, old_data - data_end);
3855 
3856 	data_end = old_data;
3857 	old_size = btrfs_item_size(leaf, slot);
3858 	btrfs_set_item_size(leaf, slot, old_size + data_size);
3859 	btrfs_mark_buffer_dirty(leaf);
3860 
3861 	if (btrfs_leaf_free_space(leaf) < 0) {
3862 		btrfs_print_leaf(leaf);
3863 		BUG();
3864 	}
3865 }
3866 
3867 /**
3868  * setup_items_for_insert - Helper called before inserting one or more items
3869  * to a leaf. Main purpose is to save stack depth by doing the bulk of the work
3870  * in a function that doesn't call btrfs_search_slot
3871  *
3872  * @root:	root we are inserting items to
3873  * @path:	points to the leaf/slot where we are going to insert new items
3874  * @batch:      information about the batch of items to insert
3875  */
3876 static void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
3877 				   const struct btrfs_item_batch *batch)
3878 {
3879 	struct btrfs_fs_info *fs_info = root->fs_info;
3880 	int i;
3881 	u32 nritems;
3882 	unsigned int data_end;
3883 	struct btrfs_disk_key disk_key;
3884 	struct extent_buffer *leaf;
3885 	int slot;
3886 	struct btrfs_map_token token;
3887 	u32 total_size;
3888 
3889 	/*
3890 	 * Before anything else, update keys in the parent and other ancestors
3891 	 * if needed, then release the write locks on them, so that other tasks
3892 	 * can use them while we modify the leaf.
3893 	 */
3894 	if (path->slots[0] == 0) {
3895 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[0]);
3896 		fixup_low_keys(path, &disk_key, 1);
3897 	}
3898 	btrfs_unlock_up_safe(path, 1);
3899 
3900 	leaf = path->nodes[0];
3901 	slot = path->slots[0];
3902 
3903 	nritems = btrfs_header_nritems(leaf);
3904 	data_end = leaf_data_end(leaf);
3905 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
3906 
3907 	if (btrfs_leaf_free_space(leaf) < total_size) {
3908 		btrfs_print_leaf(leaf);
3909 		btrfs_crit(fs_info, "not enough freespace need %u have %d",
3910 			   total_size, btrfs_leaf_free_space(leaf));
3911 		BUG();
3912 	}
3913 
3914 	btrfs_init_map_token(&token, leaf);
3915 	if (slot != nritems) {
3916 		unsigned int old_data = btrfs_item_data_end(leaf, slot);
3917 
3918 		if (old_data < data_end) {
3919 			btrfs_print_leaf(leaf);
3920 			btrfs_crit(fs_info,
3921 		"item at slot %d with data offset %u beyond data end of leaf %u",
3922 				   slot, old_data, data_end);
3923 			BUG();
3924 		}
3925 		/*
3926 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
3927 		 */
3928 		/* first correct the data pointers */
3929 		for (i = slot; i < nritems; i++) {
3930 			u32 ioff;
3931 
3932 			ioff = btrfs_token_item_offset(&token, i);
3933 			btrfs_set_token_item_offset(&token, i,
3934 						       ioff - batch->total_data_size);
3935 		}
3936 		/* shift the items */
3937 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + batch->nr),
3938 			      btrfs_item_nr_offset(slot),
3939 			      (nritems - slot) * sizeof(struct btrfs_item));
3940 
3941 		/* shift the data */
3942 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
3943 				      data_end - batch->total_data_size,
3944 				      BTRFS_LEAF_DATA_OFFSET + data_end,
3945 				      old_data - data_end);
3946 		data_end = old_data;
3947 	}
3948 
3949 	/* setup the item for the new data */
3950 	for (i = 0; i < batch->nr; i++) {
3951 		btrfs_cpu_key_to_disk(&disk_key, &batch->keys[i]);
3952 		btrfs_set_item_key(leaf, &disk_key, slot + i);
3953 		data_end -= batch->data_sizes[i];
3954 		btrfs_set_token_item_offset(&token, slot + i, data_end);
3955 		btrfs_set_token_item_size(&token, slot + i, batch->data_sizes[i]);
3956 	}
3957 
3958 	btrfs_set_header_nritems(leaf, nritems + batch->nr);
3959 	btrfs_mark_buffer_dirty(leaf);
3960 
3961 	if (btrfs_leaf_free_space(leaf) < 0) {
3962 		btrfs_print_leaf(leaf);
3963 		BUG();
3964 	}
3965 }
3966 
3967 /*
3968  * Insert a new item into a leaf.
