xref: /openbmc/linux/drivers/thermal/tegra/soctherm.c (revision 5d331b7f)
1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * Author:
5  *	Mikko Perttunen <mperttunen@nvidia.com>
6  *
7  * This software is licensed under the terms of the GNU General Public
8  * License version 2, as published by the Free Software Foundation, and
9  * may be copied, distributed, and modified under those terms.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  */
17 
18 #include <linux/debugfs.h>
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/reset.h>
29 #include <linux/thermal.h>
30 
31 #include <dt-bindings/thermal/tegra124-soctherm.h>
32 
33 #include "../thermal_core.h"
34 #include "soctherm.h"
35 
36 #define SENSOR_CONFIG0				0
37 #define SENSOR_CONFIG0_STOP			BIT(0)
38 #define SENSOR_CONFIG0_CPTR_OVER		BIT(2)
39 #define SENSOR_CONFIG0_OVER			BIT(3)
40 #define SENSOR_CONFIG0_TCALC_OVER		BIT(4)
41 #define SENSOR_CONFIG0_TALL_MASK		(0xfffff << 8)
42 #define SENSOR_CONFIG0_TALL_SHIFT		8
43 
44 #define SENSOR_CONFIG1				4
45 #define SENSOR_CONFIG1_TSAMPLE_MASK		0x3ff
46 #define SENSOR_CONFIG1_TSAMPLE_SHIFT		0
47 #define SENSOR_CONFIG1_TIDDQ_EN_MASK		(0x3f << 15)
48 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT		15
49 #define SENSOR_CONFIG1_TEN_COUNT_MASK		(0x3f << 24)
50 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT		24
51 #define SENSOR_CONFIG1_TEMP_ENABLE		BIT(31)
52 
53 /*
54  * SENSOR_CONFIG2 is defined in soctherm.h
55  * because, it will be used by tegra_soctherm_fuse.c
56  */
57 
58 #define SENSOR_STATUS0				0xc
59 #define SENSOR_STATUS0_VALID_MASK		BIT(31)
60 #define SENSOR_STATUS0_CAPTURE_MASK		0xffff
61 
62 #define SENSOR_STATUS1				0x10
63 #define SENSOR_STATUS1_TEMP_VALID_MASK		BIT(31)
64 #define SENSOR_STATUS1_TEMP_MASK		0xffff
65 
66 #define READBACK_VALUE_MASK			0xff00
67 #define READBACK_VALUE_SHIFT			8
68 #define READBACK_ADD_HALF			BIT(7)
69 #define READBACK_NEGATE				BIT(0)
70 
71 /*
72  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
73  * because it will be used by tegraxxx_soctherm.c
74  */
75 #define THERMCTL_LVL0_CPU0_EN_MASK		BIT(8)
76 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK	(0x3 << 5)
77 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT	0x1
78 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY	0x2
79 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK	(0x3 << 3)
80 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT	0x1
81 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY	0x2
82 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK	BIT(2)
83 #define THERMCTL_LVL0_CPU0_STATUS_MASK		0x3
84 
85 #define THERMCTL_LVL0_UP_STATS			0x10
86 #define THERMCTL_LVL0_DN_STATS			0x14
87 
88 #define THERMCTL_STATS_CTL			0x94
89 #define STATS_CTL_CLR_DN			0x8
90 #define STATS_CTL_EN_DN				0x4
91 #define STATS_CTL_CLR_UP			0x2
92 #define STATS_CTL_EN_UP				0x1
93 
94 #define THROT_GLOBAL_CFG			0x400
95 #define THROT_GLOBAL_ENB_MASK			BIT(0)
96 
97 #define CPU_PSKIP_STATUS			0x418
98 #define XPU_PSKIP_STATUS_M_MASK			(0xff << 12)
99 #define XPU_PSKIP_STATUS_N_MASK			(0xff << 4)
100 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK	BIT(1)
101 #define XPU_PSKIP_STATUS_ENABLED_MASK		BIT(0)
102 
103 #define THROT_PRIORITY_LOCK			0x424
104 #define THROT_PRIORITY_LOCK_PRIORITY_MASK	0xff
105 
106 #define THROT_STATUS				0x428
107 #define THROT_STATUS_BREACH_MASK		BIT(12)
108 #define THROT_STATUS_STATE_MASK			(0xff << 4)
109 #define THROT_STATUS_ENABLED_MASK		BIT(0)
110 
111 #define THROT_PSKIP_CTRL_LITE_CPU		0x430
112 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
113 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
114 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
115 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
116 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
117 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
118 
119 #define THROT_VECT_NONE				0x0 /* 3'b000 */
120 #define THROT_VECT_LOW				0x1 /* 3'b001 */
121 #define THROT_VECT_MED				0x3 /* 3'b011 */
122 #define THROT_VECT_HIGH				0x7 /* 3'b111 */
123 
124 #define THROT_PSKIP_RAMP_LITE_CPU		0x434
125 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
126 #define THROT_PSKIP_RAMP_DURATION_MASK		(0xffff << 8)
127 #define THROT_PSKIP_RAMP_STEP_MASK		0xff
128 
129 #define THROT_PRIORITY_LITE			0x444
130 #define THROT_PRIORITY_LITE_PRIO_MASK		0xff
131 
132 #define THROT_DELAY_LITE			0x448
133 #define THROT_DELAY_LITE_DELAY_MASK		0xff
134 
135 /* car register offsets needed for enabling HW throttling */
136 #define CAR_SUPER_CCLKG_DIVIDER			0x36c
137 #define CDIVG_USE_THERM_CONTROLS_MASK		BIT(30)
138 
139 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
140 #define CCROC_SUPER_CCLKG_DIVIDER		0x024
141 
142 #define CCROC_GLOBAL_CFG			0x148
143 
144 #define CCROC_THROT_PSKIP_RAMP_CPU		0x150
145 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
146 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK	(0xffff << 8)
147 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK	0xff
148 
149 #define CCROC_THROT_PSKIP_CTRL_CPU		0x154
150 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK		BIT(31)
151 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK	(0xff << 8)
152 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK	0xff
153 
