1 /* 2 * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. 3 * 4 * Author: 5 * Mikko Perttunen <mperttunen@nvidia.com> 6 * 7 * This software is licensed under the terms of the GNU General Public 8 * License version 2, as published by the Free Software Foundation, and 9 * may be copied, distributed, and modified under those terms. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 */ 17 18 #include <linux/debugfs.h> 19 #include <linux/bitops.h> 20 #include <linux/clk.h> 21 #include <linux/delay.h> 22 #include <linux/err.h> 23 #include <linux/interrupt.h> 24 #include <linux/io.h> 25 #include <linux/module.h> 26 #include <linux/of.h> 27 #include <linux/platform_device.h> 28 #include <linux/reset.h> 29 #include <linux/thermal.h> 30 31 #include <dt-bindings/thermal/tegra124-soctherm.h> 32 33 #include "../thermal_core.h" 34 #include "soctherm.h" 35 36 #define SENSOR_CONFIG0 0 37 #define SENSOR_CONFIG0_STOP BIT(0) 38 #define SENSOR_CONFIG0_CPTR_OVER BIT(2) 39 #define SENSOR_CONFIG0_OVER BIT(3) 40 #define SENSOR_CONFIG0_TCALC_OVER BIT(4) 41 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) 42 #define SENSOR_CONFIG0_TALL_SHIFT 8 43 44 #define SENSOR_CONFIG1 4 45 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff 46 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 47 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) 48 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 49 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) 50 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 51 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) 52 53 /* 54 * SENSOR_CONFIG2 is defined in soctherm.h 55 * because, it will be used by tegra_soctherm_fuse.c 56 */ 57 58 #define SENSOR_STATUS0 0xc 59 #define SENSOR_STATUS0_VALID_MASK BIT(31) 60 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff 61 62 #define SENSOR_STATUS1 0x10 63 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) 64 #define SENSOR_STATUS1_TEMP_MASK 0xffff 65 66 #define READBACK_VALUE_MASK 0xff00 67 #define READBACK_VALUE_SHIFT 8 68 #define READBACK_ADD_HALF BIT(7) 69 #define READBACK_NEGATE BIT(0) 70 71 /* 72 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h 73 * because it will be used by tegraxxx_soctherm.c 74 */ 75 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8) 76 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5) 77 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1 78 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2 79 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3) 80 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1 81 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2 82 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2) 83 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3 84 85 #define THERMCTL_LVL0_UP_STATS 0x10 86 #define THERMCTL_LVL0_DN_STATS 0x14 87 88 #define THERMCTL_STATS_CTL 0x94 89 #define STATS_CTL_CLR_DN 0x8 90 #define STATS_CTL_EN_DN 0x4 91 #define STATS_CTL_CLR_UP 0x2 92 #define STATS_CTL_EN_UP 0x1 93 94 #define THROT_GLOBAL_CFG 0x400 95 #define THROT_GLOBAL_ENB_MASK BIT(0) 96 97 #define CPU_PSKIP_STATUS 0x418 98 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12) 99 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4) 100 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1) 101 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0) 102 103 #define THROT_PRIORITY_LOCK 0x424 104 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff 105 106 #define THROT_STATUS 0x428 107 #define THROT_STATUS_BREACH_MASK BIT(12) 108 #define THROT_STATUS_STATE_MASK (0xff << 4) 109 #define THROT_STATUS_ENABLED_MASK BIT(0) 110 111 #define THROT_PSKIP_CTRL_LITE_CPU 0x430 112 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31) 113 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 114 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 115 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16) 116 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8) 117 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7 118 119 #define THROT_VECT_NONE 0x0 /* 3'b000 */ 120 #define THROT_VECT_LOW 0x1 /* 3'b001 */ 121 #define THROT_VECT_MED 0x3 /* 3'b011 */ 122 #define THROT_VECT_HIGH 0x7 /* 3'b111 */ 123 124 #define THROT_PSKIP_RAMP_LITE_CPU 0x434 125 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 126 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 127 #define THROT_PSKIP_RAMP_STEP_MASK 0xff 128 129 #define THROT_PRIORITY_LITE 0x444 130 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff 131 132 #define THROT_DELAY_LITE 0x448 133 #define THROT_DELAY_LITE_DELAY_MASK 0xff 134 135 /* car register offsets needed for enabling HW throttling */ 136 #define CAR_SUPER_CCLKG_DIVIDER 0x36c 137 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30) 138 139 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */ 140 #define CCROC_SUPER_CCLKG_DIVIDER 0x024 141 142 #define CCROC_GLOBAL_CFG 0x148 143 144 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150 145 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 146 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 147 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff 148 149 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154 150 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31) 151 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 152 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 153 154 /* get val from register(r) mask bits(m) */ 155 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) 156 /* set val(v) to mask bits(m) of register(r) */ 157 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ 158 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) 159 160 /* get dividend from the depth */ 161 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1) 162 