3969  *
3970  * @root:      The root of the btree.
3971  * @path:      A path pointing to the target leaf and slot.
3972  * @key:       The key of the new item.
3973  * @data_size: The size of the data associated with the new key.
3974  */
3975 void btrfs_setup_item_for_insert(struct btrfs_root *root,
3976 				 struct btrfs_path *path,
3977 				 const struct btrfs_key *key,
3978 				 u32 data_size)
3979 {
3980 	struct btrfs_item_batch batch;
3981 
3982 	batch.keys = key;
3983 	batch.data_sizes = &data_size;
3984 	batch.total_data_size = data_size;
3985 	batch.nr = 1;
3986 
3987 	setup_items_for_insert(root, path, &batch);
3988 }
3989 
3990 /*
3991  * Given a key and some data, insert items into the tree.
3992  * This does all the path init required, making room in the tree if needed.
3993  */
3994 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3995 			    struct btrfs_root *root,
3996 			    struct btrfs_path *path,
3997 			    const struct btrfs_item_batch *batch)
3998 {
3999 	int ret = 0;
4000 	int slot;
4001 	u32 total_size;
4002 
4003 	total_size = batch->total_data_size + (batch->nr * sizeof(struct btrfs_item));
4004 	ret = btrfs_search_slot(trans, root, &batch->keys[0], path, total_size, 1);
4005 	if (ret == 0)
4006 		return -EEXIST;
4007 	if (ret < 0)
4008 		return ret;
4009 
4010 	slot = path->slots[0];
4011 	BUG_ON(slot < 0);
4012 
4013 	setup_items_for_insert(root, path, batch);
4014 	return 0;
4015 }
4016 
4017 /*
4018  * Given a key and some data, insert an item into the tree.
4019  * This does all the path init required, making room in the tree if needed.
4020  */
4021 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4022 		      const struct btrfs_key *cpu_key, void *data,
4023 		      u32 data_size)
4024 {
4025 	int ret = 0;
4026 	struct btrfs_path *path;
4027 	struct extent_buffer *leaf;
4028 	unsigned long ptr;
4029 
4030 	path = btrfs_alloc_path();
4031 	if (!path)
4032 		return -ENOMEM;
4033 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4034 	if (!ret) {
4035 		leaf = path->nodes[0];
4036 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4037 		write_extent_buffer(leaf, data, ptr, data_size);
4038 		btrfs_mark_buffer_dirty(leaf);
4039 	}
4040 	btrfs_free_path(path);
4041 	return ret;
4042 }
4043 
4044 /*
4045  * This function duplicates an item, giving 'new_key' to the new item.
4046  * It guarantees both items live in the same tree leaf and the new item is
4047  * contiguous with the original item.
4048  *
4049  * This allows us to split a file extent in place, keeping a lock on the leaf
4050  * the entire time.
4051  */
4052 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4053 			 struct btrfs_root *root,
4054 			 struct btrfs_path *path,
4055 			 const struct btrfs_key *new_key)
4056 {
4057 	struct extent_buffer *leaf;
4058 	int ret;
4059 	u32 item_size;
4060 
4061 	leaf = path->nodes[0];
4062 	item_size = btrfs_item_size(leaf, path->slots[0]);
4063 	ret = setup_leaf_for_split(trans, root, path,
4064 				   item_size + sizeof(struct btrfs_item));
4065 	if (ret)
4066 		return ret;
4067 
4068 	path->slots[0]++;
4069 	btrfs_setup_item_for_insert(root, path, new_key, item_size);
4070 	leaf = path->nodes[0];
4071 	memcpy_extent_buffer(leaf,
4072 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4073 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4074 			     item_size);
4075 	return 0;
4076 }
4077 
4078 /*
4079  * delete the pointer from a given node.
4080  *
4081  * the tree should have been previously balanced so the deletion does not
4082  * empty a node.