154 /* get val from register(r) mask bits(m) */
155 #define REG_GET_MASK(r, m)	(((r) & (m)) >> (ffs(m) - 1))
156 /* set val(v) to mask bits(m) of register(r) */
157 #define REG_SET_MASK(r, m, v)	(((r) & ~(m)) | \
158 				 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
159 
160 /* get dividend from the depth */
161 #define THROT_DEPTH_DIVIDEND(depth)	((256 * (100 - (depth)) / 100) - 1)
162 
163 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
164 #define THROT_OFFSET			0x30
165 #define THROT_PSKIP_CTRL(throt, dev)	(THROT_PSKIP_CTRL_LITE_CPU + \
166 					(THROT_OFFSET * throt) + (8 * dev))
167 #define THROT_PSKIP_RAMP(throt, dev)	(THROT_PSKIP_RAMP_LITE_CPU + \
168 					(THROT_OFFSET * throt) + (8 * dev))
169 
170 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
171 #define THROT_PRIORITY_CTRL(throt)	(THROT_PRIORITY_LITE + \
172 					(THROT_OFFSET * throt))
173 #define THROT_DELAY_CTRL(throt)		(THROT_DELAY_LITE + \
174 					(THROT_OFFSET * throt))
175 
176 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
177 #define CCROC_THROT_OFFSET			0x0c
178 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
179 						(CCROC_THROT_OFFSET * vect))
180 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
181 						(CCROC_THROT_OFFSET * vect))
182 
183 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
184 #define THERMCTL_LVL_REGS_SIZE		0x20
185 #define THERMCTL_LVL_REG(rg, lv)	((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
186 
187 static const int min_low_temp = -127000;
188 static const int max_high_temp = 127000;
189 
190 enum soctherm_throttle_id {
191 	THROTTLE_LIGHT = 0,
192 	THROTTLE_HEAVY,
193 	THROTTLE_SIZE,
194 };
195 
196 enum soctherm_throttle_dev_id {
197 	THROTTLE_DEV_CPU = 0,
198 	THROTTLE_DEV_GPU,
199 	THROTTLE_DEV_SIZE,
200 };
201 
202 static const char *const throt_names[] = {
203 	[THROTTLE_LIGHT] = "light",
204 	[THROTTLE_HEAVY] = "heavy",
205 };
206 
207 struct tegra_soctherm;
208 struct tegra_thermctl_zone {
209 	void __iomem *reg;
210 	struct device *dev;
211 	struct tegra_soctherm *ts;
212 	struct thermal_zone_device *tz;
213 	const struct tegra_tsensor_group *sg;
214 };
215 
216 struct soctherm_throt_cfg {
217 	const char *name;
218 	unsigned int id;
219 	u8 priority;
220 	u8 cpu_throt_level;
221 	u32 cpu_throt_depth;
222 	struct thermal_cooling_device *cdev;
223 	bool init;
224 };
225 
226 struct tegra_soctherm {
227 	struct reset_control *reset;
228 	struct clk *clock_tsensor;
229 	struct clk *clock_soctherm;
230 	void __iomem *regs;
231 	void __iomem *clk_regs;
232 	void __iomem *ccroc_regs;
233 
234 	u32 *calib;
235 	struct thermal_zone_device **thermctl_tzs;
236 	struct tegra_soctherm_soc *soc;
237 
238 	struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
239 
240 	struct dentry *debugfs_dir;
241 };
242 
243 /**
244  * ccroc_writel() - writes a value to a CCROC register
245  * @ts: pointer to a struct tegra_soctherm
246  * @v: the value to write
247  * @reg: the register offset
248  *
249  * Writes @v to @reg.  No return value.
250  */
251 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
252 {
253 	writel(value, (ts->ccroc_regs + reg));
254 }
255 
256 /**
257  * ccroc_readl() - reads specified register from CCROC IP block
258  * @ts: pointer to a struct tegra_soctherm
259  * @reg: register address to be read
260  *
261  * Return: the value of the register
262  */
263 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
264 {
265 	return readl(ts->ccroc_regs + reg);
266 }
267 
268 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
269 {
270 	const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
271 	void __iomem *base = tegra->regs + sensor->base;
272 	unsigned int val;
273 
274 	val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
275 	writel(val, base + SENSOR_CONFIG0);
276 
277 	val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
278 	val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
279 	val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
280 	val |= SENSOR_CONFIG1_TEMP_ENABLE;
281 	writel(val, base + SENSOR_CONFIG1);
282 
283 	writel(tegra->calib[i], base + SENSOR_CONFIG2);
284 }
285 
286 /*
287  * Translate from soctherm readback format to millicelsius.
288  * The soctherm readback format in bits is as follows:
289  *   TTTTTTTT H______N
290  * where T's contain the temperature in Celsius,
291  * H denotes an addition of 0.5 Celsius and N denotes negation
292  * of the final value.
293  */
294 static int translate_temp(u16 val)
295 {
296 	int t;
297 
298 	t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
299 	if (val & READBACK_ADD_HALF)
300 		t += 500;
301 	if (val & READBACK_NEGATE)
302 		t *= -1;
303 
304 	return t;
305 }
306 
307 static int tegra_thermctl_get_temp(void *data, int *out_temp)
308 {
309 	struct tegra_thermctl_zone *zone = data;
310 	u32 val;
311 
312 	val = readl(zone->reg);
313 	val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
314 	*out_temp = translate_temp(val);
315 
316 	return 0;
317 }
318 
319 /**
320  * enforce_temp_range() - check and enforce temperature range [min, max]
321  * @trip_temp: the trip temperature to check
322  *
323  * Checks and enforces the permitted temperature range that SOC_THERM
324  * HW can support This is
325  * done while taking care of precision.
