1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2014 - 2018, NVIDIA CORPORATION. All rights reserved. 4 * 5 * Author: 6 * Mikko Perttunen <mperttunen@nvidia.com> 7 * 8 * This software is licensed under the terms of the GNU General Public 9 * License version 2, as published by the Free Software Foundation, and 10 * may be copied, distributed, and modified under those terms. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 */ 18 19 #include <linux/debugfs.h> 20 #include <linux/bitops.h> 21 #include <linux/clk.h> 22 #include <linux/delay.h> 23 #include <linux/err.h> 24 #include <linux/interrupt.h> 25 #include <linux/io.h> 26 #include <linux/irq.h> 27 #include <linux/irqdomain.h> 28 #include <linux/module.h> 29 #include <linux/of.h> 30 #include <linux/platform_device.h> 31 #include <linux/reset.h> 32 #include <linux/thermal.h> 33 34 #include <dt-bindings/thermal/tegra124-soctherm.h> 35 36 #include "../thermal_core.h" 37 #include "soctherm.h" 38 39 #define SENSOR_CONFIG0 0 40 #define SENSOR_CONFIG0_STOP BIT(0) 41 #define SENSOR_CONFIG0_CPTR_OVER BIT(2) 42 #define SENSOR_CONFIG0_OVER BIT(3) 43 #define SENSOR_CONFIG0_TCALC_OVER BIT(4) 44 #define SENSOR_CONFIG0_TALL_MASK (0xfffff << 8) 45 #define SENSOR_CONFIG0_TALL_SHIFT 8 46 47 #define SENSOR_CONFIG1 4 48 #define SENSOR_CONFIG1_TSAMPLE_MASK 0x3ff 49 #define SENSOR_CONFIG1_TSAMPLE_SHIFT 0 50 #define SENSOR_CONFIG1_TIDDQ_EN_MASK (0x3f << 15) 51 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT 15 52 #define SENSOR_CONFIG1_TEN_COUNT_MASK (0x3f << 24) 53 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT 24 54 #define SENSOR_CONFIG1_TEMP_ENABLE BIT(31) 55 56 /* 57 * SENSOR_CONFIG2 is defined in soctherm.h 58 * because, it will be used by tegra_soctherm_fuse.c 59 */ 60 61 #define SENSOR_STATUS0 0xc 62 #define SENSOR_STATUS0_VALID_MASK BIT(31) 63 #define SENSOR_STATUS0_CAPTURE_MASK 0xffff 64 65 #define SENSOR_STATUS1 0x10 66 #define SENSOR_STATUS1_TEMP_VALID_MASK BIT(31) 67 #define SENSOR_STATUS1_TEMP_MASK 0xffff 68 69 #define READBACK_VALUE_MASK 0xff00 70 #define READBACK_VALUE_SHIFT 8 71 #define READBACK_ADD_HALF BIT(7) 72 #define READBACK_NEGATE BIT(0) 73 74 /* 75 * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h 76 * because it will be used by tegraxxx_soctherm.c 77 */ 78 #define THERMCTL_LVL0_CPU0_EN_MASK BIT(8) 79 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK (0x3 << 5) 80 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT 0x1 81 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY 0x2 82 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK (0x3 << 3) 83 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT 0x1 84 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY 0x2 85 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK BIT(2) 86 #define THERMCTL_LVL0_CPU0_STATUS_MASK 0x3 87 88 #define THERMCTL_LVL0_UP_STATS 0x10 89 #define THERMCTL_LVL0_DN_STATS 0x14 90 91 #define THERMCTL_INTR_STATUS 0x84 92 93 #define TH_INTR_MD0_MASK BIT(25) 94 #define TH_INTR_MU0_MASK BIT(24) 95 #define TH_INTR_GD0_MASK BIT(17) 96 #define TH_INTR_GU0_MASK BIT(16) 97 #define TH_INTR_CD0_MASK BIT(9) 98 #define TH_INTR_CU0_MASK BIT(8) 99 #define TH_INTR_PD0_MASK BIT(1) 100 #define TH_INTR_PU0_MASK BIT(0) 101 #define TH_INTR_IGNORE_MASK 0xFCFCFCFC 102 103 #define THERMCTL_STATS_CTL 0x94 104 #define STATS_CTL_CLR_DN 0x8 105 #define STATS_CTL_EN_DN 0x4 106 #define STATS_CTL_CLR_UP 0x2 107 #define STATS_CTL_EN_UP 0x1 108 109 #define OC1_CFG 0x310 110 #define OC1_CFG_LONG_LATENCY_MASK BIT(6) 111 #define OC1_CFG_HW_RESTORE_MASK BIT(5) 112 #define OC1_CFG_PWR_GOOD_MASK_MASK BIT(4) 113 #define OC1_CFG_THROTTLE_MODE_MASK (0x3 << 2) 114 #define OC1_CFG_ALARM_POLARITY_MASK BIT(1) 115 #define OC1_CFG_EN_THROTTLE_MASK BIT(0) 116 117 #define OC1_CNT_THRESHOLD 0x314 118 #define OC1_THROTTLE_PERIOD 0x318 119 #define OC1_ALARM_COUNT 0x31c 120 #define OC1_FILTER 0x320 121 #define OC1_STATS 0x3a8 122 123 #define OC_INTR_STATUS 0x39c 124 #define OC_INTR_ENABLE 0x3a0 125 #define OC_INTR_DISABLE 0x3a4 126 #define OC_STATS_CTL 0x3c4 127 #define OC_STATS_CTL_CLR_ALL 0x2 128 #define OC_STATS_CTL_EN_ALL 0x1 129 130 #define OC_INTR_OC1_MASK BIT(0) 131 #define OC_INTR_OC2_MASK BIT(1) 132 #define OC_INTR_OC3_MASK BIT(2) 133 #define OC_INTR_OC4_MASK BIT(3) 134 #define OC_INTR_OC5_MASK BIT(4) 135 136 #define THROT_GLOBAL_CFG 0x400 137 #define THROT_GLOBAL_ENB_MASK BIT(0) 138 139 #define CPU_PSKIP_STATUS 0x418 140 #define XPU_PSKIP_STATUS_M_MASK (0xff << 12) 141 #define XPU_PSKIP_STATUS_N_MASK (0xff << 4) 142 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK BIT(1) 143 #define XPU_PSKIP_STATUS_ENABLED_MASK BIT(0) 144 145 #define THROT_PRIORITY_LOCK 0x424 146 #define THROT_PRIORITY_LOCK_PRIORITY_MASK 0xff 147 148 #define THROT_STATUS 0x428 149 #define THROT_STATUS_BREACH_MASK BIT(12) 150 #define THROT_STATUS_STATE_MASK (0xff << 4) 151 #define THROT_STATUS_ENABLED_MASK BIT(0) 152 153 #define THROT_PSKIP_CTRL_LITE_CPU 0x430 154 #define THROT_PSKIP_CTRL_ENABLE_MASK BIT(31) 155 #define THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 156 #define THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 157 #define THROT_PSKIP_CTRL_VECT_GPU_MASK (0x7 << 16) 158 #define THROT_PSKIP_CTRL_VECT_CPU_MASK (0x7 << 8) 159 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK 0x7 160 161 #define THROT_VECT_NONE 0x0 /* 3'b000 */ 162 #define THROT_VECT_LOW 0x1 /* 3'b001 */ 163 #define THROT_VECT_MED 0x3 /* 3'b011 */ 164 #define THROT_VECT_HIGH 0x7 /* 3'b111 */ 165 166 #define THROT_PSKIP_RAMP_LITE_CPU 0x434 167 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 168 #define THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 169 #define THROT_PSKIP_RAMP_STEP_MASK 0xff 170 171 #define THROT_PRIORITY_LITE 0x444 172 #define THROT_PRIORITY_LITE_PRIO_MASK 0xff 173 174 #define THROT_DELAY_LITE 0x448 175 #define THROT_DELAY_LITE_DELAY_MASK 0xff 176 177 /* car register offsets needed for enabling HW throttling */ 178 #define CAR_SUPER_CCLKG_DIVIDER 0x36c 179 #define CDIVG_USE_THERM_CONTROLS_MASK BIT(30) 180 181 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */ 182 #define CCROC_SUPER_CCLKG_DIVIDER 0x024 183 184 #define CCROC_GLOBAL_CFG 0x148 185 186 #define CCROC_THROT_PSKIP_RAMP_CPU 0x150 187 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK BIT(31) 188 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK (0xffff << 8) 189 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK 0xff 190 191 #define CCROC_THROT_PSKIP_CTRL_CPU 0x154 192 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK BIT(31) 193 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK (0xff << 8) 194 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK 0xff 195 196 /* get val from register(r) mask bits(m) */ 197 #define REG_GET_MASK(r, m) (((r) & (m)) >> (ffs(m) - 1)) 198 /* set val(v) to mask bits(m) of register(r) */ 199 #define REG_SET_MASK(r, m, v) (((r) & ~(m)) | \ 200 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1))) 201 202 /* get dividend from the depth */ 203 #define THROT_DEPTH_DIVIDEND(depth) ((256 * (100 - (depth)) / 100) - 1) 204 205 /* gk20a nv_therm interface N:3 Mapping. Levels defined in tegra124-soctherm.h 206 * level vector 207 * NONE 3'b000 208 * LOW 3'b001 209 * MED 3'b011 210 * HIGH 3'b111 211 */ 212 #define THROT_LEVEL_TO_DEPTH(level) ((0x1 << (level)) - 1) 213 214 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */ 215 #define THROT_OFFSET 0x30 216 #define THROT_PSKIP_CTRL(throt, dev) (THROT_PSKIP_CTRL_LITE_CPU + \ 217 (THROT_OFFSET * throt) + (8 * dev)) 218 #define THROT_PSKIP_RAMP(throt, dev) (THROT_PSKIP_RAMP_LITE_CPU + \ 219 (THROT_OFFSET * throt) + (8 * dev)) 220 221 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */ 222 #define THROT_PRIORITY_CTRL(throt) (THROT_PRIORITY_LITE + \ 223 (THROT_OFFSET * throt)) 224 #define THROT_DELAY_CTRL(throt) (THROT_DELAY_LITE + \ 225 (THROT_OFFSET * throt)) 226 227 #define ALARM_OFFSET 0x14 228 #define ALARM_CFG(throt) (OC1_CFG + \ 229 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 230 231 #define ALARM_CNT_THRESHOLD(throt) (OC1_CNT_THRESHOLD + \ 232 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 233 234 #define ALARM_THROTTLE_PERIOD(throt) (OC1_THROTTLE_PERIOD + \ 235 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 236 237 #define ALARM_ALARM_COUNT(throt) (OC1_ALARM_COUNT + \ 238 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 239 240 #define ALARM_FILTER(throt) (OC1_FILTER + \ 241 (ALARM_OFFSET * (throt - THROTTLE_OC1))) 242 243 #define ALARM_STATS(throt) (OC1_STATS + \ 244 (4 * (throt - THROTTLE_OC1))) 245 246 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/ 247 #define CCROC_THROT_OFFSET 0x0c 248 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect) (CCROC_THROT_PSKIP_CTRL_CPU + \ 249 (CCROC_THROT_OFFSET * vect)) 250 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect) (CCROC_THROT_PSKIP_RAMP_CPU + \ 251 (CCROC_THROT_OFFSET * vect)) 252 253 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */ 254 #define THERMCTL_LVL_REGS_SIZE 0x20 255 #define THERMCTL_LVL_REG(rg, lv) ((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE)) 256 257 #define OC_THROTTLE_MODE_DISABLED 0 258 #define