1 // SPDX-License-Identifier: GPL-2.0 2 3 #include "misc.h" 4 #include "ctree.h" 5 #include "block-rsv.h" 6 #include "space-info.h" 7 #include "transaction.h" 8 #include "block-group.h" 9 #include "disk-io.h" 10 #include "fs.h" 11 #include "accessors.h" 12 13 /* 14 * HOW DO BLOCK RESERVES WORK 15 * 16 * Think of block_rsv's as buckets for logically grouped metadata 17 * reservations. Each block_rsv has a ->size and a ->reserved. ->size is 18 * how large we want our block rsv to be, ->reserved is how much space is 19 * currently reserved for this block reserve. 20 * 21 * ->failfast exists for the truncate case, and is described below. 22 * 23 * NORMAL OPERATION 24 * 25 * -> Reserve 26 * Entrance: btrfs_block_rsv_add, btrfs_block_rsv_refill 27 * 28 * We call into btrfs_reserve_metadata_bytes() with our bytes, which is 29 * accounted for in space_info->bytes_may_use, and then add the bytes to 30 * ->reserved, and ->size in the case of btrfs_block_rsv_add. 31 * 32 * ->size is an over-estimation of how much we may use for a particular 33 * operation. 34 * 35 * -> Use 36 * Entrance: btrfs_use_block_rsv 37 * 38 * When we do a btrfs_alloc_tree_block() we call into btrfs_use_block_rsv() 39 * to determine the appropriate block_rsv to use, and then verify that 40 * ->reserved has enough space for our tree block allocation. Once 41 * successful we subtract fs_info->nodesize from ->reserved. 42 * 43 * -> Finish 44 * Entrance: btrfs_block_rsv_release 45 * 46 * We are finished with our operation, subtract our individual reservation 47 * from ->size, and then subtract ->size from ->reserved and free up the 48 * excess if there is any. 49 * 50 * There is some logic here to refill the delayed refs rsv or the global rsv 51 * as needed, otherwise the excess is subtracted from 52 * space_info->bytes_may_use. 53 * 54 * TYPES OF BLOCK RESERVES 55 * 56 * BLOCK_RSV_TRANS, BLOCK_RSV_DELOPS, BLOCK_RSV_CHUNK 57 * These behave normally, as described above, just within the confines of the 58 * lifetime of their particular operation (transaction for the whole trans 59 * handle lifetime, for example). 60 * 61 * BLOCK_RSV_GLOBAL 62 * It is impossible to properly account for all the space that may be required 63 * to make our extent tree updates. This block reserve acts as an overflow 64 * buffer in case our delayed refs reserve does not reserve enough space to 65 * update the extent tree. 66 * 67 * We can steal from this in some cases as well, notably on evict() or 68 * truncate() in order to help users recover from ENOSPC conditions. 69 * 70 * BLOCK_RSV_DELALLOC 71 * The individual item sizes are determined by the per-inode size 72 * calculations, which are described with the delalloc code. This is pretty 73 * straightforward, it's just the calculation of ->size encodes a lot of 74 * different items, and thus it gets used when updating inodes, inserting file 75 * extents, and inserting checksums. 76 * 77 * BLOCK_RSV_DELREFS 78 * We keep a running tally of how many delayed refs we have on the system. 79 * We assume each one of these delayed refs are going to use a full 80 * reservation. We use the transaction items and pre-reserve space for every 81 * operation, and use this reservation to refill any gap between ->size and 82 * ->reserved that may exist. 83 * 84 * From there it's straightforward, removing a delayed ref means we remove its 85 * count from ->size and free up reservations as necessary. Since this is 86 * the most dynamic block reserve in the system, we will try to refill this 87 * block reserve first with any excess returned by any other block reserve. 