326  *
327  * Return: The precision adjusted capped temperature in millicelsius.
328  */
329 static int enforce_temp_range(struct device *dev, int trip_temp)
330 {
331 	int temp;
332 
333 	temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
334 	if (temp != trip_temp)
335 		dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
336 			 trip_temp, temp);
337 	return temp;
338 }
339 
340 /**
341  * thermtrip_program() - Configures the hardware to shut down the
342  * system if a given sensor group reaches a given temperature
343  * @dev: ptr to the struct device for the SOC_THERM IP block
344  * @sg: pointer to the sensor group to set the thermtrip temperature for
345  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
346  *
347  * Sets the thermal trip threshold of the given sensor group to be the
348  * @trip_temp.  If this threshold is crossed, the hardware will shut
349  * down.
350  *
351  * Note that, although @trip_temp is specified in millicelsius, the
352  * hardware is programmed in degrees Celsius.
353  *
354  * Return: 0 upon success, or %-EINVAL upon failure.
355  */
356 static int thermtrip_program(struct device *dev,
357 			     const struct tegra_tsensor_group *sg,
358 			     int trip_temp)
359 {
360 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
361 	int temp;
362 	u32 r;
363 
364 	if (!sg || !sg->thermtrip_threshold_mask)
365 		return -EINVAL;
366 
367 	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
368 
369 	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
370 	r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
371 	r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
372 	r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
373 	writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
374 
375 	return 0;
376 }
377 
378 /**
379  * throttrip_program() - Configures the hardware to throttle the
380  * pulse if a given sensor group reaches a given temperature
381  * @dev: ptr to the struct device for the SOC_THERM IP block
382  * @sg: pointer to the sensor group to set the thermtrip temperature for
383  * @stc: pointer to the throttle need to be triggered
384  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
385  *
386  * Sets the thermal trip threshold and throttle event of the given sensor
387  * group. If this threshold is crossed, the hardware will trigger the
388  * throttle.
389  *
390  * Note that, although @trip_temp is specified in millicelsius, the
391  * hardware is programmed in degrees Celsius.
392  *
393  * Return: 0 upon success, or %-EINVAL upon failure.
394  */
395 static int throttrip_program(struct device *dev,
396 			     const struct tegra_tsensor_group *sg,
397 			     struct soctherm_throt_cfg *stc,
398 			     int trip_temp)
399 {
400 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
401 	int temp, cpu_throt, gpu_throt;
402 	unsigned int throt;
403 	u32 r, reg_off;
404 
405 	if (!sg || !stc || !stc->init)
406 		return -EINVAL;
407 
408 	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
409 
410 	/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
411 	throt = stc->id;
412 	reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
413 
414 	if (throt == THROTTLE_LIGHT) {
415 		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
416 		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
417 	} else {
418 		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
419 		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
420 		if (throt != THROTTLE_HEAVY)
421 			dev_warn(dev,
422 				 "invalid throt id %d - assuming HEAVY",
423 				 throt);
424 	}
425 
426 	r = readl(ts->regs + reg_off);
427 	r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
428 	r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
429 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
430 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
431 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
432 	writel(r, ts->regs + reg_off);
433 
434 	return 0;
435 }
436 
437 static struct soctherm_throt_cfg *
438 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
439 {
440 	unsigned int i;
441 
442 	for (i = 0; ts->throt_cfgs[i].name; i++)
443 		if (!strcmp(ts->throt_cfgs[i].name, name))
444 			return &ts->throt_cfgs[i];
445 
446 	return NULL;
447 }
448 
449 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
450 {
451 	struct tegra_thermctl_zone *zone = data;
452 	struct thermal_zone_device *tz = zone->tz;
453 	struct tegra_soctherm *ts = zone->ts;
454 	const struct tegra_tsensor_group *sg = zone->sg;
455 	struct device *dev = zone->dev;
456 	enum thermal_trip_type type;
457 	int ret;
458 
459 	if (!tz)
460 		return -EINVAL;
461 
462 	ret = tz->ops->get_trip_type(tz, trip, &type);
463 	if (ret)
464 		return ret;
465 
466 	if (type == THERMAL_TRIP_CRITICAL) {
467 		return thermtrip_program(dev, sg, temp);
468 	} else if (type == THERMAL_TRIP_HOT) {
469 		int i;
470 
471 		for (i = 0; i < THROTTLE_SIZE; i++) {
472 			struct thermal_cooling_device *cdev;
473 			struct soctherm_throt_cfg *stc;
474 
475 			if (!ts->throt_cfgs[i].init)
476 				continue;
477 
478 			cdev = ts->throt_cfgs[i].cdev;
479 			if (get_thermal_instance(tz, cdev, trip))
480 				stc = find_throttle_cfg_by_name(ts, cdev->type);
481 			else
482 				continue;
483 
484 			return throttrip_program(dev, sg, stc, temp);
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
492 	.get_temp = tegra_thermctl_get_temp,
493 	.set_trip_temp = tegra_thermctl_set_trip_temp,
494 };
495 
496 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
497 {
498 	int ntrips, i, ret;
499 	enum thermal_trip_type type;
500 
501 	ntrips = of_thermal_get_ntrips(tz);
502 	if (ntrips <= 0)
503 		return -EINVAL;
504 
505 	for (i = 0; i < ntrips; i++) {
506 		ret = tz->ops->get_trip_type(tz, i, &type);
507 		if (ret)
508 			return -EINVAL;
509 		if (type == THERMAL_TRIP_HOT) {
510 			ret = tz->ops->get_trip_temp(tz, i, temp);
511 			if (!ret)
512 				*trip = i;
513 
514 			return ret;
515 		}
516 	}
517 
518 	return -EINVAL;
519 }
520 
521 /**
522  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
523  * @dev: struct device * of the SOC_THERM instance
524  *
525  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
526  * "THROTTLE" trip points , using "critical" or "hot" type trip_temp
527  * from thermal zone.