OC_THROTTLE_MODE_BRIEF 2 259 260 static const int min_low_temp = -127000; 261 static const int max_high_temp = 127000; 262 263 enum soctherm_throttle_id { 264 THROTTLE_LIGHT = 0, 265 THROTTLE_HEAVY, 266 THROTTLE_OC1, 267 THROTTLE_OC2, 268 THROTTLE_OC3, 269 THROTTLE_OC4, 270 THROTTLE_OC5, /* OC5 is reserved */ 271 THROTTLE_SIZE, 272 }; 273 274 enum soctherm_oc_irq_id { 275 TEGRA_SOC_OC_IRQ_1, 276 TEGRA_SOC_OC_IRQ_2, 277 TEGRA_SOC_OC_IRQ_3, 278 TEGRA_SOC_OC_IRQ_4, 279 TEGRA_SOC_OC_IRQ_5, 280 TEGRA_SOC_OC_IRQ_MAX, 281 }; 282 283 enum soctherm_throttle_dev_id { 284 THROTTLE_DEV_CPU = 0, 285 THROTTLE_DEV_GPU, 286 THROTTLE_DEV_SIZE, 287 }; 288 289 static const char *const throt_names[] = { 290 [THROTTLE_LIGHT] = "light", 291 [THROTTLE_HEAVY] = "heavy", 292 [THROTTLE_OC1] = "oc1", 293 [THROTTLE_OC2] = "oc2", 294 [THROTTLE_OC3] = "oc3", 295 [THROTTLE_OC4] = "oc4", 296 [THROTTLE_OC5] = "oc5", 297 }; 298 299 struct tegra_soctherm; 300 struct tegra_thermctl_zone { 301 void __iomem *reg; 302 struct device *dev; 303 struct tegra_soctherm *ts; 304 struct thermal_zone_device *tz; 305 const struct tegra_tsensor_group *sg; 306 }; 307 308 struct soctherm_oc_cfg { 309 u32 active_low; 310 u32 throt_period; 311 u32 alarm_cnt_thresh; 312 u32 alarm_filter; 313 u32 mode; 314 bool intr_en; 315 }; 316 317 struct soctherm_throt_cfg { 318 const char *name; 319 unsigned int id; 320 u8 priority; 321 u8 cpu_throt_level; 322 u32 cpu_throt_depth; 323 u32 gpu_throt_level; 324 struct soctherm_oc_cfg oc_cfg; 325 struct thermal_cooling_device *cdev; 326 bool init; 327 }; 328 329 struct tegra_soctherm { 330 struct reset_control *reset; 331 struct clk *clock_tsensor; 332 struct clk *clock_soctherm; 333 void __iomem *regs; 334 void __iomem *clk_regs; 335 void __iomem *ccroc_regs; 336 337 int thermal_irq; 338 int edp_irq; 339 340 u32 *calib; 341 struct thermal_zone_device **thermctl_tzs; 342 struct tegra_soctherm_soc *soc; 343 344 struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE]; 345 346 struct dentry *debugfs_dir; 347 348 struct mutex thermctl_lock; 349 }; 350 351 struct soctherm_oc_irq_chip_data { 352 struct mutex irq_lock; /* serialize OC IRQs */ 353 struct irq_chip irq_chip; 354 struct irq_domain *domain; 355 int irq_enable; 356 }; 357 358 static struct soctherm_oc_irq_chip_data soc_irq_cdata; 359 360 /** 361 * ccroc_writel() - writes a value to a CCROC register 362 * @ts: pointer to a struct tegra_soctherm 363 * @value: the value to write 364 * @reg: the register offset 365 * 366 * Writes @v to @reg. No return value. 367 */ 368 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg) 369 { 370 writel(value, (ts->ccroc_regs + reg)); 371 } 372 373 /** 374 * ccroc_readl() - reads specified register from CCROC IP block 375 * @ts: pointer to a struct tegra_soctherm 376 * @reg: register address to be read 377 * 378 * Return: the value of the register 379 */ 380 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg) 381 { 382 return readl(ts->ccroc_regs + reg); 383 } 384 385 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i) 386 { 387 const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i]; 388 void __iomem *base = tegra->regs + sensor->base; 389 unsigned int val; 390 391 val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT; 392 writel(val, base + SENSOR_CONFIG0); 393 394 val = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT; 395 val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT; 396 val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT; 397 val |= SENSOR_CONFIG1_TEMP_ENABLE; 398 writel(val, base + SENSOR_CONFIG1); 399 400 writel(tegra->calib[i], base + SENSOR_CONFIG2); 401 } 402 403 /* 404 * Translate from soctherm readback format to millicelsius. 405 * The soctherm readback format in bits is as follows: 406 * TTTTTTTT H______N 407 * where T's contain the temperature in Celsius, 408 * H denotes an addition of 0.5 Celsius and N denotes negation 409 * of the final value. 410 */ 411 static int translate_temp(u16 val) 412 { 413 int t; 414 415 t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000; 416 if (val & READBACK_ADD_HALF) 417 t += 500; 418 if (val & READBACK_NEGATE) 419 t *= -1; 420 421 return t; 422 } 423 424 static int tegra_thermctl_get_temp(void *data, int *out_temp) 425 { 426 struct tegra_thermctl_zone *zone = data; 427 u32 val; 428 429 val = readl(zone->reg); 430 val = REG_GET_MASK(val, zone->sg->sensor_temp_mask); 431 *out_temp = translate_temp(val); 432 433 return 0; 434 } 435 436 /** 437 * enforce_temp_range() - check and enforce temperature range [min, max] 438 * @dev: struct device * of the SOC_THERM instance 439 * @trip_temp: the trip temperature to check 440 * 441 * Checks and enforces the permitted temperature range that SOC_THERM 442 * HW can support This is 443 * done while taking care of precision. 444 * 445 * Return: The precision adjusted capped temperature in millicelsius. 446 */ 447 static int enforce_temp_range(struct device *dev, int trip_temp) 448 { 449 int temp; 450 451 temp = clamp_val(trip_temp, min_low_temp, max_high_temp); 452 if (temp != trip_temp) 453 dev_info(dev, "soctherm: trip temperature %d forced to %d\n", 454 trip_temp, temp); 455 return temp; 456 } 457 458 /** 459 * thermtrip_program() - Configures the hardware to shut down the 460 * system if a given sensor group reaches a given temperature 461 * @dev: ptr to the struct device for the SOC_THERM IP block 462 * @sg: pointer to the sensor group to set the thermtrip temperature for 463 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 464 * 465 * Sets the thermal trip threshold of the given sensor group to be the 466 * @trip_temp. If this threshold is crossed, the hardware will shut 467 * down. 468 * 469 * Note that, although @trip_temp is specified in millicelsius, the 470 * hardware is programmed in degrees Celsius. 471 * 472 * Return: 0 upon success, or %-EINVAL upon failure. 473 */ 474 static int thermtrip_program(struct device *dev, 475 const struct tegra_tsensor_group *sg, 476 int trip_temp) 477 { 478 struct tegra_soctherm *ts = dev_get_drvdata(dev); 479 int temp; 480 u32 r; 481 482 if (!sg || !sg->thermtrip_threshold_mask) 483 return -EINVAL; 484 485 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 486 487 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 488 r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp); 489 r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1); 490 r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0); 491 writel(r, ts->regs + THERMCTL_THERMTRIP_CTL); 492 493 return 0; 494 } 495 496 /** 497 * throttrip_program() - Configures the hardware to throttle the 498 * pulse if a given sensor group reaches a given temperature 499 * @dev: ptr to the struct device for the SOC_THERM IP block 500 * @sg: pointer to the sensor group to set the thermtrip temperature for 501 * @stc: pointer to the throttle need to be triggered 502 * @trip_temp: the temperature in millicelsius to trigger the thermal trip at 503 * 504 * Sets the thermal trip threshold and throttle event of the given sensor 505 * group. If this threshold is crossed, the hardware will trigger the 506 * throttle. 507 * 508 * Note that, although @trip_temp is specified in millicelsius, the 509 * hardware is programmed in degrees Celsius. 510 * 511 * Return: 0 upon success, or %-EINVAL upon failure. 512 */ 513 static int throttrip_program(struct device *dev, 514 const struct tegra_tsensor_group *sg, 515 struct soctherm_throt_cfg *stc, 516 int trip_temp) 517 { 518 struct tegra_soctherm *ts = dev_get_drvdata(dev); 519 int temp, cpu_throt, gpu_throt; 520 unsigned int throt; 521 u32 r, reg_off; 522 523 if (!sg || !stc || !stc->init) 524 return -EINVAL; 525 526 temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain; 527 528 /* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */ 529 throt = stc->id; 530 reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1); 531 532 if (throt == THROTTLE_LIGHT) { 533 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT; 534 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT; 535 } else { 536 cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY; 537 gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY; 538 if (throt != THROTTLE_HEAVY) 539 dev_warn(dev, 540 "invalid throt id %d - assuming HEAVY", 541 throt); 542 } 543 544 r = readl(ts->regs + reg_off); 545 r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp); 546 r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp); 547 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt); 548 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt); 549 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 550 writel(r, ts->regs + reg_off); 551 552 return 0; 553 } 554 555 static struct soctherm_throt_cfg * 556 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name) 557 { 558 unsigned int i; 559 560 for (i = 0; ts->throt_cfgs[i].name; i++) 561 if (!strcmp(ts->throt_cfgs[i].name, name)) 562 return &ts->throt_cfgs[i]; 563 564 return NULL; 565 } 566 567 static int tsensor_group_thermtrip_get(struct tegra_soctherm *ts, int id) 568 { 569 int i, temp = min_low_temp; 570 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 571 572 if (id >= TEGRA124_SOCTHERM_SENSOR_NUM) 573 return temp; 574 575 if (tt) { 576 for (i = 0; i < ts->soc->num_ttgs; i++) { 577 if (tt[i].id == id) 578 return tt[i].temp; 579 } 580 } 581 582 return temp; 583 } 584 585 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp) 586 { 587 struct tegra_thermctl_zone *zone = data; 588 struct thermal_zone_device *tz = zone->tz; 589 struct tegra_soctherm *ts = zone->ts; 590 const struct tegra_tsensor_group *sg = zone->sg; 591 struct device *dev = zone->dev; 592 enum thermal_trip_type type; 593 int ret; 594 595 if (!tz) 596 return -EINVAL; 597 598 ret = tz->ops->get_trip_type(tz, trip, &type); 599 if (ret) 600 return ret; 601 602 if (type == THERMAL_TRIP_CRITICAL) { 603 /* 604 * If thermtrips property is set in DT, 605 * doesn't need to program critical type trip to HW, 606 * if not, program critical trip to HW. 607 */ 608 if (min_low_temp == tsensor_group_thermtrip_get(ts, sg->id)) 609 return thermtrip_program(dev, sg, temp); 610 else 611 return 0; 612 613 } else if (type == THERMAL_TRIP_HOT) { 614 int i; 615 616 for (i = 0; i < THROTTLE_SIZE; i++) { 617 struct thermal_cooling_device *cdev; 618 struct soctherm_throt_cfg *stc; 619 620 if (!ts->throt_cfgs[i].init) 621 continue; 622 623 cdev = ts->throt_cfgs[i].cdev; 624 if (get_thermal_instance(tz, cdev, trip)) 625 stc = find_throttle_cfg_by_name(ts, cdev->type); 626 else 627 continue; 628 629 return throttrip_program(dev, sg, stc, temp); 630 } 631 } 632 633 return 0; 634 } 635 636 static int tegra_thermctl_get_trend(void *data, int trip, 637 enum thermal_trend *trend) 638 { 639 struct tegra_thermctl_zone *zone = data; 640 struct thermal_zone_device *tz = zone->tz; 641 int trip_temp, temp, last_temp, ret; 642 643 if (!tz) 644 return -EINVAL; 645 646 ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp); 647 if (ret) 648 return ret; 649 650 temp = READ_ONCE(tz->temperature); 651 last_temp = READ_ONCE(tz->last_temperature); 652 653 if (temp > trip_temp) { 654 if (temp >= last_temp) 655 *trend = THERMAL_TREND_RAISING; 656 else 657 *trend = THERMAL_TREND_STABLE; 658 } else if (temp < trip_temp) { 659 *trend = THERMAL_TREND_DROPPING; 660 } else { 661 *trend = THERMAL_TREND_STABLE; 662 } 663 664 return 0; 665 } 666 667 static void thermal_irq_enable(struct tegra_thermctl_zone *zn) 668 { 669 u32 r; 670 671 /* multiple zones could be handling and setting trips at once */ 672 mutex_lock(&zn->ts->thermctl_lock); 673 r = readl(zn->ts->regs + THERMCTL_INTR_ENABLE); 674 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, TH_INTR_UP_DN_EN); 675 writel(r, zn->ts->regs + THERMCTL_INTR_ENABLE); 676 mutex_unlock(&zn->ts->thermctl_lock); 677 } 678 679 static void thermal_irq_disable(struct tegra_thermctl_zone *zn) 680 { 681 u32 r; 682 683 /* multiple zones could be handling and setting trips at once */ 684 mutex_lock(&zn->ts->thermctl_lock); 685 r = readl(zn->ts->regs + THERMCTL_INTR_DISABLE); 686 r = REG_SET_MASK(r, zn->sg->thermctl_isr_mask, 0); 687 writel(r, zn->ts->regs + THERMCTL_INTR_DISABLE); 688 mutex_unlock(&zn->ts->thermctl_lock); 689 } 690 691 static int tegra_thermctl_set_trips(void *data, int lo, int hi) 692 { 693 struct tegra_thermctl_zone *zone = data; 694 u32 r; 695 696 thermal_irq_disable(zone); 697 698 r = readl(zone->ts->regs + zone->sg->thermctl_lvl0_offset); 699 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 0); 700 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 701 702 lo = enforce_temp_range(zone->dev, lo) / zone->ts->soc->thresh_grain; 703 hi = enforce_temp_range(zone->dev, hi) / zone->ts->soc->thresh_grain; 704 dev_dbg(zone->dev, "%s hi:%d, lo:%d\n", __func__, hi, lo); 705 706 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_up_thresh_mask, hi); 707 r = REG_SET_MASK(r, zone->sg->thermctl_lvl0_dn_thresh_mask, lo); 708 r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1); 709 writel(r, zone->ts->regs + zone->sg->thermctl_lvl0_offset); 710 711 thermal_irq_enable(zone); 712 713 return 0; 714 } 715 716 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = { 717 .get_temp = tegra_thermctl_get_temp, 718 .set_trip_temp = tegra_thermctl_set_trip_temp, 719 .get_trend = tegra_thermctl_get_trend, 720 .set_trips = tegra_thermctl_set_trips, 721 }; 722 723 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp) 724 { 725 int ntrips, i, ret; 726 enum thermal_trip_type type; 727 728 ntrips = of_thermal_get_ntrips(tz); 729 if (ntrips <= 0) 730 return -EINVAL; 731 732 for (i = 0; i < ntrips; i++) { 733 ret = tz->ops->get_trip_type(tz, i, &type); 734 if (ret) 735 return -EINVAL; 736 if (type == THERMAL_TRIP_HOT) { 737 ret = tz->ops->get_trip_temp(tz, i, temp); 738 if (!ret) 739 *trip = i; 740 741 return ret; 742 } 743 } 744 745 return -EINVAL; 746 } 747 748 /** 749 * tegra_soctherm_set_hwtrips() - set HW trip point from DT data 750 * @dev: struct device * of the SOC_THERM instance 751 * @sg: pointer to the sensor group to set the thermtrip temperature for 752 * @tz: struct thermal_zone_device * 753 * 754 * Configure the SOC_THERM HW trip points, setting "THERMTRIP" 755 * "THROTTLE" trip points , using "thermtrips", "critical" or "hot" 756 * type trip_temp 757 * from thermal zone. 758 * After they have been configured, THERMTRIP or THROTTLE will take 759 * action when the configured SoC thermal sensor group reaches a 760 * certain temperature. 761 * 762 * Return: 0 upon success, or a negative error code on failure. 763 * "Success" does not mean that trips was enabled; it could also 764 * mean that no node was found in DT. 765 * THERMTRIP has been enabled successfully when a message similar to 766 * this one appears on the serial console: 767 * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC" 768 * THROTTLE has been enabled successfully when a message similar to 769 * this one appears on the serial console: 770 * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC" 771 */ 772 static int tegra_soctherm_set_hwtrips(struct device *dev, 773 const struct tegra_tsensor_group *sg, 774 struct thermal_zone_device *tz) 775 { 776 struct tegra_soctherm *ts = dev_get_drvdata(dev); 777 struct soctherm_throt_cfg *stc; 778 int i, trip, temperature, ret; 779 780 /* Get thermtrips. If missing, try to get critical trips. */ 781 temperature = tsensor_group_thermtrip_get(ts, sg->id); 782 if (min_low_temp == temperature) 783 if (tz->ops->get_crit_temp(tz, &temperature)) 784 temperature = max_high_temp; 785 786 ret = thermtrip_program(dev, sg, temperature); 787 if (ret) { 788 dev_err(dev, "thermtrip: %s: error during enable\n", sg->name); 789 return ret; 790 } 791 792 dev_info(dev, "thermtrip: will shut down when %s reaches %d mC\n", 793 sg->name, temperature); 794 795 ret = get_hot_temp(tz, &trip, &temperature); 796 if (ret) { 797 dev_info(dev, "throttrip: %s: missing hot temperature\n", 798 sg->name); 799 return 0; 800 } 801 802 for (i = 0; i < THROTTLE_OC1; i++) { 803 struct thermal_cooling_device *cdev; 804 805 if (!ts->throt_cfgs[i].init) 806 continue; 807 808 cdev = ts->throt_cfgs[i].cdev; 809 if (get_thermal_instance(tz, cdev, trip)) 810 stc = find_throttle_cfg_by_name(ts, cdev->type); 811 else 812 continue; 813 814 ret = throttrip_program(dev, sg, stc, temperature); 815 if (ret) { 816 dev_err(dev, "throttrip: %s: error during enable\n", 817 sg->name); 818 return ret; 819 } 820 821 dev_info(dev, 822 "throttrip: will throttle when %s reaches %d mC\n", 823 sg->name, temperature); 824 break; 825 } 826 827 if (i == THROTTLE_SIZE) 828 dev_info(dev, "throttrip: %s: missing throttle cdev\n", 829 sg->name); 830 831 return 0; 832 } 833 834 static irqreturn_t soctherm_thermal_isr(int irq, void *dev_id) 835 { 836 struct tegra_soctherm *ts = dev_id; 837 u32 r; 838 839 /* Case for no lock: 840 * Although interrupts are enabled in set_trips, there is still no need 841 * to lock here because the interrupts are disabled before programming 842 * new trip points. Hence there cant be a interrupt on the same sensor. 843 * An interrupt can however occur on a sensor while trips are being 844 * programmed on a different one. This beign a LEVEL interrupt won't 845 * cause a new interrupt but this is taken care of by the re-reading of 846 * the STATUS register in the thread function. 847 */ 848 r = readl(ts->regs + THERMCTL_INTR_STATUS); 849 writel(r, ts->regs + THERMCTL_INTR_DISABLE); 850 851 return IRQ_WAKE_THREAD; 852 } 853 854 /** 855 * soctherm_thermal_isr_thread() - Handles a thermal interrupt request 856 * @irq: The interrupt number being requested; not used 857 * @dev_id: Opaque pointer to tegra_soctherm; 858 * 859 * Clears the interrupt status register if there are expected 860 * interrupt bits set. 861 * The interrupt(s) are then handled by updating the corresponding 862 * thermal zones. 863 * 864 * An error is logged if any unexpected interrupt bits are set. 865 * 866 * Disabled interrupts are re-enabled. 867 * 868 * Return: %IRQ_HANDLED. Interrupt was handled and no further processing 869 * is needed. 