xref: /openbmc/linux/fs/btrfs/ctree.c (revision 05bcf503)
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
27 
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 		      *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 		      *root, struct btrfs_key *ins_key,
32 		      struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 			  struct btrfs_root *root, struct extent_buffer *dst,
35 			  struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 			      struct btrfs_root *root,
38 			      struct extent_buffer *dst_buf,
39 			      struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
41 		    struct btrfs_path *path, int level, int slot,
42 		    int tree_mod_log);
43 static void tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
44 				 struct extent_buffer *eb);
45 struct extent_buffer *read_old_tree_block(struct btrfs_root *root, u64 bytenr,
46 					  u32 blocksize, u64 parent_transid,
47 					  u64 time_seq);
48 struct extent_buffer *btrfs_find_old_tree_block(struct btrfs_root *root,
49 						u64 bytenr, u32 blocksize,
50 						u64 time_seq);
51 
52 struct btrfs_path *btrfs_alloc_path(void)
53 {
54 	struct btrfs_path *path;
55 	path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
56 	return path;
57 }
58 
59 /*
60  * set all locked nodes in the path to blocking locks.  This should
61  * be done before scheduling
62  */
63 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
64 {
65 	int i;
66 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
67 		if (!p->nodes[i] || !p->locks[i])
68 			continue;
69 		btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
70 		if (p->locks[i] == BTRFS_READ_LOCK)
71 			p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
72 		else if (p->locks[i] == BTRFS_WRITE_LOCK)
73 			p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
74 	}
75 }
76 
77 /*
78  * reset all the locked nodes in the patch to spinning locks.
79  *
80  * held is used to keep lockdep happy, when lockdep is enabled
81  * we set held to a blocking lock before we go around and
82  * retake all the spinlocks in the path.  You can safely use NULL
83  * for held
84  */
85 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
86 					struct extent_buffer *held, int held_rw)
87 {
88 	int i;
89 
90 #ifdef CONFIG_DEBUG_LOCK_ALLOC
91 	/* lockdep really cares that we take all of these spinlocks
92 	 * in the right order.  If any of the locks in the path are not
93 	 * currently blocking, it is going to complain.  So, make really
94 	 * really sure by forcing the path to blocking before we clear
95 	 * the path blocking.
96 	 */
97 	if (held) {
98 		btrfs_set_lock_blocking_rw(held, held_rw);
99 		if (held_rw == BTRFS_WRITE_LOCK)
100 			held_rw = BTRFS_WRITE_LOCK_BLOCKING;
101 		else if (held_rw == BTRFS_READ_LOCK)
102 			held_rw = BTRFS_READ_LOCK_BLOCKING;
103 	}
104 	btrfs_set_path_blocking(p);
105 #endif
106 
107 	for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
108 		if (p->nodes[i] && p->locks[i]) {
109 			btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
110 			if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
111 				p->locks[i] = BTRFS_WRITE_LOCK;
112 			else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
113 				p->locks[i] = BTRFS_READ_LOCK;
114 		}
115 	}
116 
117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
118 	if (held)
119 		btrfs_clear_lock_blocking_rw(held, held_rw);
120 #endif
121 }
122 
123 /* this also releases the path */
124 void btrfs_free_path(struct btrfs_path *p)
125 {
126 	if (!p)
127 		return;
128 	btrfs_release_path(p);
129 	kmem_cache_free(btrfs_path_cachep, p);
130 }
131 
132 /*
133  * path release drops references on the extent buffers in the path
134  * and it drops any locks held by this path
135  *
136  * It is safe to call this on paths that no locks or extent buffers held.
137  */
138 noinline void btrfs_release_path(struct btrfs_path *p)
139 {
140 	int i;
141 
142 	for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
143 		p->slots[i] = 0;
144 		if (!p->nodes[i])
145 			continue;
146 		if (p->locks[i]) {
147 			btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
148 			p->locks[i] = 0;
149 		}
150 		free_extent_buffer(p->nodes[i]);
151 		p->nodes[i] = NULL;
152 	}
153 }
154 
155 /*
156  * safely gets a reference on the root node of a tree.  A lock
157  * is not taken, so a concurrent writer may put a different node
158  * at the root of the tree.  See btrfs_lock_root_node for the
159  * looping required.
160  *
161  * The extent buffer returned by this has a reference taken, so
162  * it won't disappear.  It may stop being the root of the tree
163  * at any time because there are no locks held.
164  */
165 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
166 {
167 	struct extent_buffer *eb;
168 
169 	while (1) {
170 		rcu_read_lock();
171 		eb = rcu_dereference(root->node);
172 
173 		/*
174 		 * RCU really hurts here, we could free up the root node because
175 		 * it was cow'ed but we may not get the new root node yet so do
176 		 * the inc_not_zero dance and if it doesn't work then
177 		 * synchronize_rcu and try again.
178 		 */
179 		if (atomic_inc_not_zero(&eb->refs)) {
180 			rcu_read_unlock();
181 			break;
182 		}
183 		rcu_read_unlock();
184 		synchronize_rcu();
185 	}
186 	return eb;
187 }
188 
189 /* loop around taking references on and locking the root node of the
190  * tree until you end up with a lock on the root.  A locked buffer
191  * is returned, with a reference held.
192  */
193 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
194 {
195 	struct extent_buffer *eb;
196 
197 	while (1) {
198 		eb = btrfs_root_node(root);
199 		btrfs_tree_lock(eb);
200 		if (eb == root->node)
201 			break;
202 		btrfs_tree_unlock(eb);
203 		free_extent_buffer(eb);
204 	}
205 	return eb;
206 }
207 
208 /* loop around taking references on and locking the root node of the
209  * tree until you end up with a lock on the root.  A locked buffer
210  * is returned, with a reference held.
211  */
212 struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
213 {
214 	struct extent_buffer *eb;
215 
216 	while (1) {
217 		eb = btrfs_root_node(root);
218 		btrfs_tree_read_lock(eb);
219 		if (eb == root->node)
220 			break;
221 		btrfs_tree_read_unlock(eb);
222 		free_extent_buffer(eb);
223 	}
224 	return eb;
225 }
226 
227 /* cowonly root (everything not a reference counted cow subvolume), just get
228  * put onto a simple dirty list.  transaction.c walks this to make sure they
229  * get properly updated on disk.
230  */
231 static void add_root_to_dirty_list(struct btrfs_root *root)
232 {
233 	spin_lock(&root->fs_info->trans_lock);
234 	if (root->track_dirty && list_empty(&root->dirty_list)) {
235 		list_add(&root->dirty_list,
236 			 &root->fs_info->dirty_cowonly_roots);
237 	}
238 	spin_unlock(&root->fs_info->trans_lock);
239 }
240 
241 /*
242  * used by snapshot creation to make a copy of a root for a tree with
243  * a given objectid.  The buffer with the new root node is returned in
244  * cow_ret, and this func returns zero on success or a negative error code.
245  */
246 int btrfs_copy_root(struct btrfs_trans_handle *trans,
247 		      struct btrfs_root *root,
248 		      struct extent_buffer *buf,
249 		      struct extent_buffer **cow_ret, u64 new_root_objectid)
250 {
251 	struct extent_buffer *cow;
252 	int ret = 0;
253 	int level;
254 	struct btrfs_disk_key disk_key;
255 
256 	WARN_ON(root->ref_cows && trans->transid !=
257 		root->fs_info->running_transaction->transid);
258 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
259 
260 	level = btrfs_header_level(buf);
261 	if (level == 0)
262 		btrfs_item_key(buf, &disk_key, 0);
263 	else
264 		btrfs_node_key(buf, &disk_key, 0);
265 
266 	cow = btrfs_alloc_free_block(trans, root, buf->len, 0,
267 				     new_root_objectid, &disk_key, level,
268 				     buf->start, 0);
269 	if (IS_ERR(cow))
270 		return PTR_ERR(cow);
271 
272 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
273 	btrfs_set_header_bytenr(cow, cow->start);
274 	btrfs_set_header_generation(cow, trans->transid);
275 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
276 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
277 				     BTRFS_HEADER_FLAG_RELOC);
278 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
279 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
280 	else
281 		btrfs_set_header_owner(cow, new_root_objectid);
282 
283 	write_extent_buffer(cow, root->fs_info->fsid,
284 			    (unsigned long)btrfs_header_fsid(cow),
285 			    BTRFS_FSID_SIZE);
286 
287 	WARN_ON(btrfs_header_generation(buf) > trans->transid);
288 	if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
289 		ret = btrfs_inc_ref(trans, root, cow, 1, 1);
290 	else
291 		ret = btrfs_inc_ref(trans, root, cow, 0, 1);
292 
293 	if (ret)
294 		return ret;
295 
296 	btrfs_mark_buffer_dirty(cow);
297 	*cow_ret = cow;
298 	return 0;
299 }
300 
301 enum mod_log_op {
302 	MOD_LOG_KEY_REPLACE,
303 	MOD_LOG_KEY_ADD,
304 	MOD_LOG_KEY_REMOVE,
305 	MOD_LOG_KEY_REMOVE_WHILE_FREEING,
306 	MOD_LOG_KEY_REMOVE_WHILE_MOVING,
307 	MOD_LOG_MOVE_KEYS,
308 	MOD_LOG_ROOT_REPLACE,
309 };
310 
311 struct tree_mod_move {
312 	int dst_slot;
313 	int nr_items;
314 };
315 
316 struct tree_mod_root {
317 	u64 logical;
318 	u8 level;
319 };
320 
321 struct tree_mod_elem {
322 	struct rb_node node;
323 	u64 index;		/* shifted logical */
324 	u64 seq;
325 	enum mod_log_op op;
326 
327 	/* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
328 	int slot;
329 
330 	/* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
331 	u64 generation;
332 
333 	/* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
334 	struct btrfs_disk_key key;
335 	u64 blockptr;
336 
337 	/* this is used for op == MOD_LOG_MOVE_KEYS */
338 	struct tree_mod_move move;
339 
340 	/* this is used for op == MOD_LOG_ROOT_REPLACE */
341 	struct tree_mod_root old_root;
342 };
343 
344 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
345 {
346 	read_lock(&fs_info->tree_mod_log_lock);
347 }
348 
349 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
350 {
351 	read_unlock(&fs_info->tree_mod_log_lock);
352 }
353 
354 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
355 {
356 	write_lock(&fs_info->tree_mod_log_lock);
357 }
358 
359 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
360 {
361 	write_unlock(&fs_info->tree_mod_log_lock);
362 }
363 
364 /*
365  * This adds a new blocker to the tree mod log's blocker list if the @elem
366  * passed does not already have a sequence number set. So when a caller expects
367  * to record tree modifications, it should ensure to set elem->seq to zero
368  * before calling btrfs_get_tree_mod_seq.
369  * Returns a fresh, unused tree log modification sequence number, even if no new
370  * blocker was added.
371  */
372 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
373 			   struct seq_list *elem)
374 {
375 	u64 seq;
376 
377 	tree_mod_log_write_lock(fs_info);
378 	spin_lock(&fs_info->tree_mod_seq_lock);
379 	if (!elem->seq) {
380 		elem->seq = btrfs_inc_tree_mod_seq(fs_info);
381 		list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
382 	}
383 	seq = btrfs_inc_tree_mod_seq(fs_info);
384 	spin_unlock(&fs_info->tree_mod_seq_lock);
385 	tree_mod_log_write_unlock(fs_info);
386 
387 	return seq;
388 }
389 
390 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
391 			    struct seq_list *elem)
392 {
393 	struct rb_root *tm_root;
394 	struct rb_node *node;
395 	struct rb_node *next;
396 	struct seq_list *cur_elem;
397 	struct tree_mod_elem *tm;
398 	u64 min_seq = (u64)-1;
399 	u64 seq_putting = elem->seq;
400 
401 	if (!seq_putting)
402 		return;
403 
404 	spin_lock(&fs_info->tree_mod_seq_lock);
405 	list_del(&elem->list);
406 	elem->seq = 0;
407 
408 	list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
409 		if (cur_elem->seq < min_seq) {
410 			if (seq_putting > cur_elem->seq) {
411 				/*
412 				 * blocker with lower sequence number exists, we
413 				 * cannot remove anything from the log
414 				 */
415 				spin_unlock(&fs_info->tree_mod_seq_lock);
416 				return;
417 			}
418 			min_seq = cur_elem->seq;
419 		}
420 	}
421 	spin_unlock(&fs_info->tree_mod_seq_lock);
422 
423 	/*
424 	 * anything that's lower than the lowest existing (read: blocked)
425 	 * sequence number can be removed from the tree.
426 	 */
427 	tree_mod_log_write_lock(fs_info);
428 	tm_root = &fs_info->tree_mod_log;
429 	for (node = rb_first(tm_root); node; node = next) {
430 		next = rb_next(node);
431 		tm = container_of(node, struct tree_mod_elem, node);
432 		if (tm->seq > min_seq)
433 			continue;
434 		rb_erase(node, tm_root);
435 		kfree(tm);
436 	}
437 	tree_mod_log_write_unlock(fs_info);
438 }
439 
440 /*
441  * key order of the log:
442  *       index -> sequence
443  *
444  * the index is the shifted logical of the *new* root node for root replace
445  * operations, or the shifted logical of the affected block for all other
446  * operations.
447  */
448 static noinline int
449 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
450 {
451 	struct rb_root *tm_root;
452 	struct rb_node **new;
453 	struct rb_node *parent = NULL;
454 	struct tree_mod_elem *cur;
455 
456 	BUG_ON(!tm || !tm->seq);
457 
458 	tm_root = &fs_info->tree_mod_log;
459 	new = &tm_root->rb_node;
460 	while (*new) {
461 		cur = container_of(*new, struct tree_mod_elem, node);
462 		parent = *new;
463 		if (cur->index < tm->index)
464 			new = &((*new)->rb_left);
465 		else if (cur->index > tm->index)
466 			new = &((*new)->rb_right);
467 		else if (cur->seq < tm->seq)
468 			new = &((*new)->rb_left);
469 		else if (cur->seq > tm->seq)
470 			new = &((*new)->rb_right);
471 		else {
472 			kfree(tm);
473 			return -EEXIST;
474 		}
475 	}
476 
477 	rb_link_node(&tm->node, parent, new);
478 	rb_insert_color(&tm->node, tm_root);
479 	return 0;
480 }
481 
482 /*
483  * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
484  * returns zero with the tree_mod_log_lock acquired. The caller must hold
485  * this until all tree mod log insertions are recorded in the rb tree and then
486  * call tree_mod_log_write_unlock() to release.
487  */
488 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
489 				    struct extent_buffer *eb) {
490 	smp_mb();
491 	if (list_empty(&(fs_info)->tree_mod_seq_list))
492 		return 1;
493 	if (eb && btrfs_header_level(eb) == 0)
494 		return 1;
495 
496 	tree_mod_log_write_lock(fs_info);
497 	if (list_empty(&fs_info->tree_mod_seq_list)) {
498 		/*
499 		 * someone emptied the list while we were waiting for the lock.
500 		 * we must not add to the list when no blocker exists.
501 		 */
502 		tree_mod_log_write_unlock(fs_info);
503 		return 1;
504 	}
505 
506 	return 0;
507 }
508 
509 /*
510  * This allocates memory and gets a tree modification sequence number.
511  *
512  * Returns <0 on error.
513  * Returns >0 (the added sequence number) on success.
514  */
515 static inline int tree_mod_alloc(struct btrfs_fs_info *fs_info, gfp_t flags,
516 				 struct tree_mod_elem **tm_ret)
517 {
518 	struct tree_mod_elem *tm;
519 
520 	/*
521 	 * once we switch from spin locks to something different, we should
522 	 * honor the flags parameter here.
523 	 */
524 	tm = *tm_ret = kzalloc(sizeof(*tm), GFP_ATOMIC);
525 	if (!tm)
526 		return -ENOMEM;
527 
528 	tm->seq = btrfs_inc_tree_mod_seq(fs_info);
529 	return tm->seq;
530 }
531 
532 static inline int
533 __tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
534 			  struct extent_buffer *eb, int slot,
535 			  enum mod_log_op op, gfp_t flags)
536 {
537 	int ret;
538 	struct tree_mod_elem *tm;
539 
540 	ret = tree_mod_alloc(fs_info, flags, &tm);
541 	if (ret < 0)
542 		return ret;
543 
544 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
545 	if (op != MOD_LOG_KEY_ADD) {
546 		btrfs_node_key(eb, &tm->key, slot);
547 		tm->blockptr = btrfs_node_blockptr(eb, slot);
548 	}
549 	tm->op = op;
550 	tm->slot = slot;
551 	tm->generation = btrfs_node_ptr_generation(eb, slot);
552 
553 	return __tree_mod_log_insert(fs_info, tm);
554 }
555 
556 static noinline int
557 tree_mod_log_insert_key_mask(struct btrfs_fs_info *fs_info,
558 			     struct extent_buffer *eb, int slot,
559 			     enum mod_log_op op, gfp_t flags)
560 {
561 	int ret;
562 
563 	if (tree_mod_dont_log(fs_info, eb))
564 		return 0;
565 
566 	ret = __tree_mod_log_insert_key(fs_info, eb, slot, op, flags);
567 
568 	tree_mod_log_write_unlock(fs_info);
569 	return ret;
570 }
571 
572 static noinline int
573 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
574 			int slot, enum mod_log_op op)
575 {
576 	return tree_mod_log_insert_key_mask(fs_info, eb, slot, op, GFP_NOFS);
577 }
578 
579 static noinline int
580 tree_mod_log_insert_key_locked(struct btrfs_fs_info *fs_info,
581 			     struct extent_buffer *eb, int slot,
582 			     enum mod_log_op op)
583 {
584 	return __tree_mod_log_insert_key(fs_info, eb, slot, op, GFP_NOFS);
585 }
586 
587 static noinline int
588 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
589 			 struct extent_buffer *eb, int dst_slot, int src_slot,
590 			 int nr_items, gfp_t flags)
591 {
592 	struct tree_mod_elem *tm;
593 	int ret;
594 	int i;
595 
596 	if (tree_mod_dont_log(fs_info, eb))
597 		return 0;
598 
599 	/*
600 	 * When we override something during the move, we log these removals.
601 	 * This can only happen when we move towards the beginning of the
602 	 * buffer, i.e. dst_slot < src_slot.
603 	 */
604 	for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
605 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i + dst_slot,
606 					      MOD_LOG_KEY_REMOVE_WHILE_MOVING);
607 		BUG_ON(ret < 0);
608 	}
609 
610 	ret = tree_mod_alloc(fs_info, flags, &tm);
611 	if (ret < 0)
612 		goto out;
613 
614 	tm->index = eb->start >> PAGE_CACHE_SHIFT;
615 	tm->slot = src_slot;
616 	tm->move.dst_slot = dst_slot;
617 	tm->move.nr_items = nr_items;
618 	tm->op = MOD_LOG_MOVE_KEYS;
619 
620 	ret = __tree_mod_log_insert(fs_info, tm);
621 out:
622 	tree_mod_log_write_unlock(fs_info);
623 	return ret;
624 }
625 
626 static inline void
627 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
628 {
629 	int i;
630 	u32 nritems;
631 	int ret;
632 
633 	if (btrfs_header_level(eb) == 0)
634 		return;
635 
636 	nritems = btrfs_header_nritems(eb);
637 	for (i = nritems - 1; i >= 0; i--) {
638 		ret = tree_mod_log_insert_key_locked(fs_info, eb, i,
639 					      MOD_LOG_KEY_REMOVE_WHILE_FREEING);
640 		BUG_ON(ret < 0);
641 	}
642 }
643 
644 static noinline int
645 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
646 			 struct extent_buffer *old_root,
647 			 struct extent_buffer *new_root, gfp_t flags)
648 {
649 	struct tree_mod_elem *tm;
650 	int ret;
651 
652 	if (tree_mod_dont_log(fs_info, NULL))
653 		return 0;
654 
655 	ret = tree_mod_alloc(fs_info, flags, &tm);
656 	if (ret < 0)
657 		goto out;
658 
659 	tm->index = new_root->start >> PAGE_CACHE_SHIFT;
660 	tm->old_root.logical = old_root->start;
661 	tm->old_root.level = btrfs_header_level(old_root);
662 	tm->generation = btrfs_header_generation(old_root);
663 	tm->op = MOD_LOG_ROOT_REPLACE;
664 
665 	ret = __tree_mod_log_insert(fs_info, tm);
666 out:
667 	tree_mod_log_write_unlock(fs_info);
668 	return ret;
669 }
670 
671 static struct tree_mod_elem *
672 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
673 		      int smallest)
674 {
675 	struct rb_root *tm_root;
676 	struct rb_node *node;
677 	struct tree_mod_elem *cur = NULL;
678 	struct tree_mod_elem *found = NULL;
679 	u64 index = start >> PAGE_CACHE_SHIFT;
680 
681 	tree_mod_log_read_lock(fs_info);
682 	tm_root = &fs_info->tree_mod_log;
683 	node = tm_root->rb_node;
684 	while (node) {
685 		cur = container_of(node, struct tree_mod_elem, node);
686 		if (cur->index < index) {
687 			node = node->rb_left;
688 		} else if (cur->index > index) {
689 			node = node->rb_right;
690 		} else if (cur->seq < min_seq) {
691 			node = node->rb_left;
692 		} else if (!smallest) {
693 			/* we want the node with the highest seq */
694 			if (found)
695 				BUG_ON(found->seq > cur->seq);
696 			found = cur;
697 			node = node->rb_left;
698 		} else if (cur->seq > min_seq) {
699 			/* we want the node with the smallest seq */
700 			if (found)
701 				BUG_ON(found->seq < cur->seq);
702 			found = cur;
703 			node = node->rb_right;
704 		} else {
705 			found = cur;
706 			break;
707 		}
708 	}
709 	tree_mod_log_read_unlock(fs_info);
710 
711 	return found;
712 }
713 
714 /*
715  * this returns the element from the log with the smallest time sequence
716  * value that's in the log (the oldest log item). any element with a time
717  * sequence lower than min_seq will be ignored.
718  */
719 static struct tree_mod_elem *
720 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
721 			   u64 min_seq)
722 {
723 	return __tree_mod_log_search(fs_info, start, min_seq, 1);
724 }
725 
726 /*
727  * this returns the element from the log with the largest time sequence
728  * value that's in the log (the most recent log item). any element with
729  * a time sequence lower than min_seq will be ignored.
730  */
731 static struct tree_mod_elem *
732 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
733 {
734 	return __tree_mod_log_search(fs_info, start, min_seq, 0);
735 }
736 
737 static noinline void
738 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
739 		     struct extent_buffer *src, unsigned long dst_offset,
740 		     unsigned long src_offset, int nr_items)
741 {
742 	int ret;
743 	int i;
744 
745 	if (tree_mod_dont_log(fs_info, NULL))
746 		return;
747 
748 	if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0) {
749 		tree_mod_log_write_unlock(fs_info);
750 		return;
751 	}
752 
753 	for (i = 0; i < nr_items; i++) {
754 		ret = tree_mod_log_insert_key_locked(fs_info, src,
755 						     i + src_offset,
756 						     MOD_LOG_KEY_REMOVE);
757 		BUG_ON(ret < 0);
758 		ret = tree_mod_log_insert_key_locked(fs_info, dst,
759 						     i + dst_offset,
760 						     MOD_LOG_KEY_ADD);
761 		BUG_ON(ret < 0);
762 	}
763 
764 	tree_mod_log_write_unlock(fs_info);
765 }
766 
767 static inline void
768 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
769 		     int dst_offset, int src_offset, int nr_items)
770 {
771 	int ret;
772 	ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
773 				       nr_items, GFP_NOFS);
774 	BUG_ON(ret < 0);
775 }
776 
777 static noinline void
778 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
779 			  struct extent_buffer *eb,
780 			  struct btrfs_disk_key *disk_key, int slot, int atomic)
781 {
782 	int ret;
783 
784 	ret = tree_mod_log_insert_key_mask(fs_info, eb, slot,
785 					   MOD_LOG_KEY_REPLACE,
786 					   atomic ? GFP_ATOMIC : GFP_NOFS);
787 	BUG_ON(ret < 0);
788 }
789 
790 static noinline void
791 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
792 {
793 	if (tree_mod_dont_log(fs_info, eb))
794 		return;
795 
796 	__tree_mod_log_free_eb(fs_info, eb);
797 
798 	tree_mod_log_write_unlock(fs_info);
799 }
800 
801 static noinline void
802 tree_mod_log_set_root_pointer(struct btrfs_root *root,
803 			      struct extent_buffer *new_root_node)
804 {
805 	int ret;
806 	ret = tree_mod_log_insert_root(root->fs_info, root->node,
807 				       new_root_node, GFP_NOFS);
808 	BUG_ON(ret < 0);
809 }
810 
811 /*
812  * check if the tree block can be shared by multiple trees
813  */
814 int btrfs_block_can_be_shared(struct btrfs_root *root,
815 			      struct extent_buffer *buf)
816 {
817 	/*
818 	 * Tree blocks not in refernece counted trees and tree roots
819 	 * are never shared. If a block was allocated after the last
820 	 * snapshot and the block was not allocated by tree relocation,
821 	 * we know the block is not shared.
