1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved. 4 * 5 * Author: 6 * Mikko Perttunen <mperttunen@nvidia.com> 7 * 8 * This software is licensed under the terms of the GNU General Public 9 * License version 2, as published by the Free Software Foundation, and 10 * may be copied, distributed, and modified under those terms. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/bitops.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/err.h> 24 #include <linux/interrupt.h> 25 #include <linux/io.h> 26 #include <linux/irq.h> 27 #include <linux/irqdomain.h> 28 #include <linux/module.h> 29 #include <linux/of.h> 30 #include <linux/platform_device.h> 31 #include <linux/reset.h> 32 #include <linux/thermal.h> 33 34 #include <dt-bindings/thermal/tegra124-soctherm.h> 35 36 #include "../thermal_core.h" 37 #include "soctherm.h" 38 39 #define SENSOR_CONFIG0 0 40 #define SENSOR_CONFIG0_STOP BIT(0) 41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2) 42 #define SENSOR_CONFIG0_OVER BIT(3) 43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4) 44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) 45 #define SENSOR_CONFIG0_TALL_SHIFT 8 46 47 #define SENSOR_CONFIG1 4 48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff 49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) 51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) 53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) 55 56 /* 57 * SENSOR_CONFIG2 is defined in soctherm.h 58 * because, it will be used by tegra_soctherm_fuse.c 59 */ 60 61 #define SENSOR_STATUS0 0xc 62 #define SENSOR_STATUS0_VALID_MASK BIT(31) 63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff 64 65 #define SENSOR_STATUS1 0x10 66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) 67 #define SENSOR_STATUS1_TEMP_MASK 0xffff 68 69 #define READBACK_VALUE_MASK 0xff00 70 #define READBACK_VALUE_SHIFT 8 71 #define READBACK_ADD_HALF BIT(7) 72 #define READBACK_NEGATE BIT(0) 73 74 /* 75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h 76 * because it will be used by tegraxxx_soctherm.c 77 */ 78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8) 79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5) 80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1 81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2 82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3) 83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1 84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2 85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2) 86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3 87 88 #define THERMCTL_LVL0_UP_STATS 0x10 89 #define THERMCTL_LVL0_DN_STATS 0x14 90 91 #define THERMCTL_INTR_STATUS 0x84 92 93 #define TH_INTR_MD0_MASK BIT(25) 94 #define TH_INTR_MU0_MASK BIT(24) 95 #define TH_INTR_GD0_MASK BIT(17) 96 #define TH_INTR_GU0_MASK BIT(16) 97 #define TH_INTR_CD0_MASK BIT(9) 98 #define TH_INTR_CU0_MASK BIT(8) 99 #define TH_INTR_PD0_MASK BIT(1) 100 #define TH_INTR_PU0_MASK BIT(0) 101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC 102 103 #define THERMCTL_STATS_CTL 0x94 104 #define STATS_CTL_CLR_DN 0x8 105 #define STATS_CTL_EN_DN 0x4 106 #define STATS_CTL_CLR_UP 0x2 107 #define STATS_CTL_EN_UP 0x1 108 109 #define OC1_CFG 0x310 110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6) 111 #define OC1_CFG_HW_RESTORE_MASK BIT(5) 112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4) 113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2) 114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1) 115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0) 116 117 #define OC1_CNT_THRESHOLD 0x314 118 #define OC1_THROTTLE_PERIOD 0x318 119 #define OC1_ALARM_COUNT 0x31c 120 #define OC1_FILTER 0x320 121 #define OC1_STATS 0x3a8 122 123 #define OC_INTR_STATUS 0x39c 124 #define OC_INTR_ENABLE 0x3a0 125 #define OC_INTR_DISABLE 0x3a4 126 #define OC_STATS_CTL 0x3c4 127 #define OC_STATS_CTL_CLR_ALL 0x2 128 #define OC_STATS_CTL_EN_ALL 0x1 129 130 #define OC_INTR_OC1_MASK BIT(0) 131 #define OC_INTR_OC2_MASK BIT(1) 132 #define OC_INTR_OC3_MASK BIT(2) 133 #define OC_INTR_OC4_MASK BIT(3) 134 #define OC_INTR_OC5_MASK BIT(4) 135 136 #define THROT_GLOBAL_CFG 0x400 137 #define THROT_GLOBAL_ENB_MASK BIT(0) 138 139 #define CPU_PSKIP_STATUS 0x418 140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12) 141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4) 142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1) 143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0) 144 145 #define THROT_PRIORITY_LOCK 0x424 146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff 147 148 #define THROT_STATUS 0x428 149 #define THROT_STATUS_BREACH_MASK BIT(12) 150 #define THROT_STATUS_STATE_MASK (0xff << 4) 151 #define THROT_STATUS_ENABLED_MASK BIT(0) 152 153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430 154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31) 155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16) 158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8) 159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7 160 161 #define THROT_VECT_NONE 0x0 /* 3'b000 */ 162 #define THROT_VECT_LOW 0x1 /* 3'b001 */ 163 #define THROT_VECT_MED 0x3 /* 3'b011 */ 164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */ 165 166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434 167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff 170 171 #define THROT_PRIORITY_LITE 0x444 172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff 173 174 #define THROT_DELAY_LITE 0x448 175 #define THROT_DELAY_LITE_DELAY_MASK 0xff 176 177 /* car register offsets needed for enabling HW throttling */ 178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c 179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30) 180 181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */ 182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024 183 184 #define CCROC_GLOBAL_CFG 0x148 185 186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150 187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff 190 191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154 192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31) 193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 195 196 /* get val from register(r) mask bits(m) */ 197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) 198 /* set val(v) to mask bits(m) of register(r) */ 199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ 200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) 201 202 /* get dividend from the depth */ 203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1) 204 205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h 206 * level vector 207 * NONE 3'b000 208 * LOW 3'b001 209 * MED 3'b011 210 * HIGH 3'b111 211 */ 212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1) 213 214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */ 215 #define THROT_OFFSET 0x30 216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \ 217 (THROT_OFFSET * throt) + (8 * dev)) 218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \ 219 (THROT_OFFSET * throt) + (8 * dev)) 220 221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */ 222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \ 223 (THROT_OFFSET * throt)) 224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \ 225 (THROT_OFFSET * throt)) 226 227 #define ALARM_OFFSET 0x14 228 #define ALARM_CFG(throt) (OC1_CFG + \ 229 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 230 231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \ 232 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 233 234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \ 235 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 236 237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \ 238 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 239 240 #define ALARM_FILTER(throt) (OC1_FILTER + \ 241 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 242 243 #define ALARM_STATS(throt) (OC1_STATS + \ 244 (4 * (throt - THROTTLE_OC1))) 245 246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/ 247 #define CCROC_THROT_OFFSET 0x0c 248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \ 249 (CCROC_THROT_OFFSET * vect)) 250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \ 251 (CCROC_THROT_OFFSET * vect)) 252 253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */ 254 #define THERMCTL_LVL_REGS_SIZE 0x20 255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE)) 256 257 #define OC_THROTTLE_MODE_DISABLED 0 258 #define OC_THROTTLE_MODE_BRIEF 2 259 260 static const int min_low_temp = -127000; 261 static const int max_high_temp = 127000; 262 263 enum soctherm_throttle_id { 264 THROTTLE_LIGHT = 0, 265 THROTTLE_HEAVY, 266 THROTTLE_OC1, 267 THROTTLE_OC2, 268 THROTTLE_OC3, 269 THROTTLE_OC4, 270 THROTTLE_OC5, /* OC5 is reserved */ 271 THROTTLE_SIZE, 272 }; 273 274 