870 */ 871 static irqreturn_t soctherm_thermal_isr_thread(int irq, void *dev_id) 872 { 873 struct tegra_soctherm *ts = dev_id; 874 struct thermal_zone_device *tz; 875 u32 st, ex = 0, cp = 0, gp = 0, pl = 0, me = 0; 876 877 st = readl(ts->regs + THERMCTL_INTR_STATUS); 878 879 /* deliberately clear expected interrupts handled in SW */ 880 cp |= st & TH_INTR_CD0_MASK; 881 cp |= st & TH_INTR_CU0_MASK; 882 883 gp |= st & TH_INTR_GD0_MASK; 884 gp |= st & TH_INTR_GU0_MASK; 885 886 pl |= st & TH_INTR_PD0_MASK; 887 pl |= st & TH_INTR_PU0_MASK; 888 889 me |= st & TH_INTR_MD0_MASK; 890 me |= st & TH_INTR_MU0_MASK; 891 892 ex |= cp | gp | pl | me; 893 if (ex) { 894 writel(ex, ts->regs + THERMCTL_INTR_STATUS); 895 st &= ~ex; 896 897 if (cp) { 898 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_CPU]; 899 thermal_zone_device_update(tz, 900 THERMAL_EVENT_UNSPECIFIED); 901 } 902 903 if (gp) { 904 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_GPU]; 905 thermal_zone_device_update(tz, 906 THERMAL_EVENT_UNSPECIFIED); 907 } 908 909 if (pl) { 910 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_PLLX]; 911 thermal_zone_device_update(tz, 912 THERMAL_EVENT_UNSPECIFIED); 913 } 914 915 if (me) { 916 tz = ts->thermctl_tzs[TEGRA124_SOCTHERM_SENSOR_MEM]; 917 thermal_zone_device_update(tz, 918 THERMAL_EVENT_UNSPECIFIED); 919 } 920 } 921 922 /* deliberately ignore expected interrupts NOT handled in SW */ 923 ex |= TH_INTR_IGNORE_MASK; 924 st &= ~ex; 925 926 if (st) { 927 /* Whine about any other unexpected INTR bits still set */ 928 pr_err("soctherm: Ignored unexpected INTRs 0x%08x\n", st); 929 writel(st, ts->regs + THERMCTL_INTR_STATUS); 930 } 931 932 return IRQ_HANDLED; 933 } 934 935 /** 936 * soctherm_oc_intr_enable() - Enables the soctherm over-current interrupt 937 * @ts: pointer to a struct tegra_soctherm 938 * @alarm: The soctherm throttle id 939 * @enable: Flag indicating enable the soctherm over-current 940 * interrupt or disable it 941 * 942 * Enables a specific over-current pins @alarm to raise an interrupt if the flag 943 * is set and the alarm corresponds to OC1, OC2, OC3, or OC4. 944 */ 945 static void soctherm_oc_intr_enable(struct tegra_soctherm *ts, 946 enum soctherm_throttle_id alarm, 947 bool enable) 948 { 949 u32 r; 950 951 if (!enable) 952 return; 953 954 r = readl(ts->regs + OC_INTR_ENABLE); 955 switch (alarm) { 956 case THROTTLE_OC1: 957 r = REG_SET_MASK(r, OC_INTR_OC1_MASK, 1); 958 break; 959 case THROTTLE_OC2: 960 r = REG_SET_MASK(r, OC_INTR_OC2_MASK, 1); 961 break; 962 case THROTTLE_OC3: 963 r = REG_SET_MASK(r, OC_INTR_OC3_MASK, 1); 964 break; 965 case THROTTLE_OC4: 966 r = REG_SET_MASK(r, OC_INTR_OC4_MASK, 1); 967 break; 968 default: 969 r = 0; 970 break; 971 } 972 writel(r, ts->regs + OC_INTR_ENABLE); 973 } 974 975 /** 976 * soctherm_handle_alarm() - Handles soctherm alarms 977 * @alarm: The soctherm throttle id 978 * 979 * "Handles" over-current alarms (OC1, OC2, OC3, and OC4) by printing 980 * a warning or informative message. 981 * 982 * Return: -EINVAL for @alarm = THROTTLE_OC3, otherwise 0 (success). 983 */ 984 static int soctherm_handle_alarm(enum soctherm_throttle_id alarm) 985 { 986 int rv = -EINVAL; 987 988 switch (alarm) { 989 case THROTTLE_OC1: 990 pr_debug("soctherm: Successfully handled OC1 alarm\n"); 991 rv = 0; 992 break; 993 994 case THROTTLE_OC2: 995 pr_debug("soctherm: Successfully handled OC2 alarm\n"); 996 rv = 0; 997 break; 998 999 case THROTTLE_OC3: 1000 pr_debug("soctherm: Successfully handled OC3 alarm\n"); 1001 rv = 0; 1002 break; 1003 1004 case THROTTLE_OC4: 1005 pr_debug("soctherm: Successfully handled OC4 alarm\n"); 1006 rv = 0; 1007 break; 1008 1009 default: 1010 break; 1011 } 1012 1013 if (rv) 1014 pr_err("soctherm: ERROR in handling %s alarm\n", 1015 throt_names[alarm]); 1016 1017 return rv; 1018 } 1019 1020 /** 1021 * soctherm_edp_isr_thread() - log an over-current interrupt request 1022 * @irq: OC irq number. Currently not being used. See description 1023 * @arg: a void pointer for callback, currently not being used 1024 * 1025 * Over-current events are handled in hardware. This function is called to log 1026 * and handle any OC events that happened. Additionally, it checks every 1027 * over-current interrupt registers for registers are set but 1028 * was not expected (i.e. any discrepancy in interrupt status) by the function, 1029 * the discrepancy will logged. 1030 * 1031 * Return: %IRQ_HANDLED 1032 */ 1033 static irqreturn_t soctherm_edp_isr_thread(int irq, void *arg) 1034 { 1035 struct tegra_soctherm *ts = arg; 1036 u32 st, ex, oc1, oc2, oc3, oc4; 1037 1038 st = readl(ts->regs + OC_INTR_STATUS); 1039 1040 /* deliberately clear expected interrupts handled in SW */ 1041 oc1 = st & OC_INTR_OC1_MASK; 1042 oc2 = st & OC_INTR_OC2_MASK; 1043 oc3 = st & OC_INTR_OC3_MASK; 1044 oc4 = st & OC_INTR_OC4_MASK; 1045 ex = oc1 | oc2 | oc3 | oc4; 1046 1047 pr_err("soctherm: OC ALARM 0x%08x\n", ex); 1048 if (ex) { 1049 writel(st, ts->regs + OC_INTR_STATUS); 1050 st &= ~ex; 1051 1052 if (oc1 && !soctherm_handle_alarm(THROTTLE_OC1)) 1053 soctherm_oc_intr_enable(ts, THROTTLE_OC1, true); 1054 1055 if (oc2 && !soctherm_handle_alarm(THROTTLE_OC2)) 1056 soctherm_oc_intr_enable(ts, THROTTLE_OC2, true); 1057 1058 if (oc3 && !soctherm_handle_alarm(THROTTLE_OC3)) 1059 soctherm_oc_intr_enable(ts, THROTTLE_OC3, true); 1060 1061 if (oc4 && !soctherm_handle_alarm(THROTTLE_OC4)) 1062 soctherm_oc_intr_enable(ts, THROTTLE_OC4, true); 1063 1064 if (oc1 && soc_irq_cdata.irq_enable & BIT(0)) 1065 handle_nested_irq( 1066 irq_find_mapping(soc_irq_cdata.domain, 0)); 1067 1068 if (oc2 && soc_irq_cdata.irq_enable & BIT(1)) 1069 handle_nested_irq( 1070 irq_find_mapping(soc_irq_cdata.domain, 1)); 1071 1072 if (oc3 && soc_irq_cdata.irq_enable & BIT(2)) 1073 handle_nested_irq( 1074 irq_find_mapping(soc_irq_cdata.domain, 2)); 1075 1076 if (oc4 && soc_irq_cdata.irq_enable & BIT(3)) 1077 handle_nested_irq( 1078 irq_find_mapping(soc_irq_cdata.domain, 3)); 1079 } 1080 1081 if (st) { 1082 pr_err("soctherm: Ignored unexpected OC ALARM 0x%08x\n", st); 1083 writel(st, ts->regs + OC_INTR_STATUS); 1084 } 1085 1086 return IRQ_HANDLED; 1087 } 1088 1089 /** 1090 * soctherm_edp_isr() - Disables any active interrupts 1091 * @irq: The interrupt request number 1092 * @arg: Opaque pointer to an argument 1093 * 1094 * Writes to the OC_INTR_DISABLE register the over current interrupt status, 1095 * masking any asserted interrupts. Doing this prevents the same interrupts 1096 * from triggering this isr repeatedly. The thread woken by this isr will 1097 * handle asserted interrupts and subsequently unmask/re-enable them. 1098 * 1099 * The OC_INTR_DISABLE register indicates which OC interrupts 1100 * have been disabled. 1101 * 1102 * Return: %IRQ_WAKE_THREAD, handler requests to wake the handler thread 1103 */ 1104 static irqreturn_t soctherm_edp_isr(int irq, void *arg) 1105 { 1106 struct tegra_soctherm *ts = arg; 1107 u32 r; 1108 1109 if (!ts) 1110 return IRQ_NONE; 1111 1112 r = readl(ts->regs + OC_INTR_STATUS); 1113 writel(r, ts->regs + OC_INTR_DISABLE); 1114 1115 return IRQ_WAKE_THREAD; 1116 } 1117 1118 /** 1119 * soctherm_oc_irq_lock() - locks the over-current interrupt request 1120 * @data: Interrupt request data 1121 * 1122 * Looks up the chip data from @data and locks the mutex associated with 1123 * a particular over-current interrupt request. 1124 */ 1125 static void soctherm_oc_irq_lock(struct irq_data *data) 1126 { 1127 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1128 1129 mutex_lock(&d->irq_lock); 1130 } 1131 1132 /** 1133 * soctherm_oc_irq_sync_unlock() - Unlocks the OC interrupt request 1134 * @data: Interrupt request data 1135 * 1136 * Looks up the interrupt request data @data and unlocks the mutex associated 1137 * with a particular over-current interrupt request. 1138 */ 1139 static void soctherm_oc_irq_sync_unlock(struct irq_data *data) 1140 { 1141 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1142 1143 mutex_unlock(&d->irq_lock); 1144 } 1145 1146 /** 1147 * soctherm_oc_irq_enable() - Enables the SOC_THERM over-current interrupt queue 1148 * @data: irq_data structure of the chip 1149 * 1150 * Sets the irq_enable bit of SOC_THERM allowing SOC_THERM 1151 * to respond to over-current interrupts. 1152 * 1153 */ 1154 static void soctherm_oc_irq_enable(struct irq_data *data) 1155 { 1156 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1157 1158 d->irq_enable |= BIT(data->hwirq); 1159 } 1160 1161 /** 1162 * soctherm_oc_irq_disable() - Disables overcurrent interrupt requests 1163 * @data: The interrupt request information 1164 * 1165 * Clears the interrupt request enable bit of the overcurrent 1166 * interrupt request chip data. 1167 * 1168 * Return: Nothing is returned (void) 1169 */ 1170 static void soctherm_oc_irq_disable(struct irq_data *data) 1171 { 1172 struct soctherm_oc_irq_chip_data *d = irq_data_get_irq_chip_data(data); 1173 1174 d->irq_enable &= ~BIT(data->hwirq); 1175 } 1176 1177 static int soctherm_oc_irq_set_type(struct irq_data *data, unsigned int type) 1178 { 1179 return 0; 1180 } 1181 1182 /** 1183 * soctherm_oc_irq_map() - SOC_THERM interrupt request domain mapper 1184 * @h: Interrupt request domain 1185 * @virq: Virtual interrupt request number 1186 * @hw: Hardware interrupt request number 1187 * 1188 * Mapping callback function for SOC_THERM's irq_domain. When a SOC_THERM 1189 * interrupt request is called, the irq_domain takes the request's virtual 1190 * request number (much like a virtual memory address) and maps it to a 1191 * physical hardware request number. 