528  * After they have been configured, THERMTRIP or THROTTLE will take
529  * action when the configured SoC thermal sensor group reaches a
530  * certain temperature.
531  *
532  * Return: 0 upon success, or a negative error code on failure.
533  * "Success" does not mean that trips was enabled; it could also
534  * mean that no node was found in DT.
535  * THERMTRIP has been enabled successfully when a message similar to
536  * this one appears on the serial console:
537  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
538  * THROTTLE has been enabled successfully when a message similar to
539  * this one appears on the serial console:
540  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
541  */
542 static int tegra_soctherm_set_hwtrips(struct device *dev,
543 				      const struct tegra_tsensor_group *sg,
544 				      struct thermal_zone_device *tz)
545 {
546 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
547 	struct soctherm_throt_cfg *stc;
548 	int i, trip, temperature;
549 	int ret;
550 
551 	ret = tz->ops->get_crit_temp(tz, &temperature);
552 	if (ret) {
553 		dev_warn(dev, "thermtrip: %s: missing critical temperature\n",
554 			 sg->name);
555 		goto set_throttle;
556 	}
557 
558 	ret = thermtrip_program(dev, sg, temperature);
559 	if (ret) {
560 		dev_err(dev, "thermtrip: %s: error during enable\n",
561 			sg->name);
562 		return ret;
563 	}
564 
565 	dev_info(dev,
566 		 "thermtrip: will shut down when %s reaches %d mC\n",
567 		 sg->name, temperature);
568 
569 set_throttle:
570 	ret = get_hot_temp(tz, &trip, &temperature);
571 	if (ret) {
572 		dev_warn(dev, "throttrip: %s: missing hot temperature\n",
573 			 sg->name);
574 		return 0;
575 	}
576 
577 	for (i = 0; i < THROTTLE_SIZE; i++) {
578 		struct thermal_cooling_device *cdev;
579 
580 		if (!ts->throt_cfgs[i].init)
581 			continue;
582 
583 		cdev = ts->throt_cfgs[i].cdev;
584 		if (get_thermal_instance(tz, cdev, trip))
585 			stc = find_throttle_cfg_by_name(ts, cdev->type);
586 		else
587 			continue;
588 
589 		ret = throttrip_program(dev, sg, stc, temperature);
590 		if (ret) {
591 			dev_err(dev, "throttrip: %s: error during enable\n",
592 				sg->name);
593 			return ret;
594 		}
595 
596 		dev_info(dev,
597 			 "throttrip: will throttle when %s reaches %d mC\n",
598 			 sg->name, temperature);
599 		break;
600 	}
601 
602 	if (i == THROTTLE_SIZE)
603 		dev_warn(dev, "throttrip: %s: missing throttle cdev\n",
604 			 sg->name);
605 
606 	return 0;
607 }
608 
609 #ifdef CONFIG_DEBUG_FS
610 static int regs_show(struct seq_file *s, void *data)
611 {
612 	struct platform_device *pdev = s->private;
613 	struct tegra_soctherm *ts = platform_get_drvdata(pdev);
614 	const struct tegra_tsensor *tsensors = ts->soc->tsensors;
615 	const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
616 	u32 r, state;
617 	int i, level;
618 
619 	seq_puts(s, "-----TSENSE (convert HW)-----\n");
620 
621 	for (i = 0; i < ts->soc->num_tsensors; i++) {
622 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
623 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
624 
625 		seq_printf(s, "%s: ", tsensors[i].name);
626 		seq_printf(s, "En(%d) ", state);
627 
628 		if (!state) {
629 			seq_puts(s, "\n");
630 			continue;
631 		}
632 
633 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
634 		seq_printf(s, "tiddq(%d) ", state);
635 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
636 		seq_printf(s, "ten_count(%d) ", state);
637 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
638 		seq_printf(s, "tsample(%d) ", state + 1);
639 
640 		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
641 		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
642 		seq_printf(s, "Temp(%d/", state);
643 		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
644 		seq_printf(s, "%d) ", translate_temp(state));
645 
646 		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
647 		state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
648 		seq_printf(s, "Capture(%d/", state);
649 		state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
650 		seq_printf(s, "%d) ", state);
651 
652 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
653 		state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
654 		seq_printf(s, "Stop(%d) ", state);
655 		state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
656 		seq_printf(s, "Tall(%d) ", state);
657 		state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
658 		seq_printf(s, "Over(%d/", state);
659 		state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
660 		seq_printf(s, "%d/", state);
661 		state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
662 		seq_printf(s, "%d) ", state);
663 
664 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
665 		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
666 		seq_printf(s, "Therm_A/B(%d/", state);
667 		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
668 		seq_printf(s, "%d)\n", (s16)state);
669 	}
670 
671 	r = readl(ts->regs + SENSOR_PDIV);
672 	seq_printf(s, "PDIV: 0x%x\n", r);
673 
674 	r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
675 	seq_printf(s, "HOTSPOT: 0x%x\n", r);
676 
677 	seq_puts(s, "\n");
678 	seq_puts(s, "-----SOC_THERM-----\n");
679 
680 	r = readl(ts->regs + SENSOR_TEMP1);
681 	state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
682 	seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
683 	state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
684 	seq_printf(s, " GPU(%d) ", translate_temp(state));
685 	r = readl(ts->regs + SENSOR_TEMP2);
686 	state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
687 	seq_printf(s, " PLLX(%d) ", translate_temp(state));
688 	state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
689 	seq_printf(s, " MEM(%d)\n", translate_temp(state));
690 
691 	for (i = 0; i < ts->soc->num_ttgs; i++) {
692 		seq_printf(s, "%s:\n", ttgs[i]->name);
693 		for (level = 0; level < 4; level++) {
694 			s32 v;
695 			u32 mask;
696 			u16 off = ttgs[i]->thermctl_lvl0_offset;
697 
698 			r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
699 
700 			mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
701 			state = REG_GET_MASK(r, mask);
702 			v = sign_extend32(state, ts->soc->bptt - 1);
703 			v *= ts->soc->thresh_grain;
704 			seq_printf(s, "   %d: Up/Dn(%d /", level, v);
705 
706 			mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
707 			state = REG_GET_MASK(r, mask);
