xref: /openbmc/linux/fs/btrfs/block-rsv.c (revision 95298d63)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-rsv.h"
6 #include "space-info.h"
7 #include "transaction.h"
8 #include "block-group.h"
9 
10 /*
11  * HOW DO BLOCK RESERVES WORK
12  *
13  *   Think of block_rsv's as buckets for logically grouped metadata
14  *   reservations.  Each block_rsv has a ->size and a ->reserved.  ->size is
15  *   how large we want our block rsv to be, ->reserved is how much space is
16  *   currently reserved for this block reserve.
17  *
18  *   ->failfast exists for the truncate case, and is described below.
19  *
20  * NORMAL OPERATION
21  *
22  *   -> Reserve
23  *     Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill
24  *
25  *     We call into btrfs_reserve_metadata_bytes() with our bytes, which is
26  *     accounted for in space_info->bytes_may_use, and then add the bytes to
27  *     ->reserved, and ->size in the case of btrfs_block_rsv_add.
28  *
29  *     ->size is an over-estimation of how much we may use for a particular
30  *     operation.
31  *
32  *   -> Use
33  *     Entrance: btrfs_use_block_rsv
34  *
35  *     When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv()
36  *     to determine the appropriate block_rsv to use, and then verify that
37  *     ->reserved has enough space for our tree block allocation.  Once
38  *     successful we subtract fs_info->nodesize from ->reserved.
39  *
40  *   -> Finish
41  *     Entrance: btrfs_block_rsv_release
42  *
43  *     We are finished with our operation, subtract our individual reservation
44  *     from ->size, and then subtract ->size from ->reserved and free up the
45  *     excess if there is any.
46  *
47  *     There is some logic here to refill the delayed refs rsv or the global rsv
48  *     as needed, otherwise the excess is subtracted from
49  *     space_info->bytes_may_use.
50  *
51  * TYPES OF BLOCK RESERVES
52  *
53  * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK
54  *   These behave normally, as described above, just within the confines of the
55  *   lifetime of their particular operation (transaction for the whole trans
56  *   handle lifetime, for example).
57  *
58  * BLOCK_RSV_GLOBAL
59  *   It is impossible to properly account for all the space that may be required
60  *   to make our extent tree updates.  This block reserve acts as an overflow
61  *   buffer in case our delayed refs reserve does not reserve enough space to
62  *   update the extent tree.
63  *
64  *   We can steal from this in some cases as well, notably on evict() or
65  *   truncate() in order to help users recover from ENOSPC conditions.
66  *
67  * BLOCK_RSV_DELALLOC
68  *   The individual item sizes are determined by the per-inode size
69  *   calculations, which are described with the delalloc code.  This is pretty
70  *   straightforward, it's just the calculation of ->size encodes a lot of
71  *   different items, and thus it gets used when updating inodes, inserting file
72  *   extents, and inserting checksums.
73  *
74  * BLOCK_RSV_DELREFS
75  *   We keep a running tally of how many delayed refs we have on the system.
76  *   We assume each one of these delayed refs are going to use a full
77  *   reservation.  We use the transaction items and pre-reserve space for every
78  *   operation, and use this reservation to refill any gap between ->size and
79  *   ->reserved that may exist.
80  *
81  *   From there it's straightforward, removing a delayed ref means we remove its
82  *   count from ->size and free up reservations as necessary.  Since this is
83  *   the most dynamic block reserve in the system, we will try to refill this
84  *   block reserve first with any excess returned by any other block reserve.
85  *
86  * BLOCK_RSV_EMPTY
87  *   This is the fallback block reserve to make us try to reserve space if we
88  *   don't have a specific bucket for this allocation.  It is mostly used for
89  *   updating the device tree and such, since that is a separate pool we're
90  *   content to just reserve space from the space_info on demand.
91  *
92  * BLOCK_RSV_TEMP
93  *   This is used by things like truncate and iput.  We will temporarily
94  *   allocate a block reserve, set it to some size, and then truncate bytes
95  *   until we have no space left.  With ->failfast set we'll simply return
96  *   ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try
97  *   to make a new reservation.  This is because these operations are
98  *   unbounded, so we want to do as much work as we can, and then back off and
99  *   re-reserve.