1192 * 1193 * When a mapping doesn't already exist for a virtual request number, the 1194 * irq_domain calls this function to associate the virtual request number with 1195 * a hardware request number. 1196 * 1197 * Return: 0 1198 */ 1199 static int soctherm_oc_irq_map(struct irq_domain *h, unsigned int virq, 1200 irq_hw_number_t hw) 1201 { 1202 struct soctherm_oc_irq_chip_data *data = h->host_data; 1203 1204 irq_set_chip_data(virq, data); 1205 irq_set_chip(virq, &data->irq_chip); 1206 irq_set_nested_thread(virq, 1); 1207 return 0; 1208 } 1209 1210 /** 1211 * soctherm_irq_domain_xlate_twocell() - xlate for soctherm interrupts 1212 * @d: Interrupt request domain 1213 * @ctrlr: Controller device tree node 1214 * @intspec: Array of u32s from DTs "interrupt" property 1215 * @intsize: Number of values inside the intspec array 1216 * @out_hwirq: HW IRQ value associated with this interrupt 1217 * @out_type: The IRQ SENSE type for this interrupt. 1218 * 1219 * This Device Tree IRQ specifier translation function will translate a 1220 * specific "interrupt" as defined by 2 DT values where the cell values map 1221 * the hwirq number + 1 and linux irq flags. Since the output is the hwirq 1222 * number, this function will subtract 1 from the value listed in DT. 1223 * 1224 * Return: 0 1225 */ 1226 static int soctherm_irq_domain_xlate_twocell(struct irq_domain *d, 1227 struct device_node *ctrlr, const u32 *intspec, unsigned int intsize, 1228 irq_hw_number_t *out_hwirq, unsigned int *out_type) 1229 { 1230 if (WARN_ON(intsize < 2)) 1231 return -EINVAL; 1232 1233 /* 1234 * The HW value is 1 index less than the DT IRQ values. 1235 * i.e. OC4 goes to HW index 3. 1236 */ 1237 *out_hwirq = intspec[0] - 1; 1238 *out_type = intspec[1] & IRQ_TYPE_SENSE_MASK; 1239 return 0; 1240 } 1241 1242 static const struct irq_domain_ops soctherm_oc_domain_ops = { 1243 .map = soctherm_oc_irq_map, 1244 .xlate = soctherm_irq_domain_xlate_twocell, 1245 }; 1246 1247 /** 1248 * soctherm_oc_int_init() - Initial enabling of the over 1249 * current interrupts 1250 * @np: The devicetree node for soctherm 1251 * @num_irqs: The number of new interrupt requests 1252 * 1253 * Sets the over current interrupt request chip data 1254 * 1255 * Return: 0 on success or if overcurrent interrupts are not enabled, 1256 * -ENOMEM (out of memory), or irq_base if the function failed to 1257 * allocate the irqs 1258 */ 1259 static int soctherm_oc_int_init(struct device_node *np, int num_irqs) 1260 { 1261 if (!num_irqs) { 1262 pr_info("%s(): OC interrupts are not enabled\n", __func__); 1263 return 0; 1264 } 1265 1266 mutex_init(&soc_irq_cdata.irq_lock); 1267 soc_irq_cdata.irq_enable = 0; 1268 1269 soc_irq_cdata.irq_chip.name = "soc_therm_oc"; 1270 soc_irq_cdata.irq_chip.irq_bus_lock = soctherm_oc_irq_lock; 1271 soc_irq_cdata.irq_chip.irq_bus_sync_unlock = 1272 soctherm_oc_irq_sync_unlock; 1273 soc_irq_cdata.irq_chip.irq_disable = soctherm_oc_irq_disable; 1274 soc_irq_cdata.irq_chip.irq_enable = soctherm_oc_irq_enable; 1275 soc_irq_cdata.irq_chip.irq_set_type = soctherm_oc_irq_set_type; 1276 soc_irq_cdata.irq_chip.irq_set_wake = NULL; 1277 1278 soc_irq_cdata.domain = irq_domain_add_linear(np, num_irqs, 1279 &soctherm_oc_domain_ops, 1280 &soc_irq_cdata); 1281 1282 if (!soc_irq_cdata.domain) { 1283 pr_err("%s: Failed to create IRQ domain\n", __func__); 1284 return -ENOMEM; 1285 } 1286 1287 pr_debug("%s(): OC interrupts enabled successful\n", __func__); 1288 return 0; 1289 } 1290 1291 #ifdef CONFIG_DEBUG_FS 1292 static int regs_show(struct seq_file *s, void *data) 1293 { 1294 struct platform_device *pdev = s->private; 1295 struct tegra_soctherm *ts = platform_get_drvdata(pdev); 1296 const struct tegra_tsensor *tsensors = ts->soc->tsensors; 1297 const struct tegra_tsensor_group **ttgs = ts->soc->ttgs; 1298 u32 r, state; 1299 int i, level; 1300 1301 seq_puts(s, "-----TSENSE (convert HW)-----\n"); 1302 1303 for (i = 0; i < ts->soc->num_tsensors; i++) { 1304 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1); 1305 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE); 1306 1307 seq_printf(s, "%s: ", tsensors[i].name); 1308 seq_printf(s, "En(%d) ", state); 1309 1310 if (!state) { 1311 seq_puts(s, "\n"); 1312 continue; 1313 } 1314 1315 state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK); 1316 seq_printf(s, "tiddq(%d) ", state); 1317 state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK); 1318 seq_printf(s, "ten_count(%d) ", state); 1319 state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK); 1320 seq_printf(s, "tsample(%d) ", state + 1); 1321 1322 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1); 1323 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK); 1324 seq_printf(s, "Temp(%d/", state); 1325 state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK); 1326 seq_printf(s, "%d) ", translate_temp(state)); 1327 1328 r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0); 1329 state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK); 1330 seq_printf(s, "Capture(%d/", state); 1331 state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK); 1332 seq_printf(s, "%d) ", state); 1333 1334 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0); 1335 state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP); 1336 seq_printf(s, "Stop(%d) ", state); 1337 state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK); 1338 seq_printf(s, "Tall(%d) ", state); 1339 state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER); 1340 seq_printf(s, "Over(%d/", state); 1341 state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER); 1342 seq_printf(s, "%d/", state); 1343 state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER); 1344 seq_printf(s, "%d) ", state); 1345 1346 r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2); 1347 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK); 1348 seq_printf(s, "Therm_A/B(%d/", state); 1349 state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK); 1350 seq_printf(s, "%d)\n", (s16)state); 1351 } 1352 1353 r = readl(ts->regs + SENSOR_PDIV); 1354 seq_printf(s, "PDIV: 0x%x\n", r); 1355 1356 r = readl(ts->regs + SENSOR_HOTSPOT_OFF); 1357 seq_printf(s, "HOTSPOT: 0x%x\n", r); 1358 1359 seq_puts(s, "\n"); 1360 seq_puts(s, "-----SOC_THERM-----\n"); 1361 1362 r = readl(ts->regs + SENSOR_TEMP1); 1363 state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK); 1364 seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state)); 1365 state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK); 1366 seq_printf(s, " GPU(%d) ", translate_temp(state)); 1367 r = readl(ts->regs + SENSOR_TEMP2); 1368 state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK); 1369 seq_printf(s, " PLLX(%d) ", translate_temp(state)); 1370 state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK); 1371 seq_printf(s, " MEM(%d)\n", translate_temp(state)); 1372 1373 for (i = 0; i < ts->soc->num_ttgs; i++) { 1374 seq_printf(s, "%s:\n", ttgs[i]->name); 1375 for (level = 0; level < 4; level++) { 1376 s32 v; 1377 u32 mask; 1378 u16 off = ttgs[i]->thermctl_lvl0_offset; 1379 1380 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1381 1382 mask = ttgs[i]->thermctl_lvl0_up_thresh_mask; 1383 state = REG_GET_MASK(r, mask); 1384 v = sign_extend32(state, ts->soc->bptt - 1); 1385 v *= ts->soc->thresh_grain; 1386 seq_printf(s, " %d: Up/Dn(%d /", level, v); 1387 1388 mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask; 1389 state = REG_GET_MASK(r, mask); 1390 v = sign_extend32(state, ts->soc->bptt - 1); 1391 v *= ts->soc->thresh_grain; 1392 seq_printf(s, "%d ) ", v); 1393 1394 mask = THERMCTL_LVL0_CPU0_EN_MASK; 1395 state = REG_GET_MASK(r, mask); 1396 seq_printf(s, "En(%d) ", state); 1397 1398 mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK; 1399 state = REG_GET_MASK(r, mask); 1400 seq_puts(s, "CPU Throt"); 1401 if (!state) 1402 seq_printf(s, "(%s) ", "none"); 1403 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT) 1404 seq_printf(s, "(%s) ", "L"); 1405 else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY) 1406 seq_printf(s, "(%s) ", "H"); 1407 else 1408 seq_printf(s, "(%s) ", "H+L"); 1409 1410 mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK; 1411 state = REG_GET_MASK(r, mask); 1412 seq_puts(s, "GPU Throt"); 1413 if (!state) 1414 seq_printf(s, "(%s) ", "none"); 1415 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT) 1416 seq_printf(s, "(%s) ", "L"); 1417 else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY) 1418 seq_printf(s, "(%s) ", "H"); 1419 else 1420 seq_printf(s, "(%s) ", "H+L"); 1421 1422 mask = THERMCTL_LVL0_CPU0_STATUS_MASK; 1423 state = REG_GET_MASK(r, mask); 1424 seq_printf(s, "Status(%s)\n", 1425 state == 0 ? "LO" : 1426 state == 1 ? "In" : 1427 state == 2 ? "Res" : "HI"); 1428 } 1429 } 1430 1431 r = readl(ts->regs + THERMCTL_STATS_CTL); 1432 seq_printf(s, "STATS: Up(%s) Dn(%s)\n", 1433 r & STATS_CTL_EN_UP ? "En" : "--", 1434 r & STATS_CTL_EN_DN ? "En" : "--"); 1435 1436 for (level = 0; level < 4; level++) { 1437 u16 off; 1438 1439 off = THERMCTL_LVL0_UP_STATS; 1440 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1441 