1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007,2008 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/slab.h> 8 #include <linux/rbtree.h> 9 #include <linux/mm.h> 10 #include "ctree.h" 11 #include "disk-io.h" 12 #include "transaction.h" 13 #include "print-tree.h" 14 #include "locking.h" 15 #include "volumes.h" 16 #include "qgroup.h" 17 18 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root 19 *root, struct btrfs_path *path, int level); 20 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root *root, 21 const struct btrfs_key *ins_key, struct btrfs_path *path, 22 int data_size, int extend); 23 static int push_node_left(struct btrfs_trans_handle *trans, 24 struct extent_buffer *dst, 25 struct extent_buffer *src, int empty); 26 static int balance_node_right(struct btrfs_trans_handle *trans, 27 struct extent_buffer *dst_buf, 28 struct extent_buffer *src_buf); 29 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 30 int level, int slot); 31 32 struct btrfs_path *btrfs_alloc_path(void) 33 { 34 return kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS); 35 } 36 37 /* 38 * set all locked nodes in the path to blocking locks. This should 39 * be done before scheduling 40 */ 41 noinline void btrfs_set_path_blocking(struct btrfs_path *p) 42 { 43 int i; 44 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 45 if (!p->nodes[i] || !p->locks[i]) 46 continue; 47 /* 48 * If we currently have a spinning reader or writer lock this 49 * will bump the count of blocking holders and drop the 50 * spinlock. 51 */ 52 if (p->locks[i] == BTRFS_READ_LOCK) { 53 btrfs_set_lock_blocking_read(p->nodes[i]); 54 p->locks[i] = BTRFS_READ_LOCK_BLOCKING; 55 } else if (p->locks[i] == BTRFS_WRITE_LOCK) { 56 btrfs_set_lock_blocking_write(p->nodes[i]); 57 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING; 58 } 59 } 60 } 61 62 /* this also releases the path */ 63 void btrfs_free_path(struct btrfs_path *p) 64 { 65 if (!p) 66 return; 67 btrfs_release_path(p); 68 kmem_cache_free(btrfs_path_cachep, p); 69 } 70 71 /* 72 * path release drops references on the extent buffers in the path 73 * and it drops any locks held by this path 74 * 75 * It is safe to call this on paths that no locks or extent buffers held. 76 */ 77 noinline void btrfs_release_path(struct btrfs_path *p) 78 { 79 int i; 80 81 for (i = 0; i < BTRFS_MAX_LEVEL; i++) { 82 p->slots[i] = 0; 83 if (!p->nodes[i]) 84 continue; 85 if (p->locks[i]) { 86 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]); 87 p->locks[i] = 0; 88 } 89 free_extent_buffer(p->nodes[i]); 90 p->nodes[i] = NULL; 91 } 92 } 93 94 /* 95 * safely gets a reference on the root node of a tree. A lock 96 * is not taken, so a concurrent writer may put a different node 97 * at the root of the tree. See btrfs_lock_root_node for the 98 * looping required. 99 * 100 * The extent buffer returned by this has a reference taken, so 101 * it won't disappear. It may stop being the root of the tree 102 * at any time because there are no locks held. 103 */ 104 struct extent_buffer *btrfs_root_node(struct btrfs_root *root) 105 { 106 struct extent_buffer *eb; 107 108 while (1) { 109 rcu_read_lock(); 110 eb = rcu_dereference(root->node); 111 112 /* 113 * RCU really hurts here, we could free up the root node because 114 * it was COWed but we may not get the new root node yet so do 115 * the inc_not_zero dance and if it doesn't work then 116 * synchronize_rcu and try again. 117 */ 118 if (atomic_inc_not_zero(&eb->refs)) { 119 rcu_read_unlock(); 120 break; 121 } 122 rcu_read_unlock(); 123 synchronize_rcu(); 124 } 125 return eb; 126 } 127 128 /* loop around taking references on and locking the root node of the 129 * tree until you end up with a lock on the root. A locked buffer 130 * is returned, with a reference held. 131 */ 132 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root) 133 { 134 struct extent_buffer *eb; 135 136 while (1) { 137 eb = btrfs_root_node(root); 138 btrfs_tree_lock(eb); 139 if (eb == root->node) 140 break; 141 btrfs_tree_unlock(eb); 142 free_extent_buffer(eb); 143 } 144 return eb; 145 } 146 147 /* loop around taking references on and locking the root node of the 148 * tree until you end up with a lock on the root. A locked buffer 149 * is returned, with a reference held. 150 */ 151 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root) 152 { 153 struct extent_buffer *eb; 154 155 while (1) { 156 eb = btrfs_root_node(root); 157 btrfs_tree_read_lock(eb); 158 if (eb == root->node) 159 break; 160 btrfs_tree_read_unlock(eb); 161 free_extent_buffer(eb); 162 } 163 return eb; 164 } 165 166 /* cowonly root (everything not a reference counted cow subvolume), just get 167 * put onto a simple dirty list. transaction.c walks this to make sure they 168 * get properly updated on disk. 169 */ 170 static void add_root_to_dirty_list(struct btrfs_root *root) 171 { 172 struct btrfs_fs_info *fs_info = root->fs_info; 173 174 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) || 175 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state)) 176 return; 177 178 spin_lock(&fs_info->trans_lock); 179 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) { 180 /* Want the extent tree to be the last on the list */ 181 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID) 182 list_move_tail(&root->dirty_list, 183 &fs_info->dirty_cowonly_roots); 184 else 185 list_move(&root->dirty_list, 186 &fs_info->dirty_cowonly_roots); 187 } 188 spin_unlock(&fs_info->trans_lock); 189 } 190 191 /* 192 * used by snapshot creation to make a copy of a root for a tree with 193 * a given objectid. The buffer with the new root node is returned in 194 * cow_ret, and this func returns zero on success or a negative error code. 195 */ 196 int btrfs_copy_root(struct btrfs_trans_handle *trans, 197 struct btrfs_root *root, 198 struct extent_buffer *buf, 199 struct extent_buffer **cow_ret, u64 new_root_objectid) 200 { 201 struct btrfs_fs_info *fs_info = root->fs_info; 202 struct extent_buffer *cow; 203 int ret = 0; 204 int level; 205 struct btrfs_disk_key disk_key; 206 207 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 208 trans->transid != fs_info->running_transaction->transid); 209 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 210 trans->transid != root->last_trans); 211 212 level = btrfs_header_level(buf); 213 if (level == 0) 214 btrfs_item_key(buf, &disk_key, 0); 215 else 216 btrfs_node_key(buf, &disk_key, 0); 217 218 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid, 219 &disk_key, level, buf->start, 0); 220 if (IS_ERR(cow)) 221 return PTR_ERR(cow); 222 223 copy_extent_buffer_full(cow, buf); 224 btrfs_set_header_bytenr(cow, cow->start); 225 btrfs_set_header_generation(cow, trans->transid); 226 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 227 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 228 BTRFS_HEADER_FLAG_RELOC); 229 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 230 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 231 else 232 btrfs_set_header_owner(cow, new_root_objectid); 233 234 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 235 236 WARN_ON(btrfs_header_generation(buf) > trans->transid); 237 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID) 238 ret = btrfs_inc_ref(trans, root, cow, 1); 239 else 240 ret = btrfs_inc_ref(trans, root, cow, 0); 241 242 if (ret) 243 return ret; 244 245 btrfs_mark_buffer_dirty(cow); 246 *cow_ret = cow; 247 return 0; 248 } 249 250 enum mod_log_op { 251 MOD_LOG_KEY_REPLACE, 252 MOD_LOG_KEY_ADD, 253 MOD_LOG_KEY_REMOVE, 254 MOD_LOG_KEY_REMOVE_WHILE_FREEING, 255 MOD_LOG_KEY_REMOVE_WHILE_MOVING, 256 MOD_LOG_MOVE_KEYS, 257 MOD_LOG_ROOT_REPLACE, 258 }; 259 260 struct tree_mod_root { 261 u64 logical; 262 u8 level; 263 }; 264 265 struct tree_mod_elem { 266 struct rb_node node; 267 u64 logical; 268 u64 seq; 269 enum mod_log_op op; 270 271 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */ 272 int slot; 273 274 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */ 275 u64 generation; 276 277 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */ 278 struct btrfs_disk_key key; 279 u64 blockptr; 280 281 /* this is used for op == MOD_LOG_MOVE_KEYS */ 282 struct { 283 int dst_slot; 284 int nr_items; 285 } move; 286 287 /* this is used for op == MOD_LOG_ROOT_REPLACE */ 288 struct tree_mod_root old_root; 289 }; 290 291 /* 292 * Pull a new tree mod seq number for our operation. 293 */ 294 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info) 295 { 296 return atomic64_inc_return(&fs_info->tree_mod_seq); 297 } 298 299 /* 300 * This adds a new blocker to the tree mod log's blocker list if the @elem 301 * passed does not already have a sequence number set. So when a caller expects 302 * to record tree modifications, it should ensure to set elem->seq to zero 303 * before calling btrfs_get_tree_mod_seq. 304 * Returns a fresh, unused tree log modification sequence number, even if no new 305 * blocker was added. 306 */ 307 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info, 308 struct seq_list *elem) 309 { 310 write_lock(&fs_info->tree_mod_log_lock); 311 spin_lock(&fs_info->tree_mod_seq_lock); 312 if (!elem->seq) { 313 elem->seq = btrfs_inc_tree_mod_seq(fs_info); 314 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list); 315 } 316 spin_unlock(&fs_info->tree_mod_seq_lock); 317 write_unlock(&fs_info->tree_mod_log_lock); 318 319 return elem->seq; 320 } 321 322 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info, 323 struct seq_list *elem) 324 { 325 struct rb_root *tm_root; 326 struct rb_node *node; 327 struct rb_node *next; 328 struct seq_list *cur_elem; 329 struct tree_mod_elem *tm; 330 u64 min_seq = (u64)-1; 331 u64 seq_putting = elem->seq; 332 333 if (!seq_putting) 334 return; 335 336 spin_lock(&fs_info->tree_mod_seq_lock); 337 list_del(&elem->list); 338 elem->seq = 0; 339 340 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) { 341 if (cur_elem->seq < min_seq) { 342 if (seq_putting > cur_elem->seq) { 343 /* 344 * blocker with lower sequence number exists, we 345 * cannot remove anything from the log 346 */ 347 spin_unlock(&fs_info->tree_mod_seq_lock); 348 return; 349 } 350 min_seq = cur_elem->seq; 351 } 352 } 353 spin_unlock(&fs_info->tree_mod_seq_lock); 354 355 /* 356 * anything that's lower than the lowest existing (read: blocked) 357 * sequence number can be removed from the tree. 358 */ 359 write_lock(&fs_info->tree_mod_log_lock); 360 tm_root = &fs_info->tree_mod_log; 361 for (node = rb_first(tm_root); node; node = next) { 362 next = rb_next(node); 363 tm = rb_entry(node, struct tree_mod_elem, node); 364 if (tm->seq > min_seq) 365 continue; 366 rb_erase(node, tm_root); 367 kfree(tm); 368 } 369 write_unlock(&fs_info->tree_mod_log_lock); 370 } 371 372 /* 373 * key order of the log: 374 * node/leaf start address -> sequence 375 * 376 * The 'start address' is the logical address of the *new* root node 377 * for root replace operations, or the logical address of the affected 378 * block for all other operations. 379 * 380 * Note: must be called with write lock for fs_info::tree_mod_log_lock. 381 */ 382 static noinline int 383 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm) 384 { 385 struct rb_root *tm_root; 386 struct rb_node **new; 387 struct rb_node *parent = NULL; 388 struct tree_mod_elem *cur; 389 390 tm->seq = btrfs_inc_tree_mod_seq(fs_info); 391 392 tm_root = &fs_info->tree_mod_log; 393 new = &tm_root->rb_node; 394 while (*new) { 395 cur = rb_entry(*new, struct tree_mod_elem, node); 396 parent = *new; 397 if (cur->logical < tm->logical) 398 new = &((*new)->rb_left); 399 else if (cur->logical > tm->logical) 400 new = &((*new)->rb_right); 401 else if (cur->seq < tm->seq) 402 new = &((*new)->rb_left); 403 else if (cur->seq > tm->seq) 404 new = &((*new)->rb_right); 405 else 406 return -EEXIST; 407 } 408 409 rb_link_node(&tm->node, parent, new); 410 rb_insert_color(&tm->node, tm_root); 411 return 0; 412 } 413 414 /* 415 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it 416 * returns zero with the tree_mod_log_lock acquired. The caller must hold 417 * this until all tree mod log insertions are recorded in the rb tree and then 418 * write unlock fs_info::tree_mod_log_lock. 419 */ 420 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info, 421 struct extent_buffer *eb) { 422 smp_mb(); 423 if (list_empty(&(fs_info)->tree_mod_seq_list)) 424 return 1; 425 if (eb && btrfs_header_level(eb) == 0) 426 return 1; 427 428 write_lock(&fs_info->tree_mod_log_lock); 429 if (list_empty(&(fs_info)->tree_mod_seq_list)) { 430 write_unlock(&fs_info->tree_mod_log_lock); 431 return 1; 432 } 433 434 return 0; 435 } 436 437 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */ 438 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info, 439 struct extent_buffer *eb) 440 { 441 smp_mb(); 442 if (list_empty(&(fs_info)->tree_mod_seq_list)) 443 return 0; 444 if (eb && btrfs_header_level(eb) == 0) 445 return 0; 446 447 return 1; 448 } 449 450 static struct tree_mod_elem * 451 alloc_tree_mod_elem(struct extent_buffer *eb, int slot, 452 enum mod_log_op op, gfp_t flags) 453 { 454 struct tree_mod_elem *tm; 455 456 tm = kzalloc(sizeof(*tm), flags); 457 if (!tm) 458 return NULL; 459 460 tm->logical = eb->start; 461 if (op != MOD_LOG_KEY_ADD) { 462 btrfs_node_key(eb, &tm->key, slot); 463 tm->blockptr = btrfs_node_blockptr(eb, slot); 464 } 465 tm->op = op; 466 tm->slot = slot; 467 tm->generation = btrfs_node_ptr_generation(eb, slot); 468 RB_CLEAR_NODE(&tm->node); 469 470 return tm; 471 } 472 473 static noinline int tree_mod_log_insert_key(struct extent_buffer *eb, int slot, 474 enum mod_log_op op, gfp_t flags) 475 { 476 struct tree_mod_elem *tm; 477 int ret; 478 479 if (!tree_mod_need_log(eb->fs_info, eb)) 480 return 0; 481 482 tm = alloc_tree_mod_elem(eb, slot, op, flags); 483 if (!tm) 484 return -ENOMEM; 485 486 if (tree_mod_dont_log(eb->fs_info, eb)) { 487 kfree(tm); 488 return 0; 489 } 490 491 ret = __tree_mod_log_insert(eb->fs_info, tm); 492 write_unlock(&eb->fs_info->tree_mod_log_lock); 493 if (ret) 494 kfree(tm); 495 496 return ret; 497 } 498 499 static noinline int tree_mod_log_insert_move(struct extent_buffer *eb, 500 int dst_slot, int src_slot, int nr_items) 501 { 502 struct tree_mod_elem *tm = NULL; 503 struct tree_mod_elem **tm_list = NULL; 504 int ret = 0; 505 int i; 506 int locked = 0; 507 508 if (!tree_mod_need_log(eb->fs_info, eb)) 509 return 0; 510 511 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), GFP_NOFS); 512 if (!tm_list) 513 return -ENOMEM; 514 515 tm = kzalloc(sizeof(*tm), GFP_NOFS); 516 if (!tm) { 517 ret = -ENOMEM; 518 goto free_tms; 519 } 520 521 tm->logical = eb->start; 522 tm->slot = src_slot; 523 tm->move.dst_slot = dst_slot; 524 tm->move.nr_items = nr_items; 525 tm->op = MOD_LOG_MOVE_KEYS; 526 527 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 528 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot, 529 MOD_LOG_KEY_REMOVE_WHILE_MOVING, GFP_NOFS); 530 if (!tm_list[i]) { 531 ret = -ENOMEM; 532 goto free_tms; 533 } 534 } 535 536 if (tree_mod_dont_log(eb->fs_info, eb)) 537 goto free_tms; 538 locked = 1; 539 540 /* 541 * When we override something during the move, we log these removals. 542 * This can only happen when we move towards the beginning of the 543 * buffer, i.e. dst_slot < src_slot. 544 */ 545 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) { 546 ret = __tree_mod_log_insert(eb->fs_info, tm_list[i]); 547 if (ret) 548 goto free_tms; 549 } 550 551 ret = __tree_mod_log_insert(eb->fs_info, tm); 552 if (ret) 553 goto free_tms; 554 write_unlock(&eb->fs_info->tree_mod_log_lock); 555 kfree(tm_list); 556 557 return 0; 558 free_tms: 559 for (i = 0; i < nr_items; i++) { 560 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 561 rb_erase(&tm_list[i]->node, &eb->fs_info->tree_mod_log); 562 kfree(tm_list[i]); 563 } 564 if (locked) 565 write_unlock(&eb->fs_info->tree_mod_log_lock); 566 kfree(tm_list); 567 kfree(tm); 568 569 return ret; 570 } 571 572 static inline int 573 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, 574 struct tree_mod_elem **tm_list, 575 int nritems) 576 { 577 int i, j; 578 int ret; 579 580 for (i = nritems - 1; i >= 0; i--) { 581 ret = __tree_mod_log_insert(fs_info, tm_list[i]); 582 if (ret) { 583 for (j = nritems - 1; j > i; j--) 584 rb_erase(&tm_list[j]->node, 585 &fs_info->tree_mod_log); 586 return ret; 587 } 588 } 589 590 return 0; 591 } 592 593 static noinline int tree_mod_log_insert_root(struct extent_buffer *old_root, 594 struct extent_buffer *new_root, int log_removal) 595 { 596 struct btrfs_fs_info *fs_info = old_root->fs_info; 597 struct tree_mod_elem *tm = NULL; 598 struct tree_mod_elem **tm_list = NULL; 599 int nritems = 0; 600 int ret = 0; 601 int i; 602 603 if (!tree_mod_need_log(fs_info, NULL)) 604 return 0; 605 606 if (log_removal && btrfs_header_level(old_root) > 0) { 607 nritems = btrfs_header_nritems(old_root); 608 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), 609 GFP_NOFS); 610 if (!tm_list) { 611 ret = -ENOMEM; 612 goto free_tms; 613 } 614 for (i = 0; i < nritems; i++) { 615 tm_list[i] = alloc_tree_mod_elem(old_root, i, 616 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 617 if (!tm_list[i]) { 618 ret = -ENOMEM; 619 goto free_tms; 620 } 621 } 622 } 623 624 tm = kzalloc(sizeof(*tm), GFP_NOFS); 625 if (!tm) { 626 ret = -ENOMEM; 627 goto free_tms; 628 } 629 630 tm->logical = new_root->start; 631 tm->old_root.logical = old_root->start; 632 tm->old_root.level = btrfs_header_level(old_root); 633 tm->generation = btrfs_header_generation(old_root); 634 tm->op = MOD_LOG_ROOT_REPLACE; 635 636 if (tree_mod_dont_log(fs_info, NULL)) 637 goto free_tms; 638 639 if (tm_list) 640 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems); 641 if (!ret) 642 ret = __tree_mod_log_insert(fs_info, tm); 643 644 write_unlock(&fs_info->tree_mod_log_lock); 645 if (ret) 646 goto free_tms; 647 kfree(tm_list); 648 649 return ret; 650 651 free_tms: 652 if (tm_list) { 653 for (i = 0; i < nritems; i++) 654 kfree(tm_list[i]); 655 kfree(tm_list); 656 } 657 kfree(tm); 658 659 return ret; 660 } 661 662 static struct tree_mod_elem * 663 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq, 664 int smallest) 665 { 666 struct rb_root *tm_root; 667 struct rb_node *node; 668 struct tree_mod_elem *cur = NULL; 669 struct tree_mod_elem *found = NULL; 670 671 read_lock(&fs_info->tree_mod_log_lock); 672 tm_root = &fs_info->tree_mod_log; 673 node = tm_root->rb_node; 674 while (node) { 675 cur = rb_entry(node, struct tree_mod_elem, node); 676 if (cur->logical < start) { 677 node = node->rb_left; 678 } else if (cur->logical > start) { 679 node = node->rb_right; 680 } else if (cur->seq < min_seq) { 681 node = node->rb_left; 682 } else if (!smallest) { 683 /* we want the node with the highest seq */ 684 if (found) 685 BUG_ON(found->seq > cur->seq); 686 found = cur; 687 node = node->rb_left; 688 } else if (cur->seq > min_seq) { 689 /* we want the node with the smallest seq */ 690 if (found) 691 BUG_ON(found->seq < cur->seq); 692 found = cur; 693 node = node->rb_right; 694 } else { 695 found = cur; 696 break; 697 } 698 } 699 read_unlock(&fs_info->tree_mod_log_lock); 700 701 return found; 702 } 703 704 /* 705 * this returns the element from the log with the smallest time sequence 706 * value that's in the log (the oldest log item). any element with a time 707 * sequence lower than min_seq will be ignored. 708 */ 709 static struct tree_mod_elem * 710 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start, 711 u64 min_seq) 712 { 713 return __tree_mod_log_search(fs_info, start, min_seq, 1); 714 } 715 716 /* 717 * this returns the element from the log with the largest time sequence 718 * value that's in the log (the most recent log item). any element with 719 * a time sequence lower than min_seq will be ignored. 