enum soctherm_oc_irq_id { 275 TEGRA_SOC_OC_IRQ_1, 276 TEGRA_SOC_OC_IRQ_2, 277 TEGRA_SOC_OC_IRQ_3, 278 TEGRA_SOC_OC_IRQ_4, 279 TEGRA_SOC_OC_IRQ_5, 280 TEGRA_SOC_OC_IRQ_MAX, 281 }; 282 283 enum soctherm_throttle_dev_id { 284 THROTTLE_DEV_CPU = 0, 285 THROTTLE_DEV_GPU, 286 THROTTLE_DEV_SIZE, 287 }; 288 289 static const char *const throt_names[] = { 290 [THROTTLE_LIGHT] = "light", 291 [THROTTLE_HEAVY] = "heavy", 292 [THROTTLE_OC1] = "oc1", 293 [THROTTLE_OC2] = "oc2", 294 [THROTTLE_OC3] = "oc3", 295 [THROTTLE_OC4] = "oc4", 296 [THROTTLE_OC5] = "oc5", 297 }; 298 299 struct tegra_soctherm; 300 struct tegra_thermctl_zone { 301 void __iomem *reg; 302 struct device *dev; 303 struct tegra_soctherm *ts; 304 struct thermal_zone_device *tz; 305 const struct tegra_tsensor_group *sg; 306 }; 307 308 struct soctherm_oc_cfg { 309 u32 active_low; 310 u32 throt_period; 311 u32 alarm_cnt_thresh; 312 u32 alarm_filter; 313 u32 mode; 314 bool intr_en; 315 }; 316 317 struct soctherm_throt_cfg { 318 const char *name; 319 unsigned int id; 320 u8 priority; 321 u8 cpu_throt_level; 322 u32 cpu_throt_depth; 323 u32 gpu_throt_level; 324 struct soctherm_oc_cfg oc_cfg; 325 struct thermal_cooling_device *cdev; 326 bool init; 327 }; 328 329 struct tegra_soctherm { 330 struct reset_control *reset; 331 struct clk *clock_tsensor; 332 struct clk *clock_soctherm; 333 void __iomem *regs; 334 void __iomem *clk_regs; 335 void __iomem *ccroc_regs; 336 337 int thermal_irq; 338 int edp_irq; 339 340 u32 *calib; 341 struct thermal_zone_device **thermctl_tzs; 342 struct tegra_soctherm_soc *soc; 343 344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE]; 345 346 struct dentry *debugfs_dir; 347 348 struct mutex thermctl_lock; 349 }; 350 351 struct soctherm_oc_irq_chip_data { 352 struct mutex irq_lock; /* serialize OC IRQs */ 353 struct irq_chip irq_chip; 354 struct irq_domain *domain; 355 int irq_enable; 356 }; 357 358 static struct soctherm_oc_irq_chip_data soc_irq_cdata; 359 360 /** 361 * ccroc_writel() - writes a value to a CCROC register 362 * @ts: pointer to a struct tegra_soctherm 363 * @value: the value to write 364 * @reg: the register offset 365 * 366 * Writes @v to @reg. No return value. 367 */ 368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg) 369 { 370 writel(value, (ts->ccroc_regs + reg)); 371 } 372 373 /** 374 * ccroc_readl() - reads specified register from CCROC IP block 375 * @ts: pointer to a struct tegra_soctherm 376 * @reg: register address to be read 377 * 378 * Return: the value of the register 379 */ 380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg) 381 { 382 return readl(ts->ccroc_regs + reg); 383 } 384 385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) 386 { 387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; 388 void __iomem *base = tegra->regs + sensor->base; 389 unsigned int val; 390 391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; 392 writel(val, base + SENSOR_CONFIG0); 393 394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; 395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; 396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; 397 val |= SENSOR_CONFIG1_TEMP_ENABLE; 398 writel(val, base + SENSOR_CONFIG1); 399 400 writel(tegra->calib[i], base + SENSOR_CONFIG2); 401 } 402 403 /* 404 * Translate from soctherm readback format to millicelsius. 405 * The soctherm readback format in bits is as follows: 406 * TTTTTTTT H______N 407 * where T's contain the temperature in Celsius, 408 * H denotes an addition of 0.5 Celsius and N denotes negation 409 * of the final value. 410 */ 411 static int translate_temp(u16 val) 412 { 413 int t; 414 415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; 416 if (val & READBACK_ADD_HALF) 417 t += 500; 418 if (val & READBACK_NEGATE) 419 t *= -1; 420 421 return t; 422 } 423 424 static int tegra_thermctl_get_temp(void *data, int *out_temp) 425 { 426 struct tegra_thermctl_zone *zone = data; 427 u32 val; 428 429 val = readl(zone->reg); 430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); 431 *out_temp = translate_temp(val); 432 433 return 0; 434 } 435 436 /** 437 * enforce_temp_range() - check and enforce temperature range [min, max] 438 * @dev: struct device * of the SOC_THERM instance 439 * @trip_temp: the trip temperature to check 440 * 441 * Checks and enforces the permitted temperature range that SOC_THERM 442 * HW can support This is 443 * done while taking care of precision. 444 * 445 * Return: The precision adjusted capped temperature in millicelsius. 446 */ 447 static int enforce_temp_range(struct device *dev, int trip_temp) 448 { 449 int temp; 450 451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp); 452 if (temp != trip_temp) 453 dev_dbg(dev, "soctherm: trip temperature %d forced to %d\n", 454 trip_temp, temp); 455 return temp; 456 } 457 458 /** 459 * thermtrip_program() - Configures the hardware to shut down the 460 * system if a given sensor group reaches a given temperature 461 * @dev: ptr to the struct device for the SOC_THERM IP block 462 * @sg: pointer to the sensor group to set the thermtrip temperature for 463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 464 * 465 * Sets the thermal trip threshold of the given sensor group to be the 466 * @trip_temp. If this threshold is crossed, the hardware will shut 467 * down. 468 * 469 * Note that, although @trip_temp is specified in millicelsius, the 470 * hardware is programmed in degrees Celsius. 471 * 472 * Return: 0 upon success, or %-EINVAL upon failure. 473 */ 474 static int thermtrip_program(struct device *dev, 475 const struct tegra_tsensor_group *sg, 476 int trip_temp) 477 { 478 struct tegra_soctherm *ts = dev_get_drvdata(dev); 479 int temp; 480 u32 r; 481 482 if (!sg || !sg->thermtrip_threshold_mask) 483 return -EINVAL; 484 485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 486 487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); 489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); 490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); 491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); 492 493 return 0; 494 } 495 496 /** 497 * throttrip_program() - Configures the hardware to throttle the 498 * pulse if a given sensor group reaches a given temperature 499 * @dev: ptr to the struct device for the SOC_THERM IP block 500 * @sg: pointer to the sensor group to set the thermtrip temperature for 501 * @stc: pointer to the throttle need to be triggered 502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 503 * 504 * Sets the thermal trip threshold and throttle event of the given sensor 505 * group. If this threshold is crossed, the hardware will trigger the 506 * throttle. 507 * 508 * Note that, although @trip_temp is specified in millicelsius, the 509 * hardware is programmed in degrees Celsius. 510 * 511 * Return: 0 upon success, or %-EINVAL upon failure. 512 */ 513 static int throttrip_program(struct device *dev, 514 const struct tegra_tsensor_group *sg, 515 struct soctherm_throt_cfg *stc, 516 int trip_temp) 517 { 518 struct tegra_soctherm *ts = dev_get_drvdata(dev); 519 int temp, cpu_throt, gpu_throt; 520 unsigned int throt; 521 u32 r, reg_off; 522 523 if (!sg || !stc || !stc->init) 524 return -EINVAL; 525 526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 527 528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */ 529 throt = stc->id; 530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1); 531 532 if (throt == THROTTLE_LIGHT) { 533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT; 534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT; 535 } else { 536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY; 537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY; 538 if (throt != THROTTLE_HEAVY) 539 dev_warn(dev, 540 "invalid throt id %d - assuming HEAVY", 541 throt); 542 } 543 544 r = readl(ts->regs + reg_off); 545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp); 546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp); 547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt); 548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt); 549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 550 writel(r, ts->regs + reg_off); 551 552 return 0; 553 } 554 555 static struct soctherm_throt_cfg * 556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name) 557 { 558 unsigned int i; 559 560 for (i = 0; ts->throt_cfgs[i].name; i++) 561 if (!strcmp(ts->throt_cfgs[i].name, name)) 562 return &ts->throt_cfgs[i]; 563 564 return NULL; 565 } 566 567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id) 568 { 569 int i, temp = min_low_temp; 570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 571 572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM) 573 return temp; 574 575 if (tt) { 576 for (i = 0; i < ts->soc->num_ttgs; i++) { 577 if (tt[i].id == id) 578 return tt[i].temp; 579 } 580 } 581 582 return temp; 583 } 