1 /* 2 * Tty buffer allocation management 3 */ 4 5 #include <linux/types.h> 6 #include <linux/errno.h> 7 #include <linux/tty.h> 8 #include <linux/tty_driver.h> 9 #include <linux/tty_flip.h> 10 #include <linux/timer.h> 11 #include <linux/string.h> 12 #include <linux/slab.h> 13 #include <linux/sched.h> 14 #include <linux/init.h> 15 #include <linux/wait.h> 16 #include <linux/bitops.h> 17 #include <linux/delay.h> 18 #include <linux/module.h> 19 #include <linux/ratelimit.h> 20 21 22 #define MIN_TTYB_SIZE 256 23 #define TTYB_ALIGN_MASK 255 24 25 /* 26 * Byte threshold to limit memory consumption for flip buffers. 27 * The actual memory limit is > 2x this amount. 28 */ 29 #define TTYB_DEFAULT_MEM_LIMIT 65536 30 31 /* 32 * We default to dicing tty buffer allocations to this many characters 33 * in order to avoid multiple page allocations. We know the size of 34 * tty_buffer itself but it must also be taken into account that the 35 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation 36 * logic this must match 37 */ 38 39 #define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF) 40 41 42 /** 43 * tty_buffer_lock_exclusive - gain exclusive access to buffer 44 * tty_buffer_unlock_exclusive - release exclusive access 45 * 46 * @port - tty_port owning the flip buffer 47 * 48 * Guarantees safe use of the line discipline's receive_buf() method by 49 * excluding the buffer work and any pending flush from using the flip 50 * buffer. Data can continue to be added concurrently to the flip buffer 51 * from the driver side. 52 * 53 * On release, the buffer work is restarted if there is data in the 54 * flip buffer 55 */ 56 57 void tty_buffer_lock_exclusive(struct tty_port *port) 58 { 59 struct tty_bufhead *buf = &port->buf; 60 61 atomic_inc(&buf->priority); 62 mutex_lock(&buf->lock); 63 } 64 65 void tty_buffer_unlock_exclusive(struct tty_port *port) 66 { 67 struct tty_bufhead *buf = &port->buf; 68 int restart; 69 70 restart = buf->head->commit != buf->head->read; 71 72 atomic_dec(&buf->priority); 73 mutex_unlock(&buf->lock); 74 if (restart) 75 queue_work(system_unbound_wq, &buf->work); 76 } 77 78 /** 79 * tty_buffer_space_avail - return unused buffer space 80 * @port - tty_port owning the flip buffer 81 * 82 * Returns the # of bytes which can be written by the driver without 83 * reaching the buffer limit. 84 * 85 * Note: this does not guarantee that memory is available to write 86 * the returned # of bytes (use tty_prepare_flip_string_xxx() to 87 * pre-allocate if memory guarantee is required). 88 */ 89 90 int tty_buffer_space_avail(struct tty_port *port) 91 { 92 int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used); 93 return max(space, 0); 94 } 95 EXPORT_SYMBOL_GPL(tty_buffer_space_avail); 96 97 static void tty_buffer_reset(struct tty_buffer *p, size_t size) 98 { 99 p->used = 0; 100 p->size = size; 101 p->next = NULL; 102 p->commit = 0; 103 p->read = 0; 104 p->flags = 0; 105 } 106 107 /** 108 * tty_buffer_free_all - free buffers used by a tty 109 * @tty: tty to free from 110 * 111 * Remove all the buffers pending on a tty whether queued with data 112 * or in the free ring. Must be called when the tty is no longer in use 113 */ 114 115 void tty_buffer_free_all(struct tty_port *port) 116 { 117 struct tty_bufhead *buf = &port->buf; 118 struct tty_buffer *p, *next; 119 struct llist_node *llist; 120 121 while ((p = buf->head) != NULL) { 122 buf->head = p->next; 123 if (p->size > 0) 124 kfree(p); 125 } 126 llist = llist_del_all(&buf->free); 127 llist_for_each_entry_safe(p, next, llist, free) 128 kfree(p); 129 130 tty_buffer_reset(&buf->sentinel, 0); 131 buf->head = &buf->sentinel; 132 buf->tail = &buf->sentinel; 133 134 atomic_set(&buf->mem_used, 0); 135 } 136 137 /** 138 * tty_buffer_alloc - allocate a tty buffer 139 * @tty: tty device 140 * @size: desired size (characters) 141 * 142 * Allocate a new tty buffer to hold the desired number of characters. 