720 */ 721 static struct tree_mod_elem * 722 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq) 723 { 724 return __tree_mod_log_search(fs_info, start, min_seq, 0); 725 } 726 727 static noinline int tree_mod_log_eb_copy(struct extent_buffer *dst, 728 struct extent_buffer *src, unsigned long dst_offset, 729 unsigned long src_offset, int nr_items) 730 { 731 struct btrfs_fs_info *fs_info = dst->fs_info; 732 int ret = 0; 733 struct tree_mod_elem **tm_list = NULL; 734 struct tree_mod_elem **tm_list_add, **tm_list_rem; 735 int i; 736 int locked = 0; 737 738 if (!tree_mod_need_log(fs_info, NULL)) 739 return 0; 740 741 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) 742 return 0; 743 744 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *), 745 GFP_NOFS); 746 if (!tm_list) 747 return -ENOMEM; 748 749 tm_list_add = tm_list; 750 tm_list_rem = tm_list + nr_items; 751 for (i = 0; i < nr_items; i++) { 752 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset, 753 MOD_LOG_KEY_REMOVE, GFP_NOFS); 754 if (!tm_list_rem[i]) { 755 ret = -ENOMEM; 756 goto free_tms; 757 } 758 759 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset, 760 MOD_LOG_KEY_ADD, GFP_NOFS); 761 if (!tm_list_add[i]) { 762 ret = -ENOMEM; 763 goto free_tms; 764 } 765 } 766 767 if (tree_mod_dont_log(fs_info, NULL)) 768 goto free_tms; 769 locked = 1; 770 771 for (i = 0; i < nr_items; i++) { 772 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]); 773 if (ret) 774 goto free_tms; 775 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]); 776 if (ret) 777 goto free_tms; 778 } 779 780 write_unlock(&fs_info->tree_mod_log_lock); 781 kfree(tm_list); 782 783 return 0; 784 785 free_tms: 786 for (i = 0; i < nr_items * 2; i++) { 787 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node)) 788 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log); 789 kfree(tm_list[i]); 790 } 791 if (locked) 792 write_unlock(&fs_info->tree_mod_log_lock); 793 kfree(tm_list); 794 795 return ret; 796 } 797 798 static noinline int tree_mod_log_free_eb(struct extent_buffer *eb) 799 { 800 struct tree_mod_elem **tm_list = NULL; 801 int nritems = 0; 802 int i; 803 int ret = 0; 804 805 if (btrfs_header_level(eb) == 0) 806 return 0; 807 808 if (!tree_mod_need_log(eb->fs_info, NULL)) 809 return 0; 810 811 nritems = btrfs_header_nritems(eb); 812 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS); 813 if (!tm_list) 814 return -ENOMEM; 815 816 for (i = 0; i < nritems; i++) { 817 tm_list[i] = alloc_tree_mod_elem(eb, i, 818 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS); 819 if (!tm_list[i]) { 820 ret = -ENOMEM; 821 goto free_tms; 822 } 823 } 824 825 if (tree_mod_dont_log(eb->fs_info, eb)) 826 goto free_tms; 827 828 ret = __tree_mod_log_free_eb(eb->fs_info, tm_list, nritems); 829 write_unlock(&eb->fs_info->tree_mod_log_lock); 830 if (ret) 831 goto free_tms; 832 kfree(tm_list); 833 834 return 0; 835 836 free_tms: 837 for (i = 0; i < nritems; i++) 838 kfree(tm_list[i]); 839 kfree(tm_list); 840 841 return ret; 842 } 843 844 /* 845 * check if the tree block can be shared by multiple trees 846 */ 847 int btrfs_block_can_be_shared(struct btrfs_root *root, 848 struct extent_buffer *buf) 849 { 850 /* 851 * Tree blocks not in reference counted trees and tree roots 852 * are never shared. If a block was allocated after the last 853 * snapshot and the block was not allocated by tree relocation, 854 * we know the block is not shared. 855 */ 856 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 857 buf != root->node && buf != root->commit_root && 858 (btrfs_header_generation(buf) <= 859 btrfs_root_last_snapshot(&root->root_item) || 860 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC))) 861 return 1; 862 863 return 0; 864 } 865 866 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans, 867 struct btrfs_root *root, 868 struct extent_buffer *buf, 869 struct extent_buffer *cow, 870 int *last_ref) 871 { 872 struct btrfs_fs_info *fs_info = root->fs_info; 873 u64 refs; 874 u64 owner; 875 u64 flags; 876 u64 new_flags = 0; 877 int ret; 878 879 /* 880 * Backrefs update rules: 881 * 882 * Always use full backrefs for extent pointers in tree block 883 * allocated by tree relocation. 884 * 885 * If a shared tree block is no longer referenced by its owner 886 * tree (btrfs_header_owner(buf) == root->root_key.objectid), 887 * use full backrefs for extent pointers in tree block. 888 * 889 * If a tree block is been relocating 890 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID), 891 * use full backrefs for extent pointers in tree block. 892 * The reason for this is some operations (such as drop tree) 893 * are only allowed for blocks use full backrefs. 894 */ 895 896 if (btrfs_block_can_be_shared(root, buf)) { 897 ret = btrfs_lookup_extent_info(trans, fs_info, buf->start, 898 btrfs_header_level(buf), 1, 899 &refs, &flags); 900 if (ret) 901 return ret; 902 if (refs == 0) { 903 ret = -EROFS; 904 btrfs_handle_fs_error(fs_info, ret, NULL); 905 return ret; 906 } 907 } else { 908 refs = 1; 909 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 910 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 911 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF; 912 else 913 flags = 0; 914 } 915 916 owner = btrfs_header_owner(buf); 917 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID && 918 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)); 919 920 if (refs > 1) { 921 if ((owner == root->root_key.objectid || 922 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && 923 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) { 924 ret = btrfs_inc_ref(trans, root, buf, 1); 925 if (ret) 926 return ret; 927 928 if (root->root_key.objectid == 929 BTRFS_TREE_RELOC_OBJECTID) { 930 ret = btrfs_dec_ref(trans, root, buf, 0); 931 if (ret) 932 return ret; 933 ret = btrfs_inc_ref(trans, root, cow, 1); 934 if (ret) 935 return ret; 936 } 937 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF; 938 } else { 939 940 if (root->root_key.objectid == 941 BTRFS_TREE_RELOC_OBJECTID) 942 ret = btrfs_inc_ref(trans, root, cow, 1); 943 else 944 ret = btrfs_inc_ref(trans, root, cow, 0); 945 if (ret) 946 return ret; 947 } 948 if (new_flags != 0) { 949 int level = btrfs_header_level(buf); 950 951 ret = btrfs_set_disk_extent_flags(trans, 952 buf->start, 953 buf->len, 954 new_flags, level, 0); 955 if (ret) 956 return ret; 957 } 958 } else { 959 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) { 960 if (root->root_key.objectid == 961 BTRFS_TREE_RELOC_OBJECTID) 962 ret = btrfs_inc_ref(trans, root, cow, 1); 963 else 964 ret = btrfs_inc_ref(trans, root, cow, 0); 965 if (ret) 966 return ret; 967 ret = btrfs_dec_ref(trans, root, buf, 1); 968 if (ret) 969 return ret; 970 } 971 btrfs_clean_tree_block(buf); 972 *last_ref = 1; 973 } 974 return 0; 975 } 976 977 static struct extent_buffer *alloc_tree_block_no_bg_flush( 978 struct btrfs_trans_handle *trans, 979 struct btrfs_root *root, 980 u64 parent_start, 981 const struct btrfs_disk_key *disk_key, 982 int level, 983 u64 hint, 984 u64 empty_size) 985 { 986 struct btrfs_fs_info *fs_info = root->fs_info; 987 struct extent_buffer *ret; 988 989 /* 990 * If we are COWing a node/leaf from the extent, chunk, device or free 991 * space trees, make sure that we do not finish block group creation of 992 * pending block groups. We do this to avoid a deadlock. 993 * COWing can result in allocation of a new chunk, and flushing pending 994 * block groups (btrfs_create_pending_block_groups()) can be triggered 995 * when finishing allocation of a new chunk. Creation of a pending block 996 * group modifies the extent, chunk, device and free space trees, 997 * therefore we could deadlock with ourselves since we are holding a 998 * lock on an extent buffer that btrfs_create_pending_block_groups() may 999 * try to COW later. 1000 * For similar reasons, we also need to delay flushing pending block 1001 * groups when splitting a leaf or node, from one of those trees, since 1002 * we are holding a write lock on it and its parent or when inserting a 1003 * new root node for one of those trees. 1004 */ 1005 if (root == fs_info->extent_root || 1006 root == fs_info->chunk_root || 1007 root == fs_info->dev_root || 1008 root == fs_info->free_space_root) 1009 trans->can_flush_pending_bgs = false; 1010 1011 ret = btrfs_alloc_tree_block(trans, root, parent_start, 1012 root->root_key.objectid, disk_key, level, 1013 hint, empty_size); 1014 trans->can_flush_pending_bgs = true; 1015 1016 return ret; 1017 } 1018 1019 /* 1020 * does the dirty work in cow of a single block. The parent block (if 1021 * supplied) is updated to point to the new cow copy. The new buffer is marked 1022 * dirty and returned locked. If you modify the block it needs to be marked 1023 * dirty again. 1024 * 1025 * search_start -- an allocation hint for the new block 1026 * 1027 * empty_size -- a hint that you plan on doing more cow. This is the size in 1028 * bytes the allocator should try to find free next to the block it returns. 1029 * This is just a hint and may be ignored by the allocator. 1030 */ 1031 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans, 1032 struct btrfs_root *root, 1033 struct extent_buffer *buf, 1034 struct extent_buffer *parent, int parent_slot, 1035 struct extent_buffer **cow_ret, 1036 u64 search_start, u64 empty_size) 1037 { 1038 struct btrfs_fs_info *fs_info = root->fs_info; 1039 struct btrfs_disk_key disk_key; 1040 struct extent_buffer *cow; 1041 int level, ret; 1042 int last_ref = 0; 1043 int unlock_orig = 0; 1044 u64 parent_start = 0; 1045 1046 if (*cow_ret == buf) 1047 unlock_orig = 1; 1048 1049 btrfs_assert_tree_locked(buf); 1050 1051 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1052 trans->transid != fs_info->running_transaction->transid); 1053 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 1054 trans->transid != root->last_trans); 1055 1056 level = btrfs_header_level(buf); 1057 1058 if (level == 0) 1059 btrfs_item_key(buf, &disk_key, 0); 1060 else 1061 btrfs_node_key(buf, &disk_key, 0); 1062 1063 if ((root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) && parent) 1064 parent_start = parent->start; 1065 1066 cow = alloc_tree_block_no_bg_flush(trans, root, parent_start, &disk_key, 1067 level, search_start, empty_size); 1068 if (IS_ERR(cow)) 1069 return PTR_ERR(cow); 1070 1071 /* cow is set to blocking by btrfs_init_new_buffer */ 1072 1073 copy_extent_buffer_full(cow, buf); 1074 btrfs_set_header_bytenr(cow, cow->start); 1075 btrfs_set_header_generation(cow, trans->transid); 1076 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV); 1077 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN | 1078 BTRFS_HEADER_FLAG_RELOC); 1079 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1080 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC); 1081 else 1082 btrfs_set_header_owner(cow, root->root_key.objectid); 1083 1084 write_extent_buffer_fsid(cow, fs_info->fs_devices->metadata_uuid); 1085 1086 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref); 1087 if (ret) { 1088 btrfs_abort_transaction(trans, ret); 1089 return ret; 1090 } 1091 1092 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) { 1093 ret = btrfs_reloc_cow_block(trans, root, buf, cow); 1094 if (ret) { 1095 btrfs_abort_transaction(trans, ret); 1096 return ret; 1097 } 1098 } 1099 1100 if (buf == root->node) { 1101 WARN_ON(parent && parent != buf); 1102 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 1103 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV) 1104 parent_start = buf->start; 1105 1106 extent_buffer_get(cow); 1107 ret = tree_mod_log_insert_root(root->node, cow, 1); 1108 BUG_ON(ret < 0); 1109 rcu_assign_pointer(root->node, cow); 1110 1111 btrfs_free_tree_block(trans, root, buf, parent_start, 1112 last_ref); 1113 free_extent_buffer(buf); 1114 add_root_to_dirty_list(root); 1115 } else { 1116 WARN_ON(trans->transid != btrfs_header_generation(parent)); 1117 tree_mod_log_insert_key(parent, parent_slot, 1118 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1119 btrfs_set_node_blockptr(parent, parent_slot, 1120 cow->start); 1121 btrfs_set_node_ptr_generation(parent, parent_slot, 1122 trans->transid); 1123 btrfs_mark_buffer_dirty(parent); 1124 if (last_ref) { 1125 ret = tree_mod_log_free_eb(buf); 1126 if (ret) { 1127 btrfs_abort_transaction(trans, ret); 1128 return ret; 1129 } 1130 } 1131 btrfs_free_tree_block(trans, root, buf, parent_start, 1132 last_ref); 1133 } 1134 if (unlock_orig) 1135 btrfs_tree_unlock(buf); 1136 free_extent_buffer_stale(buf); 1137 btrfs_mark_buffer_dirty(cow); 1138 *cow_ret = cow; 1139 return 0; 1140 } 1141 1142 /* 1143 * returns the logical address of the oldest predecessor of the given root. 1144 * entries older than time_seq are ignored. 1145 */ 1146 static struct tree_mod_elem *__tree_mod_log_oldest_root( 1147 struct extent_buffer *eb_root, u64 time_seq) 1148 { 1149 struct tree_mod_elem *tm; 1150 struct tree_mod_elem *found = NULL; 1151 u64 root_logical = eb_root->start; 1152 int looped = 0; 1153 1154 if (!time_seq) 1155 return NULL; 1156 1157 /* 1158 * the very last operation that's logged for a root is the 1159 * replacement operation (if it is replaced at all). this has 1160 * the logical address of the *new* root, making it the very 1161 * first operation that's logged for this root. 1162 */ 1163 while (1) { 1164 tm = tree_mod_log_search_oldest(eb_root->fs_info, root_logical, 1165 time_seq); 1166 if (!looped && !tm) 1167 return NULL; 1168 /* 1169 * if there are no tree operation for the oldest root, we simply 1170 * return it. this should only happen if that (old) root is at 1171 * level 0. 1172 */ 1173 if (!tm) 1174 break; 1175 1176 /* 1177 * if there's an operation that's not a root replacement, we 1178 * found the oldest version of our root. normally, we'll find a 1179 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here. 1180 */ 1181 if (tm->op != MOD_LOG_ROOT_REPLACE) 1182 break; 1183 1184 found = tm; 1185 root_logical = tm->old_root.logical; 1186 looped = 1; 1187 } 1188 1189 /* if there's no old root to return, return what we found instead */ 1190 if (!found) 1191 found = tm; 1192 1193 return found; 1194 } 1195 1196 /* 1197 * tm is a pointer to the first operation to rewind within eb. then, all 1198 * previous operations will be rewound (until we reach something older than 1199 * time_seq). 1200 */ 1201 static void 1202 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb, 1203 u64 time_seq, struct tree_mod_elem *first_tm) 1204 { 1205 u32 n; 1206 struct rb_node *next; 1207 struct tree_mod_elem *tm = first_tm; 1208 unsigned long o_dst; 1209 unsigned long o_src; 1210 unsigned long p_size = sizeof(struct btrfs_key_ptr); 1211 1212 n = btrfs_header_nritems(eb); 1213 read_lock(&fs_info->tree_mod_log_lock); 1214 while (tm && tm->seq >= time_seq) { 1215 /* 1216 * all the operations are recorded with the operator used for 1217 * the modification. as we're going backwards, we do the 1218 * opposite of each operation here. 1219 */ 1220 switch (tm->op) { 1221 case MOD_LOG_KEY_REMOVE_WHILE_FREEING: 1222 BUG_ON(tm->slot < n); 1223 /* Fallthrough */ 1224 case MOD_LOG_KEY_REMOVE_WHILE_MOVING: 1225 case MOD_LOG_KEY_REMOVE: 1226 btrfs_set_node_key(eb, &tm->key, tm->slot); 1227 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1228 btrfs_set_node_ptr_generation(eb, tm->slot, 1229 tm->generation); 1230 n++; 1231 break; 1232 case MOD_LOG_KEY_REPLACE: 1233 BUG_ON(tm->slot >= n); 1234 btrfs_set_node_key(eb, &tm->key, tm->slot); 1235 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr); 1236 btrfs_set_node_ptr_generation(eb, tm->slot, 1237 tm->generation); 1238 break; 1239 case MOD_LOG_KEY_ADD: 1240 /* if a move operation is needed it's in the log */ 1241 n--; 1242 break; 1243 case MOD_LOG_MOVE_KEYS: 1244 o_dst = btrfs_node_key_ptr_offset(tm->slot); 1245 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot); 1246 memmove_extent_buffer(eb, o_dst, o_src, 1247 tm->move.nr_items * p_size); 1248 break; 1249 case MOD_LOG_ROOT_REPLACE: 1250 /* 1251 * this operation is special. for roots, this must be 1252 * handled explicitly before rewinding. 1253 * for non-roots, this operation may exist if the node 1254 * was a root: root A -> child B; then A gets empty and 1255 * B is promoted to the new root. in the mod log, we'll 1256 * have a root-replace operation for B, a tree block 1257 * that is no root. we simply ignore that operation. 1258 */ 1259 break; 1260 } 1261 next = rb_next(&tm->node); 1262 if (!next) 1263 break; 1264 tm = rb_entry(next, struct tree_mod_elem, node); 1265 if (tm->logical != first_tm->logical) 1266 break; 1267 } 1268 read_unlock(&fs_info->tree_mod_log_lock); 1269 btrfs_set_header_nritems(eb, n); 1270 } 1271 1272 /* 1273 * Called with eb read locked. If the buffer cannot be rewound, the same buffer 1274 * is returned. If rewind operations happen, a fresh buffer is returned. The 1275 * returned buffer is always read-locked. If the returned buffer is not the 1276 * input buffer, the lock on the input buffer is released and the input buffer 1277 * is freed (its refcount is decremented). 1278 */ 1279 static struct extent_buffer * 1280 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path, 1281 struct extent_buffer *eb, u64 time_seq) 1282 { 1283 struct extent_buffer *eb_rewin; 1284 struct tree_mod_elem *tm; 1285 1286 if (!time_seq) 1287 return eb; 1288 1289 if (btrfs_header_level(eb) == 0) 1290 return eb; 1291 1292 tm = tree_mod_log_search(fs_info, eb->start, time_seq); 1293 if (!tm) 1294 return eb; 1295 1296 btrfs_set_path_blocking(path); 1297 btrfs_set_lock_blocking_read(eb); 1298 1299 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1300 BUG_ON(tm->slot != 0); 1301 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start); 1302 if (!eb_rewin) { 1303 btrfs_tree_read_unlock_blocking(eb); 1304 free_extent_buffer(eb); 1305 return NULL; 1306 } 1307 btrfs_set_header_bytenr(eb_rewin, eb->start); 1308 btrfs_set_header_backref_rev(eb_rewin, 1309 btrfs_header_backref_rev(eb)); 1310 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb)); 1311 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb)); 1312 } else { 1313 eb_rewin = btrfs_clone_extent_buffer(eb); 1314 if (!eb_rewin) { 1315 btrfs_tree_read_unlock_blocking(eb); 1316 free_extent_buffer(eb); 1317 return NULL; 1318 } 1319 } 1320 1321 btrfs_tree_read_unlock_blocking(eb); 1322 free_extent_buffer(eb); 1323 1324 btrfs_tree_read_lock(eb_rewin); 1325 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm); 1326 WARN_ON(btrfs_header_nritems(eb_rewin) > 1327 BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1328 1329 return eb_rewin; 1330 } 1331 1332 /* 1333 * get_old_root() rewinds the state of @root's root node to the given @time_seq 1334 * value. If there are no changes, the current root->root_node is returned. If 1335 * anything changed in between, there's a fresh buffer allocated on which the 1336 * rewind operations are done. In any case, the returned buffer is read locked. 1337 * Returns NULL on error (with no locks held). 1338 */ 1339 static inline struct extent_buffer * 1340 get_old_root(struct btrfs_root *root, u64 time_seq) 1341 { 1342 struct btrfs_fs_info *fs_info = root->fs_info; 1343 struct tree_mod_elem *tm; 1344 struct extent_buffer *eb = NULL; 1345 struct extent_buffer *eb_root; 1346 struct extent_buffer *old; 1347 struct tree_mod_root *old_root = NULL; 1348 u64 old_generation = 0; 1349 u64 logical; 1350 int level; 1351 1352 eb_root = btrfs_read_lock_root_node(root); 1353 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1354 if (!tm) 1355 return eb_root; 1356 1357 if (tm->op == MOD_LOG_ROOT_REPLACE) { 1358 old_root = &tm->old_root; 1359 old_generation = tm->generation; 1360 logical = old_root->logical; 1361 level = old_root->level; 1362 } else { 1363 logical = eb_root->start; 1364 level = btrfs_header_level(eb_root); 1365 } 1366 1367 tm = tree_mod_log_search(fs_info, logical, time_seq); 1368 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) { 1369 btrfs_tree_read_unlock(eb_root); 1370 free_extent_buffer(eb_root); 1371 old = read_tree_block(fs_info, logical, 0, level, NULL); 1372 if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) { 1373 if (!IS_ERR(old)) 1374 free_extent_buffer(old); 1375 btrfs_warn(fs_info, 1376 "failed to read tree block %llu from get_old_root", 1377 logical); 1378 } else { 1379 eb = btrfs_clone_extent_buffer(old); 1380 free_extent_buffer(old); 1381 } 1382 } else if (old_root) { 1383 btrfs_tree_read_unlock(eb_root); 1384 free_extent_buffer(eb_root); 1385 eb = alloc_dummy_extent_buffer(fs_info, logical); 1386 } else { 1387 btrfs_set_lock_blocking_read(eb_root); 1388 eb = btrfs_clone_extent_buffer(eb_root); 1389 btrfs_tree_read_unlock_blocking(eb_root); 1390 free_extent_buffer(eb_root); 1391 } 1392 1393 if (!eb) 1394 return NULL; 1395 btrfs_tree_read_lock(eb); 1396 if (old_root) { 1397 btrfs_set_header_bytenr(eb, eb->start); 1398 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV); 1399 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root)); 1400 btrfs_set_header_level(eb, old_root->level); 1401 btrfs_set_header_generation(eb, old_generation); 1402 } 1403 if (tm) 1404 __tree_mod_log_rewind(fs_info, eb, time_seq, tm); 1405 else 1406 WARN_ON(btrfs_header_level(eb) != 0); 1407 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(fs_info)); 1408 1409 return eb; 1410 } 1411 1412 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq) 1413 { 1414 struct tree_mod_elem *tm; 1415 int level; 1416 struct extent_buffer *eb_root = btrfs_root_node(root); 1417 1418 tm = __tree_mod_log_oldest_root(eb_root, time_seq); 1419 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) { 1420 level = tm->old_root.level; 1421 } else { 1422 level = btrfs_header_level(eb_root); 1423 } 1424 free_extent_buffer(eb_root); 1425 1426 return level; 1427 } 1428 1429 static inline int should_cow_block(struct btrfs_trans_handle *trans, 1430 struct btrfs_root *root, 1431 struct extent_buffer *buf) 1432 { 1433 if (btrfs_is_testing(root->fs_info)) 1434 return 0; 1435 1436 /* Ensure we can see the FORCE_COW bit */ 1437 smp_mb__before_atomic(); 1438 1439 /* 1440 * We do not need to cow a block if 1441 * 1) this block is not created or changed in this transaction; 1442 * 2) this block does not belong to TREE_RELOC tree; 1443 * 3) the root is not forced COW. 1444 * 1445 * What is forced COW: 1446 * when we create snapshot during committing the transaction, 1447 * after we've finished copying src root, we must COW the shared 1448 * block to ensure the metadata consistency. 