1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-rsv.h" 6 #include "space-info.h" 7 #include "transaction.h" 8 #include "block-group.h" 9 10 /* 11 * HOW DO BLOCK RESERVES WORK 12 * 13 * Think of block_rsv's as buckets for logically grouped metadata 14 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is 15 * how large we want our block rsv to be, ->reserved is how much space is 16 * currently reserved for this block reserve. 17 * 18 * ->failfast exists for the truncate case, and is described below. 19 * 20 * NORMAL OPERATION 21 * 22 * -> Reserve 23 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill 24 * 25 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is 26 * accounted for in space_info->bytes_may_use, and then add the bytes to 27 * ->reserved, and ->size in the case of btrfs_block_rsv_add. 28 * 29 * ->size is an over-estimation of how much we may use for a particular 30 * operation. 31 * 32 * -> Use 33 * Entrance: btrfs_use_block_rsv 34 * 35 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() 36 * to determine the appropriate block_rsv to use, and then verify that 37 * ->reserved has enough space for our tree block allocation. Once 38 * successful we subtract fs_info->nodesize from ->reserved. 39 * 40 * -> Finish 41 * Entrance: btrfs_block_rsv_release 42 * 43 * We are finished with our operation, subtract our individual reservation 44 * from ->size, and then subtract ->size from ->reserved and free up the 45 * excess if there is any. 46 * 47 * There is some logic here to refill the delayed refs rsv or the global rsv 48 * as needed, otherwise the excess is subtracted from 49 * space_info->bytes_may_use. 50 * 51 * TYPES OF BLOCK RESERVES 52 * 53 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK 54 * These behave normally, as described above, just within the confines of the 55 * lifetime of their particular operation (transaction for the whole trans 56 * handle lifetime, for example). 57 * 58 * BLOCK_RSV_GLOBAL 59 * It is impossible to properly account for all the space that may be required 60 * to make our extent tree updates. This block reserve acts as an overflow 61 * buffer in case our delayed refs reserve does not reserve enough space to 62 * update the extent tree. 63 * 64 * We can steal from this in some cases as well, notably on evict() or 65 * truncate() in order to help users recover from ENOSPC conditions. 66 * 67 * BLOCK_RSV_DELALLOC 68 * The individual item sizes are determined by the per-inode size 69 * calculations, which are described with the delalloc code. This is pretty 70 * straightforward, it's just the calculation of ->size encodes a lot of 71 * different items, and thus it gets used when updating inodes, inserting file 72 * extents, and inserting checksums. 73 * 74 * BLOCK_RSV_DELREFS 75 * We keep a running tally of how many delayed refs we have on the system. 76 * We assume each one of these delayed refs are going to use a full 77 * reservation. We use the transaction items and pre-reserve space for every 78 * operation, and use this reservation to refill any gap between ->size and 79 * ->reserved that may exist. 80 * 81 * From there it's straightforward, removing a delayed ref means we remove its 82 * count from ->size and free up reservations as necessary. Since this is 83 * the most dynamic block reserve in the system, we will try to refill this 84 * block reserve first with any excess returned by any other block reserve. 85 * 86 * BLOCK_RSV_EMPTY 87 * This is the fallback block reserve to make us try to reserve space if we 88 * don't have a specific bucket for this allocation. It is mostly used for 89 * updating the device tree and such, since that is a separate pool we're 90 * content to just reserve space from the space_info on demand. 91 * 92 * BLOCK_RSV_TEMP 93 * This is used by things like truncate and iput. We will temporarily 94 * allocate a block reserve, set it to some size, and then truncate bytes 95 * until we have no space left. With ->failfast set we'll simply return 96 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try 97 * to make a new reservation. This is because these operations are 98 * unbounded, so we want to do as much work as we can, and then back off and 99 * re-reserve. 