4083  */
4084 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4085 		    int level, int slot)
4086 {
4087 	struct extent_buffer *parent = path->nodes[level];
4088 	u32 nritems;
4089 	int ret;
4090 
4091 	nritems = btrfs_header_nritems(parent);
4092 	if (slot != nritems - 1) {
4093 		if (level) {
4094 			ret = btrfs_tree_mod_log_insert_move(parent, slot,
4095 					slot + 1, nritems - slot - 1);
4096 			BUG_ON(ret < 0);
4097 		}
4098 		memmove_extent_buffer(parent,
4099 			      btrfs_node_key_ptr_offset(slot),
4100 			      btrfs_node_key_ptr_offset(slot + 1),
4101 			      sizeof(struct btrfs_key_ptr) *
4102 			      (nritems - slot - 1));
4103 	} else if (level) {
4104 		ret = btrfs_tree_mod_log_insert_key(parent, slot,
4105 				BTRFS_MOD_LOG_KEY_REMOVE, GFP_NOFS);
4106 		BUG_ON(ret < 0);
4107 	}
4108 
4109 	nritems--;
4110 	btrfs_set_header_nritems(parent, nritems);
4111 	if (nritems == 0 && parent == root->node) {
4112 		BUG_ON(btrfs_header_level(root->node) != 1);
4113 		/* just turn the root into a leaf and break */
4114 		btrfs_set_header_level(root->node, 0);
4115 	} else if (slot == 0) {
4116 		struct btrfs_disk_key disk_key;
4117 
4118 		btrfs_node_key(parent, &disk_key, 0);
4119 		fixup_low_keys(path, &disk_key, level + 1);
4120 	}
4121 	btrfs_mark_buffer_dirty(parent);
4122 }
4123 
4124 /*
4125  * a helper function to delete the leaf pointed to by path->slots[1] and
4126  * path->nodes[1].
4127  *
4128  * This deletes the pointer in path->nodes[1] and frees the leaf
4129  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4130  *
4131  * The path must have already been setup for deleting the leaf, including
4132  * all the proper balancing.  path->nodes[1] must be locked.
4133  */
4134 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4135 				    struct btrfs_root *root,
4136 				    struct btrfs_path *path,
4137 				    struct extent_buffer *leaf)
4138 {
4139 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4140 	del_ptr(root, path, 1, path->slots[1]);
4141 
4142 	/*
4143 	 * btrfs_free_extent is expensive, we want to make sure we
4144 	 * aren't holding any locks when we call it
4145 	 */
4146 	btrfs_unlock_up_safe(path, 0);
4147 
4148 	root_sub_used(root, leaf->len);
4149 
4150 	atomic_inc(&leaf->refs);
4151 	btrfs_free_tree_block(trans, btrfs_root_id(root), leaf, 0, 1);
4152 	free_extent_buffer_stale(leaf);
4153 }
4154 /*
4155  * delete the item at the leaf level in path.  If that empties
4156  * the leaf, remove it from the tree
4157  */
4158 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4159 		    struct btrfs_path *path, int slot, int nr)
4160 {
4161 	struct btrfs_fs_info *fs_info = root->fs_info;
4162 	struct extent_buffer *leaf;
4163 	int ret = 0;
4164 	int wret;
4165 	u32 nritems;
4166 
4167 	leaf = path->nodes[0];
4168 	nritems = btrfs_header_nritems(leaf);
4169 
4170 	if (slot + nr != nritems) {
4171 		const u32 last_off = btrfs_item_offset(leaf, slot + nr - 1);
4172 		const int data_end = leaf_data_end(leaf);
4173 		struct btrfs_map_token token;
4174 		u32 dsize = 0;
4175 		int i;
4176 
4177 		for (i = 0; i < nr; i++)
4178 			dsize += btrfs_item_size(leaf, slot + i);
4179 
4180 		memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET +
4181 			      data_end + dsize,
4182 			      BTRFS_LEAF_DATA_OFFSET + data_end,
4183 			      last_off - data_end);
4184 
4185 		btrfs_init_map_token(&token, leaf);
4186 		for (i = slot + nr; i < nritems; i++) {
4187 			u32 ioff;
4188 
4189 			ioff = btrfs_token_item_offset(&token, i);