1449 */ 1450 if (btrfs_header_generation(buf) == trans->transid && 1451 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) && 1452 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID && 1453 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) && 1454 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state)) 1455 return 0; 1456 return 1; 1457 } 1458 1459 /* 1460 * cows a single block, see __btrfs_cow_block for the real work. 1461 * This version of it has extra checks so that a block isn't COWed more than 1462 * once per transaction, as long as it hasn't been written yet 1463 */ 1464 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans, 1465 struct btrfs_root *root, struct extent_buffer *buf, 1466 struct extent_buffer *parent, int parent_slot, 1467 struct extent_buffer **cow_ret) 1468 { 1469 struct btrfs_fs_info *fs_info = root->fs_info; 1470 u64 search_start; 1471 int ret; 1472 1473 if (test_bit(BTRFS_ROOT_DELETING, &root->state)) 1474 btrfs_err(fs_info, 1475 "COW'ing blocks on a fs root that's being dropped"); 1476 1477 if (trans->transaction != fs_info->running_transaction) 1478 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1479 trans->transid, 1480 fs_info->running_transaction->transid); 1481 1482 if (trans->transid != fs_info->generation) 1483 WARN(1, KERN_CRIT "trans %llu running %llu\n", 1484 trans->transid, fs_info->generation); 1485 1486 if (!should_cow_block(trans, root, buf)) { 1487 trans->dirty = true; 1488 *cow_ret = buf; 1489 return 0; 1490 } 1491 1492 search_start = buf->start & ~((u64)SZ_1G - 1); 1493 1494 if (parent) 1495 btrfs_set_lock_blocking_write(parent); 1496 btrfs_set_lock_blocking_write(buf); 1497 1498 /* 1499 * Before CoWing this block for later modification, check if it's 1500 * the subtree root and do the delayed subtree trace if needed. 1501 * 1502 * Also We don't care about the error, as it's handled internally. 1503 */ 1504 btrfs_qgroup_trace_subtree_after_cow(trans, root, buf); 1505 ret = __btrfs_cow_block(trans, root, buf, parent, 1506 parent_slot, cow_ret, search_start, 0); 1507 1508 trace_btrfs_cow_block(root, buf, *cow_ret); 1509 1510 return ret; 1511 } 1512 1513 /* 1514 * helper function for defrag to decide if two blocks pointed to by a 1515 * node are actually close by 1516 */ 1517 static int close_blocks(u64 blocknr, u64 other, u32 blocksize) 1518 { 1519 if (blocknr < other && other - (blocknr + blocksize) < 32768) 1520 return 1; 1521 if (blocknr > other && blocknr - (other + blocksize) < 32768) 1522 return 1; 1523 return 0; 1524 } 1525 1526 /* 1527 * compare two keys in a memcmp fashion 1528 */ 1529 static int comp_keys(const struct btrfs_disk_key *disk, 1530 const struct btrfs_key *k2) 1531 { 1532 struct btrfs_key k1; 1533 1534 btrfs_disk_key_to_cpu(&k1, disk); 1535 1536 return btrfs_comp_cpu_keys(&k1, k2); 1537 } 1538 1539 /* 1540 * same as comp_keys only with two btrfs_key's 1541 */ 1542 int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2) 1543 { 1544 if (k1->objectid > k2->objectid) 1545 return 1; 1546 if (k1->objectid < k2->objectid) 1547 return -1; 1548 if (k1->type > k2->type) 1549 return 1; 1550 if (k1->type < k2->type) 1551 return -1; 1552 if (k1->offset > k2->offset) 1553 return 1; 1554 if (k1->offset < k2->offset) 1555 return -1; 1556 return 0; 1557 } 1558 1559 /* 1560 * this is used by the defrag code to go through all the 1561 * leaves pointed to by a node and reallocate them so that 1562 * disk order is close to key order 1563 */ 1564 int btrfs_realloc_node(struct btrfs_trans_handle *trans, 1565 struct btrfs_root *root, struct extent_buffer *parent, 1566 int start_slot, u64 *last_ret, 1567 struct btrfs_key *progress) 1568 { 1569 struct btrfs_fs_info *fs_info = root->fs_info; 1570 struct extent_buffer *cur; 1571 u64 blocknr; 1572 u64 gen; 1573 u64 search_start = *last_ret; 1574 u64 last_block = 0; 1575 u64 other; 1576 u32 parent_nritems; 1577 int end_slot; 1578 int i; 1579 int err = 0; 1580 int parent_level; 1581 int uptodate; 1582 u32 blocksize; 1583 int progress_passed = 0; 1584 struct btrfs_disk_key disk_key; 1585 1586 parent_level = btrfs_header_level(parent); 1587 1588 WARN_ON(trans->transaction != fs_info->running_transaction); 1589 WARN_ON(trans->transid != fs_info->generation); 1590 1591 parent_nritems = btrfs_header_nritems(parent); 1592 blocksize = fs_info->nodesize; 1593 end_slot = parent_nritems - 1; 1594 1595 if (parent_nritems <= 1) 1596 return 0; 1597 1598 btrfs_set_lock_blocking_write(parent); 1599 1600 for (i = start_slot; i <= end_slot; i++) { 1601 struct btrfs_key first_key; 1602 int close = 1; 1603 1604 btrfs_node_key(parent, &disk_key, i); 1605 if (!progress_passed && comp_keys(&disk_key, progress) < 0) 1606 continue; 1607 1608 progress_passed = 1; 1609 blocknr = btrfs_node_blockptr(parent, i); 1610 gen = btrfs_node_ptr_generation(parent, i); 1611 btrfs_node_key_to_cpu(parent, &first_key, i); 1612 if (last_block == 0) 1613 last_block = blocknr; 1614 1615 if (i > 0) { 1616 other = btrfs_node_blockptr(parent, i - 1); 1617 close = close_blocks(blocknr, other, blocksize); 1618 } 1619 if (!close && i < end_slot) { 1620 other = btrfs_node_blockptr(parent, i + 1); 1621 close = close_blocks(blocknr, other, blocksize); 1622 } 1623 if (close) { 1624 last_block = blocknr; 1625 continue; 1626 } 1627 1628 cur = find_extent_buffer(fs_info, blocknr); 1629 if (cur) 1630 uptodate = btrfs_buffer_uptodate(cur, gen, 0); 1631 else 1632 uptodate = 0; 1633 if (!cur || !uptodate) { 1634 if (!cur) { 1635 cur = read_tree_block(fs_info, blocknr, gen, 1636 parent_level - 1, 1637 &first_key); 1638 if (IS_ERR(cur)) { 1639 return PTR_ERR(cur); 1640 } else if (!extent_buffer_uptodate(cur)) { 1641 free_extent_buffer(cur); 1642 return -EIO; 1643 } 1644 } else if (!uptodate) { 1645 err = btrfs_read_buffer(cur, gen, 1646 parent_level - 1,&first_key); 1647 if (err) { 1648 free_extent_buffer(cur); 1649 return err; 1650 } 1651 } 1652 } 1653 if (search_start == 0) 1654 search_start = last_block; 1655 1656 btrfs_tree_lock(cur); 1657 btrfs_set_lock_blocking_write(cur); 1658 err = __btrfs_cow_block(trans, root, cur, parent, i, 1659 &cur, search_start, 1660 min(16 * blocksize, 1661 (end_slot - i) * blocksize)); 1662 if (err) { 1663 btrfs_tree_unlock(cur); 1664 free_extent_buffer(cur); 1665 break; 1666 } 1667 search_start = cur->start; 1668 last_block = cur->start; 1669 *last_ret = search_start; 1670 btrfs_tree_unlock(cur); 1671 free_extent_buffer(cur); 1672 } 1673 return err; 1674 } 1675 1676 /* 1677 * search for key in the extent_buffer. The items start at offset p, 1678 * and they are item_size apart. There are 'max' items in p. 1679 * 1680 * the slot in the array is returned via slot, and it points to 1681 * the place where you would insert key if it is not found in 1682 * the array. 1683 * 1684 * slot may point to max if the key is bigger than all of the keys 1685 */ 1686 static noinline int generic_bin_search(struct extent_buffer *eb, 1687 unsigned long p, int item_size, 1688 const struct btrfs_key *key, 1689 int max, int *slot) 1690 { 1691 int low = 0; 1692 int high = max; 1693 int mid; 1694 int ret; 1695 struct btrfs_disk_key *tmp = NULL; 1696 struct btrfs_disk_key unaligned; 1697 unsigned long offset; 1698 char *kaddr = NULL; 1699 unsigned long map_start = 0; 1700 unsigned long map_len = 0; 1701 int err; 1702 1703 if (low > high) { 1704 btrfs_err(eb->fs_info, 1705 "%s: low (%d) > high (%d) eb %llu owner %llu level %d", 1706 __func__, low, high, eb->start, 1707 btrfs_header_owner(eb), btrfs_header_level(eb)); 1708 return -EINVAL; 1709 } 1710 1711 while (low < high) { 1712 mid = (low + high) / 2; 1713 offset = p + mid * item_size; 1714 1715 if (!kaddr || offset < map_start || 1716 (offset + sizeof(struct btrfs_disk_key)) > 1717 map_start + map_len) { 1718 1719 err = map_private_extent_buffer(eb, offset, 1720 sizeof(struct btrfs_disk_key), 1721 &kaddr, &map_start, &map_len); 1722 1723 if (!err) { 1724 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1725 map_start); 1726 } else if (err == 1) { 1727 read_extent_buffer(eb, &unaligned, 1728 offset, sizeof(unaligned)); 1729 tmp = &unaligned; 1730 } else { 1731 return err; 1732 } 1733 1734 } else { 1735 tmp = (struct btrfs_disk_key *)(kaddr + offset - 1736 map_start); 1737 } 1738 ret = comp_keys(tmp, key); 1739 1740 if (ret < 0) 1741 low = mid + 1; 1742 else if (ret > 0) 1743 high = mid; 1744 else { 1745 *slot = mid; 1746 return 0; 1747 } 1748 } 1749 *slot = low; 1750 return 1; 1751 } 1752 1753 /* 1754 * simple bin_search frontend that does the right thing for 1755 * leaves vs nodes 1756 */ 1757 int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key, 1758 int level, int *slot) 1759 { 1760 if (level == 0) 1761 return generic_bin_search(eb, 1762 offsetof(struct btrfs_leaf, items), 1763 sizeof(struct btrfs_item), 1764 key, btrfs_header_nritems(eb), 1765 slot); 1766 else 1767 return generic_bin_search(eb, 1768 offsetof(struct btrfs_node, ptrs), 1769 sizeof(struct btrfs_key_ptr), 1770 key, btrfs_header_nritems(eb), 1771 slot); 1772 } 1773 1774 static void root_add_used(struct btrfs_root *root, u32 size) 1775 { 1776 spin_lock(&root->accounting_lock); 1777 btrfs_set_root_used(&root->root_item, 1778 btrfs_root_used(&root->root_item) + size); 1779 spin_unlock(&root->accounting_lock); 1780 } 1781 1782 static void root_sub_used(struct btrfs_root *root, u32 size) 1783 { 1784 spin_lock(&root->accounting_lock); 1785 btrfs_set_root_used(&root->root_item, 1786 btrfs_root_used(&root->root_item) - size); 1787 spin_unlock(&root->accounting_lock); 1788 } 1789 1790 /* given a node and slot number, this reads the blocks it points to. The 1791 * extent buffer is returned with a reference taken (but unlocked). 1792 */ 1793 static noinline struct extent_buffer *read_node_slot( 1794 struct extent_buffer *parent, int slot) 1795 { 1796 int level = btrfs_header_level(parent); 1797 struct extent_buffer *eb; 1798 struct btrfs_key first_key; 1799 1800 if (slot < 0 || slot >= btrfs_header_nritems(parent)) 1801 return ERR_PTR(-ENOENT); 1802 1803 BUG_ON(level == 0); 1804 1805 btrfs_node_key_to_cpu(parent, &first_key, slot); 1806 eb = read_tree_block(parent->fs_info, btrfs_node_blockptr(parent, slot), 1807 btrfs_node_ptr_generation(parent, slot), 1808 level - 1, &first_key); 1809 if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) { 1810 free_extent_buffer(eb); 1811 eb = ERR_PTR(-EIO); 1812 } 1813 1814 return eb; 1815 } 1816 1817 /* 1818 * node level balancing, used to make sure nodes are in proper order for 1819 * item deletion. We balance from the top down, so we have to make sure 1820 * that a deletion won't leave an node completely empty later on. 1821 */ 1822 static noinline int balance_level(struct btrfs_trans_handle *trans, 1823 struct btrfs_root *root, 1824 struct btrfs_path *path, int level) 1825 { 1826 struct btrfs_fs_info *fs_info = root->fs_info; 1827 struct extent_buffer *right = NULL; 1828 struct extent_buffer *mid; 1829 struct extent_buffer *left = NULL; 1830 struct extent_buffer *parent = NULL; 1831 int ret = 0; 1832 int wret; 1833 int pslot; 1834 int orig_slot = path->slots[level]; 1835 u64 orig_ptr; 1836 1837 ASSERT(level > 0); 1838 1839 mid = path->nodes[level]; 1840 1841 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK && 1842 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING); 1843 WARN_ON(btrfs_header_generation(mid) != trans->transid); 1844 1845 orig_ptr = btrfs_node_blockptr(mid, orig_slot); 1846 1847 if (level < BTRFS_MAX_LEVEL - 1) { 1848 parent = path->nodes[level + 1]; 1849 pslot = path->slots[level + 1]; 1850 } 1851 1852 /* 1853 * deal with the case where there is only one pointer in the root 1854 * by promoting the node below to a root 1855 */ 1856 if (!parent) { 1857 struct extent_buffer *child; 1858 1859 if (btrfs_header_nritems(mid) != 1) 1860 return 0; 1861 1862 /* promote the child to a root */ 1863 child = read_node_slot(mid, 0); 1864 if (IS_ERR(child)) { 1865 ret = PTR_ERR(child); 1866 btrfs_handle_fs_error(fs_info, ret, NULL); 1867 goto enospc; 1868 } 1869 1870 btrfs_tree_lock(child); 1871 btrfs_set_lock_blocking_write(child); 1872 ret = btrfs_cow_block(trans, root, child, mid, 0, &child); 1873 if (ret) { 1874 btrfs_tree_unlock(child); 1875 free_extent_buffer(child); 1876 goto enospc; 1877 } 1878 1879 ret = tree_mod_log_insert_root(root->node, child, 1); 1880 BUG_ON(ret < 0); 1881 rcu_assign_pointer(root->node, child); 1882 1883 add_root_to_dirty_list(root); 1884 btrfs_tree_unlock(child); 1885 1886 path->locks[level] = 0; 1887 path->nodes[level] = NULL; 1888 btrfs_clean_tree_block(mid); 1889 btrfs_tree_unlock(mid); 1890 /* once for the path */ 1891 free_extent_buffer(mid); 1892 1893 root_sub_used(root, mid->len); 1894 btrfs_free_tree_block(trans, root, mid, 0, 1); 1895 /* once for the root ptr */ 1896 free_extent_buffer_stale(mid); 1897 return 0; 1898 } 1899 if (btrfs_header_nritems(mid) > 1900 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 4) 1901 return 0; 1902 1903 left = read_node_slot(parent, pslot - 1); 1904 if (IS_ERR(left)) 1905 left = NULL; 1906 1907 if (left) { 1908 btrfs_tree_lock(left); 1909 btrfs_set_lock_blocking_write(left); 1910 wret = btrfs_cow_block(trans, root, left, 1911 parent, pslot - 1, &left); 1912 if (wret) { 1913 ret = wret; 1914 goto enospc; 1915 } 1916 } 1917 1918 right = read_node_slot(parent, pslot + 1); 1919 if (IS_ERR(right)) 1920 right = NULL; 1921 1922 if (right) { 1923 btrfs_tree_lock(right); 1924 btrfs_set_lock_blocking_write(right); 1925 wret = btrfs_cow_block(trans, root, right, 1926 parent, pslot + 1, &right); 1927 if (wret) { 1928 ret = wret; 1929 goto enospc; 1930 } 1931 } 1932 1933 /* first, try to make some room in the middle buffer */ 1934 if (left) { 1935 orig_slot += btrfs_header_nritems(left); 1936 wret = push_node_left(trans, left, mid, 1); 1937 if (wret < 0) 1938 ret = wret; 1939 } 1940 1941 /* 1942 * then try to empty the right most buffer into the middle 1943 */ 1944 if (right) { 1945 wret = push_node_left(trans, mid, right, 1); 1946 if (wret < 0 && wret != -ENOSPC) 1947 ret = wret; 1948 if (btrfs_header_nritems(right) == 0) { 1949 btrfs_clean_tree_block(right); 1950 btrfs_tree_unlock(right); 1951 del_ptr(root, path, level + 1, pslot + 1); 1952 root_sub_used(root, right->len); 1953 btrfs_free_tree_block(trans, root, right, 0, 1); 1954 free_extent_buffer_stale(right); 1955 right = NULL; 1956 } else { 1957 struct btrfs_disk_key right_key; 1958 btrfs_node_key(right, &right_key, 0); 1959 ret = tree_mod_log_insert_key(parent, pslot + 1, 1960 MOD_LOG_KEY_REPLACE, GFP_NOFS); 1961 BUG_ON(ret < 0); 1962 btrfs_set_node_key(parent, &right_key, pslot + 1); 1963 btrfs_mark_buffer_dirty(parent); 1964 } 1965 } 1966 if (btrfs_header_nritems(mid) == 1) { 1967 /* 1968 * we're not allowed to leave a node with one item in the 1969 * tree during a delete. A deletion from lower in the tree 1970 * could try to delete the only pointer in this node. 1971 * So, pull some keys from the left. 1972 * There has to be a left pointer at this point because 1973 * otherwise we would have pulled some pointers from the 1974 * right 1975 */ 1976 if (!left) { 1977 ret = -EROFS; 1978 btrfs_handle_fs_error(fs_info, ret, NULL); 1979 goto enospc; 1980 } 1981 wret = balance_node_right(trans, mid, left); 1982 if (wret < 0) { 1983 ret = wret; 1984 goto enospc; 1985 } 1986 if (wret == 1) { 1987 wret = push_node_left(trans, left, mid, 1); 1988 if (wret < 0) 1989 ret = wret; 1990 } 1991 BUG_ON(wret == 1); 1992 } 1993 if (btrfs_header_nritems(mid) == 0) { 1994 btrfs_clean_tree_block(mid); 1995 btrfs_tree_unlock(mid); 1996 del_ptr(root, path, level + 1, pslot); 1997 root_sub_used(root, mid->len); 1998 btrfs_free_tree_block(trans, root, mid, 0, 1); 1999 free_extent_buffer_stale(mid); 2000 mid = NULL; 2001 } else { 2002 /* update the parent key to reflect our changes */ 2003 struct btrfs_disk_key mid_key; 2004 btrfs_node_key(mid, &mid_key, 0); 2005 ret = tree_mod_log_insert_key(parent, pslot, 2006 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2007 BUG_ON(ret < 0); 2008 btrfs_set_node_key(parent, &mid_key, pslot); 2009 btrfs_mark_buffer_dirty(parent); 2010 } 2011 2012 /* update the path */ 2013 if (left) { 2014 if (btrfs_header_nritems(left) > orig_slot) { 2015 extent_buffer_get(left); 2016 /* left was locked after cow */ 2017 path->nodes[level] = left; 2018 path->slots[level + 1] -= 1; 2019 path->slots[level] = orig_slot; 2020 if (mid) { 2021 btrfs_tree_unlock(mid); 2022 free_extent_buffer(mid); 2023 } 2024 } else { 2025 orig_slot -= btrfs_header_nritems(left); 2026 path->slots[level] = orig_slot; 2027 } 2028 } 2029 /* double check we haven't messed things up */ 2030 if (orig_ptr != 2031 btrfs_node_blockptr(path->nodes[level], path->slots[level])) 2032 BUG(); 2033 enospc: 2034 if (right) { 2035 btrfs_tree_unlock(right); 2036 free_extent_buffer(right); 2037 } 2038 if (left) { 2039 if (path->nodes[level] != left) 2040 btrfs_tree_unlock(left); 2041 free_extent_buffer(left); 2042 } 2043 return ret; 2044 } 2045 2046 /* Node balancing for insertion. Here we only split or push nodes around 2047 * when they are completely full. This is also done top down, so we 2048 * have to be pessimistic. 2049 */ 2050 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans, 2051 struct btrfs_root *root, 2052 struct btrfs_path *path, int level) 2053 { 2054 struct btrfs_fs_info *fs_info = root->fs_info; 2055 struct extent_buffer *right = NULL; 2056 struct extent_buffer *mid; 2057 struct extent_buffer *left = NULL; 2058 struct extent_buffer *parent = NULL; 2059 int ret = 0; 2060 int wret; 2061 int pslot; 2062 int orig_slot = path->slots[level]; 2063 2064 if (level == 0) 2065 return 1; 2066 2067 mid = path->nodes[level]; 2068 WARN_ON(btrfs_header_generation(mid) != trans->transid); 2069 2070 if (level < BTRFS_MAX_LEVEL - 1) { 2071 parent = path->nodes[level + 1]; 2072 pslot = path->slots[level + 1]; 2073 } 2074 2075 if (!parent) 2076 return 1; 2077 2078 left = read_node_slot(parent, pslot - 1); 2079 if (IS_ERR(left)) 2080 left = NULL; 2081 2082 /* first, try to make some room in the middle buffer */ 2083 if (left) { 2084 u32 left_nr; 2085 2086 btrfs_tree_lock(left); 2087 btrfs_set_lock_blocking_write(left); 2088 2089 left_nr = btrfs_header_nritems(left); 2090 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2091 wret = 1; 2092 } else { 2093 ret = btrfs_cow_block(trans, root, left, parent, 2094 pslot - 1, &left); 2095 if (ret) 2096 wret = 1; 2097 else { 2098 wret = push_node_left(trans, left, mid, 0); 2099 } 2100 } 2101 if (wret < 0) 2102 ret = wret; 2103 if (wret == 0) { 2104 struct btrfs_disk_key disk_key; 2105 orig_slot += left_nr; 2106 btrfs_node_key(mid, &disk_key, 0); 2107 ret = tree_mod_log_insert_key(parent, pslot, 2108 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2109 BUG_ON(ret < 0); 2110 btrfs_set_node_key(parent, &disk_key, pslot); 2111 btrfs_mark_buffer_dirty(parent); 2112 if (btrfs_header_nritems(left) > orig_slot) { 2113 path->nodes[level] = left; 2114 path->slots[level + 1] -= 1; 2115 path->slots[level] = orig_slot; 2116 btrfs_tree_unlock(mid); 2117 free_extent_buffer(mid); 2118 } else { 2119 orig_slot -= 2120 btrfs_header_nritems(left); 2121 path->slots[level] = orig_slot; 2122 btrfs_tree_unlock(left); 2123 free_extent_buffer(left); 2124 } 2125 return 0; 2126 } 2127 btrfs_tree_unlock(left); 2128 free_extent_buffer(left); 2129 } 2130 right = read_node_slot(parent, pslot + 1); 2131 if (IS_ERR(right)) 2132 right = NULL; 2133 2134 /* 2135 * then try to empty the right most buffer into the middle 2136 */ 2137 if (right) { 2138 u32 right_nr; 2139 2140 btrfs_tree_lock(right); 2141 btrfs_set_lock_blocking_write(right); 2142 2143 right_nr = btrfs_header_nritems(right); 2144 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 1) { 2145 wret = 1; 2146 } else { 2147 ret = btrfs_cow_block(trans, root, right, 2148 parent, pslot + 1, 2149 &right); 2150 if (ret) 2151 wret = 1; 2152 else { 2153 wret = balance_node_right(trans, right, mid); 2154 } 2155 } 2156 if (wret < 0) 2157 ret = wret; 2158 if (wret == 0) { 2159 struct btrfs_disk_key disk_key; 2160 2161 btrfs_node_key(right, &disk_key, 0); 2162 ret = tree_mod_log_insert_key(parent, pslot + 1, 2163 MOD_LOG_KEY_REPLACE, GFP_NOFS); 2164 BUG_ON(ret < 0); 2165 btrfs_set_node_key(parent, &disk_key, pslot + 1); 2166 btrfs_mark_buffer_dirty(parent); 2167 2168 if (btrfs_header_nritems(mid) <= orig_slot) { 2169 path->nodes[level] = right; 2170 path->slots[level + 1] += 1; 2171 path->slots[level] = orig_slot - 2172 btrfs_header_nritems(mid); 2173 btrfs_tree_unlock(mid); 2174 free_extent_buffer(mid); 2175 } else { 2176 btrfs_tree_unlock(right); 2177 free_extent_buffer(right); 2178 } 2179 return 0; 2180 } 2181 btrfs_tree_unlock(right); 2182 free_extent_buffer(right); 2183 } 2184 return 1; 2185 } 2186 2187 /* 2188 * readahead one full node of leaves, finding things that are close 2189 * to the block in 'slot', and triggering ra on them. 2190 */ 2191 static void reada_for_search(struct btrfs_fs_info *fs_info, 2192 struct btrfs_path *path, 2193 int level, int slot, u64 objectid) 2194 { 2195 struct extent_buffer *node; 2196 struct btrfs_disk_key disk_key; 2197 u32 nritems; 2198 u64 search; 2199 u64 target; 2200 u64 nread = 0; 2201 struct extent_buffer *eb; 2202 u32 nr; 2203 u32 blocksize; 2204 u32 nscan = 0; 2205 2206 if (level != 1) 2207 return; 2208 2209 if (!path->nodes[level]) 2210 return; 2211 2212 node = path->nodes[level]; 2213 2214 search = btrfs_node_blockptr(node, slot); 2215 blocksize = fs_info->nodesize; 2216 eb = find_extent_buffer(fs_info, search); 2217 if (eb) { 2218 free_extent_buffer(eb); 2219 return; 2220 } 2221 2222 target = search; 2223 2224 nritems = btrfs_header_nritems(node); 2225 nr = slot; 2226 2227 while (1) { 2228 if (path->reada == READA_BACK) { 2229 if (nr == 0) 2230 break; 2231 nr--; 2232 } else if (path->reada == READA_FORWARD) { 2233 nr++; 2234 if (nr >= nritems) 2235 break; 2236 } 2237 if (path->reada == READA_BACK && objectid) { 2238 btrfs_node_key(node, &disk_key, nr); 2239 if (btrfs_disk_key_objectid(&disk_key) != objectid) 2240 break; 2241 } 2242 search = btrfs_node_blockptr(node, nr); 2243 if ((search <= target && target - search <= 65536) || 2244 (search > target && search - target <= 65536)) { 2245 readahead_tree_block(fs_info, search); 2246 nread += blocksize; 2247 } 2248 nscan++; 2249 if ((nread > 65536 || nscan > 32)) 2250 break; 2251 } 2252 } 2253 2254 static noinline void reada_for_balance(struct btrfs_fs_info *fs_info, 2255 struct btrfs_path *path, int level) 2256 { 2257 int slot; 2258 int nritems; 2259 struct extent_buffer *parent; 2260 struct extent_buffer *eb; 2261 u64 gen; 2262 u64 block1 = 0; 2263 u64 block2 = 0; 2264 2265 parent = path->nodes[level + 1]; 2266 if (!parent) 2267 return; 2268 2269 nritems = btrfs_header_nritems(parent); 2270 slot = path->slots[level + 1]; 2271 2272 if (slot > 0) { 2273 block1 = btrfs_node_blockptr(parent, slot - 1); 2274 gen = btrfs_node_ptr_generation(parent, slot - 1); 2275 eb = find_extent_buffer(fs_info, block1); 2276 /* 2277 * if we get -eagain from btrfs_buffer_uptodate, we 2278 * don't want to return eagain here. That will loop 2279 * forever 2280 */ 2281 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2282 block1 = 0; 2283 free_extent_buffer(eb); 2284 } 2285 if (slot + 1 < nritems) { 2286 block2 = btrfs_node_blockptr(parent, slot + 1); 2287 gen = btrfs_node_ptr_generation(parent, slot + 1); 2288 eb = find_extent_buffer(fs_info, block2); 2289 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0) 2290 block2 = 0; 2291 free_extent_buffer(eb); 2292 } 2293 2294 if (block1) 2295 readahead_tree_block(fs_info, block1); 2296 if (block2) 2297 readahead_tree_block(fs_info, block2); 2298 } 2299 2300 2301 /* 2302 * when we walk down the tree, it is usually safe to unlock the higher layers 2303 * in the tree. The exceptions are when our path goes through slot 0, because 2304 * operations on the tree might require changing key pointers higher up in the 2305 * tree. 2306 * 2307 * callers might also have set path->keep_locks, which tells this code to keep 2308 * the lock if the path points to the last slot in the block. This is part of 2309 * walking through the tree, and selecting the next slot in the higher block. 