143 * We round our buffers off in 256 character chunks to get better 144 * allocation behaviour. 145 * Return NULL if out of memory or the allocation would exceed the 146 * per device queue 147 */ 148 149 static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size) 150 { 151 struct llist_node *free; 152 struct tty_buffer *p; 153 154 /* Round the buffer size out */ 155 size = __ALIGN_MASK(size, TTYB_ALIGN_MASK); 156 157 if (size <= MIN_TTYB_SIZE) { 158 free = llist_del_first(&port->buf.free); 159 if (free) { 160 p = llist_entry(free, struct tty_buffer, free); 161 goto found; 162 } 163 } 164 165 /* Should possibly check if this fails for the largest buffer we 166 have queued and recycle that ? */ 167 if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit) 168 return NULL; 169 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC); 170 if (p == NULL) 171 return NULL; 172 173 found: 174 tty_buffer_reset(p, size); 175 atomic_add(size, &port->buf.mem_used); 176 return p; 177 } 178 179 /** 180 * tty_buffer_free - free a tty buffer 181 * @tty: tty owning the buffer 182 * @b: the buffer to free 183 * 184 * Free a tty buffer, or add it to the free list according to our 185 * internal strategy 186 */ 187 188 static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b) 189 { 190 struct tty_bufhead *buf = &port->buf; 191 192 /* Dumb strategy for now - should keep some stats */ 193 WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0); 194 195 if (b->size > MIN_TTYB_SIZE) 196 kfree(b); 197 else if (b->size > 0) 198 llist_add(&b->free, &buf->free); 199 } 200 201 /** 202 * tty_buffer_flush - flush full tty buffers 203 * @tty: tty to flush 204 * 205 * flush all the buffers containing receive data. 206 * 207 * Locking: takes buffer lock to ensure single-threaded flip buffer 208 * 'consumer' 209 */ 210 211 void tty_buffer_flush(struct tty_struct *tty) 212 { 213 struct tty_port *port = tty->port; 214 struct tty_bufhead *buf = &port->buf; 215 struct tty_buffer *next; 216 217 atomic_inc(&buf->priority); 218 219 mutex_lock(&buf->lock); 220 while ((next = buf->head->next) != NULL) { 221 tty_buffer_free(port, buf->head); 222 buf->head = next; 223 } 224 buf->head->read = buf->head->commit; 225 atomic_dec(&buf->priority); 226 mutex_unlock(&buf->lock); 227 } 228 229 /** 230 * tty_buffer_request_room - grow tty buffer if needed 231 * @tty: tty structure 232 * @size: size desired 233 * @flags: buffer flags if new buffer allocated (default = 0) 234 * 235 * Make at least size bytes of linear space available for the tty 236 * buffer. If we fail return the size we managed to find. 237 * 238 * Will change over to a new buffer if the current buffer is encoded as 239 * TTY_NORMAL (so has no flags buffer) and the new buffer requires 240 * a flags buffer. 241 */ 242 static int __tty_buffer_request_room(struct tty_port *port, size_t size, 243 int flags) 244 { 245 struct tty_bufhead *buf = &port->buf; 246 struct tty_buffer *b, *n; 247 int left, change; 248 249 b = buf->tail; 250 if (b->flags & TTYB_NORMAL) 251 left = 2 * b->size - b->used; 252 else 253 left = b->size - b->used; 254 255 change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL); 256 if (change || left < size) { 257 /* This is the slow path - looking for new buffers to use */ 258 if ((n = tty_buffer_alloc(port, size)) != NULL) { 259 n->flags = flags; 260 buf->tail = n; 261 b->commit = b->used; 262 smp_mb(); 263 b->next = n; 264 } else if (change) 265 size = 0; 266 else 267 size = left; 268 } 269 return size; 270 } 271 272 int tty_buffer_request_room(struct tty_port *port, size_t size) 273 { 274 return __tty_buffer_request_room(port, size, 0); 275 } 276 EXPORT_SYMBOL_GPL(tty_buffer_request_room); 277 278 /** 279 * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer 280 * @port: tty port 281 * @chars: characters 282 * @flag: flag value for each character 283 * @size: size 284 * 285 * Queue a series of bytes to the tty buffering. All the characters 286 * passed are marked with the supplied flag. Returns the number added. 