822 	 */
823 	if (root->ref_cows &&
824 	    buf != root->node && buf != root->commit_root &&
825 	    (btrfs_header_generation(buf) <=
826 	     btrfs_root_last_snapshot(&root->root_item) ||
827 	     btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
828 		return 1;
829 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
830 	if (root->ref_cows &&
831 	    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
832 		return 1;
833 #endif
834 	return 0;
835 }
836 
837 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
838 				       struct btrfs_root *root,
839 				       struct extent_buffer *buf,
840 				       struct extent_buffer *cow,
841 				       int *last_ref)
842 {
843 	u64 refs;
844 	u64 owner;
845 	u64 flags;
846 	u64 new_flags = 0;
847 	int ret;
848 
849 	/*
850 	 * Backrefs update rules:
851 	 *
852 	 * Always use full backrefs for extent pointers in tree block
853 	 * allocated by tree relocation.
854 	 *
855 	 * If a shared tree block is no longer referenced by its owner
856 	 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
857 	 * use full backrefs for extent pointers in tree block.
858 	 *
859 	 * If a tree block is been relocating
860 	 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
861 	 * use full backrefs for extent pointers in tree block.
862 	 * The reason for this is some operations (such as drop tree)
863 	 * are only allowed for blocks use full backrefs.
864 	 */
865 
866 	if (btrfs_block_can_be_shared(root, buf)) {
867 		ret = btrfs_lookup_extent_info(trans, root, buf->start,
868 					       buf->len, &refs, &flags);
869 		if (ret)
870 			return ret;
871 		if (refs == 0) {
872 			ret = -EROFS;
873 			btrfs_std_error(root->fs_info, ret);
874 			return ret;
875 		}
876 	} else {
877 		refs = 1;
878 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
879 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
880 			flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881 		else
882 			flags = 0;
883 	}
884 
885 	owner = btrfs_header_owner(buf);
886 	BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
887 	       !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
888 
889 	if (refs > 1) {
890 		if ((owner == root->root_key.objectid ||
891 		     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
892 		    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
893 			ret = btrfs_inc_ref(trans, root, buf, 1, 1);
894 			BUG_ON(ret); /* -ENOMEM */
895 
896 			if (root->root_key.objectid ==
897 			    BTRFS_TREE_RELOC_OBJECTID) {
898 				ret = btrfs_dec_ref(trans, root, buf, 0, 1);
899 				BUG_ON(ret); /* -ENOMEM */
900 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
901 				BUG_ON(ret); /* -ENOMEM */
902 			}
903 			new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
904 		} else {
905 
906 			if (root->root_key.objectid ==
907 			    BTRFS_TREE_RELOC_OBJECTID)
908 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
909 			else
910 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
911 			BUG_ON(ret); /* -ENOMEM */
912 		}
913 		if (new_flags != 0) {
914 			ret = btrfs_set_disk_extent_flags(trans, root,
915 							  buf->start,
916 							  buf->len,
917 							  new_flags, 0);
918 			if (ret)
919 				return ret;
920 		}
921 	} else {
922 		if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
923 			if (root->root_key.objectid ==
924 			    BTRFS_TREE_RELOC_OBJECTID)
925 				ret = btrfs_inc_ref(trans, root, cow, 1, 1);
926 			else
927 				ret = btrfs_inc_ref(trans, root, cow, 0, 1);
928 			BUG_ON(ret); /* -ENOMEM */
929 			ret = btrfs_dec_ref(trans, root, buf, 1, 1);
930 			BUG_ON(ret); /* -ENOMEM */
931 		}
932 		tree_mod_log_free_eb(root->fs_info, buf);
933 		clean_tree_block(trans, root, buf);
934 		*last_ref = 1;
935 	}
936 	return 0;
937 }
938 
939 /*
940  * does the dirty work in cow of a single block.  The parent block (if
941  * supplied) is updated to point to the new cow copy.  The new buffer is marked
942  * dirty and returned locked.  If you modify the block it needs to be marked
943  * dirty again.
944  *
945  * search_start -- an allocation hint for the new block
946  *
947  * empty_size -- a hint that you plan on doing more cow.  This is the size in
948  * bytes the allocator should try to find free next to the block it returns.
949  * This is just a hint and may be ignored by the allocator.
950  */
951 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
952 			     struct btrfs_root *root,
953 			     struct extent_buffer *buf,
954 			     struct extent_buffer *parent, int parent_slot,
955 			     struct extent_buffer **cow_ret,
956 			     u64 search_start, u64 empty_size)
957 {
958 	struct btrfs_disk_key disk_key;
959 	struct extent_buffer *cow;
960 	int level, ret;
961 	int last_ref = 0;
962 	int unlock_orig = 0;
963 	u64 parent_start;
964 
965 	if (*cow_ret == buf)
966 		unlock_orig = 1;
967 
968 	btrfs_assert_tree_locked(buf);
969 
970 	WARN_ON(root->ref_cows && trans->transid !=
971 		root->fs_info->running_transaction->transid);
972 	WARN_ON(root->ref_cows && trans->transid != root->last_trans);
973 
974 	level = btrfs_header_level(buf);
975 
976 	if (level == 0)
977 		btrfs_item_key(buf, &disk_key, 0);
978 	else
979 		btrfs_node_key(buf, &disk_key, 0);
980 
981 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
982 		if (parent)
983 			parent_start = parent->start;
984 		else
985 			parent_start = 0;
986 	} else
987 		parent_start = 0;
988 
989 	cow = btrfs_alloc_free_block(trans, root, buf->len, parent_start,
990 				     root->root_key.objectid, &disk_key,
991 				     level, search_start, empty_size);
992 	if (IS_ERR(cow))
993 		return PTR_ERR(cow);
994 
995 	/* cow is set to blocking by btrfs_init_new_buffer */
996 
997 	copy_extent_buffer(cow, buf, 0, 0, cow->len);
998 	btrfs_set_header_bytenr(cow, cow->start);
999 	btrfs_set_header_generation(cow, trans->transid);
1000 	btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1001 	btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1002 				     BTRFS_HEADER_FLAG_RELOC);
1003 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1004 		btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1005 	else
1006 		btrfs_set_header_owner(cow, root->root_key.objectid);
1007 
1008 	write_extent_buffer(cow, root->fs_info->fsid,
1009 			    (unsigned long)btrfs_header_fsid(cow),
1010 			    BTRFS_FSID_SIZE);
1011 
1012 	ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1013 	if (ret) {
1014 		btrfs_abort_transaction(trans, root, ret);
1015 		return ret;
1016 	}
1017 
1018 	if (root->ref_cows)
1019 		btrfs_reloc_cow_block(trans, root, buf, cow);
1020 
1021 	if (buf == root->node) {
1022 		WARN_ON(parent && parent != buf);
1023 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1024 		    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1025 			parent_start = buf->start;
1026 		else
1027 			parent_start = 0;
1028 
1029 		extent_buffer_get(cow);
1030 		tree_mod_log_set_root_pointer(root, cow);
1031 		rcu_assign_pointer(root->node, cow);
1032 
1033 		btrfs_free_tree_block(trans, root, buf, parent_start,
1034 				      last_ref);
1035 		free_extent_buffer(buf);
1036 		add_root_to_dirty_list(root);
1037 	} else {
1038 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1039 			parent_start = parent->start;
1040 		else
1041 			parent_start = 0;
1042 
1043 		WARN_ON(trans->transid != btrfs_header_generation(parent));
1044 		tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1045 					MOD_LOG_KEY_REPLACE);
1046 		btrfs_set_node_blockptr(parent, parent_slot,
1047 					cow->start);
1048 		btrfs_set_node_ptr_generation(parent, parent_slot,
1049 					      trans->transid);
1050 		btrfs_mark_buffer_dirty(parent);
1051 		btrfs_free_tree_block(trans, root, buf, parent_start,
1052 				      last_ref);
1053 	}
1054 	if (unlock_orig)
1055 		btrfs_tree_unlock(buf);
1056 	free_extent_buffer_stale(buf);
1057 	btrfs_mark_buffer_dirty(cow);
1058 	*cow_ret = cow;
1059 	return 0;
1060 }
1061 
1062 /*
1063  * returns the logical address of the oldest predecessor of the given root.
1064  * entries older than time_seq are ignored.
1065  */
1066 static struct tree_mod_elem *
1067 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1068 			   struct btrfs_root *root, u64 time_seq)
1069 {
1070 	struct tree_mod_elem *tm;
1071 	struct tree_mod_elem *found = NULL;
1072 	u64 root_logical = root->node->start;
1073 	int looped = 0;
1074 
1075 	if (!time_seq)
1076 		return 0;
1077 
1078 	/*
1079 	 * the very last operation that's logged for a root is the replacement
1080 	 * operation (if it is replaced at all). this has the index of the *new*
1081 	 * root, making it the very first operation that's logged for this root.
1082 	 */
1083 	while (1) {
1084 		tm = tree_mod_log_search_oldest(fs_info, root_logical,
1085 						time_seq);
1086 		if (!looped && !tm)
1087 			return 0;
1088 		/*
1089 		 * if there are no tree operation for the oldest root, we simply
1090 		 * return it. this should only happen if that (old) root is at
1091 		 * level 0.
1092 		 */
1093 		if (!tm)
1094 			break;
1095 
1096 		/*
1097 		 * if there's an operation that's not a root replacement, we
1098 		 * found the oldest version of our root. normally, we'll find a
1099 		 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1100 		 */
1101 		if (tm->op != MOD_LOG_ROOT_REPLACE)
1102 			break;
1103 
1104 		found = tm;
1105 		root_logical = tm->old_root.logical;
1106 		BUG_ON(root_logical == root->node->start);
1107 		looped = 1;
1108 	}
1109 
1110 	/* if there's no old root to return, return what we found instead */
1111 	if (!found)
1112 		found = tm;
1113 
1114 	return found;
1115 }
1116 
1117 /*
1118  * tm is a pointer to the first operation to rewind within eb. then, all
1119  * previous operations will be rewinded (until we reach something older than
1120  * time_seq).
1121  */
1122 static void
1123 __tree_mod_log_rewind(struct extent_buffer *eb, u64 time_seq,
1124 		      struct tree_mod_elem *first_tm)
1125 {
1126 	u32 n;
1127 	struct rb_node *next;
1128 	struct tree_mod_elem *tm = first_tm;
1129 	unsigned long o_dst;
1130 	unsigned long o_src;
1131 	unsigned long p_size = sizeof(struct btrfs_key_ptr);
1132 
1133 	n = btrfs_header_nritems(eb);
1134 	while (tm && tm->seq >= time_seq) {
1135 		/*
1136 		 * all the operations are recorded with the operator used for
1137 		 * the modification. as we're going backwards, we do the
1138 		 * opposite of each operation here.
1139 		 */
1140 		switch (tm->op) {
1141 		case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1142 			BUG_ON(tm->slot < n);
1143 		case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1144 		case MOD_LOG_KEY_REMOVE:
1145 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1146 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1147 			btrfs_set_node_ptr_generation(eb, tm->slot,
1148 						      tm->generation);
1149 			n++;
1150 			break;
1151 		case MOD_LOG_KEY_REPLACE:
1152 			BUG_ON(tm->slot >= n);
1153 			btrfs_set_node_key(eb, &tm->key, tm->slot);
1154 			btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1155 			btrfs_set_node_ptr_generation(eb, tm->slot,
1156 						      tm->generation);
1157 			break;
1158 		case MOD_LOG_KEY_ADD:
1159 			/* if a move operation is needed it's in the log */
1160 			n--;
1161 			break;
1162 		case MOD_LOG_MOVE_KEYS:
1163 			o_dst = btrfs_node_key_ptr_offset(tm->slot);
1164 			o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1165 			memmove_extent_buffer(eb, o_dst, o_src,
1166 					      tm->move.nr_items * p_size);
1167 			break;
1168 		case MOD_LOG_ROOT_REPLACE:
1169 			/*
1170 			 * this operation is special. for roots, this must be
1171 			 * handled explicitly before rewinding.
1172 			 * for non-roots, this operation may exist if the node
1173 			 * was a root: root A -> child B; then A gets empty and
1174 			 * B is promoted to the new root. in the mod log, we'll
1175 			 * have a root-replace operation for B, a tree block
1176 			 * that is no root. we simply ignore that operation.
1177 			 */
1178 			break;
1179 		}
1180 		next = rb_next(&tm->node);
1181 		if (!next)
1182 			break;
1183 		tm = container_of(next, struct tree_mod_elem, node);
1184 		if (tm->index != first_tm->index)
1185 			break;
1186 	}
1187 	btrfs_set_header_nritems(eb, n);
1188 }
1189 
1190 static struct extent_buffer *
1191 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1192 		    u64 time_seq)
1193 {
1194 	struct extent_buffer *eb_rewin;
1195 	struct tree_mod_elem *tm;
1196 
1197 	if (!time_seq)
1198 		return eb;
1199 
1200 	if (btrfs_header_level(eb) == 0)
1201 		return eb;
1202 
1203 	tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1204 	if (!tm)
1205 		return eb;
1206 
1207 	if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1208 		BUG_ON(tm->slot != 0);
1209 		eb_rewin = alloc_dummy_extent_buffer(eb->start,
1210 						fs_info->tree_root->nodesize);
1211 		BUG_ON(!eb_rewin);
1212 		btrfs_set_header_bytenr(eb_rewin, eb->start);
1213 		btrfs_set_header_backref_rev(eb_rewin,
1214 					     btrfs_header_backref_rev(eb));
1215 		btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1216 		btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1217 	} else {
1218 		eb_rewin = btrfs_clone_extent_buffer(eb);
1219 		BUG_ON(!eb_rewin);
1220 	}
1221 
1222 	extent_buffer_get(eb_rewin);
1223 	free_extent_buffer(eb);
1224 
1225 	__tree_mod_log_rewind(eb_rewin, time_seq, tm);
1226 	WARN_ON(btrfs_header_nritems(eb_rewin) >
1227 		BTRFS_NODEPTRS_PER_BLOCK(fs_info->fs_root));
1228 
1229 	return eb_rewin;
1230 }
1231 
1232 /*
1233  * get_old_root() rewinds the state of @root's root node to the given @time_seq
1234  * value. If there are no changes, the current root->root_node is returned. If
1235  * anything changed in between, there's a fresh buffer allocated on which the
1236  * rewind operations are done. In any case, the returned buffer is read locked.
1237  * Returns NULL on error (with no locks held).
1238  */
1239 static inline struct extent_buffer *
1240 get_old_root(struct btrfs_root *root, u64 time_seq)
1241 {
1242 	struct tree_mod_elem *tm;
1243 	struct extent_buffer *eb;
1244 	struct extent_buffer *old;
1245 	struct tree_mod_root *old_root = NULL;
1246 	u64 old_generation = 0;
1247 	u64 logical;
1248 	u32 blocksize;
1249 
1250 	eb = btrfs_read_lock_root_node(root);
1251 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1252 	if (!tm)
1253 		return root->node;
1254 
1255 	if (tm->op == MOD_LOG_ROOT_REPLACE) {
1256 		old_root = &tm->old_root;
1257 		old_generation = tm->generation;
1258 		logical = old_root->logical;
1259 	} else {
1260 		logical = root->node->start;
1261 	}
1262 
1263 	tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1264 	if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1265 		btrfs_tree_read_unlock(root->node);
1266 		free_extent_buffer(root->node);
1267 		blocksize = btrfs_level_size(root, old_root->level);
1268 		old = read_tree_block(root, logical, blocksize, 0);
1269 		if (!old) {
1270 			pr_warn("btrfs: failed to read tree block %llu from get_old_root\n",
1271 				logical);
1272 			WARN_ON(1);
1273 		} else {
1274 			eb = btrfs_clone_extent_buffer(old);
1275 			free_extent_buffer(old);
1276 		}
1277 	} else if (old_root) {
1278 		btrfs_tree_read_unlock(root->node);
1279 		free_extent_buffer(root->node);
1280 		eb = alloc_dummy_extent_buffer(logical, root->nodesize);
1281 	} else {
1282 		eb = btrfs_clone_extent_buffer(root->node);
1283 		btrfs_tree_read_unlock(root->node);
1284 		free_extent_buffer(root->node);
1285 	}
1286 
1287 	if (!eb)
1288 		return NULL;
1289 	extent_buffer_get(eb);
1290 	btrfs_tree_read_lock(eb);
1291 	if (old_root) {
1292 		btrfs_set_header_bytenr(eb, eb->start);
1293 		btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1294 		btrfs_set_header_owner(eb, root->root_key.objectid);
1295 		btrfs_set_header_level(eb, old_root->level);
1296 		btrfs_set_header_generation(eb, old_generation);
1297 	}
1298 	if (tm)
1299 		__tree_mod_log_rewind(eb, time_seq, tm);
1300 	else
1301 		WARN_ON(btrfs_header_level(eb) != 0);
1302 	WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1303 
1304 	return eb;
1305 }
1306 
1307 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1308 {
1309 	struct tree_mod_elem *tm;
1310 	int level;
1311 
1312 	tm = __tree_mod_log_oldest_root(root->fs_info, root, time_seq);
1313 	if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1314 		level = tm->old_root.level;
1315 	} else {
1316 		rcu_read_lock();
1317 		level = btrfs_header_level(root->node);
1318 		rcu_read_unlock();
1319 	}
1320 
1321 	return level;
1322 }
1323 
1324 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1325 				   struct btrfs_root *root,
1326 				   struct extent_buffer *buf)
1327 {
1328 	/* ensure we can see the force_cow */
1329 	smp_rmb();
1330 
1331 	/*
1332 	 * We do not need to cow a block if
1333 	 * 1) this block is not created or changed in this transaction;
1334 	 * 2) this block does not belong to TREE_RELOC tree;
1335 	 * 3) the root is not forced COW.
1336 	 *
1337 	 * What is forced COW:
1338 	 *    when we create snapshot during commiting the transaction,
1339 	 *    after we've finished coping src root, we must COW the shared
1340 	 *    block to ensure the metadata consistency.
1341 	 */
1342 	if (btrfs_header_generation(buf) == trans->transid &&
1343 	    !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1344 	    !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1345 	      btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1346 	    !root->force_cow)
1347 		return 0;
1348 	return 1;
1349 }
1350 
1351 /*
1352  * cows a single block, see __btrfs_cow_block for the real work.
1353  * This version of it has extra checks so that a block isn't cow'd more than
1354  * once per transaction, as long as it hasn't been written yet
1355  */
1356 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1357 		    struct btrfs_root *root, struct extent_buffer *buf,
1358 		    struct extent_buffer *parent, int parent_slot,
1359 		    struct extent_buffer **cow_ret)
1360 {
1361 	u64 search_start;
1362 	int ret;
1363 
1364 	if (trans->transaction != root->fs_info->running_transaction) {
1365 		printk(KERN_CRIT "trans %llu running %llu\n",
1366 		       (unsigned long long)trans->transid,
1367 		       (unsigned long long)
1368 		       root->fs_info->running_transaction->transid);
1369 		WARN_ON(1);
1370 	}
1371 	if (trans->transid != root->fs_info->generation) {
1372 		printk(KERN_CRIT "trans %llu running %llu\n",
1373 		       (unsigned long long)trans->transid,
1374 		       (unsigned long long)root->fs_info->generation);
1375 		WARN_ON(1);
1376 	}
1377 
1378 	if (!should_cow_block(trans, root, buf)) {
1379 		*cow_ret = buf;
1380 		return 0;
1381 	}
1382 
1383 	search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1384 
1385 	if (parent)
1386 		btrfs_set_lock_blocking(parent);
1387 	btrfs_set_lock_blocking(buf);
1388 
1389 	ret = __btrfs_cow_block(trans, root, buf, parent,
1390 				 parent_slot, cow_ret, search_start, 0);
1391 
1392 	trace_btrfs_cow_block(root, buf, *cow_ret);
1393 
1394 	return ret;
1395 }
1396 
1397 /*
1398  * helper function for defrag to decide if two blocks pointed to by a
1399  * node are actually close by
1400  */
1401 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1402 {
1403 	if (blocknr < other && other - (blocknr + blocksize) < 32768)
1404 		return 1;
1405 	if (blocknr > other && blocknr - (other + blocksize) < 32768)
1406 		return 1;
1407 	return 0;
1408 }
1409 
1410 /*
1411  * compare two keys in a memcmp fashion
1412  */
1413 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1414 {
1415 	struct btrfs_key k1;
1416 
1417 	btrfs_disk_key_to_cpu(&k1, disk);
1418 
1419 	return btrfs_comp_cpu_keys(&k1, k2);
1420 }
1421 
1422 /*
1423  * same as comp_keys only with two btrfs_key's
1424  */
1425 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1426 {
1427 	if (k1->objectid > k2->objectid)
1428 		return 1;
1429 	if (k1->objectid < k2->objectid)
1430 		return -1;
1431 	if (k1->type > k2->type)
1432 		return 1;
1433 	if (k1->type < k2->type)
1434 		return -1;
1435 	if (k1->offset > k2->offset)
1436 		return 1;
1437 	if (k1->offset < k2->offset)
1438 		return -1;
1439 	return 0;
1440 }
1441 
1442 /*
1443  * this is used by the defrag code to go through all the
1444  * leaves pointed to by a node and reallocate them so that
1445  * disk order is close to key order
1446  */
1447 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1448 		       struct btrfs_root *root, struct extent_buffer *parent,
1449 		       int start_slot, int cache_only, u64 *last_ret,
1450 		       struct btrfs_key *progress)
1451 {
1452 	struct extent_buffer *cur;
1453 	u64 blocknr;
1454 	u64 gen;
1455 	u64 search_start = *last_ret;
1456 	u64 last_block = 0;
1457 	u64 other;
1458 	u32 parent_nritems;
1459 	int end_slot;
1460 	int i;
1461 	int err = 0;
1462 	int parent_level;
1463 	int uptodate;
1464 	u32 blocksize;
1465 	int progress_passed = 0;
1466 	struct btrfs_disk_key disk_key;
1467 
1468 	parent_level = btrfs_header_level(parent);
1469 	if (cache_only && parent_level != 1)
1470 		return 0;
1471 
1472 	if (trans->transaction != root->fs_info->running_transaction)
1473 		WARN_ON(1);
1474 	if (trans->transid != root->fs_info->generation)
1475 		WARN_ON(1);
1476 
1477 	parent_nritems = btrfs_header_nritems(parent);
1478 	blocksize = btrfs_level_size(root, parent_level - 1);
1479 	end_slot = parent_nritems;
1480 
1481 	if (parent_nritems == 1)
1482 		return 0;
1483 
1484 	btrfs_set_lock_blocking(parent);
1485 
1486 	for (i = start_slot; i < end_slot; i++) {
1487 		int close = 1;
1488 
1489 		btrfs_node_key(parent, &disk_key, i);
1490 		if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1491 			continue;
1492 
1493 		progress_passed = 1;
1494 		blocknr = btrfs_node_blockptr(parent, i);
1495 		gen = btrfs_node_ptr_generation(parent, i);
1496 		if (last_block == 0)
1497 			last_block = blocknr;
1498 
1499 		if (i > 0) {
1500 			other = btrfs_node_blockptr(parent, i - 1);
1501 			close = close_blocks(blocknr, other, blocksize);
1502 		}
1503 		if (!close && i < end_slot - 2) {
1504 			other = btrfs_node_blockptr(parent, i + 1);
1505 			close = close_blocks(blocknr, other, blocksize);
1506 		}
1507 		if (close) {
1508 			last_block = blocknr;
1509 			continue;
1510 		}
1511 
1512 		cur = btrfs_find_tree_block(root, blocknr, blocksize);
1513 		if (cur)
1514 			uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1515 		else
1516 			uptodate = 0;
1517 		if (!cur || !uptodate) {
1518 			if (cache_only) {
1519 				free_extent_buffer(cur);
1520 				continue;
1521 			}
1522 			if (!cur) {
1523 				cur = read_tree_block(root, blocknr,
1524 							 blocksize, gen);
1525 				if (!cur)
1526 					return -EIO;
1527 			} else if (!uptodate) {
1528 				err = btrfs_read_buffer(cur, gen);
1529 				if (err) {
1530 					free_extent_buffer(cur);
1531 					return err;
1532 				}
1533 			}
1534 		}
1535 		if (search_start == 0)
1536 			search_start = last_block;
1537 
1538 		btrfs_tree_lock(cur);
1539 		btrfs_set_lock_blocking(cur);
1540 		err = __btrfs_cow_block(trans, root, cur, parent, i,
1541 					&cur, search_start,
1542 					min(16 * blocksize,
1543 					    (end_slot - i) * blocksize));
1544 		if (err) {
1545 			btrfs_tree_unlock(cur);
1546 			free_extent_buffer(cur);
1547 			break;
1548 		}
1549 		search_start = cur->start;
1550 		last_block = cur->start;
1551 		*last_ret = search_start;
1552 		btrfs_tree_unlock(cur);
1553 		free_extent_buffer(cur);
1554 	}
1555 	return err;
1556 }
1557 
1558 /*
1559  * The leaf data grows from end-to-front in the node.