2310 * 2311 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so 2312 * if lowest_unlock is 1, level 0 won't be unlocked 2313 */ 2314 static noinline void unlock_up(struct btrfs_path *path, int level, 2315 int lowest_unlock, int min_write_lock_level, 2316 int *write_lock_level) 2317 { 2318 int i; 2319 int skip_level = level; 2320 int no_skips = 0; 2321 struct extent_buffer *t; 2322 2323 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2324 if (!path->nodes[i]) 2325 break; 2326 if (!path->locks[i]) 2327 break; 2328 if (!no_skips && path->slots[i] == 0) { 2329 skip_level = i + 1; 2330 continue; 2331 } 2332 if (!no_skips && path->keep_locks) { 2333 u32 nritems; 2334 t = path->nodes[i]; 2335 nritems = btrfs_header_nritems(t); 2336 if (nritems < 1 || path->slots[i] >= nritems - 1) { 2337 skip_level = i + 1; 2338 continue; 2339 } 2340 } 2341 if (skip_level < i && i >= lowest_unlock) 2342 no_skips = 1; 2343 2344 t = path->nodes[i]; 2345 if (i >= lowest_unlock && i > skip_level) { 2346 btrfs_tree_unlock_rw(t, path->locks[i]); 2347 path->locks[i] = 0; 2348 if (write_lock_level && 2349 i > min_write_lock_level && 2350 i <= *write_lock_level) { 2351 *write_lock_level = i - 1; 2352 } 2353 } 2354 } 2355 } 2356 2357 /* 2358 * This releases any locks held in the path starting at level and 2359 * going all the way up to the root. 2360 * 2361 * btrfs_search_slot will keep the lock held on higher nodes in a few 2362 * corner cases, such as COW of the block at slot zero in the node. This 2363 * ignores those rules, and it should only be called when there are no 2364 * more updates to be done higher up in the tree. 2365 */ 2366 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level) 2367 { 2368 int i; 2369 2370 if (path->keep_locks) 2371 return; 2372 2373 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 2374 if (!path->nodes[i]) 2375 continue; 2376 if (!path->locks[i]) 2377 continue; 2378 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]); 2379 path->locks[i] = 0; 2380 } 2381 } 2382 2383 /* 2384 * helper function for btrfs_search_slot. The goal is to find a block 2385 * in cache without setting the path to blocking. If we find the block 2386 * we return zero and the path is unchanged. 2387 * 2388 * If we can't find the block, we set the path blocking and do some 2389 * reada. -EAGAIN is returned and the search must be repeated. 2390 */ 2391 static int 2392 read_block_for_search(struct btrfs_root *root, struct btrfs_path *p, 2393 struct extent_buffer **eb_ret, int level, int slot, 2394 const struct btrfs_key *key) 2395 { 2396 struct btrfs_fs_info *fs_info = root->fs_info; 2397 u64 blocknr; 2398 u64 gen; 2399 struct extent_buffer *b = *eb_ret; 2400 struct extent_buffer *tmp; 2401 struct btrfs_key first_key; 2402 int ret; 2403 int parent_level; 2404 2405 blocknr = btrfs_node_blockptr(b, slot); 2406 gen = btrfs_node_ptr_generation(b, slot); 2407 parent_level = btrfs_header_level(b); 2408 btrfs_node_key_to_cpu(b, &first_key, slot); 2409 2410 tmp = find_extent_buffer(fs_info, blocknr); 2411 if (tmp) { 2412 /* first we do an atomic uptodate check */ 2413 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) { 2414 /* 2415 * Do extra check for first_key, eb can be stale due to 2416 * being cached, read from scrub, or have multiple 2417 * parents (shared tree blocks). 2418 */ 2419 if (btrfs_verify_level_key(tmp, 2420 parent_level - 1, &first_key, gen)) { 2421 free_extent_buffer(tmp); 2422 return -EUCLEAN; 2423 } 2424 *eb_ret = tmp; 2425 return 0; 2426 } 2427 2428 /* the pages were up to date, but we failed 2429 * the generation number check. Do a full 2430 * read for the generation number that is correct. 2431 * We must do this without dropping locks so 2432 * we can trust our generation number 2433 */ 2434 btrfs_set_path_blocking(p); 2435 2436 /* now we're allowed to do a blocking uptodate check */ 2437 ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key); 2438 if (!ret) { 2439 *eb_ret = tmp; 2440 return 0; 2441 } 2442 free_extent_buffer(tmp); 2443 btrfs_release_path(p); 2444 return -EIO; 2445 } 2446 2447 /* 2448 * reduce lock contention at high levels 2449 * of the btree by dropping locks before 2450 * we read. Don't release the lock on the current 2451 * level because we need to walk this node to figure 2452 * out which blocks to read. 2453 */ 2454 btrfs_unlock_up_safe(p, level + 1); 2455 btrfs_set_path_blocking(p); 2456 2457 if (p->reada != READA_NONE) 2458 reada_for_search(fs_info, p, level, slot, key->objectid); 2459 2460 ret = -EAGAIN; 2461 tmp = read_tree_block(fs_info, blocknr, gen, parent_level - 1, 2462 &first_key); 2463 if (!IS_ERR(tmp)) { 2464 /* 2465 * If the read above didn't mark this buffer up to date, 2466 * it will never end up being up to date. Set ret to EIO now 2467 * and give up so that our caller doesn't loop forever 2468 * on our EAGAINs. 2469 */ 2470 if (!extent_buffer_uptodate(tmp)) 2471 ret = -EIO; 2472 free_extent_buffer(tmp); 2473 } else { 2474 ret = PTR_ERR(tmp); 2475 } 2476 2477 btrfs_release_path(p); 2478 return ret; 2479 } 2480 2481 /* 2482 * helper function for btrfs_search_slot. This does all of the checks 2483 * for node-level blocks and does any balancing required based on 2484 * the ins_len. 2485 * 2486 * If no extra work was required, zero is returned. If we had to 2487 * drop the path, -EAGAIN is returned and btrfs_search_slot must 2488 * start over 2489 */ 2490 static int 2491 setup_nodes_for_search(struct btrfs_trans_handle *trans, 2492 struct btrfs_root *root, struct btrfs_path *p, 2493 struct extent_buffer *b, int level, int ins_len, 2494 int *write_lock_level) 2495 { 2496 struct btrfs_fs_info *fs_info = root->fs_info; 2497 int ret; 2498 2499 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >= 2500 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) { 2501 int sret; 2502 2503 if (*write_lock_level < level + 1) { 2504 *write_lock_level = level + 1; 2505 btrfs_release_path(p); 2506 goto again; 2507 } 2508 2509 btrfs_set_path_blocking(p); 2510 reada_for_balance(fs_info, p, level); 2511 sret = split_node(trans, root, p, level); 2512 2513 BUG_ON(sret > 0); 2514 if (sret) { 2515 ret = sret; 2516 goto done; 2517 } 2518 b = p->nodes[level]; 2519 } else if (ins_len < 0 && btrfs_header_nritems(b) < 2520 BTRFS_NODEPTRS_PER_BLOCK(fs_info) / 2) { 2521 int sret; 2522 2523 if (*write_lock_level < level + 1) { 2524 *write_lock_level = level + 1; 2525 btrfs_release_path(p); 2526 goto again; 2527 } 2528 2529 btrfs_set_path_blocking(p); 2530 reada_for_balance(fs_info, p, level); 2531 sret = balance_level(trans, root, p, level); 2532 2533 if (sret) { 2534 ret = sret; 2535 goto done; 2536 } 2537 b = p->nodes[level]; 2538 if (!b) { 2539 btrfs_release_path(p); 2540 goto again; 2541 } 2542 BUG_ON(btrfs_header_nritems(b) == 1); 2543 } 2544 return 0; 2545 2546 again: 2547 ret = -EAGAIN; 2548 done: 2549 return ret; 2550 } 2551 2552 static int key_search(struct extent_buffer *b, const struct btrfs_key *key, 2553 int level, int *prev_cmp, int *slot) 2554 { 2555 if (*prev_cmp != 0) { 2556 *prev_cmp = btrfs_bin_search(b, key, level, slot); 2557 return *prev_cmp; 2558 } 2559 2560 *slot = 0; 2561 2562 return 0; 2563 } 2564 2565 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path, 2566 u64 iobjectid, u64 ioff, u8 key_type, 2567 struct btrfs_key *found_key) 2568 { 2569 int ret; 2570 struct btrfs_key key; 2571 struct extent_buffer *eb; 2572 2573 ASSERT(path); 2574 ASSERT(found_key); 2575 2576 key.type = key_type; 2577 key.objectid = iobjectid; 2578 key.offset = ioff; 2579 2580 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 2581 if (ret < 0) 2582 return ret; 2583 2584 eb = path->nodes[0]; 2585 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) { 2586 ret = btrfs_next_leaf(fs_root, path); 2587 if (ret) 2588 return ret; 2589 eb = path->nodes[0]; 2590 } 2591 2592 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]); 2593 if (found_key->type != key.type || 2594 found_key->objectid != key.objectid) 2595 return 1; 2596 2597 return 0; 2598 } 2599 2600 static struct extent_buffer *btrfs_search_slot_get_root(struct btrfs_root *root, 2601 struct btrfs_path *p, 2602 int write_lock_level) 2603 { 2604 struct btrfs_fs_info *fs_info = root->fs_info; 2605 struct extent_buffer *b; 2606 int root_lock; 2607 int level = 0; 2608 2609 /* We try very hard to do read locks on the root */ 2610 root_lock = BTRFS_READ_LOCK; 2611 2612 if (p->search_commit_root) { 2613 /* 2614 * The commit roots are read only so we always do read locks, 2615 * and we always must hold the commit_root_sem when doing 2616 * searches on them, the only exception is send where we don't 2617 * want to block transaction commits for a long time, so 2618 * we need to clone the commit root in order to avoid races 2619 * with transaction commits that create a snapshot of one of 2620 * the roots used by a send operation. 2621 */ 2622 if (p->need_commit_sem) { 2623 down_read(&fs_info->commit_root_sem); 2624 b = btrfs_clone_extent_buffer(root->commit_root); 2625 up_read(&fs_info->commit_root_sem); 2626 if (!b) 2627 return ERR_PTR(-ENOMEM); 2628 2629 } else { 2630 b = root->commit_root; 2631 extent_buffer_get(b); 2632 } 2633 level = btrfs_header_level(b); 2634 /* 2635 * Ensure that all callers have set skip_locking when 2636 * p->search_commit_root = 1. 2637 */ 2638 ASSERT(p->skip_locking == 1); 2639 2640 goto out; 2641 } 2642 2643 if (p->skip_locking) { 2644 b = btrfs_root_node(root); 2645 level = btrfs_header_level(b); 2646 goto out; 2647 } 2648 2649 /* 2650 * If the level is set to maximum, we can skip trying to get the read 2651 * lock. 2652 */ 2653 if (write_lock_level < BTRFS_MAX_LEVEL) { 2654 /* 2655 * We don't know the level of the root node until we actually 2656 * have it read locked 2657 */ 2658 b = btrfs_read_lock_root_node(root); 2659 level = btrfs_header_level(b); 2660 if (level > write_lock_level) 2661 goto out; 2662 2663 /* Whoops, must trade for write lock */ 2664 btrfs_tree_read_unlock(b); 2665 free_extent_buffer(b); 2666 } 2667 2668 b = btrfs_lock_root_node(root); 2669 root_lock = BTRFS_WRITE_LOCK; 2670 2671 /* The level might have changed, check again */ 2672 level = btrfs_header_level(b); 2673 2674 out: 2675 p->nodes[level] = b; 2676 if (!p->skip_locking) 2677 p->locks[level] = root_lock; 2678 /* 2679 * Callers are responsible for dropping b's references. 2680 */ 2681 return b; 2682 } 2683 2684 2685 /* 2686 * btrfs_search_slot - look for a key in a tree and perform necessary 2687 * modifications to preserve tree invariants. 2688 * 2689 * @trans: Handle of transaction, used when modifying the tree 2690 * @p: Holds all btree nodes along the search path 2691 * @root: The root node of the tree 2692 * @key: The key we are looking for 2693 * @ins_len: Indicates purpose of search, for inserts it is 1, for 2694 * deletions it's -1. 0 for plain searches 2695 * @cow: boolean should CoW operations be performed. Must always be 1 2696 * when modifying the tree. 2697 * 2698 * If @ins_len > 0, nodes and leaves will be split as we walk down the tree. 2699 * If @ins_len < 0, nodes will be merged as we walk down the tree (if possible) 2700 * 2701 * If @key is found, 0 is returned and you can find the item in the leaf level 2702 * of the path (level 0) 2703 * 2704 * If @key isn't found, 1 is returned and the leaf level of the path (level 0) 2705 * points to the slot where it should be inserted 2706 * 2707 * If an error is encountered while searching the tree a negative error number 2708 * is returned 2709 */ 2710 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root, 2711 const struct btrfs_key *key, struct btrfs_path *p, 2712 int ins_len, int cow) 2713 { 2714 struct extent_buffer *b; 2715 int slot; 2716 int ret; 2717 int err; 2718 int level; 2719 int lowest_unlock = 1; 2720 /* everything at write_lock_level or lower must be write locked */ 2721 int write_lock_level = 0; 2722 u8 lowest_level = 0; 2723 int min_write_lock_level; 2724 int prev_cmp; 2725 2726 lowest_level = p->lowest_level; 2727 WARN_ON(lowest_level && ins_len > 0); 2728 WARN_ON(p->nodes[0] != NULL); 2729 BUG_ON(!cow && ins_len); 2730 2731 if (ins_len < 0) { 2732 lowest_unlock = 2; 2733 2734 /* when we are removing items, we might have to go up to level 2735 * two as we update tree pointers Make sure we keep write 2736 * for those levels as well 2737 */ 2738 write_lock_level = 2; 2739 } else if (ins_len > 0) { 2740 /* 2741 * for inserting items, make sure we have a write lock on 2742 * level 1 so we can update keys 2743 */ 2744 write_lock_level = 1; 2745 } 2746 2747 if (!cow) 2748 write_lock_level = -1; 2749 2750 if (cow && (p->keep_locks || p->lowest_level)) 2751 write_lock_level = BTRFS_MAX_LEVEL; 2752 2753 min_write_lock_level = write_lock_level; 2754 2755 again: 2756 prev_cmp = -1; 2757 b = btrfs_search_slot_get_root(root, p, write_lock_level); 2758 if (IS_ERR(b)) { 2759 ret = PTR_ERR(b); 2760 goto done; 2761 } 2762 2763 while (b) { 2764 level = btrfs_header_level(b); 2765 2766 /* 2767 * setup the path here so we can release it under lock 2768 * contention with the cow code 2769 */ 2770 if (cow) { 2771 bool last_level = (level == (BTRFS_MAX_LEVEL - 1)); 2772 2773 /* 2774 * if we don't really need to cow this block 2775 * then we don't want to set the path blocking, 2776 * so we test it here 2777 */ 2778 if (!should_cow_block(trans, root, b)) { 2779 trans->dirty = true; 2780 goto cow_done; 2781 } 2782 2783 /* 2784 * must have write locks on this node and the 2785 * parent 2786 */ 2787 if (level > write_lock_level || 2788 (level + 1 > write_lock_level && 2789 level + 1 < BTRFS_MAX_LEVEL && 2790 p->nodes[level + 1])) { 2791 write_lock_level = level + 1; 2792 btrfs_release_path(p); 2793 goto again; 2794 } 2795 2796 btrfs_set_path_blocking(p); 2797 if (last_level) 2798 err = btrfs_cow_block(trans, root, b, NULL, 0, 2799 &b); 2800 else 2801 err = btrfs_cow_block(trans, root, b, 2802 p->nodes[level + 1], 2803 p->slots[level + 1], &b); 2804 if (err) { 2805 ret = err; 2806 goto done; 2807 } 2808 } 2809 cow_done: 2810 p->nodes[level] = b; 2811 /* 2812 * Leave path with blocking locks to avoid massive 2813 * lock context switch, this is made on purpose. 2814 */ 2815 2816 /* 2817 * we have a lock on b and as long as we aren't changing 2818 * the tree, there is no way to for the items in b to change. 2819 * It is safe to drop the lock on our parent before we 2820 * go through the expensive btree search on b. 2821 * 2822 * If we're inserting or deleting (ins_len != 0), then we might 2823 * be changing slot zero, which may require changing the parent. 2824 * So, we can't drop the lock until after we know which slot 2825 * we're operating on. 2826 */ 2827 if (!ins_len && !p->keep_locks) { 2828 int u = level + 1; 2829 2830 if (u < BTRFS_MAX_LEVEL && p->locks[u]) { 2831 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]); 2832 p->locks[u] = 0; 2833 } 2834 } 2835 2836 ret = key_search(b, key, level, &prev_cmp, &slot); 2837 if (ret < 0) 2838 goto done; 2839 2840 if (level != 0) { 2841 int dec = 0; 2842 if (ret && slot > 0) { 2843 dec = 1; 2844 slot -= 1; 2845 } 2846 p->slots[level] = slot; 2847 err = setup_nodes_for_search(trans, root, p, b, level, 2848 ins_len, &write_lock_level); 2849 if (err == -EAGAIN) 2850 goto again; 2851 if (err) { 2852 ret = err; 2853 goto done; 2854 } 2855 b = p->nodes[level]; 2856 slot = p->slots[level]; 2857 2858 /* 2859 * slot 0 is special, if we change the key 2860 * we have to update the parent pointer 2861 * which means we must have a write lock 2862 * on the parent 2863 */ 2864 if (slot == 0 && ins_len && 2865 write_lock_level < level + 1) { 2866 write_lock_level = level + 1; 2867 btrfs_release_path(p); 2868 goto again; 2869 } 2870 2871 unlock_up(p, level, lowest_unlock, 2872 min_write_lock_level, &write_lock_level); 2873 2874 if (level == lowest_level) { 2875 if (dec) 2876 p->slots[level]++; 2877 goto done; 2878 } 2879 2880 err = read_block_for_search(root, p, &b, level, 2881 slot, key); 2882 if (err == -EAGAIN) 2883 goto again; 2884 if (err) { 2885 ret = err; 2886 goto done; 2887 } 2888 2889 if (!p->skip_locking) { 2890 level = btrfs_header_level(b); 2891 if (level <= write_lock_level) { 2892 err = btrfs_try_tree_write_lock(b); 2893 if (!err) { 2894 btrfs_set_path_blocking(p); 2895 btrfs_tree_lock(b); 2896 } 2897 p->locks[level] = BTRFS_WRITE_LOCK; 2898 } else { 2899 err = btrfs_tree_read_lock_atomic(b); 2900 if (!err) { 2901 btrfs_set_path_blocking(p); 2902 btrfs_tree_read_lock(b); 2903 } 2904 p->locks[level] = BTRFS_READ_LOCK; 2905 } 2906 p->nodes[level] = b; 2907 } 2908 } else { 2909 p->slots[level] = slot; 2910 if (ins_len > 0 && 2911 btrfs_leaf_free_space(b) < ins_len) { 2912 if (write_lock_level < 1) { 2913 write_lock_level = 1; 2914 btrfs_release_path(p); 2915 goto again; 2916 } 2917 2918 btrfs_set_path_blocking(p); 2919 err = split_leaf(trans, root, key, 2920 p, ins_len, ret == 0); 2921 2922 BUG_ON(err > 0); 2923 if (err) { 2924 ret = err; 2925 goto done; 2926 } 2927 } 2928 if (!p->search_for_split) 2929 unlock_up(p, level, lowest_unlock, 2930 min_write_lock_level, NULL); 2931 goto done; 2932 } 2933 } 2934 ret = 1; 2935 done: 2936 /* 2937 * we don't really know what they plan on doing with the path 2938 * from here on, so for now just mark it as blocking 2939 */ 2940 if (!p->leave_spinning) 2941 btrfs_set_path_blocking(p); 2942 if (ret < 0 && !p->skip_release_on_error) 2943 btrfs_release_path(p); 2944 return ret; 2945 } 2946 2947 /* 2948 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the 2949 * current state of the tree together with the operations recorded in the tree 2950 * modification log to search for the key in a previous version of this tree, as 2951 * denoted by the time_seq parameter. 2952 * 2953 * Naturally, there is no support for insert, delete or cow operations. 2954 * 2955 * The resulting path and return value will be set up as if we called 2956 * btrfs_search_slot at that point in time with ins_len and cow both set to 0. 2957 */ 2958 int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key, 2959 struct btrfs_path *p, u64 time_seq) 2960 { 2961 struct btrfs_fs_info *fs_info = root->fs_info; 2962 struct extent_buffer *b; 2963 int slot; 2964 int ret; 2965 int err; 2966 int level; 2967 int lowest_unlock = 1; 2968 u8 lowest_level = 0; 2969 int prev_cmp = -1; 2970 2971 lowest_level = p->lowest_level; 2972 WARN_ON(p->nodes[0] != NULL); 2973 2974 if (p->search_commit_root) { 2975 BUG_ON(time_seq); 2976 return btrfs_search_slot(NULL, root, key, p, 0, 0); 2977 } 2978 2979 again: 2980 b = get_old_root(root, time_seq); 2981 if (!b) { 2982 ret = -EIO; 2983 goto done; 2984 } 2985 level = btrfs_header_level(b); 2986 p->locks[level] = BTRFS_READ_LOCK; 2987 2988 while (b) { 2989 level = btrfs_header_level(b); 2990 p->nodes[level] = b; 2991 2992 /* 2993 * we have a lock on b and as long as we aren't changing 2994 * the tree, there is no way to for the items in b to change. 