100  */
101 
102 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
103 				    struct btrfs_block_rsv *block_rsv,
104 				    struct btrfs_block_rsv *dest, u64 num_bytes,
105 				    u64 *qgroup_to_release_ret)
106 {
107 	struct btrfs_space_info *space_info = block_rsv->space_info;
108 	u64 qgroup_to_release = 0;
109 	u64 ret;
110 
111 	spin_lock(&block_rsv->lock);
112 	if (num_bytes == (u64)-1) {
113 		num_bytes = block_rsv->size;
114 		qgroup_to_release = block_rsv->qgroup_rsv_size;
115 	}
116 	block_rsv->size -= num_bytes;
117 	if (block_rsv->reserved >= block_rsv->size) {
118 		num_bytes = block_rsv->reserved - block_rsv->size;
119 		block_rsv->reserved = block_rsv->size;
120 		block_rsv->full = 1;
121 	} else {
122 		num_bytes = 0;
123 	}
124 	if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
125 		qgroup_to_release = block_rsv->qgroup_rsv_reserved -
126 				    block_rsv->qgroup_rsv_size;
127 		block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
128 	} else {
129 		qgroup_to_release = 0;
130 	}
131 	spin_unlock(&block_rsv->lock);
132 
133 	ret = num_bytes;
134 	if (num_bytes > 0) {
135 		if (dest) {
136 			spin_lock(&dest->lock);
137 			if (!dest->full) {
138 				u64 bytes_to_add;
139 
140 				bytes_to_add = dest->size - dest->reserved;
141 				bytes_to_add = min(num_bytes, bytes_to_add);
142 				dest->reserved += bytes_to_add;
143 				if (dest->reserved >= dest->size)
144 					dest->full = 1;
145 				num_bytes -= bytes_to_add;
146 			}
147 			spin_unlock(&dest->lock);
148 		}
149 		if (num_bytes)
150 			btrfs_space_info_free_bytes_may_use(fs_info,
151 							    space_info,
152 							    num_bytes);
153 	}
154 	if (qgroup_to_release_ret)
155 		*qgroup_to_release_ret = qgroup_to_release;
156 	return ret;
157 }
158 
159 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
160 			    struct btrfs_block_rsv *dst, u64 num_bytes,
161 			    bool update_size)
162 {
163 	int ret;
164 
165 	ret = btrfs_block_rsv_use_bytes(src, num_bytes);
166 	if (ret)
167 		return ret;
168 
169 	btrfs_block_rsv_add_bytes(dst, num_bytes, update_size);
170 	return 0;
171 }
172 
173 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
174 {
175 	memset(rsv, 0, sizeof(*rsv));
176 	spin_lock_init(&rsv->lock);
177 	rsv->type = type;
178 }
179 
180 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
181 				   struct btrfs_block_rsv *rsv,
182 				   unsigned short type)
183 {
184 	btrfs_init_block_rsv(rsv, type);
185 	rsv->space_info = btrfs_find_space_info(fs_info,
186 					    BTRFS_BLOCK_GROUP_METADATA);
187 }
188 
189 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
190 					      unsigned short type)
191 {
192 	struct btrfs_block_rsv *block_rsv;
193 
194 	block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
195 	if (!block_rsv)
196 		return NULL;
197 
198 	btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
199 	return block_rsv;
200 }
201 
202 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
203 			  struct btrfs_block_rsv *rsv)
204 {
205 	if (!rsv)
206 		return;
207 	btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL);
208 	kfree(rsv);
209 }
210 
211 int btrfs_block_rsv_add(struct btrfs_root *root,
212 			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
213 			enum btrfs_reserve_flush_enum flush)
214 {
215 	int ret;
216 
217 	if (num_bytes == 0)
218 		return 0;
219 
220 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
221 	if (!ret)
222 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true);
223 
224 	return ret;
225 }
226 
227 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
228 {
229 	u64 num_bytes = 0;
230 	int ret = -ENOSPC;
231 
232 	if (!block_rsv)
233 		return 0;
234 
235 	spin_lock(&block_rsv->lock);
236 	num_bytes = div_factor(block_rsv->size, min_factor);
237 	if (block_rsv->reserved >= num_bytes)
238 		ret = 0;
239 	spin_unlock(&block_rsv->lock);
240 
241 	return ret;
242 }
243 
244 int btrfs_block_rsv_refill(struct btrfs_root *root,
245 			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
246 			   enum btrfs_reserve_flush_enum flush)
247 {
248 	u64 num_bytes = 0;
249 	int ret = -ENOSPC;
250 
251 	if (!block_rsv)
252 		return 0;
253 
254 	spin_lock(&block_rsv->lock);
255 	num_bytes = min_reserved;
256 	if (block_rsv->reserved >= num_bytes)
257 		ret = 0;
258 	else
259 		num_bytes -= block_rsv->reserved;
260 	spin_unlock(&block_rsv->lock);
261 
262 	if (!ret)
263 		return 0;
264 
265 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
266 	if (!ret) {
267 		btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false);
268 		return 0;
269 	}
270 
271 	return ret;
272 }
273 
274 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
275 			    struct btrfs_block_rsv *block_rsv, u64 num_bytes,
276 			    u64 *qgroup_to_release)
277 {
278 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
279 	struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
280 	struct btrfs_block_rsv *target = NULL;
281 
282 	/*
283 	 * If we are the delayed_rsv then push to the global rsv, otherwise dump
284 	 * into the delayed rsv if it is not full.