708 			v = sign_extend32(state, ts->soc->bptt - 1);
709 			v *= ts->soc->thresh_grain;
710 			seq_printf(s, "%d ) ", v);
711 
712 			mask = THERMCTL_LVL0_CPU0_EN_MASK;
713 			state = REG_GET_MASK(r, mask);
714 			seq_printf(s, "En(%d) ", state);
715 
716 			mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
717 			state = REG_GET_MASK(r, mask);
718 			seq_puts(s, "CPU Throt");
719 			if (!state)
720 				seq_printf(s, "(%s) ", "none");
721 			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
722 				seq_printf(s, "(%s) ", "L");
723 			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
724 				seq_printf(s, "(%s) ", "H");
725 			else
726 				seq_printf(s, "(%s) ", "H+L");
727 
728 			mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
729 			state = REG_GET_MASK(r, mask);
730 			seq_puts(s, "GPU Throt");
731 			if (!state)
732 				seq_printf(s, "(%s) ", "none");
733 			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
734 				seq_printf(s, "(%s) ", "L");
735 			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
736 				seq_printf(s, "(%s) ", "H");
737 			else
738 				seq_printf(s, "(%s) ", "H+L");
739 
740 			mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
741 			state = REG_GET_MASK(r, mask);
742 			seq_printf(s, "Status(%s)\n",
743 				   state == 0 ? "LO" :
744 				   state == 1 ? "In" :
745 				   state == 2 ? "Res" : "HI");
746 		}
747 	}
748 
749 	r = readl(ts->regs + THERMCTL_STATS_CTL);
750 	seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
751 		   r & STATS_CTL_EN_UP ? "En" : "--",
752 		   r & STATS_CTL_EN_DN ? "En" : "--");
753 
754 	for (level = 0; level < 4; level++) {
755 		u16 off;
756 
757 		off = THERMCTL_LVL0_UP_STATS;
758 		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
759 		seq_printf(s, "  Level_%d Up(%d) ", level, r);
760 
761 		off = THERMCTL_LVL0_DN_STATS;
762 		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
763 		seq_printf(s, "Dn(%d)\n", r);
764 	}
765 
766 	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
767 	state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
768 	seq_printf(s, "Thermtrip Any En(%d)\n", state);
769 	for (i = 0; i < ts->soc->num_ttgs; i++) {
770 		state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
771 		seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
772 		state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
773 		state *= ts->soc->thresh_grain;
774 		seq_printf(s, "Thresh(%d)\n", state);
775 	}
776 
777 	r = readl(ts->regs + THROT_GLOBAL_CFG);
778 	seq_puts(s, "\n");
779 	seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
780 
781 	seq_puts(s, "---------------------------------------------------\n");
782 	r = readl(ts->regs + THROT_STATUS);
783 	state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
784 	seq_printf(s, "THROT STATUS: breach(%d) ", state);
785 	state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
786 	seq_printf(s, "state(%d) ", state);
787 	state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
788 	seq_printf(s, "enabled(%d)\n", state);
789 
790 	r = readl(ts->regs + CPU_PSKIP_STATUS);
791 	if (ts->soc->use_ccroc) {
792 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
793 		seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
794 	} else {
795 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
796 		seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
797 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
798 		seq_printf(s, "N(%d) ", state);
799 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
800 		seq_printf(s, "enabled(%d)\n", state);
801 	}
802 
803 	return 0;
804 }
805 
806 static int regs_open(struct inode *inode, struct file *file)
807 {
808 	return single_open(file, regs_show, inode->i_private);
809 }
810 
811 static const struct file_operations regs_fops = {
812 	.open		= regs_open,
813 	.read		= seq_read,
814 	.llseek		= seq_lseek,
815 	.release	= single_release,
816 };
817 
818 static void soctherm_debug_init(struct platform_device *pdev)
819 {
820 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
821 	struct dentry *root, *file;
822 
823 	root = debugfs_create_dir("soctherm", NULL);
824 	if (!root) {
825 		dev_err(&pdev->dev, "failed to create debugfs directory\n");
826 		return;
827 	}
828 
829 	tegra->debugfs_dir = root;
830 
831 	file = debugfs_create_file("reg_contents", 0644, root,
832 				   pdev, &regs_fops);
833 	if (!file) {
834 		dev_err(&pdev->dev, "failed to create debugfs file\n");
835 		debugfs_remove_recursive(tegra->debugfs_dir);
836 		tegra->debugfs_dir = NULL;
837 	}
838 }
839 #else
840 static inline void soctherm_debug_init(struct platform_device *pdev) {}
841 #endif
842 
843 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
844 {
845 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
846 	int err;
847 
848 	if (!tegra->clock_soctherm || !tegra->clock_tsensor)
849 		return -EINVAL;
850 
851 	reset_control_assert(tegra->reset);
852 
853 	if (enable) {
854 		err = clk_prepare_enable(tegra->clock_soctherm);
855 		if (err) {
856 			reset_control_deassert(tegra->reset);
857 			return err;
858 		}
859 
860 		err = clk_prepare_enable(tegra->clock_tsensor);
861 		if (err) {
862 			clk_disable_unprepare(tegra->clock_soctherm);
863 			reset_control_deassert(tegra->reset);
864 			return err;
865 		}
866 	} else {
867 		clk_disable_unprepare(tegra->clock_tsensor);
868 		clk_disable_unprepare(tegra->clock_soctherm);
869 	}
870 
871 	reset_control_deassert(tegra->reset);
872 
873 	return 0;
874 }
875 
876 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
877 				    unsigned long *max_state)
878 {
879 	*max_state = 1;
880 	return 0;
881 }
882 
883 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
884 				    unsigned long *cur_state)
885 {
886 	struct tegra_soctherm *ts = cdev->devdata;
887 	u32 r;
888 
889 	r = readl(ts->regs + THROT_STATUS);
890 	if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
891 		*cur_state = 1;
892 	else
893 		*cur_state = 0;
894 
895 	return 0;
896 }
897 
898 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
899 				unsigned long cur_state)
900 {
901 	return 0;
902 }
903 
904 static const struct thermal_cooling_device_ops throt_cooling_ops = {
905 	.get_max_state = throt_get_cdev_max_state,
906 	.get_cur_state = throt_get_cdev_cur_state,
907 	.set_cur_state = throt_set_cdev_state,
908 };
909 
910 /**
911  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
912  * and register them as cooling devices.
