xref: /openbmc/linux/drivers/thermal/tegra/soctherm.c (revision 0c7beb2d)
1 /*
2  * Copyright (c) 2014, NVIDIA CORPORATION.  All rights reserved.
3  *
4  * Author:
5  *	Mikko Perttunen <mperttunen@nvidia.com>
6  *
7  * This software is licensed under the terms of the GNU General Public
8  * License version 2, as published by the Free Software Foundation, and
9  * may be copied, distributed, and modified under those terms.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  */
17 
18 #include <linux/debugfs.h>
19 #include <linux/bitops.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/io.h>
25 #include <linux/module.h>
26 #include <linux/of.h>
27 #include <linux/platform_device.h>
28 #include <linux/reset.h>
29 #include <linux/thermal.h>
30 
31 #include <dt-bindings/thermal/tegra124-soctherm.h>
32 
33 #include "../thermal_core.h"
34 #include "soctherm.h"
35 
36 #define SENSOR_CONFIG0				0
37 #define SENSOR_CONFIG0_STOP			BIT(0)
38 #define SENSOR_CONFIG0_CPTR_OVER		BIT(2)
39 #define SENSOR_CONFIG0_OVER			BIT(3)
40 #define SENSOR_CONFIG0_TCALC_OVER		BIT(4)
41 #define SENSOR_CONFIG0_TALL_MASK		(0xfffff << 8)
42 #define SENSOR_CONFIG0_TALL_SHIFT		8
43 
44 #define SENSOR_CONFIG1				4
45 #define SENSOR_CONFIG1_TSAMPLE_MASK		0x3ff
46 #define SENSOR_CONFIG1_TSAMPLE_SHIFT		0
47 #define SENSOR_CONFIG1_TIDDQ_EN_MASK		(0x3f << 15)
48 #define SENSOR_CONFIG1_TIDDQ_EN_SHIFT		15
49 #define SENSOR_CONFIG1_TEN_COUNT_MASK		(0x3f << 24)
50 #define SENSOR_CONFIG1_TEN_COUNT_SHIFT		24
51 #define SENSOR_CONFIG1_TEMP_ENABLE		BIT(31)
52 
53 /*
54  * SENSOR_CONFIG2 is defined in soctherm.h
55  * because, it will be used by tegra_soctherm_fuse.c
56  */
57 
58 #define SENSOR_STATUS0				0xc
59 #define SENSOR_STATUS0_VALID_MASK		BIT(31)
60 #define SENSOR_STATUS0_CAPTURE_MASK		0xffff
61 
62 #define SENSOR_STATUS1				0x10
63 #define SENSOR_STATUS1_TEMP_VALID_MASK		BIT(31)
64 #define SENSOR_STATUS1_TEMP_MASK		0xffff
65 
66 #define READBACK_VALUE_MASK			0xff00
67 #define READBACK_VALUE_SHIFT			8
68 #define READBACK_ADD_HALF			BIT(7)
69 #define READBACK_NEGATE				BIT(0)
70 
71 /*
72  * THERMCTL_LEVEL0_GROUP_CPU is defined in soctherm.h
73  * because it will be used by tegraxxx_soctherm.c
74  */
75 #define THERMCTL_LVL0_CPU0_EN_MASK		BIT(8)
76 #define THERMCTL_LVL0_CPU0_CPU_THROT_MASK	(0x3 << 5)
77 #define THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT	0x1
78 #define THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY	0x2
79 #define THERMCTL_LVL0_CPU0_GPU_THROT_MASK	(0x3 << 3)
80 #define THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT	0x1
81 #define THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY	0x2
82 #define THERMCTL_LVL0_CPU0_MEM_THROT_MASK	BIT(2)
83 #define THERMCTL_LVL0_CPU0_STATUS_MASK		0x3
84 
85 #define THERMCTL_LVL0_UP_STATS			0x10
86 #define THERMCTL_LVL0_DN_STATS			0x14
87 
88 #define THERMCTL_STATS_CTL			0x94
89 #define STATS_CTL_CLR_DN			0x8
90 #define STATS_CTL_EN_DN				0x4
91 #define STATS_CTL_CLR_UP			0x2
92 #define STATS_CTL_EN_UP				0x1
93 
94 #define THROT_GLOBAL_CFG			0x400
95 #define THROT_GLOBAL_ENB_MASK			BIT(0)
96 
97 #define CPU_PSKIP_STATUS			0x418
98 #define XPU_PSKIP_STATUS_M_MASK			(0xff << 12)
99 #define XPU_PSKIP_STATUS_N_MASK			(0xff << 4)
100 #define XPU_PSKIP_STATUS_SW_OVERRIDE_MASK	BIT(1)
101 #define XPU_PSKIP_STATUS_ENABLED_MASK		BIT(0)
102 
103 #define THROT_PRIORITY_LOCK			0x424
104 #define THROT_PRIORITY_LOCK_PRIORITY_MASK	0xff
105 
106 #define THROT_STATUS				0x428
107 #define THROT_STATUS_BREACH_MASK		BIT(12)
108 #define THROT_STATUS_STATE_MASK			(0xff << 4)
109 #define THROT_STATUS_ENABLED_MASK		BIT(0)
110 
111 #define THROT_PSKIP_CTRL_LITE_CPU		0x430
112 #define THROT_PSKIP_CTRL_ENABLE_MASK            BIT(31)
113 #define THROT_PSKIP_CTRL_DIVIDEND_MASK          (0xff << 8)
114 #define THROT_PSKIP_CTRL_DIVISOR_MASK           0xff
115 #define THROT_PSKIP_CTRL_VECT_GPU_MASK          (0x7 << 16)
116 #define THROT_PSKIP_CTRL_VECT_CPU_MASK          (0x7 << 8)
117 #define THROT_PSKIP_CTRL_VECT2_CPU_MASK         0x7
118 
119 #define THROT_VECT_NONE				0x0 /* 3'b000 */
120 #define THROT_VECT_LOW				0x1 /* 3'b001 */
121 #define THROT_VECT_MED				0x3 /* 3'b011 */
122 #define THROT_VECT_HIGH				0x7 /* 3'b111 */
123 
124 #define THROT_PSKIP_RAMP_LITE_CPU		0x434
125 #define THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
126 #define THROT_PSKIP_RAMP_DURATION_MASK		(0xffff << 8)
127 #define THROT_PSKIP_RAMP_STEP_MASK		0xff
128 
129 #define THROT_PRIORITY_LITE			0x444
130 #define THROT_PRIORITY_LITE_PRIO_MASK		0xff
131 
132 #define THROT_DELAY_LITE			0x448
133 #define THROT_DELAY_LITE_DELAY_MASK		0xff
134 
135 /* car register offsets needed for enabling HW throttling */
136 #define CAR_SUPER_CCLKG_DIVIDER			0x36c
137 #define CDIVG_USE_THERM_CONTROLS_MASK		BIT(30)
138 
139 /* ccroc register offsets needed for enabling HW throttling for Tegra132 */
140 #define CCROC_SUPER_CCLKG_DIVIDER		0x024
141 
142 #define CCROC_GLOBAL_CFG			0x148
143 
144 #define CCROC_THROT_PSKIP_RAMP_CPU		0x150
145 #define CCROC_THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK	BIT(31)
146 #define CCROC_THROT_PSKIP_RAMP_DURATION_MASK	(0xffff << 8)
147 #define CCROC_THROT_PSKIP_RAMP_STEP_MASK	0xff
148 
149 #define CCROC_THROT_PSKIP_CTRL_CPU		0x154
150 #define CCROC_THROT_PSKIP_CTRL_ENB_MASK		BIT(31)
151 #define CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK	(0xff << 8)
152 #define CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK	0xff
153 
154 /* get val from register(r) mask bits(m) */
155 #define REG_GET_MASK(r, m)	(((r) & (m)) >> (ffs(m) - 1))
156 /* set val(v) to mask bits(m) of register(r) */
157 #define REG_SET_MASK(r, m, v)	(((r) & ~(m)) | \
158 				 (((v) & (m >> (ffs(m) - 1))) << (ffs(m) - 1)))
159 
160 /* get dividend from the depth */
161 #define THROT_DEPTH_DIVIDEND(depth)	((256 * (100 - (depth)) / 100) - 1)
162 
163 /* get THROT_PSKIP_xxx offset per LIGHT/HEAVY throt and CPU/GPU dev */