285 	 */
286 	if (block_rsv == delayed_rsv)
287 		target = global_rsv;
288 	else if (block_rsv != global_rsv && !delayed_rsv->full)
289 		target = delayed_rsv;
290 
291 	if (target && block_rsv->space_info != target->space_info)
292 		target = NULL;
293 
294 	return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
295 				       qgroup_to_release);
296 }
297 
298 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes)
299 {
300 	int ret = -ENOSPC;
301 
302 	spin_lock(&block_rsv->lock);
303 	if (block_rsv->reserved >= num_bytes) {
304 		block_rsv->reserved -= num_bytes;
305 		if (block_rsv->reserved < block_rsv->size)
306 			block_rsv->full = 0;
307 		ret = 0;
308 	}
309 	spin_unlock(&block_rsv->lock);
310 	return ret;
311 }
312 
313 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
314 			       u64 num_bytes, bool update_size)
315 {
316 	spin_lock(&block_rsv->lock);
317 	block_rsv->reserved += num_bytes;
318 	if (update_size)
319 		block_rsv->size += num_bytes;
320 	else if (block_rsv->reserved >= block_rsv->size)
321 		block_rsv->full = 1;
322 	spin_unlock(&block_rsv->lock);
323 }
324 
325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
326 			     struct btrfs_block_rsv *dest, u64 num_bytes,
327 			     int min_factor)
328 {
329 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
330 	u64 min_bytes;
331 
332 	if (global_rsv->space_info != dest->space_info)
333 		return -ENOSPC;
334 
335 	spin_lock(&global_rsv->lock);
336 	min_bytes = div_factor(global_rsv->size, min_factor);
337 	if (global_rsv->reserved < min_bytes + num_bytes) {
338 		spin_unlock(&global_rsv->lock);
339 		return -ENOSPC;
340 	}
341 	global_rsv->reserved -= num_bytes;
342 	if (global_rsv->reserved < global_rsv->size)
343 		global_rsv->full = 0;
344 	spin_unlock(&global_rsv->lock);
345 
346 	btrfs_block_rsv_add_bytes(dest, num_bytes, true);
347 	return 0;
348 }
349 
350 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info)
351 {
352 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
353 	struct btrfs_space_info *sinfo = block_rsv->space_info;
354 	u64 num_bytes;
355 	unsigned min_items;
356 
357 	/*
358 	 * The global block rsv is based on the size of the extent tree, the
359 	 * checksum tree and the root tree.  If the fs is empty we want to set
360 	 * it to a minimal amount for safety.
361 	 */
362 	num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
363 		btrfs_root_used(&fs_info->csum_root->root_item) +
364 		btrfs_root_used(&fs_info->tree_root->root_item);
365 
366 	/*
367 	 * We at a minimum are going to modify the csum root, the tree root, and
368 	 * the extent root.
369 	 */
370 	min_items = 3;
371 
372 	/*
373 	 * But we also want to reserve enough space so we can do the fallback
374 	 * global reserve for an unlink, which is an additional 5 items (see the
375 	 * comment in __unlink_start_trans for what we're modifying.)
376 	 *
377 	 * But we also need space for the delayed ref updates from the unlink,
378 	 * so its 10, 5 for the actual operation, and 5 for the delayed ref
379 	 * updates.