88 * 89 * BLOCK_RSV_EMPTY 90 * This is the fallback block reserve to make us try to reserve space if we 91 * don't have a specific bucket for this allocation. It is mostly used for 92 * updating the device tree and such, since that is a separate pool we're 93 * content to just reserve space from the space_info on demand. 94 * 95 * BLOCK_RSV_TEMP 96 * This is used by things like truncate and iput. We will temporarily 97 * allocate a block reserve, set it to some size, and then truncate bytes 98 * until we have no space left. With ->failfast set we'll simply return 99 * ENOSPC from btrfs_use_block_rsv() to signal that we need to unwind and try 100 * to make a new reservation. This is because these operations are 101 * unbounded, so we want to do as much work as we can, and then back off and 102 * re-reserve. 103 */ 104 105 static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info, 106 struct btrfs_block_rsv *block_rsv, 107 struct btrfs_block_rsv *dest, u64 num_bytes, 108 u64 *qgroup_to_release_ret) 109 { 110 struct btrfs_space_info *space_info = block_rsv->space_info; 111 u64 qgroup_to_release = 0; 112 u64 ret; 113 114 spin_lock(&block_rsv->lock); 115 if (num_bytes == (u64)-1) { 116 num_bytes = block_rsv->size; 117 qgroup_to_release = block_rsv->qgroup_rsv_size; 118 } 119 block_rsv->size -= num_bytes; 120 if (block_rsv->reserved >= block_rsv->size) { 121 num_bytes = block_rsv->reserved - block_rsv->size; 122 block_rsv->reserved = block_rsv->size; 123 block_rsv->full = true; 124 } else { 125 num_bytes = 0; 126 } 127 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) { 128 qgroup_to_release = block_rsv->qgroup_rsv_reserved - 129 block_rsv->qgroup_rsv_size; 130 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size; 131 } else { 132 qgroup_to_release = 0; 133 } 134 spin_unlock(&block_rsv->lock); 135 136 ret = num_bytes; 137 if (num_bytes > 0) { 138 if (dest) { 139 spin_lock(&dest->lock); 140 if (!dest->full) { 141 u64 bytes_to_add; 142 143 bytes_to_add = dest->size - dest->reserved; 144 bytes_to_add = min(num_bytes, bytes_to_add); 145 dest->reserved += bytes_to_add; 146 if (dest->reserved >= dest->size) 147 dest->full = true; 148 num_bytes -= bytes_to_add; 149 } 150 spin_unlock(&dest->lock); 151 } 152 if (num_bytes) 153 btrfs_space_info_free_bytes_may_use(fs_info, 154 space_info, 155 num_bytes); 156 } 157 if (qgroup_to_release_ret) 158 *qgroup_to_release_ret = qgroup_to_release; 159 return ret; 160 } 161 162 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src, 163 struct btrfs_block_rsv *dst, u64 num_bytes, 164 bool update_size) 165 { 166 int ret; 167 168 ret = btrfs_block_rsv_use_bytes(src, num_bytes); 169 if (ret) 170 return ret; 171 172 btrfs_block_rsv_add_bytes(dst, num_bytes, update_size); 173 return 0; 174 } 175 176 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, enum btrfs_rsv_type type) 177 { 178 memset(rsv, 0, sizeof(*rsv)); 179 spin_lock_init(&rsv->lock); 180 rsv->type = type; 181 } 182 183 void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info, 184 struct btrfs_block_rsv *rsv, 185 enum btrfs_rsv_type type) 186 { 187 btrfs_init_block_rsv(rsv, type); 188 rsv->space_info = btrfs_find_space_info(fs_info, 189 BTRFS_BLOCK_GROUP_METADATA); 190 } 191 192 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info, 193 enum btrfs_rsv_type type) 194 { 195 struct btrfs_block_rsv *block_rsv; 196 197 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS); 198 if (!block_rsv) 199 return NULL; 200 201 