164 #define THROT_OFFSET			0x30
165 #define THROT_PSKIP_CTRL(throt, dev)	(THROT_PSKIP_CTRL_LITE_CPU + \
166 					(THROT_OFFSET * throt) + (8 * dev))
167 #define THROT_PSKIP_RAMP(throt, dev)	(THROT_PSKIP_RAMP_LITE_CPU + \
168 					(THROT_OFFSET * throt) + (8 * dev))
169 
170 /* get THROT_xxx_CTRL offset per LIGHT/HEAVY throt */
171 #define THROT_PRIORITY_CTRL(throt)	(THROT_PRIORITY_LITE + \
172 					(THROT_OFFSET * throt))
173 #define THROT_DELAY_CTRL(throt)		(THROT_DELAY_LITE + \
174 					(THROT_OFFSET * throt))
175 
176 /* get CCROC_THROT_PSKIP_xxx offset per HIGH/MED/LOW vect*/
177 #define CCROC_THROT_OFFSET			0x0c
178 #define CCROC_THROT_PSKIP_CTRL_CPU_REG(vect)    (CCROC_THROT_PSKIP_CTRL_CPU + \
179 						(CCROC_THROT_OFFSET * vect))
180 #define CCROC_THROT_PSKIP_RAMP_CPU_REG(vect)    (CCROC_THROT_PSKIP_RAMP_CPU + \
181 						(CCROC_THROT_OFFSET * vect))
182 
183 /* get THERMCTL_LEVELx offset per CPU/GPU/MEM/TSENSE rg and LEVEL0~3 lv */
184 #define THERMCTL_LVL_REGS_SIZE		0x20
185 #define THERMCTL_LVL_REG(rg, lv)	((rg) + ((lv) * THERMCTL_LVL_REGS_SIZE))
186 
187 static const int min_low_temp = -127000;
188 static const int max_high_temp = 127000;
189 
190 enum soctherm_throttle_id {
191 	THROTTLE_LIGHT = 0,
192 	THROTTLE_HEAVY,
193 	THROTTLE_SIZE,
194 };
195 
196 enum soctherm_throttle_dev_id {
197 	THROTTLE_DEV_CPU = 0,
198 	THROTTLE_DEV_GPU,
199 	THROTTLE_DEV_SIZE,
200 };
201 
202 static const char *const throt_names[] = {
203 	[THROTTLE_LIGHT] = "light",
204 	[THROTTLE_HEAVY] = "heavy",
205 };
206 
207 struct tegra_soctherm;
208 struct tegra_thermctl_zone {
209 	void __iomem *reg;
210 	struct device *dev;
211 	struct tegra_soctherm *ts;
212 	struct thermal_zone_device *tz;
213 	const struct tegra_tsensor_group *sg;
214 };
215 
216 struct soctherm_throt_cfg {
217 	const char *name;
218 	unsigned int id;
219 	u8 priority;
220 	u8 cpu_throt_level;
221 	u32 cpu_throt_depth;
222 	struct thermal_cooling_device *cdev;
223 	bool init;
224 };
225 
226 struct tegra_soctherm {
227 	struct reset_control *reset;
228 	struct clk *clock_tsensor;
229 	struct clk *clock_soctherm;
230 	void __iomem *regs;
231 	void __iomem *clk_regs;
232 	void __iomem *ccroc_regs;
233 
234 	u32 *calib;
235 	struct thermal_zone_device **thermctl_tzs;
236 	struct tegra_soctherm_soc *soc;
237 
238 	struct soctherm_throt_cfg throt_cfgs[THROTTLE_SIZE];
239 
240 	struct dentry *debugfs_dir;
241 };
242 
243 /**
244  * ccroc_writel() - writes a value to a CCROC register
245  * @ts: pointer to a struct tegra_soctherm
246  * @v: the value to write
247  * @reg: the register offset
248  *
249  * Writes @v to @reg.  No return value.
250  */
251 static inline void ccroc_writel(struct tegra_soctherm *ts, u32 value, u32 reg)
252 {
253 	writel(value, (ts->ccroc_regs + reg));
254 }
255 
256 /**
257  * ccroc_readl() - reads specified register from CCROC IP block
258  * @ts: pointer to a struct tegra_soctherm
259  * @reg: register address to be read
260  *
261  * Return: the value of the register
262  */
263 static inline u32 ccroc_readl(struct tegra_soctherm *ts, u32 reg)
264 {
265 	return readl(ts->ccroc_regs + reg);
266 }
267 
268 static void enable_tsensor(struct tegra_soctherm *tegra, unsigned int i)
269 {
270 	const struct tegra_tsensor *sensor = &tegra->soc->tsensors[i];
271 	void __iomem *base = tegra->regs + sensor->base;
272 	unsigned int val;
273 
274 	val = sensor->config->tall << SENSOR_CONFIG0_TALL_SHIFT;
275 	writel(val, base + SENSOR_CONFIG0);
276 
277 	val  = (sensor->config->tsample - 1) << SENSOR_CONFIG1_TSAMPLE_SHIFT;
278 	val |= sensor->config->tiddq_en << SENSOR_CONFIG1_TIDDQ_EN_SHIFT;
279 	val |= sensor->config->ten_count << SENSOR_CONFIG1_TEN_COUNT_SHIFT;
280 	val |= SENSOR_CONFIG1_TEMP_ENABLE;
281 	writel(val, base + SENSOR_CONFIG1);
282 
283 	writel(tegra->calib[i], base + SENSOR_CONFIG2);
284 }
285 
286 /*
287  * Translate from soctherm readback format to millicelsius.
288  * The soctherm readback format in bits is as follows:
289  *   TTTTTTTT H______N
290  * where T's contain the temperature in Celsius,
291  * H denotes an addition of 0.5 Celsius and N denotes negation
292  * of the final value.
293  */
294 static int translate_temp(u16 val)
295 {
296 	int t;
297 
298 	t = ((val & READBACK_VALUE_MASK) >> READBACK_VALUE_SHIFT) * 1000;
299 	if (val & READBACK_ADD_HALF)
300 		t += 500;
301 	if (val & READBACK_NEGATE)
302 		t *= -1;
303 
304 	return t;
305 }
306 
307 static int tegra_thermctl_get_temp(void *data, int *out_temp)
308 {
309 	struct tegra_thermctl_zone *zone = data;
310 	u32 val;
311 
312 	val = readl(zone->reg);
313 	val = REG_GET_MASK(val, zone->sg->sensor_temp_mask);
314 	*out_temp = translate_temp(val);
315 
316 	return 0;
317 }
318 
319 /**
320  * enforce_temp_range() - check and enforce temperature range [min, max]
321  * @trip_temp: the trip temperature to check
322  *
323  * Checks and enforces the permitted temperature range that SOC_THERM
324  * HW can support This is
325  * done while taking care of precision.
326  *
327  * Return: The precision adjusted capped temperature in millicelsius.
328  */
329 static int enforce_temp_range(struct device *dev, int trip_temp)
330 {
331 	int temp;
332 
333 	temp = clamp_val(trip_temp, min_low_temp, max_high_temp);
334 	if (temp != trip_temp)
335 		dev_info(dev, "soctherm: trip temperature %d forced to %d\n",
336 			 trip_temp, temp);
337 	return temp;
338 }
339 
340 /**
341  * thermtrip_program() - Configures the hardware to shut down the
342  * system if a given sensor group reaches a given temperature
343  * @dev: ptr to the struct device for the SOC_THERM IP block
344  * @sg: pointer to the sensor group to set the thermtrip temperature for
345  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
346  *
347  * Sets the thermal trip threshold of the given sensor group to be the
348  * @trip_temp.  If this threshold is crossed, the hardware will shut
349  * down.
