xref: /openbmc/linux/fs/btrfs/block-rsv.c (revision ce6cc6f7)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 #include "disk-io.h"
10 #include "fs.h"
11 #include "accessors.h"
12 
13 /*
14  * HOW DO BLOCK RESERVES WORK
15  *
16  *   Think of block_rsv's as buckets for logically grouped metadata
17  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
18  *   how large we want our block rsv to be, ->reserved is how much space is
19  *   currently reserved for this block reserve.
20  *
21  *   ->failfast exists for the truncate case, and is described below.
22  *
23  * NORMAL OPERATION
24  *
25  *   -> Reserve
26  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
27  *
28  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
29  *     accounted for in space_info->bytes_may_use, and then add the bytes to
30  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
31  *
32  *     ->size is an over-estimation of how much we may use for a particular
33  *     operation.
34  *
35  *   -> Use
36  *     Entrance: btrfs_use_block_rsv
37  *
38  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
39  *     to determine the appropriate block_rsv to use, and then verify that
40  *     ->reserved has enough space for our tree block allocation.  Once
41  *     successful we subtract fs_info->nodesize from ->reserved.
42  *
43  *   -> Finish
44  *     Entrance: btrfs_block_rsv_release
45  *
46  *     We are finished with our operation, subtract our individual reservation
47  *     from ->size, and then subtract ->size from ->reserved and free up the
48  *     excess if there is any.
49  *
50  *     There is some logic here to refill the delayed refs rsv or the global rsv
51  *     as needed, otherwise the excess is subtracted from
52  *     space_info->bytes_may_use.
53  *
54  * TYPES OF BLOCK RESERVES
55  *
56  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
57  *   These behave normally, as described above, just within the confines of the
58  *   lifetime of their particular operation (transaction for the whole trans
59  *   handle lifetime, for example).
60  *
61  * BLOCK_RSV_GLOBAL
62  *   It is impossible to properly account for all the space that may be required
63  *   to make our extent tree updates.  This block reserve acts as an overflow
64  *   buffer in case our delayed refs reserve does not reserve enough space to
65  *   update the extent tree.
66  *
67  *   We can steal from this in some cases as well, notably on evict() or
68  *   truncate() in order to help users recover from ENOSPC conditions.
69  *
70  * BLOCK_RSV_DELALLOC
71  *   The individual item sizes are determined by the per-inode size
72  *   calculations, which are described with the delalloc code.  This is pretty
73  *   straightforward, it's just the calculation of ->size encodes a lot of
74  *   different items, and thus it gets used when updating inodes, inserting file
75  *   extents, and inserting checksums.
76  *
77  * BLOCK_RSV_DELREFS
78  *   We keep a running tally of how many delayed refs we have on the system.
79  *   We assume each one of these delayed refs are going to use a full
80  *   reservation.  We use the transaction items and pre-reserve space for every
81  *   operation, and use this reservation to refill any gap between ->size and
82  *   ->reserved that may exist.
83  *
84  *   From there it's straightforward, removing a delayed ref means we remove its
85  *   count from ->size and free up reservations as necessary.  Since this is
86  *   the most dynamic block reserve in the system, we will try to refill this
87  *   block reserve first with any excess returned by any other block reserve.
88  *
89  * BLOCK_RSV_EMPTY
90  *   This is the fallback block reserve to make us try to reserve space if we
91  *   don't have a specific bucket for this allocation.  It is mostly used for
92  *   updating the device tree and such, since that is a separate pool we're
93  *   content to just reserve space from the space_info on demand.
94  *
95  * BLOCK_RSV_TEMP
96  *   This is used by things like truncate and iput.  We will temporarily
97  *   allocate a block reserve, set it to some size, and then truncate bytes
98  *   until we have no space left.  With ->failfast set we'll simply return
99  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
100  *   to make a new reservation.  This is because these operations are
101  *   unbounded, so we want to do as much work as we can, and then back off and
102  *   re-reserve.