380 	 */
381 	min_items += 10;
382 
383 	num_bytes = max_t(u64, num_bytes,
384 			  btrfs_calc_insert_metadata_size(fs_info, min_items));
385 
386 	spin_lock(&sinfo->lock);
387 	spin_lock(&block_rsv->lock);
388 
389 	block_rsv->size = min_t(u64, num_bytes, SZ_512M);
390 
391 	if (block_rsv->reserved < block_rsv->size) {
392 		num_bytes = block_rsv->size - block_rsv->reserved;
393 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
394 						      num_bytes);
395 		block_rsv->reserved = block_rsv->size;
396 	} else if (block_rsv->reserved > block_rsv->size) {
397 		num_bytes = block_rsv->reserved - block_rsv->size;
398 		btrfs_space_info_update_bytes_may_use(fs_info, sinfo,
399 						      -num_bytes);
400 		block_rsv->reserved = block_rsv->size;
401 		btrfs_try_granting_tickets(fs_info, sinfo);
402 	}
403 
404 	if (block_rsv->reserved == block_rsv->size)
405 		block_rsv->full = 1;
406 	else
407 		block_rsv->full = 0;
408 
409 	if (block_rsv->size >= sinfo->total_bytes)
410 		sinfo->force_alloc = CHUNK_ALLOC_FORCE;
411 	spin_unlock(&block_rsv->lock);
412 	spin_unlock(&sinfo->lock);
413 }
414 
415 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info)
416 {
417 	struct btrfs_space_info *space_info;
418 
419 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
420 	fs_info->chunk_block_rsv.space_info = space_info;
421 
422 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
423 	fs_info->global_block_rsv.space_info = space_info;
424 	fs_info->trans_block_rsv.space_info = space_info;
425 	fs_info->empty_block_rsv.space_info = space_info;
426 	fs_info->delayed_block_rsv.space_info = space_info;
427 	fs_info->delayed_refs_rsv.space_info = space_info;
428 
429 	fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
430 	fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
431 	fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
432 	fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
433 	if (fs_info->quota_root)
434 		fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
435 	fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
436 
437 	btrfs_update_global_block_rsv(fs_info);
438 }
439 
440 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info)
441 {
442 	btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1,
443 				NULL);
444 	WARN_ON(fs_info->trans_block_rsv.size > 0);
445 	WARN_ON(fs_info->trans_block_rsv.reserved > 0);
446 	WARN_ON(fs_info->chunk_block_rsv.size > 0);
447 	WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
448 	WARN_ON(fs_info->delayed_block_rsv.size > 0);
449 	WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
450 	WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
451 	WARN_ON(fs_info->delayed_refs_rsv.size > 0);
452 }
453 
454 static struct btrfs_block_rsv *get_block_rsv(
455 					const struct btrfs_trans_handle *trans,
456 					const struct btrfs_root *root)
457 {
458 	struct btrfs_fs_info *fs_info = root->fs_info;
459 	struct btrfs_block_rsv *block_rsv = NULL;
460 
461 	if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
462 	    (root == fs_info->csum_root && trans->adding_csums) ||
463 	    (root == fs_info->uuid_root))
464 		block_rsv = trans->block_rsv;
465 
466 	if (!block_rsv)
467 		block_rsv = root->block_rsv;
468 
469 	if (!block_rsv)
470 		block_rsv = &fs_info->empty_block_rsv;
471 
472 	return block_rsv;
473 }
474 
475 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans,
476 					    struct btrfs_root *root,
477 					    u32 blocksize)
478 {
479 	struct btrfs_fs_info *fs_info = root->fs_info;
480 	struct btrfs_block_rsv *block_rsv;
481 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
482 	int ret;
483 	bool global_updated = false;
484 
485 	block_rsv = get_block_rsv(trans, root);
486 
487 	if (unlikely(block_rsv->size == 0))
488 		goto try_reserve;
489 again:
490 	ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize);
491 	if (!ret)
492 		return block_rsv;
493 
494 	if (block_rsv->failfast)
495 		return ERR_PTR(ret);
496 
497 	if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
498 		global_updated = true;
499 		btrfs_update_global_block_rsv(fs_info);
500 		goto again;
501 	}
502 
503 	/*
504 	 * The global reserve still exists to save us from ourselves, so don't
505 	 * warn_on if we are short on our delayed refs reserve.
506 	 */
507 	if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
508 	    btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
509 		static DEFINE_RATELIMIT_STATE(_rs,
510 				DEFAULT_RATELIMIT_INTERVAL * 10,
511 				/*DEFAULT_RATELIMIT_BURST*/ 1);
512 		if (__ratelimit(&_rs))
513 			WARN(1, KERN_DEBUG
514 				"BTRFS: block rsv returned %d\n", ret);
515 	}
516 try_reserve:
517 	ret = btrfs_reserve_metadata_bytes(root, block_rsv, blocksize,
518 					   BTRFS_RESERVE_NO_FLUSH);
519 	if (!ret)
520 		return block_rsv;
521 	/*
522 	 * If we couldn't reserve metadata bytes try and use some from
523 	 * the global reserve if its space type is the same as the global
524 	 * reservation.
525 	 */
526 	if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
527 	    block_rsv->space_info == global_rsv->space_info) {
528 		ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize);
529 		if (!ret)
530 			return global_rsv;
531 	}
532 	return ERR_PTR(ret);
533 }
534