584 585 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp) 586 { 587 struct tegra_thermctl_zone *zone = data; 588 struct thermal_zone_device *tz = zone->tz; 589 struct tegra_soctherm *ts = zone->ts; 590 const struct tegra_tsensor_group *sg = zone->sg; 591 struct device *dev = zone->dev; 592 enum thermal_trip_type type; 593 int ret; 594 595 if (!tz) 596 return -EINVAL; 597 598 ret = tz->ops->get_trip_type(tz, trip, &type); 599 if (ret) 600 return ret; 601 602 if (type == THERMAL_TRIP_CRITICAL) { 603 /* 604 * If thermtrips property is set in DT, 605 * doesn't need to program critical type trip to HW, 606 * if not, program critical trip to HW. 607 */ 608 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id)) 609 return thermtrip_program(dev, sg, temp); 610 else 611 return 0; 612 613 } else if (type == THERMAL_TRIP_HOT) { 614 int i; 615 616 for (i = 0; i < THROTTLE_SIZE; i++) { 617 struct thermal_cooling_device *cdev; 618 struct soctherm_throt_cfg *stc; 619 620 if (!ts->throt_cfgs[i].init) 621 continue; 622 623 cdev = ts->throt_cfgs[i].cdev; 624 if (get_thermal_instance(tz, cdev, trip)) 625 stc = find_throttle_cfg_by_name(ts, cdev->type); 626 else 627 continue; 628 629 return throttrip_program(dev, sg, stc, temp); 630 } 631 } 632 633 return 0; 634 } 635 636 static void thermal_irq_enable(struct tegra_thermctl_zone *zn) 637 { 638 u32 r; 639 640 /* multiple zones could be handling and setting trips at once */ 641 mutex_lock(&zn->ts->thermctl_lock); 642 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE); 643 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN); 644 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE); 645 mutex_unlock(&zn->ts->thermctl_lock); 646 } 647 648 static void thermal_irq_disable(struct tegra_thermctl_zone *zn) 649 { 650 u32 r; 651 652 /* multiple zones could be handling and setting trips at once */ 653 mutex_lock(&zn->ts->thermctl_lock); 654 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE); 655 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0); 656 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE); 657 mutex_unlock(&zn->ts->thermctl_lock); 658 } 659 660 static int tegra_thermctl_set_trips(void *data, int lo, int hi) 661 { 662 struct tegra_thermctl_zone *zone = data; 663 u32 r; 664 665 thermal_irq_disable(zone); 666 667 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset); 668 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0); 669 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 670 671 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain; 672 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain; 673 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo); 674 675 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi); 676 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo); 677 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 678 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 679 680 thermal_irq_enable(zone); 681 682 return 0; 683 } 684 685 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = { 686 .get_temp = tegra_thermctl_get_temp, 687 .set_trip_temp = tegra_thermctl_set_trip_temp, 688 .set_trips = tegra_thermctl_set_trips, 689 }; 690 691 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp) 692 { 693 int ntrips, i, ret; 694 enum thermal_trip_type type; 695 696 ntrips = of_thermal_get_ntrips(tz); 697 if (ntrips <= 0) 698 return -EINVAL; 699 700 for (i = 0; i < ntrips; i++) { 701 ret = tz->ops->get_trip_type(tz, i, &type); 702 if (ret) 703 return -EINVAL; 704 if (type == THERMAL_TRIP_HOT) { 705 ret = tz->ops->get_trip_temp(tz, i, temp); 706 if (!ret) 707 *trip = i; 708 709 return ret; 710 } 711 } 712 713 return -EINVAL; 714 } 715 716 /** 717 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data 718 * @dev: struct device * of the SOC_THERM instance 719 * @sg: pointer to the sensor group to set the thermtrip temperature for 720 * @tz: struct thermal_zone_device * 721 * 722 * Configure the SOC_THERM HW trip points, setting "THERMTRIP" 723 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot" 724 * type trip_temp 725 * from thermal zone. 726 * After they have been configured, THERMTRIP or THROTTLE will take 727 * action when the configured SoC thermal sensor group reaches a 728 * certain temperature. 729 * 730 * Return: 0 upon success, or a negative error code on failure. 731 * "Success" does not mean that trips was enabled; it could also 732 * mean that no node was found in DT. 733 * THERMTRIP has been enabled successfully when a message similar to 734 * this one appears on the serial console: 735 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" 736 * THROTTLE has been enabled successfully when a message similar to 737 * this one appears on the serial console: 738 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC" 739 */ 740 static int tegra_soctherm_set_hwtrips(struct device *dev, 741 const struct tegra_tsensor_group *sg, 742 struct thermal_zone_device *tz) 743 { 744 struct tegra_soctherm *ts = dev_get_drvdata(dev); 745 struct soctherm_throt_cfg *stc; 746 int i, trip, temperature, ret; 747 748 /* Get thermtrips. If missing, try to get critical trips. */ 749 temperature = tsensor_group_thermtrip_get(ts, sg->id); 750 if (min_low_temp == temperature) 751 if (tz->ops->get_crit_temp(tz, &temperature)) 752 temperature = max_high_temp; 753 754 ret = thermtrip_program(dev, sg, temperature); 755 if (ret) { 756 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name); 757 return ret; 758 } 759 760 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n", 761 sg->name, temperature); 762 763 ret = get_hot_temp(tz, &trip, &temperature); 764 if (ret) { 765 dev_info(dev, "throttrip: %s: missing hot temperature\n", 766 sg->name); 767 return 0; 768 } 769 770 for (i = 0; i < THROTTLE_OC1; i++) { 771 struct thermal_cooling_device *cdev; 772 773 if (!ts->throt_cfgs[i].init) 774 continue; 775 776 cdev = ts->throt_cfgs[i].cdev; 777 if (get_thermal_instance(tz, cdev, trip)) 778 stc = find_throttle_cfg_by_name(ts, cdev->type); 779 else 780 continue; 781 782 ret = throttrip_program(dev, sg, stc, temperature); 783 if (ret) { 784 dev_err(dev, "throttrip: %s: error during enable\n", 785 sg->name); 786 return ret; 787 } 788 789 dev_info(dev, 790 "throttrip: will throttle when %s reaches %d mC\n", 791 sg->name, temperature); 792 break; 793 } 794 795 if (i == THROTTLE_SIZE) 796 dev_info(dev, "throttrip: %s: missing throttle cdev\n", 797 sg->name); 798 799 return 0; 800 } 801 802 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id) 803 { 804 struct tegra_soctherm *ts = dev_id; 805 u32 r; 806 807 /* Case for no lock: 808 * Although interrupts are enabled in set_trips, there is still no need 809 * to lock here because the interrupts are disabled before programming 810 * new trip points. Hence there cant be a interrupt on the same sensor. 811 * An interrupt can however occur on a sensor while trips are being 812 * programmed on a different one. This beign a LEVEL interrupt won't 813 * cause a new interrupt but this is taken care of by the re-reading of 814 * the STATUS register in the thread function. 815 */ 816 r = readl(ts->regs + THERMCTL_INTR_STATUS); 817 writel(r, ts->regs + THERMCTL_INTR_DISABLE); 818 819 return IRQ_WAKE_THREAD; 820 } 821 822 /** 823 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request 824 * @irq: The interrupt number being requested; not used 825 * @dev_id: Opaque pointer to tegra_soctherm; 826 * 827 * Clears the interrupt status register if there are expected 828 * interrupt bits set. 829 * The interrupt(s) are then handled by updating the corresponding 830 * thermal zones. 831 * 832 * An error is logged if any unexpected interrupt bits are set. 833 * 834 * Disabled interrupts are re-enabled. 835 * 836 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing 837 * is needed. 838 */ 839 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id) 840 { 841 struct tegra_soctherm *ts = dev_id; 842 struct thermal_zone_device *tz; 843 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0; 844 845 st = readl(ts->regs + THERMCTL_INTR_STATUS); 846 847 /* deliberately clear expected interrupts handled in SW */ 848 cp |= st & TH_INTR_CD0_MASK; 849 cp |= st & TH_INTR_CU0_MASK; 850 851 gp |= st & TH_INTR_GD0_MASK; 852 gp |= st & TH_INTR_GU0_MASK; 853 854 pl |= st & TH_INTR_PD0_MASK; 855 pl |= st & TH_INTR_PU0_MASK; 856 857 me |= st & TH_INTR_MD0_MASK; 858 me |= st & TH_INTR_MU0_MASK; 859 860 ex |= cp | gp | pl | me; 861 if (ex) { 862 writel(ex, ts->regs + THERMCTL_INTR_STATUS); 863 st &= ~ex; 864 865 if (cp) { 866 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU]; 867 thermal_zone_device_update(tz, 868 THERMAL_EVENT_UNSPECIFIED); 869 } 870 871 if (gp) { 872 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU]; 873 thermal_zone_device_update(tz, 874 THERMAL_EVENT_UNSPECIFIED); 875 } 876 877 if (pl) { 878 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX]; 879 thermal_zone_device_update(tz, 880 THERMAL_EVENT_UNSPECIFIED); 881 } 882 883 if (me) { 884 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM]; 885 thermal_zone_device_update(tz, 886 THERMAL_EVENT_UNSPECIFIED); 887 } 888 } 889 890 /* deliberately ignore expected interrupts NOT handled in SW */ 891 ex |= TH_INTR_IGNORE_MASK; 892 st &= ~ex; 893 894 if (st) { 895 /* Whine about any other unexpected INTR bits still set */ 896 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st); 897 writel(st, ts->regs + THERMCTL_INTR_STATUS); 898 } 899 900 return IRQ_HANDLED; 901 } 902 903 /** 904 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt 905 * @ts: pointer to a struct tegra_soctherm 906 * @alarm: The soctherm throttle id 907 * @enable: Flag indicating enable the soctherm over-current 908 * interrupt or disable it 909 * 910 * Enables a specific over-current pins @alarm to raise an interrupt if the flag 911 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4. 