2995 * It is safe to drop the lock on our parent before we 2996 * go through the expensive btree search on b. 2997 */ 2998 btrfs_unlock_up_safe(p, level + 1); 2999 3000 /* 3001 * Since we can unwind ebs we want to do a real search every 3002 * time. 3003 */ 3004 prev_cmp = -1; 3005 ret = key_search(b, key, level, &prev_cmp, &slot); 3006 if (ret < 0) 3007 goto done; 3008 3009 if (level != 0) { 3010 int dec = 0; 3011 if (ret && slot > 0) { 3012 dec = 1; 3013 slot -= 1; 3014 } 3015 p->slots[level] = slot; 3016 unlock_up(p, level, lowest_unlock, 0, NULL); 3017 3018 if (level == lowest_level) { 3019 if (dec) 3020 p->slots[level]++; 3021 goto done; 3022 } 3023 3024 err = read_block_for_search(root, p, &b, level, 3025 slot, key); 3026 if (err == -EAGAIN) 3027 goto again; 3028 if (err) { 3029 ret = err; 3030 goto done; 3031 } 3032 3033 level = btrfs_header_level(b); 3034 err = btrfs_tree_read_lock_atomic(b); 3035 if (!err) { 3036 btrfs_set_path_blocking(p); 3037 btrfs_tree_read_lock(b); 3038 } 3039 b = tree_mod_log_rewind(fs_info, p, b, time_seq); 3040 if (!b) { 3041 ret = -ENOMEM; 3042 goto done; 3043 } 3044 p->locks[level] = BTRFS_READ_LOCK; 3045 p->nodes[level] = b; 3046 } else { 3047 p->slots[level] = slot; 3048 unlock_up(p, level, lowest_unlock, 0, NULL); 3049 goto done; 3050 } 3051 } 3052 ret = 1; 3053 done: 3054 if (!p->leave_spinning) 3055 btrfs_set_path_blocking(p); 3056 if (ret < 0) 3057 btrfs_release_path(p); 3058 3059 return ret; 3060 } 3061 3062 /* 3063 * helper to use instead of search slot if no exact match is needed but 3064 * instead the next or previous item should be returned. 3065 * When find_higher is true, the next higher item is returned, the next lower 3066 * otherwise. 3067 * When return_any and find_higher are both true, and no higher item is found, 3068 * return the next lower instead. 3069 * When return_any is true and find_higher is false, and no lower item is found, 3070 * return the next higher instead. 3071 * It returns 0 if any item is found, 1 if none is found (tree empty), and 3072 * < 0 on error 3073 */ 3074 int btrfs_search_slot_for_read(struct btrfs_root *root, 3075 const struct btrfs_key *key, 3076 struct btrfs_path *p, int find_higher, 3077 int return_any) 3078 { 3079 int ret; 3080 struct extent_buffer *leaf; 3081 3082 again: 3083 ret = btrfs_search_slot(NULL, root, key, p, 0, 0); 3084 if (ret <= 0) 3085 return ret; 3086 /* 3087 * a return value of 1 means the path is at the position where the 3088 * item should be inserted. Normally this is the next bigger item, 3089 * but in case the previous item is the last in a leaf, path points 3090 * to the first free slot in the previous leaf, i.e. at an invalid 3091 * item. 3092 */ 3093 leaf = p->nodes[0]; 3094 3095 if (find_higher) { 3096 if (p->slots[0] >= btrfs_header_nritems(leaf)) { 3097 ret = btrfs_next_leaf(root, p); 3098 if (ret <= 0) 3099 return ret; 3100 if (!return_any) 3101 return 1; 3102 /* 3103 * no higher item found, return the next 3104 * lower instead 3105 */ 3106 return_any = 0; 3107 find_higher = 0; 3108 btrfs_release_path(p); 3109 goto again; 3110 } 3111 } else { 3112 if (p->slots[0] == 0) { 3113 ret = btrfs_prev_leaf(root, p); 3114 if (ret < 0) 3115 return ret; 3116 if (!ret) { 3117 leaf = p->nodes[0]; 3118 if (p->slots[0] == btrfs_header_nritems(leaf)) 3119 p->slots[0]--; 3120 return 0; 3121 } 3122 if (!return_any) 3123 return 1; 3124 /* 3125 * no lower item found, return the next 3126 * higher instead 3127 */ 3128 return_any = 0; 3129 find_higher = 1; 3130 btrfs_release_path(p); 3131 goto again; 3132 } else { 3133 --p->slots[0]; 3134 } 3135 } 3136 return 0; 3137 } 3138 3139 /* 3140 * adjust the pointers going up the tree, starting at level 3141 * making sure the right key of each node is points to 'key'. 3142 * This is used after shifting pointers to the left, so it stops 3143 * fixing up pointers when a given leaf/node is not in slot 0 of the 3144 * higher levels 3145 * 3146 */ 3147 static void fixup_low_keys(struct btrfs_path *path, 3148 struct btrfs_disk_key *key, int level) 3149 { 3150 int i; 3151 struct extent_buffer *t; 3152 int ret; 3153 3154 for (i = level; i < BTRFS_MAX_LEVEL; i++) { 3155 int tslot = path->slots[i]; 3156 3157 if (!path->nodes[i]) 3158 break; 3159 t = path->nodes[i]; 3160 ret = tree_mod_log_insert_key(t, tslot, MOD_LOG_KEY_REPLACE, 3161 GFP_ATOMIC); 3162 BUG_ON(ret < 0); 3163 btrfs_set_node_key(t, key, tslot); 3164 btrfs_mark_buffer_dirty(path->nodes[i]); 3165 if (tslot != 0) 3166 break; 3167 } 3168 } 3169 3170 /* 3171 * update item key. 3172 * 3173 * This function isn't completely safe. It's the caller's responsibility 3174 * that the new key won't break the order 3175 */ 3176 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info, 3177 struct btrfs_path *path, 3178 const struct btrfs_key *new_key) 3179 { 3180 struct btrfs_disk_key disk_key; 3181 struct extent_buffer *eb; 3182 int slot; 3183 3184 eb = path->nodes[0]; 3185 slot = path->slots[0]; 3186 if (slot > 0) { 3187 btrfs_item_key(eb, &disk_key, slot - 1); 3188 if (unlikely(comp_keys(&disk_key, new_key) >= 0)) { 3189 btrfs_crit(fs_info, 3190 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3191 slot, btrfs_disk_key_objectid(&disk_key), 3192 btrfs_disk_key_type(&disk_key), 3193 btrfs_disk_key_offset(&disk_key), 3194 new_key->objectid, new_key->type, 3195 new_key->offset); 3196 btrfs_print_leaf(eb); 3197 BUG(); 3198 } 3199 } 3200 if (slot < btrfs_header_nritems(eb) - 1) { 3201 btrfs_item_key(eb, &disk_key, slot + 1); 3202 if (unlikely(comp_keys(&disk_key, new_key) <= 0)) { 3203 btrfs_crit(fs_info, 3204 "slot %u key (%llu %u %llu) new key (%llu %u %llu)", 3205 slot, btrfs_disk_key_objectid(&disk_key), 3206 btrfs_disk_key_type(&disk_key), 3207 btrfs_disk_key_offset(&disk_key), 3208 new_key->objectid, new_key->type, 3209 new_key->offset); 3210 btrfs_print_leaf(eb); 3211 BUG(); 3212 } 3213 } 3214 3215 btrfs_cpu_key_to_disk(&disk_key, new_key); 3216 btrfs_set_item_key(eb, &disk_key, slot); 3217 btrfs_mark_buffer_dirty(eb); 3218 if (slot == 0) 3219 fixup_low_keys(path, &disk_key, 1); 3220 } 3221 3222 /* 3223 * try to push data from one node into the next node left in the 3224 * tree. 3225 * 3226 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible 3227 * error, and > 0 if there was no room in the left hand block. 3228 */ 3229 static int push_node_left(struct btrfs_trans_handle *trans, 3230 struct extent_buffer *dst, 3231 struct extent_buffer *src, int empty) 3232 { 3233 struct btrfs_fs_info *fs_info = trans->fs_info; 3234 int push_items = 0; 3235 int src_nritems; 3236 int dst_nritems; 3237 int ret = 0; 3238 3239 src_nritems = btrfs_header_nritems(src); 3240 dst_nritems = btrfs_header_nritems(dst); 3241 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3242 WARN_ON(btrfs_header_generation(src) != trans->transid); 3243 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3244 3245 if (!empty && src_nritems <= 8) 3246 return 1; 3247 3248 if (push_items <= 0) 3249 return 1; 3250 3251 if (empty) { 3252 push_items = min(src_nritems, push_items); 3253 if (push_items < src_nritems) { 3254 /* leave at least 8 pointers in the node if 3255 * we aren't going to empty it 3256 */ 3257 if (src_nritems - push_items < 8) { 3258 if (push_items <= 8) 3259 return 1; 3260 push_items -= 8; 3261 } 3262 } 3263 } else 3264 push_items = min(src_nritems - 8, push_items); 3265 3266 ret = tree_mod_log_eb_copy(dst, src, dst_nritems, 0, push_items); 3267 if (ret) { 3268 btrfs_abort_transaction(trans, ret); 3269 return ret; 3270 } 3271 copy_extent_buffer(dst, src, 3272 btrfs_node_key_ptr_offset(dst_nritems), 3273 btrfs_node_key_ptr_offset(0), 3274 push_items * sizeof(struct btrfs_key_ptr)); 3275 3276 if (push_items < src_nritems) { 3277 /* 3278 * Don't call tree_mod_log_insert_move here, key removal was 3279 * already fully logged by tree_mod_log_eb_copy above. 3280 */ 3281 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0), 3282 btrfs_node_key_ptr_offset(push_items), 3283 (src_nritems - push_items) * 3284 sizeof(struct btrfs_key_ptr)); 3285 } 3286 btrfs_set_header_nritems(src, src_nritems - push_items); 3287 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3288 btrfs_mark_buffer_dirty(src); 3289 btrfs_mark_buffer_dirty(dst); 3290 3291 return ret; 3292 } 3293 3294 /* 3295 * try to push data from one node into the next node right in the 3296 * tree. 3297 * 3298 * returns 0 if some ptrs were pushed, < 0 if there was some horrible 3299 * error, and > 0 if there was no room in the right hand block. 3300 * 3301 * this will only push up to 1/2 the contents of the left node over 3302 */ 3303 static int balance_node_right(struct btrfs_trans_handle *trans, 3304 struct extent_buffer *dst, 3305 struct extent_buffer *src) 3306 { 3307 struct btrfs_fs_info *fs_info = trans->fs_info; 3308 int push_items = 0; 3309 int max_push; 3310 int src_nritems; 3311 int dst_nritems; 3312 int ret = 0; 3313 3314 WARN_ON(btrfs_header_generation(src) != trans->transid); 3315 WARN_ON(btrfs_header_generation(dst) != trans->transid); 3316 3317 src_nritems = btrfs_header_nritems(src); 3318 dst_nritems = btrfs_header_nritems(dst); 3319 push_items = BTRFS_NODEPTRS_PER_BLOCK(fs_info) - dst_nritems; 3320 if (push_items <= 0) 3321 return 1; 3322 3323 if (src_nritems < 4) 3324 return 1; 3325 3326 max_push = src_nritems / 2 + 1; 3327 /* don't try to empty the node */ 3328 if (max_push >= src_nritems) 3329 return 1; 3330 3331 if (max_push < push_items) 3332 push_items = max_push; 3333 3334 ret = tree_mod_log_insert_move(dst, push_items, 0, dst_nritems); 3335 BUG_ON(ret < 0); 3336 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items), 3337 btrfs_node_key_ptr_offset(0), 3338 (dst_nritems) * 3339 sizeof(struct btrfs_key_ptr)); 3340 3341 ret = tree_mod_log_eb_copy(dst, src, 0, src_nritems - push_items, 3342 push_items); 3343 if (ret) { 3344 btrfs_abort_transaction(trans, ret); 3345 return ret; 3346 } 3347 copy_extent_buffer(dst, src, 3348 btrfs_node_key_ptr_offset(0), 3349 btrfs_node_key_ptr_offset(src_nritems - push_items), 3350 push_items * sizeof(struct btrfs_key_ptr)); 3351 3352 btrfs_set_header_nritems(src, src_nritems - push_items); 3353 btrfs_set_header_nritems(dst, dst_nritems + push_items); 3354 3355 btrfs_mark_buffer_dirty(src); 3356 btrfs_mark_buffer_dirty(dst); 3357 3358 return ret; 3359 } 3360 3361 /* 3362 * helper function to insert a new root level in the tree. 3363 * A new node is allocated, and a single item is inserted to 3364 * point to the existing root 3365 * 3366 * returns zero on success or < 0 on failure. 3367 */ 3368 static noinline int insert_new_root(struct btrfs_trans_handle *trans, 3369 struct btrfs_root *root, 3370 struct btrfs_path *path, int level) 3371 { 3372 struct btrfs_fs_info *fs_info = root->fs_info; 3373 u64 lower_gen; 3374 struct extent_buffer *lower; 3375 struct extent_buffer *c; 3376 struct extent_buffer *old; 3377 struct btrfs_disk_key lower_key; 3378 int ret; 3379 3380 BUG_ON(path->nodes[level]); 3381 BUG_ON(path->nodes[level-1] != root->node); 3382 3383 lower = path->nodes[level-1]; 3384 if (level == 1) 3385 btrfs_item_key(lower, &lower_key, 0); 3386 else 3387 btrfs_node_key(lower, &lower_key, 0); 3388 3389 c = alloc_tree_block_no_bg_flush(trans, root, 0, &lower_key, level, 3390 root->node->start, 0); 3391 if (IS_ERR(c)) 3392 return PTR_ERR(c); 3393 3394 root_add_used(root, fs_info->nodesize); 3395 3396 btrfs_set_header_nritems(c, 1); 3397 btrfs_set_node_key(c, &lower_key, 0); 3398 btrfs_set_node_blockptr(c, 0, lower->start); 3399 lower_gen = btrfs_header_generation(lower); 3400 WARN_ON(lower_gen != trans->transid); 3401 3402 btrfs_set_node_ptr_generation(c, 0, lower_gen); 3403 3404 btrfs_mark_buffer_dirty(c); 3405 3406 old = root->node; 3407 ret = tree_mod_log_insert_root(root->node, c, 0); 3408 BUG_ON(ret < 0); 3409 rcu_assign_pointer(root->node, c); 3410 3411 /* the super has an extra ref to root->node */ 3412 free_extent_buffer(old); 3413 3414 add_root_to_dirty_list(root); 3415 extent_buffer_get(c); 3416 path->nodes[level] = c; 3417 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING; 3418 path->slots[level] = 0; 3419 return 0; 3420 } 3421 3422 /* 3423 * worker function to insert a single pointer in a node. 3424 * the node should have enough room for the pointer already 3425 * 3426 * slot and level indicate where you want the key to go, and 3427 * blocknr is the block the key points to. 3428 */ 3429 static void insert_ptr(struct btrfs_trans_handle *trans, 3430 struct btrfs_path *path, 3431 struct btrfs_disk_key *key, u64 bytenr, 3432 int slot, int level) 3433 { 3434 struct extent_buffer *lower; 3435 int nritems; 3436 int ret; 3437 3438 BUG_ON(!path->nodes[level]); 3439 btrfs_assert_tree_locked(path->nodes[level]); 3440 lower = path->nodes[level]; 3441 nritems = btrfs_header_nritems(lower); 3442 BUG_ON(slot > nritems); 3443 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(trans->fs_info)); 3444 if (slot != nritems) { 3445 if (level) { 3446 ret = tree_mod_log_insert_move(lower, slot + 1, slot, 3447 nritems - slot); 3448 BUG_ON(ret < 0); 3449 } 3450 memmove_extent_buffer(lower, 3451 btrfs_node_key_ptr_offset(slot + 1), 3452 btrfs_node_key_ptr_offset(slot), 3453 (nritems - slot) * sizeof(struct btrfs_key_ptr)); 3454 } 3455 if (level) { 3456 ret = tree_mod_log_insert_key(lower, slot, MOD_LOG_KEY_ADD, 3457 GFP_NOFS); 3458 BUG_ON(ret < 0); 3459 } 3460 btrfs_set_node_key(lower, key, slot); 3461 btrfs_set_node_blockptr(lower, slot, bytenr); 3462 WARN_ON(trans->transid == 0); 3463 btrfs_set_node_ptr_generation(lower, slot, trans->transid); 3464 btrfs_set_header_nritems(lower, nritems + 1); 3465 btrfs_mark_buffer_dirty(lower); 3466 } 3467 3468 /* 3469 * split the node at the specified level in path in two. 3470 * The path is corrected to point to the appropriate node after the split 3471 * 3472 * Before splitting this tries to make some room in the node by pushing 3473 * left and right, if either one works, it returns right away. 3474 * 3475 * returns 0 on success and < 0 on failure 3476 */ 3477 static noinline int split_node(struct btrfs_trans_handle *trans, 3478 struct btrfs_root *root, 3479 struct btrfs_path *path, int level) 3480 { 3481 struct btrfs_fs_info *fs_info = root->fs_info; 3482 struct extent_buffer *c; 3483 struct extent_buffer *split; 3484 struct btrfs_disk_key disk_key; 3485 int mid; 3486 int ret; 3487 u32 c_nritems; 3488 3489 c = path->nodes[level]; 3490 WARN_ON(btrfs_header_generation(c) != trans->transid); 3491 if (c == root->node) { 3492 /* 3493 * trying to split the root, lets make a new one 3494 * 3495 * tree mod log: We don't log_removal old root in 3496 * insert_new_root, because that root buffer will be kept as a 3497 * normal node. We are going to log removal of half of the 3498 * elements below with tree_mod_log_eb_copy. We're holding a 3499 * tree lock on the buffer, which is why we cannot race with 3500 * other tree_mod_log users. 3501 */ 3502 ret = insert_new_root(trans, root, path, level + 1); 3503 if (ret) 3504 return ret; 3505 } else { 3506 ret = push_nodes_for_insert(trans, root, path, level); 3507 c = path->nodes[level]; 3508 if (!ret && btrfs_header_nritems(c) < 3509 BTRFS_NODEPTRS_PER_BLOCK(fs_info) - 3) 3510 return 0; 3511 if (ret < 0) 3512 return ret; 3513 } 3514 3515 c_nritems = btrfs_header_nritems(c); 3516 mid = (c_nritems + 1) / 2; 3517 btrfs_node_key(c, &disk_key, mid); 3518 3519 split = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, level, 3520 c->start, 0); 3521 if (IS_ERR(split)) 3522 return PTR_ERR(split); 3523 3524 root_add_used(root, fs_info->nodesize); 3525 ASSERT(btrfs_header_level(c) == level); 3526 3527 ret = tree_mod_log_eb_copy(split, c, 0, mid, c_nritems - mid); 3528 if (ret) { 3529 btrfs_abort_transaction(trans, ret); 3530 return ret; 3531 } 3532 copy_extent_buffer(split, c, 3533 btrfs_node_key_ptr_offset(0), 3534 btrfs_node_key_ptr_offset(mid), 3535 (c_nritems - mid) * sizeof(struct btrfs_key_ptr)); 3536 btrfs_set_header_nritems(split, c_nritems - mid); 3537 btrfs_set_header_nritems(c, mid); 3538 ret = 0; 3539 3540 btrfs_mark_buffer_dirty(c); 3541 btrfs_mark_buffer_dirty(split); 3542 3543 insert_ptr(trans, path, &disk_key, split->start, 3544 path->slots[level + 1] + 1, level + 1); 3545 3546 if (path->slots[level] >= mid) { 3547 path->slots[level] -= mid; 3548 btrfs_tree_unlock(c); 3549 free_extent_buffer(c); 3550 path->nodes[level] = split; 3551 path->slots[level + 1] += 1; 3552 } else { 3553 btrfs_tree_unlock(split); 3554 free_extent_buffer(split); 3555 } 3556 return ret; 3557 } 3558 3559 /* 3560 * how many bytes are required to store the items in a leaf. start 3561 * and nr indicate which items in the leaf to check. This totals up the 3562 * space used both by the item structs and the item data 3563 */ 3564 static int leaf_space_used(struct extent_buffer *l, int start, int nr) 3565 { 3566 struct btrfs_item *start_item; 3567 struct btrfs_item *end_item; 3568 struct btrfs_map_token token; 3569 int data_len; 3570 int nritems = btrfs_header_nritems(l); 3571 int end = min(nritems, start + nr) - 1; 3572 3573 if (!nr) 3574 return 0; 3575 btrfs_init_map_token(&token); 3576 start_item = btrfs_item_nr(start); 3577 end_item = btrfs_item_nr(end); 3578 data_len = btrfs_token_item_offset(l, start_item, &token) + 3579 btrfs_token_item_size(l, start_item, &token); 3580 data_len = data_len - btrfs_token_item_offset(l, end_item, &token); 3581 data_len += sizeof(struct btrfs_item) * nr; 3582 WARN_ON(data_len < 0); 3583 return data_len; 3584 } 3585 3586 /* 3587 * The space between the end of the leaf items and 3588 * the start of the leaf data. IOW, how much room 3589 * the leaf has left for both items and data 3590 */ 3591 noinline int btrfs_leaf_free_space(struct extent_buffer *leaf) 3592 { 3593 struct btrfs_fs_info *fs_info = leaf->fs_info; 3594 int nritems = btrfs_header_nritems(leaf); 3595 int ret; 3596 3597 ret = BTRFS_LEAF_DATA_SIZE(fs_info) - leaf_space_used(leaf, 0, nritems); 3598 if (ret < 0) { 3599 btrfs_crit(fs_info, 3600 "leaf free space ret %d, leaf data size %lu, used %d nritems %d", 3601 ret, 3602 (unsigned long) BTRFS_LEAF_DATA_SIZE(fs_info), 3603 leaf_space_used(leaf, 0, nritems), nritems); 3604 } 3605 return ret; 3606 } 3607 3608 /* 3609 * min slot controls the lowest index we're willing to push to the 3610 * right. We'll push up to and including min_slot, but no lower 3611 */ 3612 static noinline int __push_leaf_right(struct btrfs_path *path, 3613 int data_size, int empty, 3614 struct extent_buffer *right, 3615 int free_space, u32 left_nritems, 3616 u32 min_slot) 3617 { 3618 struct btrfs_fs_info *fs_info = right->fs_info; 3619 struct extent_buffer *left = path->nodes[0]; 3620 struct extent_buffer *upper = path->nodes[1]; 3621 struct btrfs_map_token token; 3622 struct btrfs_disk_key disk_key; 3623 int slot; 3624 u32 i; 3625 int push_space = 0; 3626 int push_items = 0; 3627 struct btrfs_item *item; 3628 u32 nr; 3629 u32 right_nritems; 3630 u32 data_end; 3631 u32 this_item_size; 3632 3633 btrfs_init_map_token(&token); 3634 3635 if (empty) 3636 nr = 0; 3637 else 3638 nr = max_t(u32, 1, min_slot); 3639 3640 if (path->slots[0] >= left_nritems) 3641 push_space += data_size; 3642 3643 slot = path->slots[1]; 3644 i = left_nritems - 1; 3645 while (i >= nr) { 3646 item = btrfs_item_nr(i); 3647 3648 if (!empty && push_items > 0) { 3649 if (path->slots[0] > i) 3650 break; 3651 if (path->slots[0] == i) { 3652 int space = btrfs_leaf_free_space(left); 3653 3654 if (space + push_space * 2 > free_space) 3655 break; 3656 } 3657 } 3658 3659 if (path->slots[0] == i) 3660 push_space += data_size; 3661 3662 this_item_size = btrfs_item_size(left, item); 3663 if (this_item_size + sizeof(*item) + push_space > free_space) 3664 break; 3665 3666 push_items++; 3667 push_space += this_item_size + sizeof(*item); 3668 if (i == 0) 3669 break; 3670 i--; 3671 } 3672 3673 if (push_items == 0) 3674 goto out_unlock; 3675 3676 WARN_ON(!empty && push_items == left_nritems); 3677 3678 /* push left to right */ 3679 right_nritems = btrfs_header_nritems(right); 3680 3681 push_space = btrfs_item_end_nr(left, left_nritems - push_items); 3682 push_space -= leaf_data_end(left); 3683 3684 /* make room in the right data area */ 3685 data_end = leaf_data_end(right); 3686 memmove_extent_buffer(right, 3687 BTRFS_LEAF_DATA_OFFSET + data_end - push_space, 3688 BTRFS_LEAF_DATA_OFFSET + data_end, 3689 BTRFS_LEAF_DATA_SIZE(fs_info) - data_end); 3690 3691 /* copy from the left data area */ 3692 copy_extent_buffer(right, left, BTRFS_LEAF_DATA_OFFSET + 3693 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3694 BTRFS_LEAF_DATA_OFFSET + leaf_data_end(left), 3695 push_space); 3696 3697 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items), 3698 btrfs_item_nr_offset(0), 3699 right_nritems * sizeof(struct btrfs_item)); 3700 3701 /* copy the items from left to right */ 3702 copy_extent_buffer(right, left, btrfs_item_nr_offset(0), 3703 btrfs_item_nr_offset(left_nritems - push_items), 3704 push_items * sizeof(struct btrfs_item)); 3705 3706 /* update the item pointers */ 3707 right_nritems += push_items; 3708 btrfs_set_header_nritems(right, right_nritems); 3709 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3710 for (i = 0; i < right_nritems; i++) { 3711 item = btrfs_item_nr(i); 3712 push_space -= btrfs_token_item_size(right, item, &token); 3713 btrfs_set_token_item_offset(right, item, push_space, &token); 3714 } 3715 3716 left_nritems -= push_items; 3717 btrfs_set_header_nritems(left, left_nritems); 3718 3719 if (left_nritems) 3720 btrfs_mark_buffer_dirty(left); 3721 else 3722 btrfs_clean_tree_block(left); 3723 3724 btrfs_mark_buffer_dirty(right); 3725 3726 btrfs_item_key(right, &disk_key, 0); 3727 btrfs_set_node_key(upper, &disk_key, slot + 1); 3728 btrfs_mark_buffer_dirty(upper); 3729 3730 /* then fixup the leaf pointer in the path */ 3731 if (path->slots[0] >= left_nritems) { 3732 path->slots[0] -= left_nritems; 3733 if (btrfs_header_nritems(path->nodes[0]) == 0) 3734 btrfs_clean_tree_block(path->nodes[0]); 3735 btrfs_tree_unlock(path->nodes[0]); 3736 free_extent_buffer(path->nodes[0]); 3737 path->nodes[0] = right; 3738 path->slots[1] += 1; 3739 } else { 3740 btrfs_tree_unlock(right); 3741 free_extent_buffer(right); 3742 } 3743 return 0; 3744 3745 out_unlock: 3746 btrfs_tree_unlock(right); 3747 free_extent_buffer(right); 3748 return 1; 3749 } 3750 3751 /* 3752 * push some data in the path leaf to the right, trying to free up at 3753 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3754 * 3755 * returns 1 if the push failed because the other node didn't have enough 3756 * room, 0 if everything worked out and < 0 if there were major errors. 