163 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */ 164 #define THROT_OFFSET 0x30 165 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \ 166 (THROT_OFFSET * throt) + (8 * dev)) 167 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \ 168 (THROT_OFFSET * throt) + (8 * dev)) 169 170 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */ 171 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \ 172 (THROT_OFFSET * throt)) 173 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \ 174 (THROT_OFFSET * throt)) 175 176 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/ 177 #define CCROC_THROT_OFFSET 0x0c 178 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \ 179 (CCROC_THROT_OFFSET * vect)) 180 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \ 181 (CCROC_THROT_OFFSET * vect)) 182 183 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */ 184 #define THERMCTL_LVL_REGS_SIZE 0x20 185 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE)) 186 187 static const int min_low_temp = -127000; 188 static const int max_high_temp = 127000; 189 190 enum soctherm_throttle_id { 191 THROTTLE_LIGHT = 0, 192 THROTTLE_HEAVY, 193 THROTTLE_SIZE, 194 }; 195 196 enum soctherm_throttle_dev_id { 197 THROTTLE_DEV_CPU = 0, 198 THROTTLE_DEV_GPU, 199 THROTTLE_DEV_SIZE, 200 }; 201 202 static const char *const throt_names[] = { 203 [THROTTLE_LIGHT] = "light", 204 [THROTTLE_HEAVY] = "heavy", 205 }; 206 207 struct tegra_soctherm; 208 struct tegra_thermctl_zone { 209 void __iomem *reg; 210 struct device *dev; 211 struct tegra_soctherm *ts; 212 struct thermal_zone_device *tz; 213 const struct tegra_tsensor_group *sg; 214 }; 215 216 struct soctherm_throt_cfg { 217 const char *name; 218 unsigned int id; 219 u8 priority; 220 u8 cpu_throt_level; 221 u32 cpu_throt_depth; 222 struct thermal_cooling_device *cdev; 223 bool init; 224 }; 225 226 struct tegra_soctherm { 227 struct reset_control *reset; 228 struct clk *clock_tsensor; 229 struct clk *clock_soctherm; 230 void __iomem *regs; 231 void __iomem *clk_regs; 232 void __iomem *ccroc_regs; 233 234 u32 *calib; 235 struct thermal_zone_device **thermctl_tzs; 236 struct tegra_soctherm_soc *soc; 237 238 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE]; 239 240 struct dentry *debugfs_dir; 241 }; 242 243 /** 244 * clk_writel() - writes a value to a CAR register 245 * @ts: pointer to a struct tegra_soctherm 246 * @v: the value to write 247 * @reg: the register offset 248 * 249 * Writes @v to @reg. No return value. 250 */ 251 static inline void clk_writel(struct tegra_soctherm *ts, u32 value, u32 reg) 252 { 253 writel(value, (ts->clk_regs + reg)); 254 } 255 256 /** 257 * clk_readl() - reads specified register from CAR IP block 258 * @ts: pointer to a struct tegra_soctherm 259 * @reg: register address to be read 260 * 261 * Return: the value of the register 262 */ 263 static inline u32 clk_readl(struct tegra_soctherm *ts, u32 reg) 264 { 265 return readl(ts->clk_regs + reg); 266 } 267 268 /** 269 * ccroc_writel() - writes a value to a CCROC register 270 * @ts: pointer to a struct tegra_soctherm 271 * @v: the value to write 272 * @reg: the register offset 273 * 274 * Writes @v to @reg. No return value. 275 */ 276 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg) 277 { 278 writel(value, (ts->ccroc_regs + reg)); 279 } 280 281 /** 282 * ccroc_readl() - reads specified register from CCROC IP block 283 * @ts: pointer to a struct tegra_soctherm 284 * @reg: register address to be read 285 * 286 * Return: the value of the register 287 */ 288 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg) 289 { 290 return readl(ts->ccroc_regs + reg); 291 } 292 293 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) 294 { 295 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; 296 void __iomem *base = tegra->regs + sensor->base; 297 unsigned int val; 298 299 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; 300 writel(val, base + SENSOR_CONFIG0); 301 302 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; 303 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; 304 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; 305 val |= SENSOR_CONFIG1_TEMP_ENABLE; 306 writel(val, base + SENSOR_CONFIG1); 307 308 writel(tegra->calib[i], base + SENSOR_CONFIG2); 309 } 310 311 /* 312 * Translate from soctherm readback format to millicelsius. 313 * The soctherm readback format in bits is as follows: 314 * TTTTTTTT H______N 315 * where T's contain the temperature in Celsius, 316 * H denotes an addition of 0.5 Celsius and N denotes negation 317 * of the final value. 318 */ 319 static int translate_temp(u16 val) 320 { 321 int t; 322 323 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; 324 if (val & READBACK_ADD_HALF) 325 t += 500; 326 if (val & READBACK_NEGATE) 327 t *= -1; 328 329 return t; 330 } 331 332 static int tegra_thermctl_get_temp(void *data, int *out_temp) 333 { 334 struct tegra_thermctl_zone *zone = data; 335 u32 val; 336 337 val = readl(zone->reg); 338 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); 339 *out_temp = translate_temp(val); 340 341 return 0; 342 } 343 344 /** 345 * enforce_temp_range() - check and enforce temperature range [min, max] 346 * @trip_temp: the trip temperature to check 347 * 348 * Checks and enforces the permitted temperature range that SOC_THERM 349 * HW can support This is 350 * done while taking care of precision. 351 * 352 * Return: The precision adjusted capped temperature in millicelsius. 