350  *
351  * Note that, although @trip_temp is specified in millicelsius, the
352  * hardware is programmed in degrees Celsius.
353  *
354  * Return: 0 upon success, or %-EINVAL upon failure.
355  */
356 static int thermtrip_program(struct device *dev,
357 			     const struct tegra_tsensor_group *sg,
358 			     int trip_temp)
359 {
360 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
361 	int temp;
362 	u32 r;
363 
364 	if (!sg || !sg->thermtrip_threshold_mask)
365 		return -EINVAL;
366 
367 	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
368 
369 	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
370 	r = REG_SET_MASK(r, sg->thermtrip_threshold_mask, temp);
371 	r = REG_SET_MASK(r, sg->thermtrip_enable_mask, 1);
372 	r = REG_SET_MASK(r, sg->thermtrip_any_en_mask, 0);
373 	writel(r, ts->regs + THERMCTL_THERMTRIP_CTL);
374 
375 	return 0;
376 }
377 
378 /**
379  * throttrip_program() - Configures the hardware to throttle the
380  * pulse if a given sensor group reaches a given temperature
381  * @dev: ptr to the struct device for the SOC_THERM IP block
382  * @sg: pointer to the sensor group to set the thermtrip temperature for
383  * @stc: pointer to the throttle need to be triggered
384  * @trip_temp: the temperature in millicelsius to trigger the thermal trip at
385  *
386  * Sets the thermal trip threshold and throttle event of the given sensor
387  * group. If this threshold is crossed, the hardware will trigger the
388  * throttle.
389  *
390  * Note that, although @trip_temp is specified in millicelsius, the
391  * hardware is programmed in degrees Celsius.
392  *
393  * Return: 0 upon success, or %-EINVAL upon failure.
394  */
395 static int throttrip_program(struct device *dev,
396 			     const struct tegra_tsensor_group *sg,
397 			     struct soctherm_throt_cfg *stc,
398 			     int trip_temp)
399 {
400 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
401 	int temp, cpu_throt, gpu_throt;
402 	unsigned int throt;
403 	u32 r, reg_off;
404 
405 	if (!sg || !stc || !stc->init)
406 		return -EINVAL;
407 
408 	temp = enforce_temp_range(dev, trip_temp) / ts->soc->thresh_grain;
409 
410 	/* Hardcode LIGHT on LEVEL1 and HEAVY on LEVEL2 */
411 	throt = stc->id;
412 	reg_off = THERMCTL_LVL_REG(sg->thermctl_lvl0_offset, throt + 1);
413 
414 	if (throt == THROTTLE_LIGHT) {
415 		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT;
416 		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT;
417 	} else {
418 		cpu_throt = THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY;
419 		gpu_throt = THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY;
420 		if (throt != THROTTLE_HEAVY)
421 			dev_warn(dev,
422 				 "invalid throt id %d - assuming HEAVY",
423 				 throt);
424 	}
425 
426 	r = readl(ts->regs + reg_off);
427 	r = REG_SET_MASK(r, sg->thermctl_lvl0_up_thresh_mask, temp);
428 	r = REG_SET_MASK(r, sg->thermctl_lvl0_dn_thresh_mask, temp);
429 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_CPU_THROT_MASK, cpu_throt);
430 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_GPU_THROT_MASK, gpu_throt);
431 	r = REG_SET_MASK(r, THERMCTL_LVL0_CPU0_EN_MASK, 1);
432 	writel(r, ts->regs + reg_off);
433 
434 	return 0;
435 }
436 
437 static struct soctherm_throt_cfg *
438 find_throttle_cfg_by_name(struct tegra_soctherm *ts, const char *name)
439 {
440 	unsigned int i;
441 
442 	for (i = 0; ts->throt_cfgs[i].name; i++)
443 		if (!strcmp(ts->throt_cfgs[i].name, name))
444 			return &ts->throt_cfgs[i];
445 
446 	return NULL;
447 }
448 
449 static int tegra_thermctl_set_trip_temp(void *data, int trip, int temp)
450 {
451 	struct tegra_thermctl_zone *zone = data;
452 	struct thermal_zone_device *tz = zone->tz;
453 	struct tegra_soctherm *ts = zone->ts;
454 	const struct tegra_tsensor_group *sg = zone->sg;
455 	struct device *dev = zone->dev;
456 	enum thermal_trip_type type;
457 	int ret;
458 
459 	if (!tz)
460 		return -EINVAL;
461 
462 	ret = tz->ops->get_trip_type(tz, trip, &type);
463 	if (ret)
464 		return ret;
465 
466 	if (type == THERMAL_TRIP_CRITICAL) {
467 		return thermtrip_program(dev, sg, temp);
468 	} else if (type == THERMAL_TRIP_HOT) {
469 		int i;
470 
471 		for (i = 0; i < THROTTLE_SIZE; i++) {
472 			struct thermal_cooling_device *cdev;
473 			struct soctherm_throt_cfg *stc;
474 
475 			if (!ts->throt_cfgs[i].init)
476 				continue;
477 
478 			cdev = ts->throt_cfgs[i].cdev;
479 			if (get_thermal_instance(tz, cdev, trip))
480 				stc = find_throttle_cfg_by_name(ts, cdev->type);
481 			else
482 				continue;
483 
484 			return throttrip_program(dev, sg, stc, temp);
485 		}
486 	}
487 
488 	return 0;
489 }
490 
491 static int tegra_thermctl_get_trend(void *data, int trip,
492 				    enum thermal_trend *trend)
493 {
494 	struct tegra_thermctl_zone *zone = data;
495 	struct thermal_zone_device *tz = zone->tz;
496 	int trip_temp, temp, last_temp, ret;
497 
498 	if (!tz)
499 		return -EINVAL;
500 
501 	ret = tz->ops->get_trip_temp(zone->tz, trip, &trip_temp);
502 	if (ret)
503 		return ret;
504 
505 	temp = READ_ONCE(tz->temperature);
506 	last_temp = READ_ONCE(tz->last_temperature);
507 
508 	if (temp > trip_temp) {
509 		if (temp >= last_temp)
510 			*trend = THERMAL_TREND_RAISING;
511 		else
512 			*trend = THERMAL_TREND_STABLE;
513 	} else if (temp < trip_temp) {
514 		*trend = THERMAL_TREND_DROPPING;
515 	} else {
516 		*trend = THERMAL_TREND_STABLE;
517 	}
518 
519 	return 0;
520 }
521 
522 static const struct thermal_zone_of_device_ops tegra_of_thermal_ops = {
523 	.get_temp = tegra_thermctl_get_temp,
524 	.set_trip_temp = tegra_thermctl_set_trip_temp,
525 	.get_trend = tegra_thermctl_get_trend,
526 };
527 
528 static int get_hot_temp(struct thermal_zone_device *tz, int *trip, int *temp)
529 {
530 	int ntrips, i, ret;
531 	enum thermal_trip_type type;
532 
533 	ntrips = of_thermal_get_ntrips(tz);
534 	if (ntrips <= 0)
535 		return -EINVAL;
536 
537 	for (i = 0; i < ntrips; i++) {
538 		ret = tz->ops->get_trip_type(tz, i, &type);
539 		if (ret)
540 			return -EINVAL;
541 		if (type == THERMAL_TRIP_HOT) {
542 			ret = tz->ops->get_trip_temp(tz, i, temp);
543 			if (!ret)
544 				*trip = i;
545 
546 			return ret;
547 		}
548 	}
549 
550 	return -EINVAL;
551 }
552 
553 /**
554  * tegra_soctherm_set_hwtrips() - set HW trip point from DT data
555  * @dev: struct device * of the SOC_THERM instance
556  *
557  * Configure the SOC_THERM HW trip points, setting "THERMTRIP"
558  * "THROTTLE" trip points , using "critical" or "hot" type trip_temp
559  * from thermal zone.