1560  * this returns the address of the start of the last item,
1561  * which is the stop of the leaf data stack
1562  */
1563 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1564 					 struct extent_buffer *leaf)
1565 {
1566 	u32 nr = btrfs_header_nritems(leaf);
1567 	if (nr == 0)
1568 		return BTRFS_LEAF_DATA_SIZE(root);
1569 	return btrfs_item_offset_nr(leaf, nr - 1);
1570 }
1571 
1572 
1573 /*
1574  * search for key in the extent_buffer.  The items start at offset p,
1575  * and they are item_size apart.  There are 'max' items in p.
1576  *
1577  * the slot in the array is returned via slot, and it points to
1578  * the place where you would insert key if it is not found in
1579  * the array.
1580  *
1581  * slot may point to max if the key is bigger than all of the keys
1582  */
1583 static noinline int generic_bin_search(struct extent_buffer *eb,
1584 				       unsigned long p,
1585 				       int item_size, struct btrfs_key *key,
1586 				       int max, int *slot)
1587 {
1588 	int low = 0;
1589 	int high = max;
1590 	int mid;
1591 	int ret;
1592 	struct btrfs_disk_key *tmp = NULL;
1593 	struct btrfs_disk_key unaligned;
1594 	unsigned long offset;
1595 	char *kaddr = NULL;
1596 	unsigned long map_start = 0;
1597 	unsigned long map_len = 0;
1598 	int err;
1599 
1600 	while (low < high) {
1601 		mid = (low + high) / 2;
1602 		offset = p + mid * item_size;
1603 
1604 		if (!kaddr || offset < map_start ||
1605 		    (offset + sizeof(struct btrfs_disk_key)) >
1606 		    map_start + map_len) {
1607 
1608 			err = map_private_extent_buffer(eb, offset,
1609 						sizeof(struct btrfs_disk_key),
1610 						&kaddr, &map_start, &map_len);
1611 
1612 			if (!err) {
1613 				tmp = (struct btrfs_disk_key *)(kaddr + offset -
1614 							map_start);
1615 			} else {
1616 				read_extent_buffer(eb, &unaligned,
1617 						   offset, sizeof(unaligned));
1618 				tmp = &unaligned;
1619 			}
1620 
1621 		} else {
1622 			tmp = (struct btrfs_disk_key *)(kaddr + offset -
1623 							map_start);
1624 		}
1625 		ret = comp_keys(tmp, key);
1626 
1627 		if (ret < 0)
1628 			low = mid + 1;
1629 		else if (ret > 0)
1630 			high = mid;
1631 		else {
1632 			*slot = mid;
1633 			return 0;
1634 		}
1635 	}
1636 	*slot = low;
1637 	return 1;
1638 }
1639 
1640 /*
1641  * simple bin_search frontend that does the right thing for
1642  * leaves vs nodes
1643  */
1644 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1645 		      int level, int *slot)
1646 {
1647 	if (level == 0)
1648 		return generic_bin_search(eb,
1649 					  offsetof(struct btrfs_leaf, items),
1650 					  sizeof(struct btrfs_item),
1651 					  key, btrfs_header_nritems(eb),
1652 					  slot);
1653 	else
1654 		return generic_bin_search(eb,
1655 					  offsetof(struct btrfs_node, ptrs),
1656 					  sizeof(struct btrfs_key_ptr),
1657 					  key, btrfs_header_nritems(eb),
1658 					  slot);
1659 }
1660 
1661 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1662 		     int level, int *slot)
1663 {
1664 	return bin_search(eb, key, level, slot);
1665 }
1666 
1667 static void root_add_used(struct btrfs_root *root, u32 size)
1668 {
1669 	spin_lock(&root->accounting_lock);
1670 	btrfs_set_root_used(&root->root_item,
1671 			    btrfs_root_used(&root->root_item) + size);
1672 	spin_unlock(&root->accounting_lock);
1673 }
1674 
1675 static void root_sub_used(struct btrfs_root *root, u32 size)
1676 {
1677 	spin_lock(&root->accounting_lock);
1678 	btrfs_set_root_used(&root->root_item,
1679 			    btrfs_root_used(&root->root_item) - size);
1680 	spin_unlock(&root->accounting_lock);
1681 }
1682 
1683 /* given a node and slot number, this reads the blocks it points to.  The
1684  * extent buffer is returned with a reference taken (but unlocked).
1685  * NULL is returned on error.
1686  */
1687 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1688 				   struct extent_buffer *parent, int slot)
1689 {
1690 	int level = btrfs_header_level(parent);
1691 	if (slot < 0)
1692 		return NULL;
1693 	if (slot >= btrfs_header_nritems(parent))
1694 		return NULL;
1695 
1696 	BUG_ON(level == 0);
1697 
1698 	return read_tree_block(root, btrfs_node_blockptr(parent, slot),
1699 		       btrfs_level_size(root, level - 1),
1700 		       btrfs_node_ptr_generation(parent, slot));
1701 }
1702 
1703 /*
1704  * node level balancing, used to make sure nodes are in proper order for
1705  * item deletion.  We balance from the top down, so we have to make sure
1706  * that a deletion won't leave an node completely empty later on.
1707  */
1708 static noinline int balance_level(struct btrfs_trans_handle *trans,
1709 			 struct btrfs_root *root,
1710 			 struct btrfs_path *path, int level)
1711 {
1712 	struct extent_buffer *right = NULL;
1713 	struct extent_buffer *mid;
1714 	struct extent_buffer *left = NULL;
1715 	struct extent_buffer *parent = NULL;
1716 	int ret = 0;
1717 	int wret;
1718 	int pslot;
1719 	int orig_slot = path->slots[level];
1720 	u64 orig_ptr;
1721 
1722 	if (level == 0)
1723 		return 0;
1724 
1725 	mid = path->nodes[level];
1726 
1727 	WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1728 		path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1729 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1730 
1731 	orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1732 
1733 	if (level < BTRFS_MAX_LEVEL - 1) {
1734 		parent = path->nodes[level + 1];
1735 		pslot = path->slots[level + 1];
1736 	}
1737 
1738 	/*
1739 	 * deal with the case where there is only one pointer in the root
1740 	 * by promoting the node below to a root
1741 	 */
1742 	if (!parent) {
1743 		struct extent_buffer *child;
1744 
1745 		if (btrfs_header_nritems(mid) != 1)
1746 			return 0;
1747 
1748 		/* promote the child to a root */
1749 		child = read_node_slot(root, mid, 0);
1750 		if (!child) {
1751 			ret = -EROFS;
1752 			btrfs_std_error(root->fs_info, ret);
1753 			goto enospc;
1754 		}
1755 
1756 		btrfs_tree_lock(child);
1757 		btrfs_set_lock_blocking(child);
1758 		ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1759 		if (ret) {
1760 			btrfs_tree_unlock(child);
1761 			free_extent_buffer(child);
1762 			goto enospc;
1763 		}
1764 
1765 		tree_mod_log_free_eb(root->fs_info, root->node);
1766 		tree_mod_log_set_root_pointer(root, child);
1767 		rcu_assign_pointer(root->node, child);
1768 
1769 		add_root_to_dirty_list(root);
1770 		btrfs_tree_unlock(child);
1771 
1772 		path->locks[level] = 0;
1773 		path->nodes[level] = NULL;
1774 		clean_tree_block(trans, root, mid);
1775 		btrfs_tree_unlock(mid);
1776 		/* once for the path */
1777 		free_extent_buffer(mid);
1778 
1779 		root_sub_used(root, mid->len);
1780 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1781 		/* once for the root ptr */
1782 		free_extent_buffer_stale(mid);
1783 		return 0;
1784 	}
1785 	if (btrfs_header_nritems(mid) >
1786 	    BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1787 		return 0;
1788 
1789 	left = read_node_slot(root, parent, pslot - 1);
1790 	if (left) {
1791 		btrfs_tree_lock(left);
1792 		btrfs_set_lock_blocking(left);
1793 		wret = btrfs_cow_block(trans, root, left,
1794 				       parent, pslot - 1, &left);
1795 		if (wret) {
1796 			ret = wret;
1797 			goto enospc;
1798 		}
1799 	}
1800 	right = read_node_slot(root, parent, pslot + 1);
1801 	if (right) {
1802 		btrfs_tree_lock(right);
1803 		btrfs_set_lock_blocking(right);
1804 		wret = btrfs_cow_block(trans, root, right,
1805 				       parent, pslot + 1, &right);
1806 		if (wret) {
1807 			ret = wret;
1808 			goto enospc;
1809 		}
1810 	}
1811 
1812 	/* first, try to make some room in the middle buffer */
1813 	if (left) {
1814 		orig_slot += btrfs_header_nritems(left);
1815 		wret = push_node_left(trans, root, left, mid, 1);
1816 		if (wret < 0)
1817 			ret = wret;
1818 	}
1819 
1820 	/*
1821 	 * then try to empty the right most buffer into the middle
1822 	 */
1823 	if (right) {
1824 		wret = push_node_left(trans, root, mid, right, 1);
1825 		if (wret < 0 && wret != -ENOSPC)
1826 			ret = wret;
1827 		if (btrfs_header_nritems(right) == 0) {
1828 			clean_tree_block(trans, root, right);
1829 			btrfs_tree_unlock(right);
1830 			del_ptr(trans, root, path, level + 1, pslot + 1, 1);
1831 			root_sub_used(root, right->len);
1832 			btrfs_free_tree_block(trans, root, right, 0, 1);
1833 			free_extent_buffer_stale(right);
1834 			right = NULL;
1835 		} else {
1836 			struct btrfs_disk_key right_key;
1837 			btrfs_node_key(right, &right_key, 0);
1838 			tree_mod_log_set_node_key(root->fs_info, parent,
1839 						  &right_key, pslot + 1, 0);
1840 			btrfs_set_node_key(parent, &right_key, pslot + 1);
1841 			btrfs_mark_buffer_dirty(parent);
1842 		}
1843 	}
1844 	if (btrfs_header_nritems(mid) == 1) {
1845 		/*
1846 		 * we're not allowed to leave a node with one item in the
1847 		 * tree during a delete.  A deletion from lower in the tree
1848 		 * could try to delete the only pointer in this node.
1849 		 * So, pull some keys from the left.
1850 		 * There has to be a left pointer at this point because
1851 		 * otherwise we would have pulled some pointers from the
1852 		 * right
1853 		 */
1854 		if (!left) {
1855 			ret = -EROFS;
1856 			btrfs_std_error(root->fs_info, ret);
1857 			goto enospc;
1858 		}
1859 		wret = balance_node_right(trans, root, mid, left);
1860 		if (wret < 0) {
1861 			ret = wret;
1862 			goto enospc;
1863 		}
1864 		if (wret == 1) {
1865 			wret = push_node_left(trans, root, left, mid, 1);
1866 			if (wret < 0)
1867 				ret = wret;
1868 		}
1869 		BUG_ON(wret == 1);
1870 	}
1871 	if (btrfs_header_nritems(mid) == 0) {
1872 		clean_tree_block(trans, root, mid);
1873 		btrfs_tree_unlock(mid);
1874 		del_ptr(trans, root, path, level + 1, pslot, 1);
1875 		root_sub_used(root, mid->len);
1876 		btrfs_free_tree_block(trans, root, mid, 0, 1);
1877 		free_extent_buffer_stale(mid);
1878 		mid = NULL;
1879 	} else {
1880 		/* update the parent key to reflect our changes */
1881 		struct btrfs_disk_key mid_key;
1882 		btrfs_node_key(mid, &mid_key, 0);
1883 		tree_mod_log_set_node_key(root->fs_info, parent, &mid_key,
1884 					  pslot, 0);
1885 		btrfs_set_node_key(parent, &mid_key, pslot);
1886 		btrfs_mark_buffer_dirty(parent);
1887 	}
1888 
1889 	/* update the path */
1890 	if (left) {
1891 		if (btrfs_header_nritems(left) > orig_slot) {
1892 			extent_buffer_get(left);
1893 			/* left was locked after cow */
1894 			path->nodes[level] = left;
1895 			path->slots[level + 1] -= 1;
1896 			path->slots[level] = orig_slot;
1897 			if (mid) {
1898 				btrfs_tree_unlock(mid);
1899 				free_extent_buffer(mid);
1900 			}
1901 		} else {
1902 			orig_slot -= btrfs_header_nritems(left);
1903 			path->slots[level] = orig_slot;
1904 		}
1905 	}
1906 	/* double check we haven't messed things up */
1907 	if (orig_ptr !=
1908 	    btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1909 		BUG();
1910 enospc:
1911 	if (right) {
1912 		btrfs_tree_unlock(right);
1913 		free_extent_buffer(right);
1914 	}
1915 	if (left) {
1916 		if (path->nodes[level] != left)
1917 			btrfs_tree_unlock(left);
1918 		free_extent_buffer(left);
1919 	}
1920 	return ret;
1921 }
1922 
1923 /* Node balancing for insertion.  Here we only split or push nodes around
1924  * when they are completely full.  This is also done top down, so we
1925  * have to be pessimistic.
1926  */
1927 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1928 					  struct btrfs_root *root,
1929 					  struct btrfs_path *path, int level)
1930 {
1931 	struct extent_buffer *right = NULL;
1932 	struct extent_buffer *mid;
1933 	struct extent_buffer *left = NULL;
1934 	struct extent_buffer *parent = NULL;
1935 	int ret = 0;
1936 	int wret;
1937 	int pslot;
1938 	int orig_slot = path->slots[level];
1939 
1940 	if (level == 0)
1941 		return 1;
1942 
1943 	mid = path->nodes[level];
1944 	WARN_ON(btrfs_header_generation(mid) != trans->transid);
1945 
1946 	if (level < BTRFS_MAX_LEVEL - 1) {
1947 		parent = path->nodes[level + 1];
1948 		pslot = path->slots[level + 1];
1949 	}
1950 
1951 	if (!parent)
1952 		return 1;
1953 
1954 	left = read_node_slot(root, parent, pslot - 1);
1955 
1956 	/* first, try to make some room in the middle buffer */
1957 	if (left) {
1958 		u32 left_nr;
1959 
1960 		btrfs_tree_lock(left);
1961 		btrfs_set_lock_blocking(left);
1962 
1963 		left_nr = btrfs_header_nritems(left);
1964 		if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1965 			wret = 1;
1966 		} else {
1967 			ret = btrfs_cow_block(trans, root, left, parent,
1968 					      pslot - 1, &left);
1969 			if (ret)
1970 				wret = 1;
1971 			else {
1972 				wret = push_node_left(trans, root,
1973 						      left, mid, 0);
1974 			}
1975 		}
1976 		if (wret < 0)
1977 			ret = wret;
1978 		if (wret == 0) {
1979 			struct btrfs_disk_key disk_key;
1980 			orig_slot += left_nr;
1981 			btrfs_node_key(mid, &disk_key, 0);
1982 			tree_mod_log_set_node_key(root->fs_info, parent,
1983 						  &disk_key, pslot, 0);
1984 			btrfs_set_node_key(parent, &disk_key, pslot);
1985 			btrfs_mark_buffer_dirty(parent);
1986 			if (btrfs_header_nritems(left) > orig_slot) {
1987 				path->nodes[level] = left;
1988 				path->slots[level + 1] -= 1;
1989 				path->slots[level] = orig_slot;
1990 				btrfs_tree_unlock(mid);
1991 				free_extent_buffer(mid);
1992 			} else {
1993 				orig_slot -=
1994 					btrfs_header_nritems(left);
1995 				path->slots[level] = orig_slot;
1996 				btrfs_tree_unlock(left);
1997 				free_extent_buffer(left);
1998 			}
1999 			return 0;
2000 		}
2001 		btrfs_tree_unlock(left);
2002 		free_extent_buffer(left);
2003 	}
2004 	right = read_node_slot(root, parent, pslot + 1);
2005 
2006 	/*
2007 	 * then try to empty the right most buffer into the middle
2008 	 */
2009 	if (right) {
2010 		u32 right_nr;
2011 
2012 		btrfs_tree_lock(right);
2013 		btrfs_set_lock_blocking(right);
2014 
2015 		right_nr = btrfs_header_nritems(right);
2016 		if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2017 			wret = 1;
2018 		} else {
2019 			ret = btrfs_cow_block(trans, root, right,
2020 					      parent, pslot + 1,
2021 					      &right);
2022 			if (ret)
2023 				wret = 1;
2024 			else {
2025 				wret = balance_node_right(trans, root,
2026 							  right, mid);
2027 			}
2028 		}
2029 		if (wret < 0)
2030 			ret = wret;
2031 		if (wret == 0) {
2032 			struct btrfs_disk_key disk_key;
2033 
2034 			btrfs_node_key(right, &disk_key, 0);
2035 			tree_mod_log_set_node_key(root->fs_info, parent,
2036 						  &disk_key, pslot + 1, 0);
2037 			btrfs_set_node_key(parent, &disk_key, pslot + 1);
2038 			btrfs_mark_buffer_dirty(parent);
2039 
2040 			if (btrfs_header_nritems(mid) <= orig_slot) {
2041 				path->nodes[level] = right;
2042 				path->slots[level + 1] += 1;
2043 				path->slots[level] = orig_slot -
2044 					btrfs_header_nritems(mid);
2045 				btrfs_tree_unlock(mid);
2046 				free_extent_buffer(mid);
2047 			} else {
2048 				btrfs_tree_unlock(right);
2049 				free_extent_buffer(right);
2050 			}
2051 			return 0;
2052 		}
2053 		btrfs_tree_unlock(right);
2054 		free_extent_buffer(right);
2055 	}
2056 	return 1;
2057 }
2058 
2059 /*
2060  * readahead one full node of leaves, finding things that are close
2061  * to the block in 'slot', and triggering ra on them.
2062  */
2063 static void reada_for_search(struct btrfs_root *root,
2064 			     struct btrfs_path *path,
2065 			     int level, int slot, u64 objectid)
2066 {
2067 	struct extent_buffer *node;
2068 	struct btrfs_disk_key disk_key;
2069 	u32 nritems;
2070 	u64 search;
2071 	u64 target;
2072 	u64 nread = 0;
2073 	u64 gen;
2074 	int direction = path->reada;
2075 	struct extent_buffer *eb;
2076 	u32 nr;
2077 	u32 blocksize;
2078 	u32 nscan = 0;
2079 
2080 	if (level != 1)
2081 		return;
2082 
2083 	if (!path->nodes[level])
2084 		return;
2085 
2086 	node = path->nodes[level];
2087 
2088 	search = btrfs_node_blockptr(node, slot);
2089 	blocksize = btrfs_level_size(root, level - 1);
2090 	eb = btrfs_find_tree_block(root, search, blocksize);
2091 	if (eb) {
2092 		free_extent_buffer(eb);
2093 		return;
2094 	}
2095 
2096 	target = search;
2097 
2098 	nritems = btrfs_header_nritems(node);
2099 	nr = slot;
2100 
2101 	while (1) {
2102 		if (direction < 0) {
2103 			if (nr == 0)
2104 				break;
2105 			nr--;
2106 		} else if (direction > 0) {
2107 			nr++;
2108 			if (nr >= nritems)
2109 				break;
2110 		}
2111 		if (path->reada < 0 && objectid) {
2112 			btrfs_node_key(node, &disk_key, nr);
2113 			if (btrfs_disk_key_objectid(&disk_key) != objectid)
2114 				break;
2115 		}
2116 		search = btrfs_node_blockptr(node, nr);
2117 		if ((search <= target && target - search <= 65536) ||
2118 		    (search > target && search - target <= 65536)) {
2119 			gen = btrfs_node_ptr_generation(node, nr);
2120 			readahead_tree_block(root, search, blocksize, gen);
2121 			nread += blocksize;
2122 		}
2123 		nscan++;
2124 		if ((nread > 65536 || nscan > 32))
2125 			break;
2126 	}
2127 }
2128 
2129 /*
2130  * returns -EAGAIN if it had to drop the path, or zero if everything was in
2131  * cache
2132  */
2133 static noinline int reada_for_balance(struct btrfs_root *root,
2134 				      struct btrfs_path *path, int level)
2135 {
2136 	int slot;
2137 	int nritems;
2138 	struct extent_buffer *parent;
2139 	struct extent_buffer *eb;
2140 	u64 gen;
2141 	u64 block1 = 0;
2142 	u64 block2 = 0;
2143 	int ret = 0;
2144 	int blocksize;
2145 
2146 	parent = path->nodes[level + 1];
2147 	if (!parent)
2148 		return 0;
2149 
2150 	nritems = btrfs_header_nritems(parent);
2151 	slot = path->slots[level + 1];
2152 	blocksize = btrfs_level_size(root, level);
2153 
2154 	if (slot > 0) {
2155 		block1 = btrfs_node_blockptr(parent, slot - 1);
2156 		gen = btrfs_node_ptr_generation(parent, slot - 1);
2157 		eb = btrfs_find_tree_block(root, block1, blocksize);
2158 		/*
2159 		 * if we get -eagain from btrfs_buffer_uptodate, we
2160 		 * don't want to return eagain here.  That will loop
2161 		 * forever
2162 		 */
2163 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2164 			block1 = 0;
2165 		free_extent_buffer(eb);
2166 	}
2167 	if (slot + 1 < nritems) {
2168 		block2 = btrfs_node_blockptr(parent, slot + 1);
2169 		gen = btrfs_node_ptr_generation(parent, slot + 1);
2170 		eb = btrfs_find_tree_block(root, block2, blocksize);
2171 		if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2172 			block2 = 0;
2173 		free_extent_buffer(eb);
2174 	}
2175 	if (block1 || block2) {
2176 		ret = -EAGAIN;
2177 
2178 		/* release the whole path */
2179 		btrfs_release_path(path);
2180 
2181 		/* read the blocks */
2182 		if (block1)
2183 			readahead_tree_block(root, block1, blocksize, 0);
2184 		if (block2)
2185 			readahead_tree_block(root, block2, blocksize, 0);
2186 
2187 		if (block1) {
2188 			eb = read_tree_block(root, block1, blocksize, 0);
2189 			free_extent_buffer(eb);
2190 		}
2191 		if (block2) {
2192 			eb = read_tree_block(root, block2, blocksize, 0);
2193 			free_extent_buffer(eb);
2194 		}
2195 	}
2196 	return ret;
2197 }
2198 
2199 
2200 /*
2201  * when we walk down the tree, it is usually safe to unlock the higher layers
2202  * in the tree.  The exceptions are when our path goes through slot 0, because
2203  * operations on the tree might require changing key pointers higher up in the
2204  * tree.