100 */ 101 102 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 103 struct btrfs_block_rsv *block_rsv, 104 struct btrfs_block_rsv *dest, u64 num_bytes, 105 u64 *qgroup_to_release_ret) 106 { 107 struct btrfs_space_info *space_info = block_rsv->space_info; 108 u64 qgroup_to_release = 0; 109 u64 ret; 110 111 spin_lock(&block_rsv->lock); 112 if (num_bytes == (u64)-1) { 113 num_bytes = block_rsv->size; 114 qgroup_to_release = block_rsv->qgroup_rsv_size; 115 } 116 block_rsv->size -= num_bytes; 117 if (block_rsv->reserved >= block_rsv->size) { 118 num_bytes = block_rsv->reserved - block_rsv->size; 119 block_rsv->reserved = block_rsv->size; 120 block_rsv->full = 1; 121 } else { 122 num_bytes = 0; 123 } 124 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 125 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 126 block_rsv->qgroup_rsv_size; 127 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 128 } else { 129 qgroup_to_release = 0; 130 } 131 spin_unlock(&block_rsv->lock); 132 133 ret = num_bytes; 134 if (num_bytes > 0) { 135 if (dest) { 136 spin_lock(&dest->lock); 137 if (!dest->full) { 138 u64 bytes_to_add; 139 140 bytes_to_add = dest->size - dest->reserved; 141 bytes_to_add = min(num_bytes, bytes_to_add); 142 dest->reserved += bytes_to_add; 143 if (dest->reserved >= dest->size) 144 dest->full = 1; 145 num_bytes -= bytes_to_add; 146 } 147 spin_unlock(&dest->lock); 148 } 149 if (num_bytes) 150 btrfs_space_info_free_bytes_may_use(fs_info, 151 space_info, 152 num_bytes); 153 } 154 if (qgroup_to_release_ret) 155 *qgroup_to_release_ret = qgroup_to_release; 156 return ret; 157 } 158 159 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 160 struct btrfs_block_rsv *dst, u64 num_bytes, 161 bool update_size) 162 { 163 int ret; 164 165 ret = btrfs_block_rsv_use_bytes(src, num_bytes); 166 if (ret) 167 return ret; 168 169 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); 170 return 0; 171 } 172 173 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type) 174 { 175 memset(rsv, 0, sizeof(*rsv)); 176 spin_lock_init(&rsv->lock); 177 rsv->type = type; 178 } 179 180 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 181 struct btrfs_block_rsv *rsv, 182 unsigned short type) 183 { 184 btrfs_init_block_rsv(rsv, type); 185 rsv->space_info = btrfs_find_space_info(fs_info, 186 BTRFS_BLOCK_GROUP_METADATA); 187 } 188 189 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 190 unsigned short type) 191 { 192 struct btrfs_block_rsv *block_rsv; 193 194 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 195 if (!block_rsv) 196 return NULL; 197 198 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 199 return block_rsv; 200 } 201 202 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 203 struct btrfs_block_rsv *rsv) 204 { 205 if (!rsv) 206 return; 207 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 208 kfree(rsv); 209 } 210 211 int btrfs_block_rsv_add(struct btrfs_root *root, 212 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 213 enum btrfs_reserve_flush_enum flush) 214 { 215 int ret; 216 217 if (num_bytes == 0) 218 return 0; 219 220 ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 221 if (!ret) 222 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); 223 224 return ret; 225 } 226 227 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor) 228 { 229 u64 num_bytes = 0; 230 int ret = -ENOSPC; 231 232 if (!block_rsv) 233 return 0; 234 235 spin_lock(&block_rsv->lock); 236 num_bytes = div_factor(block_rsv->size, min_factor); 237 if (block_rsv->reserved >= num_bytes) 238 ret = 0; 239 spin_unlock(&block_rsv->lock); 240 241 return ret; 242 } 243 244 int btrfs_block_rsv_refill(struct btrfs_root *root, 245 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 246 enum btrfs_reserve_flush_enum flush) 247 { 248 u64 num_bytes = 0; 249 int ret = -ENOSPC; 250 251 if (!block_rsv) 252 return 0; 253 254 spin_lock(&block_rsv->lock); 255 num_bytes = min_reserved; 256 if (block_rsv->reserved >= num_bytes) 257 ret = 0; 258 else 259 num_bytes -= block_rsv->reserved; 260 spin_unlock(&block_rsv->lock); 261 262 if (!ret) 263 return 0; 264 265 ret = btrfs_reserve_metadata_bytes(root, block_rsv, num_bytes, flush); 266 if (!ret) { 267 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); 268 return 0; 269 } 270 271 return ret; 272 } 273 274 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 275 