912 */ 913 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts, 914 enum soctherm_throttle_id alarm, 915 bool enable) 916 { 917 u32 r; 918 919 if (!enable) 920 return; 921 922 r = readl(ts->regs + OC_INTR_ENABLE); 923 switch (alarm) { 924 case THROTTLE_OC1: 925 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1); 926 break; 927 case THROTTLE_OC2: 928 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1); 929 break; 930 case THROTTLE_OC3: 931 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1); 932 break; 933 case THROTTLE_OC4: 934 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1); 935 break; 936 default: 937 r = 0; 938 break; 939 } 940 writel(r, ts->regs + OC_INTR_ENABLE); 941 } 942 943 /** 944 * soctherm_handle_alarm() - Handles soctherm alarms 945 * @alarm: The soctherm throttle id 946 * 947 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing 948 * a warning or informative message. 949 * 950 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success). 951 */ 952 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm) 953 { 954 int rv = -EINVAL; 955 956 switch (alarm) { 957 case THROTTLE_OC1: 958 pr_debug("soctherm: Successfully handled OC1 alarm\n"); 959 rv = 0; 960 break; 961 962 case THROTTLE_OC2: 963 pr_debug("soctherm: Successfully handled OC2 alarm\n"); 964 rv = 0; 965 break; 966 967 case THROTTLE_OC3: 968 pr_debug("soctherm: Successfully handled OC3 alarm\n"); 969 rv = 0; 970 break; 971 972 case THROTTLE_OC4: 973 pr_debug("soctherm: Successfully handled OC4 alarm\n"); 974 rv = 0; 975 break; 976 977 default: 978 break; 979 } 980 981 if (rv) 982 pr_err("soctherm: ERROR in handling %s alarm\n", 983 throt_names[alarm]); 984 985 return rv; 986 } 987 988 /** 989 * soctherm_edp_isr_thread() - log an over-current interrupt request 990 * @irq: OC irq number. Currently not being used. See description 991 * @arg: a void pointer for callback, currently not being used 992 * 993 * Over-current events are handled in hardware. This function is called to log 994 * and handle any OC events that happened. Additionally, it checks every 995 * over-current interrupt registers for registers are set but 996 * was not expected (i.e. any discrepancy in interrupt status) by the function, 997 * the discrepancy will logged. 998 * 999 * Return: %IRQ_HANDLED 1000 */ 1001 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg) 1002 { 1003 struct tegra_soctherm *ts = arg; 1004 u32 st, ex, oc1, oc2, oc3, oc4; 1005 1006 st = readl(ts->regs + OC_INTR_STATUS); 1007 1008 /* deliberately clear expected interrupts handled in SW */ 1009 oc1 = st & OC_INTR_OC1_MASK; 1010 oc2 = st & OC_INTR_OC2_MASK; 1011 oc3 = st & OC_INTR_OC3_MASK; 1012 oc4 = st & OC_INTR_OC4_MASK; 1013 ex = oc1 | oc2 | oc3 | oc4; 1014 1015 pr_err("soctherm: OC ALARM 0x%08x\n", ex); 1016 if (ex) { 1017 writel(st, ts->regs + OC_INTR_STATUS); 1018 st &= ~ex; 1019 1020 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1)) 1021 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true); 1022 1023 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2)) 1024 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true); 1025 1026 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3)) 1027 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true); 1028 1029 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4)) 1030 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true); 1031 1032 if (oc1 && soc_irq_cdata.irq_enable & BIT(0)) 1033 handle_nested_irq( 1034 irq_find_mapping(soc_irq_cdata.domain, 0)); 1035 1036 if (oc2 && soc_irq_cdata.irq_enable & BIT(1)) 1037 handle_nested_irq( 1038 irq_find_mapping(soc_irq_cdata.domain, 1)); 1039 1040 if (oc3 && soc_irq_cdata.irq_enable & BIT(2)) 1041 handle_nested_irq( 1042 irq_find_mapping(soc_irq_cdata.domain, 2)); 1043 1044 if (oc4 && soc_irq_cdata.irq_enable & BIT(3)) 1045 handle_nested_irq( 1046 irq_find_mapping(soc_irq_cdata.domain, 3)); 1047 } 1048 1049 if (st) { 1050 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st); 1051 writel(st, ts->regs + OC_INTR_STATUS); 1052 } 1053 1054 return IRQ_HANDLED; 1055 } 1056 1057 /** 1058 * soctherm_edp_isr() - Disables any active interrupts 1059 * @irq: The interrupt request number 1060 * @arg: Opaque pointer to an argument 1061 * 1062 * Writes to the OC_INTR_DISABLE register the over current interrupt status, 1063 * masking any asserted interrupts. Doing this prevents the same interrupts 1064 * from triggering this isr repeatedly. The thread woken by this isr will 1065 * handle asserted interrupts and subsequently unmask/re-enable them. 1066 * 1067 * The OC_INTR_DISABLE register indicates which OC interrupts 1068 * have been disabled. 1069 * 1070 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread 1071 */ 1072 static irqreturn_t soctherm_edp_isr(int irq, void *arg) 1073 { 1074 struct tegra_soctherm *ts = arg; 1075 u32 r; 1076 1077 if (!ts) 1078 return IRQ_NONE; 1079 1080 r = readl(ts->regs + OC_INTR_STATUS); 1081 writel(r, ts->regs + OC_INTR_DISABLE); 1082 1083 return IRQ_WAKE_THREAD; 1084 } 1085 1086 /** 1087 * soctherm_oc_irq_lock() - locks the over-current interrupt request 1088 * @data: Interrupt request data 1089 * 1090 * Looks up the chip data from @data and locks the mutex associated with 1091 * a particular over-current interrupt request. 1092 */ 1093 static void soctherm_oc_irq_lock(struct irq_data *data) 1094 { 1095 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1096 1097 mutex_lock(&d->irq_lock); 1098 } 1099 1100 /** 1101 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request 1102 * @data: Interrupt request data 1103 * 1104 * Looks up the interrupt request data @data and unlocks the mutex associated 1105 * with a particular over-current interrupt request. 1106 */ 1107 static void soctherm_oc_irq_sync_unlock(struct irq_data *data) 1108 { 1109 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1110 1111 mutex_unlock(&d->irq_lock); 1112 } 1113 1114 /** 1115 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue 1116 * @data: irq_data structure of the chip 1117 * 1118 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM 1119 * to respond to over-current interrupts. 1120 * 1121 */ 1122 static void soctherm_oc_irq_enable(struct irq_data *data) 1123 { 1124 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1125 1126 d->irq_enable |= BIT(data->hwirq); 1127 } 1128 1129 /** 1130 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests 1131 * @data: The interrupt request information 1132 * 1133 * Clears the interrupt request enable bit of the overcurrent 1134 * interrupt request chip data. 1135 * 1136 * Return: Nothing is returned (void) 1137 */ 1138 static void soctherm_oc_irq_disable(struct irq_data *data) 1139 { 1140 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1141 1142 d->irq_enable &= ~BIT(data->hwirq); 1143 } 1144 1145 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type) 1146 { 1147 return 0; 1148 } 1149 1150 /** 1151 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper 1152 * @h: Interrupt request domain 1153 * @virq: Virtual interrupt request number 1154 * @hw: Hardware interrupt request number 1155 * 1156 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM 1157 * interrupt request is called, the irq_domain takes the request's virtual 1158 * request number (much like a virtual memory address) and maps it to a 1159 * physical hardware request number. 1160 * 1161 * When a mapping doesn't already exist for a virtual request number, the 1162 * irq_domain calls this function to associate the virtual request number with 1163 * a hardware request number. 