353 */ 354 static int enforce_temp_range(struct device *dev, int trip_temp) 355 { 356 int temp; 357 358 temp = clamp_val(trip_temp, min_low_temp, max_high_temp); 359 if (temp != trip_temp) 360 dev_info(dev, "soctherm: trip temperature %d forced to %d\n", 361 trip_temp, temp); 362 return temp; 363 } 364 365 /** 366 * thermtrip_program() - Configures the hardware to shut down the 367 * system if a given sensor group reaches a given temperature 368 * @dev: ptr to the struct device for the SOC_THERM IP block 369 * @sg: pointer to the sensor group to set the thermtrip temperature for 370 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 371 * 372 * Sets the thermal trip threshold of the given sensor group to be the 373 * @trip_temp. If this threshold is crossed, the hardware will shut 374 * down. 375 * 376 * Note that, although @trip_temp is specified in millicelsius, the 377 * hardware is programmed in degrees Celsius. 378 * 379 * Return: 0 upon success, or %-EINVAL upon failure. 380 */ 381 static int thermtrip_program(struct device *dev, 382 const struct tegra_tsensor_group *sg, 383 int trip_temp) 384 { 385 struct tegra_soctherm *ts = dev_get_drvdata(dev); 386 int temp; 387 u32 r; 388 389 if (!sg || !sg->thermtrip_threshold_mask) 390 return -EINVAL; 391 392 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 393 394 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 395 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); 396 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); 397 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); 398 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); 399 400 return 0; 401 } 402 403 /** 404 * throttrip_program() - Configures the hardware to throttle the 405 * pulse if a given sensor group reaches a given temperature 406 * @dev: ptr to the struct device for the SOC_THERM IP block 407 * @sg: pointer to the sensor group to set the thermtrip temperature for 408 * @stc: pointer to the throttle need to be triggered 409 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 410 * 411 * Sets the thermal trip threshold and throttle event of the given sensor 412 * group. If this threshold is crossed, the hardware will trigger the 413 * throttle. 414 * 415 * Note that, although @trip_temp is specified in millicelsius, the 416 * hardware is programmed in degrees Celsius. 417 * 418 * Return: 0 upon success, or %-EINVAL upon failure. 419 */ 420 static int throttrip_program(struct device *dev, 421 const struct tegra_tsensor_group *sg, 422 struct soctherm_throt_cfg *stc, 423 int trip_temp) 424 { 425 struct tegra_soctherm *ts = dev_get_drvdata(dev); 426 int temp, cpu_throt, gpu_throt; 427 unsigned int throt; 428 u32 r, reg_off; 429 430 if (!sg || !stc || !stc->init) 431 return -EINVAL; 432 433 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 434 435 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */ 436 throt = stc->id; 437 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1); 438 439 if (throt == THROTTLE_LIGHT) { 440 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT; 441 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT; 442 } else { 443 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY; 444 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY; 445 if (throt != THROTTLE_HEAVY) 446 dev_warn(dev, 447 "invalid throt id %d - assuming HEAVY", 448 throt); 449 } 450 451 r = readl(ts->regs + reg_off); 452 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp); 453 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp); 454 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt); 455 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt); 456 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 457 writel(r, ts->regs + reg_off); 458 459 return 0; 460 } 461 462 static struct soctherm_throt_cfg * 463 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name) 464 { 465 unsigned int i; 466 467 for (i = 0; ts->throt_cfgs[i].name; i++) 468 if (!strcmp(ts->throt_cfgs[i].name, name)) 469 return &ts->throt_cfgs[i]; 470 471 return NULL; 472 } 473 474 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp) 475 { 476 struct tegra_thermctl_zone *zone = data; 477 struct thermal_zone_device *tz = zone->tz; 478 struct tegra_soctherm *ts = zone->ts; 479 const struct tegra_tsensor_group *sg = zone->sg; 480 struct device *dev = zone->dev; 481 enum thermal_trip_type type; 482 int ret; 483 484 if (!tz) 485 return -EINVAL; 486 487 ret = tz->ops->get_trip_type(tz, trip, &type); 488 if (ret) 489 return ret; 490 491 if (type == THERMAL_TRIP_CRITICAL) { 492 return thermtrip_program(dev, sg, temp); 493 } else if (type == THERMAL_TRIP_HOT) { 494 int i; 495 496 for (i = 0; i < THROTTLE_SIZE; i++) { 497 struct thermal_cooling_device *cdev; 498 struct soctherm_throt_cfg *stc; 499 500 if (!ts->throt_cfgs[i].init) 501 continue; 502 503 cdev = ts->throt_cfgs[i].cdev; 504 if (get_thermal_instance(tz, cdev, trip)) 505 stc = find_throttle_cfg_by_name(ts, cdev->type); 506 else 507 continue; 508 509 return throttrip_program(dev, sg, stc, temp); 510 } 511 } 512 513 return 0; 514 } 515 516 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = { 517 .get_temp = tegra_thermctl_get_temp, 518 .set_trip_temp = tegra_thermctl_set_trip_temp, 519 }; 520 521 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp) 522 { 523 int ntrips, i, ret; 524 enum thermal_trip_type type; 525 526 ntrips = of_thermal_get_ntrips(tz); 527 if (ntrips <= 0) 528 return -EINVAL; 529 530 for (i = 0; i < ntrips; i++) { 531 ret = tz->ops->get_trip_type(tz, i, &type); 532 if (ret) 533 return -EINVAL; 534 if (type == THERMAL_TRIP_HOT) { 535 ret = tz->ops->get_trip_temp(tz, i, temp); 536 if (!ret) 537 *trip = i; 538 539 return ret; 540 } 541 } 542 543 return -EINVAL; 544 } 545 546 /** 547 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data 548 * @dev: struct device * of the SOC_THERM instance 549 * 550 * Configure the SOC_THERM HW trip points, setting "THERMTRIP" 551 * "THROTTLE" trip points , using "critical" or "hot" type trip_temp 552 * from thermal zone. 553 * After they have been configured, THERMTRIP or THROTTLE will take 554 * action when the configured SoC thermal sensor group reaches a 555 * certain temperature. 