560  * After they have been configured, THERMTRIP or THROTTLE will take
561  * action when the configured SoC thermal sensor group reaches a
562  * certain temperature.
563  *
564  * Return: 0 upon success, or a negative error code on failure.
565  * "Success" does not mean that trips was enabled; it could also
566  * mean that no node was found in DT.
567  * THERMTRIP has been enabled successfully when a message similar to
568  * this one appears on the serial console:
569  * "thermtrip: will shut down when sensor group XXX reaches YYYYYY mC"
570  * THROTTLE has been enabled successfully when a message similar to
571  * this one appears on the serial console:
572  * ""throttrip: will throttle when sensor group XXX reaches YYYYYY mC"
573  */
574 static int tegra_soctherm_set_hwtrips(struct device *dev,
575 				      const struct tegra_tsensor_group *sg,
576 				      struct thermal_zone_device *tz)
577 {
578 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
579 	struct soctherm_throt_cfg *stc;
580 	int i, trip, temperature;
581 	int ret;
582 
583 	ret = tz->ops->get_crit_temp(tz, &temperature);
584 	if (ret) {
585 		dev_warn(dev, "thermtrip: %s: missing critical temperature\n",
586 			 sg->name);
587 		goto set_throttle;
588 	}
589 
590 	ret = thermtrip_program(dev, sg, temperature);
591 	if (ret) {
592 		dev_err(dev, "thermtrip: %s: error during enable\n",
593 			sg->name);
594 		return ret;
595 	}
596 
597 	dev_info(dev,
598 		 "thermtrip: will shut down when %s reaches %d mC\n",
599 		 sg->name, temperature);
600 
601 set_throttle:
602 	ret = get_hot_temp(tz, &trip, &temperature);
603 	if (ret) {
604 		dev_info(dev, "throttrip: %s: missing hot temperature\n",
605 			 sg->name);
606 		return 0;
607 	}
608 
609 	for (i = 0; i < THROTTLE_SIZE; i++) {
610 		struct thermal_cooling_device *cdev;
611 
612 		if (!ts->throt_cfgs[i].init)
613 			continue;
614 
615 		cdev = ts->throt_cfgs[i].cdev;
616 		if (get_thermal_instance(tz, cdev, trip))
617 			stc = find_throttle_cfg_by_name(ts, cdev->type);
618 		else
619 			continue;
620 
621 		ret = throttrip_program(dev, sg, stc, temperature);
622 		if (ret) {
623 			dev_err(dev, "throttrip: %s: error during enable\n",
624 				sg->name);
625 			return ret;
626 		}
627 
628 		dev_info(dev,
629 			 "throttrip: will throttle when %s reaches %d mC\n",
630 			 sg->name, temperature);
631 		break;
632 	}
633 
634 	if (i == THROTTLE_SIZE)
635 		dev_info(dev, "throttrip: %s: missing throttle cdev\n",
636 			 sg->name);
637 
638 	return 0;
639 }
640 
641 #ifdef CONFIG_DEBUG_FS
642 static int regs_show(struct seq_file *s, void *data)
643 {
644 	struct platform_device *pdev = s->private;
645 	struct tegra_soctherm *ts = platform_get_drvdata(pdev);
646 	const struct tegra_tsensor *tsensors = ts->soc->tsensors;
647 	const struct tegra_tsensor_group **ttgs = ts->soc->ttgs;
648 	u32 r, state;
649 	int i, level;
650 
651 	seq_puts(s, "-----TSENSE (convert HW)-----\n");
652 
653 	for (i = 0; i < ts->soc->num_tsensors; i++) {
654 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG1);
655 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEMP_ENABLE);
656 
657 		seq_printf(s, "%s: ", tsensors[i].name);
658 		seq_printf(s, "En(%d) ", state);
659 
660 		if (!state) {
661 			seq_puts(s, "\n");
662 			continue;
663 		}
664 
665 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TIDDQ_EN_MASK);
666 		seq_printf(s, "tiddq(%d) ", state);
667 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TEN_COUNT_MASK);
668 		seq_printf(s, "ten_count(%d) ", state);
669 		state = REG_GET_MASK(r, SENSOR_CONFIG1_TSAMPLE_MASK);
670 		seq_printf(s, "tsample(%d) ", state + 1);
671 
672 		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS1);
673 		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_VALID_MASK);
674 		seq_printf(s, "Temp(%d/", state);
675 		state = REG_GET_MASK(r, SENSOR_STATUS1_TEMP_MASK);
676 		seq_printf(s, "%d) ", translate_temp(state));
677 
678 		r = readl(ts->regs + tsensors[i].base + SENSOR_STATUS0);
679 		state = REG_GET_MASK(r, SENSOR_STATUS0_VALID_MASK);
680 		seq_printf(s, "Capture(%d/", state);
681 		state = REG_GET_MASK(r, SENSOR_STATUS0_CAPTURE_MASK);
682 		seq_printf(s, "%d) ", state);
683 
684 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG0);
685 		state = REG_GET_MASK(r, SENSOR_CONFIG0_STOP);
686 		seq_printf(s, "Stop(%d) ", state);
687 		state = REG_GET_MASK(r, SENSOR_CONFIG0_TALL_MASK);
688 		seq_printf(s, "Tall(%d) ", state);
689 		state = REG_GET_MASK(r, SENSOR_CONFIG0_TCALC_OVER);
690 		seq_printf(s, "Over(%d/", state);
691 		state = REG_GET_MASK(r, SENSOR_CONFIG0_OVER);
692 		seq_printf(s, "%d/", state);
693 		state = REG_GET_MASK(r, SENSOR_CONFIG0_CPTR_OVER);
694 		seq_printf(s, "%d) ", state);
695 
696 		r = readl(ts->regs + tsensors[i].base + SENSOR_CONFIG2);
697 		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMA_MASK);
698 		seq_printf(s, "Therm_A/B(%d/", state);
699 		state = REG_GET_MASK(r, SENSOR_CONFIG2_THERMB_MASK);
700 		seq_printf(s, "%d)\n", (s16)state);
701 	}
702 
703 	r = readl(ts->regs + SENSOR_PDIV);
704 	seq_printf(s, "PDIV: 0x%x\n", r);
705 
706 	r = readl(ts->regs + SENSOR_HOTSPOT_OFF);
707 	seq_printf(s, "HOTSPOT: 0x%x\n", r);
708 
709 	seq_puts(s, "\n");
710 	seq_puts(s, "-----SOC_THERM-----\n");
711 
712 	r = readl(ts->regs + SENSOR_TEMP1);
713 	state = REG_GET_MASK(r, SENSOR_TEMP1_CPU_TEMP_MASK);
714 	seq_printf(s, "Temperatures: CPU(%d) ", translate_temp(state));
715 	state = REG_GET_MASK(r, SENSOR_TEMP1_GPU_TEMP_MASK);
716 	seq_printf(s, " GPU(%d) ", translate_temp(state));
717 	r = readl(ts->regs + SENSOR_TEMP2);
718 	state = REG_GET_MASK(r, SENSOR_TEMP2_PLLX_TEMP_MASK);
719 	seq_printf(s, " PLLX(%d) ", translate_temp(state));
720 	state = REG_GET_MASK(r, SENSOR_TEMP2_MEM_TEMP_MASK);
721 	seq_printf(s, " MEM(%d)\n", translate_temp(state));
722 
723 	for (i = 0; i < ts->soc->num_ttgs; i++) {
724 		seq_printf(s, "%s:\n", ttgs[i]->name);
725 		for (level = 0; level < 4; level++) {
726 			s32 v;
727 			u32 mask;
728 			u16 off = ttgs[i]->thermctl_lvl0_offset;
729 
730 			r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
731 
732 			mask = ttgs[i]->thermctl_lvl0_up_thresh_mask;
733 			state = REG_GET_MASK(r, mask);
734 			v = sign_extend32(state, ts->soc->bptt - 1);
735 			v *= ts->soc->thresh_grain;