1164 * 1165 * Return: 0 1166 */ 1167 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq, 1168 irq_hw_number_t hw) 1169 { 1170 struct soctherm_oc_irq_chip_data *data = h->host_data; 1171 1172 irq_set_chip_data(virq, data); 1173 irq_set_chip(virq, &data->irq_chip); 1174 irq_set_nested_thread(virq, 1); 1175 return 0; 1176 } 1177 1178 /** 1179 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts 1180 * @d: Interrupt request domain 1181 * @ctrlr: Controller device tree node 1182 * @intspec: Array of u32s from DTs "interrupt" property 1183 * @intsize: Number of values inside the intspec array 1184 * @out_hwirq: HW IRQ value associated with this interrupt 1185 * @out_type: The IRQ SENSE type for this interrupt. 1186 * 1187 * This Device Tree IRQ specifier translation function will translate a 1188 * specific "interrupt" as defined by 2 DT values where the cell values map 1189 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq 1190 * number, this function will subtract 1 from the value listed in DT. 1191 * 1192 * Return: 0 1193 */ 1194 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d, 1195 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, 1196 irq_hw_number_t *out_hwirq, unsigned int *out_type) 1197 { 1198 if (WARN_ON(intsize < 2)) 1199 return -EINVAL; 1200 1201 /* 1202 * The HW value is 1 index less than the DT IRQ values. 1203 * i.e. OC4 goes to HW index 3. 1204 */ 1205 *out_hwirq = intspec[0] - 1; 1206 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK; 1207 return 0; 1208 } 1209 1210 static const struct irq_domain_ops soctherm_oc_domain_ops = { 1211 .map = soctherm_oc_irq_map, 1212 .xlate = soctherm_irq_domain_xlate_twocell, 1213 }; 1214 1215 /** 1216 * soctherm_oc_int_init() - Initial enabling of the over 1217 * current interrupts 1218 * @np: The devicetree node for soctherm 1219 * @num_irqs: The number of new interrupt requests 1220 * 1221 * Sets the over current interrupt request chip data 1222 * 1223 * Return: 0 on success or if overcurrent interrupts are not enabled, 1224 * -ENOMEM (out of memory), or irq_base if the function failed to 1225 * allocate the irqs 1226 */ 1227 static int soctherm_oc_int_init(struct device_node *np, int num_irqs) 1228 { 1229 if (!num_irqs) { 1230 pr_info("%s(): OC interrupts are not enabled\n", __func__); 1231 return 0; 1232 } 1233 1234 mutex_init(&soc_irq_cdata.irq_lock); 1235 soc_irq_cdata.irq_enable = 0; 1236 1237 soc_irq_cdata.irq_chip.name = "soc_therm_oc"; 1238 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock; 1239 soc_irq_cdata.irq_chip.irq_bus_sync_unlock = 1240 soctherm_oc_irq_sync_unlock; 1241 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable; 1242 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable; 1243 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type; 1244 soc_irq_cdata.irq_chip.irq_set_wake = NULL; 1245 1246 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs, 1247 &soctherm_oc_domain_ops, 1248 &soc_irq_cdata); 1249 1250 if (!soc_irq_cdata.domain) { 1251 pr_err("%s: Failed to create IRQ domain\n", __func__); 1252 return -ENOMEM; 1253 } 1254 1255 pr_debug("%s(): OC interrupts enabled successful\n", __func__); 1256 return 0; 1257 } 1258 1259 #ifdef CONFIG_DEBUG_FS 1260 static int regs_show(struct seq_file *s, void *data) 1261 { 1262 struct platform_device *pdev = s->private; 1263 struct tegra_soctherm *ts = platform_get_drvdata(pdev); 1264 const struct tegra_tsensor *tsensors = ts->soc->tsensors; 1265 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; 1266 u32 r, state; 1267 int i, level; 1268 1269 seq_puts(s, "-----TSENSE (convert HW)-----\n"); 1270 1271 for (i = 0; i < ts->soc->num_tsensors; i++) { 1272 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); 1273 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); 1274 1275 seq_printf(s, "%s: ", tsensors[i].name); 1276 seq_printf(s, "En(%d) ", state); 1277 1278 if (!state) { 1279 seq_puts(s, "\n"); 1280 continue; 1281 } 1282 1283 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); 1284 seq_printf(s, "tiddq(%d) ", state); 1285 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); 1286 seq_printf(s, "ten_count(%d) ", state); 1287 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); 1288 seq_printf(s, "tsample(%d) ", state + 1); 1289 1290 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); 1291 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); 1292 seq_printf(s, "Temp(%d/", state); 1293 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); 1294 seq_printf(s, "%d) ", translate_temp(state)); 1295 1296 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); 1297 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); 1298 seq_printf(s, "Capture(%d/", state); 1299 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); 1300 seq_printf(s, "%d) ", state); 1301 1302 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); 1303 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); 1304 seq_printf(s, "Stop(%d) ", state); 1305 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); 1306 seq_printf(s, "Tall(%d) ", state); 1307 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); 1308 seq_printf(s, "Over(%d/", state); 1309 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); 1310 seq_printf(s, "%d/", state); 1311 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); 1312 seq_printf(s, "%d) ", state); 1313 1314 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); 1315 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); 1316 seq_printf(s, "Therm_A/B(%d/", state); 1317 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); 1318 seq_printf(s, "%d)\n", (s16)state); 1319 } 1320 1321 r = readl(ts->regs + SENSOR_PDIV); 1322 seq_printf(s, "PDIV: 0x%x\n", r); 1323 1324 r = readl(ts->regs + SENSOR_HOTSPOT_OFF); 1325 seq_printf(s, "HOTSPOT: 0x%x\n", r); 1326 1327 seq_puts(s, "\n"); 1328 seq_puts(s, "-----SOC_THERM-----\n"); 1329 1330 r = readl(ts->regs + SENSOR_TEMP1); 1331 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); 1332 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); 1333 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); 1334 seq_printf(s, " GPU(%d) ", translate_temp(state)); 1335 r = readl(ts->regs + SENSOR_TEMP2); 1336 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); 1337 seq_printf(s, " PLLX(%d) ", translate_temp(state)); 1338 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); 1339 seq_printf(s, " MEM(%d)\n", translate_temp(state)); 1340 1341 for (i = 0; i < ts->soc->num_ttgs; i++) { 1342 seq_printf(s, "%s:\n", ttgs[i]->name); 1343 for (level = 0; level < 4; level++) { 1344 s32 v; 1345 u32 mask; 1346 u16 off = ttgs[i]->thermctl_lvl0_offset; 1347 1348 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1349 1350 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask; 1351 state = REG_GET_MASK(r, mask); 1352 v = sign_extend32(state, ts->soc->bptt - 1); 1353 v *= ts->soc->thresh_grain; 1354 seq_printf(s, " %d: Up/Dn(%d /", level, v); 1355 1356 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask; 1357 state = REG_GET_MASK(r, mask); 1358 v = sign_extend32(state, ts->soc->bptt - 1); 1359 v *= ts->soc->thresh_grain; 1360 seq_printf(s, "%d ) ", v); 1361 1362 mask = THERMCTL_LVL0_CPU0_EN_MASK; 1363 state = REG_GET_MASK(r, mask); 1364 seq_printf(s, "En(%d) ", state); 1365 1366 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK; 1367 state = REG_GET_MASK(r, mask); 1368 seq_puts(s, "CPU Throt"); 1369 if (!state) 1370 seq_printf(s, "(%s) ", "none"); 1371 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT) 1372 seq_printf(s, "(%s) ", "L"); 1373 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY) 1374 seq_printf(s, "(%s) ", "H"); 1375 else 1376 seq_printf(s, "(%s) ", "H+L"); 1377 1378 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK; 1379 state = REG_GET_MASK(r, mask); 1380 seq_puts(s, "GPU Throt"); 1381 if (!state) 1382 seq_printf(s, "(%s) ", "none"); 1383 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT) 1384 seq_printf(s, "(%s) ", "L"); 1385 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY) 1386 seq_printf(s, "(%s) ", "H"); 1387 else 1388 seq_printf(s, "(%s) ", "H+L"); 1389 1390 mask = THERMCTL_LVL0_CPU0_STATUS_MASK; 1391 state = REG_GET_MASK(r, mask); 1392 seq_printf(s, "Status(%s)\n", 1393 state == 0 ? "LO" : 1394 state == 1 ? "In" : 1395 state == 2 ? "Res" : "HI"); 1396 } 1397 } 1398 1399 r = readl(ts->regs + THERMCTL_STATS_CTL); 1400 seq_printf(s, "STATS: Up(%s) Dn(%s)\n", 1401 r & STATS_CTL_EN_UP ? "En" : "--", 1402 r & STATS_CTL_EN_DN ? "En" : "--"); 1403 1404 for (level = 0; level < 4; level++) { 1405 u16 off; 1406 1407 off = THERMCTL_LVL0_UP_STATS; 1408 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1409 seq_printf(s, " Level_%d Up(%d) ", level, r); 1410 1411 off = THERMCTL_LVL0_DN_STATS; 1412 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1413 seq_printf(s, "Dn(%d)\n", r); 1414 } 1415 1416 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 1417 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); 1418 seq_printf(s, "Thermtrip Any En(%d)\n", state); 1419 for (i = 0; i < ts->soc->num_ttgs; i++) { 1420 