seq_printf(s, " Level_%d Up(%d) ", level, r); 1442 1443 off = THERMCTL_LVL0_DN_STATS; 1444 r = readl(ts->regs + THERMCTL_LVL_REG(off, level)); 1445 seq_printf(s, "Dn(%d)\n", r); 1446 } 1447 1448 r = readl(ts->regs + THERMCTL_THERMTRIP_CTL); 1449 state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask); 1450 seq_printf(s, "Thermtrip Any En(%d)\n", state); 1451 for (i = 0; i < ts->soc->num_ttgs; i++) { 1452 state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask); 1453 seq_printf(s, " %s En(%d) ", ttgs[i]->name, state); 1454 state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask); 1455 state *= ts->soc->thresh_grain; 1456 seq_printf(s, "Thresh(%d)\n", state); 1457 } 1458 1459 r = readl(ts->regs + THROT_GLOBAL_CFG); 1460 seq_puts(s, "\n"); 1461 seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r); 1462 1463 seq_puts(s, "---------------------------------------------------\n"); 1464 r = readl(ts->regs + THROT_STATUS); 1465 state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK); 1466 seq_printf(s, "THROT STATUS: breach(%d) ", state); 1467 state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK); 1468 seq_printf(s, "state(%d) ", state); 1469 state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK); 1470 seq_printf(s, "enabled(%d)\n", state); 1471 1472 r = readl(ts->regs + CPU_PSKIP_STATUS); 1473 if (ts->soc->use_ccroc) { 1474 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1475 seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state); 1476 } else { 1477 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK); 1478 seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state); 1479 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK); 1480 seq_printf(s, "N(%d) ", state); 1481 state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK); 1482 seq_printf(s, "enabled(%d)\n", state); 1483 } 1484 1485 return 0; 1486 } 1487 1488 DEFINE_SHOW_ATTRIBUTE(regs); 1489 1490 static void soctherm_debug_init(struct platform_device *pdev) 1491 { 1492 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1493 struct dentry *root; 1494 1495 root = debugfs_create_dir("soctherm", NULL); 1496 1497 tegra->debugfs_dir = root; 1498 1499 debugfs_create_file("reg_contents", 0644, root, pdev, ®s_fops); 1500 } 1501 #else 1502 static inline void soctherm_debug_init(struct platform_device *pdev) {} 1503 #endif 1504 1505 static int soctherm_clk_enable(struct platform_device *pdev, bool enable) 1506 { 1507 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 1508 int err; 1509 1510 if (!tegra->clock_soctherm || !tegra->clock_tsensor) 1511 return -EINVAL; 1512 1513 reset_control_assert(tegra->reset); 1514 1515 if (enable) { 1516 err = clk_prepare_enable(tegra->clock_soctherm); 1517 if (err) { 1518 reset_control_deassert(tegra->reset); 1519 return err; 1520 } 1521 1522 err = clk_prepare_enable(tegra->clock_tsensor); 1523 if (err) { 1524 clk_disable_unprepare(tegra->clock_soctherm); 1525 reset_control_deassert(tegra->reset); 1526 return err; 1527 } 1528 } else { 1529 clk_disable_unprepare(tegra->clock_tsensor); 1530 clk_disable_unprepare(tegra->clock_soctherm); 1531 } 1532 1533 reset_control_deassert(tegra->reset); 1534 1535 return 0; 1536 } 1537 1538 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev, 1539 unsigned long *max_state) 1540 { 1541 *max_state = 1; 1542 return 0; 1543 } 1544 1545 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev, 1546 unsigned long *cur_state) 1547 { 1548 struct tegra_soctherm *ts = cdev->devdata; 1549 u32 r; 1550 1551 r = readl(ts->regs + THROT_STATUS); 1552 if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK)) 1553 *cur_state = 1; 1554 else 1555 *cur_state = 0; 1556 1557 return 0; 1558 } 1559 1560 static int throt_set_cdev_state(struct thermal_cooling_device *cdev, 1561 unsigned long cur_state) 1562 { 1563 return 0; 1564 } 1565 1566 static const struct thermal_cooling_device_ops throt_cooling_ops = { 1567 .get_max_state = throt_get_cdev_max_state, 1568 .get_cur_state = throt_get_cdev_cur_state, 1569 .set_cur_state = throt_set_cdev_state, 1570 }; 1571 1572 static int soctherm_thermtrips_parse(struct platform_device *pdev) 1573 { 1574 struct device *dev = &pdev->dev; 1575 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1576 struct tsensor_group_thermtrips *tt = ts->soc->thermtrips; 1577 const int max_num_prop = ts->soc->num_ttgs * 2; 1578 u32 *tlb; 1579 int i, j, n, ret; 1580 1581 if (!tt) 1582 return -ENOMEM; 1583 1584 n = of_property_count_u32_elems(dev->of_node, "nvidia,thermtrips"); 1585 if (n <= 0) { 1586 dev_info(dev, 1587 "missing thermtrips, will use critical trips as shut down temp\n"); 1588 return n; 1589 } 1590 1591 n = min(max_num_prop, n); 1592 1593 tlb = devm_kcalloc(&pdev->dev, max_num_prop, sizeof(u32), GFP_KERNEL); 1594 if (!tlb) 1595 return -ENOMEM; 1596 ret = of_property_read_u32_array(dev->of_node, "nvidia,thermtrips", 1597 tlb, n); 1598 if (ret) { 1599 dev_err(dev, "invalid num ele: thermtrips:%d\n", ret); 1600 return ret; 1601 } 1602 1603 i = 0; 1604 for (j = 0; j < n; j = j + 2) { 1605 if (tlb[j] >= TEGRA124_SOCTHERM_SENSOR_NUM) 1606 continue; 1607 1608 tt[i].id = tlb[j]; 1609 tt[i].temp = tlb[j + 1]; 1610 i++; 1611 } 1612 1613 return 0; 1614 } 1615 1616 static void soctherm_oc_cfg_parse(struct device *dev, 1617 struct device_node *np_oc, 1618 struct soctherm_throt_cfg *stc) 1619 { 1620 u32 val; 1621 1622 if (of_property_read_bool(np_oc, "nvidia,polarity-active-low")) 1623 stc->oc_cfg.active_low = 1; 1624 else 1625 stc->oc_cfg.active_low = 0; 1626 1627 if (!of_property_read_u32(np_oc, "nvidia,count-threshold", &val)) { 1628 stc->oc_cfg.intr_en = 1; 1629 stc->oc_cfg.alarm_cnt_thresh = val; 1630 } 1631 1632 if (!of_property_read_u32(np_oc, "nvidia,throttle-period-us", &val)) 1633 stc->oc_cfg.throt_period = val; 1634 1635 if (!of_property_read_u32(np_oc, "nvidia,alarm-filter", &val)) 1636 stc->oc_cfg.alarm_filter = val; 1637 1638 /* BRIEF throttling by default, do not support STICKY */ 1639 stc->oc_cfg.mode = OC_THROTTLE_MODE_BRIEF; 1640 } 1641 1642 static int soctherm_throt_cfg_parse(struct device *dev, 1643 struct device_node *np, 1644 struct soctherm_throt_cfg *stc) 1645 { 1646 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1647 int ret; 1648 u32 val; 1649 1650 ret = of_property_read_u32(np, "nvidia,priority", &val); 1651 if (ret) { 1652 dev_err(dev, "throttle-cfg: %s: invalid priority\n", stc->name); 1653 return -EINVAL; 1654 } 1655 stc->priority = val; 1656 1657 ret = of_property_read_u32(np, ts->soc->use_ccroc ? 1658 "nvidia,cpu-throt-level" : 1659 "nvidia,cpu-throt-percent", &val); 1660 if (!ret) { 1661 if (ts->soc->use_ccroc && 1662 val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1663 stc->cpu_throt_level = val; 1664 else if (!ts->soc->use_ccroc && val <= 100) 1665 stc->cpu_throt_depth = val; 1666 else 1667 goto err; 1668 } else { 1669 goto err; 1670 } 1671 1672 ret = of_property_read_u32(np, "nvidia,gpu-throt-level", &val); 1673 if (!ret && val <= TEGRA_SOCTHERM_THROT_LEVEL_HIGH) 1674 stc->gpu_throt_level = val; 1675 else 1676 goto err; 1677 1678 return 0; 1679 1680 err: 1681 dev_err(dev, "throttle-cfg: %s: no throt prop or invalid prop\n", 1682 stc->name); 1683 return -EINVAL; 1684 } 1685 1686 /** 1687 * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations 1688 * and register them as cooling devices. 1689 * @pdev: Pointer to platform_device struct 1690 */ 1691 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev) 1692 { 1693 struct device *dev = &pdev->dev; 1694 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1695 struct device_node *np_stc, *np_stcc; 1696 const char *name; 1697 int i; 1698 1699 for (i = 0; i < THROTTLE_SIZE; i++) { 1700 ts->throt_cfgs[i].name = throt_names[i]; 1701 ts->throt_cfgs[i].id = i; 1702 ts->throt_cfgs[i].init = false; 1703 } 1704 1705 np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs"); 1706 if (!np_stc) { 1707 dev_info(dev, 1708 "throttle-cfg: no throttle-cfgs - not enabling\n"); 1709 return; 1710 } 1711 1712 for_each_child_of_node(np_stc, np_stcc) { 1713 struct soctherm_throt_cfg *stc; 1714 struct thermal_cooling_device *tcd; 1715 int err; 1716 1717 name = np_stcc->name; 1718 stc = find_throttle_cfg_by_name(ts, name); 1719 if (!stc) { 1720 dev_err(dev, 1721 "throttle-cfg: could not find %s\n", name); 1722 continue; 1723 } 1724 1725 if (stc->init) { 1726 dev_err(dev, "throttle-cfg: %s: redefined!