287 */ 288 289 int tty_insert_flip_string_fixed_flag(struct tty_port *port, 290 const unsigned char *chars, char flag, size_t size) 291 { 292 int copied = 0; 293 do { 294 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 295 int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0; 296 int space = __tty_buffer_request_room(port, goal, flags); 297 struct tty_buffer *tb = port->buf.tail; 298 if (unlikely(space == 0)) 299 break; 300 memcpy(char_buf_ptr(tb, tb->used), chars, space); 301 if (~tb->flags & TTYB_NORMAL) 302 memset(flag_buf_ptr(tb, tb->used), flag, space); 303 tb->used += space; 304 copied += space; 305 chars += space; 306 /* There is a small chance that we need to split the data over 307 several buffers. If this is the case we must loop */ 308 } while (unlikely(size > copied)); 309 return copied; 310 } 311 EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag); 312 313 /** 314 * tty_insert_flip_string_flags - Add characters to the tty buffer 315 * @port: tty port 316 * @chars: characters 317 * @flags: flag bytes 318 * @size: size 319 * 320 * Queue a series of bytes to the tty buffering. For each character 321 * the flags array indicates the status of the character. Returns the 322 * number added. 323 */ 324 325 int tty_insert_flip_string_flags(struct tty_port *port, 326 const unsigned char *chars, const char *flags, size_t size) 327 { 328 int copied = 0; 329 do { 330 int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); 331 int space = tty_buffer_request_room(port, goal); 332 struct tty_buffer *tb = port->buf.tail; 333 if (unlikely(space == 0)) 334 break; 335 memcpy(char_buf_ptr(tb, tb->used), chars, space); 336 memcpy(flag_buf_ptr(tb, tb->used), flags, space); 337 tb->used += space; 338 copied += space; 339 chars += space; 340 flags += space; 341 /* There is a small chance that we need to split the data over 342 several buffers. If this is the case we must loop */ 343 } while (unlikely(size > copied)); 344 return copied; 345 } 346 EXPORT_SYMBOL(tty_insert_flip_string_flags); 347 348 /** 349 * tty_schedule_flip - push characters to ldisc 350 * @port: tty port to push from 351 * 352 * Takes any pending buffers and transfers their ownership to the 353 * ldisc side of the queue. It then schedules those characters for 354 * processing by the line discipline. 355 * Note that this function can only be used when the low_latency flag 356 * is unset. Otherwise the workqueue won't be flushed. 357 */ 358 359 void tty_schedule_flip(struct tty_port *port) 360 { 361 struct tty_bufhead *buf = &port->buf; 362 WARN_ON(port->low_latency); 363 364 buf->tail->commit = buf->tail->used; 365 schedule_work(&buf->work); 366 } 367 EXPORT_SYMBOL(tty_schedule_flip); 368 369 /** 370 * tty_prepare_flip_string - make room for characters 371 * @port: tty port 372 * @chars: return pointer for character write area 373 * @size: desired size 374 * 375 * Prepare a block of space in the buffer for data. Returns the length 376 * available and buffer pointer to the space which is now allocated and 377 * accounted for as ready for normal characters. This is used for drivers 378 * that need their own block copy routines into the buffer. There is no 379 * guarantee the buffer is a DMA target! 380 */ 381 382 int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars, 383 size_t size) 384 { 385 int space = __tty_buffer_request_room(port, size, TTYB_NORMAL); 386 if (likely(space)) { 387 struct tty_buffer *tb = port->buf.tail; 388 *chars = char_buf_ptr(tb, tb->used); 389 if (~tb->flags & TTYB_NORMAL) 390 memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space); 391 tb->used += space; 392 } 393 return space; 394 } 395 EXPORT_SYMBOL_GPL(tty_prepare_flip_string); 396 397 398 static int 399 receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count) 400 { 401 struct tty_ldisc *disc = tty->ldisc; 402 unsigned char *p = char_buf_ptr(head, head->read); 403 char *f = NULL; 404 405 if (~head->flags & TTYB_NORMAL) 406 f = flag_buf_ptr(head, head->read); 407 408 if (disc->ops->receive_buf2) 409 count = disc->ops->receive_buf2(tty, p, f, count); 410 else { 411 count = min_t(int, count, tty->receive_room); 412 if (count) 413 disc->ops->receive_buf(tty, p, f, count); 414 } 415 head->read += count; 416 return count; 417 } 418 419 /** 420 * flush_to_ldisc 421 * @work: tty structure passed from work queue. 