556 * 557 * Return: 0 upon success, or a negative error code on failure. 558 * "Success" does not mean that trips was enabled; it could also 559 * mean that no node was found in DT. 560 * THERMTRIP has been enabled successfully when a message similar to 561 * this one appears on the serial console: 562 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" 563 * THROTTLE has been enabled successfully when a message similar to 564 * this one appears on the serial console: 565 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC" 566 */ 567 static int tegra_soctherm_set_hwtrips(struct device *dev, 568 const struct tegra_tsensor_group *sg, 569 struct thermal_zone_device *tz) 570 { 571 struct tegra_soctherm *ts = dev_get_drvdata(dev); 572 struct soctherm_throt_cfg *stc; 573 int i, trip, temperature; 574 int ret; 575 576 ret = tz->ops->get_crit_temp(tz, &temperature); 577 if (ret) { 578 dev_warn(dev, "thermtrip: %s: missing critical temperature\n", 579 sg->name); 580 goto set_throttle; 581 } 582 583 ret = thermtrip_program(dev, sg, temperature); 584 if (ret) { 585 dev_err(dev, "thermtrip: %s: error during enable\n", 586 sg->name); 587 return ret; 588 } 589 590 dev_info(dev, 591 "thermtrip: will shut down when %s reaches %d mC\n", 592 sg->name, temperature); 593 594 set_throttle: 595 ret = get_hot_temp(tz, &trip, &temperature); 596 if (ret) { 597 dev_warn(dev, "throttrip: %s: missing hot temperature\n", 598 sg->name); 599 return 0; 600 } 601 602 for (i = 0; i < THROTTLE_SIZE; i++) { 603 struct thermal_cooling_device *cdev; 604 605 if (!ts->throt_cfgs[i].init) 606 continue; 607 608 cdev = ts->throt_cfgs[i].cdev; 609 if (get_thermal_instance(tz, cdev, trip)) 610 stc = find_throttle_cfg_by_name(ts, cdev->type); 611 else 612 continue; 613 614 ret = throttrip_program(dev, sg, stc, temperature); 615 if (ret) { 616 dev_err(dev, "throttrip: %s: error during enable\n", 617 sg->name); 618 return ret; 619 } 620 621 dev_info(dev, 622 "throttrip: will throttle when %s reaches %d mC\n", 623 sg->name, temperature); 624 break; 625 } 626 627 if (i == THROTTLE_SIZE) 628 dev_warn(dev, "throttrip: %s: missing throttle cdev\n", 629 sg->name); 630 631 return 0; 632 } 633 634 #ifdef CONFIG_DEBUG_FS 635 static int regs_show(struct seq_file *s, void *data) 636 { 637 struct platform_device *pdev = s->private; 638 struct tegra_soctherm *ts = platform_get_drvdata(pdev); 639 const struct tegra_tsensor *tsensors = ts->soc->tsensors; 640 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; 641 u32 r, state; 642 int i, level; 643 644 seq_puts(s, "-----TSENSE (convert HW)-----\n"); 645 646 for (i = 0; i < ts->soc->num_tsensors; i++) { 647 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); 648 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); 649 650 seq_printf(s, "%s: ", tsensors[i].name); 651 seq_printf(s, "En(%d) ", state); 652 653 if (!state) { 654 seq_puts(s, "\n"); 655 continue; 656 } 657 658 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); 659 seq_printf(s, "tiddq(%d) ", state); 660 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); 661 seq_printf(s, "ten_count(%d) ", state); 662 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); 663 seq_printf(s, "tsample(%d) ", state + 1); 664 665 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); 666 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); 667 seq_printf(s, "Temp(%d/", state); 668 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); 669 seq_printf(s, "%d) ", translate_temp(state)); 670 671 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); 672 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); 673 seq_printf(s, "Capture(%d/", state); 674 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); 675 seq_printf(s, "%d) ", state); 676 677 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); 678 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); 679 seq_printf(s, "Stop(%d) ", state); 680 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); 681 seq_printf(s, "Tall(%d) ", state); 682 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); 683 seq_printf(s, "Over(%d/", state); 684 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); 685 seq_printf(s, "%d/", state); 686 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); 687 seq_printf(s, "%d) ", state); 688 689 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); 690 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); 691 seq_printf(s, "Therm_A/B(%d/", state); 692 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); 693 seq_printf(s, "%d)\n", (s16)state); 694 } 695 696 r = readl(ts->regs + SENSOR_PDIV); 697 seq_printf(s, "PDIV: 0x%x\n", r); 698 699 r = readl(ts->regs + SENSOR_HOTSPOT_OFF); 700 seq_printf(s, "HOTSPOT: 0x%x\n", r); 701 702 seq_puts(s, "\n"); 703 seq_puts(s, "-----SOC_THERM-----\n"); 704 705 r = readl(ts->regs + SENSOR_TEMP1); 706 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); 707 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); 708 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); 709 seq_printf(s, " GPU(%d) ", translate_temp(state)); 710 r = readl(ts->regs + SENSOR_TEMP2); 711 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); 712 seq_printf(s, " PLLX(%d) ", translate_temp(state)); 713 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); 714 seq_printf(s, " MEM(%d)\n", translate_temp(state)); 715 716 for (i = 0; i < ts->soc->num_ttgs; i++) { 717 seq_printf(s, "%s:\n", ttgs[i]->name); 718 for (level = 0; level < 4; level++) { 719 s32 v; 720 u32 mask; 721 u16 off = ttgs[i]->thermctl_lvl0_offset; 722 723 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 724 725 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask; 726 state = REG_GET_MASK(r, mask); 727 v = sign_extend32(state, ts->soc->bptt - 1); 728 v *= ts->soc->thresh_grain; 729 seq_printf(s, " %d: Up/Dn(%d /", level, v); 730 731 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask; 732 state = REG_GET_MASK(r, mask); 733 v = sign_extend32(state, ts->soc->bptt - 1); 734 v *= ts->soc->thresh_grain; 735 seq_printf(s, "%d ) ", v); 736 737 mask = THERMCTL_LVL0_CPU0_EN_MASK; 738 state = REG_GET_MASK(r, mask); 739 seq_printf(s, "En(%d) ", state); 740 741 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK; 742 state = REG_GET_MASK(r, mask); 743 seq_puts(s, "CPU Throt"); 744 if (!state) 745 seq_printf(s, "(%s) ", "none"); 746 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT) 747 seq_printf(s, "(%s) ", "L"); 748 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY) 749 seq_printf(s, "(%s) ", "H"); 750 else 751 seq_printf(s, "(%s) ", "H+L"); 752 753 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK; 754 state = REG_GET_MASK(r, mask); 755 seq_puts(s, "GPU Throt"); 756 if (!state) 757 seq_printf(s, "(%s) ", "none"); 758 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT) 759 seq_printf(s, "(%s) ", "L"); 760 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY) 761 seq_printf(s, "(%s) ", "H"); 762 else 763 seq_printf(s, "(%s) ", "H+L"); 764 765 mask = THERMCTL_LVL0_CPU0_STATUS_MASK; 766 state = REG_GET_MASK(r, mask); 767 seq_printf(s, "Status(%s)\n", 768 state == 0 ? "LO" : 769 state == 1 ? "In" : 770 state == 2 ? "Res" : "HI"); 771 } 772 } 773 774 r = readl(ts->regs + THERMCTL_STATS_CTL); 775 seq_printf(s, "STATS: Up(%s) Dn(%s)\n", 776 r & STATS_CTL_EN_UP ? "En" : "--", 777 r & STATS_CTL_EN_DN ? "En" : "--"); 778 779 for (level = 0; level < 4; level++) { 780 u16 off; 781 782 off = THERMCTL_LVL0_UP_STATS; 783 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 784 seq_printf(s, " Level_%d Up(%d) ", level, r); 785 786 off = THERMCTL_LVL0_DN_STATS; 787 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 788 seq_printf(s, "Dn(%d)\n", r); 789 } 790 791 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 792 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); 793 seq_printf(s, "Thermtrip Any En(%d)\n", state); 794 for (i = 0; i < ts->soc->num_ttgs; i++) { 795 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); 796 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); 797 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); 798 state *= ts->soc->thresh_grain; 799 seq_printf(s, "Thresh(%d)\n", state); 800 } 801 802 r = readl(ts->regs + THROT_GLOBAL_CFG); 803 seq_puts(s, "\n"); 804 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r); 805 806 seq_puts(s, "---------------------------------------------------\n"); 807 r = readl(ts->regs + THROT_STATUS); 808 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK); 809 seq_printf(s, "THROT STATUS: breach(%d) ", state); 810 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK); 811 seq_printf(s, "state(%d) ", state); 812 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK); 813 seq_printf(s, "enabled(%d)\n", state); 814 815 r = readl(ts->regs + CPU_PSKIP_STATUS); 816 if (ts->soc->use_ccroc) { 817 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 818 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state); 819 } else { 820 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK); 821 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state); 822 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK); 823 seq_printf(s, "N(%d) ", state); 824 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 825 seq_printf(s, "enabled(%d)\n", state); 826 } 827 828 return 0; 829 } 830 831 static int regs_open(struct inode *inode, struct file *file) 832 { 833 return single_open(file, regs_show, inode->i_private); 834 } 835 836 static const struct file_operations regs_fops = { 837 .open = regs_open, 838 .read = seq_read, 839 .llseek = seq_lseek, 840 .release = single_release, 841 }; 842 843 static void soctherm_debug_init(struct platform_device *pdev) 844 { 845 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 846 struct dentry *root, *file; 847 848 root = debugfs_create_dir("soctherm", NULL); 849 if (!root) { 850 dev_err(&pdev->dev, "failed to create debugfs directory\n"); 851 return; 852 } 853 854 tegra->debugfs_dir = root; 855 856 file = debugfs_create_file("reg_contents", 0644, root, 857 pdev, ®s_fops); 858 if (!file) { 859 dev_err(&pdev->dev, "failed to create debugfs file\n"); 860 debugfs_remove_recursive(tegra->debugfs_dir); 861 tegra->debugfs_dir = NULL; 862 } 863 } 864 #else 865 static inline void soctherm_debug_init(struct platform_device *pdev) {} 866 #endif 867 868 static int soctherm_clk_enable(struct platform_device *pdev, bool enable) 869 { 870 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 871 int err; 872 873 if (!tegra->clock_soctherm || !tegra->clock_tsensor) 874 return -EINVAL; 875 876 reset_control_assert(tegra->reset); 877 878 if (enable) { 879 err = clk_prepare_enable(tegra->clock_soctherm); 880 if (err) { 881 reset_control_deassert(tegra->reset); 882 return err; 883 } 884 885 err = clk_prepare_enable(tegra->clock_tsensor); 886 if (err) { 887 clk_disable_unprepare(tegra->clock_soctherm); 888 reset_control_deassert(tegra->reset); 889 return err; 890 } 891 } else { 892 clk_disable_unprepare(tegra->clock_tsensor); 893 clk_disable_unprepare(tegra->clock_soctherm); 894 } 895 896 reset_control_deassert(tegra->reset); 897 898 return 0; 899 } 900 901 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev, 902 unsigned long *max_state) 903 { 904 *max_state = 1; 905 return 0; 906 } 907 908 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev, 909 unsigned long *cur_state) 910 { 911 struct tegra_soctherm *ts = cdev->devdata; 912 u32 r; 913 914 r = readl(ts->regs + THROT_STATUS); 915 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK)) 916 *cur_state = 1; 917 else 918 *cur_state = 0; 919 920 return 0; 921 } 922 923 static int throt_set_cdev_state(struct thermal_cooling_device *cdev, 924 unsigned long cur_state) 925 { 926 return 0; 927 } 928 929 static struct thermal_cooling_device_ops throt_cooling_ops = { 930 .get_max_state = throt_get_cdev_max_state, 931 .get_cur_state = throt_get_cdev_cur_state, 932 .set_cur_state = throt_set_cdev_state, 933 }; 934 935 /** 936 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations 937 * and register them as cooling devices. 