103  */
104 
105 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
106 				    struct btrfs_block_rsv *block_rsv,
107 				    struct btrfs_block_rsv *dest, u64 num_bytes,
108 				    u64 *qgroup_to_release_ret)
109 {
110 	struct btrfs_space_info *space_info = block_rsv->space_info;
111 	u64 qgroup_to_release = 0;
112 	u64 ret;
113 
114 	spin_lock(&block_rsv->lock);
115 	if (num_bytes == (u64)-1) {
116 		num_bytes = block_rsv->size;
117 		qgroup_to_release = block_rsv->qgroup_rsv_size;
118 	}
119 	block_rsv->size -= num_bytes;
120 	if (block_rsv->reserved >= block_rsv->size) {
121 		num_bytes = block_rsv->reserved - block_rsv->size;
122 		block_rsv->reserved = block_rsv->size;
123 		block_rsv->full = true;
124 	} else {
125 		num_bytes = 0;
126 	}
127 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
128 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
129 				    block_rsv->qgroup_rsv_size;
130 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
131 	} else {
132 		qgroup_to_release = 0;
133 	}
134 	spin_unlock(&block_rsv->lock);
135 
136 	ret = num_bytes;
137 	if (num_bytes > 0) {
138 		if (dest) {
139 			spin_lock(&dest->lock);
140 			if (!dest->full) {
141 				u64 bytes_to_add;
142 
143 				bytes_to_add = dest->size - dest->reserved;
144 				bytes_to_add = min(num_bytes, bytes_to_add);
145 				dest->reserved += bytes_to_add;
146 				if (dest->reserved >= dest->size)
147 					dest->full = true;
148 				num_bytes -= bytes_to_add;
149 			}
150 			spin_unlock(&dest->lock);
151 		}
152 		if (num_bytes)
153 			btrfs_space_info_free_bytes_may_use(fs_info,
154 							    space_info,
155 							    num_bytes);
156 	}
157 	if (qgroup_to_release_ret)
158 		*qgroup_to_release_ret = qgroup_to_release;
159 	return ret;
160 }
161 
162 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
163 			    struct btrfs_block_rsv *dst, u64 num_bytes,
164 			    bool update_size)
165 {
166 	int ret;
167 
168 	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
169 	if (ret)
170 		return ret;
171 
172 	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
173 	return 0;
174 }
175 
176 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type)
177 {
178 	memset(rsv, 0, sizeof(*rsv));
179 	spin_lock_init(&rsv->lock);
180 	rsv->type = type;
181 }
182 
183 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
184 				   struct btrfs_block_rsv *rsv,
185 				   enum btrfs_rsv_type type)
186 {
187 	btrfs_init_block_rsv(rsv, type);
188 	rsv->space_info = btrfs_find_space_info(fs_info,
189 					    BTRFS_BLOCK_GROUP_METADATA);
190 }
191 
192 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
193 					      enum btrfs_rsv_type type)
194 {
195 	struct btrfs_block_rsv *block_rsv;
196 
197 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
198 	if (!block_rsv)
199 		return NULL;
200 
201 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
202 	return block_rsv;
203 }
204 
205 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
206 			  struct btrfs_block_rsv *rsv)
207 {
208 	if (!rsv)
209 		return;
210 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
211 	kfree(rsv);
212 }
213 
214 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info,
215 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
216 			enum btrfs_reserve_flush_enum flush)
217 {
218 	int ret;
219 
220 	if (num_bytes == 0)
221 		return 0;
222 
223 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
224 	if (!ret)
225 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
226 
227 	return ret;
228 }
229 
230 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent)
231 {
232 	u64 num_bytes = 0;
233 	int ret = -ENOSPC;
234 
235 	if (!block_rsv)
236 		return 0;
237 
238 	spin_lock(&block_rsv->lock);
239 	num_bytes = mult_perc(block_rsv->size, min_percent);
240 	if (block_rsv->reserved >= num_bytes)
241 		ret = 0;
242 	spin_unlock(&block_rsv->lock);
243 
244 	return ret;
245 }
246 
247 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info,
248 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
249 			   enum btrfs_reserve_flush_enum flush)
250 {
251 	u64 num_bytes = 0;
252 	int ret = -ENOSPC;
253 
254 	if (!block_rsv)
255 		return 0;
256 
257 	spin_lock(&block_rsv->lock);
258 	num_bytes = min_reserved;
259 	if (block_rsv->reserved >= num_bytes)
260 		ret = 0;
261 	else
262 		num_bytes -= block_rsv->reserved;
263 	spin_unlock(&block_rsv->lock);
264 
265 	if (!ret)
266 		return 0;
267 
268 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush);
269 	if (!ret) {
270 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
271 		return 0;
272 	}
273 
274 	return ret;
275 }
276 
277 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
278 			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
279 			    u64 *qgroup_to_release)
280 {
281 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
282 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
283 	struct btrfs_block_rsv *target = NULL;
284 
285 	/*
286 	 * If we are the delayed_rsv then push to the global rsv, otherwise dump
287 	 * into the delayed rsv if it is not full.