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 276 u64 *qgroup_to_release) 277 { 278 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 279 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 280 struct btrfs_block_rsv *target = NULL; 281 282 /* 283 * If we are the delayed_rsv then push to the global rsv, otherwise dump 284 * into the delayed rsv if it is not full. 285 */ 286 if (block_rsv == delayed_rsv) 287 target = global_rsv; 288 else if (block_rsv != global_rsv && !delayed_rsv->full) 289 target = delayed_rsv; 290 291 if (target && block_rsv->space_info != target->space_info) 292 target = NULL; 293 294 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, 295 qgroup_to_release); 296 } 297 298 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) 299 { 300 int ret = -ENOSPC; 301 302 spin_lock(&block_rsv->lock); 303 if (block_rsv->reserved >= num_bytes) { 304 block_rsv->reserved -= num_bytes; 305 if (block_rsv->reserved < block_rsv->size) 306 block_rsv->full = 0; 307 ret = 0; 308 } 309 spin_unlock(&block_rsv->lock); 310 return ret; 311 } 312 313 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 314 u64 num_bytes, bool update_size) 315 { 316 spin_lock(&block_rsv->lock); 317 block_rsv->reserved += num_bytes; 318 if (update_size) 319 block_rsv->size += num_bytes; 320 else if (block_rsv->reserved >= block_rsv->size) 321 block_rsv->full = 1; 322 spin_unlock(&block_rsv->lock); 323 } 324 325 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info, 326 struct btrfs_block_rsv *dest, u64 num_bytes, 327 int min_factor) 328 { 329 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 330 u64 min_bytes; 331 332 if (global_rsv->space_info != dest->space_info) 333 return -ENOSPC; 334 335 spin_lock(&global_rsv->lock); 336 min_bytes = div_factor(global_rsv->size, min_factor); 337 if (global_rsv->reserved < min_bytes + num_bytes) { 338 spin_unlock(&global_rsv->lock); 339 return -ENOSPC; 340 } 341 global_rsv->reserved -= num_bytes; 342 if (global_rsv->reserved < global_rsv->size) 343 global_rsv->full = 0; 344 spin_unlock(&global_rsv->lock); 345 346 btrfs_block_rsv_add_bytes(dest, num_bytes, true); 347 return 0; 348 } 349 350 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) 351 { 352 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 353 struct btrfs_space_info *sinfo = block_rsv->space_info; 354 u64 num_bytes; 355 unsigned min_items; 356 357 /* 358 * The global block rsv is based on the size of the extent tree, the 359 * checksum tree and the root tree. If the fs is empty we want to set 360 * it to a minimal amount for safety. 361 */ 362 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) + 363 btrfs_root_used(&fs_info->csum_root->root_item) + 364 btrfs_root_used(&fs_info->tree_root->root_item); 365 366 /* 367 * We at a minimum are going to modify the csum root, the tree root, and 368 * the extent root. 369 */ 370 min_items = 3; 371 372 /* 373 * But we also want to reserve enough space so we can do the fallback 374 * global reserve for an unlink, which is an additional 5 items (see the 375 * comment in __unlink_start_trans for what we're modifying.) 376 * 377 * But we also need space for the delayed ref updates from the unlink, 378 * so its 10, 5 for the actual operation, and 5 for the delayed ref 379 * updates. 380 */ 381 min_items += 10; 382 383 num_bytes = max_t(u64, num_bytes, 384 btrfs_calc_insert_metadata_size(fs_info, min_items)); 385 386 spin_lock(&sinfo->lock); 387 spin_lock(&block_rsv->lock); 388 389 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 390 391 if (block_rsv->reserved < block_rsv->size) { 392 num_bytes = block_rsv->size - block_rsv->reserved; 393 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 394 num_bytes); 395 block_rsv->reserved = block_rsv->size; 396 } else if (block_rsv->reserved > block_rsv->size) { 397 num_bytes = block_rsv->reserved - block_rsv->size; 398 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 399 -num_bytes); 400 block_rsv->reserved = block_rsv->size; 401 btrfs_try_granting_tickets(fs_info, sinfo); 402 } 403 404 if (block_rsv->reserved == block_rsv->size) 405 block_rsv->full = 1; 406 else 407 block_rsv->full = 0; 408 409 if (block_rsv->size >= sinfo->total_bytes) 410 sinfo->force_alloc = CHUNK_ALLOC_FORCE; 411 spin_unlock(&block_rsv->lock); 412 