422 * 423 * This routine is called out of the software interrupt to flush data 424 * from the buffer chain to the line discipline. 425 * 426 * The receive_buf method is single threaded for each tty instance. 427 * 428 * Locking: takes buffer lock to ensure single-threaded flip buffer 429 * 'consumer' 430 */ 431 432 static void flush_to_ldisc(struct work_struct *work) 433 { 434 struct tty_port *port = container_of(work, struct tty_port, buf.work); 435 struct tty_bufhead *buf = &port->buf; 436 struct tty_struct *tty; 437 struct tty_ldisc *disc; 438 439 tty = port->itty; 440 if (tty == NULL) 441 return; 442 443 disc = tty_ldisc_ref(tty); 444 if (disc == NULL) 445 return; 446 447 mutex_lock(&buf->lock); 448 449 while (1) { 450 struct tty_buffer *head = buf->head; 451 int count; 452 453 /* Ldisc or user is trying to gain exclusive access */ 454 if (atomic_read(&buf->priority)) 455 break; 456 457 count = head->commit - head->read; 458 if (!count) { 459 if (head->next == NULL) 460 break; 461 buf->head = head->next; 462 tty_buffer_free(port, head); 463 continue; 464 } 465 466 count = receive_buf(tty, head, count); 467 if (!count) 468 break; 469 } 470 471 mutex_unlock(&buf->lock); 472 473 tty_ldisc_deref(disc); 474 } 475 476 /** 477 * tty_flush_to_ldisc 478 * @tty: tty to push 479 * 480 * Push the terminal flip buffers to the line discipline. 481 * 482 * Must not be called from IRQ context. 483 */ 484 void tty_flush_to_ldisc(struct tty_struct *tty) 485 { 486 if (!tty->port->low_latency) 487 flush_work(&tty->port->buf.work); 488 } 489 490 /** 491 * tty_flip_buffer_push - terminal 492 * @port: tty port to push 493 * 494 * Queue a push of the terminal flip buffers to the line discipline. This 495 * function must not be called from IRQ context if port->low_latency is 496 * set. 497 * 498 * In the event of the queue being busy for flipping the work will be 499 * held off and retried later. 500 */ 501 502 void tty_flip_buffer_push(struct tty_port *port) 503 { 504 struct tty_bufhead *buf = &port->buf; 505 506 buf->tail->commit = buf->tail->used; 507 508 if (port->low_latency) 509 flush_to_ldisc(&buf->work); 510 else 511 schedule_work(&buf->work); 512 } 513 EXPORT_SYMBOL(tty_flip_buffer_push); 514 515 /** 516 * tty_buffer_init - prepare a tty buffer structure 517 * @tty: tty to initialise 518 * 519 * Set up the initial state of the buffer management for a tty device. 520 * Must be called before the other tty buffer functions are used. 521 */ 522 523 void tty_buffer_init(struct tty_port *port) 524 { 525 struct tty_bufhead *buf = &port->buf; 526 527 mutex_init(&buf->lock); 528 tty_buffer_reset(&buf->sentinel, 0); 529 buf->head = &buf->sentinel; 530 buf->tail = &buf->sentinel; 531 init_llist_head(&buf->free); 532 atomic_set(&buf->mem_used, 0); 533 atomic_set(&buf->priority, 0); 534 INIT_WORK(&buf->work, flush_to_ldisc); 535 buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT; 536 } 537 538 /** 539 * tty_buffer_set_limit - change the tty buffer memory limit 540 * @port: tty port to change 541 * 542 * Change the tty buffer memory limit. 543 * Must be called before the other tty buffer functions are used. 544 */ 545 546 int tty_buffer_set_limit(struct tty_port *port, int limit) 547 { 548 if (limit < MIN_TTYB_SIZE) 549 return -EINVAL; 550 port->buf.mem_limit = limit; 551 return 0; 552 } 553 EXPORT_SYMBOL_GPL(tty_buffer_set_limit); 554