xref: /openbmc/linux/fs/btrfs/block-rsv.c (revision f29119b301d598f245154edc797c69c712a8b7fe)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "disk-io.h"
10 #include "fs.h"
11 #include "accessors.h"
12 
13 /*
14  * HOW DO BLOCK RESERVES WORK
15  *
16  *   Think of block_rsv's as buckets for logically grouped metadata
17  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
18  *   how large we want our block rsv to be, ->reserved is how much space is
19  *   currently reserved for this block reserve.
20  *
21  *   ->failfast exists for the truncate case, and is described below.
22  *
23  * NORMAL OPERATION
24  *
25  *   -> Reserve
26  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
27  *
28  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
29  *     accounted for in space_info->bytes_may_use, and then add the bytes to
30  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
31  *
32  *     ->size is an over-estimation of how much we may use for a particular
33  *     operation.
34  *
35  *   -> Use
36  *     Entrance: btrfs_use_block_rsv
37  *
38  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
39  *     to determine the appropriate block_rsv to use, and then verify that
40  *     ->reserved has enough space for our tree block allocation.  Once
41  *     successful we subtract fs_info->nodesize from ->reserved.
42  *
43  *   -> Finish
44  *     Entrance: btrfs_block_rsv_release
45  *
46  *     We are finished with our operation, subtract our individual reservation
47  *     from ->size, and then subtract ->size from ->reserved and free up the
48  *     excess if there is any.
49  *
50  *     There is some logic here to refill the delayed refs rsv or the global rsv
51  *     as needed, otherwise the excess is subtracted from
52  *     space_info->bytes_may_use.
53  *
54  * TYPES OF BLOCK RESERVES
55  *
56  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
57  *   These behave normally, as described above, just within the confines of the
58  *   lifetime of their particular operation (transaction for the whole trans
59  *   handle lifetime, for example).
60  *
61  * BLOCK_RSV_GLOBAL
62  *   It is impossible to properly account for all the space that may be required
63  *   to make our extent tree updates.  This block reserve acts as an overflow
64  *   buffer in case our delayed refs reserve does not reserve enough space to
65  *   update the extent tree.
66  *
67  *   We can steal from this in some cases as well, notably on evict() or
68  *   truncate() in order to help users recover from ENOSPC conditions.
69  *
70  * BLOCK_RSV_DELALLOC
71  *   The individual item sizes are determined by the per-inode size
72  *   calculations, which are described with the delalloc code.  This is pretty
73  *   straightforward, it's just the calculation of ->size encodes a lot of
74  *   different items, and thus it gets used when updating inodes, inserting file
75  *   extents, and inserting checksums.
76  *
77  * BLOCK_RSV_DELREFS
78  *   We keep a running tally of how many delayed refs we have on the system.
79  *   We assume each one of these delayed refs are going to use a full
80  *   reservation.  We use the transaction items and pre-reserve space for every
81  *   operation, and use this reservation to refill any gap between ->size and
82  *   ->reserved that may exist.
83  *
84  *   From there it's straightforward, removing a delayed ref means we remove its
85  *   count from ->size and free up reservations as necessary.  Since this is
86  *   the most dynamic block reserve in the system, we will try to refill this
87  *   block reserve first with any excess returned by any other block reserve.
88  *
89  * BLOCK_RSV_EMPTY
90  *   This is the fallback block reserve to make us try to reserve space if we
91  *   don't have a specific bucket for this allocation.  It is mostly used for
92  *   updating the device tree and such, since that is a separate pool we're
93  *   content to just reserve space from the space_info on demand.
94  *
95  * BLOCK_RSV_TEMP
96  *   This is used by things like truncate and iput.  We will temporarily
97  *   allocate a block reserve, set it to some size, and then truncate bytes
98  *   until we have no space left.  With ->failfast set we'll simply return
99  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
100  *   to make a new reservation.  This is because these operations are
101  *   unbounded, so we want to do as much work as we can, and then back off and
102  *   re-reserve.