2205  *
2206  * callers might also have set path->keep_locks, which tells this code to keep
2207  * the lock if the path points to the last slot in the block.  This is part of
2208  * walking through the tree, and selecting the next slot in the higher block.
2209  *
2210  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2211  * if lowest_unlock is 1, level 0 won't be unlocked
2212  */
2213 static noinline void unlock_up(struct btrfs_path *path, int level,
2214 			       int lowest_unlock, int min_write_lock_level,
2215 			       int *write_lock_level)
2216 {
2217 	int i;
2218 	int skip_level = level;
2219 	int no_skips = 0;
2220 	struct extent_buffer *t;
2221 
2222 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2223 		if (!path->nodes[i])
2224 			break;
2225 		if (!path->locks[i])
2226 			break;
2227 		if (!no_skips && path->slots[i] == 0) {
2228 			skip_level = i + 1;
2229 			continue;
2230 		}
2231 		if (!no_skips && path->keep_locks) {
2232 			u32 nritems;
2233 			t = path->nodes[i];
2234 			nritems = btrfs_header_nritems(t);
2235 			if (nritems < 1 || path->slots[i] >= nritems - 1) {
2236 				skip_level = i + 1;
2237 				continue;
2238 			}
2239 		}
2240 		if (skip_level < i && i >= lowest_unlock)
2241 			no_skips = 1;
2242 
2243 		t = path->nodes[i];
2244 		if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2245 			btrfs_tree_unlock_rw(t, path->locks[i]);
2246 			path->locks[i] = 0;
2247 			if (write_lock_level &&
2248 			    i > min_write_lock_level &&
2249 			    i <= *write_lock_level) {
2250 				*write_lock_level = i - 1;
2251 			}
2252 		}
2253 	}
2254 }
2255 
2256 /*
2257  * This releases any locks held in the path starting at level and
2258  * going all the way up to the root.
2259  *
2260  * btrfs_search_slot will keep the lock held on higher nodes in a few
2261  * corner cases, such as COW of the block at slot zero in the node.  This
2262  * ignores those rules, and it should only be called when there are no
2263  * more updates to be done higher up in the tree.
2264  */
2265 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2266 {
2267 	int i;
2268 
2269 	if (path->keep_locks)
2270 		return;
2271 
2272 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2273 		if (!path->nodes[i])
2274 			continue;
2275 		if (!path->locks[i])
2276 			continue;
2277 		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2278 		path->locks[i] = 0;
2279 	}
2280 }
2281 
2282 /*
2283  * helper function for btrfs_search_slot.  The goal is to find a block
2284  * in cache without setting the path to blocking.  If we find the block
2285  * we return zero and the path is unchanged.
2286  *
2287  * If we can't find the block, we set the path blocking and do some
2288  * reada.  -EAGAIN is returned and the search must be repeated.
2289  */
2290 static int
2291 read_block_for_search(struct btrfs_trans_handle *trans,
2292 		       struct btrfs_root *root, struct btrfs_path *p,
2293 		       struct extent_buffer **eb_ret, int level, int slot,
2294 		       struct btrfs_key *key, u64 time_seq)
2295 {
2296 	u64 blocknr;
2297 	u64 gen;
2298 	u32 blocksize;
2299 	struct extent_buffer *b = *eb_ret;
2300 	struct extent_buffer *tmp;
2301 	int ret;
2302 
2303 	blocknr = btrfs_node_blockptr(b, slot);
2304 	gen = btrfs_node_ptr_generation(b, slot);
2305 	blocksize = btrfs_level_size(root, level - 1);
2306 
2307 	tmp = btrfs_find_tree_block(root, blocknr, blocksize);
2308 	if (tmp) {
2309 		/* first we do an atomic uptodate check */
2310 		if (btrfs_buffer_uptodate(tmp, 0, 1) > 0) {
2311 			if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2312 				/*
2313 				 * we found an up to date block without
2314 				 * sleeping, return
2315 				 * right away
2316 				 */
2317 				*eb_ret = tmp;
2318 				return 0;
2319 			}
2320 			/* the pages were up to date, but we failed
2321 			 * the generation number check.  Do a full
2322 			 * read for the generation number that is correct.
2323 			 * We must do this without dropping locks so
2324 			 * we can trust our generation number
2325 			 */
2326 			free_extent_buffer(tmp);
2327 			btrfs_set_path_blocking(p);
2328 
2329 			/* now we're allowed to do a blocking uptodate check */
2330 			tmp = read_tree_block(root, blocknr, blocksize, gen);
2331 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 0) > 0) {
2332 				*eb_ret = tmp;
2333 				return 0;
2334 			}
2335 			free_extent_buffer(tmp);
2336 			btrfs_release_path(p);
2337 			return -EIO;
2338 		}
2339 	}
2340 
2341 	/*
2342 	 * reduce lock contention at high levels
2343 	 * of the btree by dropping locks before
2344 	 * we read.  Don't release the lock on the current
2345 	 * level because we need to walk this node to figure
2346 	 * out which blocks to read.
2347 	 */
2348 	btrfs_unlock_up_safe(p, level + 1);
2349 	btrfs_set_path_blocking(p);
2350 
2351 	free_extent_buffer(tmp);
2352 	if (p->reada)
2353 		reada_for_search(root, p, level, slot, key->objectid);
2354 
2355 	btrfs_release_path(p);
2356 
2357 	ret = -EAGAIN;
2358 	tmp = read_tree_block(root, blocknr, blocksize, 0);
2359 	if (tmp) {
2360 		/*
2361 		 * If the read above didn't mark this buffer up to date,
2362 		 * it will never end up being up to date.  Set ret to EIO now
2363 		 * and give up so that our caller doesn't loop forever
2364 		 * on our EAGAINs.
2365 		 */
2366 		if (!btrfs_buffer_uptodate(tmp, 0, 0))
2367 			ret = -EIO;
2368 		free_extent_buffer(tmp);
2369 	}
2370 	return ret;
2371 }
2372 
2373 /*
2374  * helper function for btrfs_search_slot.  This does all of the checks
2375  * for node-level blocks and does any balancing required based on
2376  * the ins_len.
2377  *
2378  * If no extra work was required, zero is returned.  If we had to
2379  * drop the path, -EAGAIN is returned and btrfs_search_slot must
2380  * start over
2381  */
2382 static int
2383 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2384 		       struct btrfs_root *root, struct btrfs_path *p,
2385 		       struct extent_buffer *b, int level, int ins_len,
2386 		       int *write_lock_level)
2387 {
2388 	int ret;
2389 	if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2390 	    BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2391 		int sret;
2392 
2393 		if (*write_lock_level < level + 1) {
2394 			*write_lock_level = level + 1;
2395 			btrfs_release_path(p);
2396 			goto again;
2397 		}
2398 
2399 		sret = reada_for_balance(root, p, level);
2400 		if (sret)
2401 			goto again;
2402 
2403 		btrfs_set_path_blocking(p);
2404 		sret = split_node(trans, root, p, level);
2405 		btrfs_clear_path_blocking(p, NULL, 0);
2406 
2407 		BUG_ON(sret > 0);
2408 		if (sret) {
2409 			ret = sret;
2410 			goto done;
2411 		}
2412 		b = p->nodes[level];
2413 	} else if (ins_len < 0 && btrfs_header_nritems(b) <
2414 		   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2415 		int sret;
2416 
2417 		if (*write_lock_level < level + 1) {
2418 			*write_lock_level = level + 1;
2419 			btrfs_release_path(p);
2420 			goto again;
2421 		}
2422 
2423 		sret = reada_for_balance(root, p, level);
2424 		if (sret)
2425 			goto again;
2426 
2427 		btrfs_set_path_blocking(p);
2428 		sret = balance_level(trans, root, p, level);
2429 		btrfs_clear_path_blocking(p, NULL, 0);
2430 
2431 		if (sret) {
2432 			ret = sret;
2433 			goto done;
2434 		}
2435 		b = p->nodes[level];
2436 		if (!b) {
2437 			btrfs_release_path(p);
2438 			goto again;
2439 		}
2440 		BUG_ON(btrfs_header_nritems(b) == 1);
2441 	}
2442 	return 0;
2443 
2444 again:
2445 	ret = -EAGAIN;
2446 done:
2447 	return ret;
2448 }
2449 
2450 /*
2451  * look for key in the tree.  path is filled in with nodes along the way
2452  * if key is found, we return zero and you can find the item in the leaf
2453  * level of the path (level 0)
2454  *
2455  * If the key isn't found, the path points to the slot where it should
2456  * be inserted, and 1 is returned.  If there are other errors during the
2457  * search a negative error number is returned.
2458  *
2459  * if ins_len > 0, nodes and leaves will be split as we walk down the
2460  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2461  * possible)
2462  */
2463 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2464 		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2465 		      ins_len, int cow)
2466 {
2467 	struct extent_buffer *b;
2468 	int slot;
2469 	int ret;
2470 	int err;
2471 	int level;
2472 	int lowest_unlock = 1;
2473 	int root_lock;
2474 	/* everything at write_lock_level or lower must be write locked */
2475 	int write_lock_level = 0;
2476 	u8 lowest_level = 0;
2477 	int min_write_lock_level;
2478 
2479 	lowest_level = p->lowest_level;
2480 	WARN_ON(lowest_level && ins_len > 0);
2481 	WARN_ON(p->nodes[0] != NULL);
2482 
2483 	if (ins_len < 0) {
2484 		lowest_unlock = 2;
2485 
2486 		/* when we are removing items, we might have to go up to level
2487 		 * two as we update tree pointers  Make sure we keep write
2488 		 * for those levels as well
2489 		 */
2490 		write_lock_level = 2;
2491 	} else if (ins_len > 0) {
2492 		/*
2493 		 * for inserting items, make sure we have a write lock on
2494 		 * level 1 so we can update keys
2495 		 */
2496 		write_lock_level = 1;
2497 	}
2498 
2499 	if (!cow)
2500 		write_lock_level = -1;
2501 
2502 	if (cow && (p->keep_locks || p->lowest_level))
2503 		write_lock_level = BTRFS_MAX_LEVEL;
2504 
2505 	min_write_lock_level = write_lock_level;
2506 
2507 again:
2508 	/*
2509 	 * we try very hard to do read locks on the root
2510 	 */
2511 	root_lock = BTRFS_READ_LOCK;
2512 	level = 0;
2513 	if (p->search_commit_root) {
2514 		/*
2515 		 * the commit roots are read only
2516 		 * so we always do read locks
2517 		 */
2518 		b = root->commit_root;
2519 		extent_buffer_get(b);
2520 		level = btrfs_header_level(b);
2521 		if (!p->skip_locking)
2522 			btrfs_tree_read_lock(b);
2523 	} else {
2524 		if (p->skip_locking) {
2525 			b = btrfs_root_node(root);
2526 			level = btrfs_header_level(b);
2527 		} else {
2528 			/* we don't know the level of the root node
2529 			 * until we actually have it read locked
2530 			 */
2531 			b = btrfs_read_lock_root_node(root);
2532 			level = btrfs_header_level(b);
2533 			if (level <= write_lock_level) {
2534 				/* whoops, must trade for write lock */
2535 				btrfs_tree_read_unlock(b);
2536 				free_extent_buffer(b);
2537 				b = btrfs_lock_root_node(root);
2538 				root_lock = BTRFS_WRITE_LOCK;
2539 
2540 				/* the level might have changed, check again */
2541 				level = btrfs_header_level(b);
2542 			}
2543 		}
2544 	}
2545 	p->nodes[level] = b;
2546 	if (!p->skip_locking)
2547 		p->locks[level] = root_lock;
2548 
2549 	while (b) {
2550 		level = btrfs_header_level(b);
2551 
2552 		/*
2553 		 * setup the path here so we can release it under lock
2554 		 * contention with the cow code
2555 		 */
2556 		if (cow) {
2557 			/*
2558 			 * if we don't really need to cow this block
2559 			 * then we don't want to set the path blocking,
2560 			 * so we test it here
2561 			 */
2562 			if (!should_cow_block(trans, root, b))
2563 				goto cow_done;
2564 
2565 			btrfs_set_path_blocking(p);
2566 
2567 			/*
2568 			 * must have write locks on this node and the
2569 			 * parent
2570 			 */
2571 			if (level + 1 > write_lock_level) {
2572 				write_lock_level = level + 1;
2573 				btrfs_release_path(p);
2574 				goto again;
2575 			}
2576 
2577 			err = btrfs_cow_block(trans, root, b,
2578 					      p->nodes[level + 1],
2579 					      p->slots[level + 1], &b);
2580 			if (err) {
2581 				ret = err;
2582 				goto done;
2583 			}
2584 		}
2585 cow_done:
2586 		BUG_ON(!cow && ins_len);
2587 
2588 		p->nodes[level] = b;
2589 		btrfs_clear_path_blocking(p, NULL, 0);
2590 
2591 		/*
2592 		 * we have a lock on b and as long as we aren't changing
2593 		 * the tree, there is no way to for the items in b to change.
2594 		 * It is safe to drop the lock on our parent before we
2595 		 * go through the expensive btree search on b.
2596 		 *
2597 		 * If cow is true, then we might be changing slot zero,
2598 		 * which may require changing the parent.  So, we can't
2599 		 * drop the lock until after we know which slot we're
2600 		 * operating on.
2601 		 */
2602 		if (!cow)
2603 			btrfs_unlock_up_safe(p, level + 1);
2604 
2605 		ret = bin_search(b, key, level, &slot);
2606 
2607 		if (level != 0) {
2608 			int dec = 0;
2609 			if (ret && slot > 0) {
2610 				dec = 1;
2611 				slot -= 1;
2612 			}
2613 			p->slots[level] = slot;
2614 			err = setup_nodes_for_search(trans, root, p, b, level,
2615 					     ins_len, &write_lock_level);
2616 			if (err == -EAGAIN)
2617 				goto again;
2618 			if (err) {
2619 				ret = err;
2620 				goto done;
2621 			}
2622 			b = p->nodes[level];
2623 			slot = p->slots[level];
2624 
2625 			/*
2626 			 * slot 0 is special, if we change the key
2627 			 * we have to update the parent pointer
2628 			 * which means we must have a write lock
2629 			 * on the parent
2630 			 */
2631 			if (slot == 0 && cow &&
2632 			    write_lock_level < level + 1) {
2633 				write_lock_level = level + 1;
2634 				btrfs_release_path(p);
2635 				goto again;
2636 			}
2637 
2638 			unlock_up(p, level, lowest_unlock,
2639 				  min_write_lock_level, &write_lock_level);
2640 
2641 			if (level == lowest_level) {
2642 				if (dec)
2643 					p->slots[level]++;
2644 				goto done;
2645 			}
2646 
2647 			err = read_block_for_search(trans, root, p,
2648 						    &b, level, slot, key, 0);
2649 			if (err == -EAGAIN)
2650 				goto again;
2651 			if (err) {
2652 				ret = err;
2653 				goto done;
2654 			}
2655 
2656 			if (!p->skip_locking) {
2657 				level = btrfs_header_level(b);
2658 				if (level <= write_lock_level) {
2659 					err = btrfs_try_tree_write_lock(b);
2660 					if (!err) {
2661 						btrfs_set_path_blocking(p);
2662 						btrfs_tree_lock(b);
2663 						btrfs_clear_path_blocking(p, b,
2664 								  BTRFS_WRITE_LOCK);
2665 					}
2666 					p->locks[level] = BTRFS_WRITE_LOCK;
2667 				} else {
2668 					err = btrfs_try_tree_read_lock(b);
2669 					if (!err) {
2670 						btrfs_set_path_blocking(p);
2671 						btrfs_tree_read_lock(b);
2672 						btrfs_clear_path_blocking(p, b,
2673 								  BTRFS_READ_LOCK);
2674 					}
2675 					p->locks[level] = BTRFS_READ_LOCK;
2676 				}
2677 				p->nodes[level] = b;
2678 			}
2679 		} else {
2680 			p->slots[level] = slot;
2681 			if (ins_len > 0 &&
2682 			    btrfs_leaf_free_space(root, b) < ins_len) {
2683 				if (write_lock_level < 1) {
2684 					write_lock_level = 1;
2685 					btrfs_release_path(p);
2686 					goto again;
2687 				}
2688 
2689 				btrfs_set_path_blocking(p);
2690 				err = split_leaf(trans, root, key,
2691 						 p, ins_len, ret == 0);
2692 				btrfs_clear_path_blocking(p, NULL, 0);
2693 
2694 				BUG_ON(err > 0);
2695 				if (err) {
2696 					ret = err;
2697 					goto done;
2698 				}
2699 			}
2700 			if (!p->search_for_split)
2701 				unlock_up(p, level, lowest_unlock,
2702 					  min_write_lock_level, &write_lock_level);
2703 			goto done;
2704 		}
2705 	}
2706 	ret = 1;
2707 done:
2708 	/*
2709 	 * we don't really know what they plan on doing with the path
2710 	 * from here on, so for now just mark it as blocking
2711 	 */
2712 	if (!p->leave_spinning)
2713 		btrfs_set_path_blocking(p);
2714 	if (ret < 0)
2715 		btrfs_release_path(p);
2716 	return ret;
2717 }
2718 
2719 /*
2720  * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2721  * current state of the tree together with the operations recorded in the tree
2722  * modification log to search for the key in a previous version of this tree, as
2723  * denoted by the time_seq parameter.
2724  *
2725  * Naturally, there is no support for insert, delete or cow operations.
2726  *
2727  * The resulting path and return value will be set up as if we called
2728  * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2729  */
2730 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2731 			  struct btrfs_path *p, u64 time_seq)
2732 {
2733 	struct extent_buffer *b;
2734 	int slot;
2735 	int ret;
2736 	int err;
2737 	int level;
2738 	int lowest_unlock = 1;
2739 	u8 lowest_level = 0;
2740 
2741 	lowest_level = p->lowest_level;
2742 	WARN_ON(p->nodes[0] != NULL);
2743 
2744 	if (p->search_commit_root) {
2745 		BUG_ON(time_seq);
2746 		return btrfs_search_slot(NULL, root, key, p, 0, 0);
2747 	}
2748 
2749 again:
2750 	b = get_old_root(root, time_seq);
2751 	level = btrfs_header_level(b);
2752 	p->locks[level] = BTRFS_READ_LOCK;
2753 
2754 	while (b) {
2755 		level = btrfs_header_level(b);
2756 		p->nodes[level] = b;
2757 		btrfs_clear_path_blocking(p, NULL, 0);
2758 
2759 		/*
2760 		 * we have a lock on b and as long as we aren't changing
2761 		 * the tree, there is no way to for the items in b to change.
2762 		 * It is safe to drop the lock on our parent before we
2763 		 * go through the expensive btree search on b.
2764 		 */
2765 		btrfs_unlock_up_safe(p, level + 1);
2766 
2767 		ret = bin_search(b, key, level, &slot);
2768 
2769 		if (level != 0) {
2770 			int dec = 0;
2771 			if (ret && slot > 0) {
2772 				dec = 1;
2773 				slot -= 1;
2774 			}
2775 			p->slots[level] = slot;
2776 			unlock_up(p, level, lowest_unlock, 0, NULL);
2777 
2778 			if (level == lowest_level) {
2779 				if (dec)
2780 					p->slots[level]++;
2781 				goto done;
2782 			}
2783 
2784 			err = read_block_for_search(NULL, root, p, &b, level,
2785 						    slot, key, time_seq);
2786 			if (err == -EAGAIN)
2787 				goto again;
2788 			if (err) {
2789 				ret = err;
2790 				goto done;
2791 			}
2792 
2793 			level = btrfs_header_level(b);
2794 			err = btrfs_try_tree_read_lock(b);
2795 			if (!err) {
2796 				btrfs_set_path_blocking(p);
2797 				btrfs_tree_read_lock(b);
2798 				btrfs_clear_path_blocking(p, b,
2799 							  BTRFS_READ_LOCK);
2800 			}
2801 			p->locks[level] = BTRFS_READ_LOCK;
2802 			p->nodes[level] = b;
2803 			b = tree_mod_log_rewind(root->fs_info, b, time_seq);
2804 			if (b != p->nodes[level]) {
2805 				btrfs_tree_unlock_rw(p->nodes[level],
2806 						     p->locks[level]);
2807 				p->locks[level] = 0;
2808 				p->nodes[level] = b;
2809 			}
2810 		} else {
2811 			p->slots[level] = slot;
2812 			unlock_up(p, level, lowest_unlock, 0, NULL);
2813 			goto done;
2814 		}
2815 	}
2816 	ret = 1;
2817 done:
2818 	if (!p->leave_spinning)
2819 		btrfs_set_path_blocking(p);
2820 	if (ret < 0)
2821 		btrfs_release_path(p);
2822 
2823 	return ret;
2824 }
2825 
2826 /*
2827  * helper to use instead of search slot if no exact match is needed but
2828  * instead the next or previous item should be returned.
2829  * When find_higher is true, the next higher item is returned, the next lower
2830  * otherwise.
2831  * When return_any and find_higher are both true, and no higher item is found,
2832  * return the next lower instead.
2833  * When return_any is true and find_higher is false, and no lower item is found,
2834  * return the next higher instead.
2835  * It returns 0 if any item is found, 1 if none is found (tree empty), and
2836  * < 0 on error
2837  */
2838 int btrfs_search_slot_for_read(struct btrfs_root *root,
2839 			       struct btrfs_key *key, struct btrfs_path *p,
2840 			       int find_higher, int return_any)
2841 {
2842 	int ret;
2843 	struct extent_buffer *leaf;
2844 
2845 again:
2846 	ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
2847 	if (ret <= 0)
2848 		return ret;
2849 	/*
2850 	 * a return value of 1 means the path is at the position where the
2851 	 * item should be inserted. Normally this is the next bigger item,
2852 	 * but in case the previous item is the last in a leaf, path points
2853 	 * to the first free slot in the previous leaf, i.e. at an invalid
2854 	 * item.
2855 	 */
2856 	leaf = p->nodes[0];
2857 
2858 	if (find_higher) {
2859 		if (p->slots[0] >= btrfs_header_nritems(leaf)) {
2860 			ret = btrfs_next_leaf(root, p);
2861 			if (ret <= 0)
2862 				return ret;
2863 			if (!return_any)
2864 				return 1;
2865 			/*
2866 			 * no higher item found, return the next
2867 			 * lower instead
2868 			 */
2869 			return_any = 0;
2870 			find_higher = 0;
2871 			btrfs_release_path(p);
2872 			goto again;
2873 		}
2874 	} else {
2875 		if (p->slots[0] == 0) {
2876 			ret = btrfs_prev_leaf(root, p);
2877 			if (ret < 0)
2878 				return ret;
2879 			if (!ret) {
2880 				p->slots[0] = btrfs_header_nritems(leaf) - 1;
2881 				return 0;
2882 			}
2883 			if (!return_any)
2884 				return 1;
2885 			/*
2886 			 * no lower item found, return the next
2887 			 * higher instead
2888 			 */
2889 			return_any = 0;
2890 			find_higher = 1;
2891 			btrfs_release_path(p);
2892 			goto again;
2893 		} else {
2894 			--p->slots[0];
2895 		}
2896 	}
2897 	return 0;
2898 }
2899 
2900 /*
2901  * adjust the pointers going up the tree, starting at level
2902  * making sure the right key of each node is points to 'key'.
2903  * This is used after shifting pointers to the left, so it stops
2904  * fixing up pointers when a given leaf/node is not in slot 0 of the
2905  * higher levels
2906  *
2907  */
2908 static void fixup_low_keys(struct btrfs_trans_handle *trans,
2909 			   struct btrfs_root *root, struct btrfs_path *path,
2910 			   struct btrfs_disk_key *key, int level)
2911 {
2912 	int i;
2913 	struct extent_buffer *t;
2914 
2915 	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2916 		int tslot = path->slots[i];
2917 		if (!path->nodes[i])
2918 			break;
2919 		t = path->nodes[i];
2920 		tree_mod_log_set_node_key(root->fs_info, t, key, tslot, 1);
2921 		btrfs_set_node_key(t, key, tslot);
2922 		btrfs_mark_buffer_dirty(path->nodes[i]);
2923 		if (tslot != 0)
2924 			break;
2925 	}
2926 }
2927 
2928 /*
2929  * update item key.