4190 			btrfs_set_token_item_offset(&token, i, ioff + dsize);
4191 		}
4192 
4193 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4194 			      btrfs_item_nr_offset(slot + nr),
4195 			      sizeof(struct btrfs_item) *
4196 			      (nritems - slot - nr));
4197 	}
4198 	btrfs_set_header_nritems(leaf, nritems - nr);
4199 	nritems -= nr;
4200 
4201 	/* delete the leaf if we've emptied it */
4202 	if (nritems == 0) {
4203 		if (leaf == root->node) {
4204 			btrfs_set_header_level(leaf, 0);
4205 		} else {
4206 			btrfs_clean_tree_block(leaf);
4207 			btrfs_del_leaf(trans, root, path, leaf);
4208 		}
4209 	} else {
4210 		int used = leaf_space_used(leaf, 0, nritems);
4211 		if (slot == 0) {
4212 			struct btrfs_disk_key disk_key;
4213 
4214 			btrfs_item_key(leaf, &disk_key, 0);
4215 			fixup_low_keys(path, &disk_key, 1);
4216 		}
4217 
4218 		/*
4219 		 * Try to delete the leaf if it is mostly empty. We do this by
4220 		 * trying to move all its items into its left and right neighbours.
4221 		 * If we can't move all the items, then we don't delete it - it's
4222 		 * not ideal, but future insertions might fill the leaf with more
4223 		 * items, or items from other leaves might be moved later into our
4224 		 * leaf due to deletions on those leaves.
4225 		 */
4226 		if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) {
4227 			u32 min_push_space;
4228 
4229 			/* push_leaf_left fixes the path.
4230 			 * make sure the path still points to our leaf
4231 			 * for possible call to del_ptr below
4232 			 */
4233 			slot = path->slots[1];
4234 			atomic_inc(&leaf->refs);
4235 			/*
4236 			 * We want to be able to at least push one item to the
4237 			 * left neighbour leaf, and that's the first item.
4238 			 */
4239 			min_push_space = sizeof(struct btrfs_item) +
4240 				btrfs_item_size(leaf, 0);
4241 			wret = push_leaf_left(trans, root, path, 0,
4242 					      min_push_space, 1, (u32)-1);
4243 			if (wret < 0 && wret != -ENOSPC)
4244 				ret = wret;
4245 
4246 			if (path->nodes[0] == leaf &&
4247 			    btrfs_header_nritems(leaf)) {
4248 				/*
4249 				 * If we were not able to push all items from our
4250 				 * leaf to its left neighbour, then attempt to
4251 				 * either push all the remaining items to the
4252 				 * right neighbour or none. There's no advantage
4253 				 * in pushing only some items, instead of all, as
4254 				 * it's pointless to end up with a leaf having
4255 				 * too few items while the neighbours can be full
4256 				 * or nearly full.
4257 				 */
4258 				nritems = btrfs_header_nritems(leaf);
4259 				min_push_space = leaf_space_used(leaf, 0, nritems);
4260 				wret = push_leaf_right(trans, root, path, 0,
4261 						       min_push_space, 1, 0);
4262 				if (wret < 0 && wret != -ENOSPC)
4263 					ret = wret;
4264 			}
4265 
4266 			if (btrfs_header_nritems(leaf) == 0) {
4267 				path->slots[1] = slot;
4268 				btrfs_del_leaf(trans, root, path, leaf);
4269 				free_extent_buffer(leaf);
4270 				ret = 0;
4271 			} else {
4272 				/* if we're still in the path, make sure
4273 				 * we're dirty.  Otherwise, one of the
4274 				 * push_leaf functions must have already
4275 				 * dirtied this buffer
4276 				 */
4277 				if (path->nodes[0] == leaf)
4278 					btrfs_mark_buffer_dirty(leaf);
4279 				free_extent_buffer(leaf);
4280 			}
4281 		} else {
4282 			btrfs_mark_buffer_dirty(leaf);
4283 		}
4284 	}
4285 	return ret;
4286 }
4287 
4288 /*
4289  * search the tree again to find a leaf with lesser keys
4290  * returns 0 if it found something or 1 if there are no lesser leaves.