913  */
914 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
915 {
916 	struct device *dev = &pdev->dev;
917 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
918 	struct device_node *np_stc, *np_stcc;
919 	const char *name;
920 	u32 val;
921 	int i, r;
922 
923 	for (i = 0; i < THROTTLE_SIZE; i++) {
924 		ts->throt_cfgs[i].name = throt_names[i];
925 		ts->throt_cfgs[i].id = i;
926 		ts->throt_cfgs[i].init = false;
927 	}
928 
929 	np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
930 	if (!np_stc) {
931 		dev_info(dev,
932 			 "throttle-cfg: no throttle-cfgs - not enabling\n");
933 		return;
934 	}
935 
936 	for_each_child_of_node(np_stc, np_stcc) {
937 		struct soctherm_throt_cfg *stc;
938 		struct thermal_cooling_device *tcd;
939 
940 		name = np_stcc->name;
941 		stc = find_throttle_cfg_by_name(ts, name);
942 		if (!stc) {
943 			dev_err(dev,
944 				"throttle-cfg: could not find %s\n", name);
945 			continue;
946 		}
947 
948 		r = of_property_read_u32(np_stcc, "nvidia,priority", &val);
949 		if (r) {
950 			dev_info(dev,
951 				 "throttle-cfg: %s: missing priority\n", name);
952 			continue;
953 		}
954 		stc->priority = val;
955 
956 		if (ts->soc->use_ccroc) {
957 			r = of_property_read_u32(np_stcc,
958 						 "nvidia,cpu-throt-level",
959 						 &val);
960 			if (r) {
961 				dev_info(dev,
962 					 "throttle-cfg: %s: missing cpu-throt-level\n",
963 					 name);
964 				continue;
965 			}
966 			stc->cpu_throt_level = val;
967 		} else {
968 			r = of_property_read_u32(np_stcc,
969 						 "nvidia,cpu-throt-percent",
970 						 &val);
971 			if (r) {
972 				dev_info(dev,
973 					 "throttle-cfg: %s: missing cpu-throt-percent\n",
974 					 name);
975 				continue;
976 			}
977 			stc->cpu_throt_depth = val;
978 		}
979 
980 		tcd = thermal_of_cooling_device_register(np_stcc,
981 							 (char *)name, ts,
982 							 &throt_cooling_ops);
983 		of_node_put(np_stcc);
984 		if (IS_ERR_OR_NULL(tcd)) {
985 			dev_err(dev,
986 				"throttle-cfg: %s: failed to register cooling device\n",
987 				name);
988 			continue;
989 		}
990 
991 		stc->cdev = tcd;
992 		stc->init = true;
993 	}
994 
995 	of_node_put(np_stc);
996 }
997 
998 /**
999  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1000  * @level: describing the level LOW/MED/HIGH of throttling
1001  *
1002  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1003  * the M/N values desired for each level. This function does this.
1004  *
1005  * This function pre-programs the CCROC NV_THERM levels in terms of
1006  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1007  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1008  */
1009 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1010 {
1011 	u8 depth, dividend;
1012 	u32 r;
1013 
1014 	switch (level) {
1015 	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1016 		depth = 50;
1017 		break;
1018 	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1019 		depth = 75;
1020 		break;
1021 	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1022 		depth = 80;
1023 		break;
1024 	case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1025 		return;
1026 	default:
1027 		return;
1028 	}
1029 
1030 	dividend = THROT_DEPTH_DIVIDEND(depth);
1031 
1032 	/* setup PSKIP in ccroc nv_therm registers */
1033 	r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1034 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1035 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1036 	ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1037 
1038 	r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1039 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1040 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1041 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1042 	ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1043 }
1044 
1045 /**
1046  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1047  * @throt: the LIGHT/HEAVY of throttle event id
1048  *
1049  * Pulse skippers are used to throttle clock frequencies.  This
1050  * function programs the pulse skippers based on @throt and platform
1051  * data.  This function is used on SoCs which have CPU-local pulse
1052  * skipper control, such as T13x. It programs soctherm's interface to
1053  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1054  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1055  */
1056 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1057 					 enum soctherm_throttle_id throt)
1058 {
1059 	u32 r, throt_vect;
1060 
1061 	/* Denver:CCROC NV_THERM interface N:3 Mapping */
1062 	switch (ts->throt_cfgs[throt].cpu_throt_level) {
1063 	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1064 		throt_vect = THROT_VECT_LOW;
1065 		break;
1066 	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1067 		throt_vect = THROT_VECT_MED;
1068 		break;
1069 	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1070 		throt_vect = THROT_VECT_HIGH;
1071 		break;
1072 	default:
1073 		throt_vect = THROT_VECT_NONE;
1074 		break;
1075 	}
1076 
1077 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1078 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1079 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1080 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1081 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1082 
1083 	/* bypass sequencer in soc_therm as it is programmed in ccroc */
1084 	r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1085 	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1086 }
1087 
1088 /**
1089  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1090  * @throt: the LIGHT/HEAVY of throttle event id
1091  *
1092  * Pulse skippers are used to throttle clock frequencies.  This
1093  * function programs the pulse skippers based on @throt and platform
1094  * data.  This function is used for CPUs that have "remote" pulse
1095  * skipper control, e.g., the CPU pulse skipper is controlled by the
1096  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1097  * complex.)