2930  *
2931  * This function isn't completely safe. It's the caller's responsibility
2932  * that the new key won't break the order
2933  */
2934 void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2935 			     struct btrfs_root *root, struct btrfs_path *path,
2936 			     struct btrfs_key *new_key)
2937 {
2938 	struct btrfs_disk_key disk_key;
2939 	struct extent_buffer *eb;
2940 	int slot;
2941 
2942 	eb = path->nodes[0];
2943 	slot = path->slots[0];
2944 	if (slot > 0) {
2945 		btrfs_item_key(eb, &disk_key, slot - 1);
2946 		BUG_ON(comp_keys(&disk_key, new_key) >= 0);
2947 	}
2948 	if (slot < btrfs_header_nritems(eb) - 1) {
2949 		btrfs_item_key(eb, &disk_key, slot + 1);
2950 		BUG_ON(comp_keys(&disk_key, new_key) <= 0);
2951 	}
2952 
2953 	btrfs_cpu_key_to_disk(&disk_key, new_key);
2954 	btrfs_set_item_key(eb, &disk_key, slot);
2955 	btrfs_mark_buffer_dirty(eb);
2956 	if (slot == 0)
2957 		fixup_low_keys(trans, root, path, &disk_key, 1);
2958 }
2959 
2960 /*
2961  * try to push data from one node into the next node left in the
2962  * tree.
2963  *
2964  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
2965  * error, and > 0 if there was no room in the left hand block.
2966  */
2967 static int push_node_left(struct btrfs_trans_handle *trans,
2968 			  struct btrfs_root *root, struct extent_buffer *dst,
2969 			  struct extent_buffer *src, int empty)
2970 {
2971 	int push_items = 0;
2972 	int src_nritems;
2973 	int dst_nritems;
2974 	int ret = 0;
2975 
2976 	src_nritems = btrfs_header_nritems(src);
2977 	dst_nritems = btrfs_header_nritems(dst);
2978 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2979 	WARN_ON(btrfs_header_generation(src) != trans->transid);
2980 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
2981 
2982 	if (!empty && src_nritems <= 8)
2983 		return 1;
2984 
2985 	if (push_items <= 0)
2986 		return 1;
2987 
2988 	if (empty) {
2989 		push_items = min(src_nritems, push_items);
2990 		if (push_items < src_nritems) {
2991 			/* leave at least 8 pointers in the node if
2992 			 * we aren't going to empty it
2993 			 */
2994 			if (src_nritems - push_items < 8) {
2995 				if (push_items <= 8)
2996 					return 1;
2997 				push_items -= 8;
2998 			}
2999 		}
3000 	} else
3001 		push_items = min(src_nritems - 8, push_items);
3002 
3003 	tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3004 			     push_items);
3005 	copy_extent_buffer(dst, src,
3006 			   btrfs_node_key_ptr_offset(dst_nritems),
3007 			   btrfs_node_key_ptr_offset(0),
3008 			   push_items * sizeof(struct btrfs_key_ptr));
3009 
3010 	if (push_items < src_nritems) {
3011 		/*
3012 		 * don't call tree_mod_log_eb_move here, key removal was already
3013 		 * fully logged by tree_mod_log_eb_copy above.
3014 		 */
3015 		memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3016 				      btrfs_node_key_ptr_offset(push_items),
3017 				      (src_nritems - push_items) *
3018 				      sizeof(struct btrfs_key_ptr));
3019 	}
3020 	btrfs_set_header_nritems(src, src_nritems - push_items);
3021 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3022 	btrfs_mark_buffer_dirty(src);
3023 	btrfs_mark_buffer_dirty(dst);
3024 
3025 	return ret;
3026 }
3027 
3028 /*
3029  * try to push data from one node into the next node right in the
3030  * tree.
3031  *
3032  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3033  * error, and > 0 if there was no room in the right hand block.
3034  *
3035  * this will  only push up to 1/2 the contents of the left node over
3036  */
3037 static int balance_node_right(struct btrfs_trans_handle *trans,
3038 			      struct btrfs_root *root,
3039 			      struct extent_buffer *dst,
3040 			      struct extent_buffer *src)
3041 {
3042 	int push_items = 0;
3043 	int max_push;
3044 	int src_nritems;
3045 	int dst_nritems;
3046 	int ret = 0;
3047 
3048 	WARN_ON(btrfs_header_generation(src) != trans->transid);
3049 	WARN_ON(btrfs_header_generation(dst) != trans->transid);
3050 
3051 	src_nritems = btrfs_header_nritems(src);
3052 	dst_nritems = btrfs_header_nritems(dst);
3053 	push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3054 	if (push_items <= 0)
3055 		return 1;
3056 
3057 	if (src_nritems < 4)
3058 		return 1;
3059 
3060 	max_push = src_nritems / 2 + 1;
3061 	/* don't try to empty the node */
3062 	if (max_push >= src_nritems)
3063 		return 1;
3064 
3065 	if (max_push < push_items)
3066 		push_items = max_push;
3067 
3068 	tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3069 	memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3070 				      btrfs_node_key_ptr_offset(0),
3071 				      (dst_nritems) *
3072 				      sizeof(struct btrfs_key_ptr));
3073 
3074 	tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3075 			     src_nritems - push_items, push_items);
3076 	copy_extent_buffer(dst, src,
3077 			   btrfs_node_key_ptr_offset(0),
3078 			   btrfs_node_key_ptr_offset(src_nritems - push_items),
3079 			   push_items * sizeof(struct btrfs_key_ptr));
3080 
3081 	btrfs_set_header_nritems(src, src_nritems - push_items);
3082 	btrfs_set_header_nritems(dst, dst_nritems + push_items);
3083 
3084 	btrfs_mark_buffer_dirty(src);
3085 	btrfs_mark_buffer_dirty(dst);
3086 
3087 	return ret;
3088 }
3089 
3090 /*
3091  * helper function to insert a new root level in the tree.
3092  * A new node is allocated, and a single item is inserted to
3093  * point to the existing root
3094  *
3095  * returns zero on success or < 0 on failure.
3096  */
3097 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3098 			   struct btrfs_root *root,
3099 			   struct btrfs_path *path, int level)
3100 {
3101 	u64 lower_gen;
3102 	struct extent_buffer *lower;
3103 	struct extent_buffer *c;
3104 	struct extent_buffer *old;
3105 	struct btrfs_disk_key lower_key;
3106 
3107 	BUG_ON(path->nodes[level]);
3108 	BUG_ON(path->nodes[level-1] != root->node);
3109 
3110 	lower = path->nodes[level-1];
3111 	if (level == 1)
3112 		btrfs_item_key(lower, &lower_key, 0);
3113 	else
3114 		btrfs_node_key(lower, &lower_key, 0);
3115 
3116 	c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3117 				   root->root_key.objectid, &lower_key,
3118 				   level, root->node->start, 0);
3119 	if (IS_ERR(c))
3120 		return PTR_ERR(c);
3121 
3122 	root_add_used(root, root->nodesize);
3123 
3124 	memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3125 	btrfs_set_header_nritems(c, 1);
3126 	btrfs_set_header_level(c, level);
3127 	btrfs_set_header_bytenr(c, c->start);
3128 	btrfs_set_header_generation(c, trans->transid);
3129 	btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3130 	btrfs_set_header_owner(c, root->root_key.objectid);
3131 
3132 	write_extent_buffer(c, root->fs_info->fsid,
3133 			    (unsigned long)btrfs_header_fsid(c),
3134 			    BTRFS_FSID_SIZE);
3135 
3136 	write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3137 			    (unsigned long)btrfs_header_chunk_tree_uuid(c),
3138 			    BTRFS_UUID_SIZE);
3139 
3140 	btrfs_set_node_key(c, &lower_key, 0);
3141 	btrfs_set_node_blockptr(c, 0, lower->start);
3142 	lower_gen = btrfs_header_generation(lower);
3143 	WARN_ON(lower_gen != trans->transid);
3144 
3145 	btrfs_set_node_ptr_generation(c, 0, lower_gen);
3146 
3147 	btrfs_mark_buffer_dirty(c);
3148 
3149 	old = root->node;
3150 	tree_mod_log_set_root_pointer(root, c);
3151 	rcu_assign_pointer(root->node, c);
3152 
3153 	/* the super has an extra ref to root->node */
3154 	free_extent_buffer(old);
3155 
3156 	add_root_to_dirty_list(root);
3157 	extent_buffer_get(c);
3158 	path->nodes[level] = c;
3159 	path->locks[level] = BTRFS_WRITE_LOCK;
3160 	path->slots[level] = 0;
3161 	return 0;
3162 }
3163 
3164 /*
3165  * worker function to insert a single pointer in a node.
3166  * the node should have enough room for the pointer already
3167  *
3168  * slot and level indicate where you want the key to go, and
3169  * blocknr is the block the key points to.
3170  */
3171 static void insert_ptr(struct btrfs_trans_handle *trans,
3172 		       struct btrfs_root *root, struct btrfs_path *path,
3173 		       struct btrfs_disk_key *key, u64 bytenr,
3174 		       int slot, int level)
3175 {
3176 	struct extent_buffer *lower;
3177 	int nritems;
3178 	int ret;
3179 
3180 	BUG_ON(!path->nodes[level]);
3181 	btrfs_assert_tree_locked(path->nodes[level]);
3182 	lower = path->nodes[level];
3183 	nritems = btrfs_header_nritems(lower);
3184 	BUG_ON(slot > nritems);
3185 	BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3186 	if (slot != nritems) {
3187 		if (level)
3188 			tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3189 					     slot, nritems - slot);
3190 		memmove_extent_buffer(lower,
3191 			      btrfs_node_key_ptr_offset(slot + 1),
3192 			      btrfs_node_key_ptr_offset(slot),
3193 			      (nritems - slot) * sizeof(struct btrfs_key_ptr));
3194 	}
3195 	if (level) {
3196 		ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3197 					      MOD_LOG_KEY_ADD);
3198 		BUG_ON(ret < 0);
3199 	}
3200 	btrfs_set_node_key(lower, key, slot);
3201 	btrfs_set_node_blockptr(lower, slot, bytenr);
3202 	WARN_ON(trans->transid == 0);
3203 	btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3204 	btrfs_set_header_nritems(lower, nritems + 1);
3205 	btrfs_mark_buffer_dirty(lower);
3206 }
3207 
3208 /*
3209  * split the node at the specified level in path in two.
3210  * The path is corrected to point to the appropriate node after the split
3211  *
3212  * Before splitting this tries to make some room in the node by pushing
3213  * left and right, if either one works, it returns right away.
3214  *
3215  * returns 0 on success and < 0 on failure
3216  */
3217 static noinline int split_node(struct btrfs_trans_handle *trans,
3218 			       struct btrfs_root *root,
3219 			       struct btrfs_path *path, int level)
3220 {
3221 	struct extent_buffer *c;
3222 	struct extent_buffer *split;
3223 	struct btrfs_disk_key disk_key;
3224 	int mid;
3225 	int ret;
3226 	u32 c_nritems;
3227 
3228 	c = path->nodes[level];
3229 	WARN_ON(btrfs_header_generation(c) != trans->transid);
3230 	if (c == root->node) {
3231 		/* trying to split the root, lets make a new one */
3232 		ret = insert_new_root(trans, root, path, level + 1);
3233 		if (ret)
3234 			return ret;
3235 	} else {
3236 		ret = push_nodes_for_insert(trans, root, path, level);
3237 		c = path->nodes[level];
3238 		if (!ret && btrfs_header_nritems(c) <
3239 		    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3240 			return 0;
3241 		if (ret < 0)
3242 			return ret;
3243 	}
3244 
3245 	c_nritems = btrfs_header_nritems(c);
3246 	mid = (c_nritems + 1) / 2;
3247 	btrfs_node_key(c, &disk_key, mid);
3248 
3249 	split = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
3250 					root->root_key.objectid,
3251 					&disk_key, level, c->start, 0);
3252 	if (IS_ERR(split))
3253 		return PTR_ERR(split);
3254 
3255 	root_add_used(root, root->nodesize);
3256 
3257 	memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3258 	btrfs_set_header_level(split, btrfs_header_level(c));
3259 	btrfs_set_header_bytenr(split, split->start);
3260 	btrfs_set_header_generation(split, trans->transid);
3261 	btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3262 	btrfs_set_header_owner(split, root->root_key.objectid);
3263 	write_extent_buffer(split, root->fs_info->fsid,
3264 			    (unsigned long)btrfs_header_fsid(split),
3265 			    BTRFS_FSID_SIZE);
3266 	write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3267 			    (unsigned long)btrfs_header_chunk_tree_uuid(split),
3268 			    BTRFS_UUID_SIZE);
3269 
3270 	tree_mod_log_eb_copy(root->fs_info, split, c, 0, mid, c_nritems - mid);
3271 	copy_extent_buffer(split, c,
3272 			   btrfs_node_key_ptr_offset(0),
3273 			   btrfs_node_key_ptr_offset(mid),
3274 			   (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3275 	btrfs_set_header_nritems(split, c_nritems - mid);
3276 	btrfs_set_header_nritems(c, mid);
3277 	ret = 0;
3278 
3279 	btrfs_mark_buffer_dirty(c);
3280 	btrfs_mark_buffer_dirty(split);
3281 
3282 	insert_ptr(trans, root, path, &disk_key, split->start,
3283 		   path->slots[level + 1] + 1, level + 1);
3284 
3285 	if (path->slots[level] >= mid) {
3286 		path->slots[level] -= mid;
3287 		btrfs_tree_unlock(c);
3288 		free_extent_buffer(c);
3289 		path->nodes[level] = split;
3290 		path->slots[level + 1] += 1;
3291 	} else {
3292 		btrfs_tree_unlock(split);
3293 		free_extent_buffer(split);
3294 	}
3295 	return ret;
3296 }
3297 
3298 /*
3299  * how many bytes are required to store the items in a leaf.  start
3300  * and nr indicate which items in the leaf to check.  This totals up the
3301  * space used both by the item structs and the item data
3302  */
3303 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3304 {
3305 	int data_len;
3306 	int nritems = btrfs_header_nritems(l);
3307 	int end = min(nritems, start + nr) - 1;
3308 
3309 	if (!nr)
3310 		return 0;
3311 	data_len = btrfs_item_end_nr(l, start);
3312 	data_len = data_len - btrfs_item_offset_nr(l, end);
3313 	data_len += sizeof(struct btrfs_item) * nr;
3314 	WARN_ON(data_len < 0);
3315 	return data_len;
3316 }
3317 
3318 /*
3319  * The space between the end of the leaf items and
3320  * the start of the leaf data.  IOW, how much room
3321  * the leaf has left for both items and data
3322  */
3323 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3324 				   struct extent_buffer *leaf)
3325 {
3326 	int nritems = btrfs_header_nritems(leaf);
3327 	int ret;
3328 	ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3329 	if (ret < 0) {
3330 		printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
3331 		       "used %d nritems %d\n",
3332 		       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3333 		       leaf_space_used(leaf, 0, nritems), nritems);
3334 	}
3335 	return ret;
3336 }
3337 
3338 /*
3339  * min slot controls the lowest index we're willing to push to the
3340  * right.  We'll push up to and including min_slot, but no lower
3341  */
3342 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3343 				      struct btrfs_root *root,
3344 				      struct btrfs_path *path,
3345 				      int data_size, int empty,
3346 				      struct extent_buffer *right,
3347 				      int free_space, u32 left_nritems,
3348 				      u32 min_slot)
3349 {
3350 	struct extent_buffer *left = path->nodes[0];
3351 	struct extent_buffer *upper = path->nodes[1];
3352 	struct btrfs_map_token token;
3353 	struct btrfs_disk_key disk_key;
3354 	int slot;
3355 	u32 i;
3356 	int push_space = 0;
3357 	int push_items = 0;
3358 	struct btrfs_item *item;
3359 	u32 nr;
3360 	u32 right_nritems;
3361 	u32 data_end;
3362 	u32 this_item_size;
3363 
3364 	btrfs_init_map_token(&token);
3365 
3366 	if (empty)
3367 		nr = 0;
3368 	else
3369 		nr = max_t(u32, 1, min_slot);
3370 
3371 	if (path->slots[0] >= left_nritems)
3372 		push_space += data_size;
3373 
3374 	slot = path->slots[1];
3375 	i = left_nritems - 1;
3376 	while (i >= nr) {
3377 		item = btrfs_item_nr(left, i);
3378 
3379 		if (!empty && push_items > 0) {
3380 			if (path->slots[0] > i)
3381 				break;
3382 			if (path->slots[0] == i) {
3383 				int space = btrfs_leaf_free_space(root, left);
3384 				if (space + push_space * 2 > free_space)
3385 					break;
3386 			}
3387 		}
3388 
3389 		if (path->slots[0] == i)
3390 			push_space += data_size;
3391 
3392 		this_item_size = btrfs_item_size(left, item);
3393 		if (this_item_size + sizeof(*item) + push_space > free_space)
3394 			break;
3395 
3396 		push_items++;
3397 		push_space += this_item_size + sizeof(*item);
3398 		if (i == 0)
3399 			break;
3400 		i--;
3401 	}
3402 
3403 	if (push_items == 0)
3404 		goto out_unlock;
3405 
3406 	if (!empty && push_items == left_nritems)
3407 		WARN_ON(1);
3408 
3409 	/* push left to right */
3410 	right_nritems = btrfs_header_nritems(right);
3411 
3412 	push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3413 	push_space -= leaf_data_end(root, left);
3414 
3415 	/* make room in the right data area */
3416 	data_end = leaf_data_end(root, right);
3417 	memmove_extent_buffer(right,
3418 			      btrfs_leaf_data(right) + data_end - push_space,
3419 			      btrfs_leaf_data(right) + data_end,
3420 			      BTRFS_LEAF_DATA_SIZE(root) - data_end);
3421 
3422 	/* copy from the left data area */
3423 	copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3424 		     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3425 		     btrfs_leaf_data(left) + leaf_data_end(root, left),
3426 		     push_space);
3427 
3428 	memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3429 			      btrfs_item_nr_offset(0),
3430 			      right_nritems * sizeof(struct btrfs_item));
3431 
3432 	/* copy the items from left to right */
3433 	copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3434 		   btrfs_item_nr_offset(left_nritems - push_items),
3435 		   push_items * sizeof(struct btrfs_item));
3436 
3437 	/* update the item pointers */
3438 	right_nritems += push_items;
3439 	btrfs_set_header_nritems(right, right_nritems);
3440 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3441 	for (i = 0; i < right_nritems; i++) {
3442 		item = btrfs_item_nr(right, i);
3443 		push_space -= btrfs_token_item_size(right, item, &token);
3444 		btrfs_set_token_item_offset(right, item, push_space, &token);
3445 	}
3446 
3447 	left_nritems -= push_items;
3448 	btrfs_set_header_nritems(left, left_nritems);
3449 
3450 	if (left_nritems)
3451 		btrfs_mark_buffer_dirty(left);
3452 	else
3453 		clean_tree_block(trans, root, left);
3454 
3455 	btrfs_mark_buffer_dirty(right);
3456 
3457 	btrfs_item_key(right, &disk_key, 0);
3458 	btrfs_set_node_key(upper, &disk_key, slot + 1);
3459 	btrfs_mark_buffer_dirty(upper);
3460 
3461 	/* then fixup the leaf pointer in the path */
3462 	if (path->slots[0] >= left_nritems) {
3463 		path->slots[0] -= left_nritems;
3464 		if (btrfs_header_nritems(path->nodes[0]) == 0)
3465 			clean_tree_block(trans, root, path->nodes[0]);
3466 		btrfs_tree_unlock(path->nodes[0]);
3467 		free_extent_buffer(path->nodes[0]);
3468 		path->nodes[0] = right;
3469 		path->slots[1] += 1;
3470 	} else {
3471 		btrfs_tree_unlock(right);
3472 		free_extent_buffer(right);
3473 	}
3474 	return 0;
3475 
3476 out_unlock:
3477 	btrfs_tree_unlock(right);
3478 	free_extent_buffer(right);
3479 	return 1;
3480 }
3481 
3482 /*
3483  * push some data in the path leaf to the right, trying to free up at
3484  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3485  *
3486  * returns 1 if the push failed because the other node didn't have enough
3487  * room, 0 if everything worked out and < 0 if there were major errors.