736 			seq_printf(s, "   %d: Up/Dn(%d /", level, v);
737 
738 			mask = ttgs[i]->thermctl_lvl0_dn_thresh_mask;
739 			state = REG_GET_MASK(r, mask);
740 			v = sign_extend32(state, ts->soc->bptt - 1);
741 			v *= ts->soc->thresh_grain;
742 			seq_printf(s, "%d ) ", v);
743 
744 			mask = THERMCTL_LVL0_CPU0_EN_MASK;
745 			state = REG_GET_MASK(r, mask);
746 			seq_printf(s, "En(%d) ", state);
747 
748 			mask = THERMCTL_LVL0_CPU0_CPU_THROT_MASK;
749 			state = REG_GET_MASK(r, mask);
750 			seq_puts(s, "CPU Throt");
751 			if (!state)
752 				seq_printf(s, "(%s) ", "none");
753 			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_LIGHT)
754 				seq_printf(s, "(%s) ", "L");
755 			else if (state == THERMCTL_LVL0_CPU0_CPU_THROT_HEAVY)
756 				seq_printf(s, "(%s) ", "H");
757 			else
758 				seq_printf(s, "(%s) ", "H+L");
759 
760 			mask = THERMCTL_LVL0_CPU0_GPU_THROT_MASK;
761 			state = REG_GET_MASK(r, mask);
762 			seq_puts(s, "GPU Throt");
763 			if (!state)
764 				seq_printf(s, "(%s) ", "none");
765 			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_LIGHT)
766 				seq_printf(s, "(%s) ", "L");
767 			else if (state == THERMCTL_LVL0_CPU0_GPU_THROT_HEAVY)
768 				seq_printf(s, "(%s) ", "H");
769 			else
770 				seq_printf(s, "(%s) ", "H+L");
771 
772 			mask = THERMCTL_LVL0_CPU0_STATUS_MASK;
773 			state = REG_GET_MASK(r, mask);
774 			seq_printf(s, "Status(%s)\n",
775 				   state == 0 ? "LO" :
776 				   state == 1 ? "In" :
777 				   state == 2 ? "Res" : "HI");
778 		}
779 	}
780 
781 	r = readl(ts->regs + THERMCTL_STATS_CTL);
782 	seq_printf(s, "STATS: Up(%s) Dn(%s)\n",
783 		   r & STATS_CTL_EN_UP ? "En" : "--",
784 		   r & STATS_CTL_EN_DN ? "En" : "--");
785 
786 	for (level = 0; level < 4; level++) {
787 		u16 off;
788 
789 		off = THERMCTL_LVL0_UP_STATS;
790 		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
791 		seq_printf(s, "  Level_%d Up(%d) ", level, r);
792 
793 		off = THERMCTL_LVL0_DN_STATS;
794 		r = readl(ts->regs + THERMCTL_LVL_REG(off, level));
795 		seq_printf(s, "Dn(%d)\n", r);
796 	}
797 
798 	r = readl(ts->regs + THERMCTL_THERMTRIP_CTL);
799 	state = REG_GET_MASK(r, ttgs[0]->thermtrip_any_en_mask);
800 	seq_printf(s, "Thermtrip Any En(%d)\n", state);
801 	for (i = 0; i < ts->soc->num_ttgs; i++) {
802 		state = REG_GET_MASK(r, ttgs[i]->thermtrip_enable_mask);
803 		seq_printf(s, "     %s En(%d) ", ttgs[i]->name, state);
804 		state = REG_GET_MASK(r, ttgs[i]->thermtrip_threshold_mask);
805 		state *= ts->soc->thresh_grain;
806 		seq_printf(s, "Thresh(%d)\n", state);
807 	}
808 
809 	r = readl(ts->regs + THROT_GLOBAL_CFG);
810 	seq_puts(s, "\n");
811 	seq_printf(s, "GLOBAL THROTTLE CONFIG: 0x%08x\n", r);
812 
813 	seq_puts(s, "---------------------------------------------------\n");
814 	r = readl(ts->regs + THROT_STATUS);
815 	state = REG_GET_MASK(r, THROT_STATUS_BREACH_MASK);
816 	seq_printf(s, "THROT STATUS: breach(%d) ", state);
817 	state = REG_GET_MASK(r, THROT_STATUS_STATE_MASK);
818 	seq_printf(s, "state(%d) ", state);
819 	state = REG_GET_MASK(r, THROT_STATUS_ENABLED_MASK);
820 	seq_printf(s, "enabled(%d)\n", state);
821 
822 	r = readl(ts->regs + CPU_PSKIP_STATUS);
823 	if (ts->soc->use_ccroc) {
824 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
825 		seq_printf(s, "CPU PSKIP STATUS: enabled(%d)\n", state);
826 	} else {
827 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_M_MASK);
828 		seq_printf(s, "CPU PSKIP STATUS: M(%d) ", state);
829 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_N_MASK);
830 		seq_printf(s, "N(%d) ", state);
831 		state = REG_GET_MASK(r, XPU_PSKIP_STATUS_ENABLED_MASK);
832 		seq_printf(s, "enabled(%d)\n", state);
833 	}
834 
835 	return 0;
836 }
837 
838 DEFINE_SHOW_ATTRIBUTE(regs);
839 
840 static void soctherm_debug_init(struct platform_device *pdev)
841 {
842 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
843 	struct dentry *root, *file;
844 
845 	root = debugfs_create_dir("soctherm", NULL);
846 	if (!root) {
847 		dev_err(&pdev->dev, "failed to create debugfs directory\n");
848 		return;
849 	}
850 
851 	tegra->debugfs_dir = root;
852 
853 	file = debugfs_create_file("reg_contents", 0644, root,
854 				   pdev, &regs_fops);
855 	if (!file) {
856 		dev_err(&pdev->dev, "failed to create debugfs file\n");
857 		debugfs_remove_recursive(tegra->debugfs_dir);
858 		tegra->debugfs_dir = NULL;
859 	}
860 }
861 #else
862 static inline void soctherm_debug_init(struct platform_device *pdev) {}
863 #endif
864 
865 static int soctherm_clk_enable(struct platform_device *pdev, bool enable)
866 {
867 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
868 	int err;
869 
870 	if (!tegra->clock_soctherm || !tegra->clock_tsensor)
871 		return -EINVAL;
872 
873 	reset_control_assert(tegra->reset);
874 
875 	if (enable) {
876 		err = clk_prepare_enable(tegra->clock_soctherm);
877 		if (err) {
878 			reset_control_deassert(tegra->reset);
879 			return err;
880 		}
881 
882 		err = clk_prepare_enable(tegra->clock_tsensor);
883 		if (err) {
884 			clk_disable_unprepare(tegra->clock_soctherm);
885 			reset_control_deassert(tegra->reset);
886 			return err;
887 		}
888 	} else {
889 		clk_disable_unprepare(tegra->clock_tsensor);
890 		clk_disable_unprepare(tegra->clock_soctherm);
891 	}
892 
893 	reset_control_deassert(tegra->reset);
894 
895 	return 0;
896 }
897 
898 static int throt_get_cdev_max_state(struct thermal_cooling_device *cdev,
899 				    unsigned long *max_state)
900 {
901 	*max_state = 1;
902 	return 0;
903 }
904 
905 static int throt_get_cdev_cur_state(struct thermal_cooling_device *cdev,
906 				    unsigned long *cur_state)
907 {
908 	struct tegra_soctherm *ts = cdev->devdata;
909 	u32 r;
910 
911 	r = readl(ts->regs + THROT_STATUS);
912 	if (REG_GET_MASK(r, THROT_STATUS_STATE_MASK))
913 		*cur_state = 1;
914 	else
915 		*cur_state = 0;
916 
917 	return 0;
918 }
919 
920 static int throt_set_cdev_state(struct thermal_cooling_device *cdev,
921 				unsigned long cur_state)
922 {
923 	return 0;
924 }
925 
926 static const struct thermal_cooling_device_ops throt_cooling_ops = {
927 	.get_max_state = throt_get_cdev_max_state,
928 	.get_cur_state = throt_get_cdev_cur_state,
929 	.set_cur_state = throt_set_cdev_state,
930 };
931 
932 /**
933  * soctherm_init_hw_throt_cdev() - Parse the HW throttle configurations
934  * and register them as cooling devices.