3757 * 3758 * this will push starting from min_slot to the end of the leaf. It won't 3759 * push any slot lower than min_slot 3760 */ 3761 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root 3762 *root, struct btrfs_path *path, 3763 int min_data_size, int data_size, 3764 int empty, u32 min_slot) 3765 { 3766 struct extent_buffer *left = path->nodes[0]; 3767 struct extent_buffer *right; 3768 struct extent_buffer *upper; 3769 int slot; 3770 int free_space; 3771 u32 left_nritems; 3772 int ret; 3773 3774 if (!path->nodes[1]) 3775 return 1; 3776 3777 slot = path->slots[1]; 3778 upper = path->nodes[1]; 3779 if (slot >= btrfs_header_nritems(upper) - 1) 3780 return 1; 3781 3782 btrfs_assert_tree_locked(path->nodes[1]); 3783 3784 right = read_node_slot(upper, slot + 1); 3785 /* 3786 * slot + 1 is not valid or we fail to read the right node, 3787 * no big deal, just return. 3788 */ 3789 if (IS_ERR(right)) 3790 return 1; 3791 3792 btrfs_tree_lock(right); 3793 btrfs_set_lock_blocking_write(right); 3794 3795 free_space = btrfs_leaf_free_space(right); 3796 if (free_space < data_size) 3797 goto out_unlock; 3798 3799 /* cow and double check */ 3800 ret = btrfs_cow_block(trans, root, right, upper, 3801 slot + 1, &right); 3802 if (ret) 3803 goto out_unlock; 3804 3805 free_space = btrfs_leaf_free_space(right); 3806 if (free_space < data_size) 3807 goto out_unlock; 3808 3809 left_nritems = btrfs_header_nritems(left); 3810 if (left_nritems == 0) 3811 goto out_unlock; 3812 3813 if (path->slots[0] == left_nritems && !empty) { 3814 /* Key greater than all keys in the leaf, right neighbor has 3815 * enough room for it and we're not emptying our leaf to delete 3816 * it, therefore use right neighbor to insert the new item and 3817 * no need to touch/dirty our left leaf. */ 3818 btrfs_tree_unlock(left); 3819 free_extent_buffer(left); 3820 path->nodes[0] = right; 3821 path->slots[0] = 0; 3822 path->slots[1]++; 3823 return 0; 3824 } 3825 3826 return __push_leaf_right(path, min_data_size, empty, 3827 right, free_space, left_nritems, min_slot); 3828 out_unlock: 3829 btrfs_tree_unlock(right); 3830 free_extent_buffer(right); 3831 return 1; 3832 } 3833 3834 /* 3835 * push some data in the path leaf to the left, trying to free up at 3836 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3837 * 3838 * max_slot can put a limit on how far into the leaf we'll push items. The 3839 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the 3840 * items 3841 */ 3842 static noinline int __push_leaf_left(struct btrfs_path *path, int data_size, 3843 int empty, struct extent_buffer *left, 3844 int free_space, u32 right_nritems, 3845 u32 max_slot) 3846 { 3847 struct btrfs_fs_info *fs_info = left->fs_info; 3848 struct btrfs_disk_key disk_key; 3849 struct extent_buffer *right = path->nodes[0]; 3850 int i; 3851 int push_space = 0; 3852 int push_items = 0; 3853 struct btrfs_item *item; 3854 u32 old_left_nritems; 3855 u32 nr; 3856 int ret = 0; 3857 u32 this_item_size; 3858 u32 old_left_item_size; 3859 struct btrfs_map_token token; 3860 3861 btrfs_init_map_token(&token); 3862 3863 if (empty) 3864 nr = min(right_nritems, max_slot); 3865 else 3866 nr = min(right_nritems - 1, max_slot); 3867 3868 for (i = 0; i < nr; i++) { 3869 item = btrfs_item_nr(i); 3870 3871 if (!empty && push_items > 0) { 3872 if (path->slots[0] < i) 3873 break; 3874 if (path->slots[0] == i) { 3875 int space = btrfs_leaf_free_space(right); 3876 3877 if (space + push_space * 2 > free_space) 3878 break; 3879 } 3880 } 3881 3882 if (path->slots[0] == i) 3883 push_space += data_size; 3884 3885 this_item_size = btrfs_item_size(right, item); 3886 if (this_item_size + sizeof(*item) + push_space > free_space) 3887 break; 3888 3889 push_items++; 3890 push_space += this_item_size + sizeof(*item); 3891 } 3892 3893 if (push_items == 0) { 3894 ret = 1; 3895 goto out; 3896 } 3897 WARN_ON(!empty && push_items == btrfs_header_nritems(right)); 3898 3899 /* push data from right to left */ 3900 copy_extent_buffer(left, right, 3901 btrfs_item_nr_offset(btrfs_header_nritems(left)), 3902 btrfs_item_nr_offset(0), 3903 push_items * sizeof(struct btrfs_item)); 3904 3905 push_space = BTRFS_LEAF_DATA_SIZE(fs_info) - 3906 btrfs_item_offset_nr(right, push_items - 1); 3907 3908 copy_extent_buffer(left, right, BTRFS_LEAF_DATA_OFFSET + 3909 leaf_data_end(left) - push_space, 3910 BTRFS_LEAF_DATA_OFFSET + 3911 btrfs_item_offset_nr(right, push_items - 1), 3912 push_space); 3913 old_left_nritems = btrfs_header_nritems(left); 3914 BUG_ON(old_left_nritems <= 0); 3915 3916 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1); 3917 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) { 3918 u32 ioff; 3919 3920 item = btrfs_item_nr(i); 3921 3922 ioff = btrfs_token_item_offset(left, item, &token); 3923 btrfs_set_token_item_offset(left, item, 3924 ioff - (BTRFS_LEAF_DATA_SIZE(fs_info) - old_left_item_size), 3925 &token); 3926 } 3927 btrfs_set_header_nritems(left, old_left_nritems + push_items); 3928 3929 /* fixup right node */ 3930 if (push_items > right_nritems) 3931 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items, 3932 right_nritems); 3933 3934 if (push_items < right_nritems) { 3935 push_space = btrfs_item_offset_nr(right, push_items - 1) - 3936 leaf_data_end(right); 3937 memmove_extent_buffer(right, BTRFS_LEAF_DATA_OFFSET + 3938 BTRFS_LEAF_DATA_SIZE(fs_info) - push_space, 3939 BTRFS_LEAF_DATA_OFFSET + 3940 leaf_data_end(right), push_space); 3941 3942 memmove_extent_buffer(right, btrfs_item_nr_offset(0), 3943 btrfs_item_nr_offset(push_items), 3944 (btrfs_header_nritems(right) - push_items) * 3945 sizeof(struct btrfs_item)); 3946 } 3947 right_nritems -= push_items; 3948 btrfs_set_header_nritems(right, right_nritems); 3949 push_space = BTRFS_LEAF_DATA_SIZE(fs_info); 3950 for (i = 0; i < right_nritems; i++) { 3951 item = btrfs_item_nr(i); 3952 3953 push_space = push_space - btrfs_token_item_size(right, 3954 item, &token); 3955 btrfs_set_token_item_offset(right, item, push_space, &token); 3956 } 3957 3958 btrfs_mark_buffer_dirty(left); 3959 if (right_nritems) 3960 btrfs_mark_buffer_dirty(right); 3961 else 3962 btrfs_clean_tree_block(right); 3963 3964 btrfs_item_key(right, &disk_key, 0); 3965 fixup_low_keys(path, &disk_key, 1); 3966 3967 /* then fixup the leaf pointer in the path */ 3968 if (path->slots[0] < push_items) { 3969 path->slots[0] += old_left_nritems; 3970 btrfs_tree_unlock(path->nodes[0]); 3971 free_extent_buffer(path->nodes[0]); 3972 path->nodes[0] = left; 3973 path->slots[1] -= 1; 3974 } else { 3975 btrfs_tree_unlock(left); 3976 free_extent_buffer(left); 3977 path->slots[0] -= push_items; 3978 } 3979 BUG_ON(path->slots[0] < 0); 3980 return ret; 3981 out: 3982 btrfs_tree_unlock(left); 3983 free_extent_buffer(left); 3984 return ret; 3985 } 3986 3987 /* 3988 * push some data in the path leaf to the left, trying to free up at 3989 * least data_size bytes. returns zero if the push worked, nonzero otherwise 3990 * 3991 * max_slot can put a limit on how far into the leaf we'll push items. The 3992 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the 3993 * items 3994 */ 3995 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root 3996 *root, struct btrfs_path *path, int min_data_size, 3997 int data_size, int empty, u32 max_slot) 3998 { 3999 struct extent_buffer *right = path->nodes[0]; 4000 struct extent_buffer *left; 4001 int slot; 4002 int free_space; 4003 u32 right_nritems; 4004 int ret = 0; 4005 4006 slot = path->slots[1]; 4007 if (slot == 0) 4008 return 1; 4009 if (!path->nodes[1]) 4010 return 1; 4011 4012 right_nritems = btrfs_header_nritems(right); 4013 if (right_nritems == 0) 4014 return 1; 4015 4016 btrfs_assert_tree_locked(path->nodes[1]); 4017 4018 left = read_node_slot(path->nodes[1], slot - 1); 4019 /* 4020 * slot - 1 is not valid or we fail to read the left node, 4021 * no big deal, just return. 4022 */ 4023 if (IS_ERR(left)) 4024 return 1; 4025 4026 btrfs_tree_lock(left); 4027 btrfs_set_lock_blocking_write(left); 4028 4029 free_space = btrfs_leaf_free_space(left); 4030 if (free_space < data_size) { 4031 ret = 1; 4032 goto out; 4033 } 4034 4035 /* cow and double check */ 4036 ret = btrfs_cow_block(trans, root, left, 4037 path->nodes[1], slot - 1, &left); 4038 if (ret) { 4039 /* we hit -ENOSPC, but it isn't fatal here */ 4040 if (ret == -ENOSPC) 4041 ret = 1; 4042 goto out; 4043 } 4044 4045 free_space = btrfs_leaf_free_space(left); 4046 if (free_space < data_size) { 4047 ret = 1; 4048 goto out; 4049 } 4050 4051 return __push_leaf_left(path, min_data_size, 4052 empty, left, free_space, right_nritems, 4053 max_slot); 4054 out: 4055 btrfs_tree_unlock(left); 4056 free_extent_buffer(left); 4057 return ret; 4058 } 4059 4060 /* 4061 * split the path's leaf in two, making sure there is at least data_size 4062 * available for the resulting leaf level of the path. 4063 */ 4064 static noinline void copy_for_split(struct btrfs_trans_handle *trans, 4065 struct btrfs_path *path, 4066 struct extent_buffer *l, 4067 struct extent_buffer *right, 4068 int slot, int mid, int nritems) 4069 { 4070 struct btrfs_fs_info *fs_info = trans->fs_info; 4071 int data_copy_size; 4072 int rt_data_off; 4073 int i; 4074 struct btrfs_disk_key disk_key; 4075 struct btrfs_map_token token; 4076 4077 btrfs_init_map_token(&token); 4078 4079 nritems = nritems - mid; 4080 btrfs_set_header_nritems(right, nritems); 4081 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(l); 4082 4083 copy_extent_buffer(right, l, btrfs_item_nr_offset(0), 4084 btrfs_item_nr_offset(mid), 4085 nritems * sizeof(struct btrfs_item)); 4086 4087 copy_extent_buffer(right, l, 4088 BTRFS_LEAF_DATA_OFFSET + BTRFS_LEAF_DATA_SIZE(fs_info) - 4089 data_copy_size, BTRFS_LEAF_DATA_OFFSET + 4090 leaf_data_end(l), data_copy_size); 4091 4092 rt_data_off = BTRFS_LEAF_DATA_SIZE(fs_info) - btrfs_item_end_nr(l, mid); 4093 4094 for (i = 0; i < nritems; i++) { 4095 struct btrfs_item *item = btrfs_item_nr(i); 4096 u32 ioff; 4097 4098 ioff = btrfs_token_item_offset(right, item, &token); 4099 btrfs_set_token_item_offset(right, item, 4100 ioff + rt_data_off, &token); 4101 } 4102 4103 btrfs_set_header_nritems(l, mid); 4104 btrfs_item_key(right, &disk_key, 0); 4105 insert_ptr(trans, path, &disk_key, right->start, path->slots[1] + 1, 1); 4106 4107 btrfs_mark_buffer_dirty(right); 4108 btrfs_mark_buffer_dirty(l); 4109 BUG_ON(path->slots[0] != slot); 4110 4111 if (mid <= slot) { 4112 btrfs_tree_unlock(path->nodes[0]); 4113 free_extent_buffer(path->nodes[0]); 4114 path->nodes[0] = right; 4115 path->slots[0] -= mid; 4116 path->slots[1] += 1; 4117 } else { 4118 btrfs_tree_unlock(right); 4119 free_extent_buffer(right); 4120 } 4121 4122 BUG_ON(path->slots[0] < 0); 4123 } 4124 4125 /* 4126 * double splits happen when we need to insert a big item in the middle 4127 * of a leaf. A double split can leave us with 3 mostly empty leaves: 4128 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ] 4129 * A B C 4130 * 4131 * We avoid this by trying to push the items on either side of our target 4132 * into the adjacent leaves. If all goes well we can avoid the double split 4133 * completely. 4134 */ 4135 static noinline int push_for_double_split(struct btrfs_trans_handle *trans, 4136 struct btrfs_root *root, 4137 struct btrfs_path *path, 4138 int data_size) 4139 { 4140 int ret; 4141 int progress = 0; 4142 int slot; 4143 u32 nritems; 4144 int space_needed = data_size; 4145 4146 slot = path->slots[0]; 4147 if (slot < btrfs_header_nritems(path->nodes[0])) 4148 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4149 4150 /* 4151 * try to push all the items after our slot into the 4152 * right leaf 4153 */ 4154 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot); 4155 if (ret < 0) 4156 return ret; 4157 4158 if (ret == 0) 4159 progress++; 4160 4161 nritems = btrfs_header_nritems(path->nodes[0]); 4162 /* 4163 * our goal is to get our slot at the start or end of a leaf. If 4164 * we've done so we're done 4165 */ 4166 if (path->slots[0] == 0 || path->slots[0] == nritems) 4167 return 0; 4168 4169 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4170 return 0; 4171 4172 /* try to push all the items before our slot into the next leaf */ 4173 slot = path->slots[0]; 4174 space_needed = data_size; 4175 if (slot > 0) 4176 space_needed -= btrfs_leaf_free_space(path->nodes[0]); 4177 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot); 4178 if (ret < 0) 4179 return ret; 4180 4181 if (ret == 0) 4182 progress++; 4183 4184 if (progress) 4185 return 0; 4186 return 1; 4187 } 4188 4189 /* 4190 * split the path's leaf in two, making sure there is at least data_size 4191 * available for the resulting leaf level of the path. 4192 * 4193 * returns 0 if all went well and < 0 on failure. 4194 */ 4195 static noinline int split_leaf(struct btrfs_trans_handle *trans, 4196 struct btrfs_root *root, 4197 const struct btrfs_key *ins_key, 4198 struct btrfs_path *path, int data_size, 4199 int extend) 4200 { 4201 struct btrfs_disk_key disk_key; 4202 struct extent_buffer *l; 4203 u32 nritems; 4204 int mid; 4205 int slot; 4206 struct extent_buffer *right; 4207 struct btrfs_fs_info *fs_info = root->fs_info; 4208 int ret = 0; 4209 int wret; 4210 int split; 4211 int num_doubles = 0; 4212 int tried_avoid_double = 0; 4213 4214 l = path->nodes[0]; 4215 slot = path->slots[0]; 4216 if (extend && data_size + btrfs_item_size_nr(l, slot) + 4217 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(fs_info)) 4218 return -EOVERFLOW; 4219 4220 /* first try to make some room by pushing left and right */ 4221 if (data_size && path->nodes[1]) { 4222 int space_needed = data_size; 4223 4224 if (slot < btrfs_header_nritems(l)) 4225 space_needed -= btrfs_leaf_free_space(l); 4226 4227 wret = push_leaf_right(trans, root, path, space_needed, 4228 space_needed, 0, 0); 4229 if (wret < 0) 4230 return wret; 4231 if (wret) { 4232 space_needed = data_size; 4233 if (slot > 0) 4234 space_needed -= btrfs_leaf_free_space(l); 4235 wret = push_leaf_left(trans, root, path, space_needed, 4236 space_needed, 0, (u32)-1); 4237 if (wret < 0) 4238 return wret; 4239 } 4240 l = path->nodes[0]; 4241 4242 /* did the pushes work? */ 4243 if (btrfs_leaf_free_space(l) >= data_size) 4244 return 0; 4245 } 4246 4247 if (!path->nodes[1]) { 4248 ret = insert_new_root(trans, root, path, 1); 4249 if (ret) 4250 return ret; 4251 } 4252 again: 4253 split = 1; 4254 l = path->nodes[0]; 4255 slot = path->slots[0]; 4256 nritems = btrfs_header_nritems(l); 4257 mid = (nritems + 1) / 2; 4258 4259 if (mid <= slot) { 4260 if (nritems == 1 || 4261 leaf_space_used(l, mid, nritems - mid) + data_size > 4262 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4263 if (slot >= nritems) { 4264 split = 0; 4265 } else { 4266 mid = slot; 4267 if (mid != nritems && 4268 leaf_space_used(l, mid, nritems - mid) + 4269 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4270 if (data_size && !tried_avoid_double) 4271 goto push_for_double; 4272 split = 2; 4273 } 4274 } 4275 } 4276 } else { 4277 if (leaf_space_used(l, 0, mid) + data_size > 4278 BTRFS_LEAF_DATA_SIZE(fs_info)) { 4279 if (!extend && data_size && slot == 0) { 4280 split = 0; 4281 } else if ((extend || !data_size) && slot == 0) { 4282 mid = 1; 4283 } else { 4284 mid = slot; 4285 if (mid != nritems && 4286 leaf_space_used(l, mid, nritems - mid) + 4287 data_size > BTRFS_LEAF_DATA_SIZE(fs_info)) { 4288 if (data_size && !tried_avoid_double) 4289 goto push_for_double; 4290 split = 2; 4291 } 4292 } 4293 } 4294 } 4295 4296 if (split == 0) 4297 btrfs_cpu_key_to_disk(&disk_key, ins_key); 4298 else 4299 btrfs_item_key(l, &disk_key, mid); 4300 4301 right = alloc_tree_block_no_bg_flush(trans, root, 0, &disk_key, 0, 4302 l->start, 0); 4303 if (IS_ERR(right)) 4304 return PTR_ERR(right); 4305 4306 root_add_used(root, fs_info->nodesize); 4307 4308 if (split == 0) { 4309 if (mid <= slot) { 4310 btrfs_set_header_nritems(right, 0); 4311 insert_ptr(trans, path, &disk_key, 4312 right->start, path->slots[1] + 1, 1); 4313 btrfs_tree_unlock(path->nodes[0]); 4314 free_extent_buffer(path->nodes[0]); 4315 path->nodes[0] = right; 4316 path->slots[0] = 0; 4317 path->slots[1] += 1; 4318 } else { 4319 btrfs_set_header_nritems(right, 0); 4320 insert_ptr(trans, path, &disk_key, 4321 right->start, path->slots[1], 1); 4322 btrfs_tree_unlock(path->nodes[0]); 4323 free_extent_buffer(path->nodes[0]); 4324 path->nodes[0] = right; 4325 path->slots[0] = 0; 4326 if (path->slots[1] == 0) 4327 fixup_low_keys(path, &disk_key, 1); 4328 } 4329 /* 4330 * We create a new leaf 'right' for the required ins_len and 4331 * we'll do btrfs_mark_buffer_dirty() on this leaf after copying 4332 * the content of ins_len to 'right'. 4333 */ 4334 return ret; 4335 } 4336 4337 copy_for_split(trans, path, l, right, slot, mid, nritems); 4338 4339 if (split == 2) { 4340 BUG_ON(num_doubles != 0); 4341 num_doubles++; 4342 goto again; 4343 } 4344 4345 return 0; 4346 4347 push_for_double: 4348 push_for_double_split(trans, root, path, data_size); 4349 tried_avoid_double = 1; 4350 if (btrfs_leaf_free_space(path->nodes[0]) >= data_size) 4351 return 0; 4352 goto again; 4353 } 4354 4355 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans, 4356 struct btrfs_root *root, 4357 struct btrfs_path *path, int ins_len) 4358 { 4359 struct btrfs_key key; 4360 struct extent_buffer *leaf; 4361 struct btrfs_file_extent_item *fi; 4362 u64 extent_len = 0; 4363 u32 item_size; 4364 int ret; 4365 4366 leaf = path->nodes[0]; 4367 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4368 4369 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY && 4370 key.type != BTRFS_EXTENT_CSUM_KEY); 4371 4372 if (btrfs_leaf_free_space(leaf) >= ins_len) 4373 return 0; 4374 4375 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4376 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4377 fi = btrfs_item_ptr(leaf, path->slots[0], 4378 struct btrfs_file_extent_item); 4379 extent_len = btrfs_file_extent_num_bytes(leaf, fi); 4380 } 4381 btrfs_release_path(path); 4382 4383 path->keep_locks = 1; 4384 path->search_for_split = 1; 4385 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 4386 path->search_for_split = 0; 4387 if (ret > 0) 4388 ret = -EAGAIN; 4389 if (ret < 0) 4390 goto err; 4391 4392 ret = -EAGAIN; 4393 leaf = path->nodes[0]; 4394 /* if our item isn't there, return now */ 4395 if (item_size != btrfs_item_size_nr(leaf, path->slots[0])) 4396 goto err; 4397 4398 /* the leaf has changed, it now has room. return now */ 4399 if (btrfs_leaf_free_space(path->nodes[0]) >= ins_len) 4400 goto err; 4401 4402 if (key.type == BTRFS_EXTENT_DATA_KEY) { 4403 fi = btrfs_item_ptr(leaf, path->slots[0], 4404 struct btrfs_file_extent_item); 4405 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi)) 4406 goto err; 4407 } 4408 4409 btrfs_set_path_blocking(path); 4410 ret = split_leaf(trans, root, &key, path, ins_len, 1); 4411 if (ret) 4412 goto err; 4413 4414 path->keep_locks = 0; 4415 btrfs_unlock_up_safe(path, 1); 4416 return 0; 4417 err: 4418 path->keep_locks = 0; 4419 return ret; 4420 } 4421 4422 static noinline int split_item(struct btrfs_path *path, 4423 const struct btrfs_key *new_key, 4424 unsigned long split_offset) 4425 { 4426 struct extent_buffer *leaf; 4427 struct btrfs_item *item; 4428 struct btrfs_item *new_item; 4429 int slot; 4430 char *buf; 4431 u32 nritems; 4432 u32 item_size; 4433 u32 orig_offset; 4434 struct btrfs_disk_key disk_key; 4435 4436 leaf = path->nodes[0]; 4437 BUG_ON(btrfs_leaf_free_space(leaf) < sizeof(struct btrfs_item)); 4438 4439 btrfs_set_path_blocking(path); 4440 4441 item = btrfs_item_nr(path->slots[0]); 4442 orig_offset = btrfs_item_offset(leaf, item); 4443 item_size = btrfs_item_size(leaf, item); 4444 4445 buf = kmalloc(item_size, GFP_NOFS); 4446 if (!buf) 4447 return -ENOMEM; 4448 4449 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf, 4450 path->slots[0]), item_size); 4451 4452 slot = path->slots[0] + 1; 4453 nritems = btrfs_header_nritems(leaf); 4454 if (slot != nritems) { 4455 /* shift the items */ 4456 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1), 4457 btrfs_item_nr_offset(slot), 4458 (nritems - slot) * sizeof(struct btrfs_item)); 4459 } 4460 4461 btrfs_cpu_key_to_disk(&disk_key, new_key); 4462 btrfs_set_item_key(leaf, &disk_key, slot); 4463 4464 new_item = btrfs_item_nr(slot); 4465 4466 btrfs_set_item_offset(leaf, new_item, orig_offset); 4467 btrfs_set_item_size(leaf, new_item, item_size - split_offset); 4468 4469 btrfs_set_item_offset(leaf, item, 4470 orig_offset + item_size - split_offset); 4471 btrfs_set_item_size(leaf, item, split_offset); 4472 4473 btrfs_set_header_nritems(leaf, nritems + 1); 4474 4475 /* write the data for the start of the original item */ 4476 write_extent_buffer(leaf, buf, 4477 btrfs_item_ptr_offset(leaf, path->slots[0]), 4478 split_offset); 4479 4480 /* write the data for the new item */ 4481 write_extent_buffer(leaf, buf + split_offset, 4482 btrfs_item_ptr_offset(leaf, slot), 4483 item_size - split_offset); 4484 btrfs_mark_buffer_dirty(leaf); 4485 4486 BUG_ON(btrfs_leaf_free_space(leaf) < 0); 4487 kfree(buf); 4488 return 0; 4489 } 4490 4491 /* 4492 * This function splits a single item into two items, 4493 * giving 'new_key' to the new item and splitting the 4494 * old one at split_offset (from the start of the item). 