3488  *
3489  * this will push starting from min_slot to the end of the leaf.  It won't
3490  * push any slot lower than min_slot
3491  */
3492 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3493 			   *root, struct btrfs_path *path,
3494 			   int min_data_size, int data_size,
3495 			   int empty, u32 min_slot)
3496 {
3497 	struct extent_buffer *left = path->nodes[0];
3498 	struct extent_buffer *right;
3499 	struct extent_buffer *upper;
3500 	int slot;
3501 	int free_space;
3502 	u32 left_nritems;
3503 	int ret;
3504 
3505 	if (!path->nodes[1])
3506 		return 1;
3507 
3508 	slot = path->slots[1];
3509 	upper = path->nodes[1];
3510 	if (slot >= btrfs_header_nritems(upper) - 1)
3511 		return 1;
3512 
3513 	btrfs_assert_tree_locked(path->nodes[1]);
3514 
3515 	right = read_node_slot(root, upper, slot + 1);
3516 	if (right == NULL)
3517 		return 1;
3518 
3519 	btrfs_tree_lock(right);
3520 	btrfs_set_lock_blocking(right);
3521 
3522 	free_space = btrfs_leaf_free_space(root, right);
3523 	if (free_space < data_size)
3524 		goto out_unlock;
3525 
3526 	/* cow and double check */
3527 	ret = btrfs_cow_block(trans, root, right, upper,
3528 			      slot + 1, &right);
3529 	if (ret)
3530 		goto out_unlock;
3531 
3532 	free_space = btrfs_leaf_free_space(root, right);
3533 	if (free_space < data_size)
3534 		goto out_unlock;
3535 
3536 	left_nritems = btrfs_header_nritems(left);
3537 	if (left_nritems == 0)
3538 		goto out_unlock;
3539 
3540 	return __push_leaf_right(trans, root, path, min_data_size, empty,
3541 				right, free_space, left_nritems, min_slot);
3542 out_unlock:
3543 	btrfs_tree_unlock(right);
3544 	free_extent_buffer(right);
3545 	return 1;
3546 }
3547 
3548 /*
3549  * push some data in the path leaf to the left, trying to free up at
3550  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3551  *
3552  * max_slot can put a limit on how far into the leaf we'll push items.  The
3553  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3554  * items
3555  */
3556 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3557 				     struct btrfs_root *root,
3558 				     struct btrfs_path *path, int data_size,
3559 				     int empty, struct extent_buffer *left,
3560 				     int free_space, u32 right_nritems,
3561 				     u32 max_slot)
3562 {
3563 	struct btrfs_disk_key disk_key;
3564 	struct extent_buffer *right = path->nodes[0];
3565 	int i;
3566 	int push_space = 0;
3567 	int push_items = 0;
3568 	struct btrfs_item *item;
3569 	u32 old_left_nritems;
3570 	u32 nr;
3571 	int ret = 0;
3572 	u32 this_item_size;
3573 	u32 old_left_item_size;
3574 	struct btrfs_map_token token;
3575 
3576 	btrfs_init_map_token(&token);
3577 
3578 	if (empty)
3579 		nr = min(right_nritems, max_slot);
3580 	else
3581 		nr = min(right_nritems - 1, max_slot);
3582 
3583 	for (i = 0; i < nr; i++) {
3584 		item = btrfs_item_nr(right, i);
3585 
3586 		if (!empty && push_items > 0) {
3587 			if (path->slots[0] < i)
3588 				break;
3589 			if (path->slots[0] == i) {
3590 				int space = btrfs_leaf_free_space(root, right);
3591 				if (space + push_space * 2 > free_space)
3592 					break;
3593 			}
3594 		}
3595 
3596 		if (path->slots[0] == i)
3597 			push_space += data_size;
3598 
3599 		this_item_size = btrfs_item_size(right, item);
3600 		if (this_item_size + sizeof(*item) + push_space > free_space)
3601 			break;
3602 
3603 		push_items++;
3604 		push_space += this_item_size + sizeof(*item);
3605 	}
3606 
3607 	if (push_items == 0) {
3608 		ret = 1;
3609 		goto out;
3610 	}
3611 	if (!empty && push_items == btrfs_header_nritems(right))
3612 		WARN_ON(1);
3613 
3614 	/* push data from right to left */
3615 	copy_extent_buffer(left, right,
3616 			   btrfs_item_nr_offset(btrfs_header_nritems(left)),
3617 			   btrfs_item_nr_offset(0),
3618 			   push_items * sizeof(struct btrfs_item));
3619 
3620 	push_space = BTRFS_LEAF_DATA_SIZE(root) -
3621 		     btrfs_item_offset_nr(right, push_items - 1);
3622 
3623 	copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3624 		     leaf_data_end(root, left) - push_space,
3625 		     btrfs_leaf_data(right) +
3626 		     btrfs_item_offset_nr(right, push_items - 1),
3627 		     push_space);
3628 	old_left_nritems = btrfs_header_nritems(left);
3629 	BUG_ON(old_left_nritems <= 0);
3630 
3631 	old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3632 	for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3633 		u32 ioff;
3634 
3635 		item = btrfs_item_nr(left, i);
3636 
3637 		ioff = btrfs_token_item_offset(left, item, &token);
3638 		btrfs_set_token_item_offset(left, item,
3639 		      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3640 		      &token);
3641 	}
3642 	btrfs_set_header_nritems(left, old_left_nritems + push_items);
3643 
3644 	/* fixup right node */
3645 	if (push_items > right_nritems) {
3646 		printk(KERN_CRIT "push items %d nr %u\n", push_items,
3647 		       right_nritems);
3648 		WARN_ON(1);
3649 	}
3650 
3651 	if (push_items < right_nritems) {
3652 		push_space = btrfs_item_offset_nr(right, push_items - 1) -
3653 						  leaf_data_end(root, right);
3654 		memmove_extent_buffer(right, btrfs_leaf_data(right) +
3655 				      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3656 				      btrfs_leaf_data(right) +
3657 				      leaf_data_end(root, right), push_space);
3658 
3659 		memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3660 			      btrfs_item_nr_offset(push_items),
3661 			     (btrfs_header_nritems(right) - push_items) *
3662 			     sizeof(struct btrfs_item));
3663 	}
3664 	right_nritems -= push_items;
3665 	btrfs_set_header_nritems(right, right_nritems);
3666 	push_space = BTRFS_LEAF_DATA_SIZE(root);
3667 	for (i = 0; i < right_nritems; i++) {
3668 		item = btrfs_item_nr(right, i);
3669 
3670 		push_space = push_space - btrfs_token_item_size(right,
3671 								item, &token);
3672 		btrfs_set_token_item_offset(right, item, push_space, &token);
3673 	}
3674 
3675 	btrfs_mark_buffer_dirty(left);
3676 	if (right_nritems)
3677 		btrfs_mark_buffer_dirty(right);
3678 	else
3679 		clean_tree_block(trans, root, right);
3680 
3681 	btrfs_item_key(right, &disk_key, 0);
3682 	fixup_low_keys(trans, root, path, &disk_key, 1);
3683 
3684 	/* then fixup the leaf pointer in the path */
3685 	if (path->slots[0] < push_items) {
3686 		path->slots[0] += old_left_nritems;
3687 		btrfs_tree_unlock(path->nodes[0]);
3688 		free_extent_buffer(path->nodes[0]);
3689 		path->nodes[0] = left;
3690 		path->slots[1] -= 1;
3691 	} else {
3692 		btrfs_tree_unlock(left);
3693 		free_extent_buffer(left);
3694 		path->slots[0] -= push_items;
3695 	}
3696 	BUG_ON(path->slots[0] < 0);
3697 	return ret;
3698 out:
3699 	btrfs_tree_unlock(left);
3700 	free_extent_buffer(left);
3701 	return ret;
3702 }
3703 
3704 /*
3705  * push some data in the path leaf to the left, trying to free up at
3706  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3707  *
3708  * max_slot can put a limit on how far into the leaf we'll push items.  The
3709  * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3710  * items
3711  */
3712 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3713 			  *root, struct btrfs_path *path, int min_data_size,
3714 			  int data_size, int empty, u32 max_slot)
3715 {
3716 	struct extent_buffer *right = path->nodes[0];
3717 	struct extent_buffer *left;
3718 	int slot;
3719 	int free_space;
3720 	u32 right_nritems;
3721 	int ret = 0;
3722 
3723 	slot = path->slots[1];
3724 	if (slot == 0)
3725 		return 1;
3726 	if (!path->nodes[1])
3727 		return 1;
3728 
3729 	right_nritems = btrfs_header_nritems(right);
3730 	if (right_nritems == 0)
3731 		return 1;
3732 
3733 	btrfs_assert_tree_locked(path->nodes[1]);
3734 
3735 	left = read_node_slot(root, path->nodes[1], slot - 1);
3736 	if (left == NULL)
3737 		return 1;
3738 
3739 	btrfs_tree_lock(left);
3740 	btrfs_set_lock_blocking(left);
3741 
3742 	free_space = btrfs_leaf_free_space(root, left);
3743 	if (free_space < data_size) {
3744 		ret = 1;
3745 		goto out;
3746 	}
3747 
3748 	/* cow and double check */
3749 	ret = btrfs_cow_block(trans, root, left,
3750 			      path->nodes[1], slot - 1, &left);
3751 	if (ret) {
3752 		/* we hit -ENOSPC, but it isn't fatal here */
3753 		if (ret == -ENOSPC)
3754 			ret = 1;
3755 		goto out;
3756 	}
3757 
3758 	free_space = btrfs_leaf_free_space(root, left);
3759 	if (free_space < data_size) {
3760 		ret = 1;
3761 		goto out;
3762 	}
3763 
3764 	return __push_leaf_left(trans, root, path, min_data_size,
3765 			       empty, left, free_space, right_nritems,
3766 			       max_slot);
3767 out:
3768 	btrfs_tree_unlock(left);
3769 	free_extent_buffer(left);
3770 	return ret;
3771 }
3772 
3773 /*
3774  * split the path's leaf in two, making sure there is at least data_size
3775  * available for the resulting leaf level of the path.
3776  */
3777 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
3778 				    struct btrfs_root *root,
3779 				    struct btrfs_path *path,
3780 				    struct extent_buffer *l,
3781 				    struct extent_buffer *right,
3782 				    int slot, int mid, int nritems)
3783 {
3784 	int data_copy_size;
3785 	int rt_data_off;
3786 	int i;
3787 	struct btrfs_disk_key disk_key;
3788 	struct btrfs_map_token token;
3789 
3790 	btrfs_init_map_token(&token);
3791 
3792 	nritems = nritems - mid;
3793 	btrfs_set_header_nritems(right, nritems);
3794 	data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
3795 
3796 	copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
3797 			   btrfs_item_nr_offset(mid),
3798 			   nritems * sizeof(struct btrfs_item));
3799 
3800 	copy_extent_buffer(right, l,
3801 		     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
3802 		     data_copy_size, btrfs_leaf_data(l) +
3803 		     leaf_data_end(root, l), data_copy_size);
3804 
3805 	rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
3806 		      btrfs_item_end_nr(l, mid);
3807 
3808 	for (i = 0; i < nritems; i++) {
3809 		struct btrfs_item *item = btrfs_item_nr(right, i);
3810 		u32 ioff;
3811 
3812 		ioff = btrfs_token_item_offset(right, item, &token);
3813 		btrfs_set_token_item_offset(right, item,
3814 					    ioff + rt_data_off, &token);
3815 	}
3816 
3817 	btrfs_set_header_nritems(l, mid);
3818 	btrfs_item_key(right, &disk_key, 0);
3819 	insert_ptr(trans, root, path, &disk_key, right->start,
3820 		   path->slots[1] + 1, 1);
3821 
3822 	btrfs_mark_buffer_dirty(right);
3823 	btrfs_mark_buffer_dirty(l);
3824 	BUG_ON(path->slots[0] != slot);
3825 
3826 	if (mid <= slot) {
3827 		btrfs_tree_unlock(path->nodes[0]);
3828 		free_extent_buffer(path->nodes[0]);
3829 		path->nodes[0] = right;
3830 		path->slots[0] -= mid;
3831 		path->slots[1] += 1;
3832 	} else {
3833 		btrfs_tree_unlock(right);
3834 		free_extent_buffer(right);
3835 	}
3836 
3837 	BUG_ON(path->slots[0] < 0);
3838 }
3839 
3840 /*
3841  * double splits happen when we need to insert a big item in the middle
3842  * of a leaf.  A double split can leave us with 3 mostly empty leaves:
3843  * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
3844  *          A                 B                 C
3845  *
3846  * We avoid this by trying to push the items on either side of our target
3847  * into the adjacent leaves.  If all goes well we can avoid the double split
3848  * completely.
3849  */
3850 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
3851 					  struct btrfs_root *root,
3852 					  struct btrfs_path *path,
3853 					  int data_size)
3854 {
3855 	int ret;
3856 	int progress = 0;
3857 	int slot;
3858 	u32 nritems;
3859 
3860 	slot = path->slots[0];
3861 
3862 	/*
3863 	 * try to push all the items after our slot into the
3864 	 * right leaf
3865 	 */
3866 	ret = push_leaf_right(trans, root, path, 1, data_size, 0, slot);
3867 	if (ret < 0)
3868 		return ret;
3869 
3870 	if (ret == 0)
3871 		progress++;
3872 
3873 	nritems = btrfs_header_nritems(path->nodes[0]);
3874 	/*
3875 	 * our goal is to get our slot at the start or end of a leaf.  If
3876 	 * we've done so we're done
3877 	 */
3878 	if (path->slots[0] == 0 || path->slots[0] == nritems)
3879 		return 0;
3880 
3881 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
3882 		return 0;
3883 
3884 	/* try to push all the items before our slot into the next leaf */
3885 	slot = path->slots[0];
3886 	ret = push_leaf_left(trans, root, path, 1, data_size, 0, slot);
3887 	if (ret < 0)
3888 		return ret;
3889 
3890 	if (ret == 0)
3891 		progress++;
3892 
3893 	if (progress)
3894 		return 0;
3895 	return 1;
3896 }
3897 
3898 /*
3899  * split the path's leaf in two, making sure there is at least data_size
3900  * available for the resulting leaf level of the path.
3901  *
3902  * returns 0 if all went well and < 0 on failure.
3903  */
3904 static noinline int split_leaf(struct btrfs_trans_handle *trans,
3905 			       struct btrfs_root *root,
3906 			       struct btrfs_key *ins_key,
3907 			       struct btrfs_path *path, int data_size,
3908 			       int extend)
3909 {
3910 	struct btrfs_disk_key disk_key;
3911 	struct extent_buffer *l;
3912 	u32 nritems;
3913 	int mid;
3914 	int slot;
3915 	struct extent_buffer *right;
3916 	int ret = 0;
3917 	int wret;
3918 	int split;
3919 	int num_doubles = 0;
3920 	int tried_avoid_double = 0;
3921 
3922 	l = path->nodes[0];
3923 	slot = path->slots[0];
3924 	if (extend && data_size + btrfs_item_size_nr(l, slot) +
3925 	    sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
3926 		return -EOVERFLOW;
3927 
3928 	/* first try to make some room by pushing left and right */
3929 	if (data_size) {
3930 		wret = push_leaf_right(trans, root, path, data_size,
3931 				       data_size, 0, 0);
3932 		if (wret < 0)
3933 			return wret;
3934 		if (wret) {
3935 			wret = push_leaf_left(trans, root, path, data_size,
3936 					      data_size, 0, (u32)-1);
3937 			if (wret < 0)
3938 				return wret;
3939 		}
3940 		l = path->nodes[0];
3941 
3942 		/* did the pushes work? */
3943 		if (btrfs_leaf_free_space(root, l) >= data_size)
3944 			return 0;
3945 	}
3946 
3947 	if (!path->nodes[1]) {
3948 		ret = insert_new_root(trans, root, path, 1);
3949 		if (ret)
3950 			return ret;
3951 	}
3952 again:
3953 	split = 1;
3954 	l = path->nodes[0];
3955 	slot = path->slots[0];
3956 	nritems = btrfs_header_nritems(l);
3957 	mid = (nritems + 1) / 2;
3958 
3959 	if (mid <= slot) {
3960 		if (nritems == 1 ||
3961 		    leaf_space_used(l, mid, nritems - mid) + data_size >
3962 			BTRFS_LEAF_DATA_SIZE(root)) {
3963 			if (slot >= nritems) {
3964 				split = 0;
3965 			} else {
3966 				mid = slot;
3967 				if (mid != nritems &&
3968 				    leaf_space_used(l, mid, nritems - mid) +
3969 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3970 					if (data_size && !tried_avoid_double)
3971 						goto push_for_double;
3972 					split = 2;
3973 				}
3974 			}
3975 		}
3976 	} else {
3977 		if (leaf_space_used(l, 0, mid) + data_size >
3978 			BTRFS_LEAF_DATA_SIZE(root)) {
3979 			if (!extend && data_size && slot == 0) {
3980 				split = 0;
3981 			} else if ((extend || !data_size) && slot == 0) {
3982 				mid = 1;
3983 			} else {
3984 				mid = slot;
3985 				if (mid != nritems &&
3986 				    leaf_space_used(l, mid, nritems - mid) +
3987 				    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
3988 					if (data_size && !tried_avoid_double)
3989 						goto push_for_double;
3990 					split = 2 ;
3991 				}
3992 			}
3993 		}
3994 	}
3995 
3996 	if (split == 0)
3997 		btrfs_cpu_key_to_disk(&disk_key, ins_key);
3998 	else
3999 		btrfs_item_key(l, &disk_key, mid);
4000 
4001 	right = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
4002 					root->root_key.objectid,
4003 					&disk_key, 0, l->start, 0);
4004 	if (IS_ERR(right))
4005 		return PTR_ERR(right);
4006 
4007 	root_add_used(root, root->leafsize);
4008 
4009 	memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4010 	btrfs_set_header_bytenr(right, right->start);
4011 	btrfs_set_header_generation(right, trans->transid);
4012 	btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4013 	btrfs_set_header_owner(right, root->root_key.objectid);
4014 	btrfs_set_header_level(right, 0);
4015 	write_extent_buffer(right, root->fs_info->fsid,
4016 			    (unsigned long)btrfs_header_fsid(right),
4017 			    BTRFS_FSID_SIZE);
4018 
4019 	write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
4020 			    (unsigned long)btrfs_header_chunk_tree_uuid(right),
4021 			    BTRFS_UUID_SIZE);
4022 
4023 	if (split == 0) {
4024 		if (mid <= slot) {
4025 			btrfs_set_header_nritems(right, 0);
4026 			insert_ptr(trans, root, path, &disk_key, right->start,
4027 				   path->slots[1] + 1, 1);
4028 			btrfs_tree_unlock(path->nodes[0]);
4029 			free_extent_buffer(path->nodes[0]);
4030 			path->nodes[0] = right;
4031 			path->slots[0] = 0;
4032 			path->slots[1] += 1;
4033 		} else {
4034 			btrfs_set_header_nritems(right, 0);
4035 			insert_ptr(trans, root, path, &disk_key, right->start,
4036 					  path->slots[1], 1);
4037 			btrfs_tree_unlock(path->nodes[0]);
4038 			free_extent_buffer(path->nodes[0]);
4039 			path->nodes[0] = right;
4040 			path->slots[0] = 0;
4041 			if (path->slots[1] == 0)
4042 				fixup_low_keys(trans, root, path,
4043 					       &disk_key, 1);
4044 		}
4045 		btrfs_mark_buffer_dirty(right);
4046 		return ret;
4047 	}
4048 
4049 	copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4050 
4051 	if (split == 2) {
4052 		BUG_ON(num_doubles != 0);
4053 		num_doubles++;
4054 		goto again;
4055 	}
4056 
4057 	return 0;
4058 
4059 push_for_double:
4060 	push_for_double_split(trans, root, path, data_size);
4061 	tried_avoid_double = 1;
4062 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4063 		return 0;
4064 	goto again;
4065 }
4066 
4067 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4068 					 struct btrfs_root *root,
4069 					 struct btrfs_path *path, int ins_len)
4070 {
4071 	struct btrfs_key key;
4072 	struct extent_buffer *leaf;
4073 	struct btrfs_file_extent_item *fi;
4074 	u64 extent_len = 0;
4075 	u32 item_size;
4076 	int ret;
4077 
4078 	leaf = path->nodes[0];
4079 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4080 
4081 	BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4082 	       key.type != BTRFS_EXTENT_CSUM_KEY);
4083 
4084 	if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4085 		return 0;
4086 
4087 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4088 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4089 		fi = btrfs_item_ptr(leaf, path->slots[0],
4090 				    struct btrfs_file_extent_item);
4091 		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4092 	}
4093 	btrfs_release_path(path);
4094 
4095 	path->keep_locks = 1;
4096 	path->search_for_split = 1;
4097 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4098 	path->search_for_split = 0;
4099 	if (ret < 0)
4100 		goto err;
4101 
4102 	ret = -EAGAIN;
4103 	leaf = path->nodes[0];
4104 	/* if our item isn't there or got smaller, return now */
4105 	if (ret > 0 || item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4106 		goto err;
4107 
4108 	/* the leaf has  changed, it now has room.  return now */
4109 	if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4110 		goto err;
4111 
4112 	if (key.type == BTRFS_EXTENT_DATA_KEY) {
4113 		fi = btrfs_item_ptr(leaf, path->slots[0],
4114 				    struct btrfs_file_extent_item);
4115 		if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4116 			goto err;
4117 	}
4118 
4119 	btrfs_set_path_blocking(path);
4120 	ret = split_leaf(trans, root, &key, path, ins_len, 1);
4121 	if (ret)
4122 		goto err;
4123 
4124 	path->keep_locks = 0;
4125 	btrfs_unlock_up_safe(path, 1);
4126 	return 0;
4127 err:
4128 	path->keep_locks = 0;
4129 	return ret;
4130 }
4131 
4132 static noinline int split_item(struct btrfs_trans_handle *trans,
4133 			       struct btrfs_root *root,
4134 			       struct btrfs_path *path,
4135 			       struct btrfs_key *new_key,
4136 			       unsigned long split_offset)
4137 {
4138 	struct extent_buffer *leaf;
4139 	struct btrfs_item *item;
4140 	struct btrfs_item *new_item;
4141 	int slot;
4142 	char *buf;
4143 	u32 nritems;
4144 	u32 item_size;
4145 	u32 orig_offset;
4146 	struct btrfs_disk_key disk_key;
4147 
4148 	leaf = path->nodes[0];
4149 	BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4150 
4151 	btrfs_set_path_blocking(path);
4152 
4153 	item = btrfs_item_nr(leaf, path->slots[0]);
4154 	orig_offset = btrfs_item_offset(leaf, item);
4155 	item_size = btrfs_item_size(leaf, item);
4156 
4157 	buf = kmalloc(item_size, GFP_NOFS);
4158 	if (!buf)
4159 		return -ENOMEM;
4160 
4161 	read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4162 			    path->slots[0]), item_size);
4163 
4164 	slot = path->slots[0] + 1;
4165 	nritems = btrfs_header_nritems(leaf);
4166 	if (slot != nritems) {
4167 		/* shift the items */
4168 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4169 				btrfs_item_nr_offset(slot),
4170 				(nritems - slot) * sizeof(struct btrfs_item));
4171 	}
4172 
4173 	btrfs_cpu_key_to_disk(&disk_key, new_key);
4174 	btrfs_set_item_key(leaf, &disk_key, slot);
4175 
4176 	new_item = btrfs_item_nr(leaf, slot);
4177 
4178 	btrfs_set_item_offset(leaf, new_item, orig_offset);
4179 	btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4180 
4181 	btrfs_set_item_offset(leaf, item,
4182 			      orig_offset + item_size - split_offset);
4183 	btrfs_set_item_size(leaf, item, split_offset);
4184 
4185 	btrfs_set_header_nritems(leaf, nritems + 1);
4186 
4187 	/* write the data for the start of the original item */
4188 	write_extent_buffer(leaf, buf,
4189 			    btrfs_item_ptr_offset(leaf, path->slots[0]),
4190 			    split_offset);
4191 
4192 	/* write the data for the new item */
4193 	write_extent_buffer(leaf, buf + split_offset,
4194 			    btrfs_item_ptr_offset(leaf, slot),
4195 			    item_size - split_offset);
4196 	btrfs_mark_buffer_dirty(leaf);
4197 
4198 	BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4199 	kfree(buf);
4200 	return 0;
4201 }
4202 
4203 /*
4204  * This function splits a single item into two items,
4205  * giving 'new_key' to the new item and splitting the
4206  * old one at split_offset (from the start of the item).
4207  *
4208  * The path may be released by this operation.  After
4209  * the split, the path is pointing to the old item.  The
4210  * new item is going to be in the same node as the old one.
4211  *
4212  * Note, the item being split must be smaller enough to live alone on
4213  * a tree block with room for one extra struct btrfs_item
4214  *
4215  * This allows us to split the item in place, keeping a lock on the
4216  * leaf the entire time.
4217  */
4218 int btrfs_split_item(struct btrfs_trans_handle *trans,
4219 		     struct btrfs_root *root,
4220 		     struct btrfs_path *path,
4221 		     struct btrfs_key *new_key,
4222 		     unsigned long split_offset)
4223 {
4224 	int ret;
4225 	ret = setup_leaf_for_split(trans, root, path,
4226 				   sizeof(struct btrfs_item));
4227 	if (ret)
4228 		return ret;
4229 
4230 	ret = split_item(trans, root, path, new_key, split_offset);
4231 	return ret;
4232 }
4233 
4234 /*
4235  * This function duplicate a item, giving 'new_key' to the new item.
4236  * It guarantees both items live in the same tree leaf and the new item
4237  * is contiguous with the original item.
4238  *
4239  * This allows us to split file extent in place, keeping a lock on the
4240  * leaf the entire time.
4241  */
4242 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4243 			 struct btrfs_root *root,
4244 			 struct btrfs_path *path,
4245 			 struct btrfs_key *new_key)
4246 {
4247 	struct extent_buffer *leaf;
4248 	int ret;
4249 	u32 item_size;
4250 
4251 	leaf = path->nodes[0];
4252 	item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4253 	ret = setup_leaf_for_split(trans, root, path,
4254 				   item_size + sizeof(struct btrfs_item));
4255 	if (ret)
4256 		return ret;
4257 
4258 	path->slots[0]++;
4259 	setup_items_for_insert(trans, root, path, new_key, &item_size,
4260 			       item_size, item_size +
4261 			       sizeof(struct btrfs_item), 1);
4262 	leaf = path->nodes[0];
4263 	memcpy_extent_buffer(leaf,
4264 			     btrfs_item_ptr_offset(leaf, path->slots[0]),
4265 			     btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4266 			     item_size);
4267 	return 0;
4268 }
4269 
4270 /*
4271  * make the item pointed to by the path smaller.  new_size indicates
4272  * how small to make it, and from_end tells us if we just chop bytes
4273  * off the end of the item or if we shift the item to chop bytes off
4274  * the front.