288 	 */
289 	if (block_rsv == delayed_rsv)
290 		target = global_rsv;
291 	else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv))
292 		target = delayed_rsv;
293 
294 	if (target && block_rsv->space_info != target->space_info)
295 		target = NULL;
296 
297 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
298 				       qgroup_to_release);
299 }
300 
301 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
302 {
303 	int ret = -ENOSPC;
304 
305 	spin_lock(&block_rsv->lock);
306 	if (block_rsv->reserved >= num_bytes) {
307 		block_rsv->reserved -= num_bytes;
308 		if (block_rsv->reserved < block_rsv->size)
309 			block_rsv->full = false;
310 		ret = 0;
311 	}
312 	spin_unlock(&block_rsv->lock);
313 	return ret;
314 }
315 
316 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
317 			       u64 num_bytes, bool update_size)
318 {
319 	spin_lock(&block_rsv->lock);
320 	block_rsv->reserved += num_bytes;
321 	if (update_size)
322 		block_rsv->size += num_bytes;
323 	else if (block_rsv->reserved >= block_rsv->size)
324 		block_rsv->full = true;
325 	spin_unlock(&block_rsv->lock);
326 }
327 
328 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
329 {
330 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
331 	struct btrfs_space_info *sinfo = block_rsv->space_info;
332 	struct btrfs_root *root, *tmp;
333 	u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item);
334 	unsigned int min_items = 1;
335 
336 	/*
337 	 * The global block rsv is based on the size of the extent tree, the
338 	 * checksum tree and the root tree.  If the fs is empty we want to set
339 	 * it to a minimal amount for safety.
340 	 *
341 	 * We also are going to need to modify the minimum of the tree root and
342 	 * any global roots we could touch.
343 	 */
344 	read_lock(&fs_info->global_root_lock);
345 	rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree,
346 					     rb_node) {
347 		if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID ||
348 		    root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID ||
349 		    root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
350 			num_bytes += btrfs_root_used(&root->root_item);
351 			min_items++;
352 		}
353 	}
354 	read_unlock(&fs_info->global_root_lock);
355 
356 	/*
357 	 * But we also want to reserve enough space so we can do the fallback
358 	 * global reserve for an unlink, which is an additional 5 items (see the
359 	 * comment in __unlink_start_trans for what we're modifying.)
360 	 *
361 	 * But we also need space for the delayed ref updates from the unlink,
362 	 * so its 10, 5 for the actual operation, and 5 for the delayed ref
363 	 * updates.
364 	 */
365 	min_items += 10;
366 
367 	num_bytes = max_t(u64, num_bytes,
368 			  btrfs_calc_insert_metadata_size(fs_info, min_items));
369 
370 	spin_lock(&sinfo->lock);
371 	spin_lock(&block_rsv->lock);
372 
373 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
374 
375 	if (block_rsv->reserved < block_rsv->size) {
376 		num_bytes = block_rsv->size - block_rsv->reserved;
377 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
378 						      num_bytes);
379 		block_rsv->reserved = block_rsv->size;
380 	} else if (block_rsv->reserved > block_rsv->size) {
381 		num_bytes = block_rsv->reserved - block_rsv->size;
382 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
383 						      -num_bytes);
384 		block_rsv->reserved = block_rsv->size;
385 		btrfs_try_granting_tickets(fs_info, sinfo);
386 	}
387 
388 	block_rsv->full = (block_rsv->reserved == block_rsv->size);
389 
390 	if (block_rsv->size >= sinfo->total_bytes)
391 		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
392 	spin_unlock(&block_rsv->lock);
393 	spin_unlock(&sinfo->lock);
394 }
395 
396 void btrfs_init_root_block_rsv(struct btrfs_root *root)
397 {
398 	struct btrfs_fs_info *fs_info = root->fs_info;
399 
400 	switch (root->root_key.objectid) {
401 	case BTRFS_CSUM_TREE_OBJECTID:
402 	case BTRFS_EXTENT_TREE_OBJECTID:
403 	case BTRFS_FREE_SPACE_TREE_OBJECTID:
404 	case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
405 		root->block_rsv = &fs_info->delayed_refs_rsv;
406 		break;
407 	case BTRFS_ROOT_TREE_OBJECTID:
408 	case BTRFS_DEV_TREE_OBJECTID:
409 	case BTRFS_QUOTA_TREE_OBJECTID:
410 		root->block_rsv = &fs_info->global_block_rsv;
411 		break;
412 	case BTRFS_CHUNK_TREE_OBJECTID:
413 		root->block_rsv = &fs_info->chunk_block_rsv;
414 		break;
415 	default:
416 		root->block_rsv = NULL;
417 		break;
418 	}
419 }
420 
421 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
422 {
423 	struct btrfs_space_info *space_info;
424 
425 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
426 	fs_info->chunk_block_rsv.space_info = space_info;
427 
428 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
429 	fs_info->global_block_rsv.space_info = space_info;
430 	fs_info->trans_block_rsv.space_info = space_info;
431 	fs_info->empty_block_rsv.space_info = space_info;
432 	fs_info->delayed_block_rsv.space_info = space_info;
433 	fs_info->delayed_refs_rsv.space_info = space_info;
434 
435 	btrfs_update_global_block_rsv(fs_info);
436 }
437 
438 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
439 {
440 	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
441 				NULL);
442 	WARN_ON(fs_info->trans_block_rsv.size > 0);
443 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
444 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
445 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
446 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
447 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
448 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
449 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
450 }
451 
452 static struct btrfs_block_rsv *get_block_rsv(
453 					const struct btrfs_trans_handle *trans,
454 					const struct btrfs_root *root)
455 {
456 	struct btrfs_fs_info *fs_info = root->fs_info;
457 	struct btrfs_block_rsv *block_rsv = NULL;
458 
459 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
460 	    (root == fs_info->uuid_root) ||
461 	    (trans->adding_csums &&
462 	     root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID))
463 		block_rsv = trans->block_rsv;
464 
465 	if (!block_rsv)
466 		block_rsv = root->block_rsv;
467 
468 	if (!block_rsv)
469 		block_rsv = &fs_info->empty_block_rsv;
470 
471 	return block_rsv;
472 }
473 
474 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
475 					    struct btrfs_root *root,
476 					    u32 blocksize)
477 {
478 	struct btrfs_fs_info *fs_info = root->fs_info;
479 	struct btrfs_block_rsv *block_rsv;
480 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
481 	int ret;
482 	bool global_updated = false;
483 
484 	block_rsv = get_block_rsv(trans, root);
485 
486 	if (unlikely(block_rsv->size == 0))
487 		goto try_reserve;
488 again:
489 	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
490 	if (!ret)
491 		return block_rsv;
492 
493 	if (block_rsv->failfast)
494 		return ERR_PTR(ret);
495 
496 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
497 		global_updated = true;
498 		btrfs_update_global_block_rsv(fs_info);
499 		goto again;
500 	}
501 
502 	/*
503 	 * The global reserve still exists to save us from ourselves, so don't
504 	 * warn_on if we are short on our delayed refs reserve.
505 	 */
506 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
507 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
508 		static DEFINE_RATELIMIT_STATE(_rs,
509 				DEFAULT_RATELIMIT_INTERVAL * 10,
510 				/*DEFAULT_RATELIMIT_BURST*/ 1);
511 		if (__ratelimit(&_rs))
512 			WARN(1, KERN_DEBUG
513 				"BTRFS: block rsv %d returned %d\n",
514 				block_rsv->type, ret);
515 	}
516 try_reserve:
517 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
518 					   BTRFS_RESERVE_NO_FLUSH);
519 	if (!ret)
520 		return block_rsv;
521 	/*
522 	 * If we couldn't reserve metadata bytes try and use some from
523 	 * the global reserve if its space type is the same as the global
524 	 * reservation.
525 	 */
526 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
527 	    block_rsv->space_info == global_rsv->space_info) {
528 		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
529 		if (!ret)
530 			return global_rsv;
531 	}
532 
533 	/*
534 	 * All hope is lost, but of course our reservations are overly
535 	 * pessimistic, so instead of possibly having an ENOSPC abort here, try
536 	 * one last time to force a reservation if there's enough actual space
537 	 * on disk to make the reservation.
538 	 */
539 	ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize,
540 					   BTRFS_RESERVE_FLUSH_EMERGENCY);
541 	if (!ret)
542 		return block_rsv;
543 
544 	return ERR_PTR(ret);
545 }
546