\n", name); 1727 of_node_put(np_stcc); 1728 break; 1729 } 1730 1731 err = soctherm_throt_cfg_parse(dev, np_stcc, stc); 1732 if (err) 1733 continue; 1734 1735 if (stc->id >= THROTTLE_OC1) { 1736 soctherm_oc_cfg_parse(dev, np_stcc, stc); 1737 stc->init = true; 1738 } else { 1739 1740 tcd = thermal_of_cooling_device_register(np_stcc, 1741 (char *)name, ts, 1742 &throt_cooling_ops); 1743 if (IS_ERR_OR_NULL(tcd)) { 1744 dev_err(dev, 1745 "throttle-cfg: %s: failed to register cooling device\n", 1746 name); 1747 continue; 1748 } 1749 stc->cdev = tcd; 1750 stc->init = true; 1751 } 1752 1753 } 1754 1755 of_node_put(np_stc); 1756 } 1757 1758 /** 1759 * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config 1760 * @ts: pointer to a struct tegra_soctherm 1761 * @level: describing the level LOW/MED/HIGH of throttling 1762 * 1763 * It's necessary to set up the CPU-local CCROC NV_THERM instance with 1764 * the M/N values desired for each level. This function does this. 1765 * 1766 * This function pre-programs the CCROC NV_THERM levels in terms of 1767 * pre-configured "Low", "Medium" or "Heavy" throttle levels which are 1768 * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY. 1769 */ 1770 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level) 1771 { 1772 u8 depth, dividend; 1773 u32 r; 1774 1775 switch (level) { 1776 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1777 depth = 50; 1778 break; 1779 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1780 depth = 75; 1781 break; 1782 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1783 depth = 80; 1784 break; 1785 case TEGRA_SOCTHERM_THROT_LEVEL_NONE: 1786 return; 1787 default: 1788 return; 1789 } 1790 1791 dividend = THROT_DEPTH_DIVIDEND(depth); 1792 1793 /* setup PSKIP in ccroc nv_therm registers */ 1794 r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1795 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1796 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1797 ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level)); 1798 1799 r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1800 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1); 1801 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1802 r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1803 ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level)); 1804 } 1805 1806 /** 1807 * throttlectl_cpu_level_select() - program CPU pulse skipper config 1808 * @ts: pointer to a struct tegra_soctherm 1809 * @throt: the LIGHT/HEAVY of throttle event id 1810 * 1811 * Pulse skippers are used to throttle clock frequencies. This 1812 * function programs the pulse skippers based on @throt and platform 1813 * data. This function is used on SoCs which have CPU-local pulse 1814 * skipper control, such as T13x. It programs soctherm's interface to 1815 * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling 1816 * vectors. PSKIP_BYPASS mode is set as required per HW spec. 1817 */ 1818 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts, 1819 enum soctherm_throttle_id throt) 1820 { 1821 u32 r, throt_vect; 1822 1823 /* Denver:CCROC NV_THERM interface N:3 Mapping */ 1824 switch (ts->throt_cfgs[throt].cpu_throt_level) { 1825 case TEGRA_SOCTHERM_THROT_LEVEL_LOW: 1826 throt_vect = THROT_VECT_LOW; 1827 break; 1828 case TEGRA_SOCTHERM_THROT_LEVEL_MED: 1829 throt_vect = THROT_VECT_MED; 1830 break; 1831 case TEGRA_SOCTHERM_THROT_LEVEL_HIGH: 1832 throt_vect = THROT_VECT_HIGH; 1833 break; 1834 default: 1835 throt_vect = THROT_VECT_NONE; 1836 break; 1837 } 1838 1839 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1840 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1841 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect); 1842 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect); 1843 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1844 1845 /* bypass sequencer in soc_therm as it is programmed in ccroc */ 1846 r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1); 1847 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1848 } 1849 1850 /** 1851 * throttlectl_cpu_mn() - program CPU pulse skipper configuration 1852 * @ts: pointer to a struct tegra_soctherm 1853 * @throt: the LIGHT/HEAVY of throttle event id 1854 * 1855 * Pulse skippers are used to throttle clock frequencies. This 1856 * function programs the pulse skippers based on @throt and platform 1857 * data. This function is used for CPUs that have "remote" pulse 1858 * skipper control, e.g., the CPU pulse skipper is controlled by the 1859 * SOC_THERM IP block. (SOC_THERM is located outside the CPU 1860 * complex.) 1861 */ 1862 static void throttlectl_cpu_mn(struct tegra_soctherm *ts, 1863 enum soctherm_throttle_id throt) 1864 { 1865 u32 r; 1866 int depth; 1867 u8 dividend; 1868 1869 depth = ts->throt_cfgs[throt].cpu_throt_depth; 1870 dividend = THROT_DEPTH_DIVIDEND(depth); 1871 1872 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1873 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1874 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend); 1875 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff); 1876 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU)); 1877 1878 r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1879 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff); 1880 r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf); 1881 writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU)); 1882 } 1883 1884 /** 1885 * throttlectl_gpu_level_select() - selects throttling level for GPU 1886 * @ts: pointer to a struct tegra_soctherm 1887 * @throt: the LIGHT/HEAVY of throttle event id 1888 * 1889 * This function programs soctherm's interface to GK20a NV_THERM to select 1890 * pre-configured "Low", "Medium" or "Heavy" throttle levels. 1891 * 1892 * Return: boolean true if HW was programmed 1893 */ 1894 static void throttlectl_gpu_level_select(struct tegra_soctherm *ts, 1895 enum soctherm_throttle_id throt) 1896 { 1897 u32 r, level, throt_vect; 1898 1899 level = ts->throt_cfgs[throt].gpu_throt_level; 1900 throt_vect = THROT_LEVEL_TO_DEPTH(level); 1901 r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1902 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1); 1903 r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_GPU_MASK, throt_vect); 1904 writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_GPU)); 1905 } 1906 1907 static int soctherm_oc_cfg_program(struct tegra_soctherm *ts, 1908 enum soctherm_throttle_id throt) 1909 { 1910 u32 r; 1911 struct soctherm_oc_cfg *oc = &ts->throt_cfgs[throt].oc_cfg; 1912 1913 if (oc->mode == OC_THROTTLE_MODE_DISABLED) 1914 return -EINVAL; 1915 1916 r = REG_SET_MASK(0, OC1_CFG_HW_RESTORE_MASK, 1); 1917 r = REG_SET_MASK(r, OC1_CFG_THROTTLE_MODE_MASK, oc->mode); 1918 r = REG_SET_MASK(r, OC1_CFG_ALARM_POLARITY_MASK, oc->active_low); 1919 r = REG_SET_MASK(r, OC1_CFG_EN_THROTTLE_MASK, 1); 1920 writel(r, ts->regs + ALARM_CFG(throt)); 1921 writel(oc->throt_period, ts->regs + ALARM_THROTTLE_PERIOD(throt)); 1922 writel(oc->alarm_cnt_thresh, ts->regs + ALARM_CNT_THRESHOLD(throt)); 1923 writel(oc->alarm_filter, ts->regs + ALARM_FILTER(throt)); 1924 soctherm_oc_intr_enable(ts, throt, oc->intr_en); 1925 1926 return 0; 1927 } 1928 1929 /** 1930 * soctherm_throttle_program() - programs pulse skippers' configuration 1931 * @ts: pointer to a struct tegra_soctherm 1932 * @throt: the LIGHT/HEAVY of the throttle event id. 1933 * 1934 * Pulse skippers are used to throttle clock frequencies. 1935 * This function programs the pulse skippers. 1936 */ 1937 static void soctherm_throttle_program(struct tegra_soctherm *ts, 1938 enum soctherm_throttle_id throt) 1939 { 1940 u32 r; 1941 struct soctherm_throt_cfg stc = ts->throt_cfgs[throt]; 1942 1943 if (!stc.init) 1944 return; 1945 1946 if ((throt >= THROTTLE_OC1) && (soctherm_oc_cfg_program(ts, throt))) 1947 return; 1948 1949 /* Setup PSKIP parameters */ 1950 if (ts->soc->use_ccroc) 1951 throttlectl_cpu_level_select(ts, throt); 1952 else 1953 throttlectl_cpu_mn(ts, throt); 1954 1955 throttlectl_gpu_level_select(ts, throt); 1956 1957 r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority); 1958 writel(r, ts->regs + THROT_PRIORITY_CTRL(throt)); 1959 1960 r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0); 1961 writel(r, ts->regs + THROT_DELAY_CTRL(throt)); 1962 1963 r = readl(ts->regs + THROT_PRIORITY_LOCK); 1964 r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK); 1965 if (r >= stc.priority) 1966 return; 1967 r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK, 1968 stc.priority); 1969 writel(r, ts->regs + THROT_PRIORITY_LOCK); 1970 } 1971 1972 static void tegra_soctherm_throttle(struct device *dev) 1973 { 1974 struct tegra_soctherm *ts = dev_get_drvdata(dev); 1975 u32 v; 1976 int i; 1977 1978 /* configure LOW, MED and HIGH levels for CCROC NV_THERM */ 1979 if (ts->soc->use_ccroc) { 1980 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW); 1981 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED); 1982 throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH); 1983 } 1984 1985 /* Thermal HW throttle programming */ 1986 for (i = 0; i < THROTTLE_SIZE; i++) 1987 soctherm_throttle_program(ts, i); 1988 1989 v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1); 1990 if (ts->soc->use_ccroc) { 1991 ccroc_writel(ts, v, CCROC_GLOBAL_CFG); 1992 1993 v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER); 1994 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 1995 ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER); 1996 } else { 1997 writel(v, ts->regs + THROT_GLOBAL_CFG); 1998 1999 v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 2000 v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1); 2001 writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER); 2002 } 2003 2004 /* initialize stats collection */ 2005 v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN | 2006 STATS_CTL_CLR_UP | STATS_CTL_EN_UP; 2007 writel(v, ts->regs + THERMCTL_STATS_CTL); 2008 } 2009 2010 static int soctherm_interrupts_init(struct platform_device *pdev, 2011 struct tegra_soctherm *tegra) 2012 { 2013 struct device_node *np = pdev->dev.of_node; 2014 int ret; 2015 2016 ret = soctherm_oc_int_init(np, TEGRA_SOC_OC_IRQ_MAX); 2017 if (ret < 0) { 2018 dev_err(&pdev->dev, "soctherm_oc_int_init failed\n"); 2019 return ret; 2020 } 2021 2022 tegra->thermal_irq = platform_get_irq(pdev, 0); 2023 if (tegra->thermal_irq < 0) { 2024 dev_dbg(&pdev->dev, "get 'thermal_irq' failed.