1098  */
1099 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1100 			       enum soctherm_throttle_id throt)
1101 {
1102 	u32 r;
1103 	int depth;
1104 	u8 dividend;
1105 
1106 	depth = ts->throt_cfgs[throt].cpu_throt_depth;
1107 	dividend = THROT_DEPTH_DIVIDEND(depth);
1108 
1109 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1110 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1111 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1112 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1113 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1114 
1115 	r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1116 	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1117 	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1118 	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1119 }
1120 
1121 /**
1122  * soctherm_throttle_program() - programs pulse skippers' configuration
1123  * @throt: the LIGHT/HEAVY of the throttle event id.
1124  *
1125  * Pulse skippers are used to throttle clock frequencies.
1126  * This function programs the pulse skippers.
1127  */
1128 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1129 				      enum soctherm_throttle_id throt)
1130 {
1131 	u32 r;
1132 	struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1133 
1134 	if (!stc.init)
1135 		return;
1136 
1137 	/* Setup PSKIP parameters */
1138 	if (ts->soc->use_ccroc)
1139 		throttlectl_cpu_level_select(ts, throt);
1140 	else
1141 		throttlectl_cpu_mn(ts, throt);
1142 
1143 	r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1144 	writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1145 
1146 	r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1147 	writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1148 
1149 	r = readl(ts->regs + THROT_PRIORITY_LOCK);
1150 	r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1151 	if (r >= stc.priority)
1152 		return;
1153 	r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1154 			 stc.priority);
1155 	writel(r, ts->regs + THROT_PRIORITY_LOCK);
1156 }
1157 
1158 static void tegra_soctherm_throttle(struct device *dev)
1159 {
1160 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1161 	u32 v;
1162 	int i;
1163 
1164 	/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1165 	if (ts->soc->use_ccroc) {
1166 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1167 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1168 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1169 	}
1170 
1171 	/* Thermal HW throttle programming */
1172 	for (i = 0; i < THROTTLE_SIZE; i++)
1173 		soctherm_throttle_program(ts, i);
1174 
1175 	v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1176 	if (ts->soc->use_ccroc) {
1177 		ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1178 
1179 		v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1180 		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1181 		ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1182 	} else {
1183 		writel(v, ts->regs + THROT_GLOBAL_CFG);
1184 
1185 		v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1186 		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1187 		writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1188 	}
1189 
1190 	/* initialize stats collection */
1191 	v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1192 	    STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1193 	writel(v, ts->regs + THERMCTL_STATS_CTL);
1194 }
1195 
1196 static void soctherm_init(struct platform_device *pdev)
1197 {
1198 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1199 	const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
1200 	int i;
1201 	u32 pdiv, hotspot;
1202 
1203 	/* Initialize raw sensors */
1204 	for (i = 0; i < tegra->soc->num_tsensors; ++i)
1205 		enable_tsensor(tegra, i);
1206 
1207 	/* program pdiv and hotspot offsets per THERM */
1208 	pdiv = readl(tegra->regs + SENSOR_PDIV);
1209 	hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
1210 	for (i = 0; i < tegra->soc->num_ttgs; ++i) {
1211 		pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
1212 				    ttgs[i]->pdiv);
1213 		/* hotspot offset from PLLX, doesn't need to configure PLLX */
1214 		if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
1215 			continue;
1216 		hotspot =  REG_SET_MASK(hotspot,
1217 					ttgs[i]->pllx_hotspot_mask,
1218 					ttgs[i]->pllx_hotspot_diff);
1219 	}
1220 	writel(pdiv, tegra->regs + SENSOR_PDIV);
1221 	writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
1222 
1223 	/* Configure hw throttle */
1224 	tegra_soctherm_throttle(&pdev->dev);
1225 }
1226 
1227 static const struct of_device_id tegra_soctherm_of_match[] = {
1228 #ifdef CONFIG_ARCH_TEGRA_124_SOC
1229 	{
1230 		.compatible = "nvidia,tegra124-soctherm",
1231 		.data = &tegra124_soctherm,
1232 	},
1233 #endif
1234 #ifdef CONFIG_ARCH_TEGRA_132_SOC
1235 	{
1236 		.compatible = "nvidia,tegra132-soctherm",
1237 		.data = &tegra132_soctherm,
1238 	},
1239 #endif
1240 #ifdef CONFIG_ARCH_TEGRA_210_SOC
1241 	{
1242 		.compatible = "nvidia,tegra210-soctherm",
1243 		.data = &tegra210_soctherm,
1244 	},
1245 #endif
1246 	{ },
1247 };
1248 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
1249 
1250 static int tegra_soctherm_probe(struct platform_device *pdev)
1251 {
1252 	const struct of_device_id *match;
1253 	struct tegra_soctherm *tegra;
1254 	struct thermal_zone_device *z;
1255 	struct tsensor_shared_calib shared_calib;
1256 	struct resource *res;
1257 	struct tegra_soctherm_soc *soc;
1258 	unsigned int i;
1259 	int err;
1260 
1261 	match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
1262 	if (!match)
1263 		return -ENODEV;
1264 
1265 	soc = (struct tegra_soctherm_soc *)match->data;
1266 	if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