935  */
936 static void soctherm_init_hw_throt_cdev(struct platform_device *pdev)
937 {
938 	struct device *dev = &pdev->dev;
939 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
940 	struct device_node *np_stc, *np_stcc;
941 	const char *name;
942 	u32 val;
943 	int i, r;
944 
945 	for (i = 0; i < THROTTLE_SIZE; i++) {
946 		ts->throt_cfgs[i].name = throt_names[i];
947 		ts->throt_cfgs[i].id = i;
948 		ts->throt_cfgs[i].init = false;
949 	}
950 
951 	np_stc = of_get_child_by_name(dev->of_node, "throttle-cfgs");
952 	if (!np_stc) {
953 		dev_info(dev,
954 			 "throttle-cfg: no throttle-cfgs - not enabling\n");
955 		return;
956 	}
957 
958 	for_each_child_of_node(np_stc, np_stcc) {
959 		struct soctherm_throt_cfg *stc;
960 		struct thermal_cooling_device *tcd;
961 
962 		name = np_stcc->name;
963 		stc = find_throttle_cfg_by_name(ts, name);
964 		if (!stc) {
965 			dev_err(dev,
966 				"throttle-cfg: could not find %s\n", name);
967 			continue;
968 		}
969 
970 		r = of_property_read_u32(np_stcc, "nvidia,priority", &val);
971 		if (r) {
972 			dev_info(dev,
973 				 "throttle-cfg: %s: missing priority\n", name);
974 			continue;
975 		}
976 		stc->priority = val;
977 
978 		if (ts->soc->use_ccroc) {
979 			r = of_property_read_u32(np_stcc,
980 						 "nvidia,cpu-throt-level",
981 						 &val);
982 			if (r) {
983 				dev_info(dev,
984 					 "throttle-cfg: %s: missing cpu-throt-level\n",
985 					 name);
986 				continue;
987 			}
988 			stc->cpu_throt_level = val;
989 		} else {
990 			r = of_property_read_u32(np_stcc,
991 						 "nvidia,cpu-throt-percent",
992 						 &val);
993 			if (r) {
994 				dev_info(dev,
995 					 "throttle-cfg: %s: missing cpu-throt-percent\n",
996 					 name);
997 				continue;
998 			}
999 			stc->cpu_throt_depth = val;
1000 		}
1001 
1002 		tcd = thermal_of_cooling_device_register(np_stcc,
1003 							 (char *)name, ts,
1004 							 &throt_cooling_ops);
1005 		of_node_put(np_stcc);
1006 		if (IS_ERR_OR_NULL(tcd)) {
1007 			dev_err(dev,
1008 				"throttle-cfg: %s: failed to register cooling device\n",
1009 				name);
1010 			continue;
1011 		}
1012 
1013 		stc->cdev = tcd;
1014 		stc->init = true;
1015 	}
1016 
1017 	of_node_put(np_stc);
1018 }
1019 
1020 /**
1021  * throttlectl_cpu_level_cfg() - programs CCROC NV_THERM level config
1022  * @level: describing the level LOW/MED/HIGH of throttling
1023  *
1024  * It's necessary to set up the CPU-local CCROC NV_THERM instance with
1025  * the M/N values desired for each level. This function does this.
1026  *
1027  * This function pre-programs the CCROC NV_THERM levels in terms of
1028  * pre-configured "Low", "Medium" or "Heavy" throttle levels which are
1029  * mapped to THROT_LEVEL_LOW, THROT_LEVEL_MED and THROT_LEVEL_HVY.
1030  */
1031 static void throttlectl_cpu_level_cfg(struct tegra_soctherm *ts, int level)
1032 {
1033 	u8 depth, dividend;
1034 	u32 r;
1035 
1036 	switch (level) {
1037 	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1038 		depth = 50;
1039 		break;
1040 	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1041 		depth = 75;
1042 		break;
1043 	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1044 		depth = 80;
1045 		break;
1046 	case TEGRA_SOCTHERM_THROT_LEVEL_NONE:
1047 		return;
1048 	default:
1049 		return;
1050 	}
1051 
1052 	dividend = THROT_DEPTH_DIVIDEND(depth);
1053 
1054 	/* setup PSKIP in ccroc nv_therm registers */
1055 	r = ccroc_readl(ts, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1056 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1057 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1058 	ccroc_writel(ts, r, CCROC_THROT_PSKIP_RAMP_CPU_REG(level));
1059 
1060 	r = ccroc_readl(ts, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1061 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_ENB_MASK, 1);
1062 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1063 	r = REG_SET_MASK(r, CCROC_THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1064 	ccroc_writel(ts, r, CCROC_THROT_PSKIP_CTRL_CPU_REG(level));
1065 }
1066 
1067 /**
1068  * throttlectl_cpu_level_select() - program CPU pulse skipper config
1069  * @throt: the LIGHT/HEAVY of throttle event id
1070  *
1071  * Pulse skippers are used to throttle clock frequencies.  This
1072  * function programs the pulse skippers based on @throt and platform
1073  * data.  This function is used on SoCs which have CPU-local pulse
1074  * skipper control, such as T13x. It programs soctherm's interface to
1075  * Denver:CCROC NV_THERM in terms of Low, Medium and HIGH throttling
1076  * vectors. PSKIP_BYPASS mode is set as required per HW spec.
1077  */
1078 static void throttlectl_cpu_level_select(struct tegra_soctherm *ts,
1079 					 enum soctherm_throttle_id throt)
1080 {
1081 	u32 r, throt_vect;
1082 
1083 	/* Denver:CCROC NV_THERM interface N:3 Mapping */
1084 	switch (ts->throt_cfgs[throt].cpu_throt_level) {
1085 	case TEGRA_SOCTHERM_THROT_LEVEL_LOW:
1086 		throt_vect = THROT_VECT_LOW;
1087 		break;
1088 	case TEGRA_SOCTHERM_THROT_LEVEL_MED:
1089 		throt_vect = THROT_VECT_MED;
1090 		break;
1091 	case TEGRA_SOCTHERM_THROT_LEVEL_HIGH:
1092 		throt_vect = THROT_VECT_HIGH;
1093 		break;
1094 	default:
1095 		throt_vect = THROT_VECT_NONE;
1096 		break;
1097 	}
1098 
1099 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1100 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1101 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT_CPU_MASK, throt_vect);
1102 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_VECT2_CPU_MASK, throt_vect);
1103 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1104 
1105 	/* bypass sequencer in soc_therm as it is programmed in ccroc */
1106 	r = REG_SET_MASK(0, THROT_PSKIP_RAMP_SEQ_BYPASS_MODE_MASK, 1);
1107 	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1108 }
1109 
1110 /**
1111  * throttlectl_cpu_mn() - program CPU pulse skipper configuration
1112  * @throt: the LIGHT/HEAVY of throttle event id
1113  *
1114  * Pulse skippers are used to throttle clock frequencies.  This
1115  * function programs the pulse skippers based on @throt and platform
1116  * data.  This function is used for CPUs that have "remote" pulse
1117  * skipper control, e.g., the CPU pulse skipper is controlled by the
1118  * SOC_THERM IP block.  (SOC_THERM is located outside the CPU
1119  * complex.)