4495 * 4496 * The path may be released by this operation. After 4497 * the split, the path is pointing to the old item. The 4498 * new item is going to be in the same node as the old one. 4499 * 4500 * Note, the item being split must be smaller enough to live alone on 4501 * a tree block with room for one extra struct btrfs_item 4502 * 4503 * This allows us to split the item in place, keeping a lock on the 4504 * leaf the entire time. 4505 */ 4506 int btrfs_split_item(struct btrfs_trans_handle *trans, 4507 struct btrfs_root *root, 4508 struct btrfs_path *path, 4509 const struct btrfs_key *new_key, 4510 unsigned long split_offset) 4511 { 4512 int ret; 4513 ret = setup_leaf_for_split(trans, root, path, 4514 sizeof(struct btrfs_item)); 4515 if (ret) 4516 return ret; 4517 4518 ret = split_item(path, new_key, split_offset); 4519 return ret; 4520 } 4521 4522 /* 4523 * This function duplicate a item, giving 'new_key' to the new item. 4524 * It guarantees both items live in the same tree leaf and the new item 4525 * is contiguous with the original item. 4526 * 4527 * This allows us to split file extent in place, keeping a lock on the 4528 * leaf the entire time. 4529 */ 4530 int btrfs_duplicate_item(struct btrfs_trans_handle *trans, 4531 struct btrfs_root *root, 4532 struct btrfs_path *path, 4533 const struct btrfs_key *new_key) 4534 { 4535 struct extent_buffer *leaf; 4536 int ret; 4537 u32 item_size; 4538 4539 leaf = path->nodes[0]; 4540 item_size = btrfs_item_size_nr(leaf, path->slots[0]); 4541 ret = setup_leaf_for_split(trans, root, path, 4542 item_size + sizeof(struct btrfs_item)); 4543 if (ret) 4544 return ret; 4545 4546 path->slots[0]++; 4547 setup_items_for_insert(root, path, new_key, &item_size, 4548 item_size, item_size + 4549 sizeof(struct btrfs_item), 1); 4550 leaf = path->nodes[0]; 4551 memcpy_extent_buffer(leaf, 4552 btrfs_item_ptr_offset(leaf, path->slots[0]), 4553 btrfs_item_ptr_offset(leaf, path->slots[0] - 1), 4554 item_size); 4555 return 0; 4556 } 4557 4558 /* 4559 * make the item pointed to by the path smaller. new_size indicates 4560 * how small to make it, and from_end tells us if we just chop bytes 4561 * off the end of the item or if we shift the item to chop bytes off 4562 * the front. 4563 */ 4564 void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end) 4565 { 4566 int slot; 4567 struct extent_buffer *leaf; 4568 struct btrfs_item *item; 4569 u32 nritems; 4570 unsigned int data_end; 4571 unsigned int old_data_start; 4572 unsigned int old_size; 4573 unsigned int size_diff; 4574 int i; 4575 struct btrfs_map_token token; 4576 4577 btrfs_init_map_token(&token); 4578 4579 leaf = path->nodes[0]; 4580 slot = path->slots[0]; 4581 4582 old_size = btrfs_item_size_nr(leaf, slot); 4583 if (old_size == new_size) 4584 return; 4585 4586 nritems = btrfs_header_nritems(leaf); 4587 data_end = leaf_data_end(leaf); 4588 4589 old_data_start = btrfs_item_offset_nr(leaf, slot); 4590 4591 size_diff = old_size - new_size; 4592 4593 BUG_ON(slot < 0); 4594 BUG_ON(slot >= nritems); 4595 4596 /* 4597 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4598 */ 4599 /* first correct the data pointers */ 4600 for (i = slot; i < nritems; i++) { 4601 u32 ioff; 4602 item = btrfs_item_nr(i); 4603 4604 ioff = btrfs_token_item_offset(leaf, item, &token); 4605 btrfs_set_token_item_offset(leaf, item, 4606 ioff + size_diff, &token); 4607 } 4608 4609 /* shift the data */ 4610 if (from_end) { 4611 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4612 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4613 data_end, old_data_start + new_size - data_end); 4614 } else { 4615 struct btrfs_disk_key disk_key; 4616 u64 offset; 4617 4618 btrfs_item_key(leaf, &disk_key, slot); 4619 4620 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) { 4621 unsigned long ptr; 4622 struct btrfs_file_extent_item *fi; 4623 4624 fi = btrfs_item_ptr(leaf, slot, 4625 struct btrfs_file_extent_item); 4626 fi = (struct btrfs_file_extent_item *)( 4627 (unsigned long)fi - size_diff); 4628 4629 if (btrfs_file_extent_type(leaf, fi) == 4630 BTRFS_FILE_EXTENT_INLINE) { 4631 ptr = btrfs_item_ptr_offset(leaf, slot); 4632 memmove_extent_buffer(leaf, ptr, 4633 (unsigned long)fi, 4634 BTRFS_FILE_EXTENT_INLINE_DATA_START); 4635 } 4636 } 4637 4638 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4639 data_end + size_diff, BTRFS_LEAF_DATA_OFFSET + 4640 data_end, old_data_start - data_end); 4641 4642 offset = btrfs_disk_key_offset(&disk_key); 4643 btrfs_set_disk_key_offset(&disk_key, offset + size_diff); 4644 btrfs_set_item_key(leaf, &disk_key, slot); 4645 if (slot == 0) 4646 fixup_low_keys(path, &disk_key, 1); 4647 } 4648 4649 item = btrfs_item_nr(slot); 4650 btrfs_set_item_size(leaf, item, new_size); 4651 btrfs_mark_buffer_dirty(leaf); 4652 4653 if (btrfs_leaf_free_space(leaf) < 0) { 4654 btrfs_print_leaf(leaf); 4655 BUG(); 4656 } 4657 } 4658 4659 /* 4660 * make the item pointed to by the path bigger, data_size is the added size. 4661 */ 4662 void btrfs_extend_item(struct btrfs_path *path, u32 data_size) 4663 { 4664 int slot; 4665 struct extent_buffer *leaf; 4666 struct btrfs_item *item; 4667 u32 nritems; 4668 unsigned int data_end; 4669 unsigned int old_data; 4670 unsigned int old_size; 4671 int i; 4672 struct btrfs_map_token token; 4673 4674 btrfs_init_map_token(&token); 4675 4676 leaf = path->nodes[0]; 4677 4678 nritems = btrfs_header_nritems(leaf); 4679 data_end = leaf_data_end(leaf); 4680 4681 if (btrfs_leaf_free_space(leaf) < data_size) { 4682 btrfs_print_leaf(leaf); 4683 BUG(); 4684 } 4685 slot = path->slots[0]; 4686 old_data = btrfs_item_end_nr(leaf, slot); 4687 4688 BUG_ON(slot < 0); 4689 if (slot >= nritems) { 4690 btrfs_print_leaf(leaf); 4691 btrfs_crit(leaf->fs_info, "slot %d too large, nritems %d", 4692 slot, nritems); 4693 BUG(); 4694 } 4695 4696 /* 4697 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4698 */ 4699 /* first correct the data pointers */ 4700 for (i = slot; i < nritems; i++) { 4701 u32 ioff; 4702 item = btrfs_item_nr(i); 4703 4704 ioff = btrfs_token_item_offset(leaf, item, &token); 4705 btrfs_set_token_item_offset(leaf, item, 4706 ioff - data_size, &token); 4707 } 4708 4709 /* shift the data */ 4710 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4711 data_end - data_size, BTRFS_LEAF_DATA_OFFSET + 4712 data_end, old_data - data_end); 4713 4714 data_end = old_data; 4715 old_size = btrfs_item_size_nr(leaf, slot); 4716 item = btrfs_item_nr(slot); 4717 btrfs_set_item_size(leaf, item, old_size + data_size); 4718 btrfs_mark_buffer_dirty(leaf); 4719 4720 if (btrfs_leaf_free_space(leaf) < 0) { 4721 btrfs_print_leaf(leaf); 4722 BUG(); 4723 } 4724 } 4725 4726 /* 4727 * this is a helper for btrfs_insert_empty_items, the main goal here is 4728 * to save stack depth by doing the bulk of the work in a function 4729 * that doesn't call btrfs_search_slot 4730 */ 4731 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path, 4732 const struct btrfs_key *cpu_key, u32 *data_size, 4733 u32 total_data, u32 total_size, int nr) 4734 { 4735 struct btrfs_fs_info *fs_info = root->fs_info; 4736 struct btrfs_item *item; 4737 int i; 4738 u32 nritems; 4739 unsigned int data_end; 4740 struct btrfs_disk_key disk_key; 4741 struct extent_buffer *leaf; 4742 int slot; 4743 struct btrfs_map_token token; 4744 4745 if (path->slots[0] == 0) { 4746 btrfs_cpu_key_to_disk(&disk_key, cpu_key); 4747 fixup_low_keys(path, &disk_key, 1); 4748 } 4749 btrfs_unlock_up_safe(path, 1); 4750 4751 btrfs_init_map_token(&token); 4752 4753 leaf = path->nodes[0]; 4754 slot = path->slots[0]; 4755 4756 nritems = btrfs_header_nritems(leaf); 4757 data_end = leaf_data_end(leaf); 4758 4759 if (btrfs_leaf_free_space(leaf) < total_size) { 4760 btrfs_print_leaf(leaf); 4761 btrfs_crit(fs_info, "not enough freespace need %u have %d", 4762 total_size, btrfs_leaf_free_space(leaf)); 4763 BUG(); 4764 } 4765 4766 if (slot != nritems) { 4767 unsigned int old_data = btrfs_item_end_nr(leaf, slot); 4768 4769 if (old_data < data_end) { 4770 btrfs_print_leaf(leaf); 4771 btrfs_crit(fs_info, "slot %d old_data %d data_end %d", 4772 slot, old_data, data_end); 4773 BUG(); 4774 } 4775 /* 4776 * item0..itemN ... dataN.offset..dataN.size .. data0.size 4777 */ 4778 /* first correct the data pointers */ 4779 for (i = slot; i < nritems; i++) { 4780 u32 ioff; 4781 4782 item = btrfs_item_nr(i); 4783 ioff = btrfs_token_item_offset(leaf, item, &token); 4784 btrfs_set_token_item_offset(leaf, item, 4785 ioff - total_data, &token); 4786 } 4787 /* shift the items */ 4788 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr), 4789 btrfs_item_nr_offset(slot), 4790 (nritems - slot) * sizeof(struct btrfs_item)); 4791 4792 /* shift the data */ 4793 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4794 data_end - total_data, BTRFS_LEAF_DATA_OFFSET + 4795 data_end, old_data - data_end); 4796 data_end = old_data; 4797 } 4798 4799 /* setup the item for the new data */ 4800 for (i = 0; i < nr; i++) { 4801 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i); 4802 btrfs_set_item_key(leaf, &disk_key, slot + i); 4803 item = btrfs_item_nr(slot + i); 4804 btrfs_set_token_item_offset(leaf, item, 4805 data_end - data_size[i], &token); 4806 data_end -= data_size[i]; 4807 btrfs_set_token_item_size(leaf, item, data_size[i], &token); 4808 } 4809 4810 btrfs_set_header_nritems(leaf, nritems + nr); 4811 btrfs_mark_buffer_dirty(leaf); 4812 4813 if (btrfs_leaf_free_space(leaf) < 0) { 4814 btrfs_print_leaf(leaf); 4815 BUG(); 4816 } 4817 } 4818 4819 /* 4820 * Given a key and some data, insert items into the tree. 4821 * This does all the path init required, making room in the tree if needed. 4822 */ 4823 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans, 4824 struct btrfs_root *root, 4825 struct btrfs_path *path, 4826 const struct btrfs_key *cpu_key, u32 *data_size, 4827 int nr) 4828 { 4829 int ret = 0; 4830 int slot; 4831 int i; 4832 u32 total_size = 0; 4833 u32 total_data = 0; 4834 4835 for (i = 0; i < nr; i++) 4836 total_data += data_size[i]; 4837 4838 total_size = total_data + (nr * sizeof(struct btrfs_item)); 4839 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1); 4840 if (ret == 0) 4841 return -EEXIST; 4842 if (ret < 0) 4843 return ret; 4844 4845 slot = path->slots[0]; 4846 BUG_ON(slot < 0); 4847 4848 setup_items_for_insert(root, path, cpu_key, data_size, 4849 total_data, total_size, nr); 4850 return 0; 4851 } 4852 4853 /* 4854 * Given a key and some data, insert an item into the tree. 4855 * This does all the path init required, making room in the tree if needed. 4856 */ 4857 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4858 const struct btrfs_key *cpu_key, void *data, 4859 u32 data_size) 4860 { 4861 int ret = 0; 4862 struct btrfs_path *path; 4863 struct extent_buffer *leaf; 4864 unsigned long ptr; 4865 4866 path = btrfs_alloc_path(); 4867 if (!path) 4868 return -ENOMEM; 4869 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size); 4870 if (!ret) { 4871 leaf = path->nodes[0]; 4872 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]); 4873 write_extent_buffer(leaf, data, ptr, data_size); 4874 btrfs_mark_buffer_dirty(leaf); 4875 } 4876 btrfs_free_path(path); 4877 return ret; 4878 } 4879 4880 /* 4881 * delete the pointer from a given node. 4882 * 4883 * the tree should have been previously balanced so the deletion does not 4884 * empty a node. 4885 */ 4886 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path, 4887 int level, int slot) 4888 { 4889 struct extent_buffer *parent = path->nodes[level]; 4890 u32 nritems; 4891 int ret; 4892 4893 nritems = btrfs_header_nritems(parent); 4894 if (slot != nritems - 1) { 4895 if (level) { 4896 ret = tree_mod_log_insert_move(parent, slot, slot + 1, 4897 nritems - slot - 1); 4898 BUG_ON(ret < 0); 4899 } 4900 memmove_extent_buffer(parent, 4901 btrfs_node_key_ptr_offset(slot), 4902 btrfs_node_key_ptr_offset(slot + 1), 4903 sizeof(struct btrfs_key_ptr) * 4904 (nritems - slot - 1)); 4905 } else if (level) { 4906 ret = tree_mod_log_insert_key(parent, slot, MOD_LOG_KEY_REMOVE, 4907 GFP_NOFS); 4908 BUG_ON(ret < 0); 4909 } 4910 4911 nritems--; 4912 btrfs_set_header_nritems(parent, nritems); 4913 if (nritems == 0 && parent == root->node) { 4914 BUG_ON(btrfs_header_level(root->node) != 1); 4915 /* just turn the root into a leaf and break */ 4916 btrfs_set_header_level(root->node, 0); 4917 } else if (slot == 0) { 4918 struct btrfs_disk_key disk_key; 4919 4920 btrfs_node_key(parent, &disk_key, 0); 4921 fixup_low_keys(path, &disk_key, level + 1); 4922 } 4923 btrfs_mark_buffer_dirty(parent); 4924 } 4925 4926 /* 4927 * a helper function to delete the leaf pointed to by path->slots[1] and 4928 * path->nodes[1]. 4929 * 4930 * This deletes the pointer in path->nodes[1] and frees the leaf 4931 * block extent. zero is returned if it all worked out, < 0 otherwise. 4932 * 4933 * The path must have already been setup for deleting the leaf, including 4934 * all the proper balancing. path->nodes[1] must be locked. 4935 */ 4936 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans, 4937 struct btrfs_root *root, 4938 struct btrfs_path *path, 4939 struct extent_buffer *leaf) 4940 { 4941 WARN_ON(btrfs_header_generation(leaf) != trans->transid); 4942 del_ptr(root, path, 1, path->slots[1]); 4943 4944 /* 4945 * btrfs_free_extent is expensive, we want to make sure we 4946 * aren't holding any locks when we call it 4947 */ 4948 btrfs_unlock_up_safe(path, 0); 4949 4950 root_sub_used(root, leaf->len); 4951 4952 extent_buffer_get(leaf); 4953 btrfs_free_tree_block(trans, root, leaf, 0, 1); 4954 free_extent_buffer_stale(leaf); 4955 } 4956 /* 4957 * delete the item at the leaf level in path. If that empties 4958 * the leaf, remove it from the tree 4959 */ 4960 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root, 4961 struct btrfs_path *path, int slot, int nr) 4962 { 4963 struct btrfs_fs_info *fs_info = root->fs_info; 4964 struct extent_buffer *leaf; 4965 struct btrfs_item *item; 4966 u32 last_off; 4967 u32 dsize = 0; 4968 int ret = 0; 4969 int wret; 4970 int i; 4971 u32 nritems; 4972 struct btrfs_map_token token; 4973 4974 btrfs_init_map_token(&token); 4975 4976 leaf = path->nodes[0]; 4977 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1); 4978 4979 for (i = 0; i < nr; i++) 4980 dsize += btrfs_item_size_nr(leaf, slot + i); 4981 4982 nritems = btrfs_header_nritems(leaf); 4983 4984 if (slot + nr != nritems) { 4985 int data_end = leaf_data_end(leaf); 4986 4987 memmove_extent_buffer(leaf, BTRFS_LEAF_DATA_OFFSET + 4988 data_end + dsize, 4989 BTRFS_LEAF_DATA_OFFSET + data_end, 4990 last_off - data_end); 4991 4992 for (i = slot + nr; i < nritems; i++) { 4993 u32 ioff; 4994 4995 item = btrfs_item_nr(i); 4996 ioff = btrfs_token_item_offset(leaf, item, &token); 4997 btrfs_set_token_item_offset(leaf, item, 4998 ioff + dsize, &token); 4999 } 5000 5001 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot), 5002 btrfs_item_nr_offset(slot + nr), 5003 sizeof(struct btrfs_item) * 5004 (nritems - slot - nr)); 5005 } 5006 btrfs_set_header_nritems(leaf, nritems - nr); 5007 nritems -= nr; 5008 5009 /* delete the leaf if we've emptied it */ 5010 if (nritems == 0) { 5011 if (leaf == root->node) { 5012 btrfs_set_header_level(leaf, 0); 5013 } else { 5014 btrfs_set_path_blocking(path); 5015 btrfs_clean_tree_block(leaf); 5016 btrfs_del_leaf(trans, root, path, leaf); 5017 } 5018 } else { 5019 int used = leaf_space_used(leaf, 0, nritems); 5020 if (slot == 0) { 5021 struct btrfs_disk_key disk_key; 5022 5023 btrfs_item_key(leaf, &disk_key, 0); 5024 fixup_low_keys(path, &disk_key, 1); 5025 } 5026 5027 /* delete the leaf if it is mostly empty */ 5028 if (used < BTRFS_LEAF_DATA_SIZE(fs_info) / 3) { 5029 /* push_leaf_left fixes the path. 5030 * make sure the path still points to our leaf 5031 * for possible call to del_ptr below 5032 */ 5033 slot = path->slots[1]; 5034 extent_buffer_get(leaf); 5035 5036 btrfs_set_path_blocking(path); 5037 wret = push_leaf_left(trans, root, path, 1, 1, 5038 1, (u32)-1); 5039 if (wret < 0 && wret != -ENOSPC) 5040 ret = wret; 5041 5042 if (path->nodes[0] == leaf && 5043 btrfs_header_nritems(leaf)) { 5044 wret = push_leaf_right(trans, root, path, 1, 5045 1, 1, 0); 5046 if (wret < 0 && wret != -ENOSPC) 5047 ret = wret; 5048 } 5049 5050 if (btrfs_header_nritems(leaf) == 0) { 5051 path->slots[1] = slot; 5052 btrfs_del_leaf(trans, root, path, leaf); 5053 free_extent_buffer(leaf); 5054 ret = 0; 5055 } else { 5056 /* if we're still in the path, make sure 5057 * we're dirty. Otherwise, one of the 5058 * push_leaf functions must have already 5059 * dirtied this buffer 5060 */ 5061 if (path->nodes[0] == leaf) 5062 btrfs_mark_buffer_dirty(leaf); 5063 free_extent_buffer(leaf); 5064 } 5065 } else { 5066 btrfs_mark_buffer_dirty(leaf); 5067 } 5068 } 5069 return ret; 5070 } 5071 5072 /* 5073 * search the tree again to find a leaf with lesser keys 5074 * returns 0 if it found something or 1 if there are no lesser leaves. 5075 * returns < 0 on io errors. 5076 * 5077 * This may release the path, and so you may lose any locks held at the 5078 * time you call it. 5079 */ 5080 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path) 5081 { 5082 struct btrfs_key key; 5083 struct btrfs_disk_key found_key; 5084 int ret; 5085 5086 btrfs_item_key_to_cpu(path->nodes[0], &key, 0); 5087 5088 if (key.offset > 0) { 5089 key.offset--; 5090 } else if (key.type > 0) { 5091 key.type--; 5092 key.offset = (u64)-1; 5093 } else if (key.objectid > 0) { 5094 key.objectid--; 5095 key.type = (u8)-1; 5096 key.offset = (u64)-1; 5097 } else { 5098 return 1; 5099 } 5100 5101 btrfs_release_path(path); 5102 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5103 if (ret < 0) 5104 return ret; 5105 btrfs_item_key(path->nodes[0], &found_key, 0); 5106 ret = comp_keys(&found_key, &key); 5107 /* 5108 * We might have had an item with the previous key in the tree right 5109 * before we released our path. And after we released our path, that 5110 * item might have been pushed to the first slot (0) of the leaf we 5111 * were holding due to a tree balance. Alternatively, an item with the 5112 * previous key can exist as the only element of a leaf (big fat item). 5113 * Therefore account for these 2 cases, so that our callers (like 5114 * btrfs_previous_item) don't miss an existing item with a key matching 5115 * the previous key we computed above. 5116 */ 5117 if (ret <= 0) 5118 return 0; 5119 return 1; 5120 } 5121 5122 /* 5123 * A helper function to walk down the tree starting at min_key, and looking 5124 * for nodes or leaves that are have a minimum transaction id. 5125 * This is used by the btree defrag code, and tree logging 5126 * 5127 * This does not cow, but it does stuff the starting key it finds back 5128 * into min_key, so you can call btrfs_search_slot with cow=1 on the 5129 * key and get a writable path. 5130 * 5131 * This honors path->lowest_level to prevent descent past a given level 5132 * of the tree. 5133 * 5134 * min_trans indicates the oldest transaction that you are interested 5135 * in walking through. Any nodes or leaves older than min_trans are 5136 * skipped over (without reading them). 5137 * 5138 * returns zero if something useful was found, < 0 on error and 1 if there 5139 * was nothing in the tree that matched the search criteria. 5140 */ 5141 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key, 5142 struct btrfs_path *path, 5143 u64 min_trans) 5144 { 5145 struct extent_buffer *cur; 5146 struct btrfs_key found_key; 5147 int slot; 5148 int sret; 5149 u32 nritems; 5150 int level; 5151 int ret = 1; 5152 int keep_locks = path->keep_locks; 5153 5154 path->keep_locks = 1; 5155 again: 5156 cur = btrfs_read_lock_root_node(root); 5157 level = btrfs_header_level(cur); 5158 WARN_ON(path->nodes[level]); 5159 path->nodes[level] = cur; 5160 path->locks[level] = BTRFS_READ_LOCK; 5161 5162 if (btrfs_header_generation(cur) < min_trans) { 5163 ret = 1; 5164 goto out; 5165 } 5166 while (1) { 5167 nritems = btrfs_header_nritems(cur); 5168 level = btrfs_header_level(cur); 5169 sret = btrfs_bin_search(cur, min_key, level, &slot); 5170 if (sret < 0) { 5171 ret = sret; 5172 goto out; 5173 } 5174 5175 /* at the lowest level, we're done, setup the path and exit */ 5176 if (level == path->lowest_level) { 5177 if (slot >= nritems) 5178 goto find_next_key; 5179 ret = 0; 5180 path->slots[level] = slot; 5181 btrfs_item_key_to_cpu(cur, &found_key, slot); 5182 goto out; 5183 } 5184 if (sret && slot > 0) 5185 slot--; 5186 /* 5187 * check this node pointer against the min_trans parameters. 