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); 1421 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); 1422 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); 1423 state *= ts->soc->thresh_grain; 1424 seq_printf(s, "Thresh(%d)\n", state); 1425 } 1426 1427 r = readl(ts->regs + THROT_GLOBAL_CFG); 1428 seq_puts(s, "\n"); 1429 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r); 1430 1431 seq_puts(s, "---------------------------------------------------\n"); 1432 r = readl(ts->regs + THROT_STATUS); 1433 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK); 1434 seq_printf(s, "THROT STATUS: breach(%d) ", state); 1435 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK); 1436 seq_printf(s, "state(%d) ", state); 1437 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK); 1438 seq_printf(s, "enabled(%d)\n", state); 1439 1440 r = readl(ts->regs + CPU_PSKIP_STATUS); 1441 if (ts->soc->use_ccroc) { 1442 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1443 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state); 1444 } else { 1445 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK); 1446 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state); 1447 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK); 1448 seq_printf(s, "N(%d) ", state); 1449 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1450 seq_printf(s, "enabled(%d)\n", state); 1451 } 1452 1453 return 0; 1454 } 1455 1456 DEFINE_SHOW_ATTRIBUTE(regs); 1457 1458 static void soctherm_debug_init(struct platform_device *pdev) 1459 { 1460 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1461 struct dentry *root; 1462 1463 root = debugfs_create_dir("soctherm", NULL); 1464 1465 tegra->debugfs_dir = root; 1466 1467 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops); 1468 } 1469 #else 1470 static inline void soctherm_debug_init(struct platform_device *pdev) {} 1471 #endif 1472 1473 static int soctherm_clk_enable(struct platform_device *pdev, bool enable) 1474 { 1475 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1476 int err; 1477 1478 if (!tegra->clock_soctherm || !tegra->clock_tsensor) 1479 return -EINVAL; 1480 1481 reset_control_assert(tegra->reset); 1482 1483 if (enable) { 1484 err = clk_prepare_enable(tegra->clock_soctherm); 1485 if (err) { 1486 reset_control_deassert(tegra->reset); 1487 return err; 1488 } 1489 1490 err = clk_prepare_enable(tegra->clock_tsensor); 1491 if (err) { 1492 clk_disable_unprepare(tegra->clock_soctherm); 1493 reset_control_deassert(tegra->reset); 1494 return err; 1495 } 1496 } else { 1497 clk_disable_unprepare(tegra->clock_tsensor); 1498 clk_disable_unprepare(tegra->clock_soctherm); 1499 } 1500 1501 reset_control_deassert(tegra->reset); 1502 1503 return 0; 1504 } 1505 1506 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev, 1507 unsigned long *max_state) 1508 { 1509 *max_state = 1; 1510 return 0; 1511 } 1512 1513 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev, 1514 unsigned long *cur_state) 1515 { 1516 struct tegra_soctherm *ts = cdev->devdata; 1517 u32 r; 1518 1519 r = readl(ts->regs + THROT_STATUS); 1520 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK)) 1521 *cur_state = 1; 1522 else 1523 *cur_state = 0; 1524 1525 return 0; 1526 } 1527 1528 static int throt_set_cdev_state(struct thermal_cooling_device *cdev, 1529 unsigned long cur_state) 1530 { 1531 return 0; 1532 } 1533 1534 static const struct thermal_cooling_device_ops throt_cooling_ops = { 1535 .get_max_state = throt_get_cdev_max_state, 1536 .get_cur_state = throt_get_cdev_cur_state, 1537 .set_cur_state = throt_set_cdev_state, 1538 }; 1539 1540 static int soctherm_thermtrips_parse(struct platform_device *pdev) 1541 { 1542 struct device *dev = &pdev->dev; 1543 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1544 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 1545 const int max_num_prop = ts->soc->num_ttgs * 2; 1546 u32 *tlb; 1547 int i, j, n, ret; 1548 1549 if (!tt) 1550 return -ENOMEM; 1551 1552 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips"); 1553 if (n <= 0) { 1554 dev_info(dev, 1555 "missing thermtrips, will use critical trips as shut down temp\n"); 1556 return n; 1557 } 1558 1559 n = min(max_num_prop, n); 1560 1561 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL); 1562 if (!tlb) 1563 return -ENOMEM; 1564 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips", 1565 tlb, n); 1566 if (ret) { 1567 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret); 1568 return ret; 1569 } 1570 1571 i = 0; 1572 for (j = 0; j < n; j = j + 2) { 1573 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM) 1574 continue; 1575 1576 tt[i].id = tlb[j]; 1577 tt[i].temp = tlb[j + 1]; 1578 i++; 1579 } 1580 1581 return 0; 1582 } 1583 1584 static void soctherm_oc_cfg_parse(struct device *dev, 1585 struct device_node *np_oc, 1586 struct soctherm_throt_cfg *stc) 1587 { 1588 u32 val; 1589 1590 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low")) 1591 stc->oc_cfg.active_low = 1; 1592 else 1593 stc->oc_cfg.active_low = 0; 1594 1595 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) { 1596 stc->oc_cfg.intr_en = 1; 1597 stc->oc_cfg.alarm_cnt_thresh = val; 1598 } 1599 1600 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val)) 1601 stc->oc_cfg.throt_period = val; 1602 1603 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val)) 1604 stc->oc_cfg.alarm_filter = val; 1605 1606 /* BRIEF throttling by default, do not support STICKY */ 1607 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF; 1608 } 1609 1610 static int soctherm_throt_cfg_parse(struct device *dev, 1611 struct device_node *np, 1612 struct soctherm_throt_cfg *stc) 1613 { 1614 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1615 int ret; 1616 u32 val; 1617 1618 ret = of_property_read_u32(np, "nvidia,priority", &val); 1619 if (ret) { 1620 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name); 1621 return -EINVAL; 1622 } 1623 stc->priority = val; 1624 1625 ret = of_property_read_u32(np, ts->soc->use_ccroc ? 1626 "nvidia,cpu-throt-level" : 1627 "nvidia,cpu-throt-percent", &val); 1628 if (!ret) { 1629 if (ts->soc->use_ccroc && 1630 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1631 stc->cpu_throt_level = val; 1632 else if (!ts->soc->use_ccroc && val <= 100) 1633 stc->cpu_throt_depth = val; 1634 else 1635 goto err; 1636 } else { 1637 goto err; 1638 } 1639 1640 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val); 1641 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1642 stc->gpu_throt_level = val; 1643 else 1644 goto err; 1645 1646 return 0; 1647 1648 err: 1649 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n", 1650 stc->name); 1651 return -EINVAL; 1652 } 1653 1654 /** 1655 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations 1656 * and register them as cooling devices. 1657 * @pdev: Pointer to platform_device struct 1658 */ 1659 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev) 1660 { 1661 struct device *dev = &pdev->dev; 1662 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1663 struct device_node *np_stc, *np_stcc; 1664 const char *name; 1665 int i; 1666 1667 for (i = 0; i < THROTTLE_SIZE; i++) { 1668 ts->throt_cfgs[i].name = throt_names[i]; 1669 ts->throt_cfgs[i].id = i; 1670 ts->throt_cfgs[i].init = false; 1671 } 1672 1673 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs"); 1674 if (!np_stc) { 1675 dev_info(dev, 1676 "throttle-cfg: no throttle-cfgs - not enabling\n"); 1677 return; 1678 } 1679 1680 for_each_child_of_node(np_stc, np_stcc) { 1681 struct soctherm_throt_cfg *stc; 1682 struct thermal_cooling_device *tcd; 1683 int err; 1684 1685 name = np_stcc->name; 1686 stc = find_throttle_cfg_by_name(ts, name); 1687 if (!stc) { 1688 dev_err(dev, 1689 "throttle-cfg: could not find %s\n", name); 1690 continue; 1691 } 1692 1693 if (stc->init) { 1694 dev_err(dev, "throttle-cfg: %s: redefined!