103  */
104 
105 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
106 				    struct btrfs_block_rsv *block_rsv,
107 				    struct btrfs_block_rsv *dest, u64 num_bytes,
108 				    u64 *qgroup_to_release_ret)
109 {
110 	struct btrfs_space_info *space_info = block_rsv->space_info;
111 	u64 qgroup_to_release = 0;
112 	u64 ret;
113 
114 	spin_lock(&block_rsv->lock);
115 	if (num_bytes == (u64)-1) {
116 		num_bytes = block_rsv->size;
117 		qgroup_to_release = block_rsv->qgroup_rsv_size;
118 	}
119 	block_rsv->size -= num_bytes;
120 	if (block_rsv->reserved >= block_rsv->size) {
121 		num_bytes = block_rsv->reserved - block_rsv->size;
122 		block_rsv->reserved = block_rsv->size;
123 		block_rsv->full = true;
124 	} else {
125 		num_bytes = 0;
126 	}
127 	if (qgroup_to_release_ret &&
128 	    block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
129 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
130 				    block_rsv->qgroup_rsv_size;
131 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
132 	} else {
133 		qgroup_to_release = 0;
134 	}
135 	spin_unlock(&block_rsv->lock);
136 
137 	ret = num_bytes;
138 	if (num_bytes > 0) {
139 		if (dest) {
140 			spin_lock(&dest->lock);
141 			if (!dest->full) {
142 				u64 bytes_to_add;
143 
144 				bytes_to_add = dest->size - dest->reserved;
145 				bytes_to_add = min(num_bytes, bytes_to_add);
146 				dest->reserved += bytes_to_add;
147 				if (dest->reserved >= dest->size)
148 					dest->full = true;
149 				num_bytes -= bytes_to_add;
150 			}
151 			spin_unlock(&dest->lock);
152 		}
153 		if (num_bytes)
154 			btrfs_space_info_free_bytes_may_use(fs_info,
155 							    space_info,
156 							    num_bytes);
157 	}
158 	if (qgroup_to_release_ret)
159 		*qgroup_to_release_ret = qgroup_to_release;
160 	return ret;
161 }
162 
163 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
164 			    struct btrfs_block_rsv *dst, u64 num_bytes,
165 			    bool update_size)
166 {
167 	int ret;
168 
169 	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
170 	if (ret)
171 		return ret;
172 
173 	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
174 	return 0;
175 }
176 
177 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
178 {
179 	memset(rsv, 0, sizeof(*rsv));
180 	spin_lock_init(&rsv->lock);
181 	rsv->type = type;
182 }
183 
184 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
185 				   struct btrfs_block_rsv *rsv,
186 				   enum btrfs_rsv_type type)
187 {
188 	btrfs_init_block_rsv(rsv, type);
189 	rsv->space_info = btrfs_find_space_info(fs_info,
190 					    BTRFS_BLOCK_GROUP_METADATA);
191 }
192 
193 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
194 					      enum btrfs_rsv_type type)
195 {
196 	struct btrfs_block_rsv *block_rsv;
197 
198 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
199 	if (!block_rsv)
200 		return NULL;
201 
202 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
203 	return block_rsv;
204 }
205 
206 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
207 			  struct btrfs_block_rsv *rsv)
208 {
209 	if (!rsv)
210 		return;
211 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
212 	kfree(rsv);
213 }
214 
215 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
216 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
217 			enum btrfs_reserve_flush_enum flush)
218 {
219 	int ret;
220 
221 	if (num_bytes == 0)
222 		return 0;
223 
224 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
225 	if (!ret)
226 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
227 
228 	return ret;
229 }
230 
231 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
232 {
233 	u64 num_bytes = 0;
234 	int ret = -ENOSPC;
235 
236 	spin_lock(&block_rsv->lock);
237 	num_bytes = mult_perc(block_rsv->size, min_percent);
238 	if (block_rsv->reserved >= num_bytes)
239 		ret = 0;
240 	spin_unlock(&block_rsv->lock);
241 
242 	return ret;
243 }
244 
245 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
246 			   struct btrfs_block_rsv *block_rsv, u64 num_bytes,
247 			   enum btrfs_reserve_flush_enum flush)
248 {
249 	int ret = -ENOSPC;
250 
251 	if (!block_rsv)
252 		return 0;
253 
254 	spin_lock(&block_rsv->lock);
255 	if (block_rsv->reserved >= num_bytes)
256 		ret = 0;
257 	else
258 		num_bytes -= block_rsv->reserved;
259 	spin_unlock(&block_rsv->lock);
260 
261 	if (!ret)
262 		return 0;
263 
264 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
265 	if (!ret) {
266 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
267 		return 0;
268 	}
269 
270 	return ret;
271 }
272 
273 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
274 			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
275 			    u64 *qgroup_to_release)
276 {
277 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
278 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
279 	struct btrfs_block_rsv *target = NULL;
280 
281 	/*
282 	 * If we are the delayed_rsv then push to the global rsv, otherwise dump
283 	 * into the delayed rsv if it is not full.