4275  */
4276 void btrfs_truncate_item(struct btrfs_trans_handle *trans,
4277 			 struct btrfs_root *root,
4278 			 struct btrfs_path *path,
4279 			 u32 new_size, int from_end)
4280 {
4281 	int slot;
4282 	struct extent_buffer *leaf;
4283 	struct btrfs_item *item;
4284 	u32 nritems;
4285 	unsigned int data_end;
4286 	unsigned int old_data_start;
4287 	unsigned int old_size;
4288 	unsigned int size_diff;
4289 	int i;
4290 	struct btrfs_map_token token;
4291 
4292 	btrfs_init_map_token(&token);
4293 
4294 	leaf = path->nodes[0];
4295 	slot = path->slots[0];
4296 
4297 	old_size = btrfs_item_size_nr(leaf, slot);
4298 	if (old_size == new_size)
4299 		return;
4300 
4301 	nritems = btrfs_header_nritems(leaf);
4302 	data_end = leaf_data_end(root, leaf);
4303 
4304 	old_data_start = btrfs_item_offset_nr(leaf, slot);
4305 
4306 	size_diff = old_size - new_size;
4307 
4308 	BUG_ON(slot < 0);
4309 	BUG_ON(slot >= nritems);
4310 
4311 	/*
4312 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4313 	 */
4314 	/* first correct the data pointers */
4315 	for (i = slot; i < nritems; i++) {
4316 		u32 ioff;
4317 		item = btrfs_item_nr(leaf, i);
4318 
4319 		ioff = btrfs_token_item_offset(leaf, item, &token);
4320 		btrfs_set_token_item_offset(leaf, item,
4321 					    ioff + size_diff, &token);
4322 	}
4323 
4324 	/* shift the data */
4325 	if (from_end) {
4326 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4327 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4328 			      data_end, old_data_start + new_size - data_end);
4329 	} else {
4330 		struct btrfs_disk_key disk_key;
4331 		u64 offset;
4332 
4333 		btrfs_item_key(leaf, &disk_key, slot);
4334 
4335 		if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4336 			unsigned long ptr;
4337 			struct btrfs_file_extent_item *fi;
4338 
4339 			fi = btrfs_item_ptr(leaf, slot,
4340 					    struct btrfs_file_extent_item);
4341 			fi = (struct btrfs_file_extent_item *)(
4342 			     (unsigned long)fi - size_diff);
4343 
4344 			if (btrfs_file_extent_type(leaf, fi) ==
4345 			    BTRFS_FILE_EXTENT_INLINE) {
4346 				ptr = btrfs_item_ptr_offset(leaf, slot);
4347 				memmove_extent_buffer(leaf, ptr,
4348 				      (unsigned long)fi,
4349 				      offsetof(struct btrfs_file_extent_item,
4350 						 disk_bytenr));
4351 			}
4352 		}
4353 
4354 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4355 			      data_end + size_diff, btrfs_leaf_data(leaf) +
4356 			      data_end, old_data_start - data_end);
4357 
4358 		offset = btrfs_disk_key_offset(&disk_key);
4359 		btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4360 		btrfs_set_item_key(leaf, &disk_key, slot);
4361 		if (slot == 0)
4362 			fixup_low_keys(trans, root, path, &disk_key, 1);
4363 	}
4364 
4365 	item = btrfs_item_nr(leaf, slot);
4366 	btrfs_set_item_size(leaf, item, new_size);
4367 	btrfs_mark_buffer_dirty(leaf);
4368 
4369 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4370 		btrfs_print_leaf(root, leaf);
4371 		BUG();
4372 	}
4373 }
4374 
4375 /*
4376  * make the item pointed to by the path bigger, data_size is the new size.
4377  */
4378 void btrfs_extend_item(struct btrfs_trans_handle *trans,
4379 		       struct btrfs_root *root, struct btrfs_path *path,
4380 		       u32 data_size)
4381 {
4382 	int slot;
4383 	struct extent_buffer *leaf;
4384 	struct btrfs_item *item;
4385 	u32 nritems;
4386 	unsigned int data_end;
4387 	unsigned int old_data;
4388 	unsigned int old_size;
4389 	int i;
4390 	struct btrfs_map_token token;
4391 
4392 	btrfs_init_map_token(&token);
4393 
4394 	leaf = path->nodes[0];
4395 
4396 	nritems = btrfs_header_nritems(leaf);
4397 	data_end = leaf_data_end(root, leaf);
4398 
4399 	if (btrfs_leaf_free_space(root, leaf) < data_size) {
4400 		btrfs_print_leaf(root, leaf);
4401 		BUG();
4402 	}
4403 	slot = path->slots[0];
4404 	old_data = btrfs_item_end_nr(leaf, slot);
4405 
4406 	BUG_ON(slot < 0);
4407 	if (slot >= nritems) {
4408 		btrfs_print_leaf(root, leaf);
4409 		printk(KERN_CRIT "slot %d too large, nritems %d\n",
4410 		       slot, nritems);
4411 		BUG_ON(1);
4412 	}
4413 
4414 	/*
4415 	 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4416 	 */
4417 	/* first correct the data pointers */
4418 	for (i = slot; i < nritems; i++) {
4419 		u32 ioff;
4420 		item = btrfs_item_nr(leaf, i);
4421 
4422 		ioff = btrfs_token_item_offset(leaf, item, &token);
4423 		btrfs_set_token_item_offset(leaf, item,
4424 					    ioff - data_size, &token);
4425 	}
4426 
4427 	/* shift the data */
4428 	memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4429 		      data_end - data_size, btrfs_leaf_data(leaf) +
4430 		      data_end, old_data - data_end);
4431 
4432 	data_end = old_data;
4433 	old_size = btrfs_item_size_nr(leaf, slot);
4434 	item = btrfs_item_nr(leaf, slot);
4435 	btrfs_set_item_size(leaf, item, old_size + data_size);
4436 	btrfs_mark_buffer_dirty(leaf);
4437 
4438 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4439 		btrfs_print_leaf(root, leaf);
4440 		BUG();
4441 	}
4442 }
4443 
4444 /*
4445  * this is a helper for btrfs_insert_empty_items, the main goal here is
4446  * to save stack depth by doing the bulk of the work in a function
4447  * that doesn't call btrfs_search_slot
4448  */
4449 void setup_items_for_insert(struct btrfs_trans_handle *trans,
4450 			    struct btrfs_root *root, struct btrfs_path *path,
4451 			    struct btrfs_key *cpu_key, u32 *data_size,
4452 			    u32 total_data, u32 total_size, int nr)
4453 {
4454 	struct btrfs_item *item;
4455 	int i;
4456 	u32 nritems;
4457 	unsigned int data_end;
4458 	struct btrfs_disk_key disk_key;
4459 	struct extent_buffer *leaf;
4460 	int slot;
4461 	struct btrfs_map_token token;
4462 
4463 	btrfs_init_map_token(&token);
4464 
4465 	leaf = path->nodes[0];
4466 	slot = path->slots[0];
4467 
4468 	nritems = btrfs_header_nritems(leaf);
4469 	data_end = leaf_data_end(root, leaf);
4470 
4471 	if (btrfs_leaf_free_space(root, leaf) < total_size) {
4472 		btrfs_print_leaf(root, leaf);
4473 		printk(KERN_CRIT "not enough freespace need %u have %d\n",
4474 		       total_size, btrfs_leaf_free_space(root, leaf));
4475 		BUG();
4476 	}
4477 
4478 	if (slot != nritems) {
4479 		unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4480 
4481 		if (old_data < data_end) {
4482 			btrfs_print_leaf(root, leaf);
4483 			printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
4484 			       slot, old_data, data_end);
4485 			BUG_ON(1);
4486 		}
4487 		/*
4488 		 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4489 		 */
4490 		/* first correct the data pointers */
4491 		for (i = slot; i < nritems; i++) {
4492 			u32 ioff;
4493 
4494 			item = btrfs_item_nr(leaf, i);
4495 			ioff = btrfs_token_item_offset(leaf, item, &token);
4496 			btrfs_set_token_item_offset(leaf, item,
4497 						    ioff - total_data, &token);
4498 		}
4499 		/* shift the items */
4500 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4501 			      btrfs_item_nr_offset(slot),
4502 			      (nritems - slot) * sizeof(struct btrfs_item));
4503 
4504 		/* shift the data */
4505 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4506 			      data_end - total_data, btrfs_leaf_data(leaf) +
4507 			      data_end, old_data - data_end);
4508 		data_end = old_data;
4509 	}
4510 
4511 	/* setup the item for the new data */
4512 	for (i = 0; i < nr; i++) {
4513 		btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4514 		btrfs_set_item_key(leaf, &disk_key, slot + i);
4515 		item = btrfs_item_nr(leaf, slot + i);
4516 		btrfs_set_token_item_offset(leaf, item,
4517 					    data_end - data_size[i], &token);
4518 		data_end -= data_size[i];
4519 		btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4520 	}
4521 
4522 	btrfs_set_header_nritems(leaf, nritems + nr);
4523 
4524 	if (slot == 0) {
4525 		btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4526 		fixup_low_keys(trans, root, path, &disk_key, 1);
4527 	}
4528 	btrfs_unlock_up_safe(path, 1);
4529 	btrfs_mark_buffer_dirty(leaf);
4530 
4531 	if (btrfs_leaf_free_space(root, leaf) < 0) {
4532 		btrfs_print_leaf(root, leaf);
4533 		BUG();
4534 	}
4535 }
4536 
4537 /*
4538  * Given a key and some data, insert items into the tree.
4539  * This does all the path init required, making room in the tree if needed.
4540  */
4541 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4542 			    struct btrfs_root *root,
4543 			    struct btrfs_path *path,
4544 			    struct btrfs_key *cpu_key, u32 *data_size,
4545 			    int nr)
4546 {
4547 	int ret = 0;
4548 	int slot;
4549 	int i;
4550 	u32 total_size = 0;
4551 	u32 total_data = 0;
4552 
4553 	for (i = 0; i < nr; i++)
4554 		total_data += data_size[i];
4555 
4556 	total_size = total_data + (nr * sizeof(struct btrfs_item));
4557 	ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4558 	if (ret == 0)
4559 		return -EEXIST;
4560 	if (ret < 0)
4561 		return ret;
4562 
4563 	slot = path->slots[0];
4564 	BUG_ON(slot < 0);
4565 
4566 	setup_items_for_insert(trans, root, path, cpu_key, data_size,
4567 			       total_data, total_size, nr);
4568 	return 0;
4569 }
4570 
4571 /*
4572  * Given a key and some data, insert an item into the tree.
4573  * This does all the path init required, making room in the tree if needed.
4574  */
4575 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4576 		      *root, struct btrfs_key *cpu_key, void *data, u32
4577 		      data_size)
4578 {
4579 	int ret = 0;
4580 	struct btrfs_path *path;
4581 	struct extent_buffer *leaf;
4582 	unsigned long ptr;
4583 
4584 	path = btrfs_alloc_path();
4585 	if (!path)
4586 		return -ENOMEM;
4587 	ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4588 	if (!ret) {
4589 		leaf = path->nodes[0];
4590 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4591 		write_extent_buffer(leaf, data, ptr, data_size);
4592 		btrfs_mark_buffer_dirty(leaf);
4593 	}
4594 	btrfs_free_path(path);
4595 	return ret;
4596 }
4597 
4598 /*
4599  * delete the pointer from a given node.
4600  *
4601  * the tree should have been previously balanced so the deletion does not
4602  * empty a node.
4603  */
4604 static void del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4605 		    struct btrfs_path *path, int level, int slot,
4606 		    int tree_mod_log)
4607 {
4608 	struct extent_buffer *parent = path->nodes[level];
4609 	u32 nritems;
4610 	int ret;
4611 
4612 	nritems = btrfs_header_nritems(parent);
4613 	if (slot != nritems - 1) {
4614 		if (tree_mod_log && level)
4615 			tree_mod_log_eb_move(root->fs_info, parent, slot,
4616 					     slot + 1, nritems - slot - 1);
4617 		memmove_extent_buffer(parent,
4618 			      btrfs_node_key_ptr_offset(slot),
4619 			      btrfs_node_key_ptr_offset(slot + 1),
4620 			      sizeof(struct btrfs_key_ptr) *
4621 			      (nritems - slot - 1));
4622 	} else if (tree_mod_log && level) {
4623 		ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4624 					      MOD_LOG_KEY_REMOVE);
4625 		BUG_ON(ret < 0);
4626 	}
4627 
4628 	nritems--;
4629 	btrfs_set_header_nritems(parent, nritems);
4630 	if (nritems == 0 && parent == root->node) {
4631 		BUG_ON(btrfs_header_level(root->node) != 1);
4632 		/* just turn the root into a leaf and break */
4633 		btrfs_set_header_level(root->node, 0);
4634 	} else if (slot == 0) {
4635 		struct btrfs_disk_key disk_key;
4636 
4637 		btrfs_node_key(parent, &disk_key, 0);
4638 		fixup_low_keys(trans, root, path, &disk_key, level + 1);
4639 	}
4640 	btrfs_mark_buffer_dirty(parent);
4641 }
4642 
4643 /*
4644  * a helper function to delete the leaf pointed to by path->slots[1] and
4645  * path->nodes[1].
4646  *
4647  * This deletes the pointer in path->nodes[1] and frees the leaf
4648  * block extent.  zero is returned if it all worked out, < 0 otherwise.
4649  *
4650  * The path must have already been setup for deleting the leaf, including
4651  * all the proper balancing.  path->nodes[1] must be locked.
4652  */
4653 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4654 				    struct btrfs_root *root,
4655 				    struct btrfs_path *path,
4656 				    struct extent_buffer *leaf)
4657 {
4658 	WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4659 	del_ptr(trans, root, path, 1, path->slots[1], 1);
4660 
4661 	/*
4662 	 * btrfs_free_extent is expensive, we want to make sure we
4663 	 * aren't holding any locks when we call it
4664 	 */
4665 	btrfs_unlock_up_safe(path, 0);
4666 
4667 	root_sub_used(root, leaf->len);
4668 
4669 	extent_buffer_get(leaf);
4670 	btrfs_free_tree_block(trans, root, leaf, 0, 1);
4671 	free_extent_buffer_stale(leaf);
4672 }
4673 /*
4674  * delete the item at the leaf level in path.  If that empties
4675  * the leaf, remove it from the tree
4676  */
4677 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4678 		    struct btrfs_path *path, int slot, int nr)
4679 {
4680 	struct extent_buffer *leaf;
4681 	struct btrfs_item *item;
4682 	int last_off;
4683 	int dsize = 0;
4684 	int ret = 0;
4685 	int wret;
4686 	int i;
4687 	u32 nritems;
4688 	struct btrfs_map_token token;
4689 
4690 	btrfs_init_map_token(&token);
4691 
4692 	leaf = path->nodes[0];
4693 	last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4694 
4695 	for (i = 0; i < nr; i++)
4696 		dsize += btrfs_item_size_nr(leaf, slot + i);
4697 
4698 	nritems = btrfs_header_nritems(leaf);
4699 
4700 	if (slot + nr != nritems) {
4701 		int data_end = leaf_data_end(root, leaf);
4702 
4703 		memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4704 			      data_end + dsize,
4705 			      btrfs_leaf_data(leaf) + data_end,
4706 			      last_off - data_end);
4707 
4708 		for (i = slot + nr; i < nritems; i++) {
4709 			u32 ioff;
4710 
4711 			item = btrfs_item_nr(leaf, i);
4712 			ioff = btrfs_token_item_offset(leaf, item, &token);
4713 			btrfs_set_token_item_offset(leaf, item,
4714 						    ioff + dsize, &token);
4715 		}
4716 
4717 		memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4718 			      btrfs_item_nr_offset(slot + nr),
4719 			      sizeof(struct btrfs_item) *
4720 			      (nritems - slot - nr));
4721 	}
4722 	btrfs_set_header_nritems(leaf, nritems - nr);
4723 	nritems -= nr;
4724 
4725 	/* delete the leaf if we've emptied it */
4726 	if (nritems == 0) {
4727 		if (leaf == root->node) {
4728 			btrfs_set_header_level(leaf, 0);
4729 		} else {
4730 			btrfs_set_path_blocking(path);
4731 			clean_tree_block(trans, root, leaf);
4732 			btrfs_del_leaf(trans, root, path, leaf);
4733 		}
4734 	} else {
4735 		int used = leaf_space_used(leaf, 0, nritems);
4736 		if (slot == 0) {
4737 			struct btrfs_disk_key disk_key;
4738 
4739 			btrfs_item_key(leaf, &disk_key, 0);
4740 			fixup_low_keys(trans, root, path, &disk_key, 1);
4741 		}
4742 
4743 		/* delete the leaf if it is mostly empty */
4744 		if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
4745 			/* push_leaf_left fixes the path.
4746 			 * make sure the path still points to our leaf
4747 			 * for possible call to del_ptr below
4748 			 */
4749 			slot = path->slots[1];
4750 			extent_buffer_get(leaf);
4751 
4752 			btrfs_set_path_blocking(path);
4753 			wret = push_leaf_left(trans, root, path, 1, 1,
4754 					      1, (u32)-1);
4755 			if (wret < 0 && wret != -ENOSPC)
4756 				ret = wret;
4757 
4758 			if (path->nodes[0] == leaf &&
4759 			    btrfs_header_nritems(leaf)) {
4760 				wret = push_leaf_right(trans, root, path, 1,
4761 						       1, 1, 0);
4762 				if (wret < 0 && wret != -ENOSPC)
4763 					ret = wret;
4764 			}
4765 
4766 			if (btrfs_header_nritems(leaf) == 0) {
4767 				path->slots[1] = slot;
4768 				btrfs_del_leaf(trans, root, path, leaf);
4769 				free_extent_buffer(leaf);
4770 				ret = 0;
4771 			} else {
4772 				/* if we're still in the path, make sure
4773 				 * we're dirty.  Otherwise, one of the
4774 				 * push_leaf functions must have already
4775 				 * dirtied this buffer
4776 				 */
4777 				if (path->nodes[0] == leaf)
4778 					btrfs_mark_buffer_dirty(leaf);
4779 				free_extent_buffer(leaf);
4780 			}
4781 		} else {
4782 			btrfs_mark_buffer_dirty(leaf);
4783 		}
4784 	}
4785 	return ret;
4786 }
4787 
4788 /*
4789  * search the tree again to find a leaf with lesser keys
4790  * returns 0 if it found something or 1 if there are no lesser leaves.
4791  * returns < 0 on io errors.
4792  *
4793  * This may release the path, and so you may lose any locks held at the
4794  * time you call it.
4795  */
4796 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
4797 {
4798 	struct btrfs_key key;
4799 	struct btrfs_disk_key found_key;
4800 	int ret;
4801 
4802 	btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
4803 
4804 	if (key.offset > 0)
4805 		key.offset--;
4806 	else if (key.type > 0)
4807 		key.type--;
4808 	else if (key.objectid > 0)
4809 		key.objectid--;
4810 	else
4811 		return 1;
4812 
4813 	btrfs_release_path(path);
4814 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4815 	if (ret < 0)
4816 		return ret;
4817 	btrfs_item_key(path->nodes[0], &found_key, 0);
4818 	ret = comp_keys(&found_key, &key);
4819 	if (ret < 0)
4820 		return 0;
4821 	return 1;
4822 }
4823 
4824 /*
4825  * A helper function to walk down the tree starting at min_key, and looking
4826  * for nodes or leaves that are either in cache or have a minimum
4827  * transaction id.  This is used by the btree defrag code, and tree logging
4828  *
4829  * This does not cow, but it does stuff the starting key it finds back
4830  * into min_key, so you can call btrfs_search_slot with cow=1 on the
4831  * key and get a writable path.
4832  *
4833  * This does lock as it descends, and path->keep_locks should be set
4834  * to 1 by the caller.
4835  *
4836  * This honors path->lowest_level to prevent descent past a given level
4837  * of the tree.
4838  *
4839  * min_trans indicates the oldest transaction that you are interested
4840  * in walking through.  Any nodes or leaves older than min_trans are
4841  * skipped over (without reading them).
4842  *
4843  * returns zero if something useful was found, < 0 on error and 1 if there
4844  * was nothing in the tree that matched the search criteria.
4845  */
4846 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
4847 			 struct btrfs_key *max_key,
4848 			 struct btrfs_path *path, int cache_only,
4849 			 u64 min_trans)
4850 {
4851 	struct extent_buffer *cur;
4852 	struct btrfs_key found_key;
4853 	int slot;
4854 	int sret;
4855 	u32 nritems;
4856 	int level;
4857 	int ret = 1;
4858 
4859 	WARN_ON(!path->keep_locks);
4860 again:
4861 	cur = btrfs_read_lock_root_node(root);
4862 	level = btrfs_header_level(cur);
4863 	WARN_ON(path->nodes[level]);
4864 	path->nodes[level] = cur;
4865 	path->locks[level] = BTRFS_READ_LOCK;
4866 
4867 	if (btrfs_header_generation(cur) < min_trans) {
4868 		ret = 1;
4869 		goto out;
4870 	}
4871 	while (1) {
4872 		nritems = btrfs_header_nritems(cur);
4873 		level = btrfs_header_level(cur);
4874 		sret = bin_search(cur, min_key, level, &slot);
4875 
4876 		/* at the lowest level, we're done, setup the path and exit */
4877 		if (level == path->lowest_level) {
4878 			if (slot >= nritems)
4879 				goto find_next_key;
4880 			ret = 0;
4881 			path->slots[level] = slot;
4882 			btrfs_item_key_to_cpu(cur, &found_key, slot);
4883 			goto out;
4884 		}
4885 		if (sret && slot > 0)
4886 			slot--;
4887 		/*
4888 		 * check this node pointer against the cache_only and
4889 		 * min_trans parameters.  If it isn't in cache or is too
4890 		 * old, skip to the next one.
4891 		 */
4892 		while (slot < nritems) {
4893 			u64 blockptr;
4894 			u64 gen;
4895 			struct extent_buffer *tmp;
4896 			struct btrfs_disk_key disk_key;
4897 
4898 			blockptr = btrfs_node_blockptr(cur, slot);
4899 			gen = btrfs_node_ptr_generation(cur, slot);
4900 			if (gen < min_trans) {
4901 				slot++;
4902 				continue;
4903 			}
4904 			if (!cache_only)
4905 				break;
4906 
4907 			if (max_key) {
4908 				btrfs_node_key(cur, &disk_key, slot);
4909 				if (comp_keys(&disk_key, max_key) >= 0) {
4910 					ret = 1;
4911 					goto out;
4912 				}
4913 			}
4914 
4915 			tmp = btrfs_find_tree_block(root, blockptr,
4916 					    btrfs_level_size(root, level - 1));
4917 
4918 			if (tmp && btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
4919 				free_extent_buffer(tmp);
4920 				break;
4921 			}
4922 			if (tmp)
4923 				free_extent_buffer(tmp);
4924 			slot++;
4925 		}
4926 find_next_key:
4927 		/*
4928 		 * we didn't find a candidate key in this node, walk forward
4929 		 * and find another one
4930 		 */
4931 		if (slot >= nritems) {
4932 			path->slots[level] = slot;
4933 			btrfs_set_path_blocking(path);
4934 			sret = btrfs_find_next_key(root, path, min_key, level,
4935 						  cache_only, min_trans);
4936 			if (sret == 0) {
4937 				btrfs_release_path(path);
4938 				goto again;
4939 			} else {
4940 				goto out;
4941 			}
4942 		}
4943 		/* save our key for returning back */
4944 		btrfs_node_key_to_cpu(cur, &found_key, slot);
4945 		path->slots[level] = slot;
4946 		if (level == path->lowest_level) {
4947 			ret = 0;
4948 			unlock_up(path, level, 1, 0, NULL);
4949 			goto out;
4950 		}
4951 		btrfs_set_path_blocking(path);
4952 		cur = read_node_slot(root, cur, slot);
4953 		BUG_ON(!cur); /* -ENOMEM */
4954 
4955 		btrfs_tree_read_lock(cur);
4956 
4957 		path->locks[level - 1] = BTRFS_READ_LOCK;
4958 		path->nodes[level - 1] = cur;
4959 		unlock_up(path, level, 1, 0, NULL);
4960 		btrfs_clear_path_blocking(path, NULL, 0);
4961 	}
4962 out:
4963 	if (ret == 0)
4964 		memcpy(min_key, &found_key, sizeof(found_key));
4965 	btrfs_set_path_blocking(path);
4966 	return ret;
4967 }
4968 
4969 static void tree_move_down(struct btrfs_root *root,
4970 			   struct btrfs_path *path,
4971 			   int *level, int root_level)
4972 {
4973 	BUG_ON(*level == 0);
4974 	path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
4975 					path->slots[*level]);
4976 	path->slots[*level - 1] = 0;
4977 	(*level)--;
4978 }
4979 
4980 static int tree_move_next_or_upnext(struct btrfs_root *root,
4981 				    struct btrfs_path *path,
4982 				    int *level, int root_level)
4983 {
4984 	int ret = 0;
4985 	int nritems;
4986 	nritems = btrfs_header_nritems(path->nodes[*level]);
4987 
4988 	path->slots[*level]++;
4989 
4990 	while (path->slots[*level] >= nritems) {
4991 		if (*level == root_level)
4992 			return -1;
4993 
4994 		/* move upnext */
4995 		path->slots[*level] = 0;
4996 		free_extent_buffer(path->nodes[*level]);
4997 		path->nodes[*level] = NULL;
4998 		(*level)++;
4999 		path->slots[*level]++;
5000 
5001 		nritems = btrfs_header_nritems(path->nodes[*level]);
5002 		ret = 1;
5003 	}
5004 	return ret;
5005 }
5006 
5007 /*
5008  * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5009  * or down.