1120  */
1121 static void throttlectl_cpu_mn(struct tegra_soctherm *ts,
1122 			       enum soctherm_throttle_id throt)
1123 {
1124 	u32 r;
1125 	int depth;
1126 	u8 dividend;
1127 
1128 	depth = ts->throt_cfgs[throt].cpu_throt_depth;
1129 	dividend = THROT_DEPTH_DIVIDEND(depth);
1130 
1131 	r = readl(ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1132 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_ENABLE_MASK, 1);
1133 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVIDEND_MASK, dividend);
1134 	r = REG_SET_MASK(r, THROT_PSKIP_CTRL_DIVISOR_MASK, 0xff);
1135 	writel(r, ts->regs + THROT_PSKIP_CTRL(throt, THROTTLE_DEV_CPU));
1136 
1137 	r = readl(ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1138 	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_DURATION_MASK, 0xff);
1139 	r = REG_SET_MASK(r, THROT_PSKIP_RAMP_STEP_MASK, 0xf);
1140 	writel(r, ts->regs + THROT_PSKIP_RAMP(throt, THROTTLE_DEV_CPU));
1141 }
1142 
1143 /**
1144  * soctherm_throttle_program() - programs pulse skippers' configuration
1145  * @throt: the LIGHT/HEAVY of the throttle event id.
1146  *
1147  * Pulse skippers are used to throttle clock frequencies.
1148  * This function programs the pulse skippers.
1149  */
1150 static void soctherm_throttle_program(struct tegra_soctherm *ts,
1151 				      enum soctherm_throttle_id throt)
1152 {
1153 	u32 r;
1154 	struct soctherm_throt_cfg stc = ts->throt_cfgs[throt];
1155 
1156 	if (!stc.init)
1157 		return;
1158 
1159 	/* Setup PSKIP parameters */
1160 	if (ts->soc->use_ccroc)
1161 		throttlectl_cpu_level_select(ts, throt);
1162 	else
1163 		throttlectl_cpu_mn(ts, throt);
1164 
1165 	r = REG_SET_MASK(0, THROT_PRIORITY_LITE_PRIO_MASK, stc.priority);
1166 	writel(r, ts->regs + THROT_PRIORITY_CTRL(throt));
1167 
1168 	r = REG_SET_MASK(0, THROT_DELAY_LITE_DELAY_MASK, 0);
1169 	writel(r, ts->regs + THROT_DELAY_CTRL(throt));
1170 
1171 	r = readl(ts->regs + THROT_PRIORITY_LOCK);
1172 	r = REG_GET_MASK(r, THROT_PRIORITY_LOCK_PRIORITY_MASK);
1173 	if (r >= stc.priority)
1174 		return;
1175 	r = REG_SET_MASK(0, THROT_PRIORITY_LOCK_PRIORITY_MASK,
1176 			 stc.priority);
1177 	writel(r, ts->regs + THROT_PRIORITY_LOCK);
1178 }
1179 
1180 static void tegra_soctherm_throttle(struct device *dev)
1181 {
1182 	struct tegra_soctherm *ts = dev_get_drvdata(dev);
1183 	u32 v;
1184 	int i;
1185 
1186 	/* configure LOW, MED and HIGH levels for CCROC NV_THERM */
1187 	if (ts->soc->use_ccroc) {
1188 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_LOW);
1189 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_MED);
1190 		throttlectl_cpu_level_cfg(ts, TEGRA_SOCTHERM_THROT_LEVEL_HIGH);
1191 	}
1192 
1193 	/* Thermal HW throttle programming */
1194 	for (i = 0; i < THROTTLE_SIZE; i++)
1195 		soctherm_throttle_program(ts, i);
1196 
1197 	v = REG_SET_MASK(0, THROT_GLOBAL_ENB_MASK, 1);
1198 	if (ts->soc->use_ccroc) {
1199 		ccroc_writel(ts, v, CCROC_GLOBAL_CFG);
1200 
1201 		v = ccroc_readl(ts, CCROC_SUPER_CCLKG_DIVIDER);
1202 		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1203 		ccroc_writel(ts, v, CCROC_SUPER_CCLKG_DIVIDER);
1204 	} else {
1205 		writel(v, ts->regs + THROT_GLOBAL_CFG);
1206 
1207 		v = readl(ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1208 		v = REG_SET_MASK(v, CDIVG_USE_THERM_CONTROLS_MASK, 1);
1209 		writel(v, ts->clk_regs + CAR_SUPER_CCLKG_DIVIDER);
1210 	}
1211 
1212 	/* initialize stats collection */
1213 	v = STATS_CTL_CLR_DN | STATS_CTL_EN_DN |
1214 	    STATS_CTL_CLR_UP | STATS_CTL_EN_UP;
1215 	writel(v, ts->regs + THERMCTL_STATS_CTL);
1216 }
1217 
1218 static void soctherm_init(struct platform_device *pdev)
1219 {
1220 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1221 	const struct tegra_tsensor_group **ttgs = tegra->soc->ttgs;
1222 	int i;
1223 	u32 pdiv, hotspot;
1224 
1225 	/* Initialize raw sensors */
1226 	for (i = 0; i < tegra->soc->num_tsensors; ++i)
1227 		enable_tsensor(tegra, i);
1228 
1229 	/* program pdiv and hotspot offsets per THERM */
1230 	pdiv = readl(tegra->regs + SENSOR_PDIV);
1231 	hotspot = readl(tegra->regs + SENSOR_HOTSPOT_OFF);
1232 	for (i = 0; i < tegra->soc->num_ttgs; ++i) {
1233 		pdiv = REG_SET_MASK(pdiv, ttgs[i]->pdiv_mask,
1234 				    ttgs[i]->pdiv);
1235 		/* hotspot offset from PLLX, doesn't need to configure PLLX */
1236 		if (ttgs[i]->id == TEGRA124_SOCTHERM_SENSOR_PLLX)
1237 			continue;
1238 		hotspot =  REG_SET_MASK(hotspot,
1239 					ttgs[i]->pllx_hotspot_mask,
1240 					ttgs[i]->pllx_hotspot_diff);
1241 	}
1242 	writel(pdiv, tegra->regs + SENSOR_PDIV);
1243 	writel(hotspot, tegra->regs + SENSOR_HOTSPOT_OFF);
1244 
1245 	/* Configure hw throttle */
1246 	tegra_soctherm_throttle(&pdev->dev);
1247 }
1248 
1249 static const struct of_device_id tegra_soctherm_of_match[] = {
1250 #ifdef CONFIG_ARCH_TEGRA_124_SOC
1251 	{
1252 		.compatible = "nvidia,tegra124-soctherm",
1253 		.data = &tegra124_soctherm,
1254 	},
1255 #endif
1256 #ifdef CONFIG_ARCH_TEGRA_132_SOC
1257 	{
1258 		.compatible = "nvidia,tegra132-soctherm",
1259 		.data = &tegra132_soctherm,
1260 	},
1261 #endif
1262 #ifdef CONFIG_ARCH_TEGRA_210_SOC
1263 	{
1264 		.compatible = "nvidia,tegra210-soctherm",
1265 		.data = &tegra210_soctherm,
1266 	},
1267 #endif
1268 	{ },
1269 };
1270 MODULE_DEVICE_TABLE(of, tegra_soctherm_of_match);
1271 
1272 static int tegra_soctherm_probe(struct platform_device *pdev)
1273 {
1274 	const struct of_device_id *match;
1275 	struct tegra_soctherm *tegra;
1276 	struct thermal_zone_device *z;
1277 	struct tsensor_shared_calib shared_calib;
1278 	struct resource *res;
1279 	struct tegra_soctherm_soc *soc;
1280 	unsigned int i;
1281 	int err;
1282 
1283 	match = of_match_node(tegra_soctherm_of_match, pdev->dev.of_node);
1284 	if (!match)
1285 		return -ENODEV;
1286 
1287 	soc = (struct tegra_soctherm_soc *)match->data;
1288 	if (soc->num_ttgs > TEGRA124_SOCTHERM_SENSOR_NUM)