284 	 */
285 	if (block_rsv == delayed_rsv)
286 		target = global_rsv;
287 	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
288 		target = delayed_rsv;
289 
290 	if (target && block_rsv->space_info != target->space_info)
291 		target = NULL;
292 
293 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
294 				       qgroup_to_release);
295 }
296 
297 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
298 {
299 	int ret = -ENOSPC;
300 
301 	spin_lock(&block_rsv->lock);
302 	if (block_rsv->reserved >= num_bytes) {
303 		block_rsv->reserved -= num_bytes;
304 		if (block_rsv->reserved < block_rsv->size)
305 			block_rsv->full = false;
306 		ret = 0;
307 	}
308 	spin_unlock(&block_rsv->lock);
309 	return ret;
310 }
311 
312 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
313 			       u64 num_bytes, bool update_size)
314 {
315 	spin_lock(&block_rsv->lock);
316 	block_rsv->reserved += num_bytes;
317 	if (update_size)
318 		block_rsv->size += num_bytes;
319 	else if (block_rsv->reserved >= block_rsv->size)
320 		block_rsv->full = true;
321 	spin_unlock(&block_rsv->lock);
322 }
323 
324 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
325 {
326 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
327 	struct btrfs_space_info *sinfo = block_rsv->space_info;
328 	struct btrfs_root *root, *tmp;
329 	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
330 	unsigned int min_items = 1;
331 
332 	/*
333 	 * The global block rsv is based on the size of the extent tree, the
334 	 * checksum tree and the root tree.  If the fs is empty we want to set
335 	 * it to a minimal amount for safety.
336 	 *
337 	 * We also are going to need to modify the minimum of the tree root and
338 	 * any global roots we could touch.
339 	 */
340 	read_lock(&fs_info->global_root_lock);
341 	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
342 					     rb_node) {
343 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
344 		    root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
345 		    root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
346 			num_bytes += btrfs_root_used(&root->root_item);
347 			min_items++;
348 		}
349 	}
350 	read_unlock(&fs_info->global_root_lock);
351 
352 	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
353 		num_bytes += btrfs_root_used(&fs_info->block_group_root->root_item);
354 		min_items++;
355 	}
356 
357 	/*
358 	 * But we also want to reserve enough space so we can do the fallback
359 	 * global reserve for an unlink, which is an additional
360 	 * BTRFS_UNLINK_METADATA_UNITS items.
361 	 *
362 	 * But we also need space for the delayed ref updates from the unlink,
363 	 * so add BTRFS_UNLINK_METADATA_UNITS units for delayed refs, one for
364 	 * each unlink metadata item.
365 	 */
366 	min_items += BTRFS_UNLINK_METADATA_UNITS;
367 
368 	num_bytes = max_t(u64, num_bytes,
369 			  btrfs_calc_insert_metadata_size(fs_info, min_items) +
370 			  btrfs_calc_delayed_ref_bytes(fs_info,
371 					       BTRFS_UNLINK_METADATA_UNITS));
372 
373 	spin_lock(&sinfo->lock);
374 	spin_lock(&block_rsv->lock);
375 
376 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
377 
378 	if (block_rsv->reserved < block_rsv->size) {
379 		num_bytes = block_rsv->size - block_rsv->reserved;
380 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
381 						      num_bytes);
382 		block_rsv->reserved = block_rsv->size;
383 	} else if (block_rsv->reserved > block_rsv->size) {
384 		num_bytes = block_rsv->reserved - block_rsv->size;
385 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
386 						      -num_bytes);
387 		block_rsv->reserved = block_rsv->size;
388 		btrfs_try_granting_tickets(fs_info, sinfo);
389 	}
390 
391 	block_rsv->full = (block_rsv->reserved == block_rsv->size);
392 
393 	if (block_rsv->size >= sinfo->total_bytes)
394 		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
395 	spin_unlock(&block_rsv->lock);
396 	spin_unlock(&sinfo->lock);
397 }
398 
399 void btrfs_init_root_block_rsv(struct btrfs_root *root)
400 {
401 	struct btrfs_fs_info *fs_info = root->fs_info;
402 
403 	switch (root->root_key.objectid) {
404 	case BTRFS_CSUM_TREE_OBJECTID:
405 	case BTRFS_EXTENT_TREE_OBJECTID:
406 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
407 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
408 		root->block_rsv = &fs_info->delayed_refs_rsv;
409 		break;
410 	case BTRFS_ROOT_TREE_OBJECTID:
411 	case BTRFS_DEV_TREE_OBJECTID:
412 	case BTRFS_QUOTA_TREE_OBJECTID:
413 		root->block_rsv = &fs_info->global_block_rsv;
414 		break;
415 	case BTRFS_CHUNK_TREE_OBJECTID:
416 		root->block_rsv = &fs_info->chunk_block_rsv;
417 		break;
418 	default:
419 		root->block_rsv = NULL;
420 		break;
421 	}
422 }