4291  * returns < 0 on io errors.
4292  *
4293  * This may release the path, and so you may lose any locks held at the
4294  * time you call it.
4295  */
4296 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4297 {
4298 	struct btrfs_key key;
4299 	struct btrfs_disk_key found_key;
4300 	int ret;
4301 
4302 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4303 
4304 	if (key.offset > 0) {
4305 		key.offset--;
4306 	} else if (key.type > 0) {
4307 		key.type--;
4308 		key.offset = (u64)-1;
4309 	} else if (key.objectid > 0) {
4310 		key.objectid--;
4311 		key.type = (u8)-1;
4312 		key.offset = (u64)-1;
4313 	} else {
4314 		return 1;
4315 	}
4316 
4317 	btrfs_release_path(path);
4318 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4319 	if (ret < 0)
4320 		return ret;
4321 	btrfs_item_key(path->nodes[0], &found_key, 0);
4322 	ret = comp_keys(&found_key, &key);
4323 	/*
4324 	 * We might have had an item with the previous key in the tree right
4325 	 * before we released our path. And after we released our path, that
4326 	 * item might have been pushed to the first slot (0) of the leaf we
4327 	 * were holding due to a tree balance. Alternatively, an item with the
4328 	 * previous key can exist as the only element of a leaf (big fat item).
4329 	 * Therefore account for these 2 cases, so that our callers (like
4330 	 * btrfs_previous_item) don't miss an existing item with a key matching
4331 	 * the previous key we computed above.
4332 	 */
4333 	if (ret <= 0)
4334 		return 0;
4335 	return 1;
4336 }
4337 
4338 /*
4339  * A helper function to walk down the tree starting at min_key, and looking
4340  * for nodes or leaves that are have a minimum transaction id.
4341  * This is used by the btree defrag code, and tree logging
4342  *
4343  * This does not cow, but it does stuff the starting key it finds back
4344  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4345  * key and get a writable path.
4346  *
4347  * This honors path->lowest_level to prevent descent past a given level
4348  * of the tree.
4349  *
4350  * min_trans indicates the oldest transaction that you are interested
4351  * in walking through.  Any nodes or leaves older than min_trans are
4352  * skipped over (without reading them).
4353  *
4354  * returns zero if something useful was found, < 0 on error and 1 if there
4355  * was nothing in the tree that matched the search criteria.
4356  */
4357 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4358 			 struct btrfs_path *path,
4359 			 u64 min_trans)
4360 {
4361 	struct extent_buffer *cur;
4362 	struct btrfs_key found_key;
4363 	int slot;
4364 	int sret;
4365 	u32 nritems;
4366 	int level;
4367 	int ret = 1;
4368 	int keep_locks = path->keep_locks;
4369 
4370 	path->keep_locks = 1;
4371 again:
4372 	cur = btrfs_read_lock_root_node(root);
4373 	level = btrfs_header_level(cur);
4374 	WARN_ON(path->nodes[level]);
4375 	path->nodes[level] = cur;
4376 	path->locks[level] = BTRFS_READ_LOCK;
4377 
4378 	if (btrfs_header_generation(cur) < min_trans) {
4379 		ret = 1;
4380 		goto out;
4381 	}
4382 	while (1) {
4383 		nritems = btrfs_header_nritems(cur);
4384 		level = btrfs_header_level(cur);
4385 		sret = btrfs_bin_search(cur, min_key, &slot);
4386 		if (sret < 0) {
4387 			ret = sret;
4388 			goto out;
4389 		}
4390 
4391 		/* at the lowest level, we're done, setup the path and exit */
4392 		if (level == path->lowest_level) {
4393 			if (slot >= nritems)
4394 				goto find_next_key;
4395 			ret = 0;
4396 			path->slots[level] = slot;
4397 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4398 			goto out;
4399 		}
4400 		if (sret && slot > 0)
4401 			slot--;
4402 		/*
4403 		 * check this node pointer against the min_trans parameters.
4404 		 * If it is too old, skip to the next one.