1289 		return -EINVAL;
1290 
1291 	tegra = devm_kzalloc(&pdev->dev, sizeof(*tegra), GFP_KERNEL);
1292 	if (!tegra)
1293 		return -ENOMEM;
1294 
1295 	dev_set_drvdata(&pdev->dev, tegra);
1296 
1297 	tegra->soc = soc;
1298 
1299 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1300 					   "soctherm-reg");
1301 	tegra->regs = devm_ioremap_resource(&pdev->dev, res);
1302 	if (IS_ERR(tegra->regs)) {
1303 		dev_err(&pdev->dev, "can't get soctherm registers");
1304 		return PTR_ERR(tegra->regs);
1305 	}
1306 
1307 	if (!tegra->soc->use_ccroc) {
1308 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1309 						   "car-reg");
1310 		tegra->clk_regs = devm_ioremap_resource(&pdev->dev, res);
1311 		if (IS_ERR(tegra->clk_regs)) {
1312 			dev_err(&pdev->dev, "can't get car clk registers");
1313 			return PTR_ERR(tegra->clk_regs);
1314 		}
1315 	} else {
1316 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1317 						   "ccroc-reg");
1318 		tegra->ccroc_regs = devm_ioremap_resource(&pdev->dev, res);
1319 		if (IS_ERR(tegra->ccroc_regs)) {
1320 			dev_err(&pdev->dev, "can't get ccroc registers");
1321 			return PTR_ERR(tegra->ccroc_regs);
1322 		}
1323 	}
1324 
1325 	tegra->reset = devm_reset_control_get(&pdev->dev, "soctherm");
1326 	if (IS_ERR(tegra->reset)) {
1327 		dev_err(&pdev->dev, "can't get soctherm reset\n");
1328 		return PTR_ERR(tegra->reset);
1329 	}
1330 
1331 	tegra->clock_tsensor = devm_clk_get(&pdev->dev, "tsensor");
1332 	if (IS_ERR(tegra->clock_tsensor)) {
1333 		dev_err(&pdev->dev, "can't get tsensor clock\n");
1334 		return PTR_ERR(tegra->clock_tsensor);
1335 	}
1336 
1337 	tegra->clock_soctherm = devm_clk_get(&pdev->dev, "soctherm");
1338 	if (IS_ERR(tegra->clock_soctherm)) {
1339 		dev_err(&pdev->dev, "can't get soctherm clock\n");
1340 		return PTR_ERR(tegra->clock_soctherm);
1341 	}
1342 
1343 	tegra->calib = devm_kcalloc(&pdev->dev,
1344 				    soc->num_tsensors, sizeof(u32),
1345 				    GFP_KERNEL);
1346 	if (!tegra->calib)
1347 		return -ENOMEM;
1348 
1349 	/* calculate shared calibration data */
1350 	err = tegra_calc_shared_calib(soc->tfuse, &shared_calib);
1351 	if (err)
1352 		return err;
1353 
1354 	/* calculate tsensor calibaration data */
1355 	for (i = 0; i < soc->num_tsensors; ++i) {
1356 		err = tegra_calc_tsensor_calib(&soc->tsensors[i],
1357 					       &shared_calib,
1358 					       &tegra->calib[i]);
1359 		if (err)
1360 			return err;
1361 	}
1362 
1363 	tegra->thermctl_tzs = devm_kcalloc(&pdev->dev,
1364 					   soc->num_ttgs, sizeof(z),
1365 					   GFP_KERNEL);
1366 	if (!tegra->thermctl_tzs)
1367 		return -ENOMEM;
1368 
1369 	err = soctherm_clk_enable(pdev, true);
1370 	if (err)
1371 		return err;
1372 
1373 	soctherm_init_hw_throt_cdev(pdev);
1374 
1375 	soctherm_init(pdev);
1376 
1377 	for (i = 0; i < soc->num_ttgs; ++i) {
1378 		struct tegra_thermctl_zone *zone =
1379 			devm_kzalloc(&pdev->dev, sizeof(*zone), GFP_KERNEL);
1380 		if (!zone) {
1381 			err = -ENOMEM;
1382 			goto disable_clocks;
1383 		}
1384 
1385 		zone->reg = tegra->regs + soc->ttgs[i]->sensor_temp_offset;
1386 		zone->dev = &pdev->dev;
1387 		zone->sg = soc->ttgs[i];
1388 		zone->ts = tegra;
1389 
1390 		z = devm_thermal_zone_of_sensor_register(&pdev->dev,
1391 							 soc->ttgs[i]->id, zone,
1392 							 &tegra_of_thermal_ops);
1393 		if (IS_ERR(z)) {
1394 			err = PTR_ERR(z);
1395 			dev_err(&pdev->dev, "failed to register sensor: %d\n",
1396 				err);
1397 			goto disable_clocks;
1398 		}
1399 
1400 		zone->tz = z;
1401 		tegra->thermctl_tzs[soc->ttgs[i]->id] = z;
1402 
1403 		/* Configure hw trip points */
1404 		err = tegra_soctherm_set_hwtrips(&pdev->dev, soc->ttgs[i], z);
1405 		if (err)
1406 			goto disable_clocks;
1407 	}
1408 
1409 	soctherm_debug_init(pdev);
1410 
1411 	return 0;
1412 
1413 disable_clocks:
1414 	soctherm_clk_enable(pdev, false);
1415 
1416 	return err;
1417 }
1418 
1419 static int tegra_soctherm_remove(struct platform_device *pdev)
1420 {
1421 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1422 
1423 	debugfs_remove_recursive(tegra->debugfs_dir);
1424 
1425 	soctherm_clk_enable(pdev, false);
1426 
1427 	return 0;
1428 }
1429 
1430 static int __maybe_unused soctherm_suspend(struct device *dev)
1431 {
1432 	struct platform_device *pdev = to_platform_device(dev);
1433 
1434 	soctherm_clk_enable(pdev, false);
1435 
1436 	return 0;
1437 }
1438 
1439 static int __maybe_unused soctherm_resume(struct device *dev)
1440 {
1441 	struct platform_device *pdev = to_platform_device(dev);
1442 	struct tegra_soctherm *tegra = platform_get_drvdata(pdev);
1443 	struct tegra_soctherm_soc *soc = tegra->soc;
1444 	int err, i;
1445 
1446 	err = soctherm_clk_enable(pdev, true);
1447 	if (err) {
1448 		dev_err(&pdev->dev,
1449 			"Resume failed: enable clocks failed\n");
1450 		return err;
1451 	}
1452 
1453 	soctherm_init(pdev);
1454 
1455 	for (i = 0; i < soc->num_ttgs; ++i) {
1456 		struct thermal_zone_device *tz;
1457 
1458 		tz = tegra->thermctl_tzs[soc->ttgs[i]->id];
1459 		err = tegra_soctherm_set_hwtrips(dev, soc->ttgs[i], tz);
1460 		if (err) {
1461 			dev_err(&pdev->dev,
1462 				"Resume failed: set hwtrips failed\n");
1463 			return err;
1464 		}
1465 	}
1466 
1467 	return 0;
1468 }
1469 
1470 static SIMPLE_DEV_PM_OPS(tegra_soctherm_pm, soctherm_suspend, soctherm_resume);
1471 
1472 static struct platform_driver tegra_soctherm_driver = {
1473 	.probe = tegra_soctherm_probe,
1474 	.remove = tegra_soctherm_remove,
1475 	.driver = {
1476 		.name = "tegra_soctherm",
1477 		.pm = &tegra_soctherm_pm,
1478 		.of_match_table = tegra_soctherm_of_match,
1479 	},
1480 };
1481 module_platform_driver(tegra_soctherm_driver);
1482 
1483 MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>");
1484 MODULE_DESCRIPTION("NVIDIA Tegra SOCTHERM thermal management driver");
1485 MODULE_LICENSE("GPL v2");
1486