\n", name); 1695 of_node_put(np_stcc); 1696 break; 1697 } 1698 1699 err = soctherm_throt_cfg_parse(dev, np_stcc, stc); 1700 if (err) 1701 continue; 1702 1703 if (stc->id >= THROTTLE_OC1) { 1704 soctherm_oc_cfg_parse(dev, np_stcc, stc); 1705 stc->init = true; 1706 } else { 1707 1708 tcd = thermal_of_cooling_device_register(np_stcc, 1709 (char *)name, ts, 1710 &throt_cooling_ops); 1711 if (IS_ERR_OR_NULL(tcd)) { 1712 dev_err(dev, 1713 "throttle-cfg: %s: failed to register cooling device\n", 1714 name); 1715 continue; 1716 } 1717 stc->cdev = tcd; 1718 stc->init = true; 1719 } 1720 1721 } 1722 1723 of_node_put(np_stc); 1724 } 1725 1726 /** 1727 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config 1728 * @ts: pointer to a struct tegra_soctherm 1729 * @level: describing the level LOW/MED/HIGH of throttling 1730 * 1731 * It's necessary to set up the CPU-local CCROC NV_THERM instance with 1732 * the M/N values desired for each level. This function does this. 1733 * 1734 * This function pre-programs the CCROC NV_THERM levels in terms of 1735 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are 1736 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY. 1737 */ 1738 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level) 1739 { 1740 u8 depth, dividend; 1741 u32 r; 1742 1743 switch (level) { 1744 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1745 depth = 50; 1746 break; 1747 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1748 depth = 75; 1749 break; 1750 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1751 depth = 80; 1752 break; 1753 case TEGRA_SOCTHERM_THROT_LEVEL_NONE: 1754 return; 1755 default: 1756 return; 1757 } 1758 1759 dividend = THROT_DEPTH_DIVIDEND(depth); 1760 1761 /* setup PSKIP in ccroc nv_therm registers */ 1762 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1763 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1764 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1765 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1766 1767 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1768 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1); 1769 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1770 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1771 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1772 } 1773 1774 /** 1775 * throttlectl_cpu_level_select() - program CPU pulse skipper config 1776 * @ts: pointer to a struct tegra_soctherm 1777 * @throt: the LIGHT/HEAVY of throttle event id 1778 * 1779 * Pulse skippers are used to throttle clock frequencies. This 1780 * function programs the pulse skippers based on @throt and platform 1781 * data. This function is used on SoCs which have CPU-local pulse 1782 * skipper control, such as T13x. It programs soctherm's interface to 1783 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling 1784 * vectors. PSKIP_BYPASS mode is set as required per HW spec. 1785 */ 1786 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts, 1787 enum soctherm_throttle_id throt) 1788 { 1789 u32 r, throt_vect; 1790 1791 /* Denver:CCROC NV_THERM interface N:3 Mapping */ 1792 switch (ts->throt_cfgs[throt].cpu_throt_level) { 1793 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1794 throt_vect = THROT_VECT_LOW; 1795 break; 1796 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1797 throt_vect = THROT_VECT_MED; 1798 break; 1799 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1800 throt_vect = THROT_VECT_HIGH; 1801 break; 1802 default: 1803 throt_vect = THROT_VECT_NONE; 1804 break; 1805 } 1806 1807 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1808 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1809 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect); 1810 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect); 1811 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1812 1813 /* bypass sequencer in soc_therm as it is programmed in ccroc */ 1814 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1); 1815 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1816 } 1817 1818 /** 1819 * throttlectl_cpu_mn() - program CPU pulse skipper configuration 1820 * @ts: pointer to a struct tegra_soctherm 1821 * @throt: the LIGHT/HEAVY of throttle event id 1822 * 1823 * Pulse skippers are used to throttle clock frequencies. This 1824 * function programs the pulse skippers based on @throt and platform 1825 * data. This function is used for CPUs that have "remote" pulse 1826 * skipper control, e.g., the CPU pulse skipper is controlled by the 1827 * SOC_THERM IP block. (SOC_THERM is located outside the CPU 1828 * complex.) 1829 */ 1830 static void throttlectl_cpu_mn(struct tegra_soctherm *ts, 1831 enum soctherm_throttle_id throt) 1832 { 1833 u32 r; 1834 int depth; 1835 u8 dividend; 1836 1837 depth = ts->throt_cfgs[throt].cpu_throt_depth; 1838 dividend = THROT_DEPTH_DIVIDEND(depth); 1839 1840 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1841 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1842 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1843 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1844 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1845 1846 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1847 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1848 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1849 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1850 } 1851 1852 /** 1853 * throttlectl_gpu_level_select() - selects throttling level for GPU 1854 * @ts: pointer to a struct tegra_soctherm 1855 * @throt: the LIGHT/HEAVY of throttle event id 1856 * 1857 * This function programs soctherm's interface to GK20a NV_THERM to select 1858 * pre-configured "Low", "Medium" or "Heavy" throttle levels. 1859 * 1860 * Return: boolean true if HW was programmed 1861 */ 1862 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts, 1863 enum soctherm_throttle_id throt) 1864 { 1865 u32 r, level, throt_vect; 1866 1867 level = ts->throt_cfgs[throt].gpu_throt_level; 1868 throt_vect = THROT_LEVEL_TO_DEPTH(level); 1869 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1870 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1871 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect); 1872 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1873 } 1874 1875 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts, 1876 enum soctherm_throttle_id throt) 1877 { 1878 u32 r; 1879 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg; 1880 1881 if (oc->mode == OC_THROTTLE_MODE_DISABLED) 1882 return -EINVAL; 1883 1884 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1); 1885 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode); 1886 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low); 1887 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1); 1888 writel(r, ts->regs + ALARM_CFG(throt)); 1889 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt)); 1890 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt)); 1891 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt)); 1892 soctherm_oc_intr_enable(ts, throt, oc->intr_en); 1893 1894 return 0; 1895 } 1896 1897 /** 1898 * soctherm_throttle_program() - programs pulse skippers' configuration 1899 * @ts: pointer to a struct tegra_soctherm 1900 * @throt: the LIGHT/HEAVY of the throttle event id. 1901 * 1902 * Pulse skippers are used to throttle clock frequencies. 1903 * This function programs the pulse skippers. 1904 */ 1905 static void soctherm_throttle_program(struct tegra_soctherm *ts, 1906 enum soctherm_throttle_id throt) 1907 { 1908 u32 r; 1909 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt]; 1910 1911 if (!stc.init) 1912 return; 1913 1914 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt))) 1915 return; 1916 1917 /* Setup PSKIP parameters */ 1918 if (ts->soc->use_ccroc) 1919 throttlectl_cpu_level_select(ts, throt); 1920 else 1921 throttlectl_cpu_mn(ts, throt); 1922 1923 throttlectl_gpu_level_select(ts, throt); 1924 1925 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority); 1926 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt)); 1927 1928 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0); 1929 writel(r, ts->regs + THROT_DELAY_CTRL(throt)); 1930 1931 r = readl(ts->regs + THROT_PRIORITY_LOCK); 1932 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK); 1933 if (r >= stc.priority) 1934 return; 1935 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK, 1936 stc.priority); 1937 writel(r, ts->regs + THROT_PRIORITY_LOCK); 1938 } 1939 1940 static void tegra_soctherm_throttle(struct device *dev) 1941 { 1942 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1943 u32 v; 1944 int i; 1945 1946 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */ 1947 if (ts->soc->use_ccroc) { 1948 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW); 1949 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED); 1950 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH); 1951 } 1952 1953 /* Thermal HW throttle programming */ 1954 for (i = 0; i < THROTTLE_SIZE; i++) 1955 soctherm_throttle_program(ts, i); 1956 1957 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1); 1958 if (ts->soc->use_ccroc) { 1959 ccroc_writel(ts, v, CCROC_GLOBAL_CFG); 1960 1961 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER); 1962 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1963 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER); 1964 } else { 1965 writel(v, ts->regs + THROT_GLOBAL_CFG); 1966 1967 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1968 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1969 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 1970 } 1971 1972 /* initialize stats collection */ 1973 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN | 1974 STATS_CTL_CLR_UP | STATS_CTL_EN_UP; 1975 writel(v, ts->regs + THERMCTL_STATS_CTL); 1976 } 1977 1978 static int