spin_unlock(&sinfo->lock); 413 } 414 415 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) 416 { 417 struct btrfs_space_info *space_info; 418 419 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 420 fs_info->chunk_block_rsv.space_info = space_info; 421 422 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 423 fs_info->global_block_rsv.space_info = space_info; 424 fs_info->trans_block_rsv.space_info = space_info; 425 fs_info->empty_block_rsv.space_info = space_info; 426 fs_info->delayed_block_rsv.space_info = space_info; 427 fs_info->delayed_refs_rsv.space_info = space_info; 428 429 /* 430 * Our various recovery options can leave us with NULL roots, so check 431 * here and just bail before we go dereferencing NULLs everywhere. 432 */ 433 if (!fs_info->extent_root || !fs_info->csum_root || 434 !fs_info->dev_root || !fs_info->chunk_root || !fs_info->tree_root) 435 return; 436 437 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv; 438 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv; 439 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv; 440 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv; 441 if (fs_info->quota_root) 442 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv; 443 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv; 444 445 btrfs_update_global_block_rsv(fs_info); 446 } 447 448 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) 449 { 450 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, 451 NULL); 452 WARN_ON(fs_info->trans_block_rsv.size > 0); 453 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 454 WARN_ON(fs_info->chunk_block_rsv.size > 0); 455 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 456 WARN_ON(fs_info->delayed_block_rsv.size > 0); 457 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 458 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); 459 WARN_ON(fs_info->delayed_refs_rsv.size > 0); 460 } 461 462 static struct btrfs_block_rsv *get_block_rsv( 463 const struct btrfs_trans_handle *trans, 464 const struct btrfs_root *root) 465 { 466 struct btrfs_fs_info *fs_info = root->fs_info; 467 struct btrfs_block_rsv *block_rsv = NULL; 468 469 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 470 (root == fs_info->csum_root && trans->adding_csums) || 471 (root == fs_info->uuid_root)) 472 block_rsv = trans->block_rsv; 473 474 if (!block_rsv) 475 block_rsv = root->block_rsv; 476 477 if (!block_rsv) 478 block_rsv = &fs_info->empty_block_rsv; 479 480 return block_rsv; 481 } 482 483 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, 484 struct btrfs_root *root, 485 u32 blocksize) 486 { 487 struct btrfs_fs_info *fs_info = root->fs_info; 488 struct btrfs_block_rsv *block_rsv; 489 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 490 int ret; 491 bool global_updated = false; 492 493 block_rsv = get_block_rsv(trans, root); 494 495 if (unlikely(block_rsv->size == 0)) 496 goto try_reserve; 497 again: 498 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); 499 if (!ret) 500 return block_rsv; 501 502 if (block_rsv->failfast) 503 return ERR_PTR(ret); 504 505 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 506 global_updated = true; 507 btrfs_update_global_block_rsv(fs_info); 508 goto again; 509 } 510 511 /* 512 * The global reserve still exists to save us from ourselves, so don't 513 * warn_on if we are short on our delayed refs reserve. 514 */ 515 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && 516 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 517 static DEFINE_RATELIMIT_STATE(_rs, 518 DEFAULT_RATELIMIT_INTERVAL * 10, 519 /*DEFAULT_RATELIMIT_BURST*/ 1); 520 if (__ratelimit(&_rs)) 521 WARN(1, KERN_DEBUG 522 "BTRFS: block rsv %d returned %d\n", 523 block_rsv->type, ret); 524 } 525 try_reserve: 526 ret = btrfs_reserve_metadata_bytes(root, block_rsv, blocksize, 527 BTRFS_RESERVE_NO_FLUSH); 528 if (!ret) 529 return block_rsv; 530 /* 531 * If we couldn't reserve metadata bytes try and use some from 532 * the global reserve if its space type is the same as the global 533 * reservation. 534 */ 535 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 536 block_rsv->space_info == global_rsv->space_info) { 537 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); 538 if (!ret) 539 return global_rsv; 540 } 541 return ERR_PTR(ret); 542 } 543