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type); 202 return block_rsv; 203 } 204 205 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info, 206 struct btrfs_block_rsv *rsv) 207 { 208 if (!rsv) 209 return; 210 btrfs_block_rsv_release(fs_info, rsv, (u64)-1, NULL); 211 kfree(rsv); 212 } 213 214 int btrfs_block_rsv_add(struct btrfs_fs_info *fs_info, 215 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 216 enum btrfs_reserve_flush_enum flush) 217 { 218 int ret; 219 220 if (num_bytes == 0) 221 return 0; 222 223 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 224 if (!ret) 225 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, true); 226 227 return ret; 228 } 229 230 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_percent) 231 { 232 u64 num_bytes = 0; 233 int ret = -ENOSPC; 234 235 if (!block_rsv) 236 return 0; 237 238 spin_lock(&block_rsv->lock); 239 num_bytes = mult_perc(block_rsv->size, min_percent); 240 if (block_rsv->reserved >= num_bytes) 241 ret = 0; 242 spin_unlock(&block_rsv->lock); 243 244 return ret; 245 } 246 247 int btrfs_block_rsv_refill(struct btrfs_fs_info *fs_info, 248 struct btrfs_block_rsv *block_rsv, u64 min_reserved, 249 enum btrfs_reserve_flush_enum flush) 250 { 251 u64 num_bytes = 0; 252 int ret = -ENOSPC; 253 254 if (!block_rsv) 255 return 0; 256 257 spin_lock(&block_rsv->lock); 258 num_bytes = min_reserved; 259 if (block_rsv->reserved >= num_bytes) 260 ret = 0; 261 else 262 num_bytes -= block_rsv->reserved; 263 spin_unlock(&block_rsv->lock); 264 265 if (!ret) 266 return 0; 267 268 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, num_bytes, flush); 269 if (!ret) { 270 btrfs_block_rsv_add_bytes(block_rsv, num_bytes, false); 271 return 0; 272 } 273 274 return ret; 275 } 276 277 u64 btrfs_block_rsv_release(struct btrfs_fs_info *fs_info, 278 struct btrfs_block_rsv *block_rsv, u64 num_bytes, 279 u64 *qgroup_to_release) 280 { 281 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 282 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv; 283 struct btrfs_block_rsv *target = NULL; 284 285 /* 286 * If we are the delayed_rsv then push to the global rsv, otherwise dump 287 * into the delayed rsv if it is not full. 288 */ 289 if (block_rsv == delayed_rsv) 290 target = global_rsv; 291 else if (block_rsv != global_rsv && !btrfs_block_rsv_full(delayed_rsv)) 292 target = delayed_rsv; 293 294 if (target && block_rsv->space_info != target->space_info) 295 target = NULL; 296 297 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes, 298 qgroup_to_release); 299 } 300 301 int btrfs_block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv, u64 num_bytes) 302 { 303 int ret = -ENOSPC; 304 305 spin_lock(&block_rsv->lock); 306 if (block_rsv->reserved >= num_bytes) { 307 block_rsv->reserved -= num_bytes; 308 if (block_rsv->reserved < block_rsv->size) 309 block_rsv->full = false; 310 ret = 0; 311 } 312 spin_unlock(&block_rsv->lock); 313 return ret; 314 } 315 316 void btrfs_block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv, 317 u64 num_bytes, bool update_size) 318 { 319 spin_lock(&block_rsv->lock); 320 block_rsv->reserved += num_bytes; 321 if (update_size) 322 block_rsv->size += num_bytes; 323 else if (block_rsv->reserved >= block_rsv->size) 324 block_rsv->full = true; 325 spin_unlock(&block_rsv->lock); 326 } 327 328 void btrfs_update_global_block_rsv(struct btrfs_fs_info *fs_info) 329 { 330 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 331 struct btrfs_space_info *sinfo = block_rsv->space_info; 332 struct btrfs_root *root, *tmp; 333 u64 num_bytes = btrfs_root_used(&fs_info->tree_root->root_item); 334 unsigned int min_items = 1; 335 336 /* 337 * The global block rsv is based on the size of the extent tree, the 338 * checksum tree and the root tree. If the fs is empty we want to set 339 * it to a minimal amount for safety. 