423 
424 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
425 {
426 	struct btrfs_space_info *space_info;
427 
428 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
429 	fs_info->chunk_block_rsv.space_info = space_info;
430 
431 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
432 	fs_info->global_block_rsv.space_info = space_info;
433 	fs_info->trans_block_rsv.space_info = space_info;
434 	fs_info->empty_block_rsv.space_info = space_info;
435 	fs_info->delayed_block_rsv.space_info = space_info;
436 	fs_info->delayed_refs_rsv.space_info = space_info;
437 
438 	btrfs_update_global_block_rsv(fs_info);
439 }
440 
441 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
442 {
443 	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
444 				NULL);
445 	WARN_ON(fs_info->trans_block_rsv.size > 0);
446 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
447 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
448 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
449 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
450 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
451 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
452 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
453 }
454 
455 static struct btrfs_block_rsv *get_block_rsv(
456 					const struct btrfs_trans_handle *trans,
457 					const struct btrfs_root *root)
458 {
459 	struct btrfs_fs_info *fs_info = root->fs_info;
460 	struct btrfs_block_rsv *block_rsv = NULL;
461 
462 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
463 	    (root == fs_info->uuid_root) ||
464 	    (trans->adding_csums &&
465 	     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
466 		block_rsv = trans->block_rsv;
467 
468 	if (!block_rsv)
469 		block_rsv = root->block_rsv;
470 
471 	if (!block_rsv)
472 		block_rsv = &fs_info->empty_block_rsv;
473 
474 	return block_rsv;
475 }
476 
477 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
478 					    struct btrfs_root *root,
479 					    u32 blocksize)
480 {
481 	struct btrfs_fs_info *fs_info = root->fs_info;
482 	struct btrfs_block_rsv *block_rsv;
483 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
484 	int ret;
485 	bool global_updated = false;
486 
487 	block_rsv = get_block_rsv(trans, root);
488 
489 	if (unlikely(btrfs_block_rsv_size(block_rsv) == 0))
490 		goto try_reserve;
491 again:
492 	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
493 	if (!ret)
494 		return block_rsv;
495 
496 	if (block_rsv->failfast)
497 		return ERR_PTR(ret);
498 
499 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
500 		global_updated = true;
501 		btrfs_update_global_block_rsv(fs_info);
502 		goto again;
503 	}
504 
505 	/*
506 	 * The global reserve still exists to save us from ourselves, so don't
507 	 * warn_on if we are short on our delayed refs reserve.
508 	 */
509 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
510 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
511 		static DEFINE_RATELIMIT_STATE(_rs,
512 				DEFAULT_RATELIMIT_INTERVAL * 10,
513 				/*DEFAULT_RATELIMIT_BURST*/ 1);
514 		if (__ratelimit(&_rs))
515 			WARN(1, KERN_DEBUG
516 				"BTRFS: block rsv %d returned %d\n",
517 				block_rsv->type, ret);
518 	}
519 try_reserve:
520 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
521 					   BTRFS_RESERVE_NO_FLUSH);
522 	if (!ret)
523 		return block_rsv;
524 	/*
525 	 * If we couldn't reserve metadata bytes try and use some from
526 	 * the global reserve if its space type is the same as the global
527 	 * reservation.
528 	 */
529 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
530 	    block_rsv->space_info == global_rsv->space_info) {
531 		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
532 		if (!ret)
533 			return global_rsv;
534 	}
535 
536 	/*
537 	 * All hope is lost, but of course our reservations are overly
538 	 * pessimistic, so instead of possibly having an ENOSPC abort here, try
539 	 * one last time to force a reservation if there's enough actual space
540 	 * on disk to make the reservation.
541 	 */
542 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
543 					   BTRFS_RESERVE_FLUSH_EMERGENCY);
544 	if (!ret)
545 		return block_rsv;
546 
547 	return ERR_PTR(ret);
548 }
549 
550 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
551 				       struct btrfs_block_rsv *rsv)
552 {
553 	u64 needed_bytes;
554 	int ret;
555 
556 	/* 1 for slack space, 1 for updating the inode */
557 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
558 		btrfs_calc_metadata_size(fs_info, 1);
559 
560 	spin_lock(&rsv->lock);
561 	if (rsv->reserved < needed_bytes)
562 		ret = -ENOSPC;
563 	else
564 		ret = 0;
565 	spin_unlock(&rsv->lock);
566 	return ret;
567 }
568