5188 * If it is too old, old, skip to the next one. 5189 */ 5190 while (slot < nritems) { 5191 u64 gen; 5192 5193 gen = btrfs_node_ptr_generation(cur, slot); 5194 if (gen < min_trans) { 5195 slot++; 5196 continue; 5197 } 5198 break; 5199 } 5200 find_next_key: 5201 /* 5202 * we didn't find a candidate key in this node, walk forward 5203 * and find another one 5204 */ 5205 if (slot >= nritems) { 5206 path->slots[level] = slot; 5207 btrfs_set_path_blocking(path); 5208 sret = btrfs_find_next_key(root, path, min_key, level, 5209 min_trans); 5210 if (sret == 0) { 5211 btrfs_release_path(path); 5212 goto again; 5213 } else { 5214 goto out; 5215 } 5216 } 5217 /* save our key for returning back */ 5218 btrfs_node_key_to_cpu(cur, &found_key, slot); 5219 path->slots[level] = slot; 5220 if (level == path->lowest_level) { 5221 ret = 0; 5222 goto out; 5223 } 5224 btrfs_set_path_blocking(path); 5225 cur = read_node_slot(cur, slot); 5226 if (IS_ERR(cur)) { 5227 ret = PTR_ERR(cur); 5228 goto out; 5229 } 5230 5231 btrfs_tree_read_lock(cur); 5232 5233 path->locks[level - 1] = BTRFS_READ_LOCK; 5234 path->nodes[level - 1] = cur; 5235 unlock_up(path, level, 1, 0, NULL); 5236 } 5237 out: 5238 path->keep_locks = keep_locks; 5239 if (ret == 0) { 5240 btrfs_unlock_up_safe(path, path->lowest_level + 1); 5241 btrfs_set_path_blocking(path); 5242 memcpy(min_key, &found_key, sizeof(found_key)); 5243 } 5244 return ret; 5245 } 5246 5247 static int tree_move_down(struct btrfs_path *path, int *level) 5248 { 5249 struct extent_buffer *eb; 5250 5251 BUG_ON(*level == 0); 5252 eb = read_node_slot(path->nodes[*level], path->slots[*level]); 5253 if (IS_ERR(eb)) 5254 return PTR_ERR(eb); 5255 5256 path->nodes[*level - 1] = eb; 5257 path->slots[*level - 1] = 0; 5258 (*level)--; 5259 return 0; 5260 } 5261 5262 static int tree_move_next_or_upnext(struct btrfs_path *path, 5263 int *level, int root_level) 5264 { 5265 int ret = 0; 5266 int nritems; 5267 nritems = btrfs_header_nritems(path->nodes[*level]); 5268 5269 path->slots[*level]++; 5270 5271 while (path->slots[*level] >= nritems) { 5272 if (*level == root_level) 5273 return -1; 5274 5275 /* move upnext */ 5276 path->slots[*level] = 0; 5277 free_extent_buffer(path->nodes[*level]); 5278 path->nodes[*level] = NULL; 5279 (*level)++; 5280 path->slots[*level]++; 5281 5282 nritems = btrfs_header_nritems(path->nodes[*level]); 5283 ret = 1; 5284 } 5285 return ret; 5286 } 5287 5288 /* 5289 * Returns 1 if it had to move up and next. 0 is returned if it moved only next 5290 * or down. 5291 */ 5292 static int tree_advance(struct btrfs_path *path, 5293 int *level, int root_level, 5294 int allow_down, 5295 struct btrfs_key *key) 5296 { 5297 int ret; 5298 5299 if (*level == 0 || !allow_down) { 5300 ret = tree_move_next_or_upnext(path, level, root_level); 5301 } else { 5302 ret = tree_move_down(path, level); 5303 } 5304 if (ret >= 0) { 5305 if (*level == 0) 5306 btrfs_item_key_to_cpu(path->nodes[*level], key, 5307 path->slots[*level]); 5308 else 5309 btrfs_node_key_to_cpu(path->nodes[*level], key, 5310 path->slots[*level]); 5311 } 5312 return ret; 5313 } 5314 5315 static int tree_compare_item(struct btrfs_path *left_path, 5316 struct btrfs_path *right_path, 5317 char *tmp_buf) 5318 { 5319 int cmp; 5320 int len1, len2; 5321 unsigned long off1, off2; 5322 5323 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]); 5324 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]); 5325 if (len1 != len2) 5326 return 1; 5327 5328 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]); 5329 off2 = btrfs_item_ptr_offset(right_path->nodes[0], 5330 right_path->slots[0]); 5331 5332 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1); 5333 5334 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1); 5335 if (cmp) 5336 return 1; 5337 return 0; 5338 } 5339 5340 #define ADVANCE 1 5341 #define ADVANCE_ONLY_NEXT -1 5342 5343 /* 5344 * This function compares two trees and calls the provided callback for 5345 * every changed/new/deleted item it finds. 5346 * If shared tree blocks are encountered, whole subtrees are skipped, making 5347 * the compare pretty fast on snapshotted subvolumes. 5348 * 5349 * This currently works on commit roots only. As commit roots are read only, 5350 * we don't do any locking. The commit roots are protected with transactions. 5351 * Transactions are ended and rejoined when a commit is tried in between. 5352 * 5353 * This function checks for modifications done to the trees while comparing. 5354 * If it detects a change, it aborts immediately. 5355 */ 5356 int btrfs_compare_trees(struct btrfs_root *left_root, 5357 struct btrfs_root *right_root, 5358 btrfs_changed_cb_t changed_cb, void *ctx) 5359 { 5360 struct btrfs_fs_info *fs_info = left_root->fs_info; 5361 int ret; 5362 int cmp; 5363 struct btrfs_path *left_path = NULL; 5364 struct btrfs_path *right_path = NULL; 5365 struct btrfs_key left_key; 5366 struct btrfs_key right_key; 5367 char *tmp_buf = NULL; 5368 int left_root_level; 5369 int right_root_level; 5370 int left_level; 5371 int right_level; 5372 int left_end_reached; 5373 int right_end_reached; 5374 int advance_left; 5375 int advance_right; 5376 u64 left_blockptr; 5377 u64 right_blockptr; 5378 u64 left_gen; 5379 u64 right_gen; 5380 5381 left_path = btrfs_alloc_path(); 5382 if (!left_path) { 5383 ret = -ENOMEM; 5384 goto out; 5385 } 5386 right_path = btrfs_alloc_path(); 5387 if (!right_path) { 5388 ret = -ENOMEM; 5389 goto out; 5390 } 5391 5392 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL); 5393 if (!tmp_buf) { 5394 ret = -ENOMEM; 5395 goto out; 5396 } 5397 5398 left_path->search_commit_root = 1; 5399 left_path->skip_locking = 1; 5400 right_path->search_commit_root = 1; 5401 right_path->skip_locking = 1; 5402 5403 /* 5404 * Strategy: Go to the first items of both trees. Then do 5405 * 5406 * If both trees are at level 0 5407 * Compare keys of current items 5408 * If left < right treat left item as new, advance left tree 5409 * and repeat 5410 * If left > right treat right item as deleted, advance right tree 5411 * and repeat 5412 * If left == right do deep compare of items, treat as changed if 5413 * needed, advance both trees and repeat 5414 * If both trees are at the same level but not at level 0 5415 * Compare keys of current nodes/leafs 5416 * If left < right advance left tree and repeat 5417 * If left > right advance right tree and repeat 5418 * If left == right compare blockptrs of the next nodes/leafs 5419 * If they match advance both trees but stay at the same level 5420 * and repeat 5421 * If they don't match advance both trees while allowing to go 5422 * deeper and repeat 5423 * If tree levels are different 5424 * Advance the tree that needs it and repeat 5425 * 5426 * Advancing a tree means: 5427 * If we are at level 0, try to go to the next slot. If that's not 5428 * possible, go one level up and repeat. Stop when we found a level 5429 * where we could go to the next slot. We may at this point be on a 5430 * node or a leaf. 5431 * 5432 * If we are not at level 0 and not on shared tree blocks, go one 5433 * level deeper. 5434 * 5435 * If we are not at level 0 and on shared tree blocks, go one slot to 5436 * the right if possible or go up and right. 5437 */ 5438 5439 down_read(&fs_info->commit_root_sem); 5440 left_level = btrfs_header_level(left_root->commit_root); 5441 left_root_level = left_level; 5442 left_path->nodes[left_level] = 5443 btrfs_clone_extent_buffer(left_root->commit_root); 5444 if (!left_path->nodes[left_level]) { 5445 up_read(&fs_info->commit_root_sem); 5446 ret = -ENOMEM; 5447 goto out; 5448 } 5449 5450 right_level = btrfs_header_level(right_root->commit_root); 5451 right_root_level = right_level; 5452 right_path->nodes[right_level] = 5453 btrfs_clone_extent_buffer(right_root->commit_root); 5454 if (!right_path->nodes[right_level]) { 5455 up_read(&fs_info->commit_root_sem); 5456 ret = -ENOMEM; 5457 goto out; 5458 } 5459 up_read(&fs_info->commit_root_sem); 5460 5461 if (left_level == 0) 5462 btrfs_item_key_to_cpu(left_path->nodes[left_level], 5463 &left_key, left_path->slots[left_level]); 5464 else 5465 btrfs_node_key_to_cpu(left_path->nodes[left_level], 5466 &left_key, left_path->slots[left_level]); 5467 if (right_level == 0) 5468 btrfs_item_key_to_cpu(right_path->nodes[right_level], 5469 &right_key, right_path->slots[right_level]); 5470 else 5471 btrfs_node_key_to_cpu(right_path->nodes[right_level], 5472 &right_key, right_path->slots[right_level]); 5473 5474 left_end_reached = right_end_reached = 0; 5475 advance_left = advance_right = 0; 5476 5477 while (1) { 5478 if (advance_left && !left_end_reached) { 5479 ret = tree_advance(left_path, &left_level, 5480 left_root_level, 5481 advance_left != ADVANCE_ONLY_NEXT, 5482 &left_key); 5483 if (ret == -1) 5484 left_end_reached = ADVANCE; 5485 else if (ret < 0) 5486 goto out; 5487 advance_left = 0; 5488 } 5489 if (advance_right && !right_end_reached) { 5490 ret = tree_advance(right_path, &right_level, 5491 right_root_level, 5492 advance_right != ADVANCE_ONLY_NEXT, 5493 &right_key); 5494 if (ret == -1) 5495 right_end_reached = ADVANCE; 5496 else if (ret < 0) 5497 goto out; 5498 advance_right = 0; 5499 } 5500 5501 if (left_end_reached && right_end_reached) { 5502 ret = 0; 5503 goto out; 5504 } else if (left_end_reached) { 5505 if (right_level == 0) { 5506 ret = changed_cb(left_path, right_path, 5507 &right_key, 5508 BTRFS_COMPARE_TREE_DELETED, 5509 ctx); 5510 if (ret < 0) 5511 goto out; 5512 } 5513 advance_right = ADVANCE; 5514 continue; 5515 } else if (right_end_reached) { 5516 if (left_level == 0) { 5517 ret = changed_cb(left_path, right_path, 5518 &left_key, 5519 BTRFS_COMPARE_TREE_NEW, 5520 ctx); 5521 if (ret < 0) 5522 goto out; 5523 } 5524 advance_left = ADVANCE; 5525 continue; 5526 } 5527 5528 if (left_level == 0 && right_level == 0) { 5529 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5530 if (cmp < 0) { 5531 ret = changed_cb(left_path, right_path, 5532 &left_key, 5533 BTRFS_COMPARE_TREE_NEW, 5534 ctx); 5535 if (ret < 0) 5536 goto out; 5537 advance_left = ADVANCE; 5538 } else if (cmp > 0) { 5539 ret = changed_cb(left_path, right_path, 5540 &right_key, 5541 BTRFS_COMPARE_TREE_DELETED, 5542 ctx); 5543 if (ret < 0) 5544 goto out; 5545 advance_right = ADVANCE; 5546 } else { 5547 enum btrfs_compare_tree_result result; 5548 5549 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0])); 5550 ret = tree_compare_item(left_path, right_path, 5551 tmp_buf); 5552 if (ret) 5553 result = BTRFS_COMPARE_TREE_CHANGED; 5554 else 5555 result = BTRFS_COMPARE_TREE_SAME; 5556 ret = changed_cb(left_path, right_path, 5557 &left_key, result, ctx); 5558 if (ret < 0) 5559 goto out; 5560 advance_left = ADVANCE; 5561 advance_right = ADVANCE; 5562 } 5563 } else if (left_level == right_level) { 5564 cmp = btrfs_comp_cpu_keys(&left_key, &right_key); 5565 if (cmp < 0) { 5566 advance_left = ADVANCE; 5567 } else if (cmp > 0) { 5568 advance_right = ADVANCE; 5569 } else { 5570 left_blockptr = btrfs_node_blockptr( 5571 left_path->nodes[left_level], 5572 left_path->slots[left_level]); 5573 right_blockptr = btrfs_node_blockptr( 5574 right_path->nodes[right_level], 5575 right_path->slots[right_level]); 5576 left_gen = btrfs_node_ptr_generation( 5577 left_path->nodes[left_level], 5578 left_path->slots[left_level]); 5579 right_gen = btrfs_node_ptr_generation( 5580 right_path->nodes[right_level], 5581 right_path->slots[right_level]); 5582 if (left_blockptr == right_blockptr && 5583 left_gen == right_gen) { 5584 /* 5585 * As we're on a shared block, don't 5586 * allow to go deeper. 5587 */ 5588 advance_left = ADVANCE_ONLY_NEXT; 5589 advance_right = ADVANCE_ONLY_NEXT; 5590 } else { 5591 advance_left = ADVANCE; 5592 advance_right = ADVANCE; 5593 } 5594 } 5595 } else if (left_level < right_level) { 5596 advance_right = ADVANCE; 5597 } else { 5598 advance_left = ADVANCE; 5599 } 5600 } 5601 5602 out: 5603 btrfs_free_path(left_path); 5604 btrfs_free_path(right_path); 5605 kvfree(tmp_buf); 5606 return ret; 5607 } 5608 5609 /* 5610 * this is similar to btrfs_next_leaf, but does not try to preserve 5611 * and fixup the path. It looks for and returns the next key in the 5612 * tree based on the current path and the min_trans parameters. 5613 * 5614 * 0 is returned if another key is found, < 0 if there are any errors 5615 * and 1 is returned if there are no higher keys in the tree 5616 * 5617 * path->keep_locks should be set to 1 on the search made before 5618 * calling this function. 5619 */ 5620 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path, 5621 struct btrfs_key *key, int level, u64 min_trans) 5622 { 5623 int slot; 5624 struct extent_buffer *c; 5625 5626 WARN_ON(!path->keep_locks); 5627 while (level < BTRFS_MAX_LEVEL) { 5628 if (!path->nodes[level]) 5629 return 1; 5630 5631 slot = path->slots[level] + 1; 5632 c = path->nodes[level]; 5633 next: 5634 if (slot >= btrfs_header_nritems(c)) { 5635 int ret; 5636 int orig_lowest; 5637 struct btrfs_key cur_key; 5638 if (level + 1 >= BTRFS_MAX_LEVEL || 5639 !path->nodes[level + 1]) 5640 return 1; 5641 5642 if (path->locks[level + 1]) { 5643 level++; 5644 continue; 5645 } 5646 5647 slot = btrfs_header_nritems(c) - 1; 5648 if (level == 0) 5649 btrfs_item_key_to_cpu(c, &cur_key, slot); 5650 else 5651 btrfs_node_key_to_cpu(c, &cur_key, slot); 5652 5653 orig_lowest = path->lowest_level; 5654 btrfs_release_path(path); 5655 path->lowest_level = level; 5656 ret = btrfs_search_slot(NULL, root, &cur_key, path, 5657 0, 0); 5658 path->lowest_level = orig_lowest; 5659 if (ret < 0) 5660 return ret; 5661 5662 c = path->nodes[level]; 5663 slot = path->slots[level]; 5664 if (ret == 0) 5665 slot++; 5666 goto next; 5667 } 5668 5669 if (level == 0) 5670 btrfs_item_key_to_cpu(c, key, slot); 5671 else { 5672 u64 gen = btrfs_node_ptr_generation(c, slot); 5673 5674 if (gen < min_trans) { 5675 slot++; 5676 goto next; 5677 } 5678 btrfs_node_key_to_cpu(c, key, slot); 5679 } 5680 return 0; 5681 } 5682 return 1; 5683 } 5684 5685 /* 5686 * search the tree again to find a leaf with greater keys 5687 * returns 0 if it found something or 1 if there are no greater leaves. 5688 * returns < 0 on io errors. 5689 */ 5690 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path) 5691 { 5692 return btrfs_next_old_leaf(root, path, 0); 5693 } 5694 5695 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path, 5696 u64 time_seq) 5697 { 5698 int slot; 5699 int level; 5700 struct extent_buffer *c; 5701 struct extent_buffer *next; 5702 struct btrfs_key key; 5703 u32 nritems; 5704 int ret; 5705 int old_spinning = path->leave_spinning; 5706 int next_rw_lock = 0; 5707 5708 nritems = btrfs_header_nritems(path->nodes[0]); 5709 if (nritems == 0) 5710 return 1; 5711 5712 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1); 5713 again: 5714 level = 1; 5715 next = NULL; 5716 next_rw_lock = 0; 5717 btrfs_release_path(path); 5718 5719 path->keep_locks = 1; 5720 path->leave_spinning = 1; 5721 5722 if (time_seq) 5723 ret = btrfs_search_old_slot(root, &key, path, time_seq); 5724 else 5725 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 5726 path->keep_locks = 0; 5727 5728 if (ret < 0) 5729 return ret; 5730 5731 nritems = btrfs_header_nritems(path->nodes[0]); 5732 /* 5733 * by releasing the path above we dropped all our locks. A balance 5734 * could have added more items next to the key that used to be 5735 * at the very end of the block. So, check again here and 5736 * advance the path if there are now more items available. 5737 */ 5738 if (nritems > 0 && path->slots[0] < nritems - 1) { 5739 if (ret == 0) 5740 path->slots[0]++; 5741 ret = 0; 5742 goto done; 5743 } 5744 /* 5745 * So the above check misses one case: 5746 * - after releasing the path above, someone has removed the item that 5747 * used to be at the very end of the block, and balance between leafs 5748 * gets another one with bigger key.offset to replace it. 5749 * 5750 * This one should be returned as well, or we can get leaf corruption 5751 * later(esp. in __btrfs_drop_extents()). 5752 * 5753 * And a bit more explanation about this check, 5754 * with ret > 0, the key isn't found, the path points to the slot 5755 * where it should be inserted, so the path->slots[0] item must be the 5756 * bigger one. 5757 */ 5758 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) { 5759 ret = 0; 5760 goto done; 5761 } 5762 5763 while (level < BTRFS_MAX_LEVEL) { 5764 if (!path->nodes[level]) { 5765 ret = 1; 5766 goto done; 5767 } 5768 5769 slot = path->slots[level] + 1; 5770 c = path->nodes[level]; 5771 if (slot >= btrfs_header_nritems(c)) { 5772 level++; 5773 if (level == BTRFS_MAX_LEVEL) { 5774 ret = 1; 5775 goto done; 5776 } 5777 continue; 5778 } 5779 5780 if (next) { 5781 btrfs_tree_unlock_rw(next, next_rw_lock); 5782 free_extent_buffer(next); 5783 } 5784 5785 next = c; 5786 next_rw_lock = path->locks[level]; 5787 ret = read_block_for_search(root, path, &next, level, 5788 slot, &key); 5789 if (ret == -EAGAIN) 5790 goto again; 5791 5792 if (ret < 0) { 5793 btrfs_release_path(path); 5794 goto done; 5795 } 5796 5797 if (!path->skip_locking) { 5798 ret = btrfs_try_tree_read_lock(next); 5799 if (!ret && time_seq) { 5800 /* 5801 * If we don't get the lock, we may be racing 5802 * with push_leaf_left, holding that lock while 5803 * itself waiting for the leaf we've currently 5804 * locked. To solve this situation, we give up 5805 * on our lock and cycle. 5806 */ 5807 free_extent_buffer(next); 5808 btrfs_release_path(path); 5809 cond_resched(); 5810 goto again; 5811 } 5812 if (!ret) { 5813 btrfs_set_path_blocking(path); 5814 btrfs_tree_read_lock(next); 5815 } 5816 next_rw_lock = BTRFS_READ_LOCK; 5817 } 5818 break; 5819 } 5820 path->slots[level] = slot; 5821 while (1) { 5822 level--; 5823 c = path->nodes[level]; 5824 if (path->locks[level]) 5825 btrfs_tree_unlock_rw(c, path->locks[level]); 5826 5827 free_extent_buffer(c); 5828 path->nodes[level] = next; 5829 path->slots[level] = 0; 5830 if (!path->skip_locking) 5831 path->locks[level] = next_rw_lock; 5832 if (!level) 5833 break; 5834 5835 ret = read_block_for_search(root, path, &next, level, 5836 0, &key); 5837 if (ret == -EAGAIN) 5838 goto again; 5839 5840 if (ret < 0) { 5841 btrfs_release_path(path); 5842 goto done; 5843 } 5844 5845 if (!path->skip_locking) { 5846 ret = btrfs_try_tree_read_lock(next); 5847 if (!ret) { 5848 btrfs_set_path_blocking(path); 5849 btrfs_tree_read_lock(next); 5850 } 5851 next_rw_lock = BTRFS_READ_LOCK; 5852 } 5853 } 5854 ret = 0; 5855 done: 5856 unlock_up(path, 0, 1, 0, NULL); 5857 path->leave_spinning = old_spinning; 5858 if (!old_spinning) 5859 btrfs_set_path_blocking(path); 5860 5861 return ret; 5862 } 5863 5864 /* 5865 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps 5866 * searching until it gets past min_objectid or finds an item of 'type' 5867 * 5868 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5869 */ 5870 int btrfs_previous_item(struct btrfs_root *root, 5871 struct btrfs_path *path, u64 min_objectid, 5872 int type) 5873 { 5874 struct btrfs_key found_key; 5875 struct extent_buffer *leaf; 5876 u32 nritems; 5877 int ret; 5878 5879 while (1) { 5880 if (path->slots[0] == 0) { 5881 btrfs_set_path_blocking(path); 5882 ret = btrfs_prev_leaf(root, path); 5883 if (ret != 0) 5884 return ret; 5885 } else { 5886 path->slots[0]--; 5887 } 5888 leaf = path->nodes[0]; 5889 nritems = btrfs_header_nritems(leaf); 5890 if (nritems == 0) 5891 return 1; 5892 if (path->slots[0] == nritems) 5893 path->slots[0]--; 5894 5895 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5896 if (found_key.objectid < min_objectid) 5897 break; 5898 if (found_key.type == type) 5899 return 0; 5900 if (found_key.objectid == min_objectid && 5901 found_key.type < type) 5902 break; 5903 } 5904 return 1; 5905 } 5906 5907 /* 5908 * search in extent tree to find a previous Metadata/Data extent item with 5909 * min objecitd. 5910 * 5911 * returns 0 if something is found, 1 if nothing was found and < 0 on error 5912 */ 5913 int btrfs_previous_extent_item(struct btrfs_root *root, 5914 struct btrfs_path *path, u64 min_objectid) 5915 { 5916 struct btrfs_key found_key; 5917 struct extent_buffer *leaf; 5918 u32 nritems; 5919 int ret; 5920 5921 while (1) { 5922 if (path->slots[0] == 0) { 5923 btrfs_set_path_blocking(path); 5924 ret = btrfs_prev_leaf(root, path); 5925 if (ret != 0) 5926 return ret; 5927 } else { 5928 path->slots[0]--; 5929 } 5930 leaf = path->nodes[0]; 5931 nritems = btrfs_header_nritems(leaf); 5932 if (nritems == 0) 5933 return 1; 5934 if (path->slots[0] == nritems) 5935 path->slots[0]--; 5936 5937 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 5938 if (found_key.objectid < min_objectid) 5939 break; 5940 if (found_key.type == BTRFS_EXTENT_ITEM_KEY || 5941 found_key.type == BTRFS_METADATA_ITEM_KEY) 5942 return 0; 5943 if (found_key.objectid == min_objectid && 5944 found_key.type < BTRFS_EXTENT_ITEM_KEY) 5945 break; 5946 } 5947 return 1; 5948 } 5949