\n"); 2025 return 0; 2026 } 2027 2028 tegra->edp_irq = platform_get_irq(pdev, 1); 2029 if (tegra->edp_irq < 0) { 2030 dev_dbg(&pdev->dev, "get 'edp_irq' failed.\n"); 2031 return 0; 2032 } 2033 2034 ret = devm_request_threaded_irq(&pdev->dev, 2035 tegra->thermal_irq, 2036 soctherm_thermal_isr, 2037 soctherm_thermal_isr_thread, 2038 IRQF_ONESHOT, 2039 dev_name(&pdev->dev), 2040 tegra); 2041 if (ret < 0) { 2042 dev_err(&pdev->dev, "request_irq 'thermal_irq' failed.\n"); 2043 return ret; 2044 } 2045 2046 ret = devm_request_threaded_irq(&pdev->dev, 2047 tegra->edp_irq, 2048 soctherm_edp_isr, 2049 soctherm_edp_isr_thread, 2050 IRQF_ONESHOT, 2051 "soctherm_edp", 2052 tegra); 2053 if (ret < 0) { 2054 dev_err(&pdev->dev, "request_irq 'edp_irq' failed.\n"); 2055 return ret; 2056 } 2057 2058 return 0; 2059 } 2060 2061 static void soctherm_init(struct platform_device *pdev) 2062 { 2063 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2064 const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs; 2065 int i; 2066 u32 pdiv, hotspot; 2067 2068 /* Initialize raw sensors */ 2069 for (i = 0; i < tegra->soc->num_tsensors; ++i) 2070 enable_tsensor(tegra, i); 2071 2072 /* program pdiv and hotspot offsets per THERM */ 2073 pdiv = readl(tegra->regs + SENSOR_PDIV); 2074 hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF); 2075 for (i = 0; i < tegra->soc->num_ttgs; ++i) { 2076 pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask, 2077 ttgs[i]->pdiv); 2078 /* hotspot offset from PLLX, doesn't need to configure PLLX */ 2079 if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX) 2080 continue; 2081 hotspot = REG_SET_MASK(hotspot, 2082 ttgs[i]->pllx_hotspot_mask, 2083 ttgs[i]->pllx_hotspot_diff); 2084 } 2085 writel(pdiv, tegra->regs + SENSOR_PDIV); 2086 writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF); 2087 2088 /* Configure hw throttle */ 2089 tegra_soctherm_throttle(&pdev->dev); 2090 } 2091 2092 static const struct of_device_id tegra_soctherm_of_match[] = { 2093 #ifdef CONFIG_ARCH_TEGRA_124_SOC 2094 { 2095 .compatible = "nvidia,tegra124-soctherm", 2096 .data = &tegra124_soctherm, 2097 }, 2098 #endif 2099 #ifdef CONFIG_ARCH_TEGRA_132_SOC 2100 { 2101 .compatible = "nvidia,tegra132-soctherm", 2102 .data = &tegra132_soctherm, 2103 }, 2104 #endif 2105 #ifdef CONFIG_ARCH_TEGRA_210_SOC 2106 { 2107 .compatible = "nvidia,tegra210-soctherm", 2108 .data = &tegra210_soctherm, 2109 }, 2110 #endif 2111 { }, 2112 }; 2113 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match); 2114 2115 static int tegra_soctherm_probe(struct platform_device *pdev) 2116 { 2117 const struct of_device_id *match; 2118 struct tegra_soctherm *tegra; 2119 struct thermal_zone_device *z; 2120 struct tsensor_shared_calib shared_calib; 2121 struct resource *res; 2122 struct tegra_soctherm_soc *soc; 2123 unsigned int i; 2124 int err; 2125 2126 match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node); 2127 if (!match) 2128 return -ENODEV; 2129 2130 soc = (struct tegra_soctherm_soc *)match->data; 2131 if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM) 2132 return -EINVAL; 2133 2134 tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL); 2135 if (!tegra) 2136 return -ENOMEM; 2137 2138 mutex_init(&tegra->thermctl_lock); 2139 dev_set_drvdata(&pdev->dev, tegra); 2140 2141 tegra->soc = soc; 2142 2143 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2144 "soctherm-reg"); 2145 tegra->regs = devm_ioremap_resource(&pdev->dev, res); 2146 if (IS_ERR(tegra->regs)) { 2147 dev_err(&pdev->dev, "can't get soctherm registers"); 2148 return PTR_ERR(tegra->regs); 2149 } 2150 2151 if (!tegra->soc->use_ccroc) { 2152 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2153 "car-reg"); 2154 tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res); 2155 if (IS_ERR(tegra->clk_regs)) { 2156 dev_err(&pdev->dev, "can't get car clk registers"); 2157 return PTR_ERR(tegra->clk_regs); 2158 } 2159 } else { 2160 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, 2161 "ccroc-reg"); 2162 tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res); 2163 if (IS_ERR(tegra->ccroc_regs)) { 2164 dev_err(&pdev->dev, "can't get ccroc registers"); 2165 return PTR_ERR(tegra->ccroc_regs); 2166 } 2167 } 2168 2169 tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm"); 2170 if (IS_ERR(tegra->reset)) { 2171 dev_err(&pdev->dev, "can't get soctherm reset\n"); 2172 return PTR_ERR(tegra->reset); 2173 } 2174 2175 tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor"); 2176 if (IS_ERR(tegra->clock_tsensor)) { 2177 dev_err(&pdev->dev, "can't get tsensor clock\n"); 2178 return PTR_ERR(tegra->clock_tsensor); 2179 } 2180 2181 tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm"); 2182 if (IS_ERR(tegra->clock_soctherm)) { 2183 dev_err(&pdev->dev, "can't get soctherm clock\n"); 2184 return PTR_ERR(tegra->clock_soctherm); 2185 } 2186 2187 tegra->calib = devm_kcalloc(&pdev->dev, 2188 soc->num_tsensors, sizeof(u32), 2189 GFP_KERNEL); 2190 if (!tegra->calib) 2191 return -ENOMEM; 2192 2193 /* calculate shared calibration data */ 2194 err = tegra_calc_shared_calib(soc->tfuse, &shared_calib); 2195 if (err) 2196 return err; 2197 2198 /* calculate tsensor calibaration data */ 2199 for (i = 0; i < soc->num_tsensors; ++i) { 2200 err = tegra_calc_tsensor_calib(&soc->tsensors[i], 2201 &shared_calib, 2202 &tegra->calib[i]); 2203 if (err) 2204 return err; 2205 } 2206 2207 tegra->thermctl_tzs = devm_kcalloc(&pdev->dev, 2208 soc->num_ttgs, sizeof(z), 2209 GFP_KERNEL); 2210 if (!tegra->thermctl_tzs) 2211 return -ENOMEM; 2212 2213 err = soctherm_clk_enable(pdev, true); 2214 if (err) 2215 return err; 2216 2217 soctherm_thermtrips_parse(pdev); 2218 2219 soctherm_init_hw_throt_cdev(pdev); 2220 2221 soctherm_init(pdev); 2222 2223 for (i = 0; i < soc->num_ttgs; ++i) { 2224 struct tegra_thermctl_zone *zone = 2225 devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL); 2226 if (!zone) { 2227 err = -ENOMEM; 2228 goto disable_clocks; 2229 } 2230 2231 zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset; 2232 zone->dev = &pdev->dev; 2233 zone->sg = soc->ttgs[i]; 2234 zone->ts = tegra; 2235 2236 z = devm_thermal_zone_of_sensor_register(&pdev->dev, 2237 soc->ttgs[i]->id, zone, 2238 &tegra_of_thermal_ops); 2239 if (IS_ERR(z)) { 2240 err = PTR_ERR(z); 2241 dev_err(&pdev->dev, "failed to register sensor: %d\n", 2242 err); 2243 goto disable_clocks; 2244 } 2245 2246 zone->tz = z; 2247 tegra->thermctl_tzs[soc->ttgs[i]->id] = z; 2248 2249 /* Configure hw trip points */ 2250 err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z); 2251 if (err) 2252 goto disable_clocks; 2253 } 2254 2255 err = soctherm_interrupts_init(pdev, tegra); 2256 2257 soctherm_debug_init(pdev); 2258 2259 return 0; 2260 2261 disable_clocks: 2262 soctherm_clk_enable(pdev, false); 2263 2264 return err; 2265 } 2266 2267 static int tegra_soctherm_remove(struct platform_device *pdev) 2268 { 2269 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2270 2271 debugfs_remove_recursive(tegra->debugfs_dir); 2272 2273 soctherm_clk_enable(pdev, false); 2274 2275 return 0; 2276 } 2277 2278 static int __maybe_unused soctherm_suspend(struct device *dev) 2279 { 2280 struct platform_device *pdev = to_platform_device(dev); 2281 2282 soctherm_clk_enable(pdev, false); 2283 2284 return 0; 2285 } 2286 2287 static int __maybe_unused soctherm_resume(struct device *dev) 2288 { 2289 struct platform_device *pdev = to_platform_device(dev); 2290 struct tegra_soctherm *tegra = platform_get_drvdata(pdev); 2291 struct tegra_soctherm_soc *soc = tegra->soc; 2292 int err, i; 2293 2294 err = soctherm_clk_enable(pdev, true); 2295 if (err) { 2296 dev_err(&pdev->dev, 2297 "Resume failed: enable clocks failed\n"); 2298 return err; 2299 } 2300 2301 soctherm_init(pdev); 2302 2303 for (i = 0; i < soc->num_ttgs; ++i) { 2304 struct thermal_zone_device *tz; 2305 2306 tz = tegra->thermctl_tzs[soc->ttgs[i]->id]; 2307 err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz); 2308 if (err) { 2309 dev_err(&pdev->dev, 2310 "Resume failed: set hwtrips failed\n"); 2311 return err; 2312 } 2313 } 2314 2315 return 0; 2316 } 2317 2318 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume); 2319 2320 static struct platform_driver tegra_soctherm_driver = { 2321 .probe = tegra_soctherm_probe, 2322 .remove = tegra_soctherm_remove, 2323 .driver = { 2324 .name = "tegra_soctherm", 2325 .pm = &tegra_soctherm_pm, 2326 .of_match_table = tegra_soctherm_of_match, 2327 }, 2328 }; 2329 module_platform_driver(tegra_soctherm_driver); 2330 2331 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); 2332 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver"); 2333 MODULE_LICENSE("GPL v2"); 2334