soctherm_interrupts_init(struct platform_device *pdev, 1979 struct tegra_soctherm *tegra) 1980 { 1981 struct device_node *np = pdev->dev.of_node; 1982 int ret; 1983 1984 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX); 1985 if (ret < 0) { 1986 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n"); 1987 return ret; 1988 } 1989 1990 tegra->thermal_irq = platform_get_irq(pdev, 0); 1991 if (tegra->thermal_irq < 0) { 1992 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n"); 1993 return 0; 1994 } 1995 1996 tegra->edp_irq = platform_get_irq(pdev, 1); 1997 if (tegra->edp_irq < 0) { 1998 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n"); 1999 return 0; 2000 } 2001 2002 ret = devm_request_threaded_irq(&pdev->dev, 2003 tegra->thermal_irq, 2004 soctherm_thermal_isr, 2005 soctherm_thermal_isr_thread, 2006 IRQF_ONESHOT, 2007 dev_name(&pdev->dev), 2008 tegra); 2009 if (ret < 0) { 2010 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n"); 2011 return ret; 2012 } 2013 2014 ret = devm_request_threaded_irq(&pdev->dev, 2015 tegra->edp_irq, 2016 soctherm_edp_isr, 2017 soctherm_edp_isr_thread, 2018 IRQF_ONESHOT, 2019 "soctherm_edp", 2020 tegra); 2021 if (ret < 0) { 2022 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n"); 2023 return ret; 2024 } 2025 2026 return 0; 2027 } 2028 2029 static void soctherm_init(struct platform_device *pdev) 2030 { 2031 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2032 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; 2033 int i; 2034 u32 pdiv, hotspot; 2035 2036 /* Initialize raw sensors */ 2037 for (i = 0; i < tegra->soc->num_tsensors; ++i) 2038 enable_tsensor(tegra, i); 2039 2040 /* program pdiv and hotspot offsets per THERM */ 2041 pdiv = readl(tegra->regs + SENSOR_PDIV); 2042 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); 2043 for (i = 0; i < tegra->soc->num_ttgs; ++i) { 2044 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, 2045 ttgs[i]->pdiv); 2046 /* hotspot offset from PLLX, doesn't need to configure PLLX */ 2047 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) 2048 continue; 2049 hotspot = REG_SET_MASK(hotspot, 2050 ttgs[i]->pllx_hotspot_mask, 2051 ttgs[i]->pllx_hotspot_diff); 2052 } 2053 writel(pdiv, tegra->regs + SENSOR_PDIV); 2054 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); 2055 2056 /* Configure hw throttle */ 2057 tegra_soctherm_throttle(&pdev->dev); 2058 } 2059 2060 static const struct of_device_id tegra_soctherm_of_match[] = { 2061 #ifdef CONFIG_ARCH_TEGRA_124_SOC 2062 { 2063 .compatible = "nvidia,tegra124-soctherm", 2064 .data = &tegra124_soctherm, 2065 }, 2066 #endif 2067 #ifdef CONFIG_ARCH_TEGRA_132_SOC 2068 { 2069 .compatible = "nvidia,tegra132-soctherm", 2070 .data = &tegra132_soctherm, 2071 }, 2072 #endif 2073 #ifdef CONFIG_ARCH_TEGRA_210_SOC 2074 { 2075 .compatible = "nvidia,tegra210-soctherm", 2076 .data = &tegra210_soctherm, 2077 }, 2078 #endif 2079 { }, 2080 }; 2081 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); 2082 2083 static int tegra_soctherm_probe(struct platform_device *pdev) 2084 { 2085 const struct of_device_id *match; 2086 struct tegra_soctherm *tegra; 2087 struct thermal_zone_device *z; 2088 struct tsensor_shared_calib shared_calib; 2089 struct tegra_soctherm_soc *soc; 2090 unsigned int i; 2091 int err; 2092 2093 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); 2094 if (!match) 2095 return -ENODEV; 2096 2097 soc = (struct tegra_soctherm_soc *)match->data; 2098 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) 2099 return -EINVAL; 2100 2101 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); 2102 if (!tegra) 2103 return -ENOMEM; 2104 2105 mutex_init(&tegra->thermctl_lock); 2106 dev_set_drvdata(&pdev->dev, tegra); 2107 2108 tegra->soc = soc; 2109 2110 tegra->regs = devm_platform_ioremap_resource_byname(pdev, "soctherm-reg"); 2111 if (IS_ERR(tegra->regs)) { 2112 dev_err(&pdev->dev, "can't get soctherm registers"); 2113 return PTR_ERR(tegra->regs); 2114 } 2115 2116 if (!tegra->soc->use_ccroc) { 2117 tegra->clk_regs = devm_platform_ioremap_resource_byname(pdev, "car-reg"); 2118 if (IS_ERR(tegra->clk_regs)) { 2119 dev_err(&pdev->dev, "can't get car clk registers"); 2120 return PTR_ERR(tegra->clk_regs); 2121 } 2122 } else { 2123 tegra->ccroc_regs = devm_platform_ioremap_resource_byname(pdev, "ccroc-reg"); 2124 if (IS_ERR(tegra->ccroc_regs)) { 2125 dev_err(&pdev->dev, "can't get ccroc registers"); 2126 return PTR_ERR(tegra->ccroc_regs); 2127 } 2128 } 2129 2130 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); 2131 if (IS_ERR(tegra->reset)) { 2132 dev_err(&pdev->dev, "can't get soctherm reset\n"); 2133 return PTR_ERR(tegra->reset); 2134 } 2135 2136 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); 2137 if (IS_ERR(tegra->clock_tsensor)) { 2138 dev_err(&pdev->dev, "can't get tsensor clock\n"); 2139 return PTR_ERR(tegra->clock_tsensor); 2140 } 2141 2142 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); 2143 if (IS_ERR(tegra->clock_soctherm)) { 2144 dev_err(&pdev->dev, "can't get soctherm clock\n"); 2145 return PTR_ERR(tegra->clock_soctherm); 2146 } 2147 2148 tegra->calib = devm_kcalloc(&pdev->dev, 2149 soc->num_tsensors, sizeof(u32), 2150 GFP_KERNEL); 2151 if (!tegra->calib) 2152 return -ENOMEM; 2153 2154 /* calculate shared calibration data */ 2155 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); 2156 if (err) 2157 return err; 2158 2159 /* calculate tsensor calibration data */ 2160 for (i = 0; i < soc->num_tsensors; ++i) { 2161 err = tegra_calc_tsensor_calib(&soc->tsensors[i], 2162 &shared_calib, 2163 &tegra->calib[i]); 2164 if (err) 2165 return err; 2166 } 2167 2168 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev, 2169 soc->num_ttgs, sizeof(z), 2170 GFP_KERNEL); 2171 if (!tegra->thermctl_tzs) 2172 return -ENOMEM; 2173 2174 err = soctherm_clk_enable(pdev, true); 2175 if (err) 2176 return err; 2177 2178 soctherm_thermtrips_parse(pdev); 2179 2180 soctherm_init_hw_throt_cdev(pdev); 2181 2182 soctherm_init(pdev); 2183 2184 for (i = 0; i < soc->num_ttgs; ++i) { 2185 struct tegra_thermctl_zone *zone = 2186 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); 2187 if (!zone) { 2188 err = -ENOMEM; 2189 goto disable_clocks; 2190 } 2191 2192 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; 2193 zone->dev = &pdev->dev; 2194 zone->sg = soc->ttgs[i]; 2195 zone->ts = tegra; 2196 2197 z = devm_thermal_zone_of_sensor_register(&pdev->dev, 2198 soc->ttgs[i]->id, zone, 2199 &tegra_of_thermal_ops); 2200 if (IS_ERR(z)) { 2201 err = PTR_ERR(z); 2202 dev_err(&pdev->dev, "failed to register sensor: %d\n", 2203 err); 2204 goto disable_clocks; 2205 } 2206 2207 zone->tz = z; 2208 tegra->thermctl_tzs[soc->ttgs[i]->id] = z; 2209 2210 /* Configure hw trip points */ 2211 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); 2212 if (err) 2213 goto disable_clocks; 2214 } 2215 2216 err = soctherm_interrupts_init(pdev, tegra); 2217 2218 soctherm_debug_init(pdev); 2219 2220 return 0; 2221 2222 disable_clocks: 2223 soctherm_clk_enable(pdev, false); 2224 2225 return err; 2226 } 2227 2228 static int tegra_soctherm_remove(struct platform_device *pdev) 2229 { 2230 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2231 2232 debugfs_remove_recursive(tegra->debugfs_dir); 2233 2234 soctherm_clk_enable(pdev, false); 2235 2236 return 0; 2237 } 2238 2239 static int __maybe_unused soctherm_suspend(struct device *dev) 2240 { 2241 struct platform_device *pdev = to_platform_device(dev); 2242 2243 soctherm_clk_enable(pdev, false); 2244 2245 return 0; 2246 } 2247 2248 static int __maybe_unused soctherm_resume(struct device *dev) 2249 { 2250 struct platform_device *pdev = to_platform_device(dev); 2251 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2252 struct tegra_soctherm_soc *soc = tegra->soc; 2253 int err, i; 2254 2255 err = soctherm_clk_enable(pdev, true); 2256 if (err) { 2257 dev_err(&pdev->dev, 2258 "Resume failed: enable clocks failed\n"); 2259 return err; 2260 } 2261 2262 soctherm_init(pdev); 2263 2264 for (i = 0; i < soc->num_ttgs; ++i) { 2265 struct thermal_zone_device *tz; 2266 2267 tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; 2268 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); 2269 if (err) { 2270 dev_err(&pdev->dev, 2271 "Resume failed: set hwtrips failed\n"); 2272 return err; 2273 } 2274 } 2275 2276 return 0; 2277 } 2278 2279 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); 2280 2281 static struct platform_driver tegra_soctherm_driver = { 2282 .probe = tegra_soctherm_probe, 2283 .remove = tegra_soctherm_remove, 2284 .driver = { 2285 .name = "tegra_soctherm", 2286 .pm = &tegra_soctherm_pm, 2287 .of_match_table = tegra_soctherm_of_match, 2288 }, 2289 }; 2290 module_platform_driver(tegra_soctherm_driver); 2291 2292 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); 2293 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); 2294 MODULE_LICENSE("GPL v2"); 2295