/* * Tty buffer allocation management */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define MIN_TTYB_SIZE 256 #define TTYB_ALIGN_MASK 255 /* * Byte threshold to limit memory consumption for flip buffers. * The actual memory limit is > 2x this amount. */ #define TTYB_DEFAULT_MEM_LIMIT 65536 /* * We default to dicing tty buffer allocations to this many characters * in order to avoid multiple page allocations. We know the size of * tty_buffer itself but it must also be taken into account that the * the buffer is 256 byte aligned. See tty_buffer_find for the allocation * logic this must match */ #define TTY_BUFFER_PAGE (((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF) /** * tty_buffer_lock_exclusive - gain exclusive access to buffer * tty_buffer_unlock_exclusive - release exclusive access * * @port - tty_port owning the flip buffer * * Guarantees safe use of the line discipline's receive_buf() method by * excluding the buffer work and any pending flush from using the flip * buffer. Data can continue to be added concurrently to the flip buffer * from the driver side. * * On release, the buffer work is restarted if there is data in the * flip buffer */ void tty_buffer_lock_exclusive(struct tty_port *port) { struct tty_bufhead *buf = &port->buf; atomic_inc(&buf->priority); mutex_lock(&buf->lock); } void tty_buffer_unlock_exclusive(struct tty_port *port) { struct tty_bufhead *buf = &port->buf; int restart; restart = buf->head->commit != buf->head->read; atomic_dec(&buf->priority); mutex_unlock(&buf->lock); if (restart) queue_work(system_unbound_wq, &buf->work); } /** * tty_buffer_space_avail - return unused buffer space * @port - tty_port owning the flip buffer * * Returns the # of bytes which can be written by the driver without * reaching the buffer limit. * * Note: this does not guarantee that memory is available to write * the returned # of bytes (use tty_prepare_flip_string_xxx() to * pre-allocate if memory guarantee is required). */ int tty_buffer_space_avail(struct tty_port *port) { int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used); return max(space, 0); } EXPORT_SYMBOL_GPL(tty_buffer_space_avail); static void tty_buffer_reset(struct tty_buffer *p, size_t size) { p->used = 0; p->size = size; p->next = NULL; p->commit = 0; p->read = 0; p->flags = 0; } /** * tty_buffer_free_all - free buffers used by a tty * @tty: tty to free from * * Remove all the buffers pending on a tty whether queued with data * or in the free ring. Must be called when the tty is no longer in use */ void tty_buffer_free_all(struct tty_port *port) { struct tty_bufhead *buf = &port->buf; struct tty_buffer *p, *next; struct llist_node *llist; while ((p = buf->head) != NULL) { buf->head = p->next; if (p->size > 0) kfree(p); } llist = llist_del_all(&buf->free); llist_for_each_entry_safe(p, next, llist, free) kfree(p); tty_buffer_reset(&buf->sentinel, 0); buf->head = &buf->sentinel; buf->tail = &buf->sentinel; atomic_set(&buf->mem_used, 0); } /** * tty_buffer_alloc - allocate a tty buffer * @tty: tty device * @size: desired size (characters) * * Allocate a new tty buffer to hold the desired number of characters. * We round our buffers off in 256 character chunks to get better * allocation behaviour. * Return NULL if out of memory or the allocation would exceed the * per device queue */ static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size) { struct llist_node *free; struct tty_buffer *p; /* Round the buffer size out */ size = __ALIGN_MASK(size, TTYB_ALIGN_MASK); if (size <= MIN_TTYB_SIZE) { free = llist_del_first(&port->buf.free); if (free) { p = llist_entry(free, struct tty_buffer, free); goto found; } } /* Should possibly check if this fails for the largest buffer we have queued and recycle that ? */ if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit) return NULL; p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC); if (p == NULL) return NULL; found: tty_buffer_reset(p, size); atomic_add(size, &port->buf.mem_used); return p; } /** * tty_buffer_free - free a tty buffer * @tty: tty owning the buffer * @b: the buffer to free * * Free a tty buffer, or add it to the free list according to our * internal strategy */ static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b) { struct tty_bufhead *buf = &port->buf; /* Dumb strategy for now - should keep some stats */ WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0); if (b->size > MIN_TTYB_SIZE) kfree(b); else if (b->size > 0) llist_add(&b->free, &buf->free); } /** * tty_buffer_flush - flush full tty buffers * @tty: tty to flush * * flush all the buffers containing receive data. * * Locking: takes buffer lock to ensure single-threaded flip buffer * 'consumer' */ void tty_buffer_flush(struct tty_struct *tty) { struct tty_port *port = tty->port; struct tty_bufhead *buf = &port->buf; struct tty_buffer *next; atomic_inc(&buf->priority); mutex_lock(&buf->lock); while ((next = buf->head->next) != NULL) { tty_buffer_free(port, buf->head); buf->head = next; } buf->head->read = buf->head->commit; atomic_dec(&buf->priority); mutex_unlock(&buf->lock); } /** * tty_buffer_request_room - grow tty buffer if needed * @tty: tty structure * @size: size desired * @flags: buffer flags if new buffer allocated (default = 0) * * Make at least size bytes of linear space available for the tty * buffer. If we fail return the size we managed to find. * * Will change over to a new buffer if the current buffer is encoded as * TTY_NORMAL (so has no flags buffer) and the new buffer requires * a flags buffer. */ static int __tty_buffer_request_room(struct tty_port *port, size_t size, int flags) { struct tty_bufhead *buf = &port->buf; struct tty_buffer *b, *n; int left, change; b = buf->tail; if (b->flags & TTYB_NORMAL) left = 2 * b->size - b->used; else left = b->size - b->used; change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL); if (change || left < size) { /* This is the slow path - looking for new buffers to use */ if ((n = tty_buffer_alloc(port, size)) != NULL) { n->flags = flags; buf->tail = n; b->commit = b->used; smp_mb(); b->next = n; } else if (change) size = 0; else size = left; } return size; } int tty_buffer_request_room(struct tty_port *port, size_t size) { return __tty_buffer_request_room(port, size, 0); } EXPORT_SYMBOL_GPL(tty_buffer_request_room); /** * tty_insert_flip_string_fixed_flag - Add characters to the tty buffer * @port: tty port * @chars: characters * @flag: flag value for each character * @size: size * * Queue a series of bytes to the tty buffering. All the characters * passed are marked with the supplied flag. Returns the number added. */ int tty_insert_flip_string_fixed_flag(struct tty_port *port, const unsigned char *chars, char flag, size_t size) { int copied = 0; do { int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0; int space = __tty_buffer_request_room(port, goal, flags); struct tty_buffer *tb = port->buf.tail; if (unlikely(space == 0)) break; memcpy(char_buf_ptr(tb, tb->used), chars, space); if (~tb->flags & TTYB_NORMAL) memset(flag_buf_ptr(tb, tb->used), flag, space); tb->used += space; copied += space; chars += space; /* There is a small chance that we need to split the data over several buffers. If this is the case we must loop */ } while (unlikely(size > copied)); return copied; } EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag); /** * tty_insert_flip_string_flags - Add characters to the tty buffer * @port: tty port * @chars: characters * @flags: flag bytes * @size: size * * Queue a series of bytes to the tty buffering. For each character * the flags array indicates the status of the character. Returns the * number added. */ int tty_insert_flip_string_flags(struct tty_port *port, const unsigned char *chars, const char *flags, size_t size) { int copied = 0; do { int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE); int space = tty_buffer_request_room(port, goal); struct tty_buffer *tb = port->buf.tail; if (unlikely(space == 0)) break; memcpy(char_buf_ptr(tb, tb->used), chars, space); memcpy(flag_buf_ptr(tb, tb->used), flags, space); tb->used += space; copied += space; chars += space; flags += space; /* There is a small chance that we need to split the data over several buffers. If this is the case we must loop */ } while (unlikely(size > copied)); return copied; } EXPORT_SYMBOL(tty_insert_flip_string_flags); /** * tty_schedule_flip - push characters to ldisc * @port: tty port to push from * * Takes any pending buffers and transfers their ownership to the * ldisc side of the queue. It then schedules those characters for * processing by the line discipline. * Note that this function can only be used when the low_latency flag * is unset. Otherwise the workqueue won't be flushed. */ void tty_schedule_flip(struct tty_port *port) { struct tty_bufhead *buf = &port->buf; WARN_ON(port->low_latency); buf->tail->commit = buf->tail->used; schedule_work(&buf->work); } EXPORT_SYMBOL(tty_schedule_flip); /** * tty_prepare_flip_string - make room for characters * @port: tty port * @chars: return pointer for character write area * @size: desired size * * Prepare a block of space in the buffer for data. Returns the length * available and buffer pointer to the space which is now allocated and * accounted for as ready for normal characters. This is used for drivers * that need their own block copy routines into the buffer. There is no * guarantee the buffer is a DMA target! */ int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars, size_t size) { int space = __tty_buffer_request_room(port, size, TTYB_NORMAL); if (likely(space)) { struct tty_buffer *tb = port->buf.tail; *chars = char_buf_ptr(tb, tb->used); if (~tb->flags & TTYB_NORMAL) memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space); tb->used += space; } return space; } EXPORT_SYMBOL_GPL(tty_prepare_flip_string); static int receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count) { struct tty_ldisc *disc = tty->ldisc; unsigned char *p = char_buf_ptr(head, head->read); char *f = NULL; if (~head->flags & TTYB_NORMAL) f = flag_buf_ptr(head, head->read); if (disc->ops->receive_buf2) count = disc->ops->receive_buf2(tty, p, f, count); else { count = min_t(int, count, tty->receive_room); if (count) disc->ops->receive_buf(tty, p, f, count); } head->read += count; return count; } /** * flush_to_ldisc * @work: tty structure passed from work queue. * * This routine is called out of the software interrupt to flush data * from the buffer chain to the line discipline. * * The receive_buf method is single threaded for each tty instance. * * Locking: takes buffer lock to ensure single-threaded flip buffer * 'consumer' */ static void flush_to_ldisc(struct work_struct *work) { struct tty_port *port = container_of(work, struct tty_port, buf.work); struct tty_bufhead *buf = &port->buf; struct tty_struct *tty; struct tty_ldisc *disc; tty = port->itty; if (tty == NULL) return; disc = tty_ldisc_ref(tty); if (disc == NULL) return; mutex_lock(&buf->lock); while (1) { struct tty_buffer *head = buf->head; int count; /* Ldisc or user is trying to gain exclusive access */ if (atomic_read(&buf->priority)) break; count = head->commit - head->read; if (!count) { if (head->next == NULL) break; buf->head = head->next; tty_buffer_free(port, head); continue; } count = receive_buf(tty, head, count); if (!count) break; } mutex_unlock(&buf->lock); tty_ldisc_deref(disc); } /** * tty_flush_to_ldisc * @tty: tty to push * * Push the terminal flip buffers to the line discipline. * * Must not be called from IRQ context. */ void tty_flush_to_ldisc(struct tty_struct *tty) { if (!tty->port->low_latency) flush_work(&tty->port->buf.work); } /** * tty_flip_buffer_push - terminal * @port: tty port to push * * Queue a push of the terminal flip buffers to the line discipline. This * function must not be called from IRQ context if port->low_latency is * set. * * In the event of the queue being busy for flipping the work will be * held off and retried later. */ void tty_flip_buffer_push(struct tty_port *port) { struct tty_bufhead *buf = &port->buf; buf->tail->commit = buf->tail->used; if (port->low_latency) flush_to_ldisc(&buf->work); else schedule_work(&buf->work); } EXPORT_SYMBOL(tty_flip_buffer_push); /** * tty_buffer_init - prepare a tty buffer structure * @tty: tty to initialise * * Set up the initial state of the buffer management for a tty device. * Must be called before the other tty buffer functions are used. */ void tty_buffer_init(struct tty_port *port) { struct tty_bufhead *buf = &port->buf; mutex_init(&buf->lock); tty_buffer_reset(&buf->sentinel, 0); buf->head = &buf->sentinel; buf->tail = &buf->sentinel; init_llist_head(&buf->free); atomic_set(&buf->mem_used, 0); atomic_set(&buf->priority, 0); INIT_WORK(&buf->work, flush_to_ldisc); buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT; } /** * tty_buffer_set_limit - change the tty buffer memory limit * @port: tty port to change * * Change the tty buffer memory limit. * Must be called before the other tty buffer functions are used. */ int tty_buffer_set_limit(struct tty_port *port, int limit) { if (limit < MIN_TTYB_SIZE) return -EINVAL; port->buf.mem_limit = limit; return 0; } EXPORT_SYMBOL_GPL(tty_buffer_set_limit);