1267 		return -EINVAL;
1268 
1269 	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
1270 	if (!tegra)
1271 		return -ENOMEM;
1272 
1273 	dev_set_drvdata(&pdev->dev, tegra);
1274 
1275 	tegra->soc = soc;
1276 
1277 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1278 					   "soctherm-reg");
1279 	tegra->regs = devm_ioremap_resource(&pdev->dev, res);
1280 	if (IS_ERR(tegra->regs)) {
1281 		dev_err(&pdev->dev, "can't get soctherm registers");
1282 		return PTR_ERR(tegra->regs);
1283 	}
1284 
1285 	if (!tegra->soc->use_ccroc) {
1286 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1287 						   "car-reg");
1288 		tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
1289 		if (IS_ERR(tegra->clk_regs)) {
1290 			dev_err(&pdev->dev, "can't get car clk registers");
1291 			return PTR_ERR(tegra->clk_regs);
1292 		}
1293 	} else {
1294 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1295 						   "ccroc-reg");
1296 		tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
1297 		if (IS_ERR(tegra->ccroc_regs)) {
1298 			dev_err(&pdev->dev, "can't get ccroc registers");
1299 			return PTR_ERR(tegra->ccroc_regs);
1300 		}
1301 	}
1302 
1303 	tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
1304 	if (IS_ERR(tegra->reset)) {
1305 		dev_err(&pdev->dev, "can't get soctherm reset\n");
1306 		return PTR_ERR(tegra->reset);
1307 	}
1308 
1309 	tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
1310 	if (IS_ERR(tegra->clock_tsensor)) {
1311 		dev_err(&pdev->dev, "can't get tsensor clock\n");
1312 		return PTR_ERR(tegra->clock_tsensor);
1313 	}
1314 
1315 	tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
1316 	if (IS_ERR(tegra->clock_soctherm)) {
1317 		dev_err(&pdev->dev, "can't get soctherm clock\n");
1318 		return PTR_ERR(tegra->clock_soctherm);
1319 	}
1320 
1321 	tegra->calib = devm_kcalloc(&pdev->dev,
1322 				    soc->num_tsensors, sizeof(u32),
1323 				    GFP_KERNEL);
1324 	if (!tegra->calib)
1325 		return -ENOMEM;
1326 
1327 	/* calculate shared calibration data */
1328 	err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
1329 	if (err)
1330 		return err;
1331 
1332 	/* calculate tsensor calibaration data */
1333 	for (i = 0; i < soc->num_tsensors; ++i) {
1334 		err = tegra_calc_tsensor_calib(&soc->tsensors[i],
1335 					       &shared_calib,
1336 					       &tegra->calib[i]);
1337 		if (err)
1338 			return err;
1339 	}
1340 
1341 	tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
1342 					   soc->num_ttgs, sizeof(*z),
1343 					   GFP_KERNEL);
1344 	if (!tegra->thermctl_tzs)
1345 		return -ENOMEM;
1346 
1347 	err = soctherm_clk_enable(pdev, true);
1348 	if (err)
1349 		return err;
1350 
1351 	soctherm_init_hw_throt_cdev(pdev);
1352 
1353 	soctherm_init(pdev);
1354 
1355 	for (i = 0; i < soc->num_ttgs; ++i) {
1356 		struct tegra_thermctl_zone *zone =
1357 			devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
1358 		if (!zone) {
1359 			err = -ENOMEM;
1360 			goto disable_clocks;
1361 		}
1362 
1363 		zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
1364 		zone->dev = &pdev->dev;
1365 		zone->sg = soc->ttgs[i];
1366 		zone->ts = tegra;
1367 
1368 		z = devm_thermal_zone_of_sensor_register(&pdev->dev,
1369 							 soc->ttgs[i]->id, zone,
1370 							 &tegra_of_thermal_ops);
1371 		if (IS_ERR(z)) {
1372 			err = PTR_ERR(z);
1373 			dev_err(&pdev->dev, "failed to register sensor: %d\n",
1374 				err);
1375 			goto disable_clocks;
1376 		}
1377 
1378 		zone->tz = z;
1379 		tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
1380 
1381 		/* Configure hw trip points */
1382 		err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
1383 		if (err)
1384 			goto disable_clocks;
1385 	}
1386 
1387 	soctherm_debug_init(pdev);
1388 
1389 	return 0;
1390 
1391 disable_clocks:
1392 	soctherm_clk_enable(pdev, false);
1393 
1394 	return err;
1395 }
1396 
1397 static int tegra_soctherm_remove(struct platform_device *pdev)
1398 {
1399 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1400 
1401 	debugfs_remove_recursive(tegra->debugfs_dir);
1402 
1403 	soctherm_clk_enable(pdev, false);
1404 
1405 	return 0;
1406 }
1407 
1408 static int __maybe_unused soctherm_suspend(struct device *dev)
1409 {
1410 	struct platform_device *pdev = to_platform_device(dev);
1411 
1412 	soctherm_clk_enable(pdev, false);
1413 
1414 	return 0;
1415 }
1416 
1417 static int __maybe_unused soctherm_resume(struct device *dev)
1418 {
1419 	struct platform_device *pdev = to_platform_device(dev);
1420 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1421 	struct tegra_soctherm_soc *soc = tegra->soc;
1422 	int err, i;
1423 
1424 	err = soctherm_clk_enable(pdev, true);
1425 	if (err) {
1426 		dev_err(&pdev->dev,
1427 			"Resume failed: enable clocks failed\n");
1428 		return err;
1429 	}
1430 
1431 	soctherm_init(pdev);
1432 
1433 	for (i = 0; i < soc->num_ttgs; ++i) {
1434 		struct thermal_zone_device *tz;
1435 
1436 		tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
1437 		err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
1438 		if (err) {
1439 			dev_err(&pdev->dev,
1440 				"Resume failed: set hwtrips failed\n");
1441 			return err;
1442 		}
1443 	}
1444 
1445 	return 0;
1446 }
1447 
1448 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
1449 
1450 static struct platform_driver tegra_soctherm_driver = {
1451 	.probe = tegra_soctherm_probe,
1452 	.remove = tegra_soctherm_remove,
1453 	.driver = {
1454 		.name = "tegra_soctherm",
1455 		.pm = &tegra_soctherm_pm,
1456 		.of_match_table = tegra_soctherm_of_match,
1457 	},
1458 };
1459 module_platform_driver(tegra_soctherm_driver);
1460 
1461 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
1462 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
1463 MODULE_LICENSE("GPL v2");
1464