5010  */
5011 static int tree_advance(struct btrfs_root *root,
5012 			struct btrfs_path *path,
5013 			int *level, int root_level,
5014 			int allow_down,
5015 			struct btrfs_key *key)
5016 {
5017 	int ret;
5018 
5019 	if (*level == 0 || !allow_down) {
5020 		ret = tree_move_next_or_upnext(root, path, level, root_level);
5021 	} else {
5022 		tree_move_down(root, path, level, root_level);
5023 		ret = 0;
5024 	}
5025 	if (ret >= 0) {
5026 		if (*level == 0)
5027 			btrfs_item_key_to_cpu(path->nodes[*level], key,
5028 					path->slots[*level]);
5029 		else
5030 			btrfs_node_key_to_cpu(path->nodes[*level], key,
5031 					path->slots[*level]);
5032 	}
5033 	return ret;
5034 }
5035 
5036 static int tree_compare_item(struct btrfs_root *left_root,
5037 			     struct btrfs_path *left_path,
5038 			     struct btrfs_path *right_path,
5039 			     char *tmp_buf)
5040 {
5041 	int cmp;
5042 	int len1, len2;
5043 	unsigned long off1, off2;
5044 
5045 	len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5046 	len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5047 	if (len1 != len2)
5048 		return 1;
5049 
5050 	off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5051 	off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5052 				right_path->slots[0]);
5053 
5054 	read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5055 
5056 	cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5057 	if (cmp)
5058 		return 1;
5059 	return 0;
5060 }
5061 
5062 #define ADVANCE 1
5063 #define ADVANCE_ONLY_NEXT -1
5064 
5065 /*
5066  * This function compares two trees and calls the provided callback for
5067  * every changed/new/deleted item it finds.
5068  * If shared tree blocks are encountered, whole subtrees are skipped, making
5069  * the compare pretty fast on snapshotted subvolumes.
5070  *
5071  * This currently works on commit roots only. As commit roots are read only,
5072  * we don't do any locking. The commit roots are protected with transactions.
5073  * Transactions are ended and rejoined when a commit is tried in between.
5074  *
5075  * This function checks for modifications done to the trees while comparing.
5076  * If it detects a change, it aborts immediately.
5077  */
5078 int btrfs_compare_trees(struct btrfs_root *left_root,
5079 			struct btrfs_root *right_root,
5080 			btrfs_changed_cb_t changed_cb, void *ctx)
5081 {
5082 	int ret;
5083 	int cmp;
5084 	struct btrfs_trans_handle *trans = NULL;
5085 	struct btrfs_path *left_path = NULL;
5086 	struct btrfs_path *right_path = NULL;
5087 	struct btrfs_key left_key;
5088 	struct btrfs_key right_key;
5089 	char *tmp_buf = NULL;
5090 	int left_root_level;
5091 	int right_root_level;
5092 	int left_level;
5093 	int right_level;
5094 	int left_end_reached;
5095 	int right_end_reached;
5096 	int advance_left;
5097 	int advance_right;
5098 	u64 left_blockptr;
5099 	u64 right_blockptr;
5100 	u64 left_start_ctransid;
5101 	u64 right_start_ctransid;
5102 	u64 ctransid;
5103 
5104 	left_path = btrfs_alloc_path();
5105 	if (!left_path) {
5106 		ret = -ENOMEM;
5107 		goto out;
5108 	}
5109 	right_path = btrfs_alloc_path();
5110 	if (!right_path) {
5111 		ret = -ENOMEM;
5112 		goto out;
5113 	}
5114 
5115 	tmp_buf = kmalloc(left_root->leafsize, GFP_NOFS);
5116 	if (!tmp_buf) {
5117 		ret = -ENOMEM;
5118 		goto out;
5119 	}
5120 
5121 	left_path->search_commit_root = 1;
5122 	left_path->skip_locking = 1;
5123 	right_path->search_commit_root = 1;
5124 	right_path->skip_locking = 1;
5125 
5126 	spin_lock(&left_root->root_times_lock);
5127 	left_start_ctransid = btrfs_root_ctransid(&left_root->root_item);
5128 	spin_unlock(&left_root->root_times_lock);
5129 
5130 	spin_lock(&right_root->root_times_lock);
5131 	right_start_ctransid = btrfs_root_ctransid(&right_root->root_item);
5132 	spin_unlock(&right_root->root_times_lock);
5133 
5134 	trans = btrfs_join_transaction(left_root);
5135 	if (IS_ERR(trans)) {
5136 		ret = PTR_ERR(trans);
5137 		trans = NULL;
5138 		goto out;
5139 	}
5140 
5141 	/*
5142 	 * Strategy: Go to the first items of both trees. Then do
5143 	 *
5144 	 * If both trees are at level 0
5145 	 *   Compare keys of current items
5146 	 *     If left < right treat left item as new, advance left tree
5147 	 *       and repeat
5148 	 *     If left > right treat right item as deleted, advance right tree
5149 	 *       and repeat
5150 	 *     If left == right do deep compare of items, treat as changed if
5151 	 *       needed, advance both trees and repeat
5152 	 * If both trees are at the same level but not at level 0
5153 	 *   Compare keys of current nodes/leafs
5154 	 *     If left < right advance left tree and repeat
5155 	 *     If left > right advance right tree and repeat
5156 	 *     If left == right compare blockptrs of the next nodes/leafs
5157 	 *       If they match advance both trees but stay at the same level
5158 	 *         and repeat
5159 	 *       If they don't match advance both trees while allowing to go
5160 	 *         deeper and repeat
5161 	 * If tree levels are different
5162 	 *   Advance the tree that needs it and repeat
5163 	 *
5164 	 * Advancing a tree means:
5165 	 *   If we are at level 0, try to go to the next slot. If that's not
5166 	 *   possible, go one level up and repeat. Stop when we found a level
5167 	 *   where we could go to the next slot. We may at this point be on a
5168 	 *   node or a leaf.
5169 	 *
5170 	 *   If we are not at level 0 and not on shared tree blocks, go one
5171 	 *   level deeper.
5172 	 *
5173 	 *   If we are not at level 0 and on shared tree blocks, go one slot to
5174 	 *   the right if possible or go up and right.
5175 	 */
5176 
5177 	left_level = btrfs_header_level(left_root->commit_root);
5178 	left_root_level = left_level;
5179 	left_path->nodes[left_level] = left_root->commit_root;
5180 	extent_buffer_get(left_path->nodes[left_level]);
5181 
5182 	right_level = btrfs_header_level(right_root->commit_root);
5183 	right_root_level = right_level;
5184 	right_path->nodes[right_level] = right_root->commit_root;
5185 	extent_buffer_get(right_path->nodes[right_level]);
5186 
5187 	if (left_level == 0)
5188 		btrfs_item_key_to_cpu(left_path->nodes[left_level],
5189 				&left_key, left_path->slots[left_level]);
5190 	else
5191 		btrfs_node_key_to_cpu(left_path->nodes[left_level],
5192 				&left_key, left_path->slots[left_level]);
5193 	if (right_level == 0)
5194 		btrfs_item_key_to_cpu(right_path->nodes[right_level],
5195 				&right_key, right_path->slots[right_level]);
5196 	else
5197 		btrfs_node_key_to_cpu(right_path->nodes[right_level],
5198 				&right_key, right_path->slots[right_level]);
5199 
5200 	left_end_reached = right_end_reached = 0;
5201 	advance_left = advance_right = 0;
5202 
5203 	while (1) {
5204 		/*
5205 		 * We need to make sure the transaction does not get committed
5206 		 * while we do anything on commit roots. This means, we need to
5207 		 * join and leave transactions for every item that we process.
5208 		 */
5209 		if (trans && btrfs_should_end_transaction(trans, left_root)) {
5210 			btrfs_release_path(left_path);
5211 			btrfs_release_path(right_path);
5212 
5213 			ret = btrfs_end_transaction(trans, left_root);
5214 			trans = NULL;
5215 			if (ret < 0)
5216 				goto out;
5217 		}
5218 		/* now rejoin the transaction */
5219 		if (!trans) {
5220 			trans = btrfs_join_transaction(left_root);
5221 			if (IS_ERR(trans)) {
5222 				ret = PTR_ERR(trans);
5223 				trans = NULL;
5224 				goto out;
5225 			}
5226 
5227 			spin_lock(&left_root->root_times_lock);
5228 			ctransid = btrfs_root_ctransid(&left_root->root_item);
5229 			spin_unlock(&left_root->root_times_lock);
5230 			if (ctransid != left_start_ctransid)
5231 				left_start_ctransid = 0;
5232 
5233 			spin_lock(&right_root->root_times_lock);
5234 			ctransid = btrfs_root_ctransid(&right_root->root_item);
5235 			spin_unlock(&right_root->root_times_lock);
5236 			if (ctransid != right_start_ctransid)
5237 				right_start_ctransid = 0;
5238 
5239 			if (!left_start_ctransid || !right_start_ctransid) {
5240 				WARN(1, KERN_WARNING
5241 					"btrfs: btrfs_compare_tree detected "
5242 					"a change in one of the trees while "
5243 					"iterating. This is probably a "
5244 					"bug.\n");
5245 				ret = -EIO;
5246 				goto out;
5247 			}
5248 
5249 			/*
5250 			 * the commit root may have changed, so start again
5251 			 * where we stopped
5252 			 */
5253 			left_path->lowest_level = left_level;
5254 			right_path->lowest_level = right_level;
5255 			ret = btrfs_search_slot(NULL, left_root,
5256 					&left_key, left_path, 0, 0);
5257 			if (ret < 0)
5258 				goto out;
5259 			ret = btrfs_search_slot(NULL, right_root,
5260 					&right_key, right_path, 0, 0);
5261 			if (ret < 0)
5262 				goto out;
5263 		}
5264 
5265 		if (advance_left && !left_end_reached) {
5266 			ret = tree_advance(left_root, left_path, &left_level,
5267 					left_root_level,
5268 					advance_left != ADVANCE_ONLY_NEXT,
5269 					&left_key);
5270 			if (ret < 0)
5271 				left_end_reached = ADVANCE;
5272 			advance_left = 0;
5273 		}
5274 		if (advance_right && !right_end_reached) {
5275 			ret = tree_advance(right_root, right_path, &right_level,
5276 					right_root_level,
5277 					advance_right != ADVANCE_ONLY_NEXT,
5278 					&right_key);
5279 			if (ret < 0)
5280 				right_end_reached = ADVANCE;
5281 			advance_right = 0;
5282 		}
5283 
5284 		if (left_end_reached && right_end_reached) {
5285 			ret = 0;
5286 			goto out;
5287 		} else if (left_end_reached) {
5288 			if (right_level == 0) {
5289 				ret = changed_cb(left_root, right_root,
5290 						left_path, right_path,
5291 						&right_key,
5292 						BTRFS_COMPARE_TREE_DELETED,
5293 						ctx);
5294 				if (ret < 0)
5295 					goto out;
5296 			}
5297 			advance_right = ADVANCE;
5298 			continue;
5299 		} else if (right_end_reached) {
5300 			if (left_level == 0) {
5301 				ret = changed_cb(left_root, right_root,
5302 						left_path, right_path,
5303 						&left_key,
5304 						BTRFS_COMPARE_TREE_NEW,
5305 						ctx);
5306 				if (ret < 0)
5307 					goto out;
5308 			}
5309 			advance_left = ADVANCE;
5310 			continue;
5311 		}
5312 
5313 		if (left_level == 0 && right_level == 0) {
5314 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5315 			if (cmp < 0) {
5316 				ret = changed_cb(left_root, right_root,
5317 						left_path, right_path,
5318 						&left_key,
5319 						BTRFS_COMPARE_TREE_NEW,
5320 						ctx);
5321 				if (ret < 0)
5322 					goto out;
5323 				advance_left = ADVANCE;
5324 			} else if (cmp > 0) {
5325 				ret = changed_cb(left_root, right_root,
5326 						left_path, right_path,
5327 						&right_key,
5328 						BTRFS_COMPARE_TREE_DELETED,
5329 						ctx);
5330 				if (ret < 0)
5331 					goto out;
5332 				advance_right = ADVANCE;
5333 			} else {
5334 				WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5335 				ret = tree_compare_item(left_root, left_path,
5336 						right_path, tmp_buf);
5337 				if (ret) {
5338 					WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5339 					ret = changed_cb(left_root, right_root,
5340 						left_path, right_path,
5341 						&left_key,
5342 						BTRFS_COMPARE_TREE_CHANGED,
5343 						ctx);
5344 					if (ret < 0)
5345 						goto out;
5346 				}
5347 				advance_left = ADVANCE;
5348 				advance_right = ADVANCE;
5349 			}
5350 		} else if (left_level == right_level) {
5351 			cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5352 			if (cmp < 0) {
5353 				advance_left = ADVANCE;
5354 			} else if (cmp > 0) {
5355 				advance_right = ADVANCE;
5356 			} else {
5357 				left_blockptr = btrfs_node_blockptr(
5358 						left_path->nodes[left_level],
5359 						left_path->slots[left_level]);
5360 				right_blockptr = btrfs_node_blockptr(
5361 						right_path->nodes[right_level],
5362 						right_path->slots[right_level]);
5363 				if (left_blockptr == right_blockptr) {
5364 					/*
5365 					 * As we're on a shared block, don't
5366 					 * allow to go deeper.
5367 					 */
5368 					advance_left = ADVANCE_ONLY_NEXT;
5369 					advance_right = ADVANCE_ONLY_NEXT;
5370 				} else {
5371 					advance_left = ADVANCE;
5372 					advance_right = ADVANCE;
5373 				}
5374 			}
5375 		} else if (left_level < right_level) {
5376 			advance_right = ADVANCE;
5377 		} else {
5378 			advance_left = ADVANCE;
5379 		}
5380 	}
5381 
5382 out:
5383 	btrfs_free_path(left_path);
5384 	btrfs_free_path(right_path);
5385 	kfree(tmp_buf);
5386 
5387 	if (trans) {
5388 		if (!ret)
5389 			ret = btrfs_end_transaction(trans, left_root);
5390 		else
5391 			btrfs_end_transaction(trans, left_root);
5392 	}
5393 
5394 	return ret;
5395 }
5396 
5397 /*
5398  * this is similar to btrfs_next_leaf, but does not try to preserve
5399  * and fixup the path.  It looks for and returns the next key in the
5400  * tree based on the current path and the cache_only and min_trans
5401  * parameters.
5402  *
5403  * 0 is returned if another key is found, < 0 if there are any errors
5404  * and 1 is returned if there are no higher keys in the tree
5405  *
5406  * path->keep_locks should be set to 1 on the search made before
5407  * calling this function.
5408  */
5409 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5410 			struct btrfs_key *key, int level,
5411 			int cache_only, u64 min_trans)
5412 {
5413 	int slot;
5414 	struct extent_buffer *c;
5415 
5416 	WARN_ON(!path->keep_locks);
5417 	while (level < BTRFS_MAX_LEVEL) {
5418 		if (!path->nodes[level])
5419 			return 1;
5420 
5421 		slot = path->slots[level] + 1;
5422 		c = path->nodes[level];
5423 next:
5424 		if (slot >= btrfs_header_nritems(c)) {
5425 			int ret;
5426 			int orig_lowest;
5427 			struct btrfs_key cur_key;
5428 			if (level + 1 >= BTRFS_MAX_LEVEL ||
5429 			    !path->nodes[level + 1])
5430 				return 1;
5431 
5432 			if (path->locks[level + 1]) {
5433 				level++;
5434 				continue;
5435 			}
5436 
5437 			slot = btrfs_header_nritems(c) - 1;
5438 			if (level == 0)
5439 				btrfs_item_key_to_cpu(c, &cur_key, slot);
5440 			else
5441 				btrfs_node_key_to_cpu(c, &cur_key, slot);
5442 
5443 			orig_lowest = path->lowest_level;
5444 			btrfs_release_path(path);
5445 			path->lowest_level = level;
5446 			ret = btrfs_search_slot(NULL, root, &cur_key, path,
5447 						0, 0);
5448 			path->lowest_level = orig_lowest;
5449 			if (ret < 0)
5450 				return ret;
5451 
5452 			c = path->nodes[level];
5453 			slot = path->slots[level];
5454 			if (ret == 0)
5455 				slot++;
5456 			goto next;
5457 		}
5458 
5459 		if (level == 0)
5460 			btrfs_item_key_to_cpu(c, key, slot);
5461 		else {
5462 			u64 blockptr = btrfs_node_blockptr(c, slot);
5463 			u64 gen = btrfs_node_ptr_generation(c, slot);
5464 
5465 			if (cache_only) {
5466 				struct extent_buffer *cur;
5467 				cur = btrfs_find_tree_block(root, blockptr,
5468 					    btrfs_level_size(root, level - 1));
5469 				if (!cur ||
5470 				    btrfs_buffer_uptodate(cur, gen, 1) <= 0) {
5471 					slot++;
5472 					if (cur)
5473 						free_extent_buffer(cur);
5474 					goto next;
5475 				}
5476 				free_extent_buffer(cur);
5477 			}
5478 			if (gen < min_trans) {
5479 				slot++;
5480 				goto next;
5481 			}
5482 			btrfs_node_key_to_cpu(c, key, slot);
5483 		}
5484 		return 0;
5485 	}
5486 	return 1;
5487 }
5488 
5489 /*
5490  * search the tree again to find a leaf with greater keys
5491  * returns 0 if it found something or 1 if there are no greater leaves.
5492  * returns < 0 on io errors.
5493  */
5494 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5495 {
5496 	return btrfs_next_old_leaf(root, path, 0);
5497 }
5498 
5499 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5500 			u64 time_seq)
5501 {
5502 	int slot;
5503 	int level;
5504 	struct extent_buffer *c;
5505 	struct extent_buffer *next;
5506 	struct btrfs_key key;
5507 	u32 nritems;
5508 	int ret;
5509 	int old_spinning = path->leave_spinning;
5510 	int next_rw_lock = 0;
5511 
5512 	nritems = btrfs_header_nritems(path->nodes[0]);
5513 	if (nritems == 0)
5514 		return 1;
5515 
5516 	btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5517 again:
5518 	level = 1;
5519 	next = NULL;
5520 	next_rw_lock = 0;
5521 	btrfs_release_path(path);
5522 
5523 	path->keep_locks = 1;
5524 	path->leave_spinning = 1;
5525 
5526 	if (time_seq)
5527 		ret = btrfs_search_old_slot(root, &key, path, time_seq);
5528 	else
5529 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5530 	path->keep_locks = 0;
5531 
5532 	if (ret < 0)
5533 		return ret;
5534 
5535 	nritems = btrfs_header_nritems(path->nodes[0]);
5536 	/*
5537 	 * by releasing the path above we dropped all our locks.  A balance
5538 	 * could have added more items next to the key that used to be
5539 	 * at the very end of the block.  So, check again here and
5540 	 * advance the path if there are now more items available.
5541 	 */
5542 	if (nritems > 0 && path->slots[0] < nritems - 1) {
5543 		if (ret == 0)
5544 			path->slots[0]++;
5545 		ret = 0;
5546 		goto done;
5547 	}
5548 
5549 	while (level < BTRFS_MAX_LEVEL) {
5550 		if (!path->nodes[level]) {
5551 			ret = 1;
5552 			goto done;
5553 		}
5554 
5555 		slot = path->slots[level] + 1;
5556 		c = path->nodes[level];
5557 		if (slot >= btrfs_header_nritems(c)) {
5558 			level++;
5559 			if (level == BTRFS_MAX_LEVEL) {
5560 				ret = 1;
5561 				goto done;
5562 			}
5563 			continue;
5564 		}
5565 
5566 		if (next) {
5567 			btrfs_tree_unlock_rw(next, next_rw_lock);
5568 			free_extent_buffer(next);
5569 		}
5570 
5571 		next = c;
5572 		next_rw_lock = path->locks[level];
5573 		ret = read_block_for_search(NULL, root, path, &next, level,
5574 					    slot, &key, 0);
5575 		if (ret == -EAGAIN)
5576 			goto again;
5577 
5578 		if (ret < 0) {
5579 			btrfs_release_path(path);
5580 			goto done;
5581 		}
5582 
5583 		if (!path->skip_locking) {
5584 			ret = btrfs_try_tree_read_lock(next);
5585 			if (!ret && time_seq) {
5586 				/*
5587 				 * If we don't get the lock, we may be racing
5588 				 * with push_leaf_left, holding that lock while
5589 				 * itself waiting for the leaf we've currently
5590 				 * locked. To solve this situation, we give up
5591 				 * on our lock and cycle.
5592 				 */
5593 				free_extent_buffer(next);
5594 				btrfs_release_path(path);
5595 				cond_resched();
5596 				goto again;
5597 			}
5598 			if (!ret) {
5599 				btrfs_set_path_blocking(path);
5600 				btrfs_tree_read_lock(next);
5601 				btrfs_clear_path_blocking(path, next,
5602 							  BTRFS_READ_LOCK);
5603 			}
5604 			next_rw_lock = BTRFS_READ_LOCK;
5605 		}
5606 		break;
5607 	}
5608 	path->slots[level] = slot;
5609 	while (1) {
5610 		level--;
5611 		c = path->nodes[level];
5612 		if (path->locks[level])
5613 			btrfs_tree_unlock_rw(c, path->locks[level]);
5614 
5615 		free_extent_buffer(c);
5616 		path->nodes[level] = next;
5617 		path->slots[level] = 0;
5618 		if (!path->skip_locking)
5619 			path->locks[level] = next_rw_lock;
5620 		if (!level)
5621 			break;
5622 
5623 		ret = read_block_for_search(NULL, root, path, &next, level,
5624 					    0, &key, 0);
5625 		if (ret == -EAGAIN)
5626 			goto again;
5627 
5628 		if (ret < 0) {
5629 			btrfs_release_path(path);
5630 			goto done;
5631 		}
5632 
5633 		if (!path->skip_locking) {
5634 			ret = btrfs_try_tree_read_lock(next);
5635 			if (!ret) {
5636 				btrfs_set_path_blocking(path);
5637 				btrfs_tree_read_lock(next);
5638 				btrfs_clear_path_blocking(path, next,
5639 							  BTRFS_READ_LOCK);
5640 			}
5641 			next_rw_lock = BTRFS_READ_LOCK;
5642 		}
5643 	}
5644 	ret = 0;
5645 done:
5646 	unlock_up(path, 0, 1, 0, NULL);
5647 	path->leave_spinning = old_spinning;
5648 	if (!old_spinning)
5649 		btrfs_set_path_blocking(path);
5650 
5651 	return ret;
5652 }
5653 
5654 /*
5655  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5656  * searching until it gets past min_objectid or finds an item of 'type'
5657  *
5658  * returns 0 if something is found, 1 if nothing was found and < 0 on error
5659  */
5660 int btrfs_previous_item(struct btrfs_root *root,
5661 			struct btrfs_path *path, u64 min_objectid,
5662 			int type)
5663 {
5664 	struct btrfs_key found_key;
5665 	struct extent_buffer *leaf;
5666 	u32 nritems;
5667 	int ret;
5668 
5669 	while (1) {
5670 		if (path->slots[0] == 0) {
5671 			btrfs_set_path_blocking(path);
5672 			ret = btrfs_prev_leaf(root, path);
5673 			if (ret != 0)
5674 				return ret;
5675 		} else {
5676 			path->slots[0]--;
5677 		}
5678 		leaf = path->nodes[0];
5679 		nritems = btrfs_header_nritems(leaf);
5680 		if (nritems == 0)
5681 			return 1;
5682 		if (path->slots[0] == nritems)
5683 			path->slots[0]--;
5684 
5685 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5686 		if (found_key.objectid < min_objectid)
5687 			break;
5688 		if (found_key.type == type)
5689 			return 0;
5690 		if (found_key.objectid == min_objectid &&
5691 		    found_key.type < type)
5692 			break;
5693 	}
5694 	return 1;
5695 }
5696