340 * 341 * We also are going to need to modify the minimum of the tree root and 342 * any global roots we could touch. 343 */ 344 read_lock(&fs_info->global_root_lock); 345 rbtree_postorder_for_each_entry_safe(root, tmp, &fs_info->global_root_tree, 346 rb_node) { 347 if (root->root_key.objectid == BTRFS_EXTENT_TREE_OBJECTID || 348 root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID || 349 root->root_key.objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) { 350 num_bytes += btrfs_root_used(&root->root_item); 351 min_items++; 352 } 353 } 354 read_unlock(&fs_info->global_root_lock); 355 356 /* 357 * But we also want to reserve enough space so we can do the fallback 358 * global reserve for an unlink, which is an additional 5 items (see the 359 * comment in __unlink_start_trans for what we're modifying.) 360 * 361 * But we also need space for the delayed ref updates from the unlink, 362 * so its 10, 5 for the actual operation, and 5 for the delayed ref 363 * updates. 364 */ 365 min_items += 10; 366 367 num_bytes = max_t(u64, num_bytes, 368 btrfs_calc_insert_metadata_size(fs_info, min_items)); 369 370 spin_lock(&sinfo->lock); 371 spin_lock(&block_rsv->lock); 372 373 block_rsv->size = min_t(u64, num_bytes, SZ_512M); 374 375 if (block_rsv->reserved < block_rsv->size) { 376 num_bytes = block_rsv->size - block_rsv->reserved; 377 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 378 num_bytes); 379 block_rsv->reserved = block_rsv->size; 380 } else if (block_rsv->reserved > block_rsv->size) { 381 num_bytes = block_rsv->reserved - block_rsv->size; 382 btrfs_space_info_update_bytes_may_use(fs_info, sinfo, 383 -num_bytes); 384 block_rsv->reserved = block_rsv->size; 385 btrfs_try_granting_tickets(fs_info, sinfo); 386 } 387 388 block_rsv->full = (block_rsv->reserved == block_rsv->size); 389 390 if (block_rsv->size >= sinfo->total_bytes) 391 sinfo->force_alloc = CHUNK_ALLOC_FORCE; 392 spin_unlock(&block_rsv->lock); 393 spin_unlock(&sinfo->lock); 394 } 395 396 void btrfs_init_root_block_rsv(struct btrfs_root *root) 397 { 398 struct btrfs_fs_info *fs_info = root->fs_info; 399 400 switch (root->root_key.objectid) { 401 case BTRFS_CSUM_TREE_OBJECTID: 402 case BTRFS_EXTENT_TREE_OBJECTID: 403 case BTRFS_FREE_SPACE_TREE_OBJECTID: 404 case BTRFS_BLOCK_GROUP_TREE_OBJECTID: 405 root->block_rsv = &fs_info->delayed_refs_rsv; 406 break; 407 case BTRFS_ROOT_TREE_OBJECTID: 408 case BTRFS_DEV_TREE_OBJECTID: 409 case BTRFS_QUOTA_TREE_OBJECTID: 410 root->block_rsv = &fs_info->global_block_rsv; 411 break; 412 case BTRFS_CHUNK_TREE_OBJECTID: 413 root->block_rsv = &fs_info->chunk_block_rsv; 414 break; 415 default: 416 root->block_rsv = NULL; 417 break; 418 } 419 } 420 421 void btrfs_init_global_block_rsv(struct btrfs_fs_info *fs_info) 422 { 423 struct btrfs_space_info *space_info; 424 425 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM); 426 fs_info->chunk_block_rsv.space_info = space_info; 427 428 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA); 429 fs_info->global_block_rsv.space_info = space_info; 430 fs_info->trans_block_rsv.space_info = space_info; 431 fs_info->empty_block_rsv.space_info = space_info; 432 fs_info->delayed_block_rsv.space_info = space_info; 433 fs_info->delayed_refs_rsv.space_info = space_info; 434 435 btrfs_update_global_block_rsv(fs_info); 436 } 437 438 void btrfs_release_global_block_rsv(struct btrfs_fs_info *fs_info) 439 { 440 btrfs_block_rsv_release(fs_info, &fs_info->global_block_rsv, (u64)-1, 441 NULL); 442 WARN_ON(fs_info->trans_block_rsv.size > 0); 443 WARN_ON(fs_info->trans_block_rsv.reserved > 0); 444 WARN_ON(fs_info->chunk_block_rsv.size > 0); 445 WARN_ON(fs_info->chunk_block_rsv.reserved > 0); 446 WARN_ON(fs_info->delayed_block_rsv.size > 0); 447 WARN_ON(fs_info->delayed_block_rsv.reserved > 0); 448 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0); 449 WARN_ON(fs_info->delayed_refs_rsv.size > 0); 450 } 451 452 static struct btrfs_block_rsv *get_block_rsv( 453 const struct btrfs_trans_handle *trans, 454 const struct btrfs_root *root) 455 { 456 struct btrfs_fs_info *fs_info = root->fs_info; 457 struct btrfs_block_rsv *block_rsv = NULL; 458 459 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 460 (root == fs_info->uuid_root) || 461 (trans->adding_csums && 462 root->root_key.objectid == BTRFS_CSUM_TREE_OBJECTID)) 463 block_rsv = trans->block_rsv; 464 465 if (!block_rsv) 466 block_rsv = root->block_rsv; 467 468 if (!block_rsv) 469 block_rsv = &fs_info->empty_block_rsv; 470 471 return block_rsv; 472 } 473 474 struct btrfs_block_rsv *btrfs_use_block_rsv(struct btrfs_trans_handle *trans, 475 struct btrfs_root *root, 476 u32 blocksize) 477 { 478 struct btrfs_fs_info *fs_info = root->fs_info; 479 struct btrfs_block_rsv *block_rsv; 480 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv; 481 int ret; 482 bool global_updated = false; 483 484 block_rsv = get_block_rsv(trans, root); 485 486 if (unlikely(block_rsv->size == 0)) 487 goto try_reserve; 488 again: 489 ret = btrfs_block_rsv_use_bytes(block_rsv, blocksize); 490 if (!ret) 491 return block_rsv; 492 493 if (block_rsv->failfast) 494 return ERR_PTR(ret); 495 496 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) { 497 global_updated = true; 498 btrfs_update_global_block_rsv(fs_info); 499 goto again; 500 } 501 502 /* 503 * The global reserve still exists to save us from ourselves, so don't 504 * warn_on if we are short on our delayed refs reserve. 505 */ 506 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS && 507 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) { 508 static DEFINE_RATELIMIT_STATE(_rs, 509 DEFAULT_RATELIMIT_INTERVAL * 10, 510 /*DEFAULT_RATELIMIT_BURST*/ 1); 511 if (__ratelimit(&_rs)) 512 WARN(1, KERN_DEBUG 513 "BTRFS: block rsv %d returned %d\n", 514 block_rsv->type, ret); 515 } 516 try_reserve: 517 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize, 518 BTRFS_RESERVE_NO_FLUSH); 519 if (!ret) 520 return block_rsv; 521 /* 522 * If we couldn't reserve metadata bytes try and use some from 523 * the global reserve if its space type is the same as the global 524 * reservation. 525 */ 526 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL && 527 block_rsv->space_info == global_rsv->space_info) { 528 ret = btrfs_block_rsv_use_bytes(global_rsv, blocksize); 529 if (!ret) 530 return global_rsv; 531 } 532 533 /* 534 * All hope is lost, but of course our reservations are overly 535 * pessimistic, so instead of possibly having an ENOSPC abort here, try 536 * one last time to force a reservation if there's enough actual space 537 * on disk to make the reservation. 538 */ 539 ret = btrfs_reserve_metadata_bytes(fs_info, block_rsv, blocksize, 540 BTRFS_RESERVE_FLUSH_EMERGENCY); 541 if (!ret) 542 return block_rsv; 543 544 return ERR_PTR(ret); 545 } 546