938 */ 939 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev) 940 { 941 struct device *dev = &pdev->dev; 942 struct tegra_soctherm *ts = dev_get_drvdata(dev); 943 struct device_node *np_stc, *np_stcc; 944 const char *name; 945 u32 val; 946 int i, r; 947 948 for (i = 0; i < THROTTLE_SIZE; i++) { 949 ts->throt_cfgs[i].name = throt_names[i]; 950 ts->throt_cfgs[i].id = i; 951 ts->throt_cfgs[i].init = false; 952 } 953 954 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs"); 955 if (!np_stc) { 956 dev_info(dev, 957 "throttle-cfg: no throttle-cfgs - not enabling\n"); 958 return; 959 } 960 961 for_each_child_of_node(np_stc, np_stcc) { 962 struct soctherm_throt_cfg *stc; 963 struct thermal_cooling_device *tcd; 964 965 name = np_stcc->name; 966 stc = find_throttle_cfg_by_name(ts, name); 967 if (!stc) { 968 dev_err(dev, 969 "throttle-cfg: could not find %s\n", name); 970 continue; 971 } 972 973 r = of_property_read_u32(np_stcc, "nvidia,priority", &val); 974 if (r) { 975 dev_info(dev, 976 "throttle-cfg: %s: missing priority\n", name); 977 continue; 978 } 979 stc->priority = val; 980 981 if (ts->soc->use_ccroc) { 982 r = of_property_read_u32(np_stcc, 983 "nvidia,cpu-throt-level", 984 &val); 985 if (r) { 986 dev_info(dev, 987 "throttle-cfg: %s: missing cpu-throt-level\n", 988 name); 989 continue; 990 } 991 stc->cpu_throt_level = val; 992 } else { 993 r = of_property_read_u32(np_stcc, 994 "nvidia,cpu-throt-percent", 995 &val); 996 if (r) { 997 dev_info(dev, 998 "throttle-cfg: %s: missing cpu-throt-percent\n", 999 name); 1000 continue; 1001 } 1002 stc->cpu_throt_depth = val; 1003 } 1004 1005 tcd = thermal_of_cooling_device_register(np_stcc, 1006 (char *)name, ts, 1007 &throt_cooling_ops); 1008 of_node_put(np_stcc); 1009 if (IS_ERR_OR_NULL(tcd)) { 1010 dev_err(dev, 1011 "throttle-cfg: %s: failed to register cooling device\n", 1012 name); 1013 continue; 1014 } 1015 1016 stc->cdev = tcd; 1017 stc->init = true; 1018 } 1019 1020 of_node_put(np_stc); 1021 } 1022 1023 /** 1024 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config 1025 * @level: describing the level LOW/MED/HIGH of throttling 1026 * 1027 * It's necessary to set up the CPU-local CCROC NV_THERM instance with 1028 * the M/N values desired for each level. This function does this. 1029 * 1030 * This function pre-programs the CCROC NV_THERM levels in terms of 1031 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are 1032 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY. 1033 */ 1034 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level) 1035 { 1036 u8 depth, dividend; 1037 u32 r; 1038 1039 switch (level) { 1040 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1041 depth = 50; 1042 break; 1043 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1044 depth = 75; 1045 break; 1046 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1047 depth = 80; 1048 break; 1049 case TEGRA_SOCTHERM_THROT_LEVEL_NONE: 1050 return; 1051 default: 1052 return; 1053 } 1054 1055 dividend = THROT_DEPTH_DIVIDEND(depth); 1056 1057 /* setup PSKIP in ccroc nv_therm registers */ 1058 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1059 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1060 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1061 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1062 1063 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1064 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1); 1065 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1066 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1067 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1068 } 1069 1070 /** 1071 * throttlectl_cpu_level_select() - program CPU pulse skipper config 1072 * @throt: the LIGHT/HEAVY of throttle event id 1073 * 1074 * Pulse skippers are used to throttle clock frequencies. This 1075 * function programs the pulse skippers based on @throt and platform 1076 * data. This function is used on SoCs which have CPU-local pulse 1077 * skipper control, such as T13x. It programs soctherm's interface to 1078 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling 1079 * vectors. PSKIP_BYPASS mode is set as required per HW spec. 1080 */ 1081 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts, 1082 enum soctherm_throttle_id throt) 1083 { 1084 u32 r, throt_vect; 1085 1086 /* Denver:CCROC NV_THERM interface N:3 Mapping */ 1087 switch (ts->throt_cfgs[throt].cpu_throt_level) { 1088 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1089 throt_vect = THROT_VECT_LOW; 1090 break; 1091 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1092 throt_vect = THROT_VECT_MED; 1093 break; 1094 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1095 throt_vect = THROT_VECT_HIGH; 1096 break; 1097 default: 1098 throt_vect = THROT_VECT_NONE; 1099 break; 1100 } 1101 1102 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1103 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1104 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect); 1105 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect); 1106 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1107 1108 /* bypass sequencer in soc_therm as it is programmed in ccroc */ 1109 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1); 1110 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1111 } 1112 1113 /** 1114 * throttlectl_cpu_mn() - program CPU pulse skipper configuration 1115 * @throt: the LIGHT/HEAVY of throttle event id 1116 * 1117 * Pulse skippers are used to throttle clock frequencies. This 1118 * function programs the pulse skippers based on @throt and platform 1119 * data. This function is used for CPUs that have "remote" pulse 1120 * skipper control, e.g., the CPU pulse skipper is controlled by the 1121 * SOC_THERM IP block. (SOC_THERM is located outside the CPU 1122 * complex.) 