4405 		 */
4406 		while (slot < nritems) {
4407 			u64 gen;
4408 
4409 			gen = btrfs_node_ptr_generation(cur, slot);
4410 			if (gen < min_trans) {
4411 				slot++;
4412 				continue;
4413 			}
4414 			break;
4415 		}
4416 find_next_key:
4417 		/*
4418 		 * we didn't find a candidate key in this node, walk forward
4419 		 * and find another one
4420 		 */
4421 		if (slot >= nritems) {
4422 			path->slots[level] = slot;
4423 			sret = btrfs_find_next_key(root, path, min_key, level,
4424 						  min_trans);
4425 			if (sret == 0) {
4426 				btrfs_release_path(path);
4427 				goto again;
4428 			} else {
4429 				goto out;
4430 			}
4431 		}
4432 		/* save our key for returning back */
4433 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4434 		path->slots[level] = slot;
4435 		if (level == path->lowest_level) {
4436 			ret = 0;
4437 			goto out;
4438 		}
4439 		cur = btrfs_read_node_slot(cur, slot);
4440 		if (IS_ERR(cur)) {
4441 			ret = PTR_ERR(cur);
4442 			goto out;
4443 		}
4444 
4445 		btrfs_tree_read_lock(cur);
4446 
4447 		path->locks[level - 1] = BTRFS_READ_LOCK;
4448 		path->nodes[level - 1] = cur;
4449 		unlock_up(path, level, 1, 0, NULL);
4450 	}
4451 out:
4452 	path->keep_locks = keep_locks;
4453 	if (ret == 0) {
4454 		btrfs_unlock_up_safe(path, path->lowest_level + 1);
4455 		memcpy(min_key, &found_key, sizeof(found_key));
4456 	}
4457 	return ret;
4458 }
4459 
4460 /*
4461  * this is similar to btrfs_next_leaf, but does not try to preserve
4462  * and fixup the path.  It looks for and returns the next key in the
4463  * tree based on the current path and the min_trans parameters.
4464  *
4465  * 0 is returned if another key is found, < 0 if there are any errors
4466  * and 1 is returned if there are no higher keys in the tree
4467  *
4468  * path->keep_locks should be set to 1 on the search made before
4469  * calling this function.
4470  */
4471 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
4472 			struct btrfs_key *key, int level, u64 min_trans)
4473 {
4474 	int slot;
4475 	struct extent_buffer *c;
4476 
4477 	WARN_ON(!path->keep_locks && !path->skip_locking);
4478 	while (level < BTRFS_MAX_LEVEL) {
4479 		if (!path->nodes[level])
4480 			return 1;
4481 
4482 		slot = path->slots[level] + 1;
4483 		c = path->nodes[level];
4484 next:
4485 		if (slot >= btrfs_header_nritems(c)) {
4486 			int ret;
4487 			int orig_lowest;
4488 			struct btrfs_key cur_key;
4489 			if (level + 1 >= BTRFS_MAX_LEVEL ||
4490 			    !path->nodes[level + 1])
4491 				return 1;
4492 
4493 			if (path->locks[level + 1] || path->skip_locking) {
4494 				level++;
4495 				continue;
4496 			}
4497 
4498 			slot = btrfs_header_nritems(c) - 1;
4499 			if (level == 0)
4500 				btrfs_item_key_to_cpu(c, &cur_key, slot);
4501 			else
4502 				btrfs_node_key_to_cpu(c, &cur_key, slot);
4503 
4504 			orig_lowest = path->lowest_level;
4505 			btrfs_release_path(path);
4506 			path->lowest_level = level;
4507 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
4508 						0, 0);
4509 			path->lowest_level = orig_lowest;
4510 			if (ret < 0)
4511 				return ret;
4512 
4513 			c = path->nodes[level];
4514 			slot = path->slots[level];
4515 			if (ret == 0)
4516 				slot++;
4517 			goto next;
4518 		}
4519 
4520 		if (level == 0)
4521 			btrfs_item_key_to_cpu(c, key, slot);
4522 		else {
4523 			u64 gen = btrfs_node_ptr_generation(c, slot);
4524 
4525 			if (gen < min_trans) {
4526 				slot++;
4527 				goto next;
4528 			}
4529 			btrfs_node_key_to_cpu(c, key, slot);
4530 		}
4531 		return 0;
4532 	}
4533 	return 1;
4534 }
4535 
4536 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
4537 			u64 time_seq)
4538 {
4539 	int slot;
4540 	int level;
4541 	struct extent_buffer *c;
4542 	struct extent_buffer *next;
4543 	struct btrfs_fs_info *fs_info = root->fs_info;
4544 	struct btrfs_key key;
4545 	bool need_commit_sem = false;
4546 	u32 nritems;
4547 	int ret;
4548 	int i;
4549 
4550 	nritems = btrfs_header_nritems(path->nodes[0]);
4551 	if (nritems == 0)
4552 		return 1;
4553 
4554 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4555 again:
4556 	level = 1;
4557 	next = NULL;
4558 	btrfs_release_path(path);
4559 
4560 	path->keep_locks = 1;
4561 
4562 	if (time_seq) {
4563 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
4564 	} else {
4565 		if (path->need_commit_sem) {
4566 			path->need_commit_sem = 0;
4567 			need_commit_sem = true;
4568 			down_read(&fs_info->commit_root_sem);
4569 		}
4570 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4571 	}
4572 	path->keep_locks = 0;
4573 
4574 	if (ret < 0)
4575 		goto done;
4576 
4577 	nritems = btrfs_header_nritems(path->nodes[0]);
4578 	/*
4579 	 * by releasing the path above we dropped all our locks.  A balance
4580 	 * could have added more items next to the key that used to be
4581 	 * at the very end of the block.  So, check again here and
4582 	 * advance the path if there are now more items available.
4583 	 */
4584 	if (nritems > 0 && path->slots[0] < nritems - 1) {
4585 		if (ret == 0)
4586 			path->slots[0]++;
4587 		ret = 0;
4588 		goto done;
4589 	}
4590 	/*
4591 	 * So the above check misses one case:
4592 	 * - after releasing the path above, someone has removed the item that
4593 	 *   used to be at the very end of the block, and balance between leafs
4594 	 *   gets another one with bigger key.offset to replace it.
4595 	 *
4596 	 * This one should be returned as well, or we can get leaf corruption
4597 	 * later(esp. in __btrfs_drop_extents()).
4598 	 *
4599 	 * And a bit more explanation about this check,
4600 	 * with ret > 0, the key isn't found, the path points to the slot
4601 	 * where it should be inserted, so the path->slots[0] item must be the
4602 	 * bigger one.
4603 	 */
4604 	if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
4605 		ret = 0;
4606 		goto done;
4607 	}
4608 
4609 	while (level < BTRFS_MAX_LEVEL) {
4610 		if (!path->nodes[level]) {
4611 			ret = 1;
4612 			goto done;
4613 		}
4614 
4615 		slot = path->slots[level] + 1;
4616 		c = path->nodes[level];
4617 		if (slot >= btrfs_header_nritems(c)) {
4618 			level++;
4619 			if (level == BTRFS_MAX_LEVEL) {
4620 				ret = 1;
4621 				goto done;
4622 			}
4623 			continue;
4624 		}
4625 
4626 
4627 		/*
4628 		 * Our current level is where we're going to start from, and to
4629 		 * make sure lockdep doesn't complain we need to drop our locks
4630 		 * and nodes from 0 to our current level.
4631 		 */
4632 		for (i = 0; i < level; i++) {
4633 			if (path->locks[level]) {
4634 				btrfs_tree_read_unlock(path->nodes[i]);
4635 				path->locks[i] = 0;
4636 			}
4637 			free_extent_buffer(path->nodes[i]);
4638 			path->nodes[i] = NULL;
4639 		}
4640 
4641 		next = c;
4642 		ret = read_block_for_search(root, path, &next, level,
4643 					    slot, &key);
4644 		if (ret == -EAGAIN)
4645 			goto again;
4646 
4647 		if (ret < 0) {
4648 			btrfs_release_path(path);
4649 			goto done;
4650 		}
4651 
4652 		if (!path->skip_locking) {
4653 			ret = btrfs_try_tree_read_lock(next);
4654 			if (!ret && time_seq) {
4655 				/*
4656 				 * If we don't get the lock, we may be racing
4657 				 * with push_leaf_left, holding that lock while
4658 				 * itself waiting for the leaf we've currently
4659 				 * locked. To solve this situation, we give up
4660 				 * on our lock and cycle.
4661 				 */
4662 				free_extent_buffer(next);
4663 				btrfs_release_path(path);
4664 				cond_resched();
4665 				goto again;
4666 			}
4667 			if (!ret)
4668 				btrfs_tree_read_lock(next);
4669 		}
4670 		break;
4671 	}
4672 	path->slots[level] = slot;
4673 	while (1) {
4674 		level--;
4675 		path->nodes[level] = next;
4676 		path->slots[level] = 0;
4677 		if (!path->skip_locking)
4678 			path->locks[level] = BTRFS_READ_LOCK;
4679 		if (!level)
4680 			break;
4681 
4682 		ret = read_block_for_search(root, path, &next, level,
4683 					    0, &key);
4684 		if (ret == -EAGAIN)
4685 			goto again;
4686 
4687 		if (ret < 0) {
4688 			btrfs_release_path(path);
4689 			goto done;
4690 		}
4691 
4692 		if (!path->skip_locking)
4693 			btrfs_tree_read_lock(next);
4694 	}
4695 	ret = 0;
4696 done:
4697 	unlock_up(path, 0, 1, 0, NULL);
4698 	if (need_commit_sem) {
4699 		int ret2;
4700 
4701 		path->need_commit_sem = 1;
4702 		ret2 = finish_need_commit_sem_search(path);
4703 		up_read(&fs_info->commit_root_sem);
4704 		if (ret2)
4705 			ret = ret2;
4706 	}
4707 
4708 	return ret;
4709 }
4710 
4711 /*
4712  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4713  * searching until it gets past min_objectid or finds an item of 'type'
4714  *
4715  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4716  */
4717 int btrfs_previous_item(struct btrfs_root *root,
4718 			struct btrfs_path *path, u64 min_objectid,
4719 			int type)
4720 {
4721 	struct btrfs_key found_key;
4722 	struct extent_buffer *leaf;
4723 	u32 nritems;
4724 	int ret;
4725 
4726 	while (1) {
4727 		if (path->slots[0] == 0) {
4728 			ret = btrfs_prev_leaf(root, path);
4729 			if (ret != 0)
4730 				return ret;
4731 		} else {
4732 			path->slots[0]--;
4733 		}
4734 		leaf = path->nodes[0];
4735 		nritems = btrfs_header_nritems(leaf);
4736 		if (nritems == 0)
4737 			return 1;
4738 		if (path->slots[0] == nritems)
4739 			path->slots[0]--;
4740 
4741 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4742 		if (found_key.objectid < min_objectid)
4743 			break;
4744 		if (found_key.type == type)
4745 			return 0;
4746 		if (found_key.objectid == min_objectid &&
4747 		    found_key.type < type)
4748 			break;
4749 	}
4750 	return 1;
4751 }
4752 
4753 /*
4754  * search in extent tree to find a previous Metadata/Data extent item with
4755  * min objecitd.
4756  *
4757  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4758  */
4759 int btrfs_previous_extent_item(struct btrfs_root *root,
4760 			struct btrfs_path *path, u64 min_objectid)
4761 {
4762 	struct btrfs_key found_key;
4763 	struct extent_buffer *leaf;
4764 	u32 nritems;
4765 	int ret;
4766 
4767 	while (1) {
4768 		if (path->slots[0] == 0) {
4769 			ret = btrfs_prev_leaf(root, path);
4770 			if (ret != 0)
4771 				return ret;
4772 		} else {
4773 			path->slots[0]--;
4774 		}
4775 		leaf = path->nodes[0];
4776 		nritems = btrfs_header_nritems(leaf);
4777 		if (nritems == 0)
4778 			return 1;
4779 		if (path->slots[0] == nritems)
4780 			path->slots[0]--;
4781 
4782 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4783 		if (found_key.objectid < min_objectid)
4784 			break;
4785 		if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
4786 		    found_key.type == BTRFS_METADATA_ITEM_KEY)
4787 			return 0;
4788 		if (found_key.objectid == min_objectid &&
4789 		    found_key.type < BTRFS_EXTENT_ITEM_KEY)
4790 			break;
4791 	}
4792 	return 1;
4793 }
4794