1123 */ 1124 static void throttlectl_cpu_mn(struct tegra_soctherm *ts, 1125 enum soctherm_throttle_id throt) 1126 { 1127 u32 r; 1128 int depth; 1129 u8 dividend; 1130 1131 depth = ts->throt_cfgs[throt].cpu_throt_depth; 1132 dividend = THROT_DEPTH_DIVIDEND(depth); 1133 1134 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1135 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1136 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1137 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1138 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1139 1140 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1141 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1142 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1143 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1144 } 1145 1146 /** 1147 * soctherm_throttle_program() - programs pulse skippers' configuration 1148 * @throt: the LIGHT/HEAVY of the throttle event id. 1149 * 1150 * Pulse skippers are used to throttle clock frequencies. 1151 * This function programs the pulse skippers. 1152 */ 1153 static void soctherm_throttle_program(struct tegra_soctherm *ts, 1154 enum soctherm_throttle_id throt) 1155 { 1156 u32 r; 1157 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt]; 1158 1159 if (!stc.init) 1160 return; 1161 1162 /* Setup PSKIP parameters */ 1163 if (ts->soc->use_ccroc) 1164 throttlectl_cpu_level_select(ts, throt); 1165 else 1166 throttlectl_cpu_mn(ts, throt); 1167 1168 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority); 1169 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt)); 1170 1171 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0); 1172 writel(r, ts->regs + THROT_DELAY_CTRL(throt)); 1173 1174 r = readl(ts->regs + THROT_PRIORITY_LOCK); 1175 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK); 1176 if (r >= stc.priority) 1177 return; 1178 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK, 1179 stc.priority); 1180 writel(r, ts->regs + THROT_PRIORITY_LOCK); 1181 } 1182 1183 static void tegra_soctherm_throttle(struct device *dev) 1184 { 1185 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1186 u32 v; 1187 int i; 1188 1189 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */ 1190 if (ts->soc->use_ccroc) { 1191 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW); 1192 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED); 1193 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH); 1194 } 1195 1196 /* Thermal HW throttle programming */ 1197 for (i = 0; i < THROTTLE_SIZE; i++) 1198 soctherm_throttle_program(ts, i); 1199 1200 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1); 1201 if (ts->soc->use_ccroc) { 1202 ccroc_writel(ts, v, CCROC_GLOBAL_CFG); 1203 1204 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER); 1205 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1206 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER); 1207 } else { 1208 writel(v, ts->regs + THROT_GLOBAL_CFG); 1209 1210 v = clk_readl(ts, CAR_SUPER_CCLKG_DIVIDER); 1211 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1212 clk_writel(ts, v, CAR_SUPER_CCLKG_DIVIDER); 1213 } 1214 1215 /* initialize stats collection */ 1216 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN | 1217 STATS_CTL_CLR_UP | STATS_CTL_EN_UP; 1218 writel(v, ts->regs + THERMCTL_STATS_CTL); 1219 } 1220 1221 static void soctherm_init(struct platform_device *pdev) 1222 { 1223 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1224 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; 1225 int i; 1226 u32 pdiv, hotspot; 1227 1228 /* Initialize raw sensors */ 1229 for (i = 0; i < tegra->soc->num_tsensors; ++i) 1230 enable_tsensor(tegra, i); 1231 1232 /* program pdiv and hotspot offsets per THERM */ 1233 pdiv = readl(tegra->regs + SENSOR_PDIV); 1234 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); 1235 for (i = 0; i < tegra->soc->num_ttgs; ++i) { 1236 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, 1237 ttgs[i]->pdiv); 1238 /* hotspot offset from PLLX, doesn't need to configure PLLX */ 1239 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) 1240 continue; 1241 hotspot = REG_SET_MASK(hotspot, 1242 ttgs[i]->pllx_hotspot_mask, 1243 ttgs[i]->pllx_hotspot_diff); 1244 } 1245 writel(pdiv, tegra->regs + SENSOR_PDIV); 1246 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); 1247 1248 /* Configure hw throttle */ 1249 tegra_soctherm_throttle(&pdev->dev); 1250 } 1251 1252 static const struct of_device_id tegra_soctherm_of_match[] = { 1253 #ifdef CONFIG_ARCH_TEGRA_124_SOC 1254 { 1255 .compatible = "nvidia,tegra124-soctherm", 1256 .data = &tegra124_soctherm, 1257 }, 1258 #endif 1259 #ifdef CONFIG_ARCH_TEGRA_132_SOC 1260 { 1261 .compatible = "nvidia,tegra132-soctherm", 1262 .data = &tegra132_soctherm, 1263 }, 1264 #endif 1265 #ifdef CONFIG_ARCH_TEGRA_210_SOC 1266 { 1267 .compatible = "nvidia,tegra210-soctherm", 1268 .data = &tegra210_soctherm, 1269 }, 1270 #endif 1271 { }, 1272 }; 1273 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); 1274 1275 static int tegra_soctherm_probe(struct platform_device *pdev) 1276 { 1277 const struct of_device_id *match; 1278 struct tegra_soctherm *tegra; 1279 struct thermal_zone_device *z; 1280 struct tsensor_shared_calib shared_calib; 1281 struct resource *res; 1282 struct tegra_soctherm_soc *soc; 1283 unsigned int i; 1284 int err; 1285 1286 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); 1287 if (!match) 1288 return -ENODEV; 1289 1290 soc = (struct tegra_soctherm_soc *)match->data; 1291 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) 1292 return -EINVAL; 1293 1294 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); 1295 if (!tegra) 1296 return -ENOMEM; 1297 1298 dev_set_drvdata(&pdev->dev, tegra); 1299 1300 tegra->soc = soc; 1301 1302 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1303 "soctherm-reg"); 1304 tegra->regs = devm_ioremap_resource(&pdev->dev, res); 1305 if (IS_ERR(tegra->regs)) { 1306 dev_err(&pdev->dev, "can't get soctherm registers"); 1307 return PTR_ERR(tegra->regs); 1308 } 1309 1310 if (!tegra->soc->use_ccroc) { 1311 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1312 "car-reg"); 1313 tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res); 1314 if (IS_ERR(tegra->clk_regs)) { 1315 dev_err(&pdev->dev, "can't get car clk registers"); 1316 return PTR_ERR(tegra->clk_regs); 1317 } 1318 } else { 1319 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 1320 "ccroc-reg"); 1321 tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res); 1322 if (IS_ERR(tegra->ccroc_regs)) { 1323 dev_err(&pdev->dev, "can't get ccroc registers"); 1324 return PTR_ERR(tegra->ccroc_regs); 1325 } 1326 } 1327 1328 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); 1329 if (IS_ERR(tegra->reset)) { 1330 dev_err(&pdev->dev, "can't get soctherm reset\n"); 1331 return PTR_ERR(tegra->reset); 1332 } 1333 1334 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); 1335 if (IS_ERR(tegra->clock_tsensor)) { 1336 dev_err(&pdev->dev, "can't get tsensor clock\n"); 1337 return PTR_ERR(tegra->clock_tsensor); 1338 } 1339 1340 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); 1341 if (IS_ERR(tegra->clock_soctherm)) { 1342 dev_err(&pdev->dev, "can't get soctherm clock\n"); 1343 return PTR_ERR(tegra->clock_soctherm); 1344 } 1345 1346 tegra->calib = devm_kzalloc(&pdev->dev, 1347 sizeof(u32) * soc->num_tsensors, 1348 GFP_KERNEL); 1349 if (!tegra->calib) 1350 return -ENOMEM; 1351 1352 /* calculate shared calibration data */ 1353 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); 1354 if (err) 1355 return err; 1356 1357 /* calculate tsensor calibaration data */ 1358 for (i = 0; i < soc->num_tsensors; ++i) { 1359 err = tegra_calc_tsensor_calib(&soc->tsensors[i], 1360 &shared_calib, 1361 &tegra->calib[i]); 1362 if (err) 1363 return err; 1364 } 1365 1366 tegra->thermctl_tzs = devm_kzalloc(&pdev->dev, 1367 sizeof(*z) * soc->num_ttgs, 1368 GFP_KERNEL); 1369 if (!tegra->thermctl_tzs) 1370 return -ENOMEM; 1371 1372 err = soctherm_clk_enable(pdev, true); 1373 if (err) 1374 return err; 1375 1376 soctherm_init_hw_throt_cdev(pdev); 1377 1378 soctherm_init(pdev); 1379 1380 for (i = 0; i < soc->num_ttgs; ++i) { 1381 struct tegra_thermctl_zone *zone = 1382 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); 1383 if (!zone) { 1384 err = -ENOMEM; 1385 goto disable_clocks; 1386 } 1387 1388 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; 1389 zone->dev = &pdev->dev; 1390 zone->sg = soc->ttgs[i]; 1391 zone->ts = tegra; 1392 1393 z = devm_thermal_zone_of_sensor_register(&pdev->dev, 1394 soc->ttgs[i]->id, zone, 1395 &tegra_of_thermal_ops); 1396 if (IS_ERR(z)) { 1397 err = PTR_ERR(z); 1398 dev_err(&pdev->dev, "failed to register sensor: %d\n", 1399 err); 1400 goto disable_clocks; 1401 } 1402 1403 zone->tz = z; 1404 tegra->thermctl_tzs[soc->ttgs[i]->id] = z; 1405 1406 /* Configure hw trip points */ 1407 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); 1408 if (err) 1409 goto disable_clocks; 1410 } 1411 1412 soctherm_debug_init(pdev); 1413 1414 return 0; 1415 1416 disable_clocks: 1417 soctherm_clk_enable(pdev, false); 1418 1419 return err; 1420 } 1421 1422 static int tegra_soctherm_remove(struct platform_device *pdev) 1423 { 1424 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1425 1426 debugfs_remove_recursive(tegra->debugfs_dir); 1427 1428 soctherm_clk_enable(pdev, false); 1429 1430 return 0; 1431 } 1432 1433 static int __maybe_unused soctherm_suspend(struct device *dev) 1434 { 1435 struct platform_device *pdev = to_platform_device(dev); 1436 1437 soctherm_clk_enable(pdev, false); 1438 1439 return 0; 1440 } 1441 1442 static int __maybe_unused soctherm_resume(struct device *dev) 1443 { 1444 struct platform_device *pdev = to_platform_device(dev); 1445 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1446 struct tegra_soctherm_soc *soc = tegra->soc; 1447 int err, i; 1448 1449 err = soctherm_clk_enable(pdev, true); 1450 if (err) { 1451 dev_err(&pdev->dev, 1452 "Resume failed: enable clocks failed\n"); 1453 return err; 1454 } 1455 1456 soctherm_init(pdev); 1457 1458 for (i = 0; i < soc->num_ttgs; ++i) { 1459 struct thermal_zone_device *tz; 1460 1461 tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; 1462 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); 1463 if (err) { 1464 dev_err(&pdev->dev, 1465 "Resume failed: set hwtrips failed\n"); 1466 return err; 1467 } 1468 } 1469 1470 return 0; 1471 } 1472 1473 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); 1474 1475 static struct platform_driver tegra_soctherm_driver = { 1476 .probe = tegra_soctherm_probe, 1477 .remove = tegra_soctherm_remove, 1478 .driver = { 1479 .name = "tegra_soctherm", 1480 .pm = &tegra_soctherm_pm, 1481 .of_match_table = tegra_soctherm_of_match, 1482 }, 1483 }; 1484 module_platform_driver(tegra_soctherm_driver